Report

Project: 135925-6.4.3

BARRETT LANDS - BLOCK 178 SERVICING BRIEF

Table of Contents

1	INTRO	DUCTIO	ON	1
	1.1	Guidel	ines and Standards	1
	1.2	Pre-Co	nsultation Meeting	2
	1.3	Enviro	nmental Issues	2
	1.4	Geote	chnical Concerns	2
2	WATE	R DISTI	RIBUTION	3
	2.1	Existin	g Conditions	3
	2.2	Design	Criteria	3
		2.2.1	Water Demands	3
		2.2.2	System Pressures	3
		2.2.3	Fire Flow Rate	4
		2.2.4	Boundary Conditions	4
		2.2.5	Hydraulic Model	4
	2.3	Propos	sed Water Plan	4
		2.3.1	Hydraulic Analysis	4
		2.3.2	Summary of Results	5
		2.3.3	SUC Zone Re-configuration	5
3	WAST	EWATE	R	6
	3.1	Existin	g Conditions	6
		3.1.1	Verification of Existing Sanitary Sewer Capacity	6
	3.2	Propos	sed Sewers	6
		3.2.1	Design Flow:	6
		3.2.2	Population Density:	6
4	SITE S	TORM	VATER MANAGEMENT	7
	4.1	Object	ive	7
	4.2	Existin	g Conditions	7
	4.3	Design	Criteria	7
	4.4	Systen	n Concept	8
		4.4.1	Dual Drainage Design	8
		4.4.2	Proposed Minor System	8
	4.5	Storm	vater Management	8
		4.5.1	Water Quality Control	8

		4.5.2 Wa	ter Quantity Control	S
		4.5.3 2 Y	ear Ponding	10
		4.5.4 100) year + 20% Stress Test	10
		4.5.5 Op	en-Channel Drainage Corridor	11
	4.6	Storm Hyd	aulic Grade Line	12
5	SOU	RCE CONTRO	DLS	13
	5.1	General		13
	5.2	Lot Grading]	13
	5.3	Roof Leade	ers	13
	5.4	Vegetation		13
6	CON	/EYANCE CO	ONTROLS	14
	6.1	General		14
	6.2	Flat Vegeta	ated Swales	14
	6.3	Catchbasin	s	14
	6.4	Pervious La	andscaped Area Drainage	14
7	SEDI	MENT AND E	ROSION CONTROL PLAN	15
	7.1	General		15
	7.2	Trench Dev	vatering	15
	7.3	Bulkhead E	Barriers	15
	7.4	Seepage B	arriers	15
	7.5	Surface Str	ructure Filters	15
	7.6	Stockpile M	lanagement	16
8	ROAI	OS AND NOIS	SE ATTENUATION	17
	8.1	Aircraft So	und Levels	17
9	SOIL	S		18
10	REC(MMENDATI	ONS	10

List of Appendices

APPENDIX A

AOV Plan of Subdivision for the Barrett Lands Phase 3

Site Plan for Barrett Block 178

135925-001 General Plan of Services

City of Ottawa Pre-Consultation Meeting Notes

APPENDIX B

Water Distribution Model

APPENDIX C

Sanitary Sewer Design Sheet

135925-400 Sanitary Drainage Plan

Barret Lands Phase 3 Sanitary Design Sheet

Barret Lands Phase 3 Sanitary Drainage Area Plan

APPENDIX D

Storm Sewer Design Sheet

135925-500 Storm Drainage Plan

135925-600 Ponding Plan

Barret Lands Phase 3 Storm Design Sheet Barret Lands Phase 3 Storm Drainage Area Plan Modified Rational Method on-site SWM calculations

On-site Underground Storage System

Storm HGL Calculations

Barret Lands Phase 3 HGL Reference Overflow Depth/Capacity Calculation

Temporary Orifice Sizing

Sample Runoff Coefficient Calculations

Minor system release rate (Barrett Lands Phase 3)

APPENDIX E

135925-900 Erosion and Sediment Control Plan

135925-200 Grading Plan

February 2023 iii

1 INTRODUCTION

Barrett Lands Block 178 is located in the northern portion of the Leitrim Development Area (LDA) and is part of the Barrett Lands subdivision. IBI Group Professional Services Inc. (IBI Group) has been retained by Barrett Co-Tenancy to provide professional engineering services for Block 178. The subject site is approximately 1.28 ha and consists of 50 townhouse units. The site consists of freehold frontage onto an 8.5m and a 6.0m wide private lane. There will be a common elements agreement in place for the shared elements of the site.

Block 178 is bounded by Barrett Farm Drive to the North, Barrett Lands Phase 3 lands to the west, Cemetery lands to the south and a future commercial to the east. Refer to key plan below for block location.

The proposed servicing design conforms to current City of Ottawa and MECP design criteria, and no pre-consultation meetings were requested from the South Nation Conservation (SNC) or the Ontario Ministry of Environment, Conservation and Parks (MECP).

1.1 Guidelines and Standards

This evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01, the June 2018 Technical Bulletin ISTB-2018-04, October 2019 Technical Bulletin 2019-01, and the July Technical Bulletin 2019-02.

It also considers the City of Ottawa Water Distribution Design Guidelines (OWDDG), and the 2010 Technical Bulletin 2010-02, the 2014 Technical Bulletin 2014-02, the 2018 Technical Bulletin 2018-02 and the 2020 Technical Bulletin 2020-02.

All specifications are as per current City of Ottawa standards and specifications, and Province of Ontario (OPSS/D) standards, specifications and drawings.

February 2023

1.2 Pre-Consultation Meeting

The City of Ottawa hosted a virtual pre-consultation meeting on August 18th, 2021. Notes of the meeting are provided in **Appendix A**. There were no major engineering concerns flagged in this meeting. The City of Ottawa Servicing Study Checklist has also been included in **Appendix A**.

1.3 Environmental Issues

There are no environmental issues related to this site, as all environmental concerns were dealt with as part of the applicants Barrett Lands Phase 3 subdivision approval.

All existing watercourses or drainage features associated with this site have been addressed through SNCA permit number 2021-GLO-R234.

1.4 Geotechnical Concerns

Golder was retained by Barrett Co-Tenancy to review the grading plan to ensure that the recommendations with its original report for the subject area. There were no particular design concerns for this development.

2 WATER DISTRIBUTION

2.1 Existing Conditions

There is an existing 250mm watermain in Barrett Farm Drive in Barrett Lands Phase 3 to the north of the site, which is proposed to continue east on Barrett Farm Drive in Barrett Phase 3 to the northeast of the site. The proposed development was considered in the water model for the Barrett Phase 2 and 3 developments.

2.2 Design Criteria

2.2.1 Water Demands

Block 178 consists of 50 townhouse units. Per unit population density and consumption rates are taken from **Tables 4.1** and **4.2** of the Ottawa Design Guidelines – Water Distribution and are summarized as follows:

Semi Detach/Townhouse
 Average Day Demand
 Peak Daily Demand
 Peak Hour Demand
 2.7 person per unit
 280 l/cap/day
 700 l/cap/day
 1,540 l/cap/day

A water demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

Average Day 0.44 l/s
Maximum Day 1.10 l/s
Peak Hour 2.42 l/s

2.2.2 System Pressures

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure Minimum system pressure under peak hour demand conditions shall

not be less than 276 kPa (40 psi).

Fire Flow During the period of maximum day demand, the system pressure shall

not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure Maximum pressure at any point in the distribution system in

unoccupied areas shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code the maximum pressure should not exceed 552 kPa (80 psi) in occupied areas. Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rate

A Fire Underwriters Survey has been carried out on a representative block to determine the fire flow for the site. The calculations result in a fire flow of 12,000 l/min; a copy of the FUS calculation is included in **Appendix B**.

2.2.4 Boundary Conditions

The City of Ottawa has provided hydraulic boundary conditions two locations in Barrett Lands Phase 3. The City has provided existing condition and SUC Zone reconfiguration boundary conditions. The existing condition has the highest maximum HGL value and is used in the analysis to determine maximum pressure while the SUC Zone reconfiguration value has the lower values for peak hour and fire and is used in the analysis. A copy of the Boundary Condition is included in **Appendix B** and summarized as follows:

		HYDRAULIC HEAD			
С	RITERIA	CONNECTION 1 Private Lane 1 @ Barrett Farm Drive	CONNECTION 2 Private Lane 1 @ Barrett Farm Drive	CONNECTION 3* Private Lane 2 @ Barrett Farm Drive	
	Max HGL (Basic Day)	154.6 m	154.6 m	154.6 m	
Existing	Peak Hour	144.7 m	144.7 m	144.7 m	
Conditions	Max Day + Fire (12,000 l/m)	118.3 m	121.5 m	119.0 m	
	Max HGL (Basic Day)	147.5 m	147.5 m		
SUC	Peak Hour	145.8m	145.8 m		
Reconfiguration	Max Day + Fire (12,000 l/m)	130.2 m	132.3 m		

^{*}Connection 3 if required; hydraulic heads are interpolated.

2.2.5 Hydraulic Model

A computer model for the Block 178 water distribution system has been developed using the InfoWater SA program. The model includes the boundary conditions provided by the City of Ottawa and a portion of Barrett Lands Phase 3 watermains.

