



# **DESIGN BRIEF**

# **FOR**

# MINTO COMMUNITIES—CANADA BARRHAVEN TOWN CENTRE—STAGE 1 3265 JOCKVALE ROAD

CITY OF OTTAWA

**PROJECT NO.: 15-816** 

FEBRUARY 2024 REVISION 5 © DSEL

# DESIGN BRIEF FOR 3265 JOCKVALE ROAD MINTO COMMUNITIES

# **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION & BACKGROUND                 | 1  |
|-----|-------------------------------------------|----|
| 1.1 | Development Concept                       | 2  |
| 1.2 | Existing Conditions                       | 4  |
| 1.3 | Required Permits / Approvals              | 4  |
| 1.4 | Pre-Consultation                          | 5  |
| 2.0 | GUIDELINES, PREVIOUS STUDIES, AND REPORTS | 6  |
| 2.1 | Existing Studies, Guidelines, and Reports | 6  |
| 3.0 | WATER SUPPLY SERVICING                    | 8  |
| 3.1 | Existing Water Supply Services            | 8  |
| 3.2 | Water Supply Servicing Design             |    |
| 3.3 | Fire Hydrant location                     | 10 |
| 3.4 | Water Supply Conclusion                   | 10 |
| 4.0 | WASTEWATER SERVICING                      | 11 |
| 4.1 | Existing Wastewater Services              | 11 |
| 4.2 | Wastewater Design                         | 11 |
| 4.3 | Wastewater Servicing Conclusions          | 12 |
| 5.0 | STORMWATER MANAGEMENT                     | 13 |
| 5.1 | Existing Stormwater Drainage              | 13 |
| 5.2 | Stormwater Management Criteria            | 13 |
| 5.3 | Stormwater Management Strategy            | 14 |
|     | 5.3.1 Minor System                        |    |
|     | 5.3.2 Quality Control                     |    |
| 5.4 | Stormwater Management Calculations        |    |
| 5.5 | Grading & Drainage                        | 17 |
| 5.6 | Stormwater Servicing Conclusions          |    |
| 6.0 | EROSION AND SEDIMENT CONTROL              | 18 |
|     |                                           |    |

| 7.0 CONCLUSIONS AND R                | ECOMMENDATIONS             | 20 |
|--------------------------------------|----------------------------|----|
|                                      | IN-TEXT FIGURES            |    |
| Figure 1.1: Site Location            |                            | 1  |
|                                      |                            |    |
|                                      | <u>TABLES</u>              |    |
| Table 1.1: Development Statis        | stic Projections           | 3  |
| <b>Table 1.2: Anticipated Permit</b> | /Approval Requirements     | 4  |
|                                      | gn Criteria                |    |
| Table 3.2: Summary of Water          | Demands                    | 9  |
|                                      | ns                         |    |
|                                      | ble Service Pressures      |    |
|                                      | ble Fire Flows             |    |
|                                      | n Criteria                 |    |
|                                      | low                        |    |
|                                      | ın Criteria                |    |
|                                      | e Requirements for Block A |    |
| Table 5.2. Stormwater Stores         | a Daguiramenta for Plack P | 10 |
| Table 5.5: Stormwater Storag         | e Requirements for Block B |    |

# **APPENDICES**

Appendix A Legal Drawings, Site Plan, Pre-consult Notes, City checklist

**Appendix B Hydraulic Network Analysis** 

**Appendix C Sanitary Servicing Documents** 

**Appendix D Stormwater Servicing Documents** 

# DESIGN BRIEF FOR 3265 JOCKVALE ROAD MINTO COMMUNITIES

JUNE 2023 CITY OF OTTAWA PROJECT NO.: 15-816

### 1.0 INTRODUCTION & BACKGROUND

David Schaeffer Engineering Limited (DSEL) has prepared this Design Brief in support of development of 3265 Jockvale Road on behalf of Minto Communities.

The study area is located within 3265 Jockvale Road in the City of Ottawa urban boundary, in the Ward 22 – Gloucester-South Nepean as illustrated in *Figure 1.1*, the study area is bounded by Longfields Drive to the east, future Chapman Mills Drive to the south, an extension of Riocan Avenue to be completed as part of these works in the west, and a mix of existing commercial and residential to the north which is crossed by Glenroy Gilbert Drive which will also be extended as part of these works. The site is a 5.21-hectar parcel located within South Nepean Town Centre Community Design Plan (CDP (City of Ottawa, 2006).

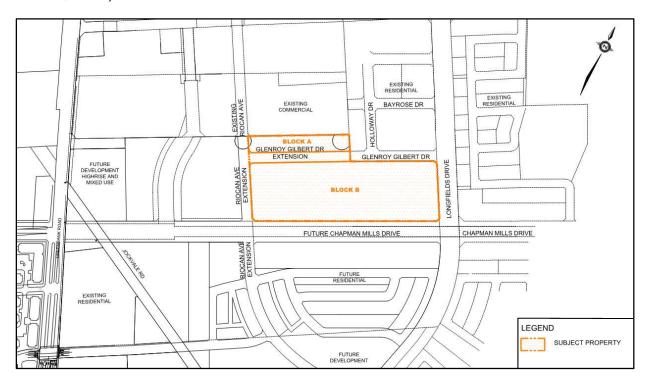



Figure 1.1: Site Location

The study area is governed by the broader *South Nepean Town Centre Community Design Plan* (CDP) (City of Ottawa, 2006) and its *Appendix I, South Nepean Town Centre Community Design Plan Preliminary Serviceability Report* (CCL, December 2005). The design plan and preliminary serviceability report were completed to prepare a preferred servicing strategy and cohesive development concept for the core of the South Nepean Town Centre Community (SNTC) development area (165 ha.). The reports identify existing infrastructure and environmental constraints, describe the neighborhood-level trunk services that will service all properties within the study area, establish targets for future site-specific stormwater management plans, and identify required infrastructure upgrades to support the proposed development of the SNTC area.

Since the completion of the reports, many of the identified neighbourhood-level infrastructure projects have been completed, including the Nepean-South Chapman Mills stormwater management pond and associated trunk storm sewers, sanitary trunk sewers, and trunk watermain connections. Furthermore, the planning and design of Chapman Mills Drive have been recently completed via the Municipal Class Environmental Assessment (October 2000, as amended 2007 and 2011) Schedule C process, with the Environmental Study Report filed on 18 November 2016.

This Design Brief is provided to demonstrate conformance with the design criteria of the City of Ottawa, the Community Design Plan, background studies including the *MSS*, and general industry practice. It provides detailed water, sanitary sewer, stormwater management and grading design information to support the development of the study area. This report should be read in conjunction with the Engineering Drawings (DSEL, June 30, 2023).

This Design Brief and detailed engineering submission have been prepared by **David Schaeffer Engineering Ltd.**, with site boundary conditions for the municipal water supply provided by the City of Ottawa, and geotechnical analysis prepared by **Paterson Group Inc.** 

### 1.1 Development Concept

The site plan for the proposed development concept at 3265 Jockvale Road is presented in *Appendix A*. The proposed development consists of a total of 604 stacked townhouse units. *Table 1.1* presented below provides a projected population count for the site. The site is comprised of two private blocks bounded by municipal right-of-ways (ROW). The north block, referred to as Block A, is located north of Glenroy Gilbert Drive between Riocan Ave and Sue Holloway Way. The south block, referred to as Block B, is located south of Glenroy Gilbert Drive between Riocan and Longfields Drive. DSEL has also been retained by Minto Group to undertake detailed design of Glenroy Gilbert Drive and Riocan Avenue. Detailed designs for both of these municipal ROWs are being submitted to the City in parallel with the site plan application for the private lands.

**Table 1.1: Development Statistic Projections** 

| Land Use                                      | Total<br>Area (ha) | Projected<br>Residential Units | Residential<br>Population per Unit * | Projected<br>Population * |
|-----------------------------------------------|--------------------|--------------------------------|--------------------------------------|---------------------------|
| Block A (North)<br>Stacked Townhouse<br>Units | 0.64               | 60                             | 2.1                                  | 126                       |
| Block B (South)<br>Stacked Townhouse<br>Units | 4.19               | 544                            | 2.1                                  | 1142                      |
| Glenroy Gilbert<br>Drive Extension            | 0.39               | -                              | -                                    | -                         |
| TOTAL                                         | 5.21               | 604                            |                                      | 1268                      |

<sup>\*</sup> NOTE: Population projections may differ from population estimates used in background Transportation Studies, Planning Rationale, and other studies. Population projection and residential population per unit values are based on Ministry of Environment, Conservation and Parks guidelines for servicing demand calculations. Local Roads are included in Total Area estimates above.

# 1.2 Existing Conditions

Under existing conditions, the study area consists of undeveloped vacant lands. The existing elevations within the study area generally range from 101.8 m in the northwest corner of the study area to 95 m where Chapman Mills Drive meets Longfields Drive.

Paterson Group conducted a geotechnical investigation for the entirety of the Barrhaven Town Centre which is summarized in the *Geotechnical Investigation – Proposed Mixed-Use Commercial and Residential Development – 3265 Jockvale Road* (Paterson Group, August 27, 2021). The investigation explains a layer of topsoil was found overlying stiff silty clay and dense glacial till. The bedrock and groundwater depths for the study area were reported to be roughly 5-15 m and 3-6 m below existing ground respectively.

# 1.3 Required Permits / Approvals

Development of the study area is expected to be subject to the following permits and approvals presented in *Table 1.2*.

Table 1.2: Anticipated Permit/Approval Requirements

| Agency                 | Permit/Approval<br>Required                                           | Trigger                                                                                 | Remarks                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MECP/City<br>of Ottawa | Environmental<br>Compliance Approval                                  | Construction of new sanitary sewers, storm sewers, and stormwater management works.     | The City of Ottawa is expected to review all stormwater collection system, stormwater management, and wastewater collection system on behalf of the MECP by transfer of review authority. |
| MECP                   | Permit to Take Water<br>(PTTW)                                        | Construction of proposed land uses (e.g. basements for residential homes) and services. | Pumping of groundwater or surface water may be required during construction, given site conditions, proposed land uses, and on-site/off-site municipal infrastructure.                    |
| MECP/City<br>of Ottawa | MECP Form 1 – Record of Watermains Authorized as a Future Alteration. | Construction of watermains.                                                             | The City of Ottawa is expected to review the watermains on behalf of the MECP through the Form 1 – Record of Watermains Authorized as a Future Alteration.                                |
| City of<br>Ottawa      | MOE Form 1 – Record of Watermains Authorized as a Future Alteration.  | Construction of watermains.                                                             | The City of Ottawa is expected to review the watermains on behalf of the MECP through the Form 1 – Record of Watermains Authorized as a Future Alteration.                                |
| City of<br>Ottawa      | Commence Work<br>Notification (CWN)                                   | Construction of new sanitary and storm sewer throughout the subdivision.                | The City of Ottawa will issue a commence work notification for construction of the sanitary and storm sewers once an ECA is issued by the MECP.                                           |

### 1.4 Pre-Consultation

Pre-application consultation was conducted on October 22, 2020, between the City of Ottawa and the developers as part of the Plan of Subdivision Application process. Various stakeholders provided written comments that were recorded and formalized in meeting minutes.

Per the City of Ottawa Transfer of Review Agreement No. TOR-OTT-E-2019-01, it is assumed that MECP pre-consultation is not required, as the City of Ottawa is expected to agree that the proposed works fall under Schedule A of the agreement. As such, the City of Ottawa is expected to review the proposed infrastructure on behalf of MECP as part of issuing Environmental Compliance Approval for the appropriate works.

# 2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

# 2.1 Existing Studies, Guidelines, and Reports

The following key studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (Sewer Design Guidelines)
- Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, February 5, 2014. (ISDTB-2014-01)
- Technical Bulletin PIEDTB-2016-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 6, 2016. (PIEDTB-2016-01)
- Technical Bulletin ISTB-2018-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, March 21, 2018 (ISTB-2018-01)
- Technical Bulletin ISTB-2019-02, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, July 8, 2019. (ISTB-2019-02)
- Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010. (Water Supply Guidelines)
- Technical Bulletin ISD-2010-2 City of Ottawa, December 15, 2010. (ISDTB-2010-2)
- Technical Bulletin ISDTB-2014-02 City of Ottawa, May 27, 2014. (ISDTB-2014-02)
- Technical Bulletin ISTB-2018-02 City of Ottawa, March 21, 2018 (ISDTB-2018-02)
- Technical Bulletin ISTB-2021-03 City of Ottawa, August 18, 2021 (ISDTB-2021-03)
- Fire Underwriters Survey, 1999. (FUS)
- ➤ **Design Guidelines for Drinking-Water Systems**, Ministry of the Environment, 2008. (*MECP Water Guidelines*)

- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MECP Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, 2003. (SWMP Design Manual)
- Ontario Building Code Compendium, Ministry of Municipal Affairs and Housing Building Development Branch, 2012 and as updated from time to time. (OBC)
- Ontario Building Code Compendium, Ministry of Municipal Affairs and Housing Building Development Branch, 2012 and as updated from time to time. (OBC)
- South Nepean Town Centre Community Design Plan City of Ottawa, July 2006. (CDP)
- Kennedy Burnett Potable Water Master Servicing Study Stantec Consulting Ltd, April 29, 2014.
- South Nepean Collector: Phase 2, Hydraulics Review, Technical Memorandum Novatech, August 20, 2015.
- Kennedy-Burnett Stormwater Management Facility Functional Design Report CH2M, February 17, 2017.
- Nepean South Chapman Mills Stormwater Management Servicing, Fourth Addendum, IBI Group, February 16, 2018.
- ➤ **Geotechnical Investigation** Proposed Mixed-Use Commercial and Residential Development 3265 Jockvale Road, Paterson Group, August 27, 2021

### 3.0 WATER SUPPLY SERVICING

# 3.1 Existing Water Supply Services

The subject property lies within the existing City of Ottawa 3SW pressure zone. To the northeast of the subject property, a 200mm diameter watermain exists within the Glenroy Gilbert Drive ROW, as well as a 300mm diameter watermain in the Chapman Mills Drive ROW which is capped at the study area boundary. To the northwest, a 200mm watermain is capped at the study area boundary running from the Chapman Mills Marketplace retail development and existing infrastructure on Riocan Avenue.

# 3.2 Water Supply Servicing Design

Per the 2006 *CDP* and *Kennedy Burnett Potable Water Master Servicing Study* (Stantec 2014), the subject lands were considered to be serviced a local network of watermains connecting to trunk watermains running within Longfields Drive and through the SNTC.

The study area is proposed to be serviced by a 150 mm diameter internal watermain network with three connections to the existing watermains within Glenroy Gilbert Drive, Chapman Mills Drive, and Riocan Avenue. Block A, to the north of Glenroy Gilbert, is serviced by a 150 mm watermain system with two connections to the 200 mm watermain being extended along Glenroy Gilbert Drive. 50mm services are extended from this 150mm system. The proposed watermain network is shown in *Drawings 3-4.* The units in Blocks A and B that do not have an underground garage will be equipped with individual water meters and have their own water service. The sizing of the proposed watermain network is based on the *Water Supply Guidelines* summarized in *Table 3.1* below.

**Table 3.1: Water Supply Design Criteria** 

| Design Parameter                                                        | Value                                                  |
|-------------------------------------------------------------------------|--------------------------------------------------------|
| Residential – Stacked Townhouse                                         | 2.1 p/unit                                             |
| Residential Average Daily Demand                                        | 280 L/d/p                                              |
| Residential – Maximum Daily Demand                                      | 2.5 x Average Daily Demand<br>4.9 x Average Day Demand |
| Residential – Maximum Hourly Demand                                     | 5.5 x Maximum Daily Demand<br>7.4 x Average Day Demand |
| Minimum Watermain Size                                                  | 150 mm diameter                                        |
| Minimum Depth of Cover                                                  | 2.4 m from top of watermain to finished grade          |
| During normal operating conditions desired operating pressure is within | 350 kPa and 480kPa                                     |
| During normal operating conditions pressure must not drop below         | 275 kPa                                                |
| During normal operating conditions pressure must not exceed             | 552 kPa                                                |
| During fire flow operating pressure must not drop below  Notes:         | 140 kPa                                                |

- Block A Peaking Factors based on MOE (MECP) Table 3-3 Design Guidelines For Drinking-Water Systems (2008)
- Block B Peaking Factors based on Section 4: Ottawa Design Guidelines, Water Distribution (July 2010), Table 4.1 Per Unit Populations and Table 4.2 – Consumption Rates for Subdivisions of 501 to 3,000 Persons.
- No Outdoor Water Demand considered for residential uses.
- Residential Average Daily Demand assumed to be 280 L/d/P in accordance with 2018 changes to Sanitary Design Guidelines, see Section 4.0.

A summary of the anticipated water demands for the study area are summarized in **Table 3.2**. Boundary conditions have been provided by the City of Ottawa based on these demands, and can be found in **Appendix B**.

**Table 3.4: Summary of Water Demands** 

| Dwelling<br>Type | Number<br>of Units | Population per unit | Allocated<br>Demand | Avg<br>Day<br>(L/min) | Max Day<br>2.5 x<br>Avg Day<br>(L/min) | Peak<br>Hour<br>5.5 x<br>Max Day<br>(L/min) | Fire Flow<br>Demand<br>(L/min) |
|------------------|--------------------|---------------------|---------------------|-----------------------|----------------------------------------|---------------------------------------------|--------------------------------|
| Block B          | 544                | 2.1                 | 280 L/d/P           | 222.3                 | 555.6                                  | 1222.7                                      | 17000.0                        |

| Dwelling<br>Type | Number<br>of Units | Population<br>per unit | Allocated<br>Demand | Avg<br>Day<br>(L/min) | Max Day<br>4.9 x<br>Avg Day<br>(L/min) | Peak<br>Hour<br>7.4 x Avg<br>Day<br>(L/min) | Fire Flow<br>Demand<br>(L/min) |
|------------------|--------------------|------------------------|---------------------|-----------------------|----------------------------------------|---------------------------------------------|--------------------------------|
| Block A          | 60                 | 2.1                    | 280 L/d/P           | 24.5                  | 120.1                                  | 181.3                                       | 17000.0                        |

The fire flows are calculated in accordance with the Fire Underwriters Survey's Water Supply for Public Fire Protection Guideline (1999) as amended by ISTB-2014-02 & ISTB-2018-02.

Type of construction: Wood Frame Construction;

Sprinkler protection: sprinklered

The result of these parameters is an estimated fire flow of approximately 15,000 L/min. Detailed calculations are presented in *Appendix B*.

The boundary conditions provided by the City of Ottawa for use in the hydraulic analysis related to the subject site are summarized in *Table 3.3*. Correspondence with the City of Ottawa related to boundary conditions is included in *Appendix B*.

**Table 3.5: Boundary Conditions** 

|                                  | (Rioca     | ection 1<br>n Ave.)<br>round Elev. | Ave.) (Glenroy Gilbert Dr |                   | Gilbert Drive) (Chapman Mills Drive) |                   |
|----------------------------------|------------|------------------------------------|---------------------------|-------------------|--------------------------------------|-------------------|
| Condition                        | HGL<br>(m) | Pressure<br>(psi)                  | HGL<br>(m)                | Pressure<br>(psi) | HGL<br>(m)                           | Pressure<br>(psi) |
| Max HGL                          | 147.9      | 64.9                               | 147.9                     | 69.1              | 147.9                                | 69.1              |
| Peak Hour                        | 145.4      | 61.3                               | 145.4                     | 65.5              | 145.4                                | 65.5              |
| Max Day + Fire<br>1 (283.33 L/s) | 129.0      | 38.1                               | 138.7                     | 56.0              | 144.9                                | 71.2              |

# 3.2.1 Watermain Modelling

A hydraulic analysis was completed for the study area. The analysis, including the watermain network configuration and sizing, is provided in *Appendix B*.

Modelling was carried out for average day, peak hour and maximum day plus fire flow. Modelling results shown in *Table 3.4* indicate that the development can be adequately serviced for minimum hour and peak hour criteria.

**Table 3.6: Summary of Available Service Pressures** 

| Average Day Demand   | Peak Hour Demand     |
|----------------------|----------------------|
| Maximum Pressure     | Minimum Pressure     |
| 55.50 m (544.27 kPa) | 46.31 m (454.15 kPa) |

The results presented in the table above indicate that the pressures during average day demand are not quite within the OSDG best practices for new water distribution systems to operate between 350 kPa and 480 kPa however, they are below the maximum allowable pressure of 552 kPa. The use of pressure reducing valves may be recommended during construction should the actual pressure in the watermain exceed what has been used for the boundary conditions.

Per *Table 3.1*, the minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire. A summary of available fire is shown below in *Table 3.5*. Further details can be found in *Appendix B*.

**Table 3.7: Summary of Available Fire Flows** 

| Required Fire Flow<br>Scenario 1 | Minimum Pressure |
|----------------------------------|------------------|
| 15000 (L/min)                    | 171.28 kPa       |

The results in *Table 3.5* demonstrate that the site is serviceable under these demands.

## 3.3 Fire Hydrant location

Fire hydrants were arranged to respect minimum spacing. All hydrants were placed to be within 90m of front doors to all units.

# 3.4 Water Supply Conclusion

The proposed watermain network conforms to all relevant City and MECP *Water Supply Guidelines*. The hydraulic analysis of the proposed watermain network, concludes that all required domestic and fire flows can be met throughout the study area upon full buildout of the development. Anticipated fire flow requirements can be met throughout the development lands according to City Guidelines and ISTB-2018-02.

### 4.0 WASTEWATER SERVICING

# 4.1 Existing Wastewater Services

The study area lies within the South Nepean Collector Sewer (SNC) catchment. The SNC sewer operates at the intersection of Jockvale Road and Longfields Drive before conveying wastewater under the Jock River. A 200 mm diameter sanitary sewer exists within the Glenroy Gilbert Drive ROW and a 250 mm diameter sanitary sewer exists in the Longfields Drive ROW.

# 4.2 Wastewater Design

The South Nepean Town Centre Community Design Plan Preliminary Serviceability Report (CCL, December 2005) and the South Nepean Collector: Phase 2, Hydraulics Review, Technical Memorandum (Novatech, August 2015) identify the outlet for the development area as the South Nepean Collector Trunk sanitary sewer.

In March 2018, the City of Ottawa provided DSEL with the latest sanitary drainage information for the Longfields Drive sanitary sewer. This information includes conceptual drainage area plans for the Barrhaven Town Centre prepared by David McManus Engineering in February 2010 and a sanitary design sheet prepared by the City of Ottawa in October 2016. We have since been made aware of updates to the March 2018 sanitary drainage areas as zoning by-law amendments have been updated to reflect higher density developments. An amalgamated design sheet has been therefore been provided in *Appendix C* to include the new drainage plans and updated population count. The spreadsheet indicates that there is still sufficient in the existing Longfields sanitary sewer to accept the projected peak flows from the Barrhaven Town Centre development.

The proposed development area is to be serviced by two internal gravity sewer systems directing flows to the existing Longfields Drive sanitary sewer. The block to the north will be serviced by 200 mm dia. sewers directed to the extended Glenroy Gilbert Drive and connecting to the existing sewer that connects to Longfields Drive. The block to the south will be serviced by 250 m dia. sewers directed to the future Chapman Mills Drive (CMD) and connecting to existing sewers on future CMD. The proposed sanitary sewer network is presented in *Drawings 3-4.* 

The sanitary sewer network was designed in accordance with the wastewater design parameters from ISTB-2018-01 and the *Sewer Design Guidelines*, summarized in *Table* **4.1** below.

**Table 4.1: Wastewater Design Criteria** 

| Design Parameter                                                                             | Value                                                      |  |  |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| Residential Stacked Townhouse                                                                | 2.1 p/unit                                                 |  |  |  |  |
| Average Daily Demand                                                                         | 280 L/d/per                                                |  |  |  |  |
| Peaking Factor                                                                               | Harmon's Peaking Factor. Max 4.0, Min 2.0                  |  |  |  |  |
| _                                                                                            | Harmon Correction Factor 0.8                               |  |  |  |  |
| Infiltration and Inflow Allowance                                                            | 0.33 L/s/ha                                                |  |  |  |  |
| Sanitary sewers are to be sized employing the                                                | $\frac{1}{\sqrt{2}} \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}}$ |  |  |  |  |
| Manning's Equation                                                                           | $Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$        |  |  |  |  |
| Minimum Sewer Size                                                                           | 200 mm diameter                                            |  |  |  |  |
| Minimum Manning's 'n'                                                                        | 0.013                                                      |  |  |  |  |
| Minimum Depth of Cover                                                                       | 2.5 m from crown of sewer to grade                         |  |  |  |  |
| Minimum Full Flowing Velocity                                                                | 0.6 m/s                                                    |  |  |  |  |
| Maximum Full Flowing Velocity 3.0 m/s                                                        |                                                            |  |  |  |  |
| Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012, |                                                            |  |  |  |  |
| Technical Bulletins, and recent residential subdivisions in the City of Ottawa.              |                                                            |  |  |  |  |

A flow allocation of 1.71 L/s was allocated for the Glenroy Gilbert Drive extension and 18.54 L/s at the Longfields Drive Intersection with future Chapman Mills as per the Longfields drive sewer design sheet provided by the City and included in Appendix C.

Table 4.2: Wastewater Peak Flow

| Area (Ha.)                                |      |                 | Pop                 | ulation    | Allocated         | Δνα                 |              |                | Peak          |
|-------------------------------------------|------|-----------------|---------------------|------------|-------------------|---------------------|--------------|----------------|---------------|
|                                           |      | Number of Units | Persons<br>per unit | Population | Demand<br>(L/c/d) | Avg<br>Day<br>(L/s) | I/I<br>(L/s) | Peak<br>Factor | Flow<br>(L/s) |
| Block A &<br>Glenroy Gilbert<br>Extension | 0.64 | 60              | 2.1                 | 126        | 280 L/c/d         | 0.41                | 0.21         | 3.57           | 1.67          |
| Block B                                   | 4.19 | 544             | 2.1                 | 1142       | 280 L/c/d         | 3.70                | 1.38         | 3.21           | 13.26         |
| Total                                     | 5.21 | 604             |                     |            |                   |                     |              |                | 14.93         |

A wastewater peak flow for the proposed development 14.93 L/s was calculated based on the parameters presented in *Table 4.1*. The peak flow is less than the allocated flow for the BTC Phase 1 lands based on the Longfields Drive sanitary design sheet. Based on the sanitary design sheet for Longfields Drive presented in *Appendix C* there is sufficient residual capacity in the receiving sewer system to accommodate the development.

# 4.3 Wastewater Servicing Conclusions

The proposed wastewater system for the development area is designed to conform to all relevant City Standards and MECP Guidelines. Two networks of local sanitary sewers are proposed to serve the study area directing flows towards the existing sanitary sewer in the Longfields Drive ROW. The South Nepean Collector sanitary sewer has been sized for the long-term development of the SNTC lands, which includes the study area.

### **5.0 STORMWATER MANAGEMENT**

# 5.1 Existing Stormwater Drainage

The study area is considered to be within the planned catchment of the existing stormwater management facility (SWMF) east of Longfields Drive and south of Paul Metivier Drive. The existing storm sewers surrounding the study area are depicted in **Drawings 3-4** and can be summarized as:

- 600 mm diameter storm sewer within the Glenroy Gilbert Drive ROW,
- ➤ 1650 mm diameter trunk storm sewer within the future extension of the Riocan Avenue ROW.
- ➤ 1500 mm diameter trunk sewer within the Longfields Drive ROW running south of Glenroy Gilbert Drive, and,
- 750 mm diameter storm sewer at future Chapman Mills Drive.

# 5.2 Stormwater Management Criteria

Consistent with *Nepean South Chapman Mills Stormwater Management Servicing* (IBI Group, February 16, 2018), the study has been considered to be part of the tributary area of the existing SWMF east of Longfields Drive. Flows from the study area were considered to drain to the SWMF via existing sewers on Glenroy Gilbert Drive and Longfields Drive. Excerpts from the report can be found in *Appendix D*.

The following criteria was considered as part of the stormwater management strategy within the study area and conveyance to the existing SWMF east of Longfields Drive, among other requirements:

Storm sewers on local roads are designed to provide a minimum 2-year level of service per the City's latest Technical Bulletin PIEDTB-2016-01. Collector and arterial roads are to provide a 5-year and 10-year level of service respectively.

Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s.

For the 100-year storm and for local and collector roads, the maximum depth of water (static and/or dynamic) on streets, rear yards, public space, and parking areas shall not exceed 0.35 m at the gutter. For arterial roads, no barrier curb overtopping is permitted.

No surface ponding on the subject site, or local roads, during the 2-year event.

The major system is designed with sufficient capacity to allow the excess runoff from storms above the 100-year storm to be conveyed within the public ROW or adjacent to the right-of-way provided that the water level must not touch any part of the building envelope, and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope.

The proposed stormwater management strategy for the study area is to respect the 100-year storm sewer capture rate of 784 L/s from the development area that is set out in the *Nepean South Chapman Mills Stormwater Management Servicing* (IBI Group, February 16, 2018) and summarized below.

- ➤ Block A & Glenroy Gilbert Drive: 147.0 L/s 100-year release rate to the proposed storm sewer in the Glenroy Gilbert Drive ROW
- ➤ Block B: 637 L/s 100-year release rate to the proposed storm sewer in the Chapman Mills Drive ROW

# 5.3 Stormwater Management Strategy

Stormwater runoff will be directed to a series of catch basins located at sags that will collect the runoff and discharge to the minor system. Underground storage tanks will be utilized to store excess runoff generated by larger storm events in order to respect the allocated release rate for the site set out by the Nepean South Chapman Mills Stormwater Management Servicing design brief.

# 5.3.1 Minor System

The study area is to be serviced by a storm sewer system designed in accordance with the amendment to the storm sewer and stormwater management elements of *PIETB-2016-01*. As described in **Section 5.2**, the minor storm system is proposed to be designed for a minimum of the 5-year event as the site is comprised of private parking areas.

The proposed gravity storm sewer network within the private site ranges from 250 mm to 675 mm dia. To service the block B, a 750 mm dia. storm sewer will be installed and connected to the existing 750mm dia. storm sewer within the future Chapman Mills Drive ROW. Similarly, a 450 mm and 525 mm dia. storm sewer will be extended along the Glenroy Gilbert Drive extension ROW to service the Block B. The proposed sewers collect stormwater runoff from the Minto Barrhaven Town Centre – Stage 1 development and directs stormwater to Longfields Drive. There is an existing 1500 mm dia. storm sewer located in the Longfields Drive ROW, this sewer directs flow south to the existing SWMF east of Longfields Drive and north of the Jock River.

The South Nepean Chapman Mills hydraulic model was reviewed to establish 100-year HGL levels on the 1500 dia. storm sewer on Longfields drive near the BTC Stage 1 outlet locations. The review determined that the HGL levels are below the obvert at the connection locations of this site and a flow allocation was given to BTC stage 1. As the allocated release rate is being respected, the receiving sewer system is expected to remain free-flowing. Therefore, an on-site HGL analysis was not undertaken.

**Table 5.1** summarizes the standards that have been employed in the detailed design of the storm sewer network, meeting the criteria described in **Section 5.2**.

Table 5.1: Storm Sewer Design Criteria

| Design Parameter                                                                                                                                                                     | Value                                                                                                                                                                                                                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Minor System Design Return Period                                                                                                                                                    | Per requirements in the Nepean South Chapman Mills Stormwater Management Servicing (IBI Group, February 16, 2018). Sewers to be sized per 2-Year (Local Streets), 5- Year (Collector Streets), 10-Year (Arterial Streets) – PIEDTB-2016-01 |  |  |  |  |
| Major System Design Return Period                                                                                                                                                    | 100-Year                                                                                                                                                                                                                                   |  |  |  |  |
| Intensity Duration Frequency Curve (IDF) 2-year storm event: A = 723.951, B = 6.199, C = 0.810                                                                                       | $i = \frac{A}{\left(t_c + B\right)^C}$                                                                                                                                                                                                     |  |  |  |  |
| 5-year storm event:<br>A = 998.071, B = 6.053, C = 0.814                                                                                                                             | ,                                                                                                                                                                                                                                          |  |  |  |  |
| Minimum Time of Concentration                                                                                                                                                        | 10 minutes                                                                                                                                                                                                                                 |  |  |  |  |
| Rational Method                                                                                                                                                                      | Q = CiA                                                                                                                                                                                                                                    |  |  |  |  |
| Runoff coefficient for paved and roof areas                                                                                                                                          | 0.90                                                                                                                                                                                                                                       |  |  |  |  |
| Runoff coefficient for landscaped areas                                                                                                                                              | 0.20                                                                                                                                                                                                                                       |  |  |  |  |
| Storm sewers are to be sized employing the Manning's Equation                                                                                                                        | $Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$                                                                                                                                                                                        |  |  |  |  |
| Minimum Sewer Size                                                                                                                                                                   | 250 mm diameter                                                                                                                                                                                                                            |  |  |  |  |
| Minimum Manning's 'n'                                                                                                                                                                | 0.013                                                                                                                                                                                                                                      |  |  |  |  |
| Minimum Depth of Cover                                                                                                                                                               | 2 m from crown of sewer to grade                                                                                                                                                                                                           |  |  |  |  |
| Minimum Full Flowing Velocity                                                                                                                                                        | 0.8 m/s                                                                                                                                                                                                                                    |  |  |  |  |
| Maximum Full Flowing Velocity                                                                                                                                                        | 6.0 m/s                                                                                                                                                                                                                                    |  |  |  |  |
| Extracted from City of Ottawa Sewer Design Guidelines, October 2012, as amended by PIEDTB-2016-01, and based on recently approved residential subdivision designs in City of Ottawa. |                                                                                                                                                                                                                                            |  |  |  |  |

# 5.3.2 Quality Control

The storm outlets are tributary to the existing SWMF east of Longfields Drive and south of Paul Metivier Drive. This facility provides end of pipe quality control and as such, no quality control is provided on-site.

# 5.3.3 Quantity Control

Minor system allowable release rates were established for both outlets based the existing reports as described in Section 5.3. Excess runoff during larger storm events will be stored in underground tanks where the flow will be directed to the minor system at a controlled rate.

Stormtech Chambers are being proposed to accomplish the required storage volumes. Street drainage will be directed towards catch basins that outlet to the storage chambers. The chambers will be connected upstream of maintenance holes that will be equipped with ICDs which will restrict the flow to the allowable release rates established in section 5.3. These storage chambers are "offline" to the network that collects the foundation drainage. As the storm sewer system that conveys foundation drainage is not upstream of any inlet control devices, basements will remain protected should the tank outlets become obstructed or plugged.

#### 5.4 **Stormwater Management Calculations**

The modified rational method (MRM) was used to size the storage tanks and at-grade ponding to ensure that allowable release rates are respected. Any uncontrolled flow was subtracted to the total controlled flow rate to ensure the sum of the controlled and uncontrolled peak runoffs respect the allowable release rates. The tables below provide a summary of the MRM calculations, detailed calculations are provided in Appendix D.

Control Area Fyeer Fyeer 100 Year 100 Year 100 Year

Table 5.2: Stormwater Storage Requirements for Block A

| Control Area                       | Release<br>Rate | Required<br>Storage | Release<br>Rate | Required<br>Storage | Available<br>Storage |
|------------------------------------|-----------------|---------------------|-----------------|---------------------|----------------------|
|                                    | (L/s)           | (m3)                | (L/s)           | (m3)                | (m3)                 |
| Unattenuated Areas<br>(CB9 - CB14) | 61.6            | 0.0                 | 61.6            | 0.0                 | 0.0                  |
| DCB 15                             | 20.1            | 0.0                 | 24.3            | 24.1                | 25.1                 |
| DCB 16                             | 16.0            | 0.0                 | 31.8            | 18.0                | 21.2                 |
| STM108                             | 6.8             | 21.8                | 10.0            | 60.1                | 60.1                 |
| STM105                             | 5.0             | 45.4                | 7.6             | 117.2               | 117.9                |
| STM101                             | 6.7             | 14.5                | 10.7            | 40.6                | 40.6                 |
| Total                              | 116.8           | 81.7                | 146.3           | 259.9               | 264.9                |

As indicated in Table 5.2 the allowable release rate of 147 L/s prescribed under the Nepean South Chapman Mills SWM servicing report has been respected. In order to achieve the allowable release a total storage volume of 259.9m<sup>3</sup> will be required. Three Stormtech chambers are being proposed in addition to surface storage to achieve this requirement as shown in *Drawings 3 and 4*.

Table 5.3: Stormwater Storage Requirements for Block B

| Control Area          | 5-year<br>Release<br>Rate | 5-year<br>Required<br>Storage | 100-Year<br>Release<br>Rate | 100-Year<br>Required<br>Storage | 100-Year<br>Available<br>Storage |
|-----------------------|---------------------------|-------------------------------|-----------------------------|---------------------------------|----------------------------------|
|                       | (L/s)                     | (m3)                          | (L/s)                       | (m3)                            | (m3)                             |
| Unattenuated<br>Areas |                           |                               |                             |                                 |                                  |
| Glenroy Gilbert       | 29.7                      | 0.0                           | 50.8                        | 0.0                             | 0.0                              |
| Riocan                | 25.6                      | 0.0                           | 43.8                        | 0.0                             | 0.0                              |
| Chapman Mills         | 65.4                      | 0.0                           | 111.9                       | 0.0                             | 0.0                              |
| Longfields            | 26.0                      | 0.0                           | 44.5                        | 0.0                             | 0.0                              |
| Attenuated Areas      |                           |                               |                             |                                 |                                  |
| STM115                | 46.6                      | 41.4                          | 69.5                        | 134.6                           | 135.1                            |
| STM126                | 10.9                      | 38.2                          | 21.7                        | 103.2                           | 105.5                            |
| STM124                | 7.6                       | 104.8                         | 9.5                         | 272.7                           | 275.1                            |
| STM134                | 86.5                      | 6.9                           | 141.3                       | 76.2                            | 79.7                             |
| STM164                | 6.5                       | 78.3                          | 11.3                        | 200.0                           | 203.5                            |
| STM159                | 6.7                       | 81.5                          | 13.0                        | 206.4                           | 210.3                            |
| STM149                | 54.3                      | 19.0                          | 119.1                       | 74.4                            | 74.8                             |
|                       |                           |                               |                             |                                 |                                  |
| Total                 | 365.9                     | 370.1                         | 636.6                       | 1067.6                          | 1084.1                           |

As indicated in *Table 5.3* the allowable release rate of 637 L/s prescribed under the Nepean South Chapman Mills SWM servicing report has been respected. In order to achieve the allowable release a total storage volume of 1067m<sup>3</sup> will be required. A number of Stormtech chambers are being proposed in order to achieve this requirement as shown in *Drawings 3 and 4*.

The Modified Rational Method was originally intended to be used for above grade storage where the change in head applied through the orifice equation had little variation. As the release rates fluctuate from maximum peak flow for underground storage due to the varying head, the variation in head has been accounted for in the storage volume calculations. Average release rate calculated using the orifice equation were used to size the tanks. Maximum release rates were verified (maximum head) to ensure the maximum allowable was respected. Complete stormwater management calculations are presented in *Appendix D*.

# 5.5 Grading & Drainage

The elevations drop significantly between Glenroy Gilbert and the future Chapman Mills. As such, terracing and retaining walls are being proposed at strategic locations across the site. The grading plan has been developed to provide adequate drainage and allow landscape features to be incorporated within the site. Detailed grading design is presented in **Drawings 5 and 6**. Major overland flow routes have been designed to safely convey water to municipal ROWs should there be any blockages in drainage structures.

# 5.6 Stormwater Servicing Conclusions

A network of local gravity sewers is proposed within the study area to capture stormwater and convey the flows to the proposed trunk storm sewer network. The storm sewers have been sized by the rational method and inlet control devices and orifices are used to maintain the allowable release to the existing minor system. Quality control will be achieved via existing stormwater management facilities.

### 6.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate, and topography. The extent of erosion losses is exaggerated where vegetation has been removed during construction and the top layer of soil becomes agitated, and where increased stormwater runoff is directed to natural areas.

Prior to earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

The erosion and sediment controls will include (but are not limited to):

Minimize the area to be cleared and grubbed.

Plan construction at proper time to avoid flooding.

Provide sediment traps and basins during dewatering.

Silt fence to be installed around the perimeter of the site and to be cleaned and maintained throughout construction. Silt fence to remain in place until the working areas have been stabilized and re-vegetated. See **Drawings 11 & 12.** 

A mud mat to be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Catch basins to have inserts installed under the grate during construction to protect from silt entering the storm sewer system.

Extent of exposed soils to be limited at any given time, and exposed areas will be revegetated as soon as possible.

Exposed slopes to be protected with plastic or synthetic mulches.

Stockpiles of cleared materials as well as equipment fueling and maintenance areas to be located away from swales, watercourses, and other conveyance routes.

Seepage barriers such as silt fencing, straw bale check dams and other sediment and erosion control measures to be installed in any temporary drainage stormwater conveyance channels and around disturbed areas during construction and stockpiles of fine material.

Filter inserts to remain on open surface structures such as manholes and catch basins until these structures are commissioned and put into use, streets are asphalted and curbed, and the surrounding landscape is stabilized.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- Clean and change inserts at catch basins.

A qualified Inspector will give recommendations related to the mitigation measures that are being implemented and maintained. Bulkhead barriers, filter clothes on open surface structures, silt fencing, and other E&SC measures may require removal of sediment and repairs. The City of Ottawa's Protocol for Wildlife Protection is to be followed during construction.

After build-out of the development, applicable sewers will be inspected and cleaned. All sediment and construction fencing should be removed following construction, providing there is no exposed soil or other potential sources of sedimentation.

### 7.0 CONCLUSIONS AND RECOMMENDATIONS

This Design Brief has been prepared on behalf of Minto Communities - Canada.

This Design Brief is to be read in conjunction with the first submission of the Minto Barrhaven Town Centre – Stage 1 detailed engineering drawing package, dated June 30, 2023

The key features of the detailed design of the proposed development are as follows:

- ➤ Three connections will be made to the existing watermains located on Riocan Avenue, Glenroy Gilbert Drive, and Chapman Mills Drive. The proposed watermain network conforms to all relevant City and MECP *Water Supply Guidelines*.
- ➤ Wastewater service will be provided through gravity sewers that have generally been designed in conformance with all relevant City of Ottawa and MECP Guidelines and Policies. A series of gravity sewers will direct wastewater to an existing sewer on Longfields Drive.
- Stormwater management will be achieved using a series of local storm sewers and retention tanks that collect surface water. Two connections to the existing Longfields Drive storm sewer will be made and established release rates for the system will be respected.

The infrastructure identified in this Design Brief is expected to require approval from the City of Ottawa, Ontario Ministry of the Environment, Conservation and Parks prior to construction.

Prepared by, **David Schaeffer Engineering Ltd.** 



Per: Alexandre Tourigny, P.Eng.

© DSEL

# **APPENDIX A**

Legal Drawings, Site Plan, Pre-consult Notes, City checklist

# **Alex Tourigny**

From: Michael Hanifi <MHanifi@minto.com>

**Sent:** February 28, 2023 3:20 PM

To: Alex Tourigny Cc: Carl Furney

**Subject:** RE: Barrhaven Town Centre Unit types

EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Hi Alex,

As a follow up, I was able to retrieve this table from a colleague for the Metro Town product at BTC. The Metro Towns are 2-bedroom units. Hope this helps.

| PRODUCT<br>TYPE |    | MODEL<br>NAME |   | UNIT TYPE         |   | BUILDING #<br>STOREYS | ELEV. | BED<br>FLOOR<br>SQ FT | IFLOOR | TOTAL<br>SQ FT |
|-----------------|----|---------------|---|-------------------|---|-----------------------|-------|-----------------------|--------|----------------|
|                 | Υ, |               | * |                   | 7 |                       | 1     |                       |        | ×.             |
| Stacked         |    | Yorkdale      |   | Lower Interior    |   | 3.5 storey            | 2     | 581                   | 481    | 1062           |
| Stacked         |    | Woodbine      |   | Upper Interior    |   | 3.5 storey            | 2     | 580                   | 679    | 1260           |
| Stacked         |    | Union         |   | Lower End/ Corner |   | 3.5 storey            | 2     | 590                   | 490    | 1081           |
| Stacked         |    | Leaside       |   | Upper End/ Corner |   | 3.5 storey            | 2     | 587                   | 686    | 1274           |
| Stacked         |    | Yorkdale      |   | Lower Interior    |   | 3.5 storey            | 2     | 581                   | 481    | 1062           |
| Stacked         |    | Woodbine      |   | Upper Interior    |   | 3.5 storey            | 2     | 580                   | 679    | 1260           |
| Stacked         |    | Union         |   | Lower End/ Corner |   | 3.5 storey            | 2     | 590                   | 490    | 1081           |
| Stacked         |    | Leaside       |   | Upper End/ Corner |   | 3.5 storey            | 2     | 587                   | 686    | 1274           |

Let me know if you need anything else.