2.3 Proposed Water Plan

2.3.1 Hydraulic Analysis

The hydraulic model was run under basic day conditions with the existing boundary condition to determine the maximum pressure for the site. The minimum pressure for the site is determined in the peak hour analysis using the SUC Zone reconfiguration boundary condition. There are two fire hydrants on this site, and they are represented by nodes S11-515 and S11-520 in the model; the model was run under the max day plus fire (12,000 l/min) SUC Zone Reconfiguration Boundary condition to determine the design fire flow at the hydrant locations. Results of the analysis for the Block 178 site are summarized in Section 2.3.2 and the water model schematic and model results are included in **Appendix B**.

2.3.2 Summary of Results

Results of the hydraulic analysis for Block 178 are summarized as follows:

SCENARIO	EXISTING*	suc
Basic Day Pressure (kPa)	509.56 - 527.20	439.98 – 451.74
Peak Hour Pressure (kPa)	412.54 – 430.18	423.32 – 435.08
Minimum Residual Pressure (kPa)	138.09	187.41
*Includes a 3 rd connection and 250mm diam wa	termain on Private I	ane No. 1

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure All nodes have basic day pressure below 552 kPa for existing

conditions; therefore, pressure reducing control is not required for this

site.

Minimum Pressure All nodes exceed the minimum requirement of 276 kPa during peak

hour conditions for the SUC Zone configuration.

Fire Flow The model was run with a fire flow of 12,000 l/min under the SUC

Zone Reconfiguration. The residual pressures at fire hydrant locations all exceed the minimum requirement of 140 kPa under the

SUC Reconfiguration.

2.3.3 SUC Zone Re-configuration

In advance of the SUC Zone Re-configuration, a third connection has been added to Barrett Farm Drive and the watermain size on Private Lane No.1 has been increased to 250mm diameter as discussed with the City of Ottawa. These design changes are necessary to meet the minimum residual pressures during a fire flow event as per City of Ottawa criteria under the existing conditions. Prior to construction, IBI is to follow up with the City of Ottawa Water group regarding the timelines of the SUC Zone Re-configuration. Should the SUC Zone Re-configuration take place prior to commence work notice, the third connection would not be necessary and the watermain size on Private Lane No. 1 will be reduced to 200mm diameter as noted on the civil drawings.

3 WASTEWATER

3.1 Existing Conditions

The Leitrim Pump Station is the wastewater outlet for all developed lands within the LDA, including the subject property. In 2002, the City constructed the station, associated forcemains and outlet sewers in Bank Street and Conroy Road. Sewage from the LDA outlets to the Conroy Road Trunk Sewer eventually discharging to a sewage treatment plant located near the Ottawa River. The Barrett Lands Phase 1 report prepared by IBI Group dated March 2017 confirmed that the existing 375mm sewer in Kelly Farm Drive has sufficient capacity for the Barret Lands at Findlay Creek property inclusive of the proposed development.

3.1.1 Verification of Existing Sanitary Sewer Capacity

There is an existing 200mm sanitary sewer in Barrett Farm Drive, which connects to the 375 mm diameter sub-trunk sewer in Kelly Farm Drive. In the previous Barrett Lands Phase 3 report, the design for Block 178 was for 84 apartment units, with an allocated population of 159.6 people, a site area of 1.28 and a total flow of 2.26 L/s, see **Appendix C** for excerpts from the Phase 3 report.

For the subject development, it is proposed to build a total of 50 units – 14 townhomes and 36 back-to-back townhouse units and a future commercial site. The new total proposed population is 126.0 people, area 1.28 Ha and a total flow of 1.88L/s. This represents a total peaking flow decrease of **0.38L/s** when compared to the Phase 3 allocation. The decrease in flow on the existing system from the subject development is considered to have no negative impacts on downstream infrastructure.

3.2 Proposed Sewers

All on-site sewers have been designed to City of Ottawa and MOE design criteria which include but are not limited to the below listed criteria. A copy of the detailed sanitary tributary area plan 400 and the sanitary sewer design sheets are included in **Appendix C** illustrate the population densities and sewers which provide the necessary outlets.

3.2.1 Design Flow:

Average Residential Flow - 280 l/cap/day

Peak Residential Factor - Harmon Formula

Infiltration Allowance - 0.33 l/sec/Ha

Minimum Pipe Size - 200mm diameter

3.2.2 Population Density:

Semi-Detached & Townhouse - 2.7 person/uni

4 SITE STORMWATER MANAGEMENT

4.1 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for the Block 178 development. The design includes the assignment of inlet control devices, on-site storage, maximum depth of surface ponding and hydraulic grade line analysis. The evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01 and the June 2018 Technical Bulletin ISTB-2018-04.

4.2 Existing Conditions

The subject development is tributary to the Barrett Farm Drive storm sewer, which was approved for construction for the Barrett Lands Phase 3 development. Subsequent to the approval of Phase 3, the stormwater management analysis for Barrett Lands Phase 3 included an updated to the subject site's tributary allocation into the Barrett Farm Drive storm sewer. As part of that approval, a 675mm diameter storm sewer was approved for the subject block. The subject block is referenced as "R11304" in the Barrett Lands Phase 3 design. A copy of the design sheet, and approved drainage area plan for Phase 3 have been included in **Appendix D**.

Additionally, the Barrett Lands Phase 3 stormwater management identified a minor system restriction for this site to be the 5-year modelled flow of **234 l/s**. An excerpt from the Phase 3 report has been included in **Appendix D**.

4.3 Design Criteria

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

Design Storm

1:2-year return (Ottawa)

(It should be noted that the overall Barrett Lands Site utilized 1:5 year return storm for minor system release from the subject site, further details are provided in Section 4.4 and 4.5.2)

Rational Method Sewer Sizing

Initial Time of Concentration
 10 minutes

Runoff Coefficients

Front Yards
 Rear Yards
 C = 0.77
 C = 0.52

Pipe Velocities
 0.80 m/s to 3.0 m/s

Minimum Pipe Size
 250 mm diameter
 (200 mm CB Leads)

A sample calculation of run-off coefficients has been provided in Appendix D. The runoff coefficients used are based on the actual footprint in the site plan. Zoning setbacks do not apply to the site plan. The values calculated are lower than the values used, thus a conservative approach has been provided in this analysis.

4.4 System Concept

According to the Barrett Lands Phase 3 report prepared by IBI Group dated April 2022, the development of the adjacent downstream properties included the expected stormwater servicing needs of the subject property. The existing storm sewers constructed adjacent to the site were oversized to provide the needed capacity for minor storm runoff from the subject site. Minor storm runoff from the subject site will connect to the existing 675mm Ø sewer stub that connects to the existing 1050mmØ trunk storm sewer in Barrett Farm Drive.

4.4.1 Dual Drainage Design

The dual drainage system proposed for the subject site will accommodate both major and minor stormwater runoff. Minor flow from the subject site will be conveyed through the storm sewer network and discharge into the existing 675mm Ø sewer stub that connects to the existing 1050mm Ø trunk storm sewer in Barrett Farm Drive.

The balance of the surface flow not captured by the minor system will be conveyed via the major system. Where possible, storage will be provided in surface sags or low points within the roadway. Storage will also be provided within oversized storm pipes. Once the maximum storage is utilized, the excess flow will cascade to the next downstream street sag. Based on Phase 3 information, the 100-year overflow allocation related to the subject development lands is 350 l/s and the 100 year + 20% stress test allocation is 476 l/s. Major flow from street segments will overflow to the major flow block connecting to adjacent Barrett Lands Phase 3 at Delphinium Crescent to the west and to Barrett Farm Drive to the North, once on-site surface ponds have reach capacity.

4.4.2 Proposed Minor System

Using the criteria identified in Section 4.3, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan is included in **Appendix D**. The general plan of services, depicting all on-site storm sewers can be found in **Appendix A**.

The owner of the site will be responsible for regular maintenance of the on-site sewers, catch basins and inlet control devices (ICDs). Maintenance includes but is not limited to the cost of regular cleaning of the structures and ICDs as necessary. The site owner will also be responsible for replacement of damaged or missing catch basin structures, grates or ICDs as needed.

4.5 Stormwater Management

4.5.1 Water Quality Control

The subject site is part of the larger development referred to as the Leitrim Development Area. The stormwater management strategy was outlined in the following reports:

- Addendum to Leitrim Development Area Stormwater Management Environmental Study Report and Pre-Design Volumes 1 and II (IBI Group, July 2005);
- Design Brief and Amendment to MOE Certificate of Approval Findlay Creek Village Stormwater Facility (IBI Group, July 2005);
- Final Serviceability Report Leitrim Development Area City of Ottawa (IBI Group, March 2007).
- 2016 Final Updated Serviceability Report (Class EA OPA76 Areas 8a, 9a and 9b) Leitrim Development Area (IBI Group, September 2016)

The subject site is part of the drainage area which ultimately discharges into the existing Findlay Creek Village Stormwater Facility. The Findlay Creek Village Stormwater Facility was constructed

in 2006 and provides water quality control to an Enhanced Level of Protection according to MOE Stormwater Management Planning and Design Guidelines (March 2003).

4.5.2 Water Quantity Control

The subject site will be limited to a maximum minor system release rate of **234** L/s based on the Barrett Lands Phase 3 Servicing Brief, reference information is provided within **Appendix D**. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations, surface storage where possible and underground storage in oversized storm pipes where required.

The restricted flows on the private residential site and future commercial site were calculated based on their respective areas. The following assumptions were used for the future commercial block: assume site storage of 12m3 and runoff coefficient of 0.8.

```
\begin{aligned} &\mathbf{Q}_{\text{restrictedPrivate}} = 234 \text{ L/s x } (A_{\text{Private}} / (A_{\text{Private}} + A_{\text{Commercial}})) \\ &\mathbf{Q}_{\text{restrictedPrivate}} = 234 \text{ L/s x } (1.06 \text{ ha} / (1.06 + 0.16) \text{ ha}) \\ &\mathbf{Q}_{\text{restrictedPrivate}} = 203.31 \text{ L/s} \\ &\mathbf{Q}_{\text{restrictedCommercial}} = 30.19 \text{ L/s} \end{aligned}
```

There are 2 small locations where water is left to discharge uncontrolled from the subject property. The uncontrolled release can be calculated as follows:

Uncontrolled Release, where Quncontrolled = 2.78(C x i100yr x Auncontrolled)

ВHа
.56
nin
)

The Maximum allowable release rate from the site can be determined by subtracting the Uncontrolled release rate from the minor system restricted flow rate.

```
Q_{max} = Q_{restricted} - Q_{uncontrolled}
Q_{max} = 203.31 \text{ L/s} - 23.83 \text{L/s}
Q_{max} = 179.48 \text{ L/s}
```

Surface flows in excess of the site's allowable release rate will be stored on site in strategic surface storage areas or oversized underground pipes and gradually released into the minor system to respect the site's allowable release rate. The maximum surface retention depth located within the developed areas will be limited to 300mm during a 1:100-year event as show on the ponding plan located in **Appendix D** and grading plans located in **Appendix E**. Overland flow routes will be provided in the grading to permit emergency overland flow.

The modified rational method was used to evaluate the on-site stormwater management. There are two uncontrolled areas on this site. The flows are calculated above. Therefore, the total restricted flow rate through the minor system will be the design flow rate of **179.48** I/s. This will be achieved by the used of Inlet Control Devices (ICD's) placed in all on-site catchbasins. A summary of the ICD's, their corresponding storage requirements, storage availability, and associated drainage areas has been provided below.

Submitted to: BARETT CO-TENANCY

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100 YEAR STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	SUB-SURFACE STORAGE PROVIDED (m³)	100yr OVERFLOW (m³)
S20A	15.00	18.68	20.59	0.00	0.00
S10	33.00	21.75	0.32	0.00	21.43*
S4	26.00	48.04	1.16	0.00	46.88
S20B	10.00	5.45	1.41	0.00	4.04
FUT COM	30.69	29.79	12.00	0.00	17.79
S5	25.00	78.31	1.32	0.00	76.99
S6	50.00	138.36	9.71	0.00	128.65
R6	20.00	163.78	4.38	6.98	152.42*
TOTAL	179.00				173.85

^{*}Overflow only during major storm events, directed to Delphinium Crescent and Barrett Farm Drive with no negative impact on downstream storm sewer system

4.5.3 2 Year Ponding

A review of the 2-year ponding has been completed using the modified rational method. A minimum Tc of 10min has been used. Where volumes are calculated as a negative value, 0.0m3 has been shown. A summary of each drainage area has been provided below.

DRAINAGE AREA	Total 2-Year Ponding Volume (m3)	Comment
S4	0.0	-
S5	0.0	-
S6	0.75	Negligible volume of ponding during 2-year event
S10	0.0	-
S20A	0.22	Negligible volume of ponding during 2-year event
S20B	0.0	-
R6	8.98	This area is controlled at RYCB7, and there is 6.98m3 of sub-surface storage provided in this area. The required ponding is provided underground, not on the street. A 50% reduction to the release rate was considered for this area.

Based on the above, there will be no surface ponding in the 2-year event.

4.5.4 100 year + 20% Stress Test

A cursory review of the 100yr event + 20% has been performed using the modified rational method. The Peak flow from each area during a 100-year event has been increased by 20%. The calculations have been included in **Appendix D**.

A summary of the require storage volumes, and overflow balances is provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100yr20 STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	100yr20 OVERFLOW (m³)
S20A	15.00	25.11	20.59	4.52
S10	33.00	34.18	0.32	33.86*
S4	26.00	69.58	1.16	68.42

Submitted	to: BAR	FTT CC)_TFN/	NCY

FUT COM	30.69	40.90	12.00	28.90
S20B	10.00	7.26	1.41	5.85
S5	25.00	111.93	1.32	110.61
S6	50.00	195.06	9.71	185.35
R6	20.00	230.61	4.38	219.25*
TOTAL	179.00			253.11

^{*}Overflow from S10 to Barrett Farm Drive, and from R6 to Delphinium Crescent.

DRAINAGE AREA	100yr20 OVERFLOW (m³)	Time of Concentration	100yr20 OVERFLOW (I/s)	DEPTH (m)
S20A	4.52	15.00	5.02	0.02
S10	33.86*	9.00	62.70*	0.05
FUT COM	28.90	14.00	34.41	0.00
S4	68.42	14.00	81.45	0.05
S20B	5.85	6.00	16.24	0.03
S5	110.61	16.00	115.22	0.06
S6	185.35	18.00	171.62	0.05
R6	219.25*	26.00	140.55*	0.09
TOTAL	253.11		203.25	

As noted above, the overland flow from the rear yards (R6) is directed to Barrett Lands Phase 3 lands at Delphinium Crescent to the West. The volume of overflow is 253.11m3. Based on a Tc of 26minutes, this volume can be reverse calculated to 203.25 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

The stress test overflow from S10 will follow the intended overflow route as identified in the Phase 3 grading design drawings. The volume of overflow is 33.86m3. Based on the Tc of 9minutes, this volume can be reverse calculated to 62.70 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

4.5.5 Open-Channel Drainage Corridor

A summary of the various channel depths of flow is provided below. The cross-sections used for the calculations are shown on drawing 011 as section A-A and section B-B. A V-shape ditch was assumed for the open-channel drainage corridor, with a 22% side slope. Refer to calculation sheet in Appendix D.

POND ID	100yr OVERFLOW (L/s)	100yr20 OVERFLOW (L/s	100yr Depth (m)	100yr20 Depth (m)
S4	55.81	81.45	0.13	0.14
S10	39.68	62.70	0.11	0.13
S20	0	5.02	0.00	0.04
S20A	11.22	16.24	0.07	0.08
S5	80.20	115.22	0.14	0.16
S6 (Open- Channel)	119.12	171.62	0.02	0.06
R6	97.70	140.55	0.09	0.10

4.6 Storm Hydraulic Grade Line

The Barrett Lands Phase 3 report indicates that the 100-year hydraulic grade line (HGL) in Bulkhead 11307N **93.68**, refer to **Appendix D** for the excerpt from the Barrett Lands Phase 3 HGL analysis. The HGL has been extended through the subject site have been calculated as follows:

LOCATION	MH#	USF ELEV (M)	STORM HGL (M)	FREEBOARD (M)
Unit 1-2	MH10	99.36	98.410	0.950
Unit 3	MH 9	99.53	98.460	1.070
Unit 4-18;23-27	MH 8	99.98	98.460	1.520
Unit 19-22;28-37	MH 5	100.43	99.020	1.410
Unit 38-46	MH 4	100.51	99.150	1.360
Unit 47-50	MH 2	100.65	99.340	1.310

All underside of footing elevations have been designed to provide a minimum of 300mm separation between the greater of governing pipe obvert or governing HGL. A copy of the storm HGL analysis for Block 178 is provided in **Appendix D**.

5 SOURCE CONTROLS

5.1 General

On site level or source control management of runoff will be provided to provide quality control for the subject lands. Such controls or mitigative measures are proposed for the development not only for final development but also during construction and build out. Some of these measures are:

- flat lot grading;
- split lot drainage;
- · Roof-leaders to vegetated areas;
- · vegetation planting; and
- · groundwater recharge.

5.2 Lot Grading

There is an elevation difference of approximately 2m from southwest to northeast in Block 178. In accordance with local municipal standards, the parking lots will be graded northeast between 1.5% and 5.0%. Most landscaped area drainage will be directed into a swale drainage system and connects to the storm sewer system. Typically, swales will have slopes larger than 1.5% with subdrains. Copies of the grading plans have been included in **Appendix E**.

5.3 Roof Leaders

This development will consist of stacked homes and apartments. It is proposed that roof leaders from these units be constructed such that runoff is directed to grass areas adjacent to the units. This will promote water quality treatment through settling, absorption, filtration and infiltration and a slow-release rate to the conveyance network.

5.4 Vegetation

As with most subdivision agreements, the developer will be required to complete a vegetation and planting program. Vegetation throughout the development including planting along roadsides and within public parks provides opportunities to re-create lost natural habitat.

6 CONVEYANCE CONTROLS

6.1 General

Besides source controls, the development also proposes to use several conveyance control measures to improve runoff quality. These will include:

- flat vegetated swales;
- · catchbasin and maintenance hole sumps; and
- pervious rear yard drainage.

6.2 Flat Vegetated Swales

The development will make use of relatively flat vegetated swales where possible to encourage infiltration and runoff treatment.

6.3 Catchbasins

All catchbasins within the development, either rear yard or street, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both rear yard and street catchbasins will be fabricated to OPSD 705.010 or 705.020. All storm sewer maintenance holes servicing local sewers less than 900 mm diameter shall be constructed with a 300 mm sump as per City standards.

6.4 Pervious Landscaped Area Drainage

Some of the landscaped area swales make use of a filter wrapped perforated drainage pipe constructed below the rear yard swale. This perforated system is designed to provide some ground water recharge and generally reduce both volumetric and pollutant loadings that enter the minor pipe system.