Thanks, Michael

Michael Hanifi
Land Development Project Coordinator
MINTO COMMUNITIES - CANADA
200 - 180 Kent Street, Ottawa, ON, K1P 0B6
T 343.961.2615
A division of The Minto Group

Join Our Team! Minto Career Opportunities

You are receiving this email because you may have expressly consented to receive commercial electronic messages from Minto Group of Companies (Minto Properties Inc, Minto Communities Canada Inc., Minto Communities LLC.) and affiliates. To unsubscribe, please **click here**. Contact Minto Group of Companies at 200-180 Kent Street, Ottawa ON K1P 0B6 or 1-877-751-2852. **Click here** to access our privacy policy.

The information in this email is intended solely for the addressee(s) named and may contain privileged, confidential or

personal information. If you have received this communication in error, please reply by e-mail to the sender and delete or destroy all copies of this message. Any other distribution, disclosure or copying is strictly prohibited.

From: Michael Hanifi

**Sent:** Tuesday, February 28, 2023 1:53 PM **To:** Alex Tourigny <ATourigny@dsel.ca> **Cc:** Carl Furney <CFurney@minto.com>

Subject: RE: Barrhaven Town Centre Unit types

Hi Alex,

It is correct to assume they are 2-bedroom units. I've asked around about if we have a table (I'll get back to you with it if we do). Do you need the latest floor plans or anything else? I'll follow up with the Andrews about your request from yesterday as well.

Thanks, Michael

From: Alex Tourigny <<u>ATourigny@dsel.ca</u>>
Sent: Tuesday, February 28, 2023 1:12 PM
To: Michael Hanifi <<u>MHanifi@minto.com</u>>
Cc: Carl Furney <<u>CFurney@minto.com</u>>
Subject: Barrhaven Town Centre Unit types

Hi Michael,

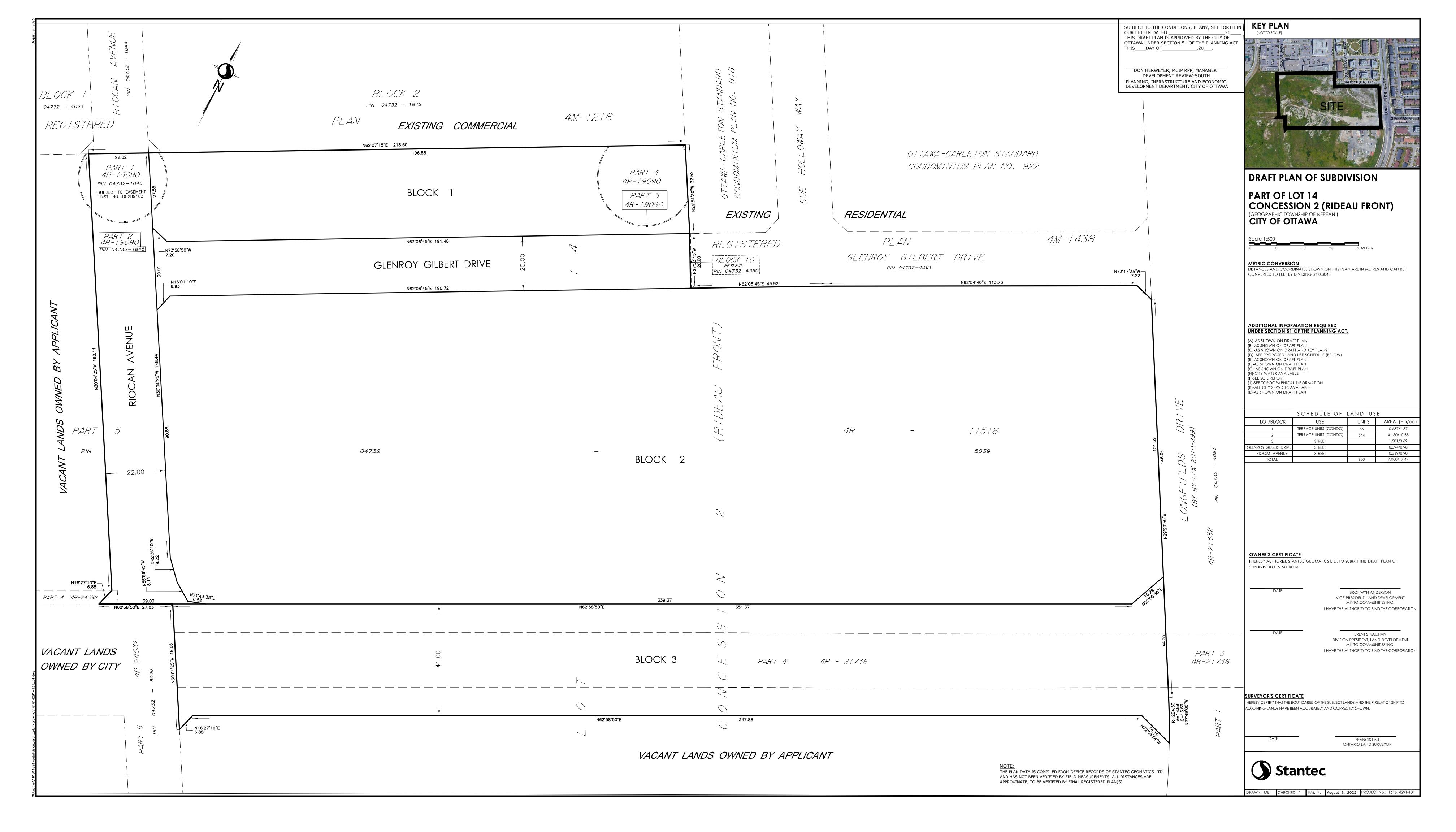
We assumed the units were mostly 2bedroom units when completing our supporting calculations for BTC. Does Minto have a table with a unit type description (1bed, 2bed, bachelors etc...)?

Thanks,

Alex Tourigny, P.Eng.

# **DSEL**

david schaeffer engineering ltd.


120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: 613-845-2106 (NEW NUMBER)

cell: (343) 542-8847 e-mail: atourigny@dsel.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.



### **Braden Kaminski**

From: Moore, Sean <Sean.Moore@ottawa.ca>
Sent: Thursday, November 5, 2020 12:07 PM

**To:** Carl Furney; Bronwyn Anderson

Cc: Shillington, Jeffrey; Krabicka, Jeannette; Young, Mark; Rehman, Sami; Gervais, Josiane;

Neermul, Dhaneshwar; Richardson, Mark; Siddigue, Jabbar

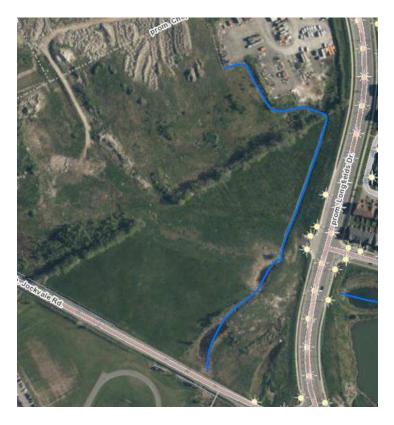
**Subject:** Minto Barrhaven Town Centre preconsult

Attachments: 201023\_BTC-Minto\_PFP preconsult comments.pdf; SNTC - Minto Pre-Consult -

Illustration.pdf; SNC-Sanitary Drainage Areas.pdf; SWM-DrainagePlan.pdf;

Minto\_BTC\_design\_brief\_submission requirements.pdf

### Carl and Bronwyn,


Regarding our pre-consultation meeting on October 22, 2020 for a plan of subdivision and rezoning on our lands in the Barrhaven Town Centre please find the submission requirements and preliminary comments below:

### List of required Plans/Reports with your Plan of Subdivision and Zoning By-law Amendment applications:

## **Required Plans/Studies:**

- Draft Plan of Subdivision
- Survey Plan
- Planning Rationale, with Integrated Environmental Review please include a Parks rationale for the park location, size, configuration and how it meets the parks policies / guidelines of the City of Ottawa
- Urban Design Brief see ToR attached
- Stormwater Management Report / Brief
- Serviceability Study
- Transportation Impact Assessment
- Noise Feasibility Study should also address proximity of residential to the LRT tail track south of Chapman Mills
   Drive
- Vibration Study should address the proximity of residential to the LRT tail track south of Chapman Mills Drive
- Geotechnical Study
- Phase 1 ESA to conformity with OReg 153/04 (and subsequent Phase 2 and or 3 ESA's if required)
- Tree Conservation Report
- Archaeological Resource Assessment
- Roadway Modification Plan for functional design of any road mods / intersections / medians etc
- Concept Plan ultimate use of lands
- Environmental Impact Statement please address the water course shown below and butternut trees in your
   EIS

Watercourse to address in EIS:



\*All required plans & reports are to be provided in digital format (\*.pdf through an FTP site) at application submission and sent to <a href="mailto:planningcirculations@ottawa.ca">planningcirculations@ottawa.ca</a> and cc'd to myself. Please ensure the application forms for plan of subdivision and zoning are also scanned and sent as a pdf to this email. Once received we will create the file numbers for you and advise of them, so you can make payment at a Client Service Centre.

### **Link to Planning Application process**

https://ottawa.ca/en/planning-development-and-construction/developing-property/development-application-review-process

### Link to development application forms:

https://ottawa.ca/en/planning-development-and-construction/developing-property/development-application-review-process/development-application-submission/development-application-forms

## **Preliminary Staff Comments:**

# **Parks Planning**

1. See attached comments entitled 'BTC Minto PFP preconsult comments'

### **Urban Design:**

- 2. Proposed units facing Riocan Avenue should be designed to allow for additional at grade uses in the future (home based business) or local scale commercial given the "active frontage" designation in the Secondary Plan.
- 3. Consider re-aligning the access street from Riocan Avenue to allow for a larger multiresidential block at the north end of the subject site.
- 4. Sidewalks should be provided on local streets as directed in the Secondary Plan. Please review cross-section widths to ensure that adequate space is provided for sidewalks and tree planting.
- 5. Please ensure building setbacks allow for tree planting in accordance with the 2017 Sensitive Clay Soils direction.

- 6. PRUD supports the comments provided by Parks and Facilities Planning as it relates to the size and contiguous shape for the Linear Park proposed on the western end of the lands.
- 7. Additional analysis should be undertaken to ensure that the design for a bus-loop and park and ride do not hinder future development opportunities on Minto's abutting lands. It is suggested that a public or "private" north/south street be introduced as a division between the proposed park and ride and the future development block to the west. This new street could also serve as access to the bus-loop which could be located along the northern edge of the site (mid-block)
- 8. Illustration provided in attachment entitled 'SNTC Minto Pre-Consult illustration'

### **Engineering:**

- 9. For SWM the latest document produced was the Nepean South-Chapman Mills SWM Servicing Addendum. See the excerpt showing the Drainage Area Plan for the area. It shows an existing trunk storm sewer within future Riocan Drive just north of the existing pond. This storm sewer will need to be extended into their subdivision. Major Overland Flow is be conveyed through the City owned lands just south of the subject lands and continue through the Minto built Riverbend subdivision and Major Overland Flow outfall to the Jock River.
- 10. For Sanitary, South Nepean Collector: Phase 2 Hydraulic Review/Assessment completed by Novatech was completed in August 2015. I've attached an excerpt that shows the South Nepean Collector extending just north of the Jock River. There is a 1050 mm on Longfields that extends from the SNC up to the future RioCan ROW. Minto can connect to the 1050 mm dia. at Longfield's and future Riocan (capacity subject to review by Infrastructure Policy).
- 11. For water, Minto is to construct a 305 mm dia. watermain within the Chapman Mills Road corridor.

# **General Planning comments:**

- 1. Please ensure a signalized intersection is planned for Riocan Ave and Chapman Mills Drive and removed from Sue Holloway Drive and Chapman Mills.
- 2. On your concept plan please illustrate a park on the 'civic block' lands, representing the urban public square
- 3. On your concept plan please illustrate the park and ride on the lands west of the civic block
- 4. Please follow the Barrhaven Downtown Secondary Plan on the general placement of Park #6 do not create any road patterns that force its location along Longfields Drive
- 5. The City will be looking for the dedication of the re-aligned BRT/LRT corridor as per the EA that went to Committee on Nov 2<sup>nd</sup> 2020
- 6. The City will engage Minto on discussions concerning the proposed park and ride lot, and the civic block.
- 7. We need to assess the viability of tree planting with soil types, proposed zoning setbacks, and street cross sections (please speak to soils in this Geotech as it relates to tree planting and make recommendations in the Planning Rationale concerning this)

### **Transportation:**

- Follow Traffic Impact Assessment Guidelines
  - Traffic Impact Assessment will be required. Please proceed to submitting Screening/Scoping at your earliest convenience.
  - Start this process asap. The application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable), draft functional plans (if applicable) and/or monitoring report (if applicable).
  - Request base mapping asap if RMA is required. Contact Engineering Services (<a href="https://ottawa.ca/en/city-hall/planning-and-development/engineering-services">https://ottawa.ca/en/city-hall/planning-and-development/engineering-services</a>)

- All new collector streets within the subdivision should be designed following the City's Collector Guidelines (desired 26m ROW for collector Roads).
- All new local residential streets should be designed with a target operating speed of 30km/h
  per the new Strategic Road Safety Action Plan Update. A 30 km/h Design Guideline with
  further guidance on how to achieve a 30km/h target for new roadways is being developed.
  TES may be contacted for interim guidance on how to achieve a 30km/h design speed on local
  streets.
- Corner triangles as per OP Annex 1 Road Classification and Rights-of-Way at the following locations on the final plan will be required:
  - Local Road to Local Road: 3 m x 3 m
  - Local Road to Collector Road: 5 m x 5 m
  - Collector Road to Collector Road: 5 m x 5 m
  - Collector Road to Arterial Road: 5 m x 5 m
- ROW protection on Greenbank between Strandherd and Chapman Mills is 37.5m even and from Chapman Mills to Cambrian is 41.5m (Subject to varying widening requirements of Greenbank Road ESR).
- ROW on Longfields between Strandherd and Jockvale is 37.5m even.
- The Greenbank Road realignment construction is anticipated for post-2031.
- RMA is underway at the Greenbank Rd/Street E intersection.
- Geometric Road Design drawings will be required with the first submission of underground infrastructure and grading drawings.
- Noise Impact Studies are required. Feasibility Study required before draft approval and Detailed Study required before registration. Both studies must assess:
  - Road
  - o Rail, due to the proximity to the future LRT.
  - o Aircraft, site falls within Airport Vicinity Development Zone.
  - Stationary (due to the proximity to neighbouring exposed mechanical equipment) or (if there will be any exposed mechanical equipment due to the proximity to neighbouring noise sensitive land uses)

### **Forestry**

- 1. a Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City; an approved TCR is a requirement for Plan of Subdivision approval.
- 2. any removal of privately-owned trees 10cm or larger in diameter requires a tree permit issued under the Urban Tree Conservation Bylaw; the permit is based on the approved TCR
- 3. any removal of City-owned trees will require the permission of Forestry Services who will also review the submitted TCR
- 4. the TCR must list all trees on site by species, diameter and health condition
- 5. the TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site
- 6. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained
- 7. the City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.
- 8. Please ensure newly planted trees have an adequate soil volume for their size at maturity. Here are the recommended soil volumes:

| Tree Type/Size | Single Tree Soil | Multiple Tree Soil |
|----------------|------------------|--------------------|
|                | Volume (m3)      | Volume (m3/tree)   |
| Ornamental     | 15               | 9                  |

| Columnar | 15 | 9  |
|----------|----|----|
| Small    | 20 | 12 |
| Medium   | 25 | 15 |
| Large    | 30 | 18 |
| Conifer  | 25 | 15 |

9. For more information on the process or help with tree retention options, contact Mark Richardson mark.richardson@ottawa.ca

Regards,

Sean Moore, RPP/MCIP
Senior Planner
Development Review South Unit
Planning, Infrastructure and Economic Development Dept.
City of Ottawa

Cell: 613-805-9804

- Please note I am working from home during this crisis until further notice

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

•



# PRE-CONSULTATION COMMENTS Parks & Facilities Planning

**Project:** Barrhaven Town Centre - Minto

Date: 23 October, 2020

### 1. Parkland Dedication

- The Parkland Dedication By-Law calls for the dedication calculation for the Barrhaven Town
   Centre to be 5% of the gross land area of the area
- The current plan shows land conveyance of 2.15% / 0.50 ha (according to the chart on the Concept Plan). Therefore, the land conveyance shown in the development concept is significantly under-dedicated.
- Based on a development area of 23.26 ha, and a calculation of 5% of the gross area, the parkland dedication needs to be a minimum of 1.161 ha
- Parks & Facilities Planning is looking for the parkland dedication to be wholly fulfilled through land conveyance for the gross development area within the currently proposed subdivision.

### 2. Park shape and location

Please provide a contiguous park block with no road crossings.

### 3. Timing

• The park block shown as '8' on Schedule A: Land Use Plan of the Barrhaven Town Centre Secondary Plan is to be dedicated in the first Draft Plan of Subdivision for the property.

### 4. To be included in the 1st Submission

- Please show a revised park block
- Please show high level park grading on the on the subdivision Preliminary Grading plan –
   including key spot elevations, flow arrows and slope percentages. Keep in mind that:
  - Park is to be graded to subdivision levels
  - Show positive surface drainage towards the ROW
  - The park is to have <u>no</u> encumbrances or easements either below or above ground level. This includes any current or future LRT requirements, utilities, etc. It also includes any stormwater flows from neighbouring properties.
- Please include the parkland dedication as part of the Planning Rationale provide an explanation of how the proposed development will address and meet the Parkland Dedication requirements.
- Please include the park block specifically as part of the Geotechnical Report please include text that speaks to the suitability of the soils for construction and load bearing, and any potential required amendments to make it suitable (if needed).
- Confirmation that there are no existing or proposed encumbrances on the proposed park block.



#### 5. Developer Requirements for Land Conveyance of a Park Block

Please review the following reference documents which outline the requirements for parkland dedication and park block conveyance to the City:

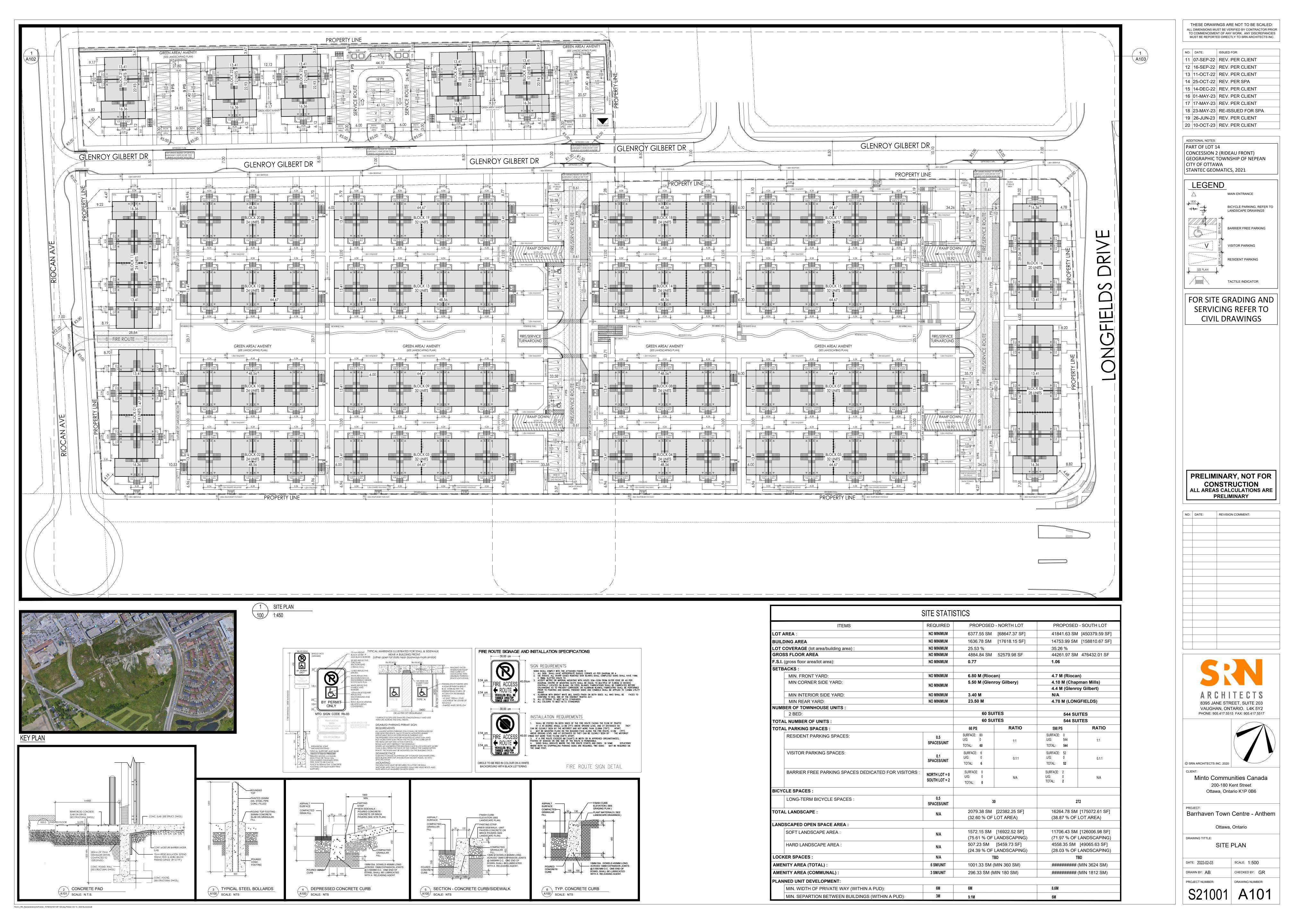
- City of Ottawa Park Development Manual, 2<sup>nd</sup> edition
- City of Ottawa Parkland Dedication By-Law
- The standard parks Conditions of Draft Plan Approval

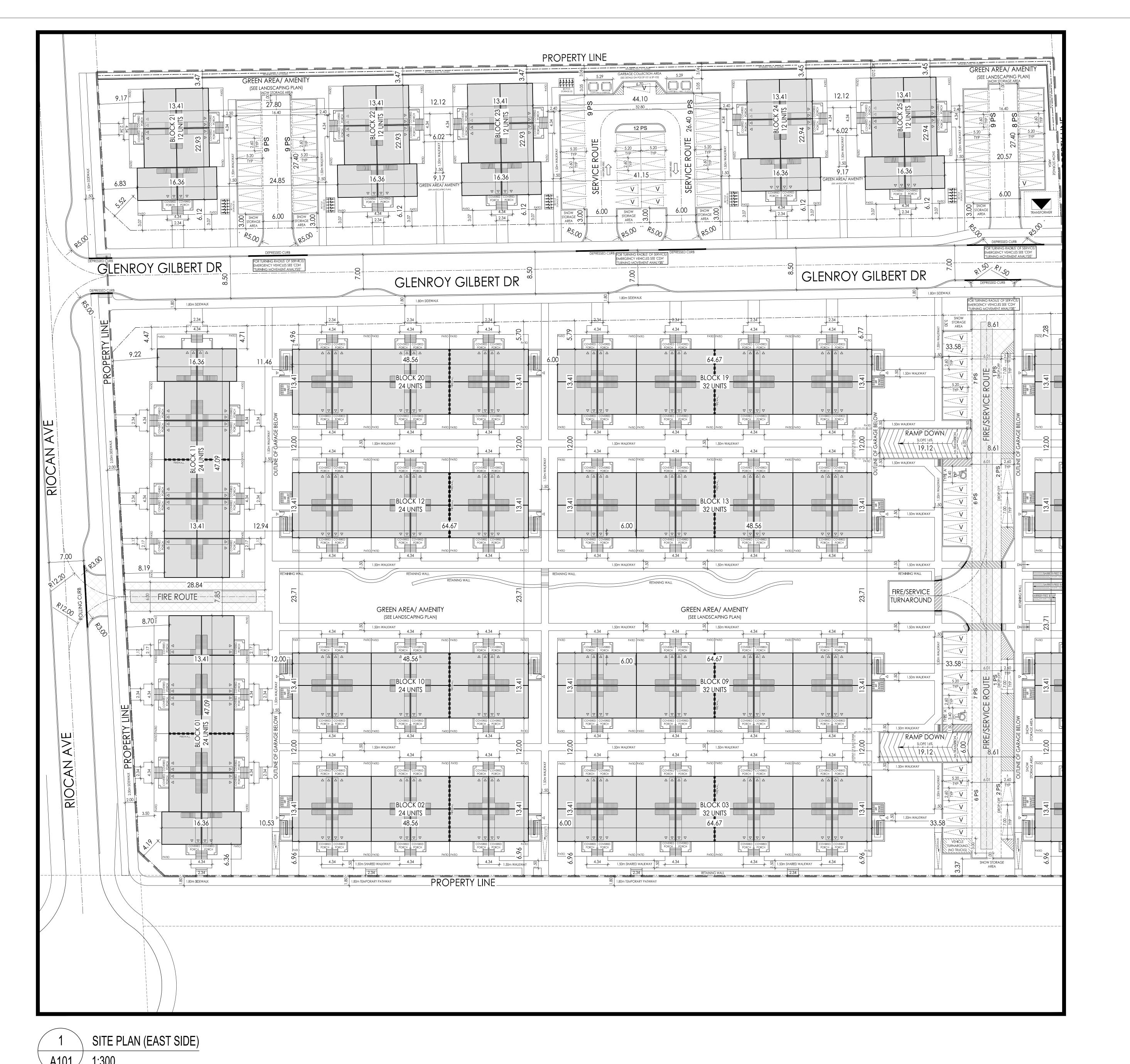
#### 6. Concept revision for consideration

Please consider the following revision to the subdivision concept – or similar:



#### Benefits:


- Park block size is increased to meet dedication requirements
- Road crossing is eliminated
- Parkland dedication is balanced for the entirety of the Minto property
  - Phase 1 Draft Plan: 0.913 ha park
  - Phase 2 Draft Plan: 0.250 ha Civic Centre urban plaza or parkette
- Road frontage along the proposed park is increased
- Park block is adjacent to the LRT tail track. Therefore, the surface of those lands could blend into the park design.


Please don't hesitate to contact me if you have any questions. Regards,

Jeannette.

Jeannette Krabicka Planner, Parks & Facilities Planning City of Ottawa







THESE DRAWINGS ARE NOT TO BE SCALED: ALL DIMENSIONS MUST BE VERIFIED BY CONTRACTOR PRIOR TO COMMENCEMENT OF ANY WORK. ANY DISCREPANCIES MUST BE REPORTED DIRECTLY TO SRN ARCHITECTS INC.

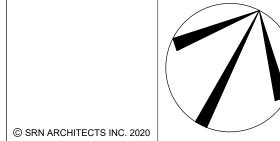
> NO: DATE: ISSUED FOR: 11 07-SEP-22 REV. PER CLIENT 12 16-SEP-22 REV. PER CLIENT

> 13 11-OCT-22 REV. PER CLIENT 14 25-OCT-22 REV. PER SPA 15 14-DEC-22 REV. PER CLIENT 16 01-MAY-23 REV. PER CLIENT 17 17-MAY-23 REV. PER CLIENT

18 23-MAY-23 RE-ISSUED FOR SPA

19 26-JUN-23 REV. PER CLIENT 20 10-OCT-23 REV. PER CLIENT

ADDITIONAL NOTES: PART OF LOT 14 CONCESSION 2 (RIDEAU FRONT) GEOGRAPHIC TOWNSHIP OF NEPEAN CITY OF OTTAWA STANTEC GEOMATICS, 2021


LEGEND MAIN ENTRANCE BICYCLE PARKING, REFER TO ++- -LANDSCAPE DRAWINGS BARRIER FREE PARKING VISITOR PARKING RESIDENT PARKING SEE PLAN TACTILE INDICATOR

FOR SITE GRADING AND SERVICING REFER TO **CIVIL DRAWINGS** 

PRELIMINARY, NOT FOR CONSTRUCTION ALL AREAS CALCULATIONS ARE **PRELIMINARY** 

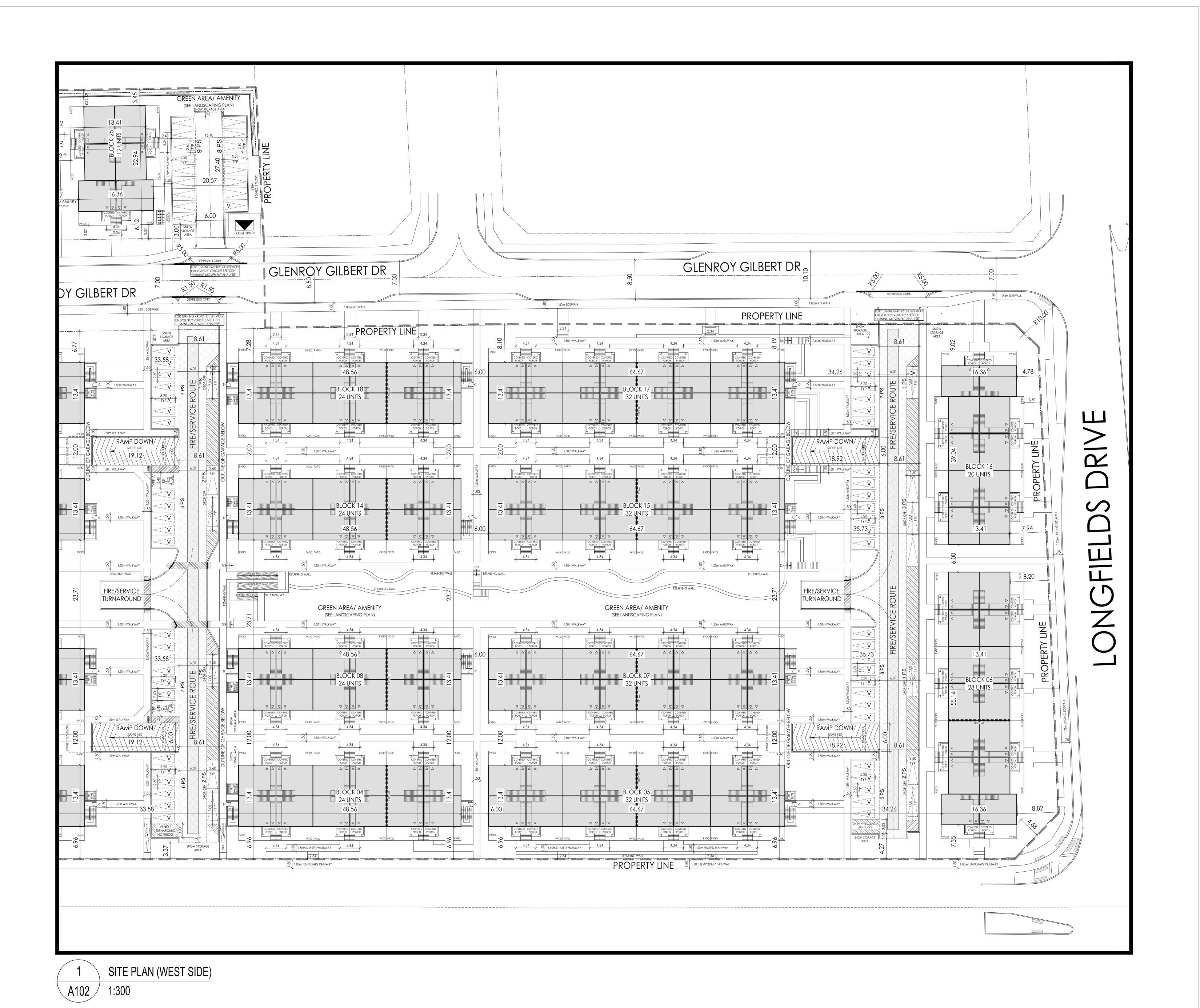
| NO: | DATE: | REVISION COMMENT: |
|-----|-------|-------------------|
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |
|     |       |                   |

8395 JANE STREET, SUITE 203 VAUGHAN, ONTARIO. L4K 5Y2 PHONE: 905.417.5515 FAX: 905.417.5517



Minto Communities Canada

200-180 Kent Street Ottawa, Ontario K1P 0B6


Barrhaven Town Centre - Anthem

Ottawa, Ontario SITE PLAN

SCALE: 1:500 CHECKED BY: GR DRAWN BY: AB

PROJECT NUMBER:

File:C:\\_RN\_Standards\temp\AcPublish\_16768\S21001-SP-100.dwg Plotted: Oct 10, 2023 By:AndrewB



File:C:\\_RN\_Standards\temp\AcPublish\_16768\S21001-SP-100.dwg Plotted: Oct 10, 2023 By:AndrewB

THESE DRAWINGS ARE NOT TO BE SCALED:

ALL DIMENSIONS MUST BE VERIFIED BY CONTRACTOR PRIOR
TO COMMENCEMENT OF ANY WORK. ANY DISCREPANCIES
MUST BE REPORTED DIRECTLY TO SRN ARCHITECTS INC.

 NO:
 DATE:
 ISSUED FOR:

 11
 07-SEP-22
 REV. PER CLIENT

 12
 16-SEP-22
 REV. PER CLIENT

 13
 11-OCT-22
 REV. PER CLIENT

 14
 25-OCT-22
 REV. PER SPA

 15
 14-DEC-22
 REV. PER CLIENT

 16
 01-MAY-23
 REV. PER CLIENT

 17
 17-MAY-23
 REV. PER CLIENT

18 23-MAY-23 RE-ISSUED FOR SPA
 19 26-JUN-23 REV. PER CLIENT
 20 10-OCT-23 REV. PER CLIENT

ADDITIONAL NOTES:

PART OF LOT 14

CONCESSION 2 (RIDEAU FRONT)

GEOGRAPHIC TOWNSHIP OF NEPEAN

CITY OF OTTAWA

STANTEC GEOMATICS, 2021

MAIN ENTRANCE

MAIN ENTRANCE

BICYCLE PARKING, REFER TO LANDSCAPE DRAWINGS

BARRIER FREE PARKING

VISITOR PARKING

RESIDENT PARKING

FOR SITE GRADING AND SERVICING REFER TO CIVIL DRAWINGS


TACTILE INDICATOR

PRELIMINARY, NOT FOR
CONSTRUCTION
ALL AREAS CALCULATIONS ARE
PRELIMINARY

NO: DATE: REVISION COMMENT:

ARCHITECTS

8395 JANE STREET, SUITE 203
VAUGHAN, ONTARIO. L4K 5Y2
PHONE: 905.417.5515 FAX: 905.417.5517



Minto Communities Canada
200-180 Kent Street
Ottawa, Ontario K1P 086

200-180 Kent Street Ottawa, Ontario K1P 0B6

Barrhaven Town Centre - Anthem
Ottawa, Ontario

SITE PLAN

DATE: 2022-02-03 SCALE: 1:500

DRAWN BY: AB CHECKED BY: GR

PROJECT NUMBER: DRAWING NUMBER:

21001 A10

# **APPENDIX B**

**Hydraulic Network Analysis** 

#### Minto BTC Stage 1 (Block 6) FUS-Fire Flow Demand

#### Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 2020

# DSEL

#### Fire Flow Required

1. Base Requirement

Type of Construction:

Where  $\mathbf{F}$  is the fire flow,  $\mathbf{C}$  is the Type of construction and  $\mathbf{A}$  is the Total floor area

Wood Frame

C 1.5 Type of Construction Coefficient per FUS Part II, Section 1

A 1301.3 m<sup>2</sup> Total floor area based on FUS Part II section 1

Fire Flow

11904.3 L/min 12000.0 L/min rounded to the nearest 1,000 L/min

#### **Adjustments**

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 10200.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

| Cons. of Exposed Wall | S.D        | Lw Ha | LH | EC |                           |     |
|-----------------------|------------|-------|----|----|---------------------------|-----|
| N Wood Frame          | 3.1m-10m   | 16    | 3  | 48 | 18%                       |     |
| S Wood Frame          | 0m-3m      | 13    | 3  | 39 | 23%                       |     |
| E Wood Frame          | >45m       | 32    | 3  | 96 | 0%                        |     |
| W Wood Frame          | 30.1m-45m  | 32    | 3  | 96 | 5%                        |     |
|                       | % Increase |       |    |    | 46% value not to exceed 7 | '5% |

Increase 4692.0 L/min

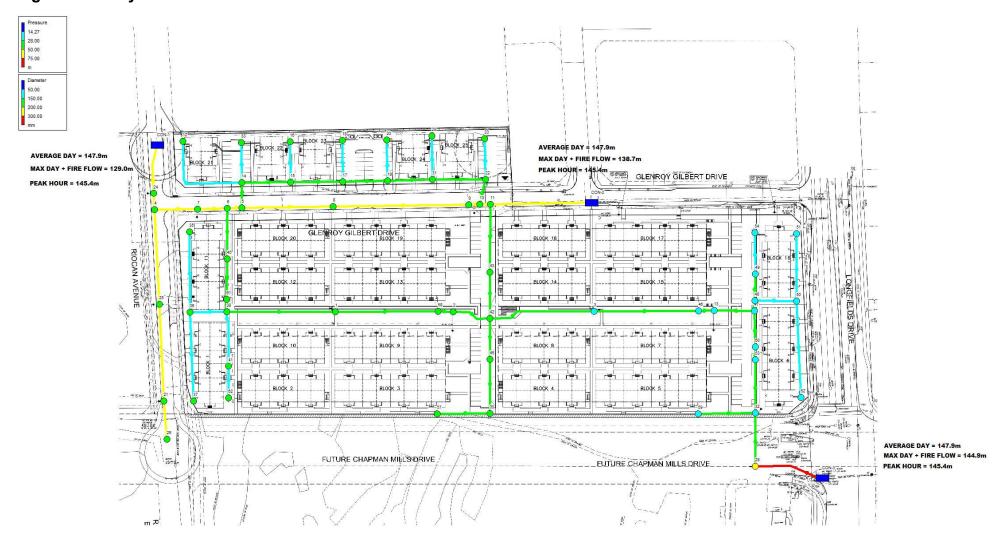
Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure. Max 5 stories

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

#### **Total Fire Flow**


| Fire Flow | 14892.0 L/min | fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section |
|-----------|---------------|-----------------------------------------------------------------------------------|
|           | 15000.0 L/min | rounded to the nearest 1,000 L/min                                                |

#### Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by \_\_\_\_\_

-Calculations based on Fire Underwriters Survey - Part II

Fig 2 - Max Day + Fire Flow



| Page 1            | 2024-02-14   | 3:11:55 PM |
|-------------------|--------------|------------|
| ************      | ********     | *******    |
| * EPAN            | ΕT           | *          |
| * Hydraulic and W | ater Quality | *          |
| * Analysis for Pi | pe Networks  | *          |
| * Version 2       | .0           | *          |
|                   |              |            |

Input File: 2023-09-05\_816\_max-ff(blk6)\_Scenario-1.net

15-816: Minto - BTC Stage 1

Link - Node Table:

| Link<br>ID | Start<br>Node | End<br>Node | Length<br>m | Diameter<br>mm |
|------------|---------------|-------------|-------------|----------------|
|            |               |             |             |                |
| 12         | 4             | 7           | 25.0        | 200            |
| 13         | 5             | 6           | 9.0         | 200            |
| 16         | 8             | 9           | 83          | 200            |
| 17         | 9             | 10          | 6.6         | 200            |
| 18         | 10            | 11          | 2.5         | 200            |
| 19         | 11            | CON-2       | 39.0        | 200            |
| 24         | 33            | 14          | 23.5        | 50             |
| 26         | 15            | 16          | 23.5        | 50             |
| 30         | 19            | 20          | 23.5        | 50             |
| 35         | 35            | 36          | 47.0        | 50             |
| 36         | 36            | 37          | 52.5        | 50             |
| 37         | 36            | 38          | 21.5        | 50             |
| 39         | 40            | 6           | 29.5        | 150            |
| 43         | 11            | 43          | 40          | 150            |
| 46         | 42            | 45          | 22.0        | 150            |
| 47         | 45            | 30          | 34.0        | 150            |
| 50         | 47            | 48          | 6.0         | 150            |
| 51         | 48            | 49          | 17.0        | 150            |
| 52         | 48            | 50          | 24.5        | 50             |
| 53         | 50            | 51          | 39.5        | 50             |
| 54         | 50            | 52          | 57.5        | 50             |
| 56         | 53            | 32          | 20.5        | 150            |
| 57         | 54            | 49          | 23.0        | 50             |
| 48         | 42            | 3           | 63.0        | 150            |
| 58         | 3             | 46          | 61          | 150            |
| 9          | 28            | 32          | 41          | 150            |
| 62         | 17            | 18          | 23.5        | 50             |
| 63         | 12            | 14          | 57.5        | 50             |
| 64         | 14            | 15          | 10          | 150            |
| 65         | 15            | 17          | 10          | 150            |
| 66         | 17            | 19          | 10          | 150            |
| 67         | 19            | 31          | 10          | 150            |
| 68         | 31            | 22          | 10          | 150            |
| 69         | 29            | 31          | 26.0        | 50             |
| 70         | 23            | 22          | 23.5        | 50             |
| 71         | 22            | 10          | 15.5        | 150            |
| 72         | 5             | 14          | 15.5        | 150            |

Page 2 15-816: Minto - BTC Stage 1
Link - Node Table: (continued)

End Length Diameter Link Start ID Node Node m mm \_\_\_\_\_\_ 78 41 32.0 50 38 6 8 30 79 17.5 200 , 5 57 80 53.5 200 82 31.0 150 64 60 83 38 1 150 84 1 58 150

MAX DAY + FIRE FLOW

| 86 | 43 | 42    | 26.5 | 150 |
|----|----|-------|------|-----|
| 88 | 59 | 32    | 33.5 | 150 |
| 89 | 47 | 60    | 14.5 | 150 |
| 90 | 60 | 53    | 25.0 | 150 |
| 91 | 40 | 61    | 25.0 | 150 |
| 92 | 61 | 38    | 6.0  | 150 |
| 93 | 41 | 62    | 18.5 | 50  |
| 5  | 42 | 2     | 23.2 | 150 |
| 6  | 2  | 58    | 8.7  | 150 |
| 7  | 46 | 13    | 8.8  | 150 |
| 8  | 13 | 47    | 24   | 150 |
| 10 | 24 | CON-1 | 10   | 200 |
| 11 | 24 | 4     | 9.5  | 200 |
| 14 | 4  | 25    | 55.5 | 200 |
| 15 | 25 | 21    | 56.8 | 200 |
| 20 | 21 | 26    | 22.4 | 200 |
| 21 | 28 | CON-3 | 41   | 300 |

#### Node Results:

| Node<br>ID |       | Head<br>m | Pressure<br>m | Quality |  |
|------------|-------|-----------|---------------|---------|--|
| 4          | 0.00  | 129.88    | 31.87         | 0.00    |  |
| 5          | 0.00  | 131.84    | 33.94         | 0.00    |  |
| 6          | 0.00  | 131.30    | 33.30         | 0.00    |  |
| 8          | 0.00  | 132.77    | 35.11         | 0.00    |  |
| 9          | 0.00  | 134.17    | 37.02         | 0.00    |  |
| 10         | 0.00  | 134.37    | 37.17         | 0.00    |  |
| 11         | 0.00  | 134.63    | 37.40         | 0.00    |  |
| 12         | 6.25  | 132.43    | 33.42         | 0.00    |  |
| 14         | 0.00  | 132.44    | 34.48         | 0.00    |  |
| 15         | 0.00  | 132.69    | 34.57         | 0.00    |  |
| 16         | 12.50 | 132.68    | 34.57         | 0.00    |  |
| 17         | 0.00  | 132.95    | 35.30         | 0.00    |  |
| 18         | 6.25  | 132.95    | 35.19         | 0.00    |  |
| 19         | 0.00  | 133.21    | 35.67         | 0.00    |  |
| 20         | 6.25  | 133.20    | 35.57         | 0.00    |  |
| 22         | 0.00  | 133.73    | 36.46         | 0.00    |  |
| 23         | 6.25  | 133.72    | 36.20         | 0.00    |  |
| 25         | 0.00  | 129.88    | 32.13         | 0.00    |  |