7 SEDIMENT AND EROSION CONTROL PLAN

7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- silt sacks will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use.

7.2 Trench Dewatering

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

7.3 Bulkhead Barriers

At the first manhole constructed immediately upstream of an existing sewer, a $\frac{1}{2}$ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment carrying flows, thus preventing any construction –related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

7.4 Seepage Barriers

These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the sediment and erosion control drawing. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

7.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures will be covered to prevent sediment from entering the minor storm sewer system. Until rear yards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be equipped with geotextile filter socks. These will stay in place and be maintained during construction and build until it is appropriate to remove them.

7.6 Stockpile Management

During construction of any development similar to that being proposed both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rearyard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern since these materials are quickly used and the mitigative measures stated previously, especially the use of filter fabric in catchbasins and manholes help to manage these concerns.

The roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

The construction of this development will involve a substantial rock blasting, breaking and crushing operation. Given the existing topography, a substantial cut and fill operation is required in order to construction a development that meets City Standards. As part of this operation, materials will be manipulated onsite, and provided the sediment and erosion control measures are in place, are generally inconsequential to the surrounding environment.

8 ROADS AND NOISE ATTENUATION

Vehicular access to Block 178 is provided by two private entrances from Barrett Farm Drive.

There are no sidewalks or pathways proposed within the development. Pedestrian access to the site will be via the private roadway.

The site has been designed in order to provide curbside municipal waste disposal.

There are no bus routes proposed within Block 178.

There are no collector streets or nearby noise sources that would trigger an environmental noise assessment.

8.1 Aircraft Sound Levels

As stated in Section 2.1, the site is within the Airport Vicinity Development Zone (AVDZ), the limit of the AVCZ is shown on Figure 2. The site however is outside of the 25 NEF/NEP contour line so the building components and ventilation requirements of Part 6 Prescribed Measures for Aircraft Noise of the Guidelines do not apply. A warning clause is required for the residential units inside the AVDZ.

Warning clause for aircraft noise is as follows:

"Purchasers/tenants are advised that due to the proximity of the airport, noise from the airport and individual aircraft may at times interfere with outdoor or indoor activities".

9 SOILS

Golder Associates Ltd. was retained to prepare a geotechnical investigation for the proposed mixed use development for the Barrett Lands Phase 3. The objectives of the investigation were to prepare a report to:

- Determine the subsoil and groundwater conditions at the site by means of test pits and boreholes and;
- To provide geotechnical recommendations pertaining to design of the proposed development including construction considerations.

The geotechnical report 20442530-100 was prepared by Golder Associates Ltd. in February 2022. The report contains recommendations which include but are not limited to the following:

- The maximum permissible grade raise is 3.5m
- In areas where finished grade exceeds grade raise limits, geotechnical reviews are required
- Fill placed below the foundations to meet OPSS Granular 'A' or Granular 'B' Type II placed in 300 mm lifts compacted to 98% SPMDD.
- Fill for roads to be suitable native material in 300mm lifts compared to 95% SPMDD

Pavement Structure:

LOCAL ROAD	THICKNESS
Asphaltic Concrete	90mm
OPSS Granular A Base	150mm
OPSS Granular B Type II Subbase	400mm

Pipe bedding and cover; bedding to be minimum 150 mm OPSS Granular 'A' up to spring line
of pipe. Cover to be 300 mm OPSS A (PUC and concrete pipes) or sand for concrete pipes.
Both bedding and cover to be placed in maximum 225 mm lifts compacted to 95% SPMDD.

In general the grading plan for Block 178 adheres to the grade raise constraints noted above. A copy of the grading plans is included in **Appendix E**. The site does not pose any significant grade raise; thus a grading plan review letter is not required for this development.

10 RECOMMENDATIONS

Water, wastewater and stormwater systems required to develop Barrett Lands Block 178 will be designed in accordance with MOE and City of Ottawa's current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the proposed sediment and erosion control plan during construction will minimize harmful impacts on surface water.

Final detail design will be subject to governmental approval prior to construction, including but not limited to the following:

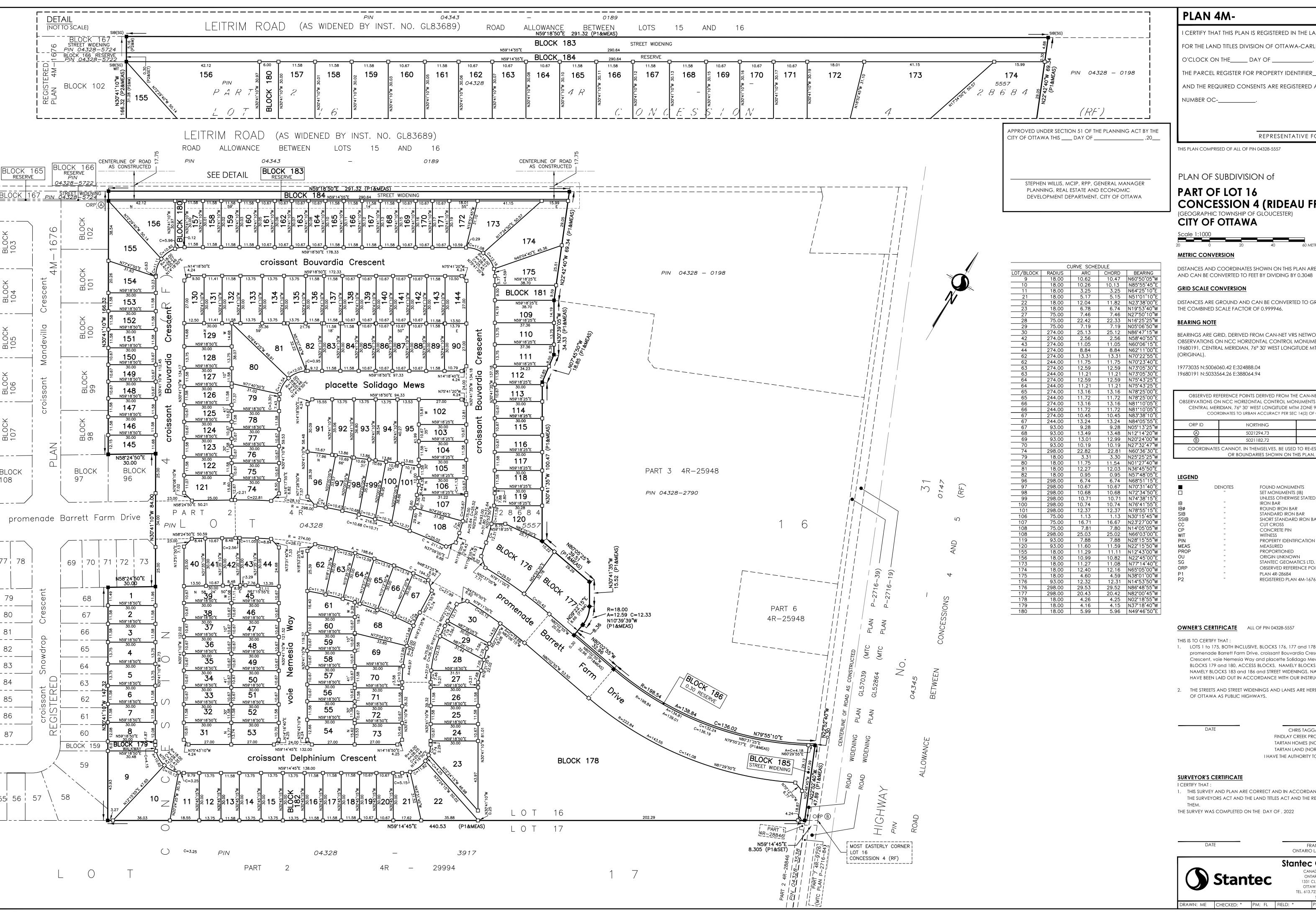
- Block 178 Commence Work Order: City of Ottawa
- ECA for Sewage Works: MOECP Transfer of Review by City of Ottawa
- Block 178 Watermain Approval: City of Ottawa
- Block 178 Commence Work Order (utilities): City of Ottawa

Report prepared by:

PROFESS/ONAL PROFE

Demetrius Yannoulopoulos, P.Eng. Director

Ryan Magladry, C.E.T. Project Manager


Rolly

Anton Chetrar, P.Eng. Civil Engineer

https://ibigroup.sharepoint.com/sites/Projects1/135925/Internal Documents/6.0_Technical/6.04_Civil/03_Tech-Reports/Submission #1/CTR-Servicing Brief_2022-05.docx

APPENDIX A

AOV Plan of Subdivision for Barrett Lands Phase 3 Site Plan for Barrett Lands Block 178 135925-001 - General Plan of Services City of Ottawa Pre-Consultation Meeting Notes

I CERTIFY THAT THIS PLAN IS REGISTERED IN THE LAND REGISTRY OFFICE FOR THE LAND TITLES DIVISION OF OTTAWA-CARLETON No.4 AT___

O'CLOCK ON THE_____ DAY OF ______, 2022 AND ENTERED IN

AND THE REQUIRED CONSENTS ARE REGISTERED AS PLAN DOCUMENT

NUMBER OC-_____

REPRESENTATIVE FOR LAND REGISTRAF

THIS PLAN COMPRISED OF ALL OF PIN 04328-5557

PART OF LOT 16 CONCESSION 4 (RIDEAU FRONT) (GEOGRAPHIC TOWNSHIP OF GLOUCESTER)

METRIC CONVERSION

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

GRID SCALE CONVERSION

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999946.

BEARINGS ARE GRID, DERIVED FROM CAN-NET VRS NETWORK GPS OBSERVATIONS ON NCC HORIZONTAL CONTROL MONUMENTS 19773035 AND 19680191, CENTRAL MERIDIAN, 76° 30' WEST LONGITUDE MTM ZONE 9, NAD83

19773035 N:5006060.42 E:324888.04 19680191 N:5033564.26 E:388064.94

OBSERVED REFERENCE POINTS DERIVED FROM THE CAN-NET VRS NETWORK GPS OBSERVATIONS ON NCC HORIZONTAL CONTROL MONUMENTS 19773035 AND 19680191, CENTRAL MERIDIAN, 76° 30' WEST LONGITUDE MTM ZONE 9, NAD83 (ORIGINAL). COORDINATES TO URBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10

ORP ID	NORTHING	EASTING		
\otimes	5021294.73	374944.42		
B	5021182.72	375523.14		
COORDINATES CANNOT, IN THEMSELVES, BE USED TO RE-ESTABLISH CORNERS				

	DENOTES "	FOUND MONUMENTS SET MONUMENTS (IB) UNI ESS OTHERWISE STATED
IB	п	IRON BAR
ΪΒø	II .	ROUND IRON BAR
SIB	II .	STANDARD IRON BAR
SSIB	II .	SHORT STANDARD IRON BAR
CC	II .	CUT CROSS
CP	II .	CONCRETE PIN
WIT	II .	WITNESS
PIN	II .	PROPERTY IDENTIFICATION NUMBER
MEAS	II .	MEASURED
PROP	II .	PROPORTIONED
OU	II .	ORIGIN UNKNOWN
SG	II .	STANTEC GEOMATICS LTD.
ORP	"	OBSERVED REFERENCE POINT
P1	п	PLAN 4R-28684
P2	II .	REGISTERED PLAN 4M-1676

OWNER'S CERTIFICATE ALL OF PIN 04328-5557

THIS IS TO CERTIFY THAT:

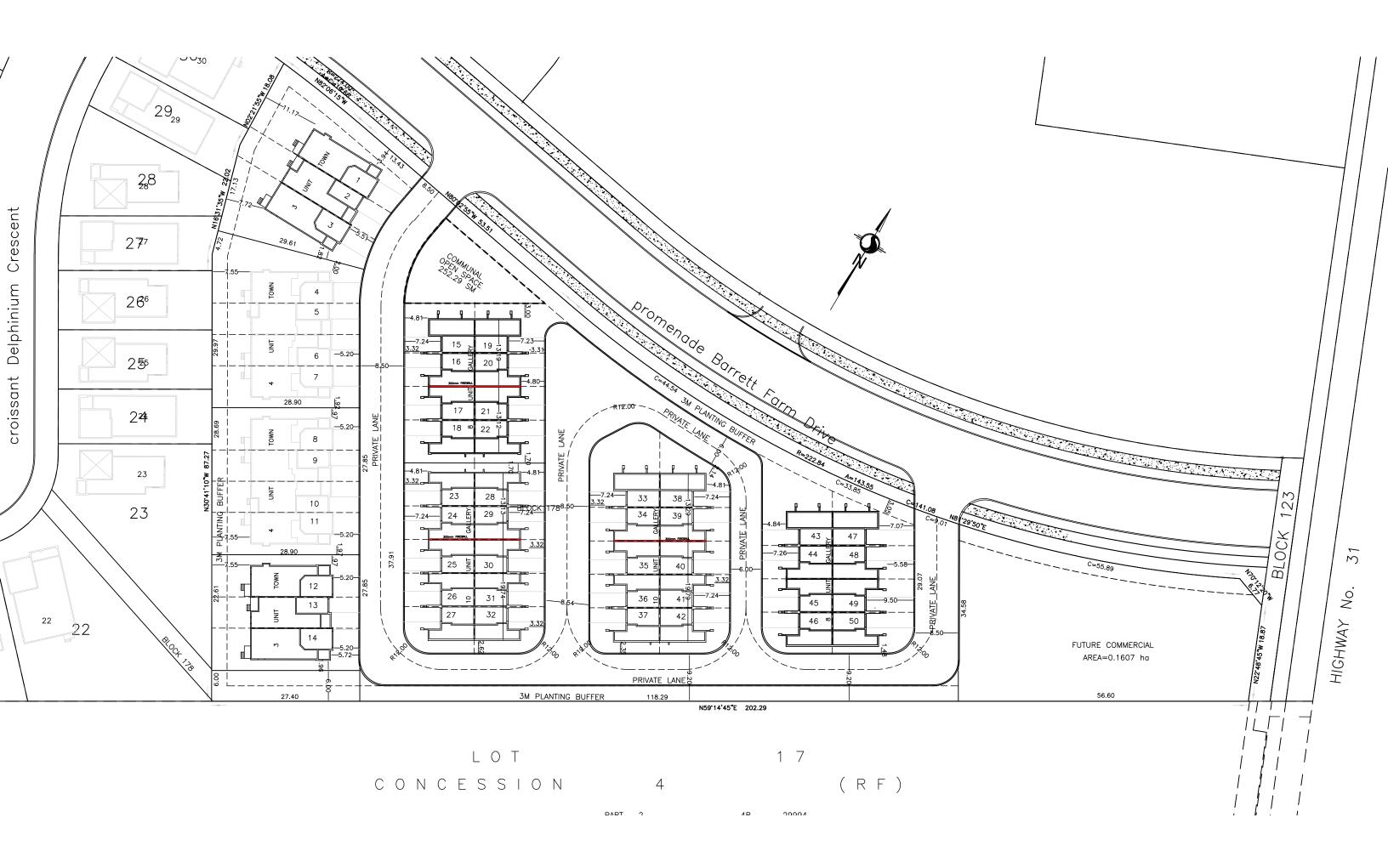
1. LOTS 1 to 175, BOTH INCLUSIVE, BLOCKS 176, 177 and 178, THE STREETS, NAMELY promenade Barrett Farm Drive, croissant Bouvardia Crescent, croissant Delphinium Crescent, voie Nemesia Way and placette Solidago Mews WALKWAYS, NAMELY BLOCKS 179 and 180, ACCESS BLOCKS, NAMELY BLOCKS 181 and 182, RESERVES, NAMELY BLOCKS 183 and 186 and STREET WIDENINGS, NAMELY BLOCKS 184 and 185 HAVE BEEN LAID OUT IN ACCORDANCE WITH OUR INSTRUCTIONS.

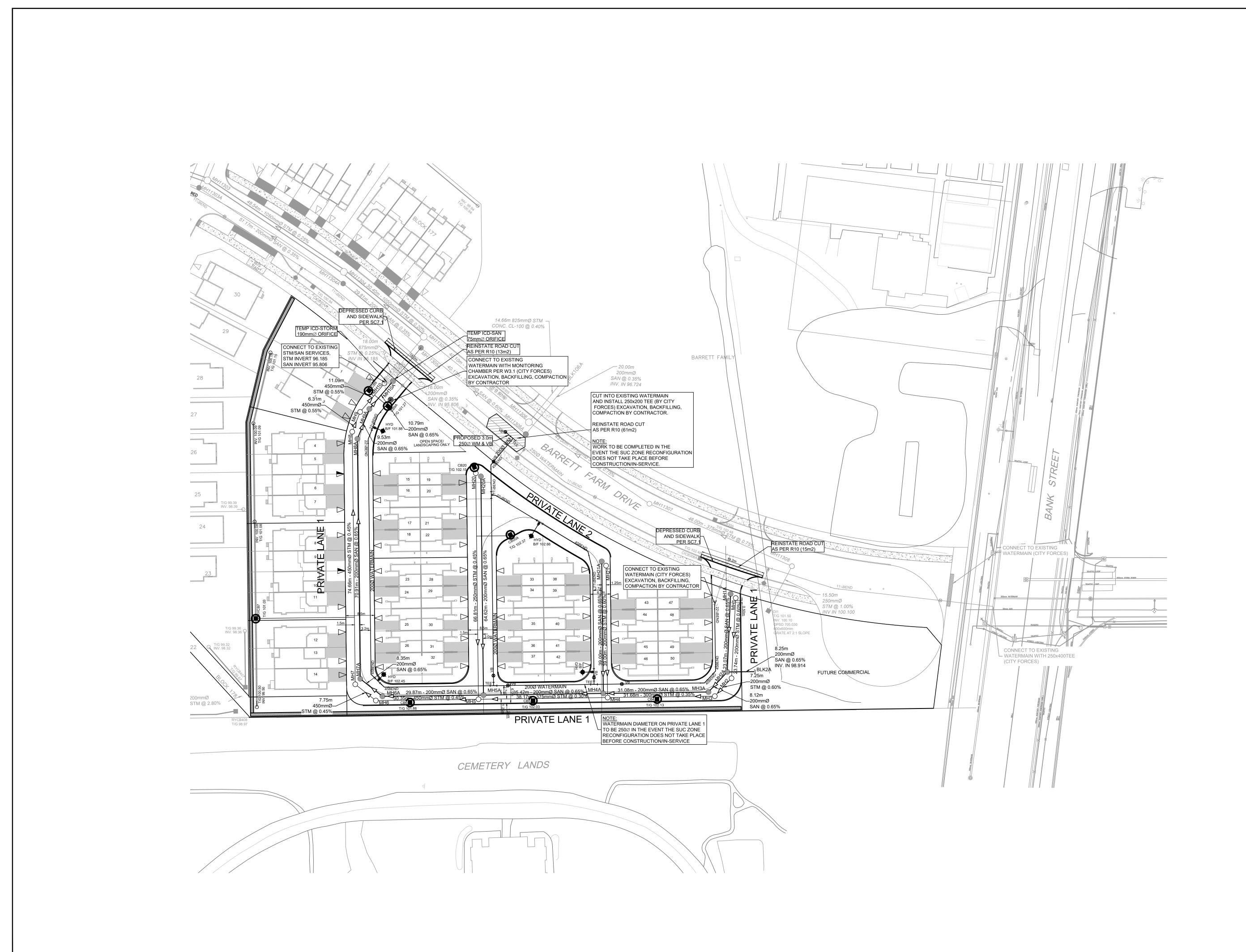
2. THE STREETS AND STREET WIDENINGS AND LANES ARE HEREBY DEDICATED TO THE CITY OF OTTAWA AS PUBLIC HIGHWAYS.