Page 3 15-816: Minto - BTC Stage 1 Node Results: (continued)

|      | ` ,     |        |          |         |  |
|------|---------|--------|----------|---------|--|
| Node | Demand  | Head   | Pressure | Quality |  |
| ID   | LPM     | m      | m        |         |  |
| 26   | 0.00    | 129.88 | 32.73    | 0.00    |  |
| 30   | 0.00    | 128.91 | 34.52    | 0.00    |  |
| 32   | 5700.00 | 118.37 | 25.86    | 0.00    |  |
| 33   | 6.25    | 132.44 | 34.19    | 0.00    |  |
| 35   | 12.75   | 130.41 | 32.50    | 0.00    |  |
| 36   | 0.00    | 130.45 | 32.97    | 0.00    |  |
| 37   | 12.75   | 130.41 | 33.16    | 0.00    |  |
| 38   | 0.00    | 130.51 | 33.12    | 0.00    |  |
| 40   | 0.00    | 130.90 | 33.10    | 0.00    |  |
| 41   | 0.00    | 130.49 | 33.30    | 0.00    |  |
| 42   | 0.00    | 128.93 | 34.02    | 0.00    |  |
| 43   | 0.00    | 131.05 | 34.28    | 0.00    |  |
| 45   | 0.00    | 128.92 | 34.37    | 0.00    |  |
| 46   | 114.75  | 113.46 | 19.53    | 0.00    |  |
| 47   | 14.50   | 114.05 | 20.91    | 0.00    |  |
| 48   | 0.00    | 114.05 | 21.00    | 0.00    |  |
| 49   | 0.00    | 114.05 | 20.85    | 0.00    |  |
| 50   | 0.00    | 113.99 | 20.64    | 0.00    |  |
| 51   | 10.25   | 113.97 | 20.45    | 0.00    |  |

MAX DAY + FIRE FLOW

| 52    | 14.50    | 113.93 | 21.02 | 0.00           |
|-------|----------|--------|-------|----------------|
| 53    | 0.00     | 116.67 | 23.90 | 0.00           |
| 54    | 10.25    | 114.04 | 17.46 | 0.00           |
| 1     | 0.00     | 129.86 | 33.33 | 0.00           |
| 3     | 0.00     | 120.49 | 26.24 | 0.00           |
| 28    | 0.00     | 144.00 | 51.60 | 0.00           |
| 29    | 12.50    | 133.45 | 35.89 | 0.00           |
| 31    | 0.00     | 133.47 | 35.83 | 0.00           |
| 7     | 0.00     | 130.77 | 33.00 | 0.00           |
| 57    | 114.75   | 128.91 | 33.64 | 0.00           |
| 58    | 114.75   | 129.26 | 33.13 | 0.00           |
| 59    | 114.75   | 118.37 | 25.14 | 0.00           |
| 60    | 14.50    | 115.08 | 22.06 | 0.00           |
| 61    | 12.75    | 130.61 | 33.10 | 0.00           |
| 62    | 12.75    | 130.47 | 33.43 | 0.00           |
| 2     | 0.00     | 129.18 | 33.18 | 0.00           |
| 13    | 5700.00  | 112.25 | 18.45 | 0.00           |
| 21    | 0.00     | 129.88 | 32.98 | 0.00           |
| 24    | 0.00     | 129.53 | 31.33 | 0.00           |
| CON-2 | -7220.24 | 138.70 | 0.00  | 0.00 Reservoir |
| CON-3 | -8239.60 | 144.90 | 0.00  | 0.00 Reservoir |
| CON-1 | 3429.59  | 129.00 | 0.00  | 0.00 Reservoir |

Page 4
Link Results:

| 15-816: Minto - | BTC | Stage | 1 |
|-----------------|-----|-------|---|
|-----------------|-----|-------|---|

| LINK NEGULES. |             |                    |                    |        |  |
|---------------|-------------|--------------------|--------------------|--------|--|
| Link<br>ID    | Flow<br>LPM | VelocityUni<br>m/s | t Headloss<br>m/km | Status |  |
| 12            | -3429.59    | 1.82               | 35.89              | 0pen   |  |
| 13            | 4407.90     | 2.34               | 60.41              | 0pen   |  |
| 16            | -2862.89    | 1.52               | 16.88              | 0pen   |  |
| 17            | -2862.89    | 1.52               | 30.27              | 0pen   |  |
| 18            | -4464.15    | 2.37               | 105.07             | 0pen   |  |
| 19            | -7220.24    | 3.83               | 104.24             | 0pen   |  |
| 24            | -6.25       | 0.05               | 0.21               | 0pen   |  |
| 26            | 12.50       | 0.11               | 0.75               | 0pen   |  |
| 30            | 6.25        | 0.05               | 0.21               | 0pen   |  |
| 35            | -12.75      | 0.11               | 0.76               | 0pen   |  |
| 36            | 12.75       | 0.11               | 0.75               | 0pen   |  |
| 37            | -25.50      | 0.22               | 2.88               | 0pen   |  |
| 39            | -978.32     | 0.92               | 13.57              | 0pen   |  |
| 43            | 2756.09     | 2.60               | 89.58              | 0pen   |  |
| 46            | 114.75      | 0.11               | 0.22               | 0pen   |  |
| 47            | 114.75      | 0.11               | 0.24               | 0pen   |  |
| 50            | 35.00       | 0.03               | 0.03               | 0pen   |  |
| 51            | 10.25       | 0.01               | 0.00               | 0pen   |  |
| 52            | 24.75       | 0.21               | 2.67               | 0pen   |  |
| 53            | 10.25       | 0.09               | 0.50               | 0pen   |  |
| 54            | 14.50       | 0.12               | 0.95               | 0pen   |  |
| 56            | -2424.85    | 2.29               | 83.09              | 0pen   |  |
| 57            | -10.25      | 0.09               | 0.51               | 0pen   |  |
| 48            | 3453.90     | 3.26               | 133.95             | 0pen   |  |
| 58            | 3453.90     | 3.26               | 115.25             | 0pen   |  |
| 9             | 8239.60     | 7.77               | 625.10             | 0pen   |  |
| 62            | 6.25        | 0.05               | 0.21               | 0pen   |  |
| 63            | -6.25       | 0.05               | 0.20               | 0pen   |  |
| 64            | -1557.52    | 1.47               | 25.15              | 0pen   |  |
| 65            | -1570.02    | 1.48               | 25.53              | 0pen   |  |
| 66            | -1576.27    | 1.49               | 25.71              | 0pen   |  |
| 67            | -1582.52    | 1.49               | 25.90              | 0pen   |  |
| 68            | -1595.02    | 1.50               | 26.28              | 0pen   |  |
| 69            | -12.50      | 0.11               | 0.74               | 0pen   |  |
| 70            | -6.25       | 0.05               | 0.20               | 0pen   |  |
| 71            | -1601.27    | 1.51               | 41.47              | 0pen   |  |
| 72            | -1545.02    | 1.46               | 38.73              | 0pen   |  |
|               |             |                    |                    |        |  |

MAX DAY + FIRE FLOW

| 78 | 12.75    | 0.11 | 0.77  | 0pen |
|----|----------|------|-------|------|
| 79 | -3429.59 | 1.82 | 30.11 | 0pen |
| 80 | -2862.89 | 1.52 | 17.35 | 0pen |
| 82 | -114.75  | 0.11 | 0.22  | 0pen |
| 83 | 927.32   | 0.87 | 10.11 | 0pen |
| 84 | 927.32   | 0.87 | 10.02 | 0pen |
| 86 | 2756.09  | 2.60 | 80.17 | 0pen |
| 88 | -114.75  | 0.11 | 0.24  | 0pen |
| 89 | -2410.35 | 2.27 | 70.99 | 0pen |
| 90 | -2424.85 | 2.29 | 63.49 | 0pen |


| Link   | Flow     | VelocitvUn | it Headloss | Status |  |
|--------|----------|------------|-------------|--------|--|
| ID     | LPM      | m/s        |             |        |  |
| <br>91 | 978.32   | 0.92       | 11.67       | Open   |  |
| 92     | 965.57   | 0.91       | 16.01       | 0pen   |  |
| 93     | 12.75    | 0.11       | 0.74        | 0pen   |  |
| 5      | -812.57  | 0.77       | 10.89       | 0pen   |  |
| 5      | -812.57  | 0.77       | 9.60        | 0pen   |  |
| 7      | 3339.15  | 3.15       | 137.71      | 0pen   |  |
| 8      | -2360.85 | 2.23       | 75.38       | 0pen   |  |
| 10     | 3429.59  | 1.82       | 52.75       | 0pen   |  |
| 11     | -3429.59 | 1.82       | 36.60       | 0pen   |  |
| 14     | 0.00     | 0.00       | 0.00        | 0pen   |  |
| 15     | 0.00     | 0.00       | 0.00        | 0pen   |  |
| 20     | 0.00     | 0.00       | 0.00        | 0pen   |  |
| 21     | -8239.60 | 1.94       | 21.85       | 0pen   |  |

# Boundary Conditions Minto Barrhaven Town Centre – Stage 1

## **Provided Information**

| Scenario  Average Daily Demand  Maximum Daily Demand  Peak Hour | D      | emand  |
|-----------------------------------------------------------------|--------|--------|
|                                                                 | L/min  | L/s    |
| Average Daily Demand                                            | 245    | 4.08   |
| Maximum Daily Demand                                            | 668    | 11.13  |
| Peak Hour                                                       | 1,392  | 23.20  |
| Fire Flow Demand #1                                             | 17,000 | 283.33 |

### Location



# Results - Existing Conditions

#### Connection 1 - Riocan Avenue

| Demand Scenario     | Head (m) | Pressure <sup>1</sup> (psi) |
|---------------------|----------|-----------------------------|
| Maximum HGL         | 157.7    | 78.8                        |
| Peak Hour           | 140.9    | 54.9                        |
| Max Day plus Fire 1 | 130.0    | 39.5                        |

Ground Elevation = 102.2 m

### Connection 2 - Glenroy Gilbert Drive

| Demand Scenario     | Head (m) | Pressure <sup>1</sup> (psi) |
|---------------------|----------|-----------------------------|
| Maximum HGL         | 157.7    | 83.0                        |
| Peak Hour           | 140.9    | 59.0                        |
| Max Day plus Fire 1 | 139.6    | 57.2                        |

Ground Elevation = 99.3 m

#### Connection 3 - Chapman Mills Drive

| Demand Scenario     | Head (m) | Pressure <sup>1</sup> (psi) |
|---------------------|----------|-----------------------------|
| Maximum HGL         | 157.7    | 89.5                        |
| Peak Hour           | 140.8    | 65.5                        |
| Max Day plus Fire 1 | 145.7    | 72.4                        |

Ground Elevation = 94.7 m

#### Results - SUC Zone Reconfiguration

#### Connection 1 - Riocan Avenue

| Demand Scenario     | Head (m) | Pressure <sup>1</sup> (psi) |
|---------------------|----------|-----------------------------|
| Maximum HGL         | 147.9    | 64.9                        |
| Peak Hour           | 145.4    | 61.3                        |
| Max Day plus Fire 1 | 129.0    | 38.1                        |

Ground Elevation = 102.2 m

#### **Connection 2 – Glenroy Gilbert Drive**

| Demand Scenario     | Head (m) | Pressure <sup>1</sup> (psi) |
|---------------------|----------|-----------------------------|
| Maximum HGL         | 147.9    | 69.1                        |
| Peak Hour           | 145.4    | 65.5                        |
| Max Day plus Fire 1 | 138.7    | 56.0                        |

Ground Elevation = 99.3 m

#### Connection 3 - Chapman Mills Drive

| Demand Scenario     | Head (m) | Pressure <sup>1</sup> (psi) |
|---------------------|----------|-----------------------------|
| Maximum HGL         | 147.9    | 69.1                        |
| Peak Hour           | 145.4    | 65.5                        |
| Max Day plus Fire 1 | 144.9    | 71.2                        |

Ground Elevation = 94.7 m

#### Notes

- 1. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
  - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
  - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

#### **Disclaimer**

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

# **APPENDIX C**

**Sanitary Servicing Documents** 



| Manning's n=0.013                                          |                            |              |         |          |            |             |            |                      |            |            |               |        |              | Mawa |              |                  |          |              |              |               |               |             |          |              |                 |             | VU              |                 |  |  |  |  |
|------------------------------------------------------------|----------------------------|--------------|---------|----------|------------|-------------|------------|----------------------|------------|------------|---------------|--------|--------------|------|--------------|------------------|----------|--------------|--------------|---------------|---------------|-------------|----------|--------------|-----------------|-------------|-----------------|-----------------|--|--|--|--|
| LOCATION                                                   |                            |              |         |          | RESIDENTI  | AL AREA AND | POPULATION |                      |            |            |               | CC     | DMM          | INS  | TIT          | PARK             | C+I+I    |              | INFILTRATIO  | N             |               | PIPE        |          |              |                 |             |                 |                 |  |  |  |  |
| STREET                                                     | FROM<br>M H                | ТО           | AREA    | UNITS    | UNITS      | UNITS       | POP.       |                      | LATIVE     | PEAK       | PEAK          | AREA   | ACCU.        | AREA | ACCU.        | AREA ACC         |          | TOTAL        | ACCU.        | INFILT.       | TOTAL         | DIST        | DIA      | SLOPE        | CAP.            | RATIO       | V V             | EL.             |  |  |  |  |
|                                                            | M.H.                       | M.H.         | (ha)    |          | Singles    | Townhouse   |            | AREA<br>(ha)         | POP.       | FACT.      | FLOW<br>(I/s) | (ha)   | AREA<br>(ha) | (ha) | AREA<br>(ha) | (ha) (h          |          | AREA<br>(ha) | AREA<br>(ha) | FLOW<br>(I/s) | FLOW<br>(l/s) | (m)         | (mm)     | (%)          | (FULL)<br>(I/s) | Q act/Q cap | (FULL)<br>(m/s) | (ACT.)<br>(m/s) |  |  |  |  |
| SERVICING 6                                                |                            |              |         |          |            |             |            |                      |            |            |               |        |              |      |              |                  |          |              |              |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
|                                                            | 113A                       | 114A         | 0.10    | 6        | 6          |             | 13         | 0.10                 | 13         | 3.72       | 0.16          |        | 0.00         |      | 0.00         | 0.0              |          | 0.10         | 0.10         | 0.03          | 0.19          | 24.5        | 200      | 3.10         | 57.75           | 0.00        | 1.84            | 0.41            |  |  |  |  |
| Contribution From SERVICING 1, Pipe                        | <u>112A - 114A</u><br>114A | 115A         |         |          |            |             |            | 0.52                 | 117<br>130 | 3.57       | 1.50          |        | 0.00         | 1    | 0.00         | 0.0              |          | 0.52         | 0.62         | 0.20          | 1.71          | 11.0        | 200      | 0.35         | 19.40           | 0.09        | 0.62            | 0.38            |  |  |  |  |
| To GLENROY GILBERT DR, Pipe 115A                           |                            | TIDA         |         |          |            |             |            | 0.62                 | 130        | 3.31       | 1.50          |        | 0.00         |      | 0.00         | 0.0              |          | 0.00         | 0.62         | 0.20          | 1.71          | 11.0        | 200      | 0.33         | 19.40           | 0.09        | 0.02            | 0.36            |  |  |  |  |
| SERVICING 5                                                |                            |              |         |          |            |             |            |                      |            |            |               |        |              | 1    |              |                  |          |              |              |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
|                                                            | 111A                       | 112A         | 0.08    | 12       | 12         |             | 26         | 0.08                 | 26         | 3.69       | 0.31          |        | 0.00         |      | 0.00         | 0.0              | 0.00     | 0.08         | 0.08         | 0.03          | 0.34          | 27.0        | 200      | 0.65         | 26.44           | 0.01        | 0.84            | 0.28            |  |  |  |  |
| To SERVICING 1, Pipe 112A - 114A                           |                            |              |         |          |            |             |            | 0.08                 | 26         |            |               |        | 0.00         |      | 0.00         | 0.0              | 00       |              | 0.08         |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
| SERVICING 5                                                | 4004                       | 4404         | 0.00    |          |            |             | 12         | 0.00                 | 40         | 2.70       | 0.40          |        | 0.00         |      | 0.00         |                  | 20 0.00  | 0.00         | 0.00         | 0.00          | 0.40          | 04.5        | 200      | 0.75         | 20.40           | 0.04        | 0.00            | 0.05            |  |  |  |  |
| To SERVICING 1, Pipe 110A - 112A                           | 109A                       | 110A         | 0.09    | 6        | 6          |             | 13         | 0.09                 | 13<br>13   | 3.72       | 0.16          |        | 0.00         |      | 0.00         | 0.0              |          | 0.09         | 0.09         | 0.03          | 0.19          | 24.5        | 200      | 0.75         | 28.40           | 0.01        | 0.90            | 0.25            |  |  |  |  |
| SERVICING 4                                                |                            |              |         |          |            |             |            |                      |            |            |               |        |              |      |              |                  |          |              |              |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
|                                                            | 107A                       | 108A         | 0.09    | 6        | 6          |             | 13         | 0.09                 | 13         | 3.72       | 0.16          |        | 0.00         |      | 0.00         | 0.0              |          | 0.09         | 0.09         | 0.03          | 0.19          | 24.5        | 200      | 0.65         | 26.44           | 0.01        | 0.84            | 0.23            |  |  |  |  |
| To SERVICING 1, Pipe 108A - 110A                           |                            |              |         |          |            |             |            | 0.09                 | 13         |            |               |        | 0.00         |      | 0.00         | 0.0              | 00       |              | 0.09         |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
| SERVICING 3                                                | 1051                       | 1004         |         |          |            |             |            |                      |            | 0.00       | 0.04          |        |              |      |              |                  |          |              |              |               |               |             |          |              | 00.11           |             |                 | 0.00            |  |  |  |  |
| To SERVICING 1, Pipe 106A - 108A                           | 105A                       | 106A         | 0.08    | 12       | 12         |             | 26         | 0.08                 | 26<br>26   | 3.69       | 0.31          |        | 0.00         |      | 0.00         | 0.0              |          | 0.08         | 0.08         | 0.03          | 0.34          | 26.0        | 200      | 0.65         | 26.44           | 0.01        | 0.84            | 0.28            |  |  |  |  |
|                                                            |                            |              |         |          |            |             |            |                      |            |            |               |        |              |      |              |                  |          |              |              |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
| SERVICING 2                                                | 103A                       | 104A         | 0.13    | 12       | 12         |             | 26         | 0.13                 | 26         | 3.69       | 0.31          |        | 0.00         | 1    | 0.00         | 0.0              | 0.00     | 0.13         | 0.13         | 0.04          | 0.35          | 24.5        | 200      | 1.75         | 43.39           | 0.01        | 1.38            | 0.40            |  |  |  |  |
| To SERVICING 1, Pipe 104A - 106A                           | 100/1                      | .0.,,        | 0.10    |          |            |             |            | 0.13                 | 26         | 0.00       | 0.01          |        | 0.00         |      | 0.00         | 0.0              |          | 0.10         | 0.13         | 0.01          | 0.00          | 20          |          |              | 10.00           | 0.01        |                 | 0.10            |  |  |  |  |
| SERVICING 1                                                |                            |              |         |          |            |             |            |                      |            |            |               |        |              | 1    |              |                  |          |              |              |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
|                                                            | 100A<br>101A               | 101A<br>102A |         |          |            |             |            | 0.00                 | _          |            |               |        | 0.00         |      | 0.00         | 0.0              |          | 0.00         | 0.00         | 0.00          | 0.00          | 22.0<br>5.5 | 200      | 2.85<br>3.60 | 55.37<br>62.23  | 0.00        | 1.76<br>1.98    | 0.10            |  |  |  |  |
|                                                            | 101A<br>102A               | 102A<br>104A | 0.05    | 6        | 6          |             | 13         | 0.00                 | 0<br>13    | 3.72       | 0.16          |        | 0.00         | 1    | 0.00         | 0.0              |          | 0.00         | 0.00         | 0.00          | 0.00          | 30.0        | 200      | 0.85         | 30.24           | 0.00        | 0.96            | 0.11            |  |  |  |  |
| To SERVICING 1, Pipe 104A - 106A                           | 1027                       | .0           | 0.00    |          |            |             |            | 0.05                 | 13         | V., 2      | 00            |        | 0.00         |      | 0.00         | 0.0              |          | 0.00         | 0.05         | 0.02          | 0             |             |          | 0.00         | 00.21           | 0.01        | 0.00            | 0.20            |  |  |  |  |
| Contribution From SERVICING 1. Pipe                        | 102A - 104A                |              |         |          |            |             |            | 0.05                 | 13         | 1          |               |        | 0.00         |      | 0.00         | 0.0              | 00       | 0.05         | 0.05         |               |               |             |          |              |                 |             |                 | 1               |  |  |  |  |
| Contribution From SERVICING 2, Pipe                        |                            |              |         |          |            |             |            | 0.13                 | 26         |            |               |        | 0.00         |      | 0.00         | 0.0              | 00       | 0.13         | 0.18         |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
| 0 1 1 1 5 0550 (1010 0 5)                                  | 104A                       | 106A         |         |          |            |             |            | 0.18                 | 39         | 3.67       | 0.46          |        | 0.00         |      | 0.00         | 0.0              |          | 0.00         | 0.18         | 0.06          | 0.52          | 33.5        | 200      | 0.35         | 19.40           | 0.03        | 0.62            | 0.26            |  |  |  |  |
| Contribution From SERVICING 3, Pipe                        | 105A - 106A<br>106A        | 108A         |         |          |            |             |            | 0.08                 | 26<br>65   | 3.63       | 0.77          |        | 0.00         | +    | 0.00         | 0.0              |          | 0.08         | 0.26         | 0.09          | 0.85          | 31.5        | 200      | 0.35         | 19.40           | 0.04        | 0.62            | 0.31            |  |  |  |  |
| Contribution From SERVICING 4, Pipe                        |                            | 100/1        |         |          |            |             |            | 0.09                 | 13         | 0.00       | 0.77          |        | 0.00         | 1    | 0.00         | 0.0              |          | 0.09         | 0.35         | 0.00          | 0.00          | 01.0        | 200      | 0.00         | 10.10           | 0.01        | 0.02            | 0.01            |  |  |  |  |
|                                                            | 108A                       | 110A         |         |          |            |             |            | 0.35                 | 78         | 3.62       | 0.91          |        | 0.00         |      | 0.00         | 0.0              |          | 0.00         | 0.35         | 0.12          | 1.03          | 20.5        | 200      | 1.60         | 41.49           | 0.02        | 1.32            | 0.55            |  |  |  |  |
| Contribution From SERVICING 5, Pipe                        | 109A - 110A<br>110A        | 112A         |         |          |            |             |            | 0.09                 | 13<br>91   | 3.60       | 1.06          |        | 0.00         | +    | 0.00         | 0.0              |          | 0.09         | 0.44         | 0.15          | 1.21          | 31.0        | 200      | 0.35         | 19.40           | 0.06        | 0.62            | 0.34            |  |  |  |  |
| Contribution From SERVICING 5, Pipe                        | 111A - 112A                |              |         |          |            |             |            | 0.08                 | 26         |            |               |        | 0.00         |      | 0.00         | 0.0              | 00       | 0.08         | 0.52         |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
| To SERVICING 6, Pipe 114A - 115A                           | 112A                       | 114A         |         |          |            |             |            | 0.52<br>0.52         | 117<br>117 | 3.58       | 1.36          |        | 0.00         |      | 0.00         | 0.0              |          | 0.00         | 0.52         | 0.17          | 1.53          | 32.0        | 200      | 0.40         | 20.74           | 0.07        | 0.66            | 0.38            |  |  |  |  |
|                                                            |                            |              |         |          |            |             |            | 0.02                 |            |            |               |        | 0.00         |      | 0.00         | 0.0              |          |              | 0.02         |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
| GLENROY GILBERT DR Contribution From SERVICING 6, Pipe     | 114Α - 115Α                |              |         |          |            |             |            | 0.62                 | 130        | 1          |               |        | 0.00         | -    | 0.00         | 0.0              | 00       | 0.62         | 0.62         |               |               | 1           | 1        |              |                 |             |                 | -               |  |  |  |  |
| Contribution (Contribution)                                | 115A                       | EX SAN118A   | 0.38    |          |            |             | 0          | 1.00                 | 130        | 3.57       | 1.50          |        | 0.00         |      | 0.00         | 0.0              |          | 0.38         | 1.00         | 0.33          | 1.83          | 12.5        | 200      | 0.40         | 20.74           | 0.09        | 0.66            | 0.41            |  |  |  |  |
|                                                            |                            |              |         |          |            |             |            |                      |            |            |               |        |              |      |              |                  |          |              |              |               |               |             |          |              |                 |             |                 |                 |  |  |  |  |
| Park Flow =                                                | 9300                       | L/ha/da      | 0.10764 | DESIGN F | 1/-/146    |             | 1          |                      |            |            |               |        |              |      | Designe      | d:               | _        | СРВ          | PROJEC       | T:            | _             | Minto       | - Barrha | ven Towr     | Centre S        | itage 1     |                 |                 |  |  |  |  |
| Average Daily Flow =                                       | 280                        | l/p/day      | 3.10704 |          | 100        | JESSIO,     | Nice.      | Industrial           | Peak Fac   | tor = as p | er MOE G      | Graph  |              |      |              |                  |          | 51.5         |              |               |               |             | -anu     |              |                 |             |                 |                 |  |  |  |  |
| Comm/Inst Flow =                                           | 28000                      | L/ha/da      | 0.3241  |          | S Tolland  | Ti ca       | 100        | Extraneou            |            |            |               | L/s/ha |              | ľ    | Checked      | l:               |          |              | LOCATIO      | N:            |               |             |          | 04 1         | 04              |             |                 |                 |  |  |  |  |
| Industrial Flow =                                          | 35000<br>4.00              | L/ha/da      | 0.40509 |          |            | WW          | m 25       | Minimum<br>Manning's | ,          | (Conc)     | 0.600         |        | 0.013        |      |              |                  |          | SLM          |              |               |               |             |          | City of      | Ottawa          |             |                 |                 |  |  |  |  |
| Max Res. Peak Factor = Commercial/Inst./Park Peak Factor = | 4.00<br>1.00               |              |         | / 8      |            |             | 7          | 2 Bedroor            |            | (COLIC)    | 2.1           | (Pvc)  | 0.013        |      | Dwg. Re      | ference:         |          |              | File Ref:    |               |               |             | Date:    |              |                 | Shee        | No.             | 1               |  |  |  |  |
| Institutional =                                            | 0.32                       | l/s/Ha       |         | 1 5      | <b>S</b> . | L. MERR     | ick to     |                      |            |            |               |        |              |      |              | Orainage Plan, D | wgs. No. |              |              |               |               | 15-816      |          | 06 Oct 202   | 3               |             | of              | f 4             |  |  |  |  |

100186523



Manning's n=0.013 RESIDENTIAL AREA AND POPULATION INFILTRATION LOCATION COMM INSTIT PARK C+I+I STREET FROM UNITS UNITS CUMULATIVE PEAK ACCU ACCU INFILT TOTAL мн мн ARFA POP FACT. FLOW AREA AREA AREA FLOW AREA AREA FLOW FLOW (FULL) Q act/Q cap (FULL) Singles (ACT (ha) (ha) (l/s) (ha) (ha) (l/s) (ha) (ha) (l/s) (l/s) (l/s) (m/s) (m/s) **SERVICING 21** Plua 150A 0.37 64 135 0.37 135 3.56 1.56 0.00 0.00 0.37 0.37 0.12 1.68 26.44 0.06 0.84 0.47 64 0.00 0.00 4.0 200 0.65 150A 151A 0.37 135 3.56 1.56 0.00 0.00 0.00 0.00 0.00 0.37 0.12 1.68 29.0 200 2.05 46.96 0.04 1.49 0.69 To SERVICING 19, Pipe 151A - 152A 0.37 135 0.00 0.00 0.00 0.37 **SERVICING 16** Plua 147A 0.57 64 64 135 0.57 135 3.56 1.56 0.00 0.00 0.00 0.00 0.57 0.57 0.19 1.75 11.0 200 0.65 26.44 0.07 0.84 0.47 To SERVICING 9, Pipe 147A - 148A 0.57 135 0.00 0.00 0.00 0.57 SERVICING 20 143A 0.10 14 14 30 0.10 30 3.68 0.36 0.00 0.00 0.00 0.00 0.10 0.10 0.03 0.39 53.5 200 0.65 26.44 0.01 0.84 0.29 To SERVICING 17 SERVICING 18, Pipe 143A - 145A 0.10 30 0.00 0.00 0.00 0.10 200 143A 0.07 10 21 0.07 21 3.70 0.25 0.00 0.00 0.00 0.00 0.07 0.07 0.02 0.28 43.5 0.65 26.44 0.01 0.84 0.27 10 To SERVICING 17 SERVICING 18, Pipe 143A - 145A 0.07 0.00 0.00 0.00 0.07 21 **SERVICING 18** Contribution From SERVICING 20, Pipe 141A - 143A 0.10 30 0.00 0.00 0.00 0.10 0.10 Contribution From SERVICING 20, Pipe 142A - 143A 0.07 21 0.00 0.00 0.00 0.07 0.17 145A 0.01 0.18 3.65 0.60 0.00 0.00 0.00 0.00 0.01 0.18 0.06 0.66 30.0 200 0.35 19.40 0.03 0.62 0.29 Ω 51 To SERVICING 19, Pipe 145A - 148A 0.00 0.00 0.18 51 0.00 0.18 SERVICING 19 144A 145A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.0 200 1.35 38.11 0.00 1.21 0.07 Contribution From SERVICING 18, Pipe 143A - 145A 0.18 51 0.00 0.00 0.00 0.18 0.18 148A 0.16 10 10 21 0.34 72 3.62 0.00 0.00 0.00 0.00 0.16 0.34 0.11 0.96 6.0 200 0.35 19.40 0.05 0.62 0.32 Contribution From SERVICING 9, Pipe 147A - 148A 135 0.00 0.00 0.00 0.57 0.57 0.91 148A 151A 30 1.09 237 3.50 0.00 0.00 0.00 1.09 0.36 3.04 0.10 0.61 0.39 0.18 14 0.00 0.18 56.0 250 0.25 29.73 Contribution From SERVICING 21, Pipe 150A - 151A 0.37 135 0.00 0.00 0.00 1.46 0.37 152A 1.46 372 4.13 0.00 0.00 0.00 0.00 0.00 1.46 0.48 4.62 12.0 250 0.25 29.73 0.16 0.61 0.44 To FUTURE CHAPMAN MILLS DR. Pipe 152A - 153A 1.46 372 0.00 0.00 0.00 1.46 SERVICING 15 135A 135 0.00 Plug 0.31 64 64 0.31 135 3.56 1.56 0.00 0.00 0.00 0.31 0.31 0.10 1.66 4.0 200 0.65 26.44 0.06 0.84 0.46 135A 138A 0.31 135 0.00 0.00 0.00 0.00 0.00 0.31 0.10 1.66 26.5 200 6.00 80.34 0.02 2.56 0.99 To SERVICING 14, Pipe 138A - 139A 0.31 135 0.00 0.00 0.00 0.31 Plug 137A 0.24 48 48 101 0.24 101 3.59 0.00 0.00 0.00 0.00 0.24 0.24 0.08 1.26 3.5 200 0.65 26.44 0.05 0.84 0.43 137A 138A 0.24 101 3.59 0.00 0.00 0.00 0.00 0.00 0.24 0.08 1.26 14.0 200 0.35 19.40 0.06 0.62 0.34 To SERVICING 14, Pipe 138A - 139A 0.24 101 0.00 0.00 0.00 0.24 **SERVICING 13** 132A 0.36 3.59 1.18 0.00 0.00 0.00 0.00 0.36 0.36 0.12 1.30 10.0 200 4.05 66.01 0.02 2.10 0.82 Plua 101 0.36 101 DESIGN AND ERS To SERVICING 9. Pipe 132A - 133A 0.36 101 0.00 0.00 0.00 0.36 Designed: ROJECT Park Flow = 9300 L/ha/da 0.10764 Minto - Barrhaven Town Centre Stage 1 Average Daily Flow = 280 Industrial Peak Factor = as per MOE Graph l/p/day Extraneous Flow = 0.3241 LOCATION: Comm/Inst Flow = 28000 L/ha/da 0.330 L/s/ha Checked: I/s/Ha 100186523 Industrial Flow = 35000 L/ha/da 0.40509 Minimum Velocity = 0.600 m/s SLM City of Ottawa 4.00 0.013 (Pvc) Max Res. Peak Factor = Manning's n = (Conc) Bedroom coeff= Commercial/Inst./Park Peak Factor = 1.00 2.1 Dwg. Reference: File Ref: Sheet No. Institutional = 0.32 l/s/Ha Sanitary Drainage Plan, Dwgs, No. 15-816 06 Oct 2023

TOBA 15- BLG



| Manning's n=0.013                                      |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              | MUAVVA        |               |              |          |              |                 |             |                 |                 |
|--------------------------------------------------------|---------------------|--------------|-------------------------------------------------------------------|-------------|------------|---------------------|--------------------|--------------|------------|--------------|---------------|----------|-----------------------------------|------|--------------|--------------------------------------------------|--------------|---------------|--------------|--------------|---------------|---------------|--------------|----------|--------------|-----------------|-------------|-----------------|-----------------|
| LOCATION                                               |                     |              |                                                                   |             | RESIDENTIA | AL AREA AND         | POPULATION         |              |            |              |               | CO       | MM                                | INS  | TIT          | PAF                                              | ₹K           | C+I+I         |              | INFILTRATIO  | N             |               |              |          |              | PIPE            |             |                 |                 |
| STREET                                                 | FROM                | ТО           | AREA                                                              | UNITS       | UNITS      | UNITS               | POP.               |              | LATIVE     | PEAK         | PEAK          | AREA     | ACCU.                             | AREA | ACCU.        | AREA                                             | ACCU.        | PEAK          | TOTAL        | ACCU.        | INFILT.       | TOTAL         | DIST         | DIA      | SLOPE        | CAP.            | RATIO       | VE              |                 |
|                                                        | M.H.                | M.H.         | (ha)                                                              |             | Singles    | Townhouse           |                    | AREA<br>(ha) | POP.       | FACT.        | FLOW<br>(I/s) | (ha)     | AREA<br>(ha)                      | (ha) | AREA<br>(ha) | (ha)                                             | AREA<br>(ha) | FLOW<br>(I/s) | AREA<br>(ha) | AREA<br>(ha) | FLOW<br>(I/s) | FLOW<br>(l/s) | (m)          | (mm)     | (%)          | (FULL)<br>(I/s) | Q act/Q cap | (FULL)<br>(m/s) | (ACT.)<br>(m/s) |
|                                                        |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 |                 |
| SERVICING 11                                           |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 | -               |
| DERVIOUS TI                                            | Plug                | 129A         | 0.47                                                              | 64          | 64         |                     | 135                | 0.47         | 135        | 3.56         | 1.56          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.47         | 0.47         | 0.16          | 1.71          | 11.5         | 200      | 6.00         | 80.34           | 0.02        | 2.56            | 1.03            |
| To SERVICING 9, Pipe 129A - 130A                       | 3                   |              |                                                                   |             |            |                     |                    | 0.47         | 135        |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               |              | 0.47         |               |               |              |          |              |                 |             |                 |                 |
|                                                        |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 |                 |
| SERVICING 10                                           | Plug                | 127A         | 0.59                                                              | 96          | 96         |                     | 202                | 0.59         | 202        | 3.52         | 2.30          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.59         | 0.59         | 0.19          | 2.50          | 11.5         | 200      | 6.00         | 80.34           | 0.03        | 2.56            | 1.15            |
| To SERVICING 9, Pipe 127A - 129A                       | Plug                | 121A         | 0.59                                                              | 90          | 90         |                     | 202                | 0.59         | 202        | 3.52         | 2.30          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.59         | 0.59         | 0.19          | 2.50          | 11.5         | 200      | 0.00         | 60.34           | 0.03        | 2.50            | 1.15            |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                |                     |              |                                                                   |             |            |                     |                    | 0.00         |            |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               |              | 0.00         |               |               |              |          |              |                 |             |                 |                 |
|                                                        | 126A                | 127A         |                                                                   |             |            |                     |                    | 0.00         |            |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.00         | 0.00         | 0.00          | 0.00          | 10.5         | 200      | 0.95         | 31.97           | 0.00        | 1.02            | 0.06            |
| To SERVICING 9, Pipe 127A - 129A                       |                     |              |                                                                   |             |            |                     |                    | 0.00         | 0          |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               |              | 0.00         |               |               |              |          |              |                 |             |                 |                 |
| SERVICING 8                                            |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 | 1               |
| 021111111111111111111111111111111111111                | 121A                | 124A         | 0.10                                                              | 12          | 12         |                     | 26                 | 0.10         | 26         | 3.69         | 0.31          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.10         | 0.10         | 0.03          | 0.34          | 50.5         | 200      | 0.65         | 26.44           | 0.01        | 0.84            | 0.29            |
| To SERVICING 9, Pipe 124A - 127A                       |                     |              |                                                                   |             |            |                     |                    | 0.10         | 26         |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               |              | 0.10         |               |               |              |          |              |                 |             |                 |                 |
|                                                        |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 |                 |
|                                                        | 122A<br>123A        | 123A<br>124A | 0.10                                                              | 12          | 12         |                     | 26                 | 0.00         | 26         | 3.69         | 0.31          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.00         | 0.00         | 0.00          | 0.00<br>0.34  | 44.5<br>5.5  | 200      | 0.75<br>3.45 | 28.40<br>60.92  | 0.00        | 0.90<br>1.94    | 0.05<br>0.50    |
| To SERVICING 9, Pipe 124A - 127A                       | 123/4               | 1247         | 0.10                                                              | 12          | 12         |                     | 20                 | 0.10         | 26         | 3.03         | 0.51          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.10         | 0.10         | 0.03          | 0.04          | 3.3          | 200      | 3.43         | 00.32           | 0.01        | 1.54            | 0.50            |
|                                                        |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  | -            |               |              |              |               |               |              |          |              |                 |             |                 |                 |
| SERVICING 7                                            |                     |              |                                                                   |             |            |                     |                    |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 |                 |
| T. 0550 (10110 0 B) 1004 1014                          | 118A                | 120A         | 0.08                                                              | 12          | 12         |                     | 26                 | 0.08         | 26         | 3.69         | 0.31          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.08         | 0.08         | 0.03          | 0.34          | 49.5         | 200      | 0.90         | 31.12           | 0.01        | 0.99            | 0.32            |
| To SERVICING 9, Pipe 120A - 124A                       |                     |              |                                                                   |             |            |                     |                    | 0.08         | 26         |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               |              | 0.08         |               |               |              |          |              |                 |             |                 |                 |
|                                                        | 119A                | 120A         | 0.08                                                              | 12          | 12         | \                   | 26                 | 0.08         | 26         | 3.69         | 0.31          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.08         | 0.08         | 0.03          | 0.34          | 39.5         | 200      | 0.65         | 26.44           | 0.01        | 0.84            | 0.28            |
| To SERVICING 9, Pipe 120A - 124A                       |                     |              |                                                                   |             |            |                     |                    | 0.08         | 26         |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               |              | 0.08         |               |               |              |          |              |                 |             |                 |                 |
| SERVICING 9                                            |                     |              |                                                                   |             |            |                     |                    |              |            | -            |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 |                 |
| Contribution From SERVICING 13, Pip                    |                     |              |                                                                   |             |            |                     |                    | 0.36         | 101        |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               | 0.36         | 0.36         |               |               |              |          |              |                 |             |                 |                 |
| CONTRIBUTION CERTAINS 10, 1 Ip                         | 132A                | 133A         |                                                                   |             |            |                     |                    | 0.36         | 101        | 3.59         | 1.18          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.00         | 0.36         | 0.12          | 1.30          | 20.0         | 200      | 0.35         | 19.40           | 0.07        | 0.62            | 0.35            |
| To SERVICING 14, Pipe 133A - 138A                      |                     |              |                                                                   |             |            |                     |                    | 0.36         | 101        |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               |              | 0.36         |               |               |              |          |              |                 |             |                 |                 |
| Contribution From SERVICING 16, Pip                    |                     |              |                                                                   |             |            |                     |                    | 0.57         | 135        |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               | 0.57         | 0.57         |               |               |              |          |              |                 |             |                 |                 |
| To SERVICING 19. Pipe 148A - 151A                      | 147A                | 148A         |                                                                   |             |            |                     |                    | 0.57<br>0.57 | 135        | 3.56         | 1.56          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.00         | 0.57         | 0.19          | 1.75          | 29.0         | 200      | 1.65         | 42.13           | 0.04        | 1.34            | 0.65            |
| Contribution From SERVICING 7, Pipe                    | 118A - 120A         |              |                                                                   |             |            |                     |                    | 0.57         | 135<br>26  |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               | 0.08         | 0.57         |               |               | -            |          |              |                 |             |                 |                 |
| Contribution From SERVICING 7, Pipe                    |                     |              |                                                                   |             |            |                     |                    | 0.08         | 26         |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               | 0.08         | 0.16         |               |               |              |          |              |                 |             |                 |                 |
|                                                        | 120A                | 124A         | 0.02                                                              |             |            |                     | 0                  | 0.18         | 52         | 3.65         | 0.61          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.02         | 0.18         | 0.06          | 0.67          | 27.0         | 200      | 1.05         | 33.61           | 0.02        | 1.07            | 0.42            |
| Contribution From SERVICING 8, Pipe                    |                     |              |                                                                   |             |            |                     |                    | 0.10         | 26         |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               | 0.10         | 0.28         |               |               |              |          |              |                 |             |                 |                 |
| Contribution From SERVICING 8, Pipe                    | 123A - 124A<br>124A | 127A         |                                                                   |             |            |                     |                    | 0.10         | 26<br>104  | 3.59         | 1.21          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.10         | 0.38         | 0.13          | 1.34          | 46.5         | 200      | 0.35         | 19.40           | 0.07        | 0.62            | 0.35            |
| Contribution From SERVICING 10, Pip                    |                     |              |                                                                   |             |            |                     |                    | 0.59         | 202        | 5.55         | 1.21          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.59         | 0.97         | 0.13          | 1.54          | 40.5         | 200      | 0.55         | 13.40           | 0.07        | 0.02            | 0.55            |
| Contribution From SERVICING 10, Pip                    |                     |              |                                                                   |             |            |                     |                    | 0.00         | 0          |              |               |          | 0.00                              |      | 0.00         |                                                  | 0.00         |               | 0.00         | 0.97         |               |               |              |          |              |                 |             |                 |                 |
|                                                        | 127A                | 129A         |                                                                   |             |            |                     |                    | 0.97         | 306        | 3.46         | 3.43          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.00         | 0.97         | 0.32          | 3.75          | 76.0         | 200      | 0.35         | 19.40           | 0.19        | 0.62            | 0.47            |
| Contribution From SERVICING 11, Pip                    |                     |              | 0.04                                                              | ļ           | 1          | and dispersions was |                    | 0.47         | 135        | 2.40         | 4.00          | <u> </u> | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.47         | 1.44         | 0.40          | E 04          | 10.5         | 200      | 0.05         | 10.40           | 0.00        | 0.00            | 0.50            |
| -                                                      | 129A<br>130A        | 130A<br>133A | 0.01                                                              | 1           | 4          | OFESS/              | 0                  | 1.45<br>1.68 | 441<br>441 | 3.40<br>3.40 |               | 1        | 0.00                              |      | 0.00         | <del>                                     </del> | 0.00         | 0.00          | 0.01         | 1.45<br>1.68 | 0.48          | 5.34<br>5.42  | 12.5<br>19.5 | 200      | 0.35         | 19.40<br>19.40  | 0.28        | 0.62            | 0.52<br>0.53    |
| To SERVICING 14, Pipe 133A - 138A                      | 100/4               | 100/4        | 0.20                                                              |             |            | OFLOOR              | THE REAL PROPERTY. | 1.68         | 441        | 0.40         | 7.00          |          | 0.00                              |      | 0.00         |                                                  | 0.00         | 0.00          | 0.20         | 1.68         | 0.00          | 0.72          | 10.0         | 200      | 0.00         | 15.70           | 0.20        | 0.02            | 0.00            |
| , , , , , , , , , , , , , , , , , , , ,                |                     |              |                                                                   |             | 101        | VI IN               | A OF               |              |            |              |               |          |                                   |      |              |                                                  |              |               |              |              |               |               |              |          |              |                 |             |                 |                 |
|                                                        |                     |              |                                                                   | DESIGN F    | 21         | MIV                 | 8                  |              |            |              |               |          |                                   |      | Docian       | d:                                               |              |               |              | PROJEC       | T.            |               |              |          |              |                 |             |                 |                 |
| Park Flow =                                            | 9300                | L/ha/da      | 0.10764                                                           |             |            | S. L. MER           | BICK               | Pri I        |            |              |               |          |                                   |      | Designed     | u.                                               |              |               | СРВ          | FROJEC       | 1.            |               | Minto        | - Barrha | ven Towr     | Centre S        | Stage 1     |                 |                 |
| Average Daily Flow =                                   | 280                 | l/p/day      | 0.10704                                                           | The same of | 3"3"114    | 1001868             | 203                | Industrial I | Peak Fact  | tor = as ne  | er MOF G      | Graph    |                                   |      |              |                                                  |              |               | OFB          |              |               |               |              | Janna    |              |                 | augo i      |                 |                 |
| Comm/Inst Flow =                                       | 28000               | L/ha/da      | 0.3241                                                            | 1           | I/s/       | 1001000             | JE()               | Extraneou    | ıs Flow =  | P            | 0.330         | L/s/ha   |                                   |      | Checked      | d:                                               |              |               |              | LOCATIO      | N:            |               |              |          |              |                 |             |                 |                 |
| Industrial Flow =                                      | 35000               | L/ha/da      | 0.40509                                                           | -           | I/s/H      | 2023-10             | -06/ n             | Minimum '    | ,          |              | 0.600         |          |                                   |      |              |                                                  |              |               | SLM          |              |               |               |              |          | City of      | Ottawa          |             |                 |                 |
| Max Res. Peak Factor =                                 | 4.00                |              |                                                                   |             | 130        | 10                  | O SHO              | Manning's    |            | (Conc)       | 0.013         |          | 0.013                             |      | Dua D-       | foronoo:                                         |              |               |              | File Def     |               |               |              | Inoto    |              |                 | Ch          | No              |                 |
| Commercial/Inst./Park Peak Factor =<br>Institutional = | 1.00<br>0.32        | l/s/Ha       |                                                                   |             | 10         | AVCE OF             | ONETH              | 2 Bedroor    | п соеп=    |              | 2.1           |          |                                   |      | Dwg. Ref     |                                                  | an. Dwas     | s. No.        |              | File Ref:    |               |               | 15-816       | Date:    | 06 Oct 202   | 3               | Sheet       |                 | 3 4             |
|                                                        |                     |              | Manning's n = (Conc) 0.013 (Pvc) 0.013 (Pvc) 2 Bedroom coeff= 2.1 |             |            |                     |                    |              |            |              |               |          | Sanitary Drainage Plan, Dwgs. No. |      |              |                                                  | 10-010       |               |              |              |               | 06 OCI 2023   |              |          |              | 01 4            |             |                 |                 |