CHRIS TAGGART, PRESIDENT FINDLAY CREEK PROPERTIES (NORTH) LTD. TARTAN HOMES (NORTH LEITRIM) INC. TARTAN LAND (NORTH LEITRIM) INC. I HAVE THE AUTHORITY TO BIND THE CORPORATION

SURVEYOR'S CERTIFICATE

1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER


THE SURVEY WAS COMPLETED ON THE DAY OF, 2022


FRANCIS LAU ONTARIO LAND SURVEYOR

Stantec Geomatics Ltd. CANADA LANDS SURVEYORS Ontario land surveyors

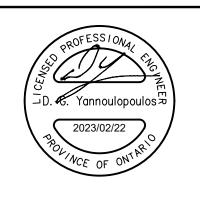
PROJECT No.: 161614242-132 DRAWN: ME CHECKED: * PM: FL | FIELD: *

BARRETT CO-TENANCY

COPYRIGHT

CLIENT

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.


IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

is a member of the ibit Group of companies				
ISSUES				
No.	DESCRIPTION	DATE		
1	SUBMISSION NO.1 FOR CITY REVIEW	2022-05-10		
2	SUBMISSION NO.2 FOR CITY REVIEW	2022-11-25		
3	SUBMISSION NO.3 FOR CITY REVIEW	2023-01-09		
4	ADD WM CONNECTION AND NOTES	2023-02-22		
5				
6				
7				
8				

SEE 010, 011 FOR NOTES, LEGEND, CB TABLE, STREET SECTIONS AND DETAILS KEY PLAN LEITRIM ROAD BARRETT FARM DRIVE KEY PLAN

CONSULTANTS

SEAL

IBI GROUP
Suite 400 – 333 Preston Street
Ottawa ON K1S 5N4 Canada
tel 613 225 1311 / 613 241 3300 fax 613 225 9868 ibigroup.com

BARRETT BLOCK 178

PROJECT NO: 135925 DRAWN BY: CHECKED BY: A.C. PROJECT MGR: APPROVED BY: J.I.M.

SHEET TITLE

GENERAL PLAN

SHEET NUMBER

CITY PLAN No. 18826

ISSUE

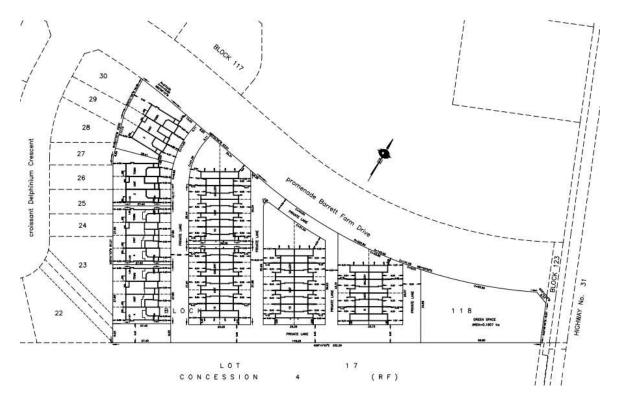
le Location: J:\135925_BarrettLands

Normal Services

Blk 118, Bank Street at Barrett Farm

Meeting Summary Notes
July 27, 2021, Online Teams Meeting
Revised Aug 18, 2021

Attendees:


- Melissa Cote, Tartan
- Yvonne Mitchell, Planning Student, City of Ottawa
- Tracey Scaramozzino (File Lead, Planner, City of Ottawa)

Not in Attendance:

- Mark Young, Urban Design
- Burl Walker,
- John Sevigny
- Mark Richardson
- Matthew Hayley
- Mike Giampa
- James Holland, SNation

Issue of Discussion:

- Vacant site, within Plan of subdivision, Block 118
- PUD, 14 townhouse units, 38 back to back towns;
- Density of 40units/net ha (only half of CDP recommendation of 80 units/ha). The Developer doesn't have a product that provides the recommended density as they are no longer producing the Java product.
- Private laneways of 6m and 8.5m for servicing, utilities, and municipal garbage
- Site plan, Plan of Condo and Private Road Naming Applications are req'd
- The subdivision contemplated 90 units in this area and only 52 are being proposed. Therefore transportation/services should not be an issue

- 1. Official Plan, Current: General Urban Area
- 2. **Official Plan, Draft:** Suburban Transect, no overlays, no designations, Bank St in this area is a minor corridor
 - a. "Recognize this as suburban pattern, but to support the evolution to 15min n'hood"
- 3. **Leitrim CDP** (from 2005): Mixed Use (intended to be part of core retail along Bank st smaller parcels to provide n'hood uses; larger retail is focused south at existing commercial plaza
 - a. The CDP is not being converted into a secondary plan in the new OP and will remain in effect.

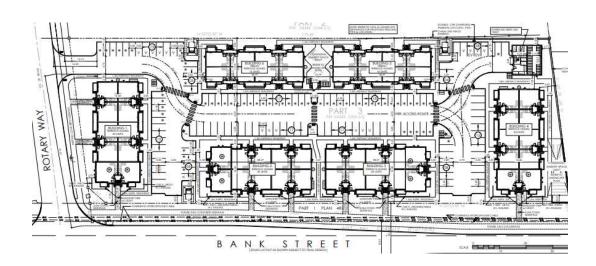
4. Zoning Information: GM12 - General Mixed Use permits residential (apt, PUD, townhouse etc) and non-residential (animal hospital, bank, community centre etc) Subzone 12 permits additional non-residential uses such as bar, cinema, gas bar, theatre, sports arena.

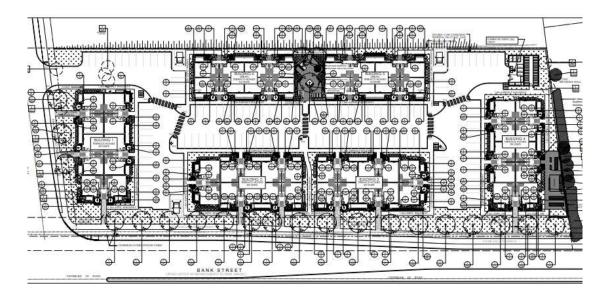
5. Infrastructure/Servicing (John Sevigny):

a. Servicing will be reviewed during Phase 3 of the subdivision, which as of July 26. hasn't been submitted.

6. Initial Planning Comments (Tracey Scaramozzino):

- a. Can density be increased as per the CDP (40u/ha is being provided; 80 u/ha was contemplated in the CDP).
- b. Possibly design open space along Bank St to have sitting area/plantings/soft surfaces, similar to POPS.
- c. Units in general should have higher floor-ceiling hts on ground floor to allow the conversion to commercial units over time.
- d. The 'empty' parcels along Barrett Farm should be nicely designed with trees and perennials and soft surfaces.
- e. The plan of subdivision does not provide guidance for development of this site.
- f. Within Airport Bird Hazard zone
- g. Follow up discussions between Tracey and Melissa:


May 28, 2021, from Melissa: I think there will be a lot of opportunity for trees and other soft landscaping along with a nice sitting area. I will wait to hear what Mark suggests and I'm following up with Tamarack regarding other product type suitable for possible conversion later on.


May 27, 2021 from Tracey: I was also thinking some more about the green spaces on your proposal and am wondering if the green areas fronting Barrett Farm Drive might be nice with a few trees and some perennials - soft surfaces to help with climate change and heat-island effect. The green location on the corner might be nice with a mixture of plantings, sitting areas and soft area - that may or may not be open to the general public like a POPS.....

- h. The almost-approved Glenview project on the east side of Bank St. at Rotary Way has back to back, stacked towns with the ability for future ground floor conversions to commercial (due to higher floor-ceiling hts) and were able to meet the req'd density for 'apts'.
- i. Tracey sent Melissa an example of a design brief, and details from Glenview PUD across the street at Rotary Way that is near approval, as per images below.

Document 7, Elevations sl@wing potential business signage

7. Urban Design Comments (Mark Young):

- 1. A design brief is required. Please see attached terms of reference.
- 2. Early consideration needs to be given to the allowance of street trees, both public and private. The proposed private roadway width of 6.0 m combined with a 4.0 m front yard setback, may present a challenge in the provision of trees. This should be addressed.
- 3. Please provide direction regarding the proposed "Green Space". Is this intended to be public or private?
- 4. Is any visitor parking proposed? Lay-by parking should be considered for visitors within the private development.
- 5. What is the purpose of the 9.0 m block abutting the southern property line? Is this for servicing and a walkway? Please advise.