| Manning's n=0    |                     |                   |               | RESIDENTIAL AREA AND POPULATION COMM INSTIT PARK C+I+I INFILTRATION |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      | <b>Uttawa</b> |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|------------------|---------------------|-------------------|---------------|---------------------------------------------------------------------|--------------------------------------------------|------------|--------------------------------------------------|----------|--------------------------------------------------|------------|-----------|---------------|--------------------------------------------------|--------------|------|---------------|-------------|--------------|---------------|--------------|--------------------------------------------------|--------------------------------------------------|---------------|--------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|
|                  |                     | ATION             |               |                                                                     |                                                  | _          |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              | C+I+I         |              | NFILTRATIO                                       |                                                  |               |        |          |            | PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  | STREET              | FROM              | ТО            | AREA                                                                | UNITS                                            | UNITS      | UNITS                                            | POP.     |                                                  | LATIVE     | PEAK      | PEAK          | AREA                                             | ACCU.        | AREA | ACCU.         | AREA        | ACCU.        | PEAK          | TOTAL        | ACCU.                                            | INFILT.                                          | TOTAL         | DIST   | DIA      | SLOPE      | CAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VE                                               |          |
|                  |                     | M.H.              | M.H.          | (ha)                                                                |                                                  | Singles    | Townhouse                                        |          | AREA<br>(ha)                                     | POP.       | FACT.     | FLOW<br>(I/s) | (ha)                                             | AREA<br>(ha) | (ha) | AREA<br>(ha)  | (ha)        | AREA<br>(ha) | FLOW<br>(I/s) | AREA<br>(ha) | AREA<br>(ha)                                     | FLOW<br>(I/s)                                    | FLOW<br>(l/s) | (m)    | (mm)     | (%)        | (FULL)<br>(I/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q act/Q cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (FULL)<br>(m/s)                                  | (AC      |
| I                |                     |                   | †             | (ria)                                                               |                                                  |            |                                                  |          | (Hu)                                             |            |           | (1/3)         | (na)                                             | (na)         | (na) | (na)          | (Ha)        | (na)         | (1/5)         | (na)         | (na)                                             | (1/3)                                            | (#3)          | (111)  | (11111)  | (70)       | (1/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (111/3)                                          | (        |
| ERVICING 14      | ,                   |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| Contribution Fro | om SERVICING 9,     | Pipe 130A - 133A  |               |                                                                     |                                                  |            |                                                  |          | 1.68                                             | 441        |           |               |                                                  | 0.00         |      | 0.00          |             | 0.00         |               | 1.68         | 1.68                                             |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| Contribution Fro | om SERVICING 9,     | Pipe 132A - 133A  |               |                                                                     |                                                  |            |                                                  |          | 0.36                                             | 101        |           |               |                                                  | 0.00         |      | 0.00          |             | 0.00         |               | 0.36         | 2.04                                             |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     | 133A              | 138A          | 0.15                                                                |                                                  |            |                                                  | 0        | 2.19                                             | 542        | 3.36      | 5.91          |                                                  | 0.00         |      | 0.00          |             | 0.00         | 0.00          | 0.15         | 2.19                                             | 0.72                                             | 6.63          | 42.0   | 200      | 0.75       | 28.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                             | 0.7      |
|                  | om SERVICING 15     |                   |               |                                                                     |                                                  |            |                                                  |          | 0.31                                             | 135        |           |               |                                                  | 0.00         |      | 0.00          |             | 0.00         |               | 0.31         | 2.50                                             |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| Contribution Fro | om SERVICING 15     |                   |               |                                                                     |                                                  |            |                                                  |          | 0.24                                             | 101        |           |               |                                                  | 0.00         |      | 0.00          |             | 0.00         |               | 0.24         | 2.74                                             |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     | 138A              | 139A          |                                                                     |                                                  |            |                                                  |          | 2.74                                             | 778        | 3.29      | 8.31          |                                                  | 0.00         |      | 0.00          |             | 0.00         | 0.00          | 0.00         | 2.74                                             | 0.90                                             | 9.21          | 12.0   | 200      | 0.35       | 19.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.62                                             | 0.6      |
| o FUTURE CI      | HAPMAN MILLS D      | R, Pipe 139A - 14 | 0A            |                                                                     |                                                  |            |                                                  |          | 2.74                                             | 778        |           |               |                                                  | 0.00         |      | 0.00          |             | 0.00         |               |              | 2.74                                             |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| LITUDE CHA       | PMAN MILLS DR       |                   | -             |                                                                     | -                                                |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              | -                                                |                                                  |               | -      |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  | om SERVICING 14     | Ding 120A 120     | ^             |                                                                     |                                                  |            |                                                  |          | 2.74                                             | 778        |           |               |                                                  | 0.00         |      | 0.00          |             | 0.00         |               | 2.74         | 2.74                                             |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| I Ionnaninos     | JIII SERVICING 14   | 139A              | 140A          | 1.06                                                                | <del>                                     </del> | -          | <b> </b>                                         | 0        | 3.80                                             | 778        | 3.29      | 8.31          |                                                  | 0.00         | 1    | 0.00          | -           | 0.00         | 0.00          | 1.06         | 3.80                                             | 1.25                                             | 9.56          | 80.5   | 250      | 0.25       | 29.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                             | 0.5      |
| 1                |                     | 140A              | 152A          | 0.30                                                                |                                                  | +          |                                                  | 0        | 4.10                                             | 778        | 3.29      | 8.31          | -                                                | 0.00         |      | 0.00          |             | 0.00         | 0.00          | 0.30         | 4.10                                             | 1.35                                             | 9.66          | 74.5   | 250      | 0.25       | 29.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                             | 0.5      |
| Contribution Fro | om SERVICING 19     |                   |               | 0.00                                                                | 1                                                | +          | <b> </b>                                         |          | 1.46                                             | 372        | 5.23      | 0.01          | <b> </b>                                         | 0.00         |      | 0.00          |             | 0.00         | 0.00          | 1.46         | 5.56                                             | 1.00                                             | 5.00          | 17.0   | 200      | 0.20       | 20.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                             | 0.0      |
|                  | SIII SERVIOIIVO 18  | 152A              | EX SAN 138A   | 0.13                                                                | <del>                                     </del> | 1          | <b> </b>                                         | 0        | 5.69                                             | 1150       | 3.21      | 11.96         |                                                  | 0.00         |      | 0.00          |             | 0.00         | 0.00          | 0.13         | 5.69                                             | 1.88                                             | 13.83         | 36.0   | 250      | 0.25       | 29.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                             | 0.5      |
| 1                |                     | 1027              | 2. 3. 11 100/ |                                                                     |                                                  | <b>†</b>   |                                                  |          | 5.00                                             | . 100      | J.2.1     | 00            | <b> </b>                                         | 0.00         |      | 0.00          |             | 0.00         | 0.00          | 5.10         | 5.00                                             |                                                  | . 5.55        | 55.0   |          | 5.20       | 20.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.01                                             | 0.0      |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   | +             |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   | 1             |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  | 1          |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  | 1                                                |               | -      |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               | 1      |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            | A STATE OF THE PARTY OF THE PAR | STATE OF THE PARTY |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | _          | OFES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            | OHIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JAN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. C.                                            |          |
|                  |                     |                   |               |                                                                     |                                                  | 1          |                                                  |          |                                                  |            |           |               |                                                  |              |      |               | -           |              |               |              |                                                  |                                                  |               | -      |          | 1          | Vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |          |
|                  |                     |                   |               |                                                                     |                                                  | 1          |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | 13         | NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | 15         | C 1 3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ERRICK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Di I                                             |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | 13         | O. S. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                               |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | 1          | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1                                              |          |
|                  |                     |                   | +             |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |          |
|                  |                     |                   | 1             |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | 1.4        | 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -10-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0/                                               |          |
| 1                |                     |                   | 1             |                                                                     |                                                  | <b>†</b>   |                                                  |          |                                                  |            |           |               | <b> </b>                                         |              |      |               |             |              |               |              |                                                  | <u> </u>                                         |               |        |          | 13         | no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CK D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          | *          | MACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OF OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |          |
|                  |                     |                   |               |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  |                     |                   | 1             |                                                                     |                                                  | <u> </u>   | ļ                                                |          |                                                  |            |           |               |                                                  |              |      |               |             |              |               |              | ļ                                                |                                                  |               | -      |          |            | श्रिम ।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - B16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | <u> </u> |
|                  |                     |                   | 1             |                                                                     |                                                  | +          | <del>                                     </del> |          | <del>                                     </del> | -          | -         |               | <del>                                     </del> |              | -    |               |             |              |               |              | <del>                                     </del> | <del>                                     </del> |               | 1      | 1        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del> | -        |
|                  |                     | l .               | 1             | 1                                                                   | DESIGN F                                         | PARAMET    | ERS                                              | <u> </u> | <u> </u>                                         |            |           |               | <u> </u>                                         | 1            |      | Designed      | 1:          |              |               | <u> </u>     | PROJEC                                           | <u>I</u><br>T:                                   | <u> </u>      | 1      | 1        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |          |
| ark Flow =       |                     | 9300              | L/ha/da       | 0.10764                                                             |                                                  | l/s/Ha     |                                                  |          |                                                  |            |           |               |                                                  |              |      | 2 55191160    |             |              |               | СРВ          |                                                  | ••                                               |               | Minto  | - Barrha | ven Towr   | Centre 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |          |
| verage Daily Fl  | ow =                | 280               | l/p/day       | 30704                                                               |                                                  | ,, J, 1 Id |                                                  |          | Industrial                                       | Peak Fact  | or = as n | er MOF G      | ranh                                             |              |      |               |             |              |               | 5. 5         |                                                  |                                                  |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| omm/Inst Flow    |                     | 28000             | L/ha/da       | 0.3241                                                              |                                                  | l/s/Ha     |                                                  |          | Extraneou                                        |            | – as p    | 0.330         |                                                  |              |      | Checked       | :           |              |               |              | LOCATIO                                          | DN:                                              |               |        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| dustrial Flow =  |                     | 35000             | L/ha/da       | 0.40509                                                             |                                                  | l/s/Ha     |                                                  |          |                                                  | Velocity = |           | 0.600         |                                                  |              |      | Shooked       | •           |              |               | SLM          | 200,1110                                         |                                                  |               |        |          | City of    | Ottawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
| ax Res. Peak F   | actor =             | 4.00              | L/IId/ud      | 0.40008                                                             |                                                  | 1/3/114    |                                                  |          | Manning's                                        |            | (Conc)    | 0.000         |                                                  | 0.013        |      |               |             |              |               | OLIVI        |                                                  |                                                  |               |        |          | Oity Oi    | uwu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |
|                  | /Park Peak Factor = |                   |               |                                                                     |                                                  |            |                                                  |          | 2 Bedrooi                                        |            | (33110)   | 2.1           | ,                                                | 0.010        |      | Dwg. Ref      | ference:    |              |               |              | File Ref:                                        |                                                  |               |        | Date:    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t No.                                            | 4        |
| stitutional =    |                     | 0.32              | l/s/Ha        |                                                                     |                                                  |            |                                                  |          |                                                  |            |           |               |                                                  |              |      |               | Drainage Pl | lan, Dwgs.   | . No.         |              |                                                  |                                                  |               | 15-816 |          | 06 Oct 202 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of                                               | 4        |

CLIENT: LOCATION: FILE REF: DATE:

Minto Communities Barrhaven Town Centre Phase 1 16-816 06-Mar-23

 Avg. Daily Flow Res.
 280
 L/p/d

 Avg. Daily Flow Comm
 28,000
 L/ha/d

 Avg. Daily Flow Instit.
 28,000
 L/ha/d

 Avg. Daily Flow Instit.
 28,000
 L/ha/d

 Avg. Daily Flow Instit.
 35,000
 L/ha/d

 Harmens Corr Factor
 0.8
 0.8

Peak Fact Res. Per Harmons: Min = 2.0, Max =4.0 Peak Fact. Res. Per Hamilons. Will –
Peak Fact. Comm. 1
Peak Fact. Instit. 1
Peak Fact. Indust. per MOE graph

Infiltration / Inflow Min. Pipe Velocity Max. Pipe Velocity Mannings N 0.33 L/s/ha 0.60 m/s full flowing 3.00 m/s full flowing 0.013



|                           | Location                                        |                 |                           |                | Residential Area and Po     | nulation               |                        |       |                  | Commercial | Instit | tutional     | Industrial | : 1                | I              | Infiltration | 1            |                | I          |                |              |              | Pipe Data  |                |              |                  |          |
|---------------------------|-------------------------------------------------|-----------------|---------------------------|----------------|-----------------------------|------------------------|------------------------|-------|------------------|------------|--------|--------------|------------|--------------------|----------------|--------------|--------------|----------------|------------|----------------|--------------|--------------|------------|----------------|--------------|------------------|----------|
| Area ID                   | IDENTIFIER                                      | Up              | Down                      | Area           | Number of Units             |                        | ımulative              | Peak. | Q <sub>res</sub> | Area Accu. |        |              | Area Accu. | Q <sub>C+I+I</sub> | Total          | Accu.        | Infiltration | Total          | DIA        | DIA            | Slope        |              | Ahvdraulic | R              | Velocity     | Q <sub>cap</sub> | Q / Q fu |
|                           |                                                 |                 |                           |                | by type                     | Are                    | a Pop.                 | Fact. |                  | Area       |        | Area         | Area       |                    | Area           | Area         | Flow         | Flow           | Nominal    | Actual         |              |              | nyaraane   |                |              | тсар             |          |
|                           |                                                 |                 |                           | (ha)           | Singles Semi's Town's Apt's | (ha                    | )                      | (-)   | (L/s)            | (ha) (ha)  | (ha)   | (ha)         | (ha) (ha)  | (L/s)              | (ha)           | (ha)         | (L/s)        | (L/s)          | (mm)       | (mm)           | (%)          | (m)          | (m²)       | (m)            | (m/s)        | (L/s)            | (-)      |
| Longfields Drive          | School on Longfieds                             | School          | 101                       | 0.000          |                             | 0.0 0.0                | 0.0                    | 3.80  | 0.00             | 0.00       | 5.61   | 1 5.61       | 0.00       | 1.82               | 5.610          | 5.610        | 1.851        | 3.67           | 200        | 203.2          | 1.00         | 14.5         | 0.032      | 0.050          | 1.04         | 33.9             | 0.       |
| zongnoido zirro           | Concor on Longitudo                             | 101             | 102                       | 0.600          |                             | 0.0 0.6                |                        |       | 0.00             | 0.00       |        | 5.61         | 0.00       |                    | 0.600          |              |              | 3.87           |            | 254            | 0.50         | 58.0         | 0.051      | 0.063          | 0.86         |                  |          |
| Langfielde Drive          | Barrhaven Court Retirement Home                 | Retirementhome  | 102                       | 0.000          |                             | 0.0 0.0                | 0.0                    | 3.80  | 0.00             | 0.00       | 1.42   | 2 1.42       | 0.00       | 0.46               | 1.420          | 1.420        | 0.469        | 0.93           | 200        | 203.2          | 2.43         | 28.0         | 0.032      | 0.050          | 1.63         | 52.8             | 0.0      |
| Longfields Drive          | Barriaven Court Retirement nome                 | Retirementionie | 102                       | 0.000          |                             | 0.0 0.0                | 0.0                    | 3.00  | 0.00             | 0.00       | 1.42   | 2 1.42       | 0.00       | 0.46               | 1.420          | 1.420        | 0.469        | 0.93           | 200        | 203.2          | 2.43         | 20.0         | 0.032      | 0.050          | 1.03         | 52.0             | 0.0      |
| Longfields Drive          |                                                 | 102             | 103                       | 2.720          |                             | 174.1 3.3              | 20 174.1               | 3.54  | 1.99             | 0.00       |        | 7.03         | 0.00       | 2.28               | 2.720          | 10.350       | 3.416        | 7.69           | 250        | 254            | 0.74         | 49.0         | 0.051      | 0.063          | 1.04         | 52.8             | 0.1      |
| Marketplace Ave           | Dymon Storage                                   | McGarry Terrace | 121                       |                |                             | 0.0                    | 0.0                    | 3.80  | 0.00             | 0.603 0.60 |        | 0.00         | 0.00       | 0.20               | 0.603          | 0.603        | 0.199        | 0.39           | 200        | 203.2          | 0.65         | 96.0         | 0.032      | 0.050          | 0.84         | 27.3             | 0.0      |
| '                         | , ,                                             | ,               |                           |                |                             |                        |                        |       |                  |            |        |              |            |                    |                |              |              |                |            |                |              |              |            |                |              |                  |          |
|                           | 1012-McGarry Street                             | 121             | 103                       | 0.640          |                             | 418.0 0.6              | 418.0                  | 3.41  | 4.62             | 0.60       |        | 0.00         | 0.00       | 0.20               | 0.640          | 1.243        | 0.410        | 5.23           | 250        | 254            | 2.61         | 77.5         | 0.051      | 0.063          | 1.96         | 99.2             | 0.0      |
| Marketplace Ave           | 1034 McGary Street & 117 Longfieds Towe         | r San Stub      | 103                       | 0.960          |                             | 618.0 0.9              | 60 618.0               | 3.34  | 6.69             | 0.00       |        | 0.00         | 0.00       | 0.00               | 0.960          | 0.960        | 0.317        | 7.01           | 200        | 203.4          | 0.65         | 18.5         | 0.032      | 0.050          | 0.84         | 27.3             | 0.2      |
| Longfields Drive          | ROW Only                                        | 103             | 5062                      | 0.280          |                             | 0.0 5.2                | 00 1210.1              | 3.20  | 12.53            | 0.60       |        | 7.03         | 0.00       | 2.47               | 0.280          | 12.833       | 4.235        | 19.24          | 250        | 254            | 0.70         | 91.0         | 0.051      | 0.063          | 1.01         | 51.4             | 0.3      |
| Longitude Diffe           | ,                                               | 100             | 0002                      | 0.200          |                             | 0.0 0.1                | 1210.1                 | 5.20  | 12.00            | 0.00       |        | 7.03         | 0.00       | 2.41               | 0.200          | 12.000       | 4.233        | 13.24          | 230        | 204            | 0.70         | 31.0         | 0.001      | 0.003          | 1.01         | 51.4             | 0.0      |
| Lindshade Drive           | Waterford Community Centre<br>+ Minto Ampersand | Lindenshade     | 5062                      | 1.590          |                             | 642.2 1.5              | 90 642.2               | 0.00  | 6.94             | 0.00       |        | 0.00         | 0.00       |                    | 1.590          | 1.590        | 0.505        | 7.46           | 200        | 203.4          | 1.00         | 18.0         | 0.032      | 0.050          | 1.04         | 33.9             | 0.1      |
| Linushade Drive           | + Minto Ampersand                               | Lindenshade     | 5002                      | 1.590          |                             | 042.2 1.3              | 90 042.2               | 3.33  | 0.94             | 0.00       |        | 0.00         | 0.00       | 0.00               | 1.590          | 1.590        | 0.525        | 7.40           | 200        | 203.4          | 2.75         | 89.0         | 0.032      | 0.050          | 1.73         |                  | 0.2      |
| Longfields                | ROW                                             | 5062            | 5063B                     | 0.090          |                             |                        | 80 1852.3              |       | 18.54            | 0.60       |        | 7.03         | 0.00       |                    | 0.090          |              |              | 25.81          | 250        | 254            | 0.50         | 61.0         | 0.051      | 0.063          | 0.86         | 43.4             | 0.5      |
| Longfields                | ROW                                             | 5063B           | 5063-A                    | 0.200          |                             | 7.0                    | 80 1852.3              | 3.09  | 18.54            | 0.60       |        | 7.03         | 0.00       | 2.47               | 0.200          | 14.713       | 4.855        | 25.87          | 250        | 254            | 0.70         | 29.0         | 0.051      | 0.063          | 1.01         | 51.4             | 0.0      |
| Bayrose Drive             | Minto Ampersand                                 | Bayrose Drive   | 5063-A                    | 0.850          |                             | 25.0 0.8               | 50 25.0                | 3.69  | 0.30             | 0.00       |        | 0.00         | 0.00       | 0.00               | 0.850          | 0.850        | 0.281        | 0.58           |            | 254            | 0.70         | 56.5         | 0.051      | 0.063          | 0.98         |                  |          |
| I an affalda              | DOW                                             | 5063-A          | 5063                      | 0.220          |                             |                        | FO 4077.0              | 0.00  | 40.77            | 0.60       |        | 7.03         | 0.00       | 0.47               | 0.000          | 45 700       | 5.000        | 00.45          | 000        | 000.4          | 4.05         | 00.0         | 0.000      | 0.050          | 1.17         | 37.9             | 0.       |
| Longfields<br>Longfields  | ROW<br>ROW                                      | 5063-A<br>5063  | 5063-B                    | 0.220          |                             |                        | 50 1877.3<br>80 1877.3 |       | 18.77<br>18.77   | 0.60       |        | 7.03         | 0.00       |                    | 0.220<br>0.130 |              |              | 26.45<br>26.50 | 200        | 203.4<br>203.4 | 1.25<br>2.84 | 86.0<br>96.0 | 0.032      | 0.050<br>0.050 | 1.17         |                  | 0.7      |
|                           |                                                 |                 |                           |                |                             |                        |                        |       |                  |            |        |              |            |                    |                |              |              |                |            |                |              |              |            |                |              |                  |          |
| Sue Holloway              | Minto Ampersand Minto Ampersand                 | Sue Holloway    | Glenroy Gilbert<br>5063-B | 0.960<br>1.560 |                             | 122.4 0.9<br>100.8 2.5 |                        |       | 1.42             | 0.00       |        | 0.00         | 0.00       |                    | 0.960<br>1.560 |              |              | 1.73<br>3.37   | 250        | 254            | 0.50         | 53.0         | 0.051      | 0.063          | 0.86         | 43.4             | 0.0      |
| Glenroy Gilbert           | Minto Ampersand                                 | Glenroy Gilbert | 2003-B                    | 1.560          |                             | 100.8 2.5              | 223.2                  | 3.50  | 2.53             | 0.00       |        | 0.00         | 0.00       | 0.00               | 1.560          | 2.520        | 0.832        | 3.37           | 200        | 203.4          | 1.10         | 102.0        | 0.032      | 0.050          | 1.09         | 35.6             | 0.0      |
| Barrhaven TC Block 1      | Barrhaven TC Block A                            |                 | 5063-B                    | 0.640          |                             | 126.0 0.6              | 40 126.0               | 3.57  | 1.46             | 0.00       |        | 0.00         | 0.00       | 0.00               | 0.640          | 0.640        | 0.211        | 1.67           |            |                |              |              |            |                |              |                  |          |
| Longfields Drive          | Logfields/Glenroy Gilbert                       | 5063-B          | 5066                      | 0.180          |                             | 0.0 11.6               | 20 2226.5              | 3.04  | 21.93            | 0.6        |        | 7.0          | 0.0        | 2.47               | 0.180          | 19.253       | 6.353        | 30.76          | 250        | 254            | 0.70         | 53.0         | 0.051      | 0.063          | 1.01         | 51.4             | 0.6      |
|                           | 7                                               | 5066            | 5067                      | 0.170          |                             | 0.0 11.7               |                        |       | 21.93            | 0.60       |        | 7.03         | 0.00       | 2.47               | 0.170          |              |              | 30.81          | 250        | 254            | 0.70         | 45.0         | 0.051      | 0.063          | 1.01         |                  | 0.6      |
|                           |                                                 | 5067            | 5067-A                    |                |                             | 11.7                   | 90 2226.5              | 3.04  | 21.93            | 0.60       |        | 7.03         | 0.00       | 2.47               | 0.000          | 19.423       | 6.410        | 30.81          | 250        | 254            | 0.70         | 37.5         | 0.051      | 0.063          | 1.01         | 51.4             | 0.6      |
| Chapman Mills Drive Exter | nsion Barrhaven TC Block B                      | 13              | 5067-A                    | 4.190          |                             | 1142.0 4.1             | 90 1142.0              | 3.21  | 11.88            | 0.00       |        | 0.00         | 0.00       | 0.00               | 4.190          | 4.190        | 1.383        | 13.26          | 250        | 254            | 0.50         | 187.0        | 0.051      | 0.063          | 0.86         | 43.4             | 0.3      |
|                           |                                                 | 5007.4          | 5070                      | 0.700          |                             |                        |                        | 0.00  | 04.07            |            |        | 7.00         |            | 0.47               | 0.700          | 04.040       | 0.000        | 40.07          | 0.50       | 054            | 0.00         | 05.0         | 0.054      |                | 0.05         | 40.0             |          |
| Longfields Drive          |                                                 | 5067-A<br>5070  | 5070<br>5071              | 0.700<br>0.180 |                             | 0.0 16.8               |                        | 2.92  | 31.87<br>31.87   | 0.60       |        | 7.03<br>7.03 | 0.00       |                    | 0.700<br>0.180 |              |              | 42.37<br>42.43 | 250<br>250 | 254<br>254     | 0.62         | 65.0<br>49.0 | 0.051      | 0.063          | 0.95<br>1.01 | 48.3<br>51.4     | 8.0      |
|                           |                                                 | 5070            | 5072                      | 0.100          |                             | 0.0 16.8               |                        |       | 31.87            | 0.60       |        | 7.03         | 0.00       |                    | 0.180          |              |              | 42.43          |            | 254            | 0.70         | 60.0         | 0.051      | 0.063          | 1.01         |                  |          |
|                           |                                                 | 5072            | 5073                      | 0.210          |                             | 0.0 17.3               |                        |       | 31.87            | 0.60       |        | 7.03         | 0.00       |                    | 0.210          |              |              | 42.57          |            | 254            | 0.70         | 55.0         | 0.051      | 0.063          | 1.01         |                  |          |
|                           |                                                 | 5073            | 5076                      | 0.160          |                             | 0.0 17.4               |                        |       | 31.87            | 0.60       |        | 7.03         | 0.00       |                    | 0.160          |              |              | 42.62          |            | 254            | 0.70         | 43.5         | 0.051      | 0.063          | 1.01         |                  |          |
|                           |                                                 | 5076            | 5077                      | 0.220          |                             | 0.0 17.6               |                        |       | 31.87            | 0.60       |        | 7.03         | 0.00       |                    | 0.220          |              |              | 42.69          |            | 254            | 1.56         | 59.5         | 0.051      | 0.063          | 1.51         |                  | 0.5      |
| Garrity Crescent          |                                                 | 124             | 5077                      | 7.690          |                             | 623.7 7.6              | 90 623.7               | 3.34  | 6.75             | 0.00       |        | 0.00         | 0.00       | 0.00               | 7.690          | 7.690        | 2.538        | 9.29           | 200        | 203.4          | 0.50         | 24.3         | 0.032      | 0.050          | 0.74         | 24.0             | 0.3      |
| •                         |                                                 |                 |                           |                |                             |                        |                        |       |                  |            |        |              |            |                    |                |              |              |                |            |                |              |              |            |                |              |                  |          |
| Longfields Drive          |                                                 | 5077            | 5051                      | 0.280          |                             | 0.0 25.6               | 3992.2                 | 2.87  | 37.10            | 0.60       |        | 7.03         | 0.00       | 2.47               | 0.280          | 33.273       | 10.980       | 50.55          | 250        | 254            | 1.91         | 78.5         | 0.051      | 0.063          | 1.67         | 84.8             | 0.6      |
| Paul Metivier Drive       |                                                 | 101             | 5051                      | 34.580         |                             | 4954.3 34.5            | 80 4954.3              | 2.80  | 44.94            | 0.00       | 5.07   | 7 5.07       | 0.00       | 1.64               | 39.650         | 39.650       | 13.085       | 59.67          | 450        | 457.2          | 0.15         | 79.5         | 0.164      | 0.113          | 0.69         | 114.0            | 0.5      |
|                           |                                                 | 100A            | 5051                      | 1.430          |                             | 89.1 1.4               | 30 89.1                | 3.61  | 1.04             | 0.00       |        | 0.00         | 0.00       | 0.00               | 1.430          | 1.430        | 0.472        | 1.51           | 200        | 203.4          | 0.32         | 3.4          | 0.032      | 0.050          | 0.59         | 19.2             | 0.0      |
| Longfields Drive          |                                                 | 5051            | 5079                      | 0.160          |                             | 0.0 61.8               | 10 9035.6              | 2.60  | 76.09            | 0.60       |        | 12.10        | 0.00       | 4.12               | 0.160          | 74.513       | 24.589       | 104.80         | 1050       | 1066.8         | 0.10         | 68.0         | 0.894      | 0.263          | 1.00         | 891.4            | 0.1      |
| J                         |                                                 | 5079            | 5080                      | 0.160          |                             | 0.0 61.9               |                        | 2.60  | 76.09            | 0.60       |        | 12.10        | 0.00       |                    | 0.160          |              |              | 104.85         | 1050       | 1066.8         | 0.10         | 60.0         | 0.894      | 0.263          | 1.00         |                  | 0.1      |
|                           |                                                 | 5080            | 5081                      | 0.210          |                             | 0.0 62.                | 80 9035.6              | 2.60  | 76.09            | 0.60       |        | 12.10        | 0.00       | 4.12               | 0.210          | 74.883       | 24.711       | 104.92         | 1050       | 1066.8         | 0.52         | 75.0         | 0.894      | 0.263          | 2.27         | 2032.7           | 0.0      |
|                           |                                                 | 5081            | 5082                      | 0.150          |                             | 0.0 62.3               | 30 9035.6              | 2.60  | 76.09            | 0.60       |        | 12.10        | 0.00       | 4.12               | 0.150          | 75.033       | 24.761       | 104.97         | 1050       | 1066.8         | 0.02         | 55.0         | 0.894      | 0.263          | 0.45         | 398.6            | 0.2      |



# DYMOND STORAGE

### Dymon Self Stroage - 1000 N

# Wastewater Design Ca McGary Terrace - 121 0.603 ha Commercial

## Calculation Method 1 (City of Ottawa Design Guidelines):

0.603 ha Total Gross Area =

28,000 L/ha/day - per City of Ottawa Design Guidelines Theoritical Unit Rate =

Average Wastewater Flow = 16884 L/day

Average Wastewater Volume = 0.39 L/s (assuming 12 hour operation)

1.5 Peaking Factor = Infiltration 0.33 L/s/ha= 0.20 L/s

Peak Design Flow = 0.79 L/s

### **Calculation Method 2 (Mechanical Fixture Count):**

75 GPM = 4.73 L/sProposed 5-Storey Building Sani. Flow = 10 GPM = 0.63 L/sProposed Floor Drains of Building = Anticipated Total Peak Flow = 85 GPM = 5.36 L/s

Peak Design Flow = 5.36 L/s

Use the most conservative method; Q = 5.36 L/s

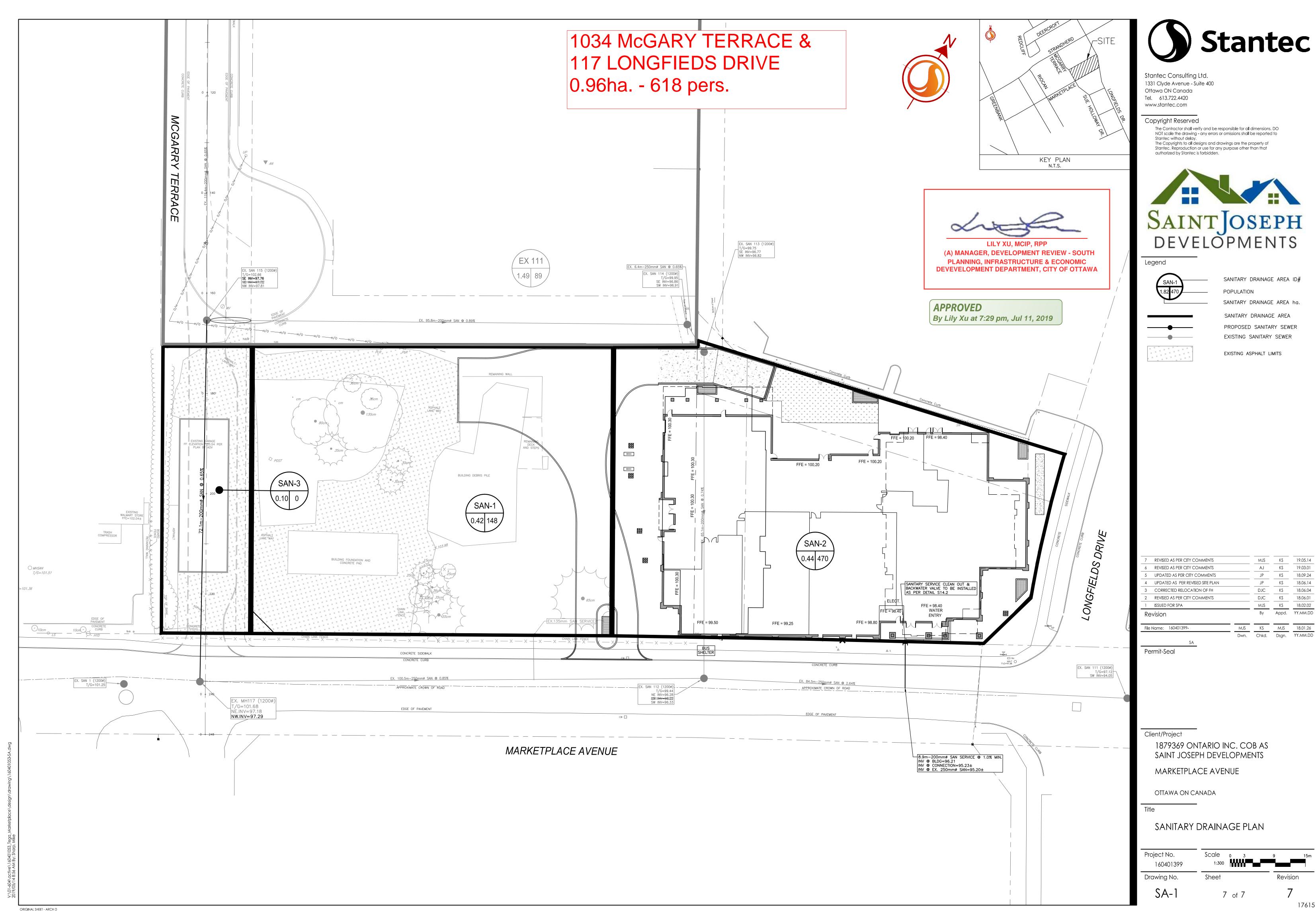
The proposed 150 mm diameter sanitary service with a slope of ± 0.5% has a capacity of 11.2 L/s and a full flow velocity of 0.62 m/s. Therefore, the proposed sanitary service has sufficient capacity to accommodate the Peak Design Flow of 5.36 L/s.