8. Parks (Burl Walker):

a. Parks issues are being reviewed through the associated subdivision file.

9. Trees (Mark Richardson):

- a. Preserve and protect the healthy trees to create a visual buffer along southern property line.
- b. Tree permit is required prior to any tree removal on site
- c. Submit a TCR with application.

10. Environment (Matthew Hayley): (added August 18, 2021)

- a) They will need to have their TCR address butternut trees (or provide an EIS). Mark R will comment on tree conservation but I would point out that there is an excellent opportunity for tree retention along the southern property line.
- b) Landscaping OP Section 4.9 has some policies addressing energy conservation through design - in partic as ular for this area, I would recommend considering shading along the southern property line adjacent to that lane. This will combat urban heat island and to provide some screening from the adjacent use. Street trees are also important and should be provided.
- c) Integrated Environmental Review (IER) if they are providing a planning rational the IER can be contained within that document as per the TOR for the Planning Rational, otherwise they should have an IER provided.

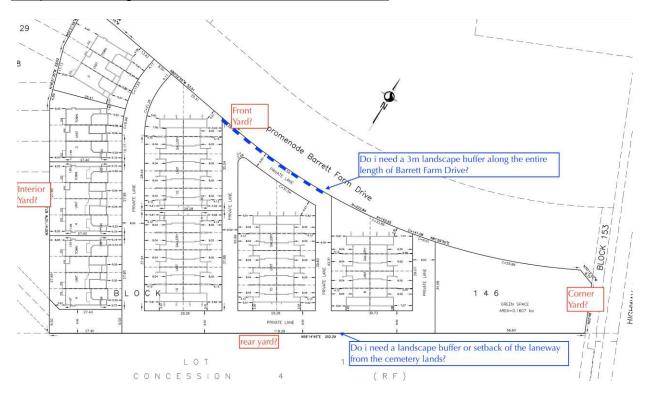
11. Conservation Authority (James Holland, South Nation):

a. All issues are being reviewed through the associated subdivision file.

12. Transportation (Mike Giampa):

a. Comments are outstanding at this time, likely dealt with during the plan of subdivision.

13. Waste Collection


- a. Residential properties will receive City collection on the private streets.
- b. 6m ROW is acceptable for waste collection.

14. General Information

a. Ensure that all plans and studies are prepared as per City guidelines – as available online...

https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans

Response to August 1, 2021 Questions from Melissa:

1. Front yard? Corner yard? Rear yard? Side yard?

Response: Based on my interpretation of the <u>definitions</u> of each in the zoning bylaw:

- Front yard = Bank Street
- Corner yard = Barrett Farm Drive
- Rear yard = empty residential lot
- Side yard = cemetery lands

2. Do I need a landscape buffer along the entire length of Barret Farm Drive?

Response: Yes, but this buffer can be <u>passed by</u> driveways or roads. The full landscape buffer requirements under the <u>zoning (GM12)</u> are as follows:

	(i) abutting a street	3 m
(h) Minimum width of landscaped area	(ii) abutting a residential or institutional zone	3 m
	(iii)other cases	No minimum

Based on the above requirement for the GM zone, a 3m landscape buffer would be required around the entire site, as it borders on streets, residential and institutional zones.

- 3. Do I need a landscape buffer or setback of the laneway from the cemetery lands? Response: As per previous question and Table 187 of the applicable zoning (GM12), a landscape buffer of 3m is required abutting an institutional zone. Regarding setbacks, the interior lot line setback would not apply from the lot line to the laneway but from the proposed townhomes as follows:
 - (d) Minimum interior side yard setbacks
 - (iii) For a residential use building
 - 1. For a building equal or lower than 11m in height = 1.2m
 - 2. For a building higher than 11m in height = 3m

APPENDIX B


Water Distribution Model

Boundary Conditions 3100 Leitrim Road

Provided Information

	Demand	
Scenario	L/min	L/s
Average Daily Demand	26.4	0.44
Maximum Daily Demand	66	1.1
Peak Hour	145.2	2.42
Fire Flow Demand # 1	10000	166.7
Fire Flow Demand # 2	12000	200

Location

Results - Existing Conditions (Pressure Zone 3SW)

Connection 1 – Barrett Farm Drive West

Demand Scenario	Head (m)	Pressure¹ (psi)
Maximum HGL	154.6	76.5
Peak Hour	144.7	62.4
Max Day plus Fire #1	122.2	30.4
Max Day plus Fire #2	118.3	24.8

¹ Ground Elevation = 100.8 m

Connection 2 – Barrett Farm Drive East

Demand Scenario	Head (m)	Pressure¹ (psi)
Maximum HGL	154.6	72.7
Peak Hour	144.7	58.6
Max Day plus Fire #1	124.5	29.8
Max Day plus Fire #2	121.5	25.6

¹ Ground Elevation = 103.49 m

Results – Future Conditions (Pressure Zone SUC)

Connection 1 - Barrett Farm Drive West

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	147.5	66.4
Peak Hour	145.9	64.0
Max Day plus Fire #1	138.2	53.2
Max Day plus Fire #2	135.1	48.8

¹ Ground Elevation = 100.8 m

Connection 2 – Barrett Farm Drive East

Demand Scenario	Head (m)	Pressure¹ (psi)
Maximum HGL	147.5	62.6
Peak Hour	145.8	60.1
Max Day plus Fire #1	140.5	52.6
Max Day plus Fire #2	138.3	49.4

¹ Ground Elevation = 103.49 m

Disclaimer

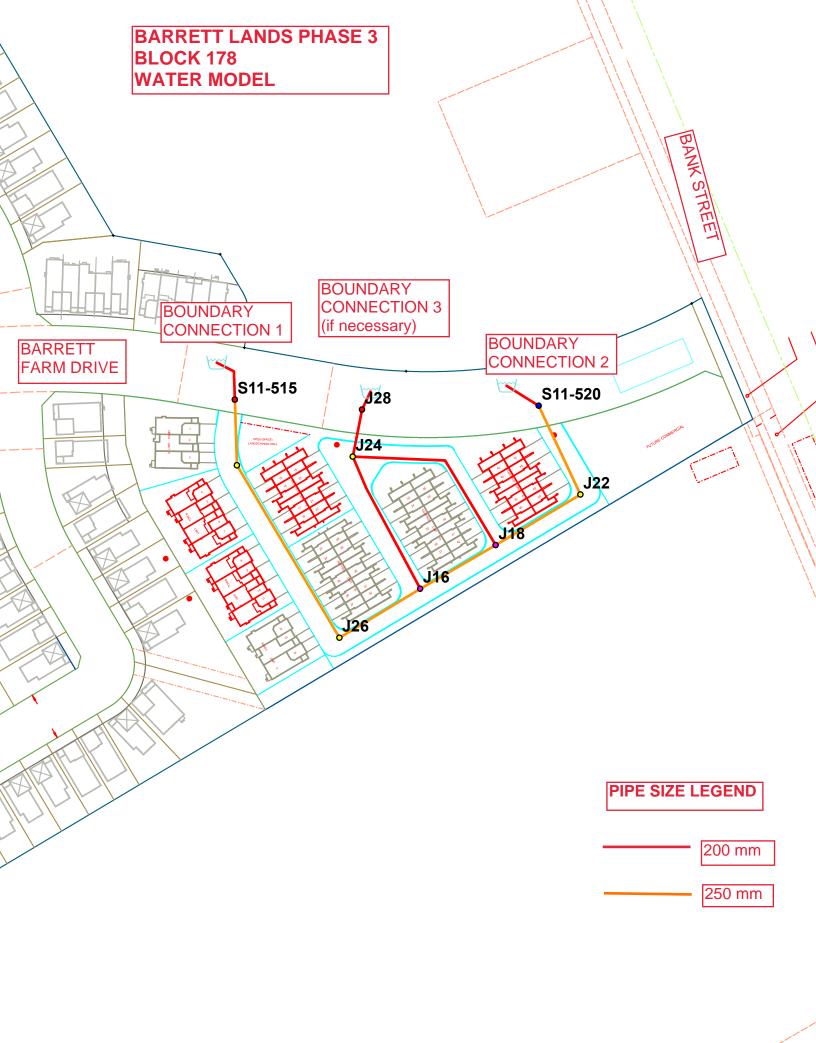
The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S 5N4