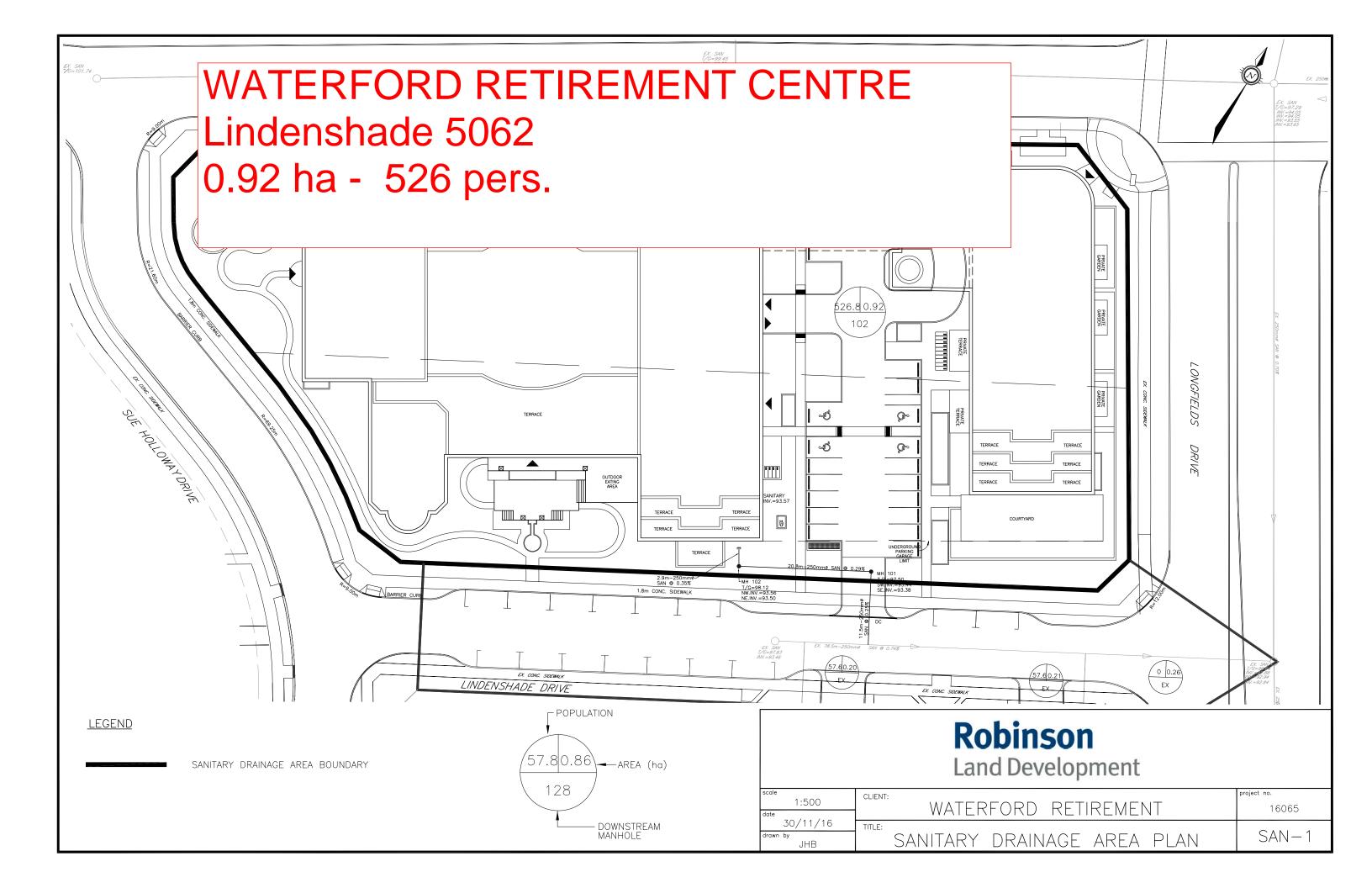
#### Howard Grant 1012-1024 McGarry Terrace Proposed Site Conditions

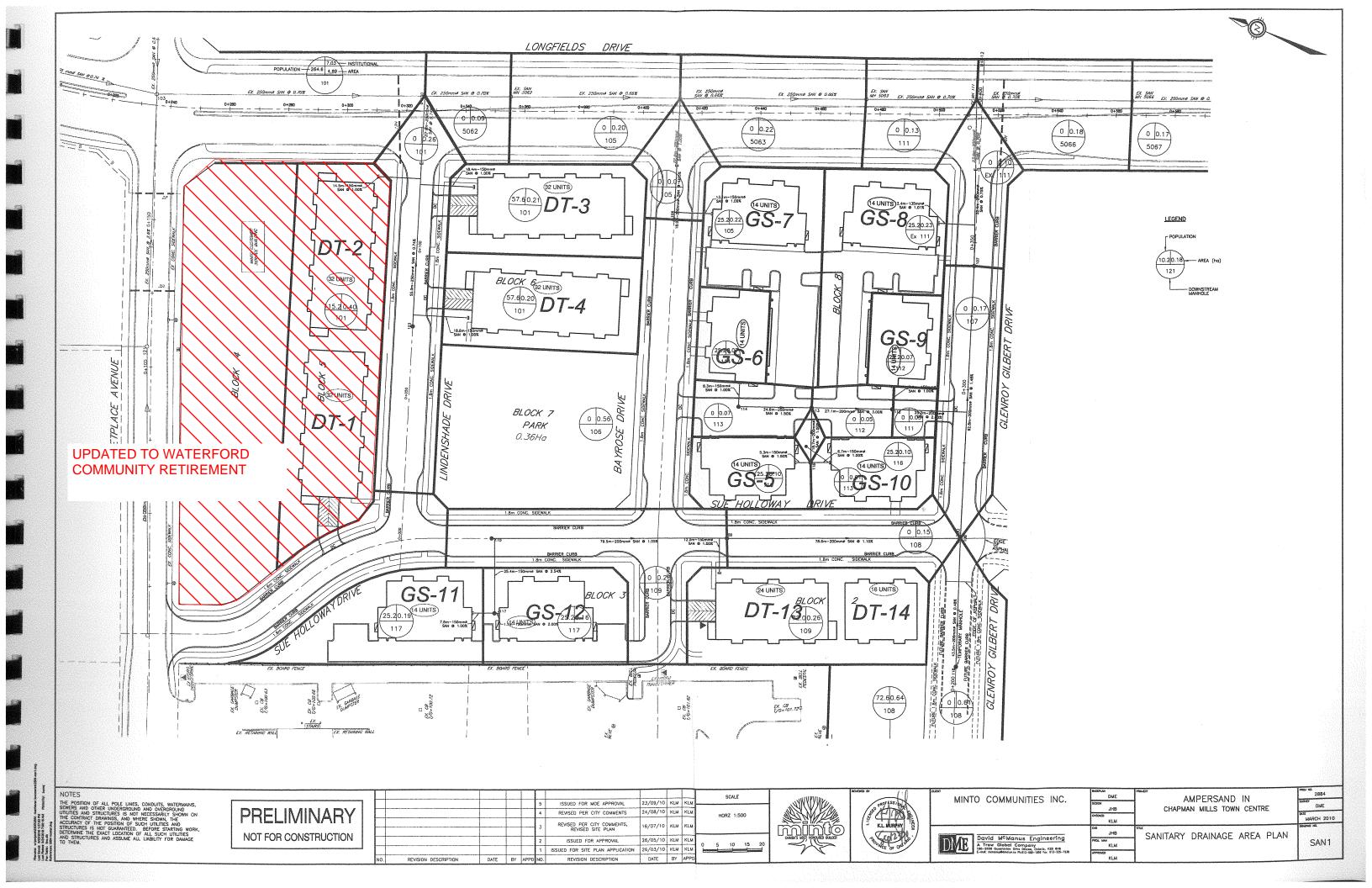
Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

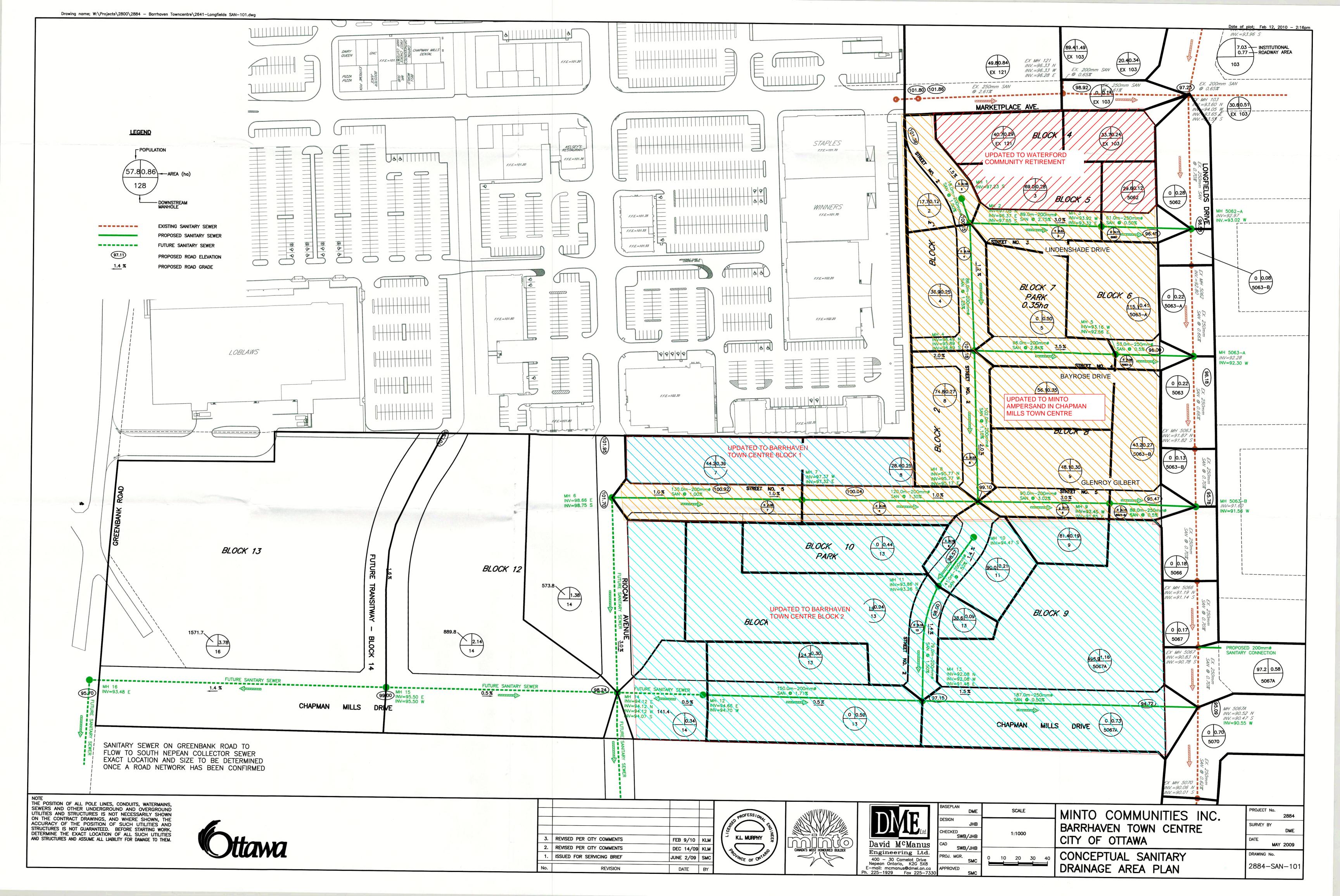


| Site Area | 0.640 <b>ha</b> |
|-----------|-----------------|
|-----------|-----------------|


#### **Extraneous Flow Allowances**


|                          | Infiltration /<br>Infiltration / I<br>Infiltration / In | nflow (Wet) | 0.03 L/s<br>0.16 L/s<br>0.21 L/s | s |
|--------------------------|---------------------------------------------------------|-------------|----------------------------------|---|
| Domestic Contributions   |                                                         |             |                                  |   |
| Unit Type                | Unit Rate                                               | Units       | Рор                              |   |
| Single Family            | 3.4                                                     |             | 0                                |   |
| Semi-detached and duplex | 2.7                                                     |             | 0                                |   |
| Townhouse                | 2.7                                                     |             | 0                                |   |
| Stacked Townhouse        | 2.3                                                     |             | 0                                |   |
| Apartment                |                                                         |             |                                  |   |
| Bachelor                 | 1.4                                                     |             | 0                                |   |
| 1 Bedroom                | 1.4                                                     |             | 0                                |   |
| 2 Bedroom                | 2.1                                                     |             | 0                                |   |
| 3 Bedroom                | 3.1                                                     |             | 0                                |   |
| Average                  | 1.8                                                     | 232         | 418                              |   |


| Total Pop             | 418    |    |
|-----------------------|--------|----|
| Average Domestic Flow | 1.35 L | /s |
| Peaking Factor        | 3.41   |    |
| Peak Domestic Flow    | 4.62 L | /s |


| Total Estimated Average Dry Weather Flow Rate | 1.39 L/s |
|-----------------------------------------------|----------|
| Total Estimated Peak Dry Weather Flow Rate    | 4.65 L/s |
| Total Estimated Peak Wet Weather Flow Rate    | 4.86 L/s |

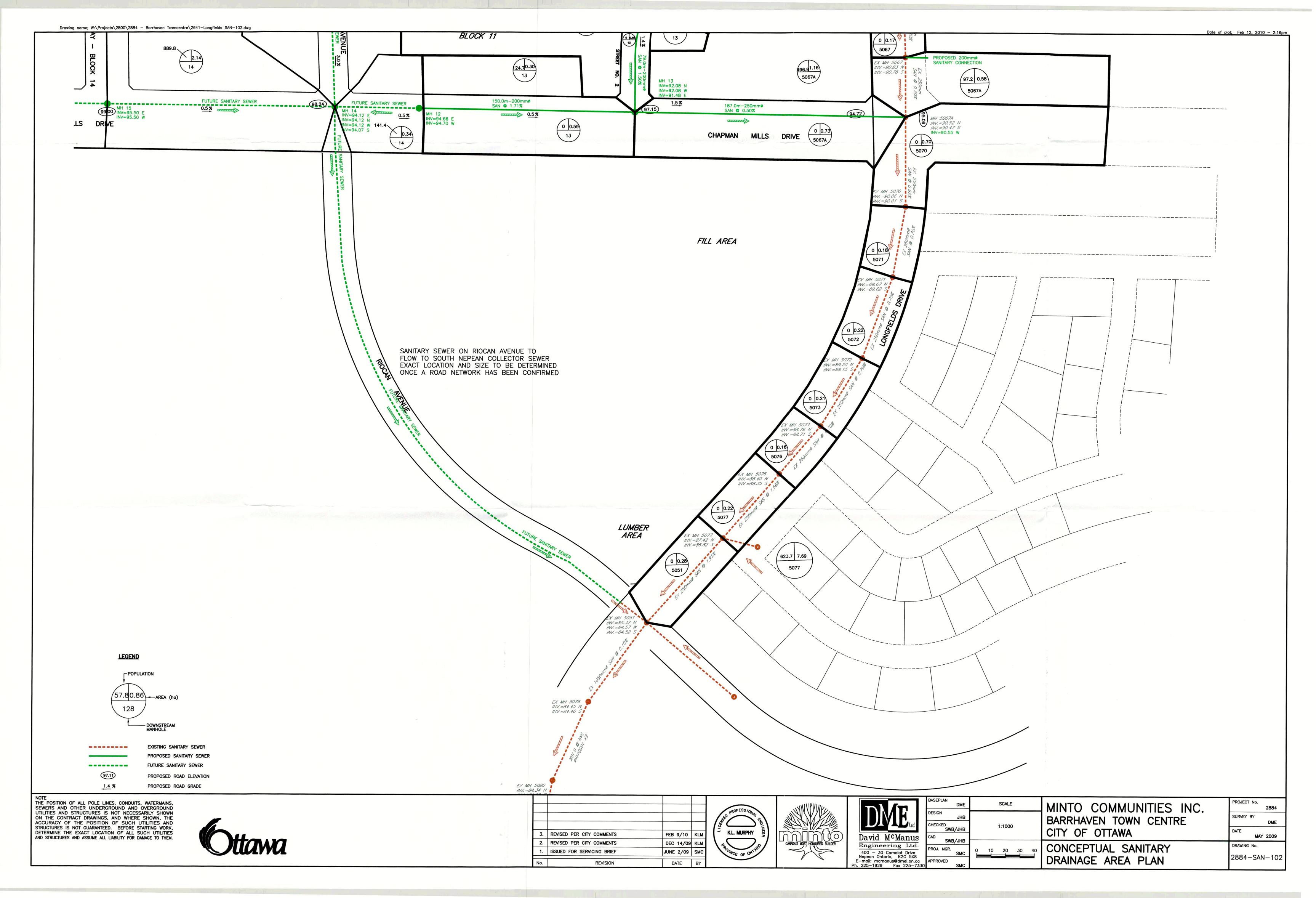
# 1012 McGARY STREET 121-103 0.64 ha - 418pers.





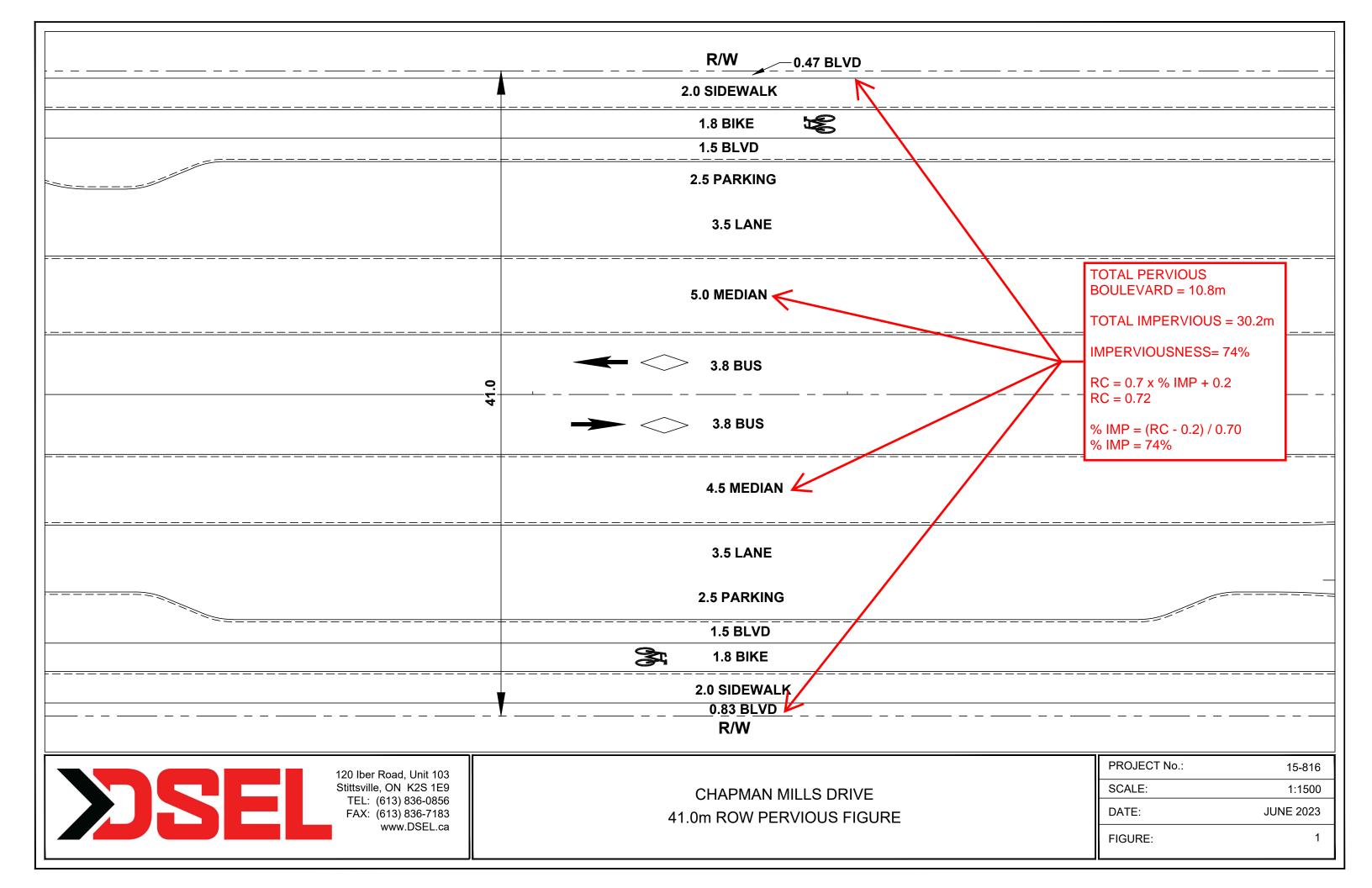




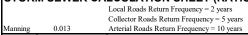

**Table 1.1: Development Statistic Projections** 

| Land Use                             | Total<br>Area (ha) | Projected<br>Residential Units | Residential<br>Population per Unit<br>* | Projected<br>Population * |
|--------------------------------------|--------------------|--------------------------------|-----------------------------------------|---------------------------|
| Block A – Stacked<br>Townhouse Units | 0.64               | 60                             | 2.1                                     | 126                       |
| Block B – Stacked<br>Townhouse Units | 4.19               | 544                            | 2.1                                     | 1142                      |
| Glenroy Gilbert Drive<br>Extension   | 0.39               | -                              | -                                       | -                         |
| TOTAL                                | 5.21               | 604                            |                                         | 1268                      |

<sup>\*</sup> NOTE: Population projections may differ from population estimates used in background Transportation Studies, Planning Rationale, and other studies. Population projection and residential population per unit values are based on Ministry of Environment, Conservation and Parks guidelines for servicing demand calculations. Local Roads are included in Total Area estimates above.


MINTO BTC BLOCK A 5063-B 0.64 ha. - 126 pers.

MINTO BTC BLOCK B 13 -5067-A 0.65ha. - 1142 pers.




# **APPENDIX D**

**Stormwater Servicing Documents** 



#### STORM SEWER CALCULATION SHEET (RATIONAL METHOD)





| Manning     | 0.013            |                 | Arterial Re     | oads Return                                      | Frequency                                        | = 10 years |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  |                                                  |                                                  |                        |
|-------------|------------------|-----------------|-----------------|--------------------------------------------------|--------------------------------------------------|------------|------|--------------------------------------------------|---------|---------|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|--------------|--------|--------------|---------|----------------|-----------|-----------|----------|----------|-----------|-----------|-----------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------|
|             | LOC              | ATION           |                 |                                                  |                                                  |            |      |                                                  |         | ARE     | A (Ha)                                           |          |                                                  |                                                  |              |        |              |         |                |           |           | ow       | 1        |           |           |           |          |                                                  | SEWER DA                                         |                                                  |                                                  |                                                  |                        |
|             |                  |                 |                 | 2 Y                                              | EAR                                              |            |      | 5 Y                                              | /EAR    |         |                                                  | 10 \     | /EAR                                             | 1                                                |              | 100 YE |              |         | Time of        | Intensity | Intensity | ,        |          | Peak Flow | DIA. (mm) | DIA. (mm) | TYPE     | SLOPE                                            | LENGTH                                           | CAPACITY                                         | VELOCITY                                         | TIME OF                                          | RATIO                  |
| ×           | D N 1            | T N 1           | AREA<br>(Ha)    | R                                                | Indiv.                                           | Accum.     | AREA | R                                                | Indiv.  | Accum.  | AREA<br>(Ha)                                     | R        | Indiv.                                           | Accum.                                           | AREA<br>(Ha) |        | Indiv.       | Accum.  | Conc.          | 2 Year    | 5 Year    | 10 Year  | 100 Year | 0.4()     | ( , D     | / ! 0     |          | (0/)                                             | ( )                                              | (1/)                                             | ( ()                                             | T OW (                                           | 0/0.6.11               |
| Location    | From Node        | To Node         | (Ha)            |                                                  | 2.78 AC                                          | 2.78 AC    | (Ha) |                                                  | 2.78 AC | 2.78 AC | (Ha)                                             |          | 2.78 AC                                          | 2.78 AC                                          | (Ha)         |        | 2.78 AC      | 2.78 AC | (min)          | (mm/h)    | (mm/h)    | (mm/h)   | (mm/h)   | Q (1/s)   | (actual)  | (nominal) |          | (%)                                              | (m)                                              | (l/s)                                            | (m/s)                                            | LOW (min                                         | Q/Q full               |
| SERVICII    | I C 6            |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  | -            |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  | <b> </b> '                                       | <del>                                     </del> | -                      |
| SERVICII    | 107              | 108             |                 |                                                  | 0.00                                             | 0.00       | 0.17 | 0.74                                             | 0.35    | 0.35    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          | 76.81     | 104.10    | 122.14   | 178.56   | 36        | 300       | 300       | PVC      | 3.00                                             | 15.5                                             | 167.4906                                         | 2 3605                                           | 0.1090                                           | 0.218                  |
|             | 108              | 109             |                 |                                                  | 0.00                                             | 0.00       | 0.17 | 0.74                                             | 0.00    | 0.35    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.11          | 76.39     | 103.62    |          | 177.57   | 36        | 300       | 300       | PVC      | 0.35                                             | 15.5                                             | 57.2089                                          | 0.8093                                           |                                                  | 0.633                  |
| To GLEN     | ROY GILB         |                 | Pipe 109 -      | 110                                              | 0.00                                             | 0.00       |      |                                                  | 0.00    | 0.35    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.43          | 7 0.00    | 100.02    | 121111   |          | - 00      |           |           |          | 0.00                                             | 10.0                                             | 07.2000                                          | 0.0000                                           | 0.0102                                           | 0.000                  |
|             |                  |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  | † †                                              |                                                  |                                                  |                        |
| SERVICII    | NG 5             |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  | 1                                                |                                                  |                                                  |                        |
|             | 104              | 105             |                 |                                                  | 0.00                                             | 0.00       | 0.25 | 0.77                                             | 0.54    | 0.54    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          | 76.81     | 104.19    | 122.14   | 178.56   | 56        | 300       | 300       | PVC      | 0.65                                             | 16.0                                             | 77.9626                                          | 1.1029                                           | 0.2418                                           | 0.715                  |
|             | 105              | 106             |                 |                                                  | 0.00                                             | 0.00       |      |                                                  | 0.00    | 0.54    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.24          | 75.89     | 102.93    | 120.66   | 176.38   | 55        | 300       | 300       | PVC      | 0.55                                             | 15.5                                             | 71.7152                                          | 1.0146                                           | 0.2546                                           | 0.768                  |
| To GLEN     | ROY GILB         | ERT DR, F       | Pipe 106 -      | 109                                              |                                                  | 0.00       |      |                                                  |         | 0.54    |                                                  |          |                                                  | 0.00                                             |              |        |              | 0.00    | 10.50          |           |           |          |          |           |           |           |          |                                                  |                                                  | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         |                        |
|             |                  |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  | <u> </u>                                         | <u> </u>                                         |                        |
| SERVICI     |                  |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  | <u> </u>                                         | L                                                |                        |
|             | 100              | 101             |                 |                                                  | 0.00                                             | 0.00       | 0.13 | 0.74                                             | 0.27    | 0.27    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          |           | 104.19    |          | 178.56   | 28        | 300       | 300       | PVC      | 1.80                                             | 16.5                                             |                                                  |                                                  |                                                  | 0.215                  |
| T- CLEN     | 101              | 103             | ): 102          | 100                                              | 0.00                                             | 0.00       |      | -                                                | 0.00    | 0.27    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.15          | 76.23     | 103.41    | 121.22   | 177.20   | 28        | 300       | 300       | PVC      | 0.35                                             | 15.5                                             | 57.2089                                          | 0.8093                                           | 0.3192                                           | 0.483                  |
| 10 GLEN     | ROY GILB         | EKT DK, I       | Pipe 103 -      | 106                                              | -                                                | 0.00       |      | -                                                | -       | 0.27    |                                                  |          | -                                                | 0.00                                             |              |        |              | 0.00    | 10.47          |           |           |          |          |           |           |           |          |                                                  |                                                  | <b></b>                                          | <b> </b>                                         | <u> </u>                                         |                        |
| GI ENDO     | L<br>Y GILBER    | T DR            |                 | <del>                                     </del> | <del>                                     </del> | 1          |      | <del>                                     </del> | +       | 1       | <del>                                     </del> |          | <del>                                     </del> | <del>                                     </del> |              |        |              |         |                |           | 1         |          |          |           |           |           |          |                                                  |                                                  | $\vdash$                                         | <del></del>                                      | <del>                                     </del> | $\vdash \vdash \vdash$ |
| CLENKO      | . GILDER         | I               |                 | 1                                                | 0.00                                             | 0.00       | 0.05 | 0.64                                             | 0.09    | 0.09    |                                                  | <b> </b> | 0.00                                             | 0.00                                             | -            |        | 0.00         | 0.00    |                |           | 1         |          |          |           |           |           |          | <del>                                     </del> | <del>                                     </del> | $\vdash$                                         | <del>                                     </del> | <del>                                     </del> | $\vdash$               |
|             |                  |                 |                 | 1                                                | 0.00                                             | 0.00       | 0.03 | 0.58                                             | 0.06    | 0.05    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    |                |           |           |          |          |           |           |           |          |                                                  |                                                  | <del>                                     </del> |                                                  |                                                  | $\vdash$               |
|             | 102              | 103             |                 | <b>†</b>                                         | 0.00                                             | 0.00       | 0.03 | 0.64                                             | 0.05    | 0.21    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          | 76.81     | 104.19    | 122.14   | 178.56   | 22        | 300       | 300       | PVC      | 0.35                                             | 30.0                                             | 57.2089                                          | 0.8093                                           | 0.6178                                           | 0.377                  |
| Contributi  | on From S        | ERVICINO        | 3 2, Pipe 1     | 101 - 103                                        |                                                  | 0.00       |      |                                                  |         | 0.27    |                                                  |          |                                                  | 0.00                                             |              |        |              | 0.00    | 10.47          |           |           |          |          |           |           |           |          |                                                  |                                                  | 1                                                |                                                  |                                                  |                        |
|             |                  |                 |                 |                                                  | 0.00                                             | 0.00       | 0.03 | 0.54                                             | 0.05    | 0.52    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    |                |           |           |          |          |           |           |           |          |                                                  |                                                  | 1                                                |                                                  |                                                  |                        |
|             |                  |                 |                 |                                                  | 0.00                                             | 0.00       | 0.07 | 0.64                                             | 0.12    | 0.64    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    |                |           |           |          |          |           |           |           |          |                                                  |                                                  | ]                                                |                                                  |                                                  |                        |
|             |                  |                 |                 |                                                  | 0.00                                             | 0.00       | 0.08 | 0.64                                             | 0.14    | 0.79    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  |                                                  |                                                  |                        |
|             | 103              | 106             |                 |                                                  | 0.00                                             | 0.00       | 0.08 | 0.77                                             | 0.17    | 0.96    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.62          | 74.51     | 101.04    | 118.43   | 173.10   | 97        | 450       | 450       | CONC     | 0.25                                             | 85.0                                             | 142.5531                                         | 0.8963                                           | 1.5805                                           | 0.679                  |
| Contributi  | on From S        | ERVICINO        | 5, Pipe 1       | 105 - 106                                        |                                                  | 0.00       |      |                                                  |         | 0.54    |                                                  |          |                                                  | 0.00                                             |              |        |              | 0.00    | 10.50          |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  | <u> </u>                                         | <u> </u>                                         |                        |
|             |                  |                 |                 |                                                  | 0.00                                             | 0.00       | 0.01 | 0.77                                             | 0.02    | 1.51    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  | ļ'                                               | <b> </b>                                         |                        |
|             |                  |                 |                 |                                                  | 0.00                                             | 0.00       | 0.03 | 0.54                                             | 0.05    | 1.56    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  | <b> </b>                                         | <b> </b>                                         | -                      |
|             | 400              | 400             |                 |                                                  | 0.00                                             | 0.00       | 0.09 | 0.64                                             | 0.16    | 1.72    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 40.00          | 60.00     | 02.00     | 400.07   | 100.00   | 470       | 505       | 505       | CONC     | 0.45                                             | 00.0                                             | 200 4045                                         | 4 2227                                           | 0.0504                                           | 0.617                  |
| Contributi  | 106<br>on From S | 109<br>EDVICING | 2.6 Dino 1      | 100 100                                          | 0.00                                             | 0.00       | 0.10 | 0.64                                             | 0.18    | 0.35    |                                                  |          | 0.00                                             | 0.00                                             | -            |        | 0.00         | 0.00    | 12.20<br>10.43 | 69.28     | 93.86     | 109.97   | 160.68   | 178       | 525       | 525       | CONC     | 0.45                                             | 68.0                                             | 288.4945                                         | 1.3321                                           | 0.8504                                           | 0.017                  |
| Continuati  |                  | EX STM          |                 | 100 - 109                                        | 0.00                                             | 0.00       |      |                                                  | 0.00    | 2.25    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 13.05          | 66.79     | 90.44     | 105.95   | 154.78   | 203       | 525       | 525       | CONC     | 0.40                                             | 10.5                                             | 271.9953                                         | 1.2565                                           | 0.1303                                           | 0.747                  |
|             | 103              | LX OTIVI        | 1 12            | 1                                                | 0.00                                             | 0.00       |      |                                                  | 0.00    | 2.20    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          | 00.73     | 30.44     | 100.00   | 154.70   | 200       | 323       | 323       | CONC     | 0.40                                             | 10.5                                             | 27 1.5555                                        | 1.2303                                           | 0.1000                                           | 0.747                  |
| RIOCAN      | AVE              |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  | <del>                                     </del> |                                                  | <u> </u>                                         |                        |
|             | 154              | 155             |                 |                                                  | 0.00                                             | 0.00       | 0.05 | 0.72                                             | 0.10    | 0.10    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          | 76.81     | 104.19    | 122.14   | 178.56   | 10        | 300       | 300       | PVC      | 2.00                                             | 56.0                                             | 136.7555                                         | 1.9347                                           | 0.4824                                           | 0.076                  |
|             |                  |                 |                 |                                                  | 0.00                                             | 0.00       | 0.16 | 0.66                                             | 0.29    | 0.39    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    |                |           |           |          |          |           |           |           |          |                                                  |                                                  | 1                                                |                                                  |                                                  |                        |
|             | 155              | 156             |                 |                                                  | 0.00                                             | 0.00       | 0.32 | 0.72                                             | 0.64    | 1.03    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.48          | 75.00     | 101.71    | 119.22   | 174.27   | 105       | 450       | 450       | CONC     | 0.25                                             | 78.0                                             | 142.5531                                         | 0.8963                                           | 1.4504                                           | 0.738                  |
|             | 156              | EX STM I        | ИН              |                                                  | 0.00                                             | 0.00       |      |                                                  | 0.00    | 1.03    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 11.93          | 70.10     | 94.98     | 111.30   | 162.63   | 98        | 450       | 450       | CONC     | 0.20                                             | 6.0                                              | 127.5033                                         | 0.8017                                           | 0.1247                                           | 0.770                  |
|             |                  |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  | <u> </u>                                         | <u> </u>                                         |                        |
| SERVICII    |                  |                 |                 |                                                  | 0.00                                             |            |      |                                                  | 0.00    | 0.00    |                                                  |          | 0.00                                             | 0.00                                             |              |        |              |         | 40.00          | 70.04     | 40440     | 100.11   | 470.50   |           |           |           | D) (0    | 4.00                                             | 0.5                                              | 100 7000                                         | 4.0000                                           | 0.0005                                           | 0.000                  |
|             | Plug             | 146             |                 |                                                  | 0.00                                             | 0.00       |      |                                                  | 0.00    | 0.00    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          | 76.81     |           |          | 178.56   | 0         | 300       | 300       | PVC      | 1.00                                             | 2.5                                              | 96.7008                                          |                                                  | 0.0305                                           | 0.000                  |
| To SEDV     | 146<br>ICING 19. | 150<br>Dino 150 | 151             |                                                  | 0.00                                             | 0.00       |      |                                                  | 0.00    | 0.00    |                                                  |          | 0.00                                             | 0.00                                             | -            |        | 0.00         | 0.00    | 10.03<br>10.56 | 76.69     | 104.03    | 121.95   | 178.28   | 0         | 300       | 300       | PVC      | 0.35                                             | 25.5                                             | 57.2089                                          | 0.8093                                           | 0.5251                                           | 0.000                  |
| 10 SERV     | IOIING 19,       | 1 1pe 100 -     | 131             | <del>                                     </del> | <del>                                     </del> | 0.00       |      | <del>                                     </del> | +       | 0.00    | <del>                                     </del> |          | <del>                                     </del> | 0.00                                             |              |        |              | 0.00    | 10.00          |           | 1         |          |          |           |           |           |          |                                                  |                                                  | $\vdash$                                         | <del></del>                                      | <del>                                     </del> | $\vdash \vdash \vdash$ |
|             | Plug             | 148             |                 | <u> </u>                                         | 0.00                                             | 0.00       | 0.18 | 0.78                                             | 0.39    | 0.39    |                                                  |          | 0.00                                             | 0.00                                             |              | -      | 0.00         | 0.00    | 10.00          | 76.81     | 104.19    | 122.14   | 178.56   | 41        | 375       | 375       | PVC      | 1.00                                             | 1.0                                              | 175.3301                                         | 1.5875                                           | 0.0105                                           | 0.232                  |
|             | 148              | 149             |                 |                                                  | 0.00                                             | 0.00       | 0.10 | 00                                               | 0.00    | 0.39    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.01          | 76.76     | 104.14    |          | 178.46   | 41        | 450       | 450       | CONC     | 0.20                                             | 22.5                                             | 127.5033                                         |                                                  |                                                  | 0.319                  |
|             | 149              | 150             |                 |                                                  | 0.00                                             | 0.00       | 0.24 | 0.74                                             | 0.49    | 0.88    |                                                  |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.48          |           | 101.73    |          | 174.30   | 90        | 600       | 600       | CONC     | 0.15                                             | 2.0                                              |                                                  |                                                  |                                                  | 0.378                  |
| To SERV     | CING 19,         | Pipe 150 -      | 151             |                                                  |                                                  | 0.00       |      |                                                  |         | 0.88    |                                                  |          |                                                  | 0.00                                             |              |        |              | 0.00    | 10.52          |           |           |          |          |           |           |           |          |                                                  |                                                  | 1                                                |                                                  |                                                  |                        |
|             |                  |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  |                                                  |                                                  |                        |
| SERVICII    |                  |                 |                 |                                                  |                                                  |            |      |                                                  |         |         |                                                  |          |                                                  |                                                  |              |        |              |         |                |           |           |          |          |           |           |           |          |                                                  |                                                  |                                                  |                                                  |                                                  |                        |
|             | Plug             | 141             | l .             | ļ                                                | 0.00                                             | 0.00       |      |                                                  | 0.00    | 0.00    | ļ                                                |          | 0.00                                             | 0.00                                             |              |        | 0.00         | 0.00    | 10.00          | 76.81     | 104.19    | 122.14   | 178.56   | 0         | 300       | 300       | PVC      | 1.00                                             | 2.5                                              | 96.7008                                          | 1.3680                                           | 0.0305                                           | 0.000                  |
| To SERV     | CING 17,         | Pipe 141 -      | 143             | ļ                                                | ļ                                                | 0.00       |      | ļ                                                |         | 0.00    | ļ                                                | ļ        | ļ                                                | 0.00                                             |              |        |              | 0.00    | 10.03          |           | ļ         |          |          |           |           |           |          | ļ                                                | ļ                                                | ļ                                                | <u> </u>                                         | <b> </b>                                         |                        |
| 055175      | 10.45            |                 |                 | <u> </u>                                         |                                                  |            |      |                                                  |         | 1       | -                                                |          |                                                  | -                                                | <b></b>      |        | -            |         |                |           |           |          |          |           |           |           |          | 1                                                | 1                                                | +                                                | <b></b> '                                        | <del>                                     </del> | igwdown                |
| SERVICI     | _                | ED\/:01::       | 10.00           | 140 111                                          | 1                                                | 0.00       |      | 1                                                | 1       | 0.00    | <u> </u>                                         | <b> </b> | 1                                                | 0.00                                             | -            | -      | 9            | 0.00    | 40.00          |           | 1         | <b> </b> | 1        |           | -         |           | <b> </b> | 1                                                | 1                                                | $\vdash$                                         | <del>                                     </del> | <del>                                     </del> | $\vdash \vdash$        |
| Contributi  |                  | 143             | э 16, Ріре<br>І | 140 - 141                                        | 0.00                                             | 0.00       |      | <del>                                     </del> | 0.00    | 0.00    | <del>                                     </del> | <u> </u> | 0.00                                             | 0.00                                             | SOUTH        | SSIO   | YD 00        | 0.00    | 10.03          | 76.60     | 104.03    | 121.05   | 170 20   | 0         | 300       | 300       | PVC      | 0.35                                             | 25.5                                             | 57.2089                                          | 0.8003                                           | 0.5254                                           | 0.000                  |
| To SERV     | ICING 19,        |                 | 144             | 1                                                | 0.00                                             | 0.00       |      | <del>                                     </del> | 0.00    | 0.00    | <u> </u>                                         | -        | 0.00                                             | 0.00                                             | Pho          | 1      | 40.00        | 0.00    | 10.03          | 70.09     | 104.03    | 121.95   | 110.28   | U         | 300       | 300       | FVC      | 0.33                                             | 20.0                                             | 31.2009                                          | 0.0093                                           | 0.0201                                           | 0.000                  |
| 10 SLKV     | 19,              | i ihe 149 -     | 1               | 1                                                | <b> </b>                                         | 0.00       |      | <b> </b>                                         | +       | 0.00    |                                                  | <b> </b> | <b> </b>                                         | 0.00                                             |              | 111    | The state of | 0.00    | 10.50          |           | 1         |          |          |           |           |           |          | <del>                                     </del> | <del>                                     </del> | ╁──┤                                             | $\vdash$                                         | <del>                                     </del> | $\vdash$               |
|             |                  |                 | 1               | 1                                                | 1                                                | 1          | 1    | 1                                                | 1       | 1       | 1                                                |          | 1                                                | // \$                                            | M.           | VVV    | 1 13         | 1 0     |                |           | 1         |          | 1        | 1         |           |           |          | 1                                                | 1                                                | $\vdash$                                         |                                                  | $\vdash$                                         | $\vdash$               |
| Definitions | :                |                 | 1               |                                                  |                                                  |            | 1    |                                                  |         | 1       |                                                  |          |                                                  | 19                                               | 0.1.         | 100000 |              | G N     |                |           |           |          |          | Designed: |           |           | PROJECT  | :                                                |                                                  |                                                  |                                                  |                                                  |                        |
| Q = 2.78 A  | IR, where        |                 |                 |                                                  |                                                  |            |      |                                                  |         | Notes:  |                                                  |          |                                                  | 13                                               | S.L.I        | MERKK  | n Ni         | Ti I    |                |           |           |          |          |           |           | CPB       |          |                                                  | Mi                                               | into - Barrhav                                   | ven Town (                                       | Centre Staç                                      | je 1                   |

JOBH 15- BLG

Q = Peak Flow in Litres per second (L/s)

A = Areas in hectares (ha)

I = Rainfall Intensity (mm/h)

R = Runoff Coefficient

1) Ottawa Rainfall-Intensity Curve

2) Min. Velocity = 0.80 m/s

100186523

Checked: LOCATION: SLM City of Ottawa Dwg. Reference: File Ref: Date: Sheet No. 15-816 06 Oct 2023 SHEET 1 OF 3

# STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years Arterial Roads Return Frequency = 10 years





| .,,,,,,,,,,,, | 0.015            |                   | AREA (Ha) FLOW  |           |                                                  |        |      |        |         |                    |         |        | SEWER DA | ΤΔ                                               |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
|---------------|------------------|-------------------|-----------------|-----------|--------------------------------------------------|--------|------|--------|---------|--------------------|---------|--------|----------|--------------------------------------------------|--------------------------------------------------|---------|----------------|-----------|-----------|--------------------------------------------------|-----------|--------------------------------------------------|-----------|-----------|-------------------------------------------|----------|--------------------------------------------------|------------|--------------------------------------------------|---------------|----------|
|               | LOC              | ATION             |                 | 2 Y       | EAR                                              |        |      | 5      | YEAR    | 1 1 1 1 1 (1 1 1 ) | 10 YEAR |        |          | 100`                                             | YEAR                                             |         | Time of        | Intensity | Intensity | Intensity                                        | Intensity | Peak Flow                                        | DIA. (mm) | DIA. (mm) | TYPE                                      |          |                                                  | CAPACITY   | VELOCITY                                         | TIME OF       | RATIO    |
|               |                  |                   | AREA            |           | Indiv.                                           | Accum. | AREA | 1      | Indiv.  | Accum. AREA        | Indiv   | Accum. | AREA     | 1                                                | Indiv.                                           | Accum.  | Conc.          | 2 Year    | 5 Year    | 10 Year                                          |           |                                                  | ()        |           |                                           |          |                                                  |            |                                                  | -             |          |
| Location      | From Node        | To Node           | (Ha)            | R         | 2.78 AC                                          |        |      | R      | 2.78 AC |                    | 2.78 AC |        |          | R                                                | 2.78 AC                                          | 2.78 AC |                | (mm/h)    | (mm/h)    | (mm/h)                                           |           |                                                  | (actual)  | (nominal) |                                           | (%)      | (m)                                              | (l/s)      | (m/s)                                            | LOW (min      | O/O full |
|               |                  |                   | ` '             |           |                                                  |        | ` '  |        |         | , ,                |         |        | · '      |                                                  |                                                  |         | , ,            | ,         | ,         | ,                                                | ,         | /                                                |           |           |                                           |          |                                                  |            |                                                  |               |          |
|               |                  |                   |                 |           |                                                  |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
|               | Plua             | 160               |                 |           | 0.00                                             | 0.00   | 0.18 | 0.79   | 0.40    | 0.40               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 41                                               | 375       | 375       | PVC                                       | 1.00     | 1.0                                              | 175.3301   | 1.5875                                           | 0.0105        | 0.235    |
|               | 160              | 159               |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 0.40               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.01          | 76.76     | 104.14    | 122.08                                           | 178.46    | 41                                               | 375       | 375       | PVC                                       | 0.30     | 22.5                                             | 96.0323    |                                                  |               | 0.429    |
|               | 159              | 143               |                 |           | 0.00                                             | 0.00   | 0.25 | 0.71   | 0.49    | 0.89               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.44          | 75.15     | 101.92    | 119.46                                           |           | 91                                               | 375       | 375       | PVC                                       | 0.45     | 2.0                                              | 117,6150   |                                                  |               | 0.770    |
| To SERV       | ICING 19,        | Pipe 143 -        | 144             |           |                                                  | 0.00   |      |        |         | 0.89               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.47          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
|               |                  |                   |                 |           |                                                  |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
| SERVICI       | NG 19            |                   |                 |           |                                                  |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
|               | 142              | 143               |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 0.00               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 0                                                | 375       | 375       | PVC                                       | 0.30     | 6.0                                              | 96.0323    | 0.8695                                           | 0.1150        | 0.000    |
| Contribut     | ion From S       | ERVICINO          | 3 17, Pipe      | 141 - 143 |                                                  | 0.00   |      |        |         | 0.00               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.56          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
| Contribut     | ion From S       |                   | 3 17, Pipe      | 159 - 143 |                                                  | 0.00   |      |        |         | 0.89               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.47          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <u> </u>                                         |               |          |
|               | 143              |                   |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 0.89               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.56          | 74.74     | 101.35    | 118.79                                           | 173.63    | 90                                               | 450       | 450       | CONC                                      | 0.20     | 12.5                                             | 127.5033   | 0.8017                                           | 0.2599        | 0.706    |
| Contribut     | ion From S       |                   | 9, Pipe 1       | 64 - 144  |                                                  | 0.00   |      |        |         | 0.86               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.05          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | L                                                |               |          |
|               |                  | 150               |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 1.75               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.82          | 73.81     | 100.07    | 117.29                                           | 171.43    | 175                                              | 600       | 600       | CONC                                      | 0.15     | 50.0                                             | 237.8056   | 0.8411                                           | 0.9908        | 0.735    |
|               | ion From S       |                   |                 |           |                                                  | 0.00   |      |        |         | 0.00               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.56          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <u> </u>                                         | L             |          |
| Contribut     | ion From S       |                   | 21, Pipe        | 149 - 150 | 0.00                                             | 0.00   | -    | -      | 0.00    | 0.88               | 0.5-    | 0.00   | -        |                                                  | 0.00                                             | 0.00    | 10.52          | 70.50     | 05.50     | 444.04                                           | 100 55    | 051                                              | 077       | 07-       | 00110                                     | 0.15     | 40.0                                             | 005 550 :  | 0.0000                                           | 0.0105        | 0.770    |
| To CUTU       | 150              | 151               | C DD Div        | 151 150   | 0.00                                             | 0.00   | +    | 1      | 0.00    | 2.63               | 0.00    | 0.00   | +        | -                                                | 0.00                                             | 0.00    | 11.81          | 70.50     | 95.53     | 111.94                                           | 163.58    | 251                                              | 675       | 675       | CONC                                      | 0.15     | 12.0                                             | 325.5584   | 0.9098                                           | 0.2198        | 0.772    |
| 10 FU1U       | RE CHAPI         | VIFAIN IVIILLS    | ט טא, Pipe<br>I | 151 - 152 | <u> </u>                                         | 0.00   | +    | 1      | +       | 2.63               |         | 0.00   | +        | <del>                                     </del> | -                                                | 0.00    | 12.03          | <b>!</b>  | <b>!</b>  | -                                                | <b>!</b>  | 1                                                | 1         |           | <b>!</b>                                  | <b>!</b> | -                                                | -          | <del>                                     </del> | $\vdash$      |          |
| SERVICI       | NG 15            |                   |                 |           | }                                                | -      | -    | -      | +       |                    |         | -      | -        |                                                  | 1                                                |         | 1              |           |           | 1                                                |           | 1                                                | <u> </u>  |           |                                           |          | 1                                                | 1          | <del>                                     </del> | $\vdash$      |          |
| SERVICE       | Plug             | 129               |                 |           | 0.00                                             | 0.00   | +    | 1      | 0.00    | 0.00               | 0.00    | 0.00   | +        | 1                                                | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 0                                                | 300       | 300       | PVC                                       | 1.00     | 2.5                                              | 96.7008    | 1.3680                                           | 0.0305        | 0.000    |
| -             | 129              | 135               |                 |           | 0.00                                             | 0.00   | +    | +      | 0.00    | 0.00               | 0.00    | 0.00   | +        | <b> </b>                                         | 0.00                                             | 0.00    | 10.00          |           | 104.19    |                                                  | 178.28    | 0                                                | 300       | 300       | PVC                                       |          |                                                  |            |                                                  |               |          |
| To SERV       | ICING 14,        |                   | 138             |           | 0.00                                             | 0.00   | +    |        | 0.00    | 0.00               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.03          | 70.08     | 104.03    | 121.93                                           | 170.20    | - 0                                              | 300       | 300       | FVC                                       | 2.30     | 23.0                                             | 132.0913   | 2.1031                                           | 0.1772        | 0.000    |
| TO OLIV       | 101140 14,       | ipe 155 -         | 100             |           |                                                  | 0.00   | +    |        |         | 0.00               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.21          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <del>                                     </del> | +             |          |
|               | Plua             | 133               |                 |           | 0.00                                             | 0.00   | 0.11 | 0.79   | 0.24    | 0.24               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 25                                               | 375       | 375       | PVC                                       | 1.00     | 1.0                                              | 175 3301   | 1.5875                                           | 0.0105        | 0.144    |
|               | 133              | 134               |                 |           | 0.00                                             | 0.00   | 0.11 | 0.70   | 0.00    | 0.24               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.01          |           | 104.14    |                                                  |           | 25                                               | 450       | 450       | CONC                                      |          | 15.5                                             | 127.5033   |                                                  | 0.3222        | 0.197    |
|               |                  |                   |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 0.2.               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.01          | 70.70     |           | 122.00                                           | 110.10    |                                                  |           | 100       | 00.10                                     | 0.20     | 10.0                                             | 121.0000   | 0.0011                                           | U.ULLL        | 0.101    |
|               | Plug             | 131               |                 |           | 0.00                                             | 0.00   | 0.18 | 0.76   | 0.38    | 0.38               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 40                                               | 375       | 375       | PVC                                       | 1.00     | 1.0                                              | 175.3301   | 1.5875                                           | 0.0105        | 0.226    |
|               | 131              | 134               |                 |           | 0.00                                             | 0.00   | -    |        | 0.00    | 0.38               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.01          | 76.76     |           |                                                  |           | 40                                               | 375       | 375       | PVC                                       | 2.45     | 20.0                                             |            |                                                  |               | 0.144    |
|               | 134              | 135               |                 |           | 0.00                                             | 0.00   | 0.22 | 0.76   | 0.46    | 1.09               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.33          | 75.55     | 102.47    | 120.11                                           | 175.57    | 111                                              | 600       | 600       | CONC                                      | 0.15     | 2.0                                              | 237.8056   |                                                  | 0.0396        | 0.468    |
| To SERV       | ICING 14,        | Pipe 135 -        | 138             |           |                                                  | 0.00   |      |        |         | 1.09               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.37          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
|               |                  |                   |                 |           |                                                  |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | ,                                                |               |          |
| SERVICI       | NG 10            |                   |                 |           |                                                  |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
|               | Plug             | 115               |                 |           | 0.00                                             | 0.00   | 0.08 | 0.81   | 0.18    | 0.18               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 19                                               | 375       | 375       | PVC                                       | 3.55     | 15.5                                             | 330.3473   | 2.9910                                           | 0.0864        | 0.057    |
| To SERV       | ICING 9, F       | ipe 115 - 1       | 116             |           |                                                  | 0.00   |      |        |         | 0.18               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.09          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <u> </u>                                         |               |          |
|               |                  |                   |                 |           |                                                  |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <u> </u>                                         |               |          |
|               | Plug             | 115               |                 |           | 0.00                                             | 0.00   | 0.11 | 0.79   | 0.24    | 0.24               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 25                                               | 375       | 375       | PVC                                       | 0.30     | 6.5                                              | 96.0323    | 0.8695                                           | 0.1246        | 0.262    |
| To SERV       | ICING 9, F       | ipe 115 - 1       | 116             |           |                                                  | 0.00   |      |        |         | 0.24               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.12          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <b>↓</b> '                                       | igspace       |          |
| 0550/101      |                  |                   |                 |           | 1                                                |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <del></del>                                      | $\vdash$      |          |
| SERVICI       |                  | 144               |                 |           | 0.00                                             | 0.00   | 0.46 | 0.67   | 0.06    | 0.06               | 0.00    | 0.00   |          | -                                                | 0.00                                             | 0.00    | 10.00          | 76 01     | 104.19    | 122.14                                           | 178.56    | 90                                               | 450       | 450       | CONC                                      | 0.20     | 2.5                                              | 127 5022   | 0.0017                                           | 0.0520        | 0.700    |
| To SEDV       | 164<br>ICING 19, | 144<br>Pine 144 - | 150             |           | 0.00                                             | 0.00   | 0.40 | 0.07   | 0.86    | 0.86<br>0.86       | 0.00    | 0.00   | +        |                                                  | 0.00                                             | 0.00    | 10.00<br>10.05 | 76.81     | 104.19    | 122.14                                           | 170.00    | 89                                               | 400       | 450       | CONC                                      | 0.20     | 2.5                                              | 127.0033   | 0.0017                                           | 0.0020        | 0.700    |
|               | ion From S       |                   |                 | 113 - 115 | <del>                                     </del> | 0.00   | +    | +      | 1       | 0.18               |         | 0.00   | +        | <b> </b>                                         | <del>                                     </del> | 0.00    | 10.03          |           |           | <del>                                     </del> |           | <del>                                     </del> |           |           |                                           |          | <del>                                     </del> | <u> </u>   | <del>                                     </del> | +             |          |
|               | ion From S       |                   |                 |           |                                                  | 0.00   |      |        |         | 0.10               |         | 0.00   |          |                                                  |                                                  | 0.00    | 10.12          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            | <b></b>                                          | $\vdash$      |          |
| 55.10 IDU     | 115              | 116               | c, r ipo        |           | 0.00                                             | 0.00   | 0.36 | 0.68   | 0.68    | 1.10               | 0.00    | 0.00   | 1        |                                                  | 0.00                                             | 0.00    | 10.12          | 76.33     | 103.54    | 121.37                                           | 177.43    | 114                                              | 375       | 375       | CONC                                      | 0.70     | 3.0                                              | 146.6917   | 1.3282                                           | 0.0376        | 0.778    |
|               | 1                |                   |                 |           |                                                  | 1 3.00 | 3.00 | 1 3.00 | 1       |                    | 3.30    | 3.00   |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  | 1         |           |                                           |          |                                                  |            |                                                  |               |          |
|               | 112              | 116               |                 |           | 0.00                                             | 0.00   | 1    | 1      | 0.00    | 0.00               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 0                                                | 300       | 300       | PVC                                       | 0.35     | 61.0                                             | 57.2089    | 0.8093                                           | 1.2562        | 0.000    |
|               | 116              | 117               |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 1.10               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 11.26          | 72.30     | 98.00     | 114.84                                           | 167.84    | 108                                              | 525       | 525       | CONC                                      | 0.20     | 82.0                                             | 192.3297   |                                                  | 1.5382        | 0.562    |
|               | 117              | 127               |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 1.10               | 0.00    | 0.00   |          |                                                  | 0.00                                             | 0.00    | 12.79          | 67.52     | 91.43     | 107.12                                           | 156.50    | 101                                              | 525       | 525       | CONC                                      | 0.20     | 19.5                                             | 192.3297   | 0.8885                                           | 0.3658        | 0.524    |
| To SERV       | ICING 14,        | Pipe 127 -        | 135             |           |                                                  | 0.00   |      |        |         | 1.10               |         | 0.00   |          |                                                  |                                                  | 0.00    | 13.16          |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
|               |                  |                   |                 |           |                                                  |        |      |        |         |                    |         |        |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  |               |          |
| SERVICI       |                  |                   |                 |           | 1                                                |        | 1    |        |         |                    |         | 1      |          |                                                  |                                                  |         |                |           |           |                                                  |           |                                                  |           |           |                                           |          |                                                  |            |                                                  | ш             |          |
|               | Plug             | 119               |                 |           | 0.00                                             | 0.00   |      |        | 0.00    | 0.00               | 0.00    | 0.00   | <u> </u> | <u> </u>                                         | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 0                                                | 300       | 300       | PVC                                       | 1.00     | 4.0                                              | 96.7008    | 1.3680                                           | 0.0487        | 0.000    |
| To SERV       | ICING 12,        | Pipe 119 -        | 125             |           | ļ                                                | 0.00   |      |        |         | 0.00               |         | 0.00   | -        |                                                  |                                                  | 0.00    | 10.05          |           |           |                                                  |           | ļ                                                | ļ         |           |                                           |          |                                                  |            | <b></b> '                                        | ↓             |          |
|               | <u> </u>         | 4.5.              | ļ               |           |                                                  |        | 1    | 1      |         |                    |         | 1      | -        | ESSIA                                            | The same                                         |         | 10             | 70 - :    | 10        | 105                                              | 170       | <u> </u>                                         |           | 0==       |                                           |          |                                                  | 488        | L                                                |               | 0.0      |
|               | Plug             | 121               | <u> </u>        |           | 0.00                                             | 0.00   | 0.18 | 0.78   | 0.39    | 0.39               | 0.00    | 0.00   | ORU      |                                                  | 0.00                                             | 0.00    | 10.00          | 76.81     | 104.19    | 122.14                                           | 178.56    | 41                                               | 375       | 375       | PVC                                       | 1.00     | 2.5                                              | 175.3301   | 1.5875                                           | 0.0262        | 0.232    |
| To SERV       | ICING 12,        | Pipe 121 -        | 124             |           | <u> </u>                                         | 0.00   | 1    | 1      | 1       | 0.39               |         | 0.00   | D PROT   | 1/1/4                                            | De                                               | 0.00    | 10.03          |           |           |                                                  |           |                                                  | <u> </u>  |           |                                           |          |                                                  |            | <b></b>                                          | $\longmapsto$ |          |
| <u> </u>      | 1                |                   |                 |           | ļ                                                | 1      | 1    | -      | -       |                    |         | 1/2    | S*// X   | VVV                                              | my of                                            | 1       | ļ              |           |           | 1                                                |           | 1                                                | ļ         |           |                                           |          | 1                                                | ļ          | <del>                                     </del> | $\longmapsto$ | L        |
| Definition    | <u> </u>         |                   |                 |           | 1                                                | 1      | 1    | 1      | 1       |                    |         | # 17   | 5 4      |                                                  | 1 2                                              | 2       | 1              | 1         | 1         | 1                                                | 1         | Dogi 1                                           |           |           | PROJECT                                   | <u> </u> | 1                                                | 1          | <u> </u>                                         |               |          |
|               |                  |                   |                 |           |                                                  |        |      |        |         | Notari             |         | 2      | SI       | MERR                                             | K:K                                              | 8       |                |           |           |                                                  |           | Designed:                                        | •         | CPB       | 1 KOJEC I                                 | •        | 14:                                              | nto Parrha | won Tours                                        | Contro Stor   |          |
| Q = 2.78 A    |                  |                   | 10(1)           |           |                                                  |        |      |        |         | Notes:             |         |        | 0.1      | 1016.1111                                        | 1011                                             | 20      |                |           |           |                                                  |           | CL L 1                                           |           | CPB       | CPB Minto - Barrhaven Town Centre Stage 1 |          |                                                  |            |                                                  |               | je T     |

Q = Peak Flow in Litres per second (L/s)

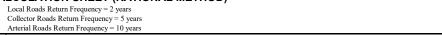
A = Areas in hectares (ha)

I = Rainfall Intensity (mm/h)

R = Runoff Coefficient

Ottawa Rainfall-Intensity Curve
 Min. Velocity = 0.80 m/s

100186523


Checked:

LOCATION:

SLM File Ref:

City of Ottawa Dwg. Reference: Sheet No. SHEET 2 OF 3 15-816 06 Oct 2023

#### STORM SEWER CALCULATION SHEET (RATIONAL METHOD)





|                   | LOCATION                    |             |                   |                                                  | •                                                |                                                  |                                                  |          | AREA         | (Ha)         |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  | FI                                               | LOW      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        | SEWER DA                                         | TA                                               |          |             |          |
|-------------------|-----------------------------|-------------|-------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------|--------------|------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|-----------|-----------|--------|--------------------------------------------------|--------------------------------------------------|----------|-------------|----------|
|                   | LOCATION                    |             | 2 Y               | ÆAR                                              |                                                  |                                                  | 5 Y                                              | 'EAR     |              |              | 10 Y | 'EAR                                             |                                                  |                                                  | 100 `                                            | YEAR    |                                                  | Time of                                          |                                                  |                                                  |          | Peak Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIA. (mm)                                        | DIA. (mm) | TYPE      | SLOPE     | LENGTH | CAPACITY                                         | VELOCITY                                         | TIME OF  | RATIO       |          |
|                   |                             | AREA        | R                 | Indiv.                                           | Accum.                                           | AREA                                             | R                                                | Indiv.   | Accum.       | AREA         | R    | Indiv.                                           | Accum.                                           | AREA                                             | R                                                | Indiv.  | Accum.                                           | Conc.                                            | 2 Year                                           |                                                  | 10 Year  | 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| Location          | From Node To Node           | e (Ha)      | 11                | 2.78 AC                                          | 2.78 AC                                          | (Ha)                                             | - 1                                              | 2.78 AC  | 2.78 AC      | (Ha)         |      | 2.78 AC                                          | 2.78 AC                                          | (Ha)                                             | 11                                               | 2.78 AC | 2.78 AC                                          | (min)                                            | (mm/h)                                           | (mm/h)                                           | (mm/h)   | (mm/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q (1/s)                                          | (actual)  | (nominal) |           | (%)    | (m)                                              | (l/s)                                            | (m/s)    | LOW (min    | Q/Q full |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| SERVICIN          |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | Plug 123                    |             |                   | 0.00                                             | 0.00                                             | 0.08                                             | 0.81                                             | 0.18     | 0.18         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.00                                            | 76.81                                            | 104.19                                           | 122.14   | 178.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                               | 375       | 375       | PVC       | 1.00   | 2.5                                              | 175.3301                                         | 1.5875   | 0.0262      | 0.107    |
| To SERVI          | ICING 12, Pipe 123          | - 124       |                   | ļ                                                | 0.00                                             |                                                  |                                                  |          | 0.18         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.03                                            |                                                  |                                                  | ļ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| 0501/00           | 10.40                       |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| SERVICIN          | on From SERVICIN            | 10 44 Bin   | 110 110           |                                                  | 0.00                                             |                                                  |                                                  |          | 0.00         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.05                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| Contributi        | 119 125                     |             | 118-119           | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 0.00         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.05                                            | 76.62                                            | 103.94                                           | 121.84   | 178.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                | 300       | 300       | PVC       | 1.05   | 23.0                                             | 99.0888                                          | 4 4040   | 0.2735      | 0.000    |
| To SEDVI          | ICING 14, Pipe 125          |             |                   | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 0.00         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.03                                            | 70.02                                            | 103.94                                           | 121.04   | 170.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                | 300       | 300       | FVC       | 1.05   | 23.0                                             | 99.0000                                          | 1.4016   | 0.2733      | 0.000    |
|                   | on From SERVICIN            |             | 122 - 123         |                                                  | 0.00                                             |                                                  |                                                  |          | 0.00         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.03                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| Contributi        | 123 124                     |             | 122 - 125         | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 0.18         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.03                                            | 76.70                                            | 104.05                                           | 121.98   | 178.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                               | 375       | 375       | PVC       | 0.30   | 15.0                                             | 96 0323                                          | 0.8695   | 0.2875      | 0.195    |
| Contributi        | on From SERVICIN            |             | 120 - 121         |                                                  | 0.00                                             |                                                  |                                                  | 0.00     | 0.39         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.03                                            | 70.70                                            | 101.00                                           | 121100   | 110.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | 0.0       | 0.0       |           | 0.00   | 10.0                                             | 00.0020                                          | 0.0000   | 0.2010      | 0.100    |
| Containa          | 121 124                     |             | 1                 | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 0.39         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.03                                            | 76.70                                            | 104.05                                           | 121.98   | 178.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41                                               | 375       | 375       | PVC       | 1.35   | 20.0                                             | 203.7152                                         | 1.8445   | 0.1807      | 0.199    |
| Contributi        | on From SERVICIN            |             | 162 - 124         |                                                  | 0.00                                             |                                                  |                                                  |          | 0.54         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.47                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | 124 125                     |             |                   | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 1.11         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.47                                            | 75.06                                            | 101.80                                           | 119.32   | 174.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113                                              | 450       | 450       | CONC      | 0.20   | 2.0                                              | 127.5033                                         | 0.8017   | 0.0416      | 0.887    |
| To SERVI          | ICING 14, Pipe 125          | - 127       |                   |                                                  | 0.00                                             |                                                  |                                                  |          | 1.11         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.51                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| SERVICIN          | NG 14                       |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   | 0.00                                             | 0.00                                             | 0.01                                             | 0.69                                             | 0.02     | 0.02         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | 163 162                     |             |                   | 0.00                                             | 0.00                                             | 0.06                                             | 0.69                                             | 0.12     | 0.13         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.00                                            | 76.81                                            | 104.19                                           | 122.14   | 178.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                               | 300       | 300       | PVC       | 1.65   | 38.5                                             | 124.2144                                         |          | 0.3651      | 0.113    |
|                   | 162 124                     |             |                   | 0.00                                             | 0.00                                             | 0.20                                             | 0.73                                             | 0.41     | 0.54         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.37                                            | 75.43                                            | 102.30                                           | 119.92   | 175.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                                               | 300       | 300       | PVC       | 0.45   | 5.5                                              | 64.8688                                          | 0.9177   | 0.0999      | 0.852    |
|                   | ICING 12, Pipe 124          |             | 1                 |                                                  | 0.00                                             |                                                  | ļ                                                | ļ        | 0.54         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.47                                            |                                                  | ļ                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | on From SERVICIN            |             |                   |                                                  | 0.00                                             |                                                  |                                                  |          | 0.00         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.32                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| Contributi        | on From SERVICIN            | IG 12, Pipe | <u> 124 - 125</u> |                                                  | 0.00                                             |                                                  |                                                  |          | 1.11         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.51                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | 125 127                     |             |                   | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 1.11         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.51                                            | 74.91                                            | 101.59                                           | 119.08   | 174.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113                                              | 600       | 600       | CONC      | 0.15   | 22.0                                             | 237.8056                                         | 0.8411   | 0.4360      | 0.474    |
| <b></b>           | 400 407                     | _           |                   | 0.00                                             | 0.00                                             | 0.04                                             | 0.04                                             | 0.00     | 0.00         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 40.00                                            | 70.04                                            | 40440                                            | 400.44   | 470.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00                                               | 450       | 450       | 00110     | 0.00   | 0.0                                              | 407.5000                                         | 0.0047   | 0.0004      | 0.404    |
| C = = 4=ib 4i     | 126 127                     | IC 0 Di     | 447 407           | 0.00                                             | 0.00                                             | 0.34                                             | 0.64                                             | 0.60     | 0.60<br>1.10 |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.00<br>13.16                                   | 76.81                                            | 104.19                                           | 122.14   | 178.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63                                               | 450       | 450       | CONC      | 0.20   | 3.0                                              | 127.5033                                         | 0.8017   | 0.0624      | 0.494    |
| Contributi        | on From SERVICIN<br>127 135 | NG 9, Pipe  | 117 - 127         | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 2.82         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 13.16                                            | 66.48                                            | 90.01                                            | 105.45   | 154.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 254                                              | 600       | 600       | CONC      | 0.30   | 39.0                                             | 336.3080                                         | 1.1894   | 0.5465      | 0.754    |
| Contributi        | on From SERVICIN            | IC 15 Dino  | 120 125           |                                                  | 0.00                                             |                                                  |                                                  | 0.00     | 0.00         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 10.21                                            | 00.40                                            | 90.01                                            | 100.40   | 134.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 204                                              | 600       | 000       | CONC      | 0.30   | 39.0                                             | 330.3000                                         | 1.1094   | 0.5465      | 0.734    |
|                   | on From SERVICIN            |             |                   |                                                  | 0.00                                             |                                                  |                                                  |          | 1.09         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 10.27                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| Continuati        | 135 138                     |             | 104 - 100         | 0.00                                             | 0.00                                             |                                                  | 1                                                | 0.00     | 3.90         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 13.71                                            | 65.00                                            | 87.98                                            | 103.06   | 150.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 344                                              | 675       | 675       | CONC      | 0.30   | 12.0                                             | 460.4091                                         | 1 2866   | 0.1554      | 0.746    |
| To FUTUE          | RE CHAPMAN MIL              |             | ne 138 - 13       |                                                  | 0.00                                             |                                                  |                                                  | 0.00     | 3.90         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 13.86                                            | 00.00                                            | 07.00                                            | 100.00   | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                         | 0.0       | 0.0       | 00.10     | 0.00   | 12.0                                             | 100.1001                                         | 1.2000   | 0.1001      | 0.1 10   |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| FUTURE            | CHAPMAN MILLS               | DR          |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| Contributi        | on From SERVICIN            | IG 14, Pipe | e 135 - 138       |                                                  | 0.00                                             |                                                  |                                                  |          | 3.90         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 13.86                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | 138 139                     |             |                   | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 3.90         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             | 13.86                                            | 64.59                                            | 87.42                                            | 102.40   | 149.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 341                                              | 750       | 750       | CONC      | 0.25   | 79.5                                             | 556.6385                                         | 1.2600   | 1.0516      | 0.613    |
|                   |                             |             |                   | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 3.90         |              |      | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00    | 0.00                                             |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | 139 151                     |             |                   | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 3.90         | 0.75         | 0.72 | 1.50                                             | 1.50                                             |                                                  |                                                  | 0.00    | 0.00                                             | 14.91                                            | 61.97                                            | 83.84                                            | 98.18    | 143.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 475                                              | 750       | 750       | CONC      | 0.40   | 75.5                                             | 704.0982                                         | 1.5938   | 0.7895      | 0.674    |
| Contributi        | on From SERVICIN            |             | <u> 150 - 151</u> |                                                  | 0.00                                             |                                                  |                                                  |          | 2.63         |              |      |                                                  | 0.00                                             |                                                  |                                                  |         | 0.00                                             | 12.03                                            |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   | 151 EX STM                  | 129         |                   | 0.00                                             | 0.00                                             |                                                  |                                                  | 0.00     | 6.53         |              |      | 0.00                                             | 1.50                                             |                                                  |                                                  | 0.00    | 0.00                                             | 15.70                                            | 60.16                                            | 81.35                                            | 95.26    | 139.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 675                                              | 750       | 750       | CONC      | 0.70   | 36.5                                             | 931.4344                                         | 2.1083   | 0.2885      | 0.724    |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             | +           | +                 | +                                                | 1                                                | 1                                                | 1                                                | 1        | 1            |              |      | -                                                | 1                                                | 1                                                | 1                                                |         | -                                                | 1                                                | 1                                                | 1                                                | +        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |           |           |           |        | 1                                                | 1                                                |          |             |          |
|                   |                             | +           | +                 | 1                                                | 1                                                | 1                                                | <del>                                     </del> | 1        |              |              |      | <del>                                     </del> | 1                                                | 1                                                | 1                                                |         | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | 1        | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                |           |           |           |        | 1                                                | 1                                                |          |             |          |
|                   |                             | +           | +                 | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | 1                                                | <u> </u> | 1            |              |      | <b> </b>                                         | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> |         | <b> </b>                                         | <del>                                     </del> |                                                  | -                                                | 1        | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>                                     </del> |           |           |           |        | <del>                                     </del> | <del>                                     </del> |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  | 100                                              | OFES                                             | SICA.    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             | 1           |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  | 1                                                | 1                                                | The same of                                      | No.      | N. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             | 1           | 1                 |                                                  |                                                  | 1                                                | 1                                                |          |              |              |      |                                                  | 1                                                | 1                                                | 1                                                |         |                                                  |                                                  | 100                                              | Vi 11                                            | 11       | Te 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |           |           |           |        | 1                                                |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  | - 1                                              | 2/                                               | NO                                               | many.    | 1 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  | 1                                                | 10                                               | -                                                |          | Fr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  | - 1                                              | 9                                                | LMF                                              | RRICK    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  | -                                                | 10018                                            |          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  | -                                                |                                                  | 10010                                            | U020     | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
|                   |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  | 1                                                |                                                  | 0                                                | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        |                                                  |                                                  |          |             |          |
| Definitions       |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  | 1                                                | 121                                              | 1023-                                            | 10-06    | 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Designed:                                        |           |           | PROJECT:  |        |                                                  |                                                  |          |             |          |
| Q = 2.78 A        |                             |             |                   |                                                  |                                                  |                                                  |                                                  |          | Notes:       |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  | 130                                              |                                                  | F ONETP  | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |           | CPB       |           |        | Mi                                               | nto - Barrha                                     | ven Town | Centre Stag | ge 1     |
|                   | low in Litres per seco      | ond (L/s)   |                   |                                                  |                                                  |                                                  |                                                  |          | 1) Ottawa F  |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  | 1                                                | Mes                                              | E ONE BY | A. Commercial Commerci | Checked:                                         |           | CI.) (    | LOCATIO   | N:     |                                                  | <b></b> -                                        |          |             |          |
|                   | in hectares (ha)            |             |                   |                                                  |                                                  |                                                  |                                                  |          | 2) Min. Velo | ocity = 0.80 | m/s  |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  |                                                  | DE U                                             | No.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D D 1                                            |           | SLM       | El D C    |        |                                                  | City of                                          | Ottawa   | at . X      |          |
|                   | l Intensity (mm/h)          |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  | To                                               | BH 15.                                           | RIG      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dwg. Refe                                        | rence:    |           | File Ref: |        | 15.017                                           | Date:                                            |          | Sheet No.   |          |
| $\kappa = Kunoff$ | f Coefficient               |             |                   |                                                  |                                                  |                                                  |                                                  |          |              |              |      |                                                  |                                                  |                                                  |                                                  |         |                                                  |                                                  | 10                                               | 1)                                               | 0.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |           |           |           |        | 15-816                                           | 06 Oc                                            | t 2023   | SHEET       | T 3 OF 3 |

816\_STM.xlsx

| Area ID               | Total Area (m²) | Pervious Area (m²) | Impervious Area (m²) | RC   |
|-----------------------|-----------------|--------------------|----------------------|------|
|                       |                 | South Block        |                      |      |
| 155-156               | 1634            | 560                | 1074                 | 0.66 |
| 115-116               | 3649            | 1147               | 2502                 | 0.68 |
| PLUG-115              | 818             | 105                | 713                  | 0.81 |
| PLUG-115              | 1094            | 172                | 922                  | 0.79 |
| 136-137               | 115             | 54                 | 61                   | 0.57 |
| 137-138               | 1575            | 158                | 1418                 | 0.83 |
| PLUG-131              | 1836            | 367                | 1469                 | 0.76 |
| 126-127               | 3378            | 1255               | 2123                 | 0.64 |
| PLUG-121              | 1756            | 301                | 1455                 | 0.78 |
| 103-106               | 767             | 142                | 625                  | 0.77 |
| 106-109               | 104             | 19                 | 85                   | 0.77 |
| 163-162               | 742             | 223                | 519                  | 0.69 |
| 162-124               | 1965            | 477                | 1488                 | 0.73 |
| 134-135               | 2165            | 433                | 1732                 | 0.76 |
| 122-123               | 818             | 105                | 713                  | 0.81 |
| 161-160               | 1756            | 276                | 1480                 | 0.79 |
| 164-144               | 4609            | 1514               | 3095                 | 0.67 |
| PLUG-133              | 1094            | 172                | 922                  | 0.79 |
| 147-148               | 1796            | 308                | 1488                 | 0.78 |
| 139-151               | 1730            | 384                | 1346                 | 0.74 |
| 159-143               | 2464            | 657                | 1807                 | 0.71 |
| 149-150               | 2442            | 551                | 1891                 | 0.74 |
| to Ex.Glenroy Gilbert | 1657            | 417                | 1240                 | 0.72 |
| to Ex. Longfields     | 1736            | 660                | 1076                 | 0.63 |
|                       |                 |                    |                      |      |
|                       |                 | North Block        |                      |      |
| 102-103               | 376             | 170                | 206                  | 0.58 |
| 100-101               | 1342            | 304                | 1038                 | 0.74 |
| 103-106               | 266             | 137                | 129                  | 0.54 |
| 104-105               | 2459            | 460                | 1999                 | 0.77 |
| 107-108               | 1658            | 372                | 1286                 | 0.74 |
| 106-109               | 276             | 142                | 134                  | 0.54 |



Report

# Nepean South Chapman Mills Stormwater Management Servicing Fourth Addendum



NEPEAN SOUTH CHAPMAN MILLS STORMWATER MANAGEMENT SERVICING FOURTH ADDENDUM

Prepared for Minto Communities - Canada

Table 2.9 Revised drainage areas

|                     |              | 2006        |                              |                                     | UPDATED                 |                     |                    |                              |                                     |        |  |                       |      |         |   |        |
|---------------------|--------------|-------------|------------------------------|-------------------------------------|-------------------------|---------------------|--------------------|------------------------------|-------------------------------------|--------|--|-----------------------|------|---------|---|--------|
| DRAINAGE<br>AREA ID | AREA<br>(HA) | TIMP<br>(%) | SURFACE<br>STORAGE<br>(CU-M) | MINOR<br>SYSTEM<br>CAPTURE<br>(L/S) | DRAINAGE<br>AREA ID     | AREA<br>(HA)        | TIMP<br>(%)        | SURFACE<br>STORAGE<br>(CU-M) | MINOR<br>SYSTEM<br>CAPTURE<br>(L/S) |        |  |                       |      |         |   |        |
| F2                  | 14.4         | 85          | 3012(1)                      | 1575                                | DME-<br>9063A<br>(DME3) | 1.82                | 66                 | 252                          | 435 <sup>(2)</sup>                  |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | Block A                 | 5.21                | 74 <sup>(3)</sup>  | 750                          | 784(4)(5)(6)                        |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | R-9066                  | 0.54                | 71                 | 0                            | 211                                 |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | Riocan<br>Avenue        | 0.33                | 99                 | 0                            | 28 <sup>(7)</sup>                   |        |  |                       |      |         |   |        |
| F3                  | 9.4          | 85          | 2057(1)                      | 956                                 | CMD1B                   | 1.50                | 90(3)              | 0                            | 752(4)(7)                           |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | CMD2                    | 0.71                | 90(3)              | 0                            | 457(4)(5)                           |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | Block B                 | 2.89                | 93(3)              | 0                            | 1331 <sup>(4)</sup>                 |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | Block H<br>Civic        | 1.96                | 93(3)              | 0                            | 900(4)                              |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | CMD1A                   | 0.86                | 90(3)              | 0                            | 383(4)                              |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | Е                       | 3.11 <sup>(9)</sup> | 86                 | 0                            | 280(10)                             |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | F                       | 4.72(9)             | 86                 | 0                            | 425(10)                             |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | С                       | 3.40                | 74(13)             | 0                            | 306(10)                             |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | Í                       | C_ROAD              | 0.25               | 99                           | 0                                   | 122(4) |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | D                       | 4.33                | 74 <sup>(13)</sup> | 0                            | 389(10)                             |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | D_ROAD                  | 0.13                | 99                 | 0                            | 66(4)                               |        |  |                       |      |         |   |        |
| F4                  | 31.6         | 85          | 5814 <sup>(1)</sup>          | 3750                                | Parcel A                | 5.17                | 74 <sup>(13)</sup> | 0                            | 465(10)                             |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | A_ROAD                  | 0.13                | 99                 | 0                            | 65 <sup>(4)</sup>                   |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | 105W                    | 2.10                | 79 <sup>(3)</sup>  | 0                            | 189(10)                             |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     |                         |                     |                    |                              |                                     |        |  | 105WA <sup>(16)</sup> | 0.70 | 71 (15) | 0 | 63(10) |
|                     |              |             |                              |                                     | 105S                    | 0.85                | 71(3)              | 0                            | 77 <sup>(10)</sup>                  |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | 103                     | 1.30                | 71(3)              | 0                            | 117 <sup>(10)</sup>                 |        |  |                       |      |         |   |        |
|                     |              |             |                              |                                     | 101                     | 2.48                | 76 <sup>(3)</sup>  | 0                            | 223(10)                             |        |  |                       |      |         |   |        |
| F6                  | 7.37         | 37          | 863(1)                       | 627                                 | F6 <sup>(14)</sup>      | 7.84                | 39                 | 680                          | 831(4)                              |        |  |                       |      |         |   |        |
| H1                  | 3.2          | 80          | 392                          | 530                                 | H1                      | 3.67                | 74                 | 1056                         | 556                                 |        |  |                       |      |         |   |        |
| G1                  | 10.40        | 78          | 0                            | 1544                                | G1                      | 10.06               | 78                 | 0                            | 1869(8)                             |        |  |                       |      |         |   |        |
| G2                  | 1.08         | 85          | 0                            | 268                                 | G2 <sup>(11)</sup>      | 1.06                | 85                 | 0                            | 268(12)                             |        |  |                       |      |         |   |        |
| G3                  | 1.88         | 87          | 0                            | 478                                 | G3 <sup>(11)</sup>      | 1.88                | 87                 | 0                            | 478(12)                             |        |  |                       |      |         |   |        |

- (1) 100 year on-site storage
- (2) Based on rational method for Ampersand Stage I
- (3) Weighted c value (from which imperviousness was calculated) established by engineering consultant completing conceptual design
- (4) 100 year flow capture (based on 100 year 3 hour Chicago storm)
- (5) 100 year flow from a 0.358 ha portion of Block A flow cascades to Chapman Mills Drive (CMD2)
- (6) Minor flow from a 0.915 ha portion of Block A drains via the storm sewer on Glenroy Gilbert Drive (via Ampersand Stage I); minor flow from a 3.936 ha portion and 100 year flow from a 0.358 ha portion drains via the storm sewer on Chapman Mills Drive
- (7) Major flow from Riocan Avenue cascades to Chapman Mills Drive (CMD1B) (8) Minor system capture per Stantec/AECOM July 2009
- (9) Drainage area extended west to Greenbank Road
- (10) Minor system capture increased to 90 l/s/ha from 85 l/s/ha
- (11) Water quality treatment for areas G2, G3 to be provided by an independent BMP
- (12) Minor system capture per TSH May 2006
- (13) Imperviousness consistent with that of Block A
- (14) Per detailed design of site
- (15) Per email from DSEL November 6, 2017
- (16) Major flow conveyed toward Greenbank Road

ΙВΙ

Scale

Project Title

**Drawing Title** 

Sheet No.

### Minto BTC Stage 1 - Block A Glenroy Gilbert Extension **Proposed Conditions**

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012



#### Target Flow Rate

Q 147.00 L/s

#### Estimated Post Development Peak Flow from Unattenuated Areas

0.04 0.08 Area 0.58

0.12 ha <-- Sum of Drainage to CB 9, CB 10 Total Area

0.62 Rational Method runoff coefficient

|                | 5-year  | 5-year              |                      |                     |                     |         | 100-year              |                      |                     |                     |  |  |
|----------------|---------|---------------------|----------------------|---------------------|---------------------|---------|-----------------------|----------------------|---------------------|---------------------|--|--|
| t <sub>c</sub> | i       | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i       | Q <sub>actual</sub> * | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ |  |  |
| (min)          | (mm/hr) | (L/s)               | (L/s)                | (L/s)               | (m <sup>3</sup> )   | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   |  |  |
| 13.1           | 90.4    | 18.5                | 18.5                 | 0.0                 | 0.0                 | 154.8   | 31.7                  | 31.7                 | 0.0                 | 0.0                 |  |  |

Note: Tc = 13.05 min per Design Sheet

--> 5-year flow conveyed within Glenroy Gilbert Drive Extension storm sewer sytem.

--> Flows exceeding the 5-year storm directed overland towards Riocan Avenue Extension.

Area 0.03 0.07 С 0.54 0.64

Total Area 0.10 ha <-- Drainage to CB 13 0.61 Rational Method runoff coefficient

|                | 5-year  |                     |                      |                     |                     | 100-year |                     |                      |                     |                     |  |
|----------------|---------|---------------------|----------------------|---------------------|---------------------|----------|---------------------|----------------------|---------------------|---------------------|--|
| t <sub>c</sub> | i       | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ | i        | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |  |
| (min)          | (mm/hr) | (L/s)               | (L/s)                | (L/s)               | (m³)                | (mm/hr)  | (L/s)               | (L/s)                | (L/s)               | (m <sup>3</sup> )   |  |
| 13.1           | 90.4    | 15.4                | 15.4                 | 0.0                 | 0.0                 | 154.8    | 26.3                | 26.3                 | 0.0                 | 0.0                 |  |

#### Note:

Tc = 13.05 min per Design Sheet

--> 5-year flow conveyed within Glenroy Gilbert Drive Extension storm sewer sytem.

--> Flows exceeding the 5-year storm directed to DCB 15.

Area 0.08 0.08 0.77 0.64

Total Area

<-- Drainage to CB 12, CB 14 0.70 Rational Method runoff coefficient

> 5-year 100-year tc Q<sub>actual</sub> Q<sub>release</sub> Q<sub>stored</sub>  $V_{\rm stored}$ Q<sub>actual</sub> Q<sub>release</sub> Q<sub>stored</sub> V<sub>stored</sub> (mm/hr) (L/s) (L/s) (L/s) (m<sup>3</sup>) (mm/hr) (L/s) (L/s) (L/s) (m<sup>3</sup>) (min)

#### Note:

Tc = 13.05 min per Design Sheet

--> 5-year flow conveyed within Glenroy Gilbert Drive Extension storm sewer sytem.
--> Flows exceeding the 5-year storm directed to DCB 16.

#### Estimated Post Development Peak Flow from Attenuated Areas

Area ID DCB 15 Available Sub-surface Storage

Total Subsurface Storage (m<sup>3</sup>)

Stage Attenuated Areas Storage Summary

|             |       | Surface Storage |                |         | Surfa             | ce and Sub          | surface Sto            | rage                  |
|-------------|-------|-----------------|----------------|---------|-------------------|---------------------|------------------------|-----------------------|
|             | Stage | Ponding         | h <sub>o</sub> | delta d | V*                | V <sub>acc</sub> ** | Q <sub>release</sub> † | V <sub>drawdown</sub> |
|             | (m)   | (m²)            | (m)            | (m)     | (m <sup>3</sup> ) | (m³)                | (L/s)                  | (hr)                  |
| Orifice INV | 97.96 |                 | 0.00           |         |                   | 0.0                 | 0.0                    | 0.00                  |
| T/G         | 99.34 | 0.7             | 1.38           | 1.38    | 0.0               | 0.0                 | 22.0                   | 0.00                  |
|             | 99.49 | 56.0            | 1.53           | 0.15    | 3.2               | 3.2                 | 23.2                   | 0.04                  |
| Max Ponding | 99.64 | 261.6           | 1.68           | 0.15    | 21.9              | 25.1                | 24.3                   | 0.29                  |
|             |       |                 |                |         |                   |                     |                        |                       |
|             |       |                 |                |         |                   |                     |                        |                       |
|             |       |                 |                |         |                   |                     |                        |                       |
|             |       |                 |                |         |                   |                     |                        |                       |

Orifice Location DCB 15 Area 0.03 0.09 0.54 0.64

> 0.13 ha **Total Area**

0.62 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   |
| 13             | 90.4    | 20.1                  | 20.1                 | 0.0                 | 0.0                 | 154.8    | 54.0                  | 24.2                 | 29.8                | 23.3                |
| 15             | 83.6    | 18.6                  | 18.6                 | 0.0                 | 0.0                 | 142.9    | 50.7                  | 24.2                 | 26.4                | 23.8                |
| 20             | 70.3    | 15.6                  | 15.6                 | 0.0                 | 0.0                 | 120.0    | 44.3                  | 24.2                 | 20.1                | 24.1                |
| 25             | 60.9    | 13.6                  | 13.6                 | 0.0                 | 0.0                 | 103.8    | 39.8                  | 24.2                 | 15.6                | 23.4                |
| 30             | 53.9    | 12.0                  | 12.0                 | 0.0                 | 0.0                 | 91.9     | 36.5                  | 24.2                 | 12.3                | 22.1                |
| 35             | 48.5    | 10.8                  | 10.8                 | 0.0                 | 0.0                 | 82.6     | 33.9                  | 24.2                 | 9.7                 | 20.3                |
| 40             | 44.2    | 9.8                   | 9.8                  | 0.0                 | 0.0                 | 75.1     | 31.8                  | 24.2                 | 7.6                 | 18.2                |
| 45             | 40.6    | 9.0                   | 9.0                  | 0.0                 | 0.0                 | 69.1     | 30.2                  | 24.2                 | 5.9                 | 15.9                |
| 50             | 37.7    | 8.4                   | 8.4                  | 0.0                 | 0.0                 | 64.0     | 28.7                  | 24.2                 | 4.5                 | 13.4                |
| 55             | 35.1    | 7.8                   | 7.8                  | 0.0                 | 0.0                 | 59.6     | 27.5                  | 24.2                 | 3.3                 | 10.8                |
| 60             | 32.9    | 7.3                   | 7.3                  | 0.0                 | 0.0                 | 55.9     | 26.5                  | 24.2                 | 2.2                 | 8.1                 |
| 65             | 31.0    | 6.9                   | 6.9                  | 0.0                 | 0.0                 | 52.6     | 25.6                  | 24.2                 | 1.3                 | 5.2                 |
| 70             | 29.4    | 6.5                   | 6.5                  | 0.0                 | 0.0                 | 49.8     | 24.8                  | 24.2                 | 0.5                 | 2.3                 |
| 75             | 27.9    | 6.2                   | 6.2                  | 0.0                 | 0.0                 | 47.3     | 24.1                  | 24.1                 | 0.0                 | 0.0                 |
| 80             | 26.6    | 5.9                   | 5.9                  | 0.0                 | 0.0                 | 45.0     | 23.5                  | 23.5                 | 0.0                 | 0.0                 |
| 85             | 25.4    | 5.6                   | 5.6                  | 0.0                 | 0.0                 | 43.0     | 22.9                  | 22.9                 | 0.0                 | 0.0                 |
| 90             | 24.3    | 5.4                   | 5.4                  | 0.0                 | 0.0                 | 41.1     | 22.4                  | 22.4                 | 0.0                 | 0.0                 |
| 95             | 23.3    | 5.2                   | 5.2                  | 0.0                 | 0.0                 | 39.4     | 21.9                  | 21.9                 | 0.0                 | 0.0                 |
| 100            | 22.4    | 5.0                   | 5.0                  | 0.0                 | 0.0                 | 37.9     | 21.5                  | 21.5                 | 0.0                 | 0.0                 |
| 105            | 21.6    | 4.8                   | 4.8                  | 0.0                 | 0.0                 | 36.5     | 21.1                  | 21.1                 | 0.0                 | 0.0                 |
| 110            | 20.8    | 4.6                   | 4.6                  | 0.0                 | 0.0                 | 35.2     | 20.7                  | 20.7                 | 0.0                 | 0.0                 |

20.1 L/s 24.3 L/s 5-year Qattenuated 100-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation 100-year Max. Storage Required Est. 100-year Storage Elevation 0.0 m<sup>3</sup> 24.1 m<sup>3</sup> 97.96 m 99.63 m

<sup>\*</sup> V=Incremental storage volume \*\*V<sub>acc</sub>=Total surface and sub-surface

 $<sup>\</sup>dagger$  Q<sub>release</sub> = Release rate calculated from orifice equation

Area ID DCB 16 Available Sub-surface Storage

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary

|             |       | Surface Storage |                |         | Surfa             | ce and Sub          | surface Sto            | rage           |
|-------------|-------|-----------------|----------------|---------|-------------------|---------------------|------------------------|----------------|
|             | Stage | Ponding         | h <sub>o</sub> | delta d | ٧*                | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |
|             | (m)   | (m²)            | (m)            | (m)     | (m <sup>3</sup> ) | (m <sup>3</sup> )   | (L/s)                  | (hr)           |
| Orifice INV | 97.96 |                 | 0.00           |         |                   | 0.0                 | 0.0                    | 0.00           |
| T/G         | 99.34 | 0.7             | 1.38           | 1.38    | 0.0               | 0.0                 | 29.1                   | 0.00           |
|             | 99.49 | 47.9            | 1.53           | 0.15    | 2.7               | 2.7                 | 30.6                   | 0.02           |
| Max Ponding | 99.64 | 219.2           | 1.68           | 0.15    | 18.5              | 21.2                | 32.1                   | 0.18           |
|             |       |                 |                |         |                   |                     |                        |                |
|             |       |                 |                |         |                   |                     |                        |                |
|             |       |                 |                |         |                   |                     |                        |                |
|             |       |                 |                |         |                   |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

Orifice Location DCB 16 Dia 108 Area 0.01 0.09 0.77 0.64

> Total Area C 0.10 ha

0.65 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                         | 5-year       |                                |                               |                              |                                          | 100-year     |                                |                               |                              |                                          |
|-------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|
| t <sub>c</sub><br>(min) | i<br>(mm/hr) | Q <sub>actual</sub> ‡<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) | i<br>(mm/hr) | Q <sub>actual</sub> ‡<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) |
| 13                      | 89.9         | 16.0                           | 16.0                          | 0.0                          | 0.0                                      | 153.9        | 54.2                           | 31.8                          | 22.4                         | 17.7                                     |
| 15                      | 83.6         | 14.9                           | 14.9                          | 0.0                          | 0.0                                      | 142.9        | 51.8                           | 31.8                          | 19.9                         | 18.0                                     |
| 20                      | 70.3         | 12.5                           | 12.5                          | 0.0                          | 0.0                                      | 120.0        | 46.7                           | 31.8                          | 14.8                         | 17.8                                     |
| 25                      | 60.9         | 10.8                           | 10.8                          | 0.0                          | 0.0                                      | 103.8        | 43.1                           | 31.8                          | 11.3                         | 16.9                                     |
| 30                      | 53.9         | 9.6                            | 9.6                           | 0.0                          | 0.0                                      | 91.9         | 40.4                           | 31.8                          | 8.6                          | 15.5                                     |
| 35                      | 48.5         | 8.6                            | 8.6                           | 0.0                          | 0.0                                      | 82.6         | 38.3                           | 38.3                          | 0.0                          | 0.0                                      |
| 40                      | 44.2         | 7.9                            | 7.9                           | 0.0                          | 0.0                                      | 75.1         | 36.7                           | 36.7                          | 0.0                          | 0.0                                      |
| 45                      | 40.6         | 7.2                            | 7.2                           | 0.0                          | 0.0                                      | 69.1         | 35.3                           | 35.3                          | 0.0                          | 0.0                                      |
| 50                      | 37.7         | 6.7                            | 6.7                           | 0.0                          | 0.0                                      | 64.0         | 34.2                           | 34.2                          | 0.0                          | 0.0                                      |
| 55                      | 35.1         | 6.3                            | 6.3                           | 0.0                          | 0.0                                      | 59.6         | 33.2                           | 33.2                          | 0.0                          | 0.0                                      |
| 60                      | 32.9         | 5.9                            | 5.9                           | 0.0                          | 0.0                                      | 55.9         | 32.4                           | 32.4                          | 0.0                          | 0.0                                      |
| 65                      | 31.0         | 5.5                            | 5.5                           | 0.0                          | 0.0                                      | 52.6         | 31.7                           | 31.7                          | 0.0                          | 0.0                                      |
| 70                      | 29.4         | 5.2                            | 5.2                           | 0.0                          | 0.0                                      | 49.8         | 31.0                           | 31.0                          | 0.0                          | 0.0                                      |
| 75                      | 27.9         | 5.0                            | 5.0                           | 0.0                          | 0.0                                      | 47.3         | 30.5                           | 30.5                          | 0.0                          | 0.0                                      |
| 80                      | 26.6         | 4.7                            | 4.7                           | 0.0                          | 0.0                                      | 45.0         | 30.0                           | 30.0                          | 0.0                          | 0.0                                      |
| 85                      | 25.4         | 4.5                            | 4.5                           | 0.0                          | 0.0                                      | 43.0         | 29.5                           | 29.5                          | 0.0                          | 0.0                                      |
| 90                      | 24.3         | 4.3                            | 4.3                           | 0.0                          | 0.0                                      | 41.1         | 29.1                           | 29.1                          | 0.0                          | 0.0                                      |
| 95                      | 23.3         | 4.2                            | 4.2                           | 0.0                          | 0.0                                      | 39.4         | 28.7                           | 28.7                          | 0.0                          | 0.0                                      |
| 100                     | 22.4         | 4.0                            | 4.0                           | 0.0                          | 0.0                                      | 37.9         | 28.4                           | 28.4                          | 0.0                          | 0.0                                      |
| 105                     | 21.6         | 3.8                            | 3.8                           | 0.0                          | 0.0                                      | 36.5         | 28.1                           | 28.1                          | 0.0                          | 0.0                                      |
| 110                     | 20.8         | 3.7                            | 3.7                           | 0.0                          | 0.0                                      | 35.2         | 27.8                           | 27.8                          | 0.0                          | 0.0                                      |

5-year Qattenuated 16.0 L/s 31.8 L/s 100-year Q<sub>attenuated</sub> 5-year Max. Storage Required Est. 5-year Storage Elevation 0.0 m<sup>3</sup> 97.96 m 100-year Max. Storage Required Est. 100-year Storage Elevation 18.0 m<sup>3</sup> 99.61 m

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>†</sup> Q<sub>release</sub> = Release rate calculated from orifice equation

#### BTC Stage 1 - Block A Glenroy Gilbert Extension Proposed Conditions

Area ID STM108 Available Sub-surface Storage

Total Subsurface Storage (m<sup>3</sup>)

40.3 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

|                     |       | Sı      | ırface Stora   | ge      | Surfa             | ice and Sub         | surface Sto            | rage           |
|---------------------|-------|---------|----------------|---------|-------------------|---------------------|------------------------|----------------|
|                     | Stage | Ponding | h <sub>o</sub> | delta d | V*                | V <sub>acc</sub> ** | Q <sub>release</sub> + | $V_{drawdown}$ |
|                     | (m)   | (m²)    | (m)            | (m)     | (m <sup>3</sup> ) | (m <sup>3</sup> )   | (L/s)                  | (hr)           |
| Orifice INV         | 96.49 |         | 0.00           |         |                   | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 97.54 |         | 1.05           | 1.05    | 0.0               | 0.0                 | 5.8                    | 0.00           |
| Storage Chamber OBV | 98.30 |         | 1.81           | 0.76    | 40.3              | 40.3                | 7.6                    | 1.47           |
| T/G                 | 99.39 | 0.4     | 2.90           | 1.09    | 0.0               | 40.3                | 9.7                    | 1.15           |
| Max Ponding         | 99.69 | 189.7   | 3.20           | 0.30    | 19.8              | 60.1                | 10.0                   | 1.67           |
|                     |       |         |                |         |                   |                     |                        |                |
|                     |       |         |                |         |                   |                     |                        |                |
|                     |       |         |                |         |                   |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

Orifice Location

STM108

ICD Tempest LMF 80

**Total Area** 0.17 ha

0.74 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m³)                | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m³)                |
| 13             | 90.4    | 31.6                  | 6.8                  | 24.8                | 19.4                | 154.8    | 67.6                  | 7.9                  | 59.7                | 46.7                |
| 15             | 83.6    | 29.2                  | 6.8                  | 22.4                | 20.2                | 142.9    | 62.4                  | 7.9                  | 54.5                | 49.1                |
| 20             | 70.3    | 24.5                  | 6.8                  | 17.8                | 21.3                | 120.0    | 52.4                  | 7.9                  | 44.5                | 53.4                |
| 25             | 60.9    | 21.3                  | 6.8                  | 14.5                | 21.8                | 103.8    | 45.4                  | 7.9                  | 37.5                | 56.2                |
| 30             | 53.9    | 18.8                  | 6.8                  | 12.1                | 21.7                | 91.9     | 40.1                  | 7.9                  | 32.2                | 58.0                |
| 35             | 48.5    | 17.0                  | 6.8                  | 10.2                | 21.4                | 82.6     | 36.1                  | 7.9                  | 28.2                | 59.2                |
| 40             | 44.2    | 15.4                  | 6.8                  | 8.7                 | 20.8                | 75.1     | 32.8                  | 7.9                  | 24.9                | 59.8                |
| 45             | 40.6    | 14.2                  | 6.8                  | 7.4                 | 20.0                | 69.1     | 30.2                  | 7.9                  | 22.3                | 60.1                |
| 50             | 37.7    | 13.2                  | 6.8                  | 6.4                 | 19.2                | 64.0     | 27.9                  | 7.9                  | 20.0                | 60.1                |
| 55             | 35.1    | 12.3                  | 6.8                  | 5.5                 | 18.2                | 59.6     | 26.0                  | 7.9                  | 18.1                | 59.9                |
| 60             | 32.9    | 11.5                  | 6.8                  | 4.7                 | 17.1                | 55.9     | 24.4                  | 7.9                  | 16.5                | 59.5                |
| 65             | 31.0    | 10.8                  | 6.8                  | 4.1                 | 15.9                | 52.6     | 23.0                  | 7.9                  | 15.1                | 58.9                |
| 70             | 29.4    | 10.3                  | 6.8                  | 3.5                 | 14.7                | 49.8     | 21.7                  | 7.9                  | 13.8                | 58.2                |
| 75             | 27.9    | 9.7                   | 6.8                  | 3.0                 | 13.4                | 47.3     | 20.6                  | 7.9                  | 12.7                | 57.3                |
| 80             | 26.6    | 9.3                   | 6.8                  | 2.5                 | 12.0                | 45.0     | 19.7                  | 7.9                  | 11.8                | 56.4                |
| 85             | 25.4    | 8.9                   | 6.8                  | 2.1                 | 10.7                | 43.0     | 18.8                  | 7.9                  | 10.9                | 55.4                |
| 90             | 24.3    | 8.5                   | 6.8                  | 1.7                 | 9.3                 | 41.1     | 18.0                  | 7.9                  | 10.1                | 54.3                |
| 95             | 23.3    | 8.1                   | 6.8                  | 1.4                 | 7.8                 | 39.4     | 17.2                  | 7.9                  | 9.3                 | 53.2                |
| 100            | 22.4    | 7.8                   | 6.8                  | 1.1                 | 6.3                 | 37.9     | 16.6                  | 7.9                  | 8.7                 | 51.9                |
| 105            | 21.6    | 7.5                   | 6.8                  | 0.8                 | 4.9                 | 36.5     | 15.9                  | 7.9                  | 8.0                 | 50.7                |
| 110            | 20.8    | 7.3                   | 6.8                  | 0.5                 | 3.3                 | 35.2     | 15.4                  | 7.9                  | 7.5                 | 49.3                |

5-year Qattenuated 5-year Max. Storage Required 6.8 L/s

100-year Q<sub>attenuated</sub> 100-year Max. Storage Required Est. 100-year Storage Elevation 10.0 L/s

60.1 m<sup>3</sup>

99.69 m

Est. 5-year Storage Elevation

21.8 m<sup>3</sup> 97.95 m

#### Notes:

Required storage volumes calculated using the average Q release rate between storage tank invert and max ponding elevation
 Flow from the storage tank assumes maximum Q Release at max ponding elevation

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>†</sup> Q<sub>release</sub> = Release rate per Tempest LMF Flow Curve

#### BTC Stage 1 - Block A Glenroy Gilbert Extension Proposed Conditions

STM105 Area ID Available Sub-surface Storage

> Total Subsurface Storage (m<sup>3</sup>) 67.4 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

| _                   |       | Sı      | ırface Stora   | ge      | Surfa             | ice and Sub         | surface Sto            | rage           |
|---------------------|-------|---------|----------------|---------|-------------------|---------------------|------------------------|----------------|
|                     | Stage | Ponding | h <sub>o</sub> | delta d | V*                | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |
|                     | (m)   | (m²)    | (m)            | (m)     | (m <sup>3</sup> ) | (m³)                | (L/s)                  | (hr)           |
| Orifice INV         | 97.00 |         | 0.00           |         |                   | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 97.83 |         | 0.83           | 0.83    |                   | 0.0                 | 4.0                    | 0.00           |
| Storage Chamber OBV | 98.59 |         | 1.59           | 0.76    | 67.4              | 67.4                | 5.5                    | 3.40           |
| T/G                 | 99.69 | 0.4     | 2.69           | 1.10    | 0.0               | 67.4                | 7.2                    | 2.60           |
| Max Ponding         | 99.99 | 491.1   | 2.99           | 0.30    | 50.5              | 117.9               | 7.6                    | 4.31           |
|                     |       |         |                |         |                   |                     |                        |                |
|                     |       |         |                |         |                   |                     |                        |                |
|                     |       |         |                |         |                   |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

Orifice Location

STM105 ICD Tempest LMF 70

**Total Area** 0.25 ha

0.77 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m³)                | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   |
| 13             | 90.4    | 48.4                  | 5.0                  | 43.3                | 33.9                | 154.8    | 103.5                 | 5.8                  | 97.7                | 76.5                |
| 15             | 83.6    | 44.7                  | 5.0                  | 39.7                | 35.7                | 142.9    | 95.5                  | 5.8                  | 89.7                | 80.7                |
| 20             | 70.3    | 37.6                  | 5.0                  | 32.6                | 39.1                | 120.0    | 80.2                  | 5.8                  | 74.4                | 89.3                |
| 25             | 60.9    | 32.6                  | 5.0                  | 27.6                | 41.3                | 103.8    | 69.4                  | 5.8                  | 63.6                | 95.4                |
| 30             | 53.9    | 28.8                  | 5.0                  | 23.8                | 42.9                | 91.9     | 61.4                  | 5.8                  | 55.6                | 100.1               |
| 35             | 48.5    | 25.9                  | 5.0                  | 20.9                | 44.0                | 82.6     | 55.2                  | 5.8                  | 49.4                | 103.7               |
| 40             | 44.2    | 23.6                  | 5.0                  | 18.6                | 44.7                | 75.1     | 50.2                  | 5.8                  | 44.4                | 106.6               |
| 45             | 40.6    | 21.7                  | 5.0                  | 16.7                | 45.1                | 69.1     | 46.2                  | 5.8                  | 40.4                | 109.0               |
| 50             | 37.7    | 20.1                  | 5.0                  | 15.1                | 45.4                | 64.0     | 42.7                  | 5.8                  | 36.9                | 110.8               |
| 55             | 35.1    | 18.8                  | 5.0                  | 13.8                | 45.4                | 59.6     | 39.9                  | 5.8                  | 34.1                | 112.4               |
| 60             | 32.9    | 17.6                  | 5.0                  | 12.6                | 45.4                | 55.9     | 37.4                  | 5.8                  | 31.6                | 113.6               |
| 65             | 31.0    | 16.6                  | 5.0                  | 11.6                | 45.2                | 52.6     | 35.2                  | 5.8                  | 29.4                | 114.6               |
| 70             | 29.4    | 15.7                  | 5.0                  | 10.7                | 44.9                | 49.8     | 33.3                  | 5.8                  | 27.5                | 115.4               |
| 75             | 27.9    | 14.9                  | 5.0                  | 9.9                 | 44.6                | 47.3     | 31.6                  | 5.8                  | 25.8                | 116.0               |
| 80             | 26.6    | 14.2                  | 5.0                  | 9.2                 | 44.1                | 45.0     | 30.1                  | 5.8                  | 24.3                | 116.5               |
| 85             | 25.4    | 13.6                  | 5.0                  | 8.6                 | 43.6                | 43.0     | 28.7                  | 5.8                  | 22.9                | 116.8               |
| 90             | 24.3    | 13.0                  | 5.0                  | 8.0                 | 43.1                | 41.1     | 27.5                  | 5.8                  | 21.7                | 117.1               |
| 95             | 23.3    | 12.5                  | 5.0                  | 7.5                 | 42.5                | 39.4     | 26.4                  | 5.8                  | 20.6                | 117.2               |
| 100            | 22.4    | 12.0                  | 5.0                  | 7.0                 | 41.8                | 37.9     | 25.3                  | 5.8                  | 19.5                | 117.2               |
| 105            | 21.6    | 11.5                  | 5.0                  | 6.5                 | 41.1                | 36.5     | 24.4                  | 5.8                  | 18.6                | 117.1               |
| 110            | 20.8    | 11.1                  | 5.0                  | 6.1                 | 40.4                | 35.2     | 23.5                  | 5.8                  | 17.7                | 117.0               |

5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation

5.0 L/s 45.4 m<sup>3</sup> 98.34 m

100-year Q<sub>attenuated</sub>

7.6 L/s 100-year Max. Storage Required 117.2 m<sup>3</sup> Est. 100-year Storage Elevation 99.99 m

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>†</sup> Q<sub>release</sub> = Release rate per Tempest LMF Flow Curve

Required storage volumes calculated using the average Q release rate between storage tank invert and max ponding elevation
 Flow from the storage tank assumes maximum Q Release at max ponding elevation

STM101 Area ID Available Sub-surface Storage

Total Subsurface Storage (m<sup>3</sup>)

35.0 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

|                     |        | Su      | rface Stora    | ge      | Surfa             | ce and Sub          | surface Stor           | rage           |
|---------------------|--------|---------|----------------|---------|-------------------|---------------------|------------------------|----------------|
|                     | Stage  | Ponding | h <sub>o</sub> | delta d | V*                | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |
|                     | (m)    | (m²)    | (m)            | (m)     | (m <sup>3</sup> ) | (m³)                | (L/s)                  | (hr)           |
| Orifice INV         | 97.59  |         | 0.00           |         |                   | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 98.39  |         | 0.80           | 0.80    |                   | 0.0                 | 5.8                    | 0.00           |
| Storage Chamber OBV | 99.15  |         | 1.56           | 0.76    | 35.0              | 35.0                | 7.9                    | 1.23           |
| T/G                 | 100.25 | 0.4     | 2.66           | 1.10    | 0.0               | 35.0                | 10.3                   | 0.94           |
| Max Ponding         | 100.41 | 98.8    | 2.82           | 0.16    | 5.6               | 40.6                | 10.7                   | 1.05           |
|                     |        |         |                |         |                   |                     |                        |                |
|                     |        |         |                |         |                   |                     |                        |                |
|                     |        |         |                |         |                   |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

Orifice Location **Total Area**  STM101

Dia Tempest LMF 95

0.13 ha

0.74 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   |
| 13             | 90.4    | 24.2                  | 6.7                  | 17.5                | 13.7                | 154.8    | 51.7                  | 8.3                  | 43.4                | 34.0                |
| 15             | 83.6    | 22.3                  | 6.7                  | 15.7                | 14.1                | 142.9    | 47.7                  | 8.3                  | 39.5                | 35.5                |
| 20             | 70.3    | 18.8                  | 6.7                  | 12.1                | 14.5                | 120.0    | 40.1                  | 8.3                  | 31.8                | 38.2                |
| 25             | 60.9    | 16.3                  | 6.7                  | 9.6                 | 14.4                | 103.8    | 34.7                  | 8.3                  | 26.4                | 39.7                |
| 30             | 53.9    | 14.4                  | 6.7                  | 7.7                 | 13.9                | 91.9     | 30.7                  | 8.3                  | 22.4                | 40.4                |
| 35             | 48.5    | 13.0                  | 6.7                  | 6.3                 | 13.2                | 82.6     | 27.6                  | 8.3                  | 19.3                | 40.6                |
| 40             | 44.2    | 11.8                  | 6.7                  | 5.1                 | 12.3                | 75.1     | 25.1                  | 8.3                  | 16.9                | 40.4                |
| 45             | 40.6    | 10.9                  | 6.7                  | 4.2                 | 11.3                | 69.1     | 23.1                  | 8.3                  | 14.8                | 40.0                |
| 50             | 37.7    | 10.1                  | 6.7                  | 3.4                 | 10.2                | 64.0     | 21.4                  | 8.3                  | 13.1                | 39.3                |
| 55             | 35.1    | 9.4                   | 6.7                  | 2.7                 | 9.0                 | 59.6     | 19.9                  | 8.3                  | 11.7                | 38.5                |
| 60             | 32.9    | 8.8                   | 6.7                  | 2.1                 | 7.7                 | 55.9     | 18.7                  | 8.3                  | 10.4                | 37.5                |
| 65             | 31.0    | 8.3                   | 6.7                  | 1.6                 | 6.3                 | 52.6     | 17.6                  | 8.3                  | 9.3                 | 36.4                |
| 70             | 29.4    | 7.8                   | 6.7                  | 1.2                 | 4.9                 | 49.8     | 16.6                  | 8.3                  | 8.4                 | 35.2                |
| 75             | 27.9    | 7.5                   | 6.7                  | 0.8                 | 3.5                 | 47.3     | 15.8                  | 8.3                  | 7.5                 | 33.9                |
| 80             | 26.6    | 7.1                   | 6.7                  | 0.4                 | 2.0                 | 45.0     | 15.0                  | 8.3                  | 6.8                 | 32.5                |
| 85             | 25.4    | 6.8                   | 6.7                  | 0.1                 | 0.5                 | 43.0     | 14.3                  | 8.3                  | 6.1                 | 31.1                |
| 90             | 24.3    | 6.5                   | 6.5                  | 0.0                 | 0.0                 | 41.1     | 13.7                  | 8.3                  | 5.5                 | 29.6                |
| 95             | 23.3    | 6.2                   | 6.2                  | 0.0                 | 0.0                 | 39.4     | 13.2                  | 8.3                  | 4.9                 | 28.1                |
| 100            | 22.4    | 6.0                   | 6.0                  | 0.0                 | 0.0                 | 37.9     | 12.7                  | 8.3                  | 4.4                 | 26.5                |
| 105            | 21.6    | 5.8                   | 5.8                  | 0.0                 | 0.0                 | 36.5     | 12.2                  | 8.3                  | 3.9                 | 24.8                |
| 110            | 20.8    | 5.6                   | 5.6                  | 0.0                 | 0.0                 | 35.2     | 11.8                  | 8.3                  | 3.5                 | 23.2                |

5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation

6.7 L/s 14.5 m<sup>3</sup> 98.71 m

100-year Q<sub>attenuated</sub>

10.7 L/s

40.6 m<sup>3</sup>

100.41 m

100-year Max. Storage Required Est. 100-year Storage Elevation

#### Notes:

- Required storage volumes calculated using the average Q release rate between storage tank invert and max ponding elevation
- Flow from the storage tank assumes maximum Q Release at max ponding elevation

#### Summary of Release Rates and Storage Volumes

| Control Area                       | 5-year<br>Release<br>Rate<br>(L/s) | 5-year<br>Required<br>Storage<br>(m³) | 100-Year<br>Release<br>Rate<br>(L/s) | 100-Year<br>Required<br>Storage<br>(m³) | 100-Year<br>Available<br>Storage<br>(m³) |
|------------------------------------|------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|
| Unattenuated Areas<br>(CB9 - CB14) | 61.9                               | 0.0                                   | 61.9                                 | 0.0                                     | 0.0                                      |
| DCB 15                             | 20.1                               | 0.0                                   | 24.3                                 | 24.1                                    | 25.1                                     |
| DCB 16                             | 16.0                               | 0.0                                   | 31.8                                 | 18.0                                    | 21.2                                     |
| STM108                             | 6.8                                | 21.8                                  | 10.0                                 | 60.1                                    | 60.1                                     |
| STM105                             | 5.0                                | 45.4                                  | 7.6                                  | 117.2                                   | 117.9                                    |
| STM101                             | 6.7                                | 14.5                                  | 10.7                                 | 40.6                                    | 40.6                                     |
| Total                              | 116.5                              | 81.7                                  | 146.3                                | 259.9                                   | 264.9                                    |

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>†</sup> Q<sub>release</sub> = Release rate per Tempest LMF Flow Curve

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012



Target Flow Rate

637.00 L/s Q

#### Estimated Post Development Peak Flow from Unattenuated Areas

0.17 ha <-- Sum of Unattenuated Drainage to Glenroy Gilbert Drive 0.72 Rational Method runoff coefficient Area

|                | 5-year  |                     |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|---------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i        | Q <sub>actual</sub> * | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)               | (L/s)                | (L/s)               | (m³)                | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   |
| 13.9           | 87.4    | 29.7                | 29.7                 | 0.0                 | 0.0                 | 149.5    | 50.8                  | 50.8                 | 0.0                 | 0.0                 |

Note: Tc = 13.88 min per Design Sheet

0.16 ha <-- Sum of Unattenuated Drainage to Riocan Avenue Area C

0.66 Rational Method runoff coefficient

|   |                         | 5-year       |                              |                               |                              |                                          | 100-year     |                                |                               |                              |                                          |  |
|---|-------------------------|--------------|------------------------------|-------------------------------|------------------------------|------------------------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|--|
|   | t <sub>c</sub><br>(min) | i<br>(mm/hr) | Q <sub>actual</sub><br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) | i<br>(mm/hr) | Q <sub>actual</sub> *<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) |  |
| ı | 13.9                    | 87.4         | 25.6                         | 25.6                          | 0.0                          | 0.0                                      |              | 43.8                           | 43.8                          | 0.0                          | 0.0                                      |  |

Note: Tc = 13.88 min per Design Sheet

0.01 0.16 0.17 Area C 0.01 0.57 0.83 0.74 0.53

0.35 ha <-- Sum of Unattenuated Drainage to Chapman Mills Drive 0.77 Rational Method runoff coefficient Total Area

|                | 5-year  |                            |                      |                     |                     | 100-year |                     |                      |                     |                     |  |
|----------------|---------|----------------------------|----------------------|---------------------|---------------------|----------|---------------------|----------------------|---------------------|---------------------|--|
| t <sub>c</sub> | i       | <b>Q</b> <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i        | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ |  |
| (min)          | (mm/hr) | (L/s)                      | (L/s)                | (L/s)               | (m <sup>3</sup> )   | (mm/hr)  | (L/s)               | (L/s)                | (L/s)               | (m <sup>3</sup> )   |  |
| 13.9           | 87.4    | 65.4                       | 65.4                 | 0.0                 | 0.0                 | 149.5    | 111.9               | 111.9                | 0.0                 | 0.0                 |  |

Tc = 13.88 min per Design Sheet

<-- Sum of Unattenuated Drainage to Longfields Drive

0.63 Rational Method runoff coefficient

|   |       | 5-year  |                     |                      |                     |                     | 100-year |                     |                      |                     |                     |  |
|---|-------|---------|---------------------|----------------------|---------------------|---------------------|----------|---------------------|----------------------|---------------------|---------------------|--|
|   | tc    | i       | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ | i        | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ |  |
|   | (min) | (mm/hr) | (L/s)               | (L/s)                | (L/s)               | (m³)                | (mm/hr)  | (L/s)               | (L/s)                | (L/s)               | (m³)                |  |
| ſ | 13.9  | 87.4    | 26.0                | 26.0                 | 0.0                 | 0.0                 | 149.5    | 44.5                | 44.5                 | 0.0                 | 0.0                 |  |

Note:

Tc = 13.88 min per Design Sheet

#### Estimated Post Development Peak Flow from Attenuated Areas

STM115 Area ID Available Sub-surface Storage

Sewers

| ID                                   | 450mm                                  | 525mm | 1500mm | U/G Tank |  |  |  |
|--------------------------------------|----------------------------------------|-------|--------|----------|--|--|--|
| Storage Pipe Dia (mm)                | 450                                    | 525   | 1500   |          |  |  |  |
| L (m)                                | 60                                     | 43.5  | 47     |          |  |  |  |
| V <sub>sewer</sub> (m <sup>3</sup> ) | 9.5                                    | 9.4   | 83.1   | 27.9     |  |  |  |
|                                      | *Top of lid or max ponding elevation : |       |        |          |  |  |  |

Total Subsurface Storage (m³)

129.9 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

| _                |       | Sı      | rface Stora    | ge      | Surface and Subsurface Storage |                     |                        |                |  |
|------------------|-------|---------|----------------|---------|--------------------------------|---------------------|------------------------|----------------|--|
|                  | Stage | Ponding | h <sub>o</sub> | delta d | ٧*                             | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |  |
|                  | (m)   | (m²)    | (m)            | (m)     | (m³)                           | (m³)                | (L/s)                  | (hr)           |  |
| Orifice INV      | 95.11 |         | 0.00           |         |                                | 0.0                 | 0.0                    | 0.00           |  |
| Storage Pipe INV | 96.17 |         | 1.06           | 1.06    | 0.0                            | 0.0                 | 36.9                   | 0.00           |  |
| Storage Pipe OBV | 98.62 |         | 3.51           | 2.45    | 129.9                          | 129.9               | 67.2                   | 0.54           |  |
| T/G              | 98.67 | 0.4     | 3.56           | 0.05    | 0.0                            | 129.9               | 67.7                   | 0.53           |  |
| Max Ponding      | 98.87 | 72.3    | 3.76           | 0.20    | 5.2                            | 135.1               | 69.5                   | 0.54           |  |
|                  |       |         |                |         |                                |                     |                        |                |  |
|                  |       |         |                |         |                                |                     |                        |                |  |
|                  |       |         |                |         |                                |                     |                        |                |  |

<sup>†</sup> Q<sub>release</sub> = Release rate calculated from orifice equation

| Orifice Location | STM115 | Dia  | 130  |
|------------------|--------|------|------|
| Area             | 0.08   | 0.36 | 0.11 |
| C                | 0.81   | 0.68 | 0.79 |

Total Area C 0.55 ha

0.72 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   |
| 14             | 87.4    | 96.2                  | 46.6                 | 49.7                | 41.4                | 149.5    | 205.8                 | 53.2                 | 152.5               | 127.0               |
| 20             | 70.3    | 77.4                  | 46.6                 | 30.8                | 37.0                | 120.0    | 165.1                 | 53.2                 | 111.9               | 134.3               |
| 25             | 60.9    | 67.1                  | 46.6                 | 20.5                | 30.8                | 103.8    | 143.0                 | 53.2                 | 89.7                | 134.6               |
| 30             | 53.9    | 59.4                  | 46.6                 | 12.8                | 23.1                | 91.9     | 126.5                 | 53.2                 | 73.2                | 131.8               |
| 35             | 48.5    | 53.4                  | 46.6                 | 6.9                 | 14.5                | 82.6     | 113.7                 | 53.2                 | 60.5                | 127.0               |
| 40             | 44.2    | 48.7                  | 46.6                 | 2.1                 | 5.1                 | 75.1     | 103.5                 | 53.2                 | 50.2                | 120.5               |
| 45             | 40.6    | 44.7                  | 44.7                 | 0.0                 | 0.0                 | 69.1     | 95.1                  | 53.2                 | 41.8                | 112.9               |
| 50             | 37.7    | 41.5                  | 41.5                 | 0.0                 | 0.0                 | 64.0     | 88.0                  | 53.2                 | 34.8                | 104.4               |
| 55             | 35.1    | 38.7                  | 38.7                 | 0.0                 | 0.0                 | 59.6     | 82.1                  | 53.2                 | 28.9                | 95.2                |
| 60             | 32.9    | 36.3                  | 36.3                 | 0.0                 | 0.0                 | 55.9     | 77.0                  | 53.2                 | 23.7                | 85.4                |
| 65             | 31.0    | 34.2                  | 34.2                 | 0.0                 | 0.0                 | 52.6     | 72.5                  | 53.2                 | 19.2                | 75.1                |
| 70             | 29.4    | 32.3                  | 32.3                 | 0.0                 | 0.0                 | 49.8     | 68.5                  | 53.2                 | 15.3                | 64.3                |
| 75             | 27.9    | 30.7                  | 30.7                 | 0.0                 | 0.0                 | 47.3     | 65.1                  | 53.2                 | 11.8                | 53.2                |
| 80             | 26.6    | 29.3                  | 29.3                 | 0.0                 | 0.0                 | 45.0     | 61.9                  | 53.2                 | 8.7                 | 41.8                |
| 85             | 25.4    | 27.9                  | 27.9                 | 0.0                 | 0.0                 | 43.0     | 59.1                  | 53.2                 | 5.9                 | 30.1                |
| 90             | 24.3    | 26.8                  | 26.8                 | 0.0                 | 0.0                 | 41.1     | 56.6                  | 53.2                 | 3.4                 | 18.2                |
| 95             | 23.3    | 25.7                  | 25.7                 | 0.0                 | 0.0                 | 39.4     | 54.3                  | 53.2                 | 1.1                 | 6.0                 |
| 100            | 22.4    | 24.7                  | 24.7                 | 0.0                 | 0.0                 | 37.9     | 52.2                  | 53.2                 | 0.0                 | 0.0                 |
| 105            | 21.6    | 23.8                  | 23.8                 | 0.0                 | 0.0                 | 36.5     | 50.2                  | 53.2                 | 0.0                 | 0.0                 |
| 110            | 20.8    | 22.9                  | 22.9                 | 0.0                 | 0.0                 | 35.2     | 48.5                  | 53.2                 | 0.0                 | 0.0                 |
| 115            | 20.1    | 22.2                  | 22.2                 | 0.0                 | 0.0                 | 34.0     | 46.8                  | 53.2                 | 0.0                 | 0.0                 |

100-year Q<sub>attenuated</sub> 46.6 L/s 69.5 L/s 5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation 41.4 m<sup>3</sup> 96.95 m 100-year Max. Storage Required Est. 100-year Storage Elevation 134.6 m<sup>3</sup> 98.85 m

- Required storage volumes calculated using the average Q release rate between storage pipe invert to max ponding elevation.
- Flow from the control area assumes Q Release at maximum ponding elevation.

2023-06-29

<sup>\*</sup> V=Incremental storage volume

\*\*V<sub>acc</sub>=Total surface and sub-surface

#### Estimated Post Development Peak Flow from Attenuated Areas

STM126 Area ID Available Sub-surface Storage

Total Subsurface Storage (m<sup>3</sup>)

105.5 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary \_

|                     |       | Sı      | ırface Stora   | ge      | Surfa | ce and Sub          | surface Sto            | rage                  |
|---------------------|-------|---------|----------------|---------|-------|---------------------|------------------------|-----------------------|
|                     | Stage | Ponding | h <sub>o</sub> | delta d | V*    | V <sub>acc</sub> ** | Q <sub>release</sub> † | V <sub>drawdown</sub> |
|                     | (m)   | (m²)    | (m)            | (m)     | (m³)  | (m³)                | (L/s)                  | (hr)                  |
| Orifice INV         | 94.76 |         | 0.00           |         |       | 0.0                 | 0.0                    | 0.00                  |
| Storage Chamber INV | 94.84 |         | 0.07           | 0.07    | 0.0   | 0.0                 | 4.7                    | 0.00                  |
| Storage Chamber OBV | 96.36 |         | 1.60           | 1.53    | 105.5 | 105.5               | 21.7                   | 1.35                  |
|                     |       |         |                |         |       |                     |                        |                       |
|                     |       |         |                |         |       |                     |                        |                       |
|                     |       |         |                |         |       |                     |                        |                       |
|                     |       |         |                |         |       |                     |                        |                       |
|                     |       |         |                |         |       |                     |                        |                       |

Orifice Location Total Area C STM126

0.34 ha

0.64 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                   | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|-------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{stored}$      | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> ) | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m³)                |
| 14             | 87.4    | 52.0                  | 10.9                 | 41.1                | 34.3              | 149.5    | 111.3                 | 13.2                 | 98.0                | 81.6                |
| 20             | 70.3    | 41.8                  | 10.9                 | 31.0                | 37.2              | 120.0    | 89.3                  | 13.2                 | 76.1                | 91.3                |
| 25             | 60.9    | 36.3                  | 10.9                 | 25.4                | 38.1              | 103.8    | 77.3                  | 13.2                 | 64.1                | 96.1                |
| 30             | 53.9    | 32.1                  | 10.9                 | 21.2                | 38.2              | 91.9     | 68.4                  | 13.2                 | 55.2                | 99.3                |
| 35             | 48.5    | 28.9                  | 10.9                 | 18.0                | 37.8              | 82.6     | 61.5                  | 13.2                 | 48.3                | 101.3               |
| 40             | 44.2    | 26.3                  | 10.9                 | 15.4                | 37.0              | 75.1     | 55.9                  | 13.2                 | 42.7                | 102.5               |
| 45             | 40.6    | 24.2                  | 10.9                 | 13.3                | 36.0              | 69.1     | 51.4                  | 13.2                 | 38.2                | 103.1               |
| 50             | 37.7    | 22.4                  | 10.9                 | 11.5                | 34.6              | 64.0     | 47.6                  | 13.2                 | 34.4                | 103.2               |
| 55             | 35.1    | 20.9                  | 10.9                 | 10.0                | 33.1              | 59.6     | 44.4                  | 13.2                 | 31.2                | 102.8               |
| 60             | 32.9    | 19.6                  | 10.9                 | 8.7                 | 31.5              | 55.9     | 41.6                  | 13.2                 | 28.4                | 102.2               |
| 65             | 31.0    | 18.5                  | 10.9                 | 7.6                 | 29.7              | 52.6     | 39.2                  | 13.2                 | 26.0                | 101.3               |
| 70             | 29.4    | 17.5                  | 10.9                 | 6.6                 | 27.8              | 49.8     | 37.1                  | 13.2                 | 23.8                | 100.1               |
| 75             | 27.9    | 16.6                  | 10.9                 | 5.7                 | 25.8              | 47.3     | 35.2                  | 13.2                 | 22.0                | 98.8                |
| 80             | 26.6    | 15.8                  | 10.9                 | 4.9                 | 23.7              | 45.0     | 33.5                  | 13.2                 | 20.3                | 97.3                |
| 85             | 25.4    | 15.1                  | 10.9                 | 4.2                 | 21.6              | 43.0     | 32.0                  | 13.2                 | 18.8                | 95.6                |
| 90             | 24.3    | 14.5                  | 10.9                 | 3.6                 | 19.4              | 41.1     | 30.6                  | 13.2                 | 17.4                | 93.9                |
| 95             | 23.3    | 13.9                  | 10.9                 | 3.0                 | 17.1              | 39.4     | 29.4                  | 13.2                 | 16.1                | 92.0                |
| 100            | 22.4    | 13.3                  | 10.9                 | 2.5                 | 14.8              | 37.9     | 28.2                  | 13.2                 | 15.0                | 89.9                |
| 105            | 21.6    | 12.9                  | 10.9                 | 2.0                 | 12.4              | 36.5     | 27.2                  | 13.2                 | 13.9                | 87.9                |
| 110            | 20.8    | 12.4                  | 10.9                 | 1.5                 | 10.0              | 35.2     | 26.2                  | 13.2                 | 13.0                | 85.7                |
| 115            | 20.1    | 12.0                  | 10.9                 | 1.1                 | 7.6               | 34.0     | 25.3                  | 13.2                 | 12.1                | 83.4                |

5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation 10.9 L/s

38.2 m<sup>3</sup>

100-year Qattenuated 100-year Max. Storage Required Est. 100-year Storage Elevation

21.7 L/s 103.2 m<sup>3</sup> 96.33 m

<sup>\*</sup> V=Incremental storage volume \*\*V<sub>acc</sub>=Total surface and sub-surface

 $<sup>\</sup>dagger$  Q<sub>release</sub> = Release rate calculated from orifice equation

<sup>-</sup> Required storage volumes calculated using the average Q release rate within the tank - Flow from the storage tank assumes maximum Q Release at the tank obvert

STM124 Area ID

Available Sub-surface Storage 79.92 195.22

> Total Subsurface Storage (m<sup>3</sup>) 275.1 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

|                     |       | Surface Storage |                |         | Surface and Subsurface Storage |                     |                        |                |
|---------------------|-------|-----------------|----------------|---------|--------------------------------|---------------------|------------------------|----------------|
|                     | Stage | Ponding         | h <sub>o</sub> | delta d | ٧*                             | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |
|                     | (m)   | (m²)            | (m)            | (m)     | (m <sup>3</sup> )              | (m <sup>3</sup> )   | (L/s)                  | (hr)           |
| Orifice INV         | 94.90 |                 | 0.00           |         |                                | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 96.19 |                 | 1.28           | 1.28    | 0.0                            | 0.0                 | 6.5                    | 0.00           |
| Storage Chamber OBV | 97.71 |                 | 2.81           | 1.53    | 275.1                          | 275.1               | 9.5                    | 8.05           |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |

0.07

0.69

0.73

Orifice Location STM124 ICD Tempest LMF 80 Area 0.18 0.20 0.78

> Total Area C 0.53 ha

0.81

0.75 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m³)                |
| 14             | 87.4    | 96.9                  | 7.6                  | 89.3                | 74.4                | 149.5    | 207.3                 | 8.0                  | 199.3               | 166.0               |
| 20             | 70.3    | 78.0                  | 7.6                  | 70.3                | 84.4                | 120.0    | 166.4                 | 8.0                  | 158.4               | 190.1               |
| 30             | 53.9    | 59.8                  | 7.6                  | 52.2                | 94.0                | 91.9     | 127.4                 | 8.0                  | 119.4               | 215.0               |
| 40             | 44.2    | 49.0                  | 7.6                  | 41.4                | 99.3                | 75.1     | 104.2                 | 8.0                  | 96.2                | 231.0               |
| 50             | 37.7    | 41.8                  | 7.6                  | 34.1                | 102.4               | 64.0     | 88.7                  | 8.0                  | 80.7                | 242.1               |
| 60             | 32.9    | 36.6                  | 7.6                  | 28.9                | 104.1               | 55.9     | 77.5                  | 8.0                  | 69.5                | 250.3               |
| 70             | 29.4    | 32.6                  | 7.6                  | 25.0                | 104.8               | 49.8     | 69.1                  | 8.0                  | 61.1                | 256.5               |
| 80             | 26.6    | 29.5                  | 7.6                  | 21.8                | 104.8               | 45.0     | 62.4                  | 8.0                  | 54.4                | 261.2               |
| 90             | 24.3    | 27.0                  | 7.6                  | 19.3                | 104.3               | 41.1     | 57.0                  | 8.0                  | 49.0                | 264.7               |
| 100            | 22.4    | 24.9                  | 7.6                  | 17.2                | 103.3               | 37.9     | 52.6                  | 8.0                  | 44.6                | 267.5               |
| 110            | 20.8    | 23.1                  | 7.6                  | 15.5                | 102.1               | 35.2     | 48.8                  | 8.0                  | 40.8                | 269.5               |
| 120            | 19.5    | 21.6                  | 7.6                  | 14.0                | 100.5               | 32.9     | 45.6                  | 8.0                  | 37.6                | 270.9               |
| 130            | 18.3    | 20.3                  | 7.6                  | 12.7                | 98.7                | 30.9     | 42.9                  | 8.0                  | 34.9                | 271.9               |
| 140            | 17.3    | 19.2                  | 7.6                  | 11.5                | 96.8                | 29.2     | 40.4                  | 8.0                  | 32.4                | 272.5               |
| 150            | 16.4    | 18.2                  | 7.6                  | 10.5                | 94.6                | 27.6     | 38.3                  | 8.0                  | 30.3                | 272.7               |
| 160            | 15.6    | 17.3                  | 7.6                  | 9.6                 | 92.3                | 26.2     | 36.4                  | 8.0                  | 28.4                | 272.6               |
| 170            | 14.8    | 16.5                  | 7.6                  | 8.8                 | 89.9                | 25.0     | 34.7                  | 8.0                  | 26.7                | 272.3               |
| 180            | 14.2    | 15.7                  | 7.6                  | 8.1                 | 87.4                | 23.9     | 33.2                  | 8.0                  | 25.2                | 271.7               |
| 190            | 13.6    | 15.1                  | 7.6                  | 7.4                 | 84.8                | 22.9     | 31.8                  | 8.0                  | 23.8                | 270.9               |
| 200            | 13.0    | 14.5                  | 7.6                  | 6.8                 | 82.1                | 22.0     | 30.5                  | 8.0                  | 22.5                | 269.9               |
| 210            | 12.6    | 13.9                  | 7.6                  | 6.3                 | 79.2                | 21.1     | 29.3                  | 8.0                  | 21.3                | 268.8               |

7.6 L/s 5-vear Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation 104.8 m<sup>3</sup> 96.77 m

100-year Q<sub>attenuated</sub> 9.5 L/s 100-year Max. Storage Required Est. 100-year Storage Elevation 272.7 m<sup>3</sup> 97.70 m

<sup>\*</sup> V=Incremental storage volume

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>†</sup> Q<sub>release</sub> = Release rate per Tempest LMF Flow Curve

<sup>-</sup> Required storage volumes calculated using the average Q release rate within the tank

<sup>-</sup> Flow from the storage tank assumes maximum Q Release at the tank obvert

Area ID STM134 Available Sub-surface Storage

Total Subsurface Storage (m<sup>3</sup>)

79.7 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

|                     |       | Surface Storage |                |         | Surface and Subsurface Storage |                     |                        |                |
|---------------------|-------|-----------------|----------------|---------|--------------------------------|---------------------|------------------------|----------------|
|                     | Stage | Ponding         | h <sub>o</sub> | delta d | V*                             | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |
|                     | (m)   | (m²)            | (m)            | (m)     | (m³)                           | (m³)                | (L/s)                  | (hr)           |
| Orifice INV         | 93.41 |                 | 0.00           |         |                                | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 94.17 |                 | 0.75           | 0.75    |                                | 0.0                 | 81.3                   | 0.00           |
| Storage Chamber OBV | 95.69 |                 | 2.28           | 1.53    | 79.7                           | 79.7                | 141.3                  | 0.16           |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

<sup>†</sup> Q<sub>release</sub> = Release rate calculated from orifice equation

| Orifice Location | STM134 | dia  | 210  |
|------------------|--------|------|------|
| Area             | 0.18   | 0.22 | 0.11 |
| С                | 0.76   | 0.76 | 0.79 |

Total Area C

0.51 ha

0.77 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                         | 5-year       |                                |                               |                              |                                          | 100-year     |                                |                               |                              |                                          |
|-------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|
| t <sub>c</sub><br>(min) | i<br>(mm/hr) | Q <sub>actual</sub> ‡<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) | i<br>(mm/hr) | Q <sub>actual</sub> ‡<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) |
| 14                      | 87.4         | 94.9                           | 86.5                          | 8.3                          | 6.9                                      | 149.5        | 202.9                          | 111.3                         | 91.5                         | 76.2                                     |
| 20                      | 70.3         | 76.3                           | 76.3                          | 0.0                          | 0.0                                      | 120.0        | 162.8                          | 111.3                         | 51.5                         | 61.8                                     |
| 25                      | 60.9         | 66.1                           | 66.1                          | 0.0                          | 0.0                                      | 103.8        | 141.0                          | 111.3                         | 29.6                         | 44.5                                     |
| 30                      | 53.9         | 58.6                           | 58.6                          | 0.0                          | 0.0                                      | 91.9         | 124.7                          | 111.3                         | 13.4                         | 24.1                                     |
| 35                      | 48.5         | 52.7                           | 52.7                          | 0.0                          | 0.0                                      | 82.6         | 112.1                          | 111.3                         | 0.8                          | 1.6                                      |
|                         |              |                                |                               |                              |                                          |              |                                |                               |                              |                                          |
| 40                      | 44.2         | 48.0                           | 48.0                          | 0.0                          | 0.0                                      | 75.1         | 102.0                          | 102.0                         | 0.0                          | 0.0                                      |
| 45                      | 40.6         | 44.1                           | 44.1                          | 0.0                          | 0.0                                      | 69.1         | 93.7                           | 93.7                          | 0.0                          | 0.0                                      |
| 50                      | 37.7         | 40.9                           | 40.9                          | 0.0                          | 0.0                                      | 64.0         | 86.8                           | 86.8                          | 0.0                          | 0.0                                      |
| 55                      | 35.1         | 38.1                           | 38.1                          | 0.0                          | 0.0                                      | 59.6         | 80.9                           | 80.9                          | 0.0                          | 0.0                                      |
| 60                      | 32.9         | 35.8                           | 35.8                          | 0.0                          | 0.0                                      | 55.9         | 75.9                           | 75.9                          | 0.0                          | 0.0                                      |
| 65                      | 31.0         | 33.7                           | 33.7                          | 0.0                          | 0.0                                      | 52.6         | 71.5                           | 71.5                          | 0.0                          | 0.0                                      |
| 70                      | 29.4         | 31.9                           | 31.9                          | 0.0                          | 0.0                                      | 49.8         | 67.6                           | 67.6                          | 0.0                          | 0.0                                      |
| 75                      | 27.9         | 30.3                           | 30.3                          | 0.0                          | 0.0                                      | 47.3         | 64.1                           | 64.1                          | 0.0                          | 0.0                                      |
| 80                      | 26.6         | 28.8                           | 28.8                          | 0.0                          | 0.0                                      | 45.0         | 61.1                           | 61.1                          | 0.0                          | 0.0                                      |
| 85                      | 25.4         | 27.5                           | 27.5                          | 0.0                          | 0.0                                      | 43.0         | 58.3                           | 58.3                          | 0.0                          | 0.0                                      |
| 90                      | 24.3         | 26.4                           | 26.4                          | 0.0                          | 0.0                                      | 41.1         | 55.8                           | 55.8                          | 0.0                          | 0.0                                      |
| 95                      | 23.3         | 25.3                           | 25.3                          | 0.0                          | 0.0                                      | 39.4         | 53.5                           | 53.5                          | 0.0                          | 0.0                                      |
| 100                     | 22.4         | 24.3                           | 24.3                          | 0.0                          | 0.0                                      | 37.9         | 51.4                           | 51.4                          | 0.0                          | 0.0                                      |
| 105                     | 21.6         | 23.4                           | 23.4                          | 0.0                          | 0.0                                      | 36.5         | 49.5                           | 49.5                          | 0.0                          | 0.0                                      |
| 110                     | 20.8         | 22.6                           | 22.6                          | 0.0                          | 0.0                                      | 35.2         | 47.8                           | 47.8                          | 0.0                          | 0.0                                      |
| 115                     | 20.1         | 21.8                           | 21.8                          | 0.0                          | 0.0                                      | 34.0         | 46.2                           | 46.2                          | 0.0                          | 0.0                                      |

5-year Qattenuated 86.5 L/s 5-year Max. Storage Required Est. 5-year Storage Elevation 6.9 m<sup>3</sup> 94.30 m

141.3 L/s 100-year Q<sub>attenuated</sub> 100-year Max. Storage Required Est. 100-year Storage Elevation 76.2 m<sup>3</sup> 95.62 m

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>-</sup> Required storage volumes calculated using the average Q release rate within the tank

<sup>-</sup> Flow from the storage tank assumes maximum Q Release at the tank obvert

STM164 Area ID Available Sub-surface Storage

Total Subsurface Storage (m<sup>3</sup>)

203.5 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

|                     |       | Surface Storage |                |         | Surface and Subsurface Storage |                     |                        |                |
|---------------------|-------|-----------------|----------------|---------|--------------------------------|---------------------|------------------------|----------------|
|                     | Stage | Ponding         | h <sub>o</sub> | delta d | V*                             | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |
|                     | (m)   | (m²)            | (m)            | (m)     | (m³)                           | (m³)                | (L/s)                  | (hr)           |
| Orifice INV         | 92.98 |                 | 0.00           |         |                                | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 93.14 |                 | 0.16           | 0.16    |                                | 0.0                 | 3.5                    | 0.00           |
| Storage Chamber OBV | 94.28 |                 | 1.30           | 1.14    | 203.5                          | 203.5               | 11.3                   | 5.00           |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |
|                     |       |                 |                |         |                                |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

Orifice Location

**STM164** 0.46 ha

ICD Tempest LMF 105

**Total Area** 

0.67 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m <sup>3</sup> )   |
| 14             | 87.4    | 74.8                  | 6.5                  | 68.3                | 56.9                | 149.5    | 159.9                 | 7.4                  | 152.5               | 127.0               |
| 20             | 70.3    | 60.1                  | 6.5                  | 53.6                | 64.4                | 120.0    | 128.4                 | 7.4                  | 121.0               | 145.2               |
| 25             | 60.9    | 52.1                  | 6.5                  | 45.6                | 68.4                | 103.8    | 111.1                 | 7.4                  | 103.7               | 155.6               |
| 30             | 53.9    | 46.2                  | 6.5                  | 39.7                | 71.4                | 91.9     | 98.3                  | 7.4                  | 90.9                | 163.6               |
| 35             | 48.5    | 41.5                  | 6.5                  | 35.0                | 73.6                | 82.6     | 88.4                  | 7.4                  | 81.0                | 170.0               |
| 40             | 44.2    | 37.8                  | 6.5                  | 31.3                | 75.2                | 75.1     | 80.4                  | 7.4                  | 73.0                | 175.2               |
| 45             | 40.6    | 34.8                  | 6.5                  | 28.3                | 76.4                | 69.1     | 73.9                  | 7.4                  | 66.5                | 179.5               |
| 50             | 37.7    | 32.2                  | 6.5                  | 25.7                | 77.2                | 64.0     | 68.4                  | 7.4                  | 61.0                | 183.1               |
| 55             | 35.1    | 30.1                  | 6.5                  | 23.6                | 77.8                | 59.6     | 63.8                  | 7.4                  | 56.4                | 186.1               |
| 60             | 32.9    | 28.2                  | 6.5                  | 21.7                | 78.1                | 55.9     | 59.8                  | 7.4                  | 52.4                | 188.7               |
| 65             | 31.0    | 26.6                  | 6.5                  | 20.1                | 78.3                | 52.6     | 56.3                  | 7.4                  | 48.9                | 190.9               |
| 70             | 29.4    | 25.1                  | 6.5                  | 18.6                | 78.3                | 49.8     | 53.3                  | 7.4                  | 45.9                | 192.7               |
| 75             | 27.9    | 23.9                  | 6.5                  | 17.4                | 78.2                | 47.3     | 50.6                  | 7.4                  | 43.2                | 194.3               |
| 80             | 26.6    | 22.7                  | 6.5                  | 16.2                | 77.9                | 45.0     | 48.1                  | 7.4                  | 40.7                | 195.6               |
| 85             | 25.4    | 21.7                  | 6.5                  | 15.2                | 77.6                | 43.0     | 46.0                  | 7.4                  | 38.6                | 196.7               |
| 90             | 24.3    | 20.8                  | 6.5                  | 14.3                | 77.2                | 41.1     | 44.0                  | 7.4                  | 36.6                | 197.6               |
| 95             | 23.3    | 20.0                  | 6.5                  | 13.5                | 76.7                | 39.4     | 42.2                  | 7.4                  | 34.8                | 198.4               |
| 100            | 22.4    | 19.2                  | 6.5                  | 12.7                | 76.1                | 37.9     | 40.6                  | 7.4                  | 33.2                | 199.0               |
| 105            | 21.6    | 18.5                  | 6.5                  | 12.0                | 75.4                | 36.5     | 39.1                  | 7.4                  | 31.7                | 199.4               |
| 110            | 20.8    | 17.8                  | 6.5                  | 11.3                | 74.7                | 35.2     | 37.7                  | 7.4                  | 30.3                | 199.8               |
| 115            | 20.1    | 17.2                  | 6.5                  | 10.7                | 74.0                | 34.0     | 36.4                  | 7.4                  | 29.0                | 200.0               |
| 120            | 19.5    | 16.7                  | 6.5                  | 10.2                | 73.2                | 32.9     | 35.2                  | 7.4                  | 27.8                | 200.2               |
| 125            | 18.9    | 16.1                  | 6.5                  | 9.6                 | 72.3                | 31.9     | 34.1                  | 7.4                  | 26.7                | 200.2               |
| 130            | 18.3    | 15.7                  | 6.5                  | 9.2                 | 71.5                | 30.9     | 33.1                  | 7.4                  | 25.7                | 200.2               |

5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation

6.5 L/s 78.3 m<sup>3</sup> 93.58 m

100-year Qattenuated 100-year Max. Storage Required Est. 100-year Storage Elevation

11.3 L/s 200.0 m<sup>3</sup> 94.26 m

#### Notes:

- Required storage volumes calculated using the average Q release rate within the tank Flow from the storage tank assumes maximum Q Release at the tank obvert

2023-06-29

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>†</sup> Q<sub>release</sub> = Release rate per Tempest LMF Flow Curve

STM159 Area ID

Available Sub-surface Storage 48.75 161.53

> Total Subsurface Storage (m<sup>3</sup>) 210.3 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

|                     |       | Surface Storage   |                |         | Surfa             | ice and Sub         | surface Sto            | rage           |
|---------------------|-------|-------------------|----------------|---------|-------------------|---------------------|------------------------|----------------|
|                     | Stage | Ponding           | h <sub>o</sub> | delta d | V*                | V <sub>acc</sub> ** | Q <sub>release</sub> † | $V_{drawdown}$ |
|                     | (m)   | (m <sup>2</sup> ) | (m)            | (m)     | (m <sup>3</sup> ) | (m <sup>3</sup> )   | (L/s)                  | (hr)           |
| Orifice INV         | 93.17 |                   | 0.00           |         |                   | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 93.22 |                   | 0.05           | 0.05    |                   | 0.0                 | 2.7                    | 0.00           |
| Storage Chamber OBV | 94.36 |                   | 1.19           | 1.14    | 210.3             | 210.3               | 13.0                   | 4.49           |
|                     |       |                   |                |         |                   |                     |                        |                |
|                     |       |                   |                |         |                   |                     |                        |                |
|                     |       |                   |                |         |                   |                     |                        |                |
|                     |       |                   |                |         |                   |                     |                        |                |
|                     |       |                   |                |         |                   |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

<sup>†</sup> Q<sub>release</sub> = Release rate calculated from orifice equation

| Orifice Location | STM159 | Dia  | 75 |
|------------------|--------|------|----|
| Area             | 0.18   | 0.25 |    |
| C                | 0.79   | 0.71 |    |

Total Area C 0.43 ha

0.74 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                         | 5-year       |                                |                               |                              |                                          | 100-year     |                                |                               |                              |                                          |
|-------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|
| t <sub>c</sub><br>(min) | i<br>(mm/hr) | Q <sub>actual</sub> ‡<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) | i<br>(mm/hr) | Q <sub>actual</sub> ‡<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) |
| 14                      | 87.4         | 77.6                           | 6.7                           | 70.9                         | 59.0                                     | 149.5        | 165.9                          | 7.8                           | 158.1                        | 131.6                                    |
| 20                      | 70.3         | 62.4                           | 6.7                           | 55.7                         | 66.8                                     | 120.0        | 133.2                          | 7.8                           | 125.3                        | 150.4                                    |
| 30                      | 53.9         | 47.9                           | 6.7                           | 41.2                         | 74.2                                     | 91.9         | 102.0                          | 7.8                           | 94.1                         | 169.4                                    |
| 40                      | 44.2         | 39.2                           | 6.7                           | 32.6                         | 78.1                                     | 75.1         | 83.4                           | 7.8                           | 75.6                         | 181.4                                    |
| 50                      | 37.7         | 33.4                           | 6.7                           | 26.8                         | 80.3                                     | 64.0         | 71.0                           | 7.8                           | 63.1                         | 189.4                                    |
| 60                      | 32.9         | 29.3                           | 6.7                           | 22.6                         | 81.3                                     | 55.9         | 62.0                           | 7.8                           | 54.2                         | 195.1                                    |
| 70                      | 29.4         | 26.1                           | 6.7                           | 19.4                         | 81.5                                     | 49.8         | 55.3                           | 7.8                           | 47.4                         | 199.2                                    |
| 80                      | 26.6         | 23.6                           | 6.7                           | 16.9                         | 81.2                                     | 45.0         | 49.9                           | 7.8                           | 42.1                         | 202.1                                    |
| 90                      | 24.3         | 21.6                           | 6.7                           | 14.9                         | 80.4                                     | 41.1         | 45.6                           | 7.8                           | 37.8                         | 204.1                                    |
| 100                     | 22.4         | 19.9                           | 6.7                           | 13.2                         | 79.3                                     | 37.9         | 42.1                           | 7.8                           | 34.2                         | 205.4                                    |
| 110                     | 20.8         | 18.5                           | 6.7                           | 11.8                         | 77.9                                     | 35.2         | 39.1                           | 7.8                           | 31.2                         | 206.1                                    |
| 120                     | 19.5         | 17.3                           | 6.7                           | 10.6                         | 76.4                                     | 32.9         | 36.5                           | 7.8                           | 28.7                         | 206.4                                    |
| 130                     | 18.3         | 16.2                           | 6.7                           | 9.6                          | 74.6                                     | 30.9         | 34.3                           | 7.8                           | 26.5                         | 206.3                                    |
| 140                     | 17.3         | 15.3                           | 6.7                           | 8.7                          | 72.7                                     | 29.2         | 32.4                           | 7.8                           | 24.5                         | 205.9                                    |
| 150                     | 16.4         | 14.5                           | 6.7                           | 7.8                          | 70.6                                     | 27.6         | 30.6                           | 7.8                           | 22.8                         | 205.2                                    |
| 160                     | 15.6         | 13.8                           | 6.7                           | 7.1                          | 68.5                                     | 26.2         | 29.1                           | 7.8                           | 21.3                         | 204.3                                    |
| 170                     | 14.8         | 13.2                           | 6.7                           | 6.5                          | 66.2                                     | 25.0         | 27.8                           | 7.8                           | 19.9                         | 203.2                                    |
| 180                     | 14.2         | 12.6                           | 6.7                           | 5.9                          | 63.8                                     | 23.9         | 26.5                           | 7.8                           | 18.7                         | 201.8                                    |
| 190                     | 13.6         | 12.1                           | 6.7                           | 5.4                          | 61.4                                     | 22.9         | 25.4                           | 7.8                           | 17.6                         | 200.3                                    |
| 200                     | 13.0         | 11.6                           | 6.7                           | 4.9                          | 58.9                                     | 22.0         | 24.4                           | 7.8                           | 16.6                         | 198.7                                    |
| 210                     | 12.6         | 11.1                           | 6.7                           | 4.5                          | 56.3                                     | 21.1         | 23.5                           | 7.8                           | 15.6                         | 196.9                                    |

6.7 L/s 5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation 81.5 m<sup>3</sup> 93.66 m

13.0 L/s 100-year Q<sub>attenuated</sub> 100-year Max. Storage Required Est. 100-year Storage Elevation 206.4 m<sup>3</sup> 94.34 m

#### Notes:

- Flow from the storage tank assumes maximum Q Release at the tank obvert

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>-</sup> Required storage volumes calculated using the average Q release rate within the tank

Area ID STM149 Available Sub-surface Storage

Total Subsurface Storage (m<sup>3</sup>)

74.8 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

| _                   |        | Sı      | urface Stora   | ge      | Surfa | ce and Sub          | surface Sto            | rage           |
|---------------------|--------|---------|----------------|---------|-------|---------------------|------------------------|----------------|
|                     | Stage  | Ponding | h <sub>o</sub> | delta d | V*    | V <sub>acc</sub> ** | Q <sub>release</sub> + | $V_{drawdown}$ |
|                     | (m)    | (m²)    | (m)            | (m)     | (m³)  | (m³)                | (L/s)                  | (hr)           |
| Orifice INV         | 92.84  |         | 0.00           |         |       | 0.0                 | 0.0                    | 0.00           |
| Storage Chamber INV | 92.93  |         | 0.09           | 0.09    |       | 0.0                 | 32.2                   | 0.00           |
| Storage Chamber OBV | 94.07  |         | 1.23           | 1.14    | 74.8  | 74.8                | 119.1                  | 0.17           |
|                     |        |         |                |         |       |                     |                        |                |
|                     |        |         |                |         |       |                     |                        |                |
|                     |        |         |                |         |       |                     |                        |                |
|                     |        |         |                |         |       |                     |                        |                |
|                     | * \ /_ |         |                |         |       |                     |                        |                |

<sup>\*</sup> V=Incremental storage volume

 
 Orifice Location
 STM149
 Dia
 225

 Area C
 0.18 0.78
 0.24 0.74

Total Area 0.42 ha

C 0.76 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

|                | 5-year  |                       |                      |                     |                     | 100-year |                       |                      |                     |                     |
|----------------|---------|-----------------------|----------------------|---------------------|---------------------|----------|-----------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> | i        | Q <sub>actual</sub> ‡ | Q <sub>release</sub> | Q <sub>stored</sub> | $V_{\text{stored}}$ |
| (min)          | (mm/hr) | (L/s)                 | (L/s)                | (L/s)               | (m³)                | (mm/hr)  | (L/s)                 | (L/s)                | (L/s)               | (m³)                |
| 14             | 87.4    | 77.2                  | 54.3                 | 22.8                | 19.0                | 149.5    | 165.0                 | 75.7                 | 89.3                | 74.4                |
| 20             | 70.3    | 62.1                  | 54.3                 | 7.7                 | 9.3                 | 120.0    | 132.4                 | 75.7                 | 56.8                | 68.1                |
| 25             | 60.9    | 53.8                  | 53.8                 | 0.0                 | 0.0                 | 103.8    | 114.7                 | 75.7                 | 39.0                | 58.5                |
| 30             | 53.9    | 47.6                  | 47.6                 | 0.0                 | 0.0                 | 91.9     | 101.4                 | 75.7                 | 25.7                | 46.3                |
| 35             | 48.5    | 42.9                  | 42.9                 | 0.0                 | 0.0                 | 82.6     | 91.2                  | 75.7                 | 15.5                | 32.5                |
| 40             | 44.2    | 39.0                  | 39.0                 | 0.0                 | 0.0                 | 75.1     | 83.0                  | 75.7                 | 7.3                 | 17.5                |
| 45             | 40.6    | 35.9                  | 35.9                 | 0.0                 | 0.0                 | 69.1     | 76.2                  | 75.7                 | 0.6                 | 1.5                 |
| 50             | 37.7    | 33.3                  | 33.3                 | 0.0                 | 0.0                 | 64.0     | 70.6                  | 70.6                 | 0.0                 | 0.0                 |
| 55             | 35.1    | 31.0                  | 31.0                 | 0.0                 | 0.0                 | 59.6     | 65.8                  | 65.8                 | 0.0                 | 0.0                 |
| 60             | 32.9    | 29.1                  | 29.1                 | 0.0                 | 0.0                 | 55.9     | 61.7                  | 61.7                 | 0.0                 | 0.0                 |
| 65             | 31.0    | 27.4                  | 27.4                 | 0.0                 | 0.0                 | 52.6     | 58.1                  | 58.1                 | 0.0                 | 0.0                 |
| 70             | 29.4    | 25.9                  | 25.9                 | 0.0                 | 0.0                 | 49.8     | 55.0                  | 55.0                 | 0.0                 | 0.0                 |
| 75             | 27.9    | 24.6                  | 24.6                 | 0.0                 | 0.0                 | 47.3     | 52.2                  | 52.2                 | 0.0                 | 0.0                 |
| 80             | 26.6    | 23.5                  | 23.5                 | 0.0                 | 0.0                 | 45.0     | 49.7                  | 49.7                 | 0.0                 | 0.0                 |
| 85             | 25.4    | 22.4                  | 22.4                 | 0.0                 | 0.0                 | 43.0     | 47.4                  | 47.4                 | 0.0                 | 0.0                 |
| 90             | 24.3    | 21.5                  | 21.5                 | 0.0                 | 0.0                 | 41.1     | 45.4                  | 45.4                 | 0.0                 | 0.0                 |
| 95             | 23.3    | 20.6                  | 20.6                 | 0.0                 | 0.0                 | 39.4     | 43.5                  | 43.5                 | 0.0                 | 0.0                 |
| 100            | 22.4    | 19.8                  | 19.8                 | 0.0                 | 0.0                 | 37.9     | 41.9                  | 41.9                 | 0.0                 | 0.0                 |
| 105            | 21.6    | 19.1                  | 19.1                 | 0.0                 | 0.0                 | 36.5     | 40.3                  | 40.3                 | 0.0                 | 0.0                 |
| 110            | 20.8    | 18.4                  | 18.4                 | 0.0                 | 0.0                 | 35.2     | 38.9                  | 38.9                 | 0.0                 | 0.0                 |
| 115            | 20.1    | 17.8                  | 17.8                 | 0.0                 | 0.0                 | 34.0     | 37.5                  | 37.5                 | 0.0                 | 0.0                 |

5-year Qattenuated 54.3 L/s 5-year Max. Storage Required 19.0 m<sup>3</sup> Est. 5-year Storage Elevation 93.22 m 

 100-year Q<sub>attenuated</sub>
 119.1 L/s

 100-year Max. Storage Required
 74.4 m³

 Est. 100-year Storage Elevation
 94.06 m

#### Notes:

## Summary of Release Rates and Storage Volumes

| Control Area              | 5-year<br>Release<br>Rate<br>(L/s) | 5-year<br>Required<br>Storage<br>(m³) | 100-Year<br>Release<br>Rate<br>(L/s) | 100-Year<br>Required<br>Storage<br>(m³) | 100-Year<br>Available<br>Storage<br>(m³) |
|---------------------------|------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|
| <b>Unattenuated Areas</b> |                                    |                                       |                                      |                                         |                                          |
| Glenroy Gilbert           | 29.7                               | 0.0                                   | 50.8                                 | 0.0                                     | 0.0                                      |
| Riocan                    | 25.6                               | 0.0                                   | 43.8                                 | 0.0                                     | 0.0                                      |
| Chapman Mills             | 65.4                               | 0.0                                   | 111.9                                | 0.0                                     | 0.0                                      |
| Longfields                | 26.0                               | 0.0                                   | 44.5                                 | 0.0                                     | 0.0                                      |
| Attenuated Areas          |                                    |                                       |                                      |                                         |                                          |
| STM115                    | 46.6                               | 41.4                                  | 69.5                                 | 134.6                                   | 135.1                                    |
| STM126                    | 10.9                               | 38.2                                  | 21.7                                 | 103.2                                   | 105.5                                    |
| STM124                    | 7.6                                | 104.8                                 | 9.5                                  | 272.7                                   | 275.1                                    |
| STM134                    | 86.5                               | 6.9                                   | 141.3                                | 76.2                                    | 79.7                                     |
| STM164                    | 6.5                                | 78.3                                  | 11.3                                 | 200.0                                   | 203.5                                    |
| STM159                    | 6.7                                | 81.5                                  | 13.0                                 | 206.4                                   | 210.3                                    |
| STM149                    | 54.3                               | 19.0                                  | 119.1                                | 74.4                                    | 74.8                                     |
| Total                     | 365.9                              | 370.1                                 | 636.6                                | 1067.6                                  | 1084.1                                   |

<sup>\*\*</sup>V<sub>acc</sub>=Total surface and sub-surface

<sup>†</sup> Q<sub>release</sub> = Release rate calculated from orifice equation

<sup>-</sup> Required storage volumes calculated using the average Q release rate within the tank

<sup>-</sup> Flow from the storage tank assumes maximum Q Release at the tank obvert

Glenroy Gilbert Extension and Riocan Ave

Date: June, 2023 DSEL File: 816

## ICD Sizing (CBs within City ROW)

| Orifice Dia (mm) | Head (m) | Flow (L/s) |  |
|------------------|----------|------------|--|
| 83               | 1.38     | 17.5       |  |
| 94               | 1.38     | 22.4       |  |
| 102              | 1.38     | 26.4       |  |
| 108              | 1.38     | 29.6       |  |
| 127              | 1.38     | 40.9       |  |
| 152              | 1.38     | 58.5       |  |
| 178              | 1.38     | 80.3       |  |

| CB ID  | Area (Ha) | RC   | Design Flow (5yr | ICD Size (mm) |
|--------|-----------|------|------------------|---------------|
| CICB 3 | 0.08      | 0.72 | 16.7             | 83            |
| CB 4   | 0.08      | 0.72 | 16.7             | 83            |
| CB 5   | 0.08      | 0.72 | 16.7             | 83            |
| CB 6   | 0.08      | 0.72 | 16.7             | 83            |
| CB 7   | 0.03      | 0.72 | 6.3              | 83            |
| CB 8   | 0.03      | 0.72 | 6.3              | 83            |
| CB 9   | 0.09      | 0.61 | 15.9             | 83            |
| CB 10  | 0.03      | 0.64 | 5.6              | 83            |
| CB 12  | 0.08      | 0.70 | 16.2             | 83            |
| CB 13  | 0.10      | 0.61 | 17.7             | 83            |
| CB 14  | 0.08      | 0.70 | 16.2             | 83            |

104.2 mm/hr

i T<sub>c</sub> 10.0 min 2023-06.29

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012



#### Estimated Post Development Peak Flow to DICB 1

0.72 ha <-- Sum of Unattenuated Drainage from Future Chapman Mills Drive 0.70 Rational Method runoff coefficient Area C

|                | 10-year |                     |                      |                     |                     |
|----------------|---------|---------------------|----------------------|---------------------|---------------------|
| t <sub>c</sub> | i       | Q <sub>actual</sub> | Q <sub>release</sub> | Q <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)               | (L/s)                | (L/s)               | (m <sup>3</sup> )   |
| 13.9           | 102.3   | 143.3               | 143.3                | 0.0                 | 0.0                 |

Note: Tc = 13.88 min per Design Sheet

Area C 0.01 0.16 0.17 0.01 0.83 0.57 0.74 0.53

0.35 ha <-- Sum of Unattenuated Drainage to Chapman Mills Drive (from Block B) **Total Area** 

0.77 Rational Method runoff coefficient

|                         | 5-year       |                              |                               |                              |                                          |
|-------------------------|--------------|------------------------------|-------------------------------|------------------------------|------------------------------------------|
| t <sub>c</sub><br>(min) | i<br>(mm/hr) | Q <sub>actual</sub><br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) |
| 13                      | .9 87.4      | 65.4                         | 65.4                          | 0.0                          | 0.0                                      |

Note:

Tc = 13.88 min per Design Sheet

#### Design Parameters

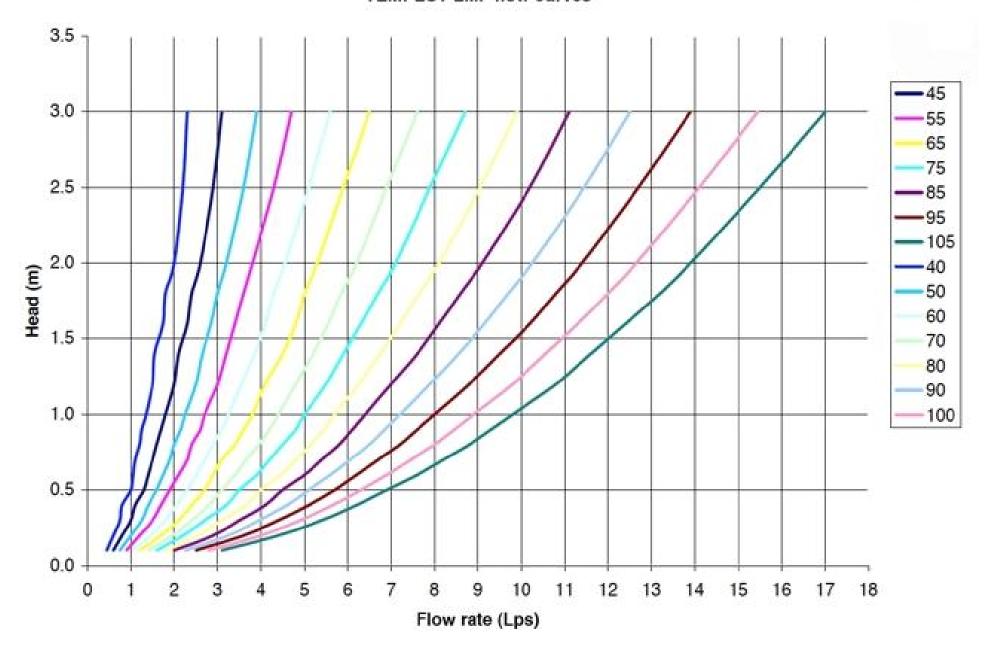
Max Head: 1.380 m 0.2087 m<sup>3</sup>/s Controlled Flow Rate:

#### Calculations

A blockage factor has also been applied.

#### Orifice Flow

 $Q = CA(2gH)^{0.5}$  $A=\pi r^2$ 


where: C = 0.62 A = area of ICD oulet H = maximum depth

Area of ICD required = Diameter of Circular ICD=  $0.06 \text{ m}^2 \\ 0.2870 \text{ m}$ 

287.0 mm

Diameter ICD Provided = 285 mm

# **TEMPEST LMF flow curves**



# The Next Generation in Storm Sewer Inlet Controls





STORM WATER FLOW CONTROL

# THE COST-EFFECTIVE SOLUTION TO YOUR STORM WATER SURCHARGE PROBLEMS

- Conserves sewer system capacity
- System accommodates low to high flows
- Integrated odour and floatable control
- Fast and easy to install and maintain



We build tough products for tough environments®



# THE NEXT GENERATION IN STORM SEWER INLET CONTROLS

# Reduces Sewer Overflows and Basement Backups

Tempest is a family of cost-effective inlet control devices that work together across a series of catch basins to limit the amount of storm water runoff that can enter a combined sewer system during a storm event. Basement backups and sewer overflows are avoided because storm water surcharges are controlled at the sewer inlet and are allowed to remain in catch basins or temporarily above ground.

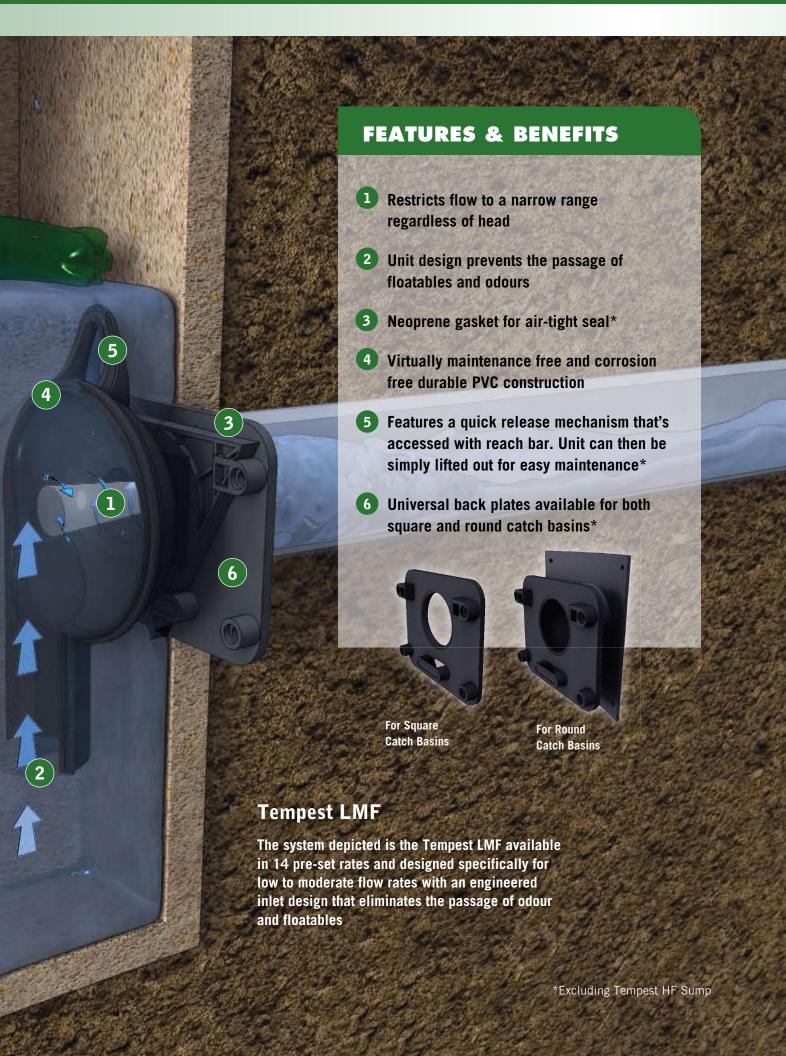
# **Integrated Odour and Floatable Control**

In addition to flow control, Tempest systems can also alleviate sewer system odour emissions as well as prevent floating debris from entering the sewer system.

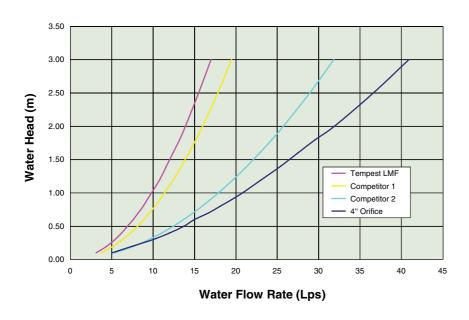
# Wide Range of Models & Pre-set Flow Rates

Available in a wide range of patent pending models and pre-set flow rates,
Tempest systems can accommodate most storm water flow control requirements
from 32 GPM to 270 GPM and beyond. Application specific solutions can also be
engineered to meet your unique needs in both wet and dry catch basin environments.

# **Easy to Install and Maintain**


Constructed from durable PVC, Tempest units are corrosion free and built to last. The Tempest's light weight design accommodates both square and round catch basins and features a universal back plate and interchangeable components with no moving parts that makes the units quick and easy to install over a catch basin outlet pipe.

These devices also include a quick release mechanism to allow easy access for service without the need to drain the installation.


IPEX has been a great partner for us in terms of providing a quality system that meets all requirements and a knowledgeable staff that delivers reliable field support

Kevin Secord Multi-Drain Inc. (Ottawa, Ontario)





# **Tempest Inlet Control Devices restrict flow to** a narrower range than traditional methods regardless of head







## THE TEMPEST FAMILY OF SYSTEMS

#### **TEMPEST LMF**

#### **Restricts:**

- ✓ Flow
- ✓ Odours
- √ Floatables



#### **LOW to MODERATE FLOW RATES**

32 GPM (2 L/s) - 270 GPM (17 L/s)

14 pre-set flow rates

The Tempest LMF system features a vortex inlet design that allows a low flow rate to be set and eliminates the passage of odours and floatables and allows for debris and sediment to collect in the structure.

#### TEMPEST HF & HF SUMP



- ✓ Flow
- ✓ Odours
- √ Floatables



#### **HIGH FLOW RATES**

240 GPM (15 L/s) or greater

5 pre-set flow rates

The standard Tempest HF system allows a near constant discharge rate to be set and eliminates the passage of odours and floatables and allows for debris and sediment to collect in the structure.

The Tempest HF SUMP system is designed for catch basins & manholes in which there is no sump or the outlet pipe is too low to install standard Tempest device.

#### **TEMPEST MHF**

**Restricts:** ✓ Flow





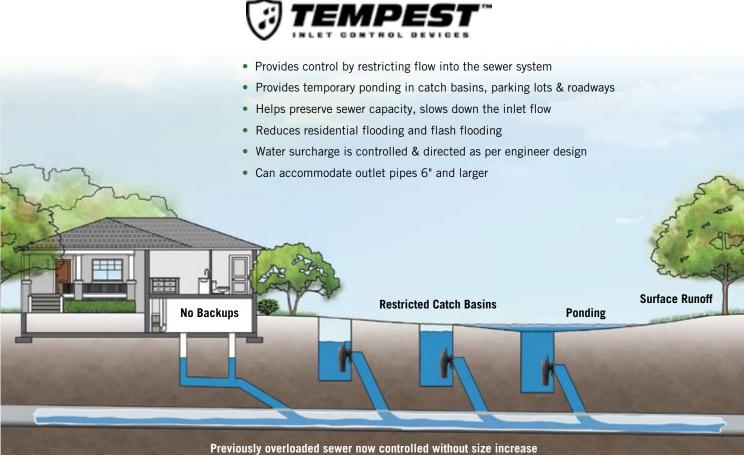
#### **MEDIUM TO HIGH FLOW RATES**

143 GPM (9L/s) or greater

Specified pre-set flow rates

The Tempest MHF is a standard orifice plate or plug device designed to allow a specified flow volume through the outlet pipe at a specified head.




## **PROBLEM: SURCHARGED SEWER SYSTEMS**



During heavy rain events, storm sewers can become overloaded causing sewer backups into residential basements and onto urban environments and streets. These events cause significant environmental and property damage and are all too common in older sections of municipalities where combined, undersized sewer systems often end up discharging a mixture of storm water runoff and sanitary wastewater into homes, streets and lakes when sewer capacities exceed historical norms.

Traditional approaches to overcoming these challenges have been expensive, disruptive and time consuming for municipalities and the private sector.

# **SOLUTION: TEMPEST INLET CONTROL SYSTEMS**



#### **CUSTOMER SERVICE CENTER**

#### **IPEX USA LLC**

2441 Royal Windsor Drive Mississauga, Ontario L5J 4C7 Phone: (905) 403-0264 Toll Free: (800) 463-9572

Fax: (905) 403-9195

www.ipexamerica.com

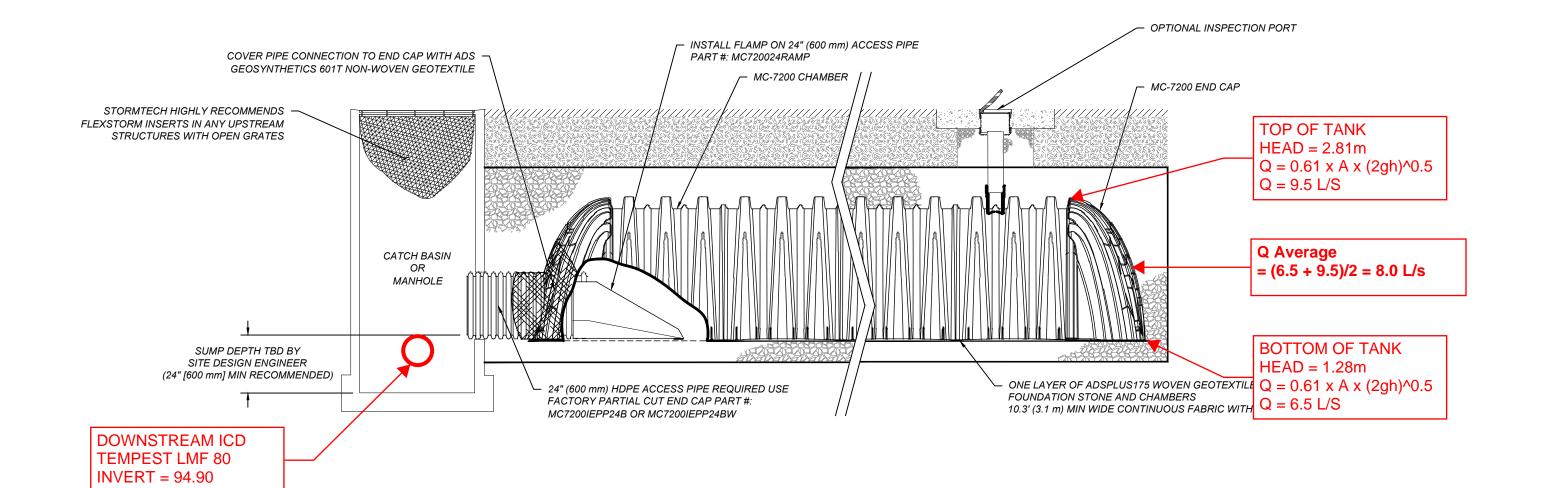
#### **About the IPEX Group of Companies**

As leading suppliers of thermoplastic piping systems, the IPEX Group of Companies provides our customers with some of the largest and most comprehensive product lines. All IPEX products are backed by more than 50 years of experience. With state-of-the-art manufacturing facilities and distribution centers across North America, we have established a reputation for product innovation, quality, end-user focus and performance.

Markets served by IPEX group products are:

- · Electrical systems
- Telecommunications and utility piping systems
- PVC, CPVC, PP, ABS, PEX, FR-PVDF and PE pipe and fittings (1/4" to 48")
- Industrial process piping systems
- Municipal pressure and gravity piping systems
- Plumbing and mechanical piping systems
- PE Electrofusion systems for gas and water
- · Industrial, plumbing and electrical cements
- · Irrigation systems

Products manufactured by IPEX Inc. and distributed in the United States by IPEX USA LLC.


TEMPEST™ is a trademark of IPEX Branding Inc.

This literature is published in good faith and is believed to be reliable. However, it does not represent and/or warrant in any manner the information and suggestions contained in this brochure. Data presented is the result of laboratory tests and field experience.

A policy of ongoing product improvement is maintained. This may result in modifications of features and/or specifications without notice.