WATERMAIN DEMAND CALCULATION SHEET

FILE: 135925

DATE PRINTED: 22-Nov-22

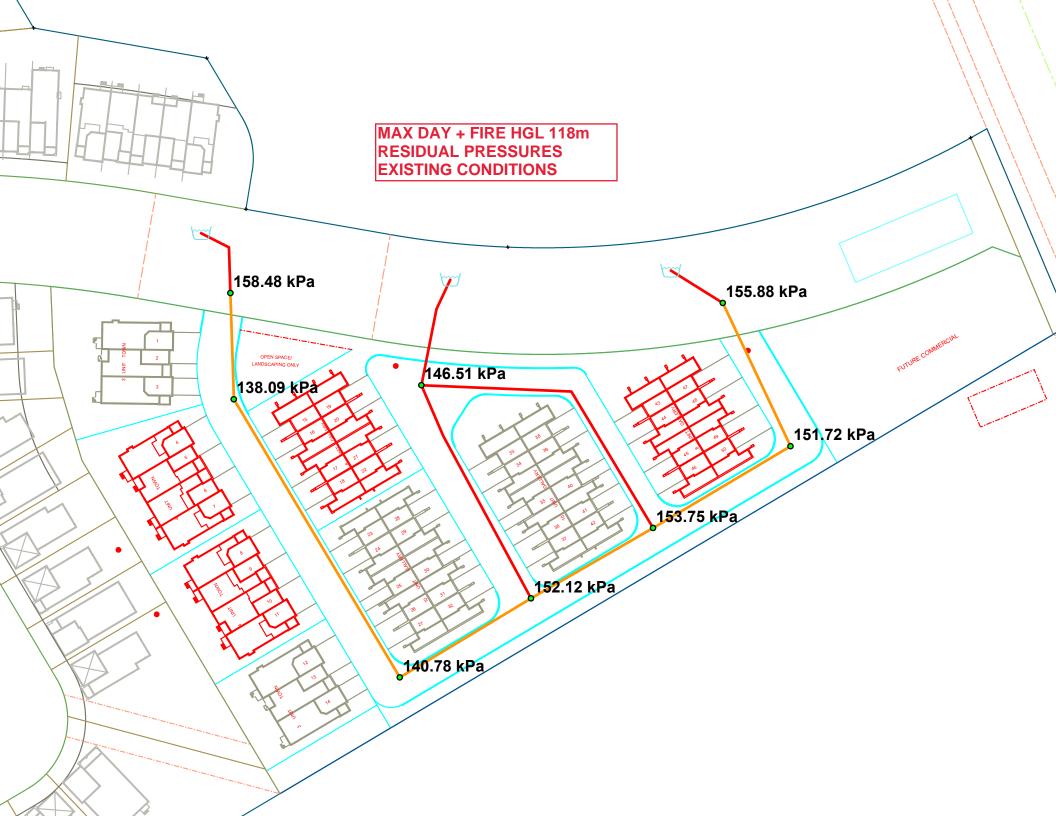

1 OF 1

AC DESIGN: PAGE :

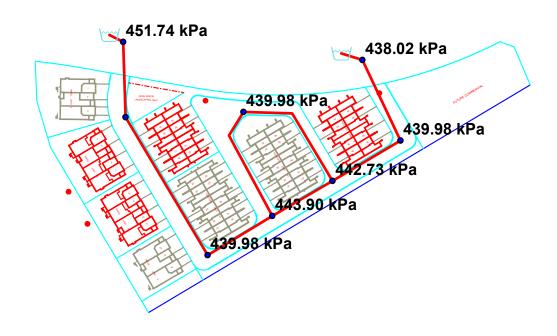
BLOCK 178 PROJECT: CITY OF OTTAWA LOCATION: DEVELOPER: **TAGGART**


		RESID	ENTIAL		NON-RESIDENTIAL			AVERAGE DAILY			MAXIMUM DAILY			MAXIMUM HOURLY			FIRE
NODE		UNITS			INDTRL	СОММ.	INST.		DEMAND ([l/s)		EMAND (I	/s)	DEMAND (I/s)			DEMAND
NODE	SF	SD & TH	OTHER	POP'N	(ha.)	(ha.)	(ha.)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
Findlay Creek																	
J20		13		35				0.11	0.00	0.11	0.28	0.00	0.28	0.63	0.00	0.63	
J26		10		27				0.09	0.00	0.09	0.22	0.00	0.22	0.48	0.00	0.48	
J16		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J18		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J22		7		19				0.06	0.00	0.06	0.15	0.00	0.15	0.34	0.00	0.34	
J24		4		11				0.04	0.00	0.04	0.09	0.00	0.09	0.19	0.00	0.19	
								ļ						∤			
TOTALS		50		135				ļ		0.44			1.10	 		2.42	
														 			
] [

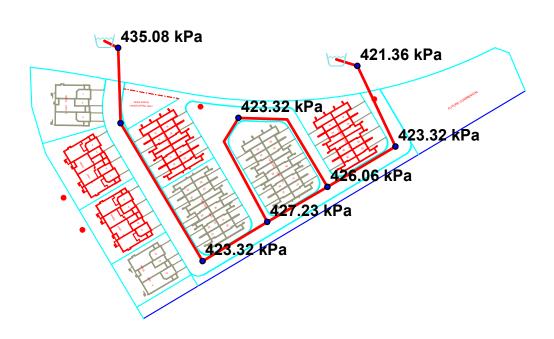
		ASSUMPTIONS					
RESIDENTIAL DENSITIES	,	AVG. DAILY DEMAND		MAX. HOURLY DEMAND			
- Single Family (SF)	<u>3.4</u> p/p/u	- Residential	280 1 / cap / day	- Residential	<u>1,540</u> I/c	ap / day	
		- ICI	<u>50,000</u>	- ICI	<u>135,000</u> I/h	a / day	
- Semi Detached (SD) & Townhouse (TH)	<u>2.7</u> p/p/u						
				FIRE FLOW			
- Apartment (APT)	<u>1.8</u> p/p/u	MAX. DAILY DEMAND		- SF, SD, TH & ST	<u>10,000</u> /	min	
		- Residential	<u>700</u> 1 / cap / day		1/	min	
-Other	<u>66</u> u/p/ha	- ICI	<u>75,000</u> I / ha / day	- ICI	<u>13,000</u> _{1/}	min	


	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	J16	0.18	102.20	154.60	513.48	0.00
2	J18	0.18	102.32	154.60	512.30	0.00
3	J20	0.28	102.60	154.60	509.56	0.00
4	J22	0.15	102.60	154.60	509.56	0.00
5	J24	0.09	102.60	154.60	509.56	0.00
6	J26	0.22	102.60	154.60	509.56	0.00
7	J28	0.00	101.41	154.60	521.22	0.00
8	S11-515	0.00	100.80	154.60	527.20	0.00
9	S11-520	0.00	102.80	154.60	507.60	0.00

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	J16	0.39	102.20	144.70	416.46	0.00
2	J18	0.39	102.32	144.70	415.29	0.00
3	J20	0.63	102.60	144.70	412.54	0.00
4	J22	0.40	102.60	144.70	412.54	0.00
5	J24	0.19	102.60	144.70	412.55	0.00
6	J26	0.48	102.60	144.70	412.54	0.00
7	J28	0.00	101.41	144.70	424.21	0.00
8	S11-515	0.00	100.80	144.70	430.18	0.00
9	S11-520	0.00	102.80	144.70	410.59	0.00


	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1	P117	RES9000	S11-515	17.33	204.00	110.00	0.89	0.03	0.00	0.01	Open	0	0.00
2	P119	S11-515	J20	23.92	250.00	110.00	0.89	0.02	0.00	0.00	Open	0	0.00
3	P121	J16	J18	31.72	250.00	110.00	-0.29	0.01	0.00	0.00	Open	0	0.00
4	P123	J18	J22	35.97	250.00	110.00	-0.42	0.01	0.00	0.00	Open	0	0.00
5	P125	J16	J24	54.00	204.00	110.00	-0.33	0.01	0.00	0.00	Open	0	0.00
6	P127	J20	J26	72.93	250.00	110.00	0.26	0.01	0.00	0.00	Open	0	0.00
7	P129	J22	S11-520	35.69	250.00	110.00	-0.82	0.02	0.00	0.00	Open	0	0.00
8	P131	J24	J18	69.58	204.00	110.00	0.26	0.01	0.00	0.00	Open	0	0.00
9	P133	J26	J16	34.42	250.00	110.00	-0.22	0.00	0.00	0.00	Open	0	0.00
10	P135	S11-520	RES9002	13.77	204.00	110.00	-0.82	0.02	0.00	0.01	Open	0	0.00
11	P139	J24	J28	17.48	204.00	110.00	-0.78	0.02	0.00	0.01	Open	0	0.00
12	P141	J28	RES9004	7.28	204.00	110.00	-0.78	0.02	0.00	0.01	Open	0	0.00

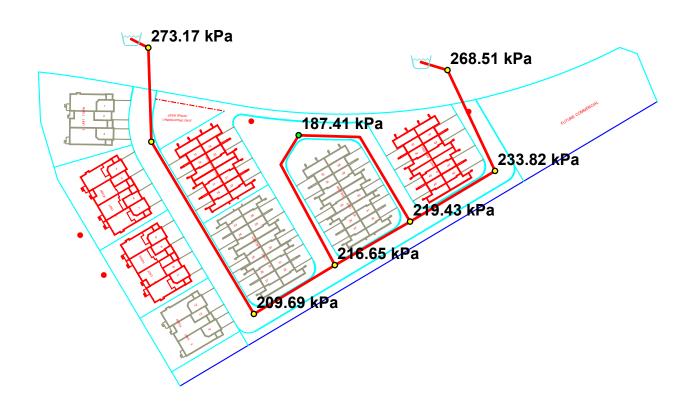
Date: Thursday, February 09, 2023, Time: 16:56:31, Page 1


		ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
ľ		J16	200.18	279.13	J16	139.96	152.12	139.96	279.13	139.96
[2	2 🔲	J18	200.18	293.45	J18	139.96	153.75	139.96	293.45	139.96
3	3 🔲	J20	200.28	189.61	J20	139.96	138.09	139.96	189.61	139.96
4	1	J22	200.15	278.89	J22	139.96	151.72	139.96	278.89	139.96
	5 🔲	J24	200.09	249.11	J24	139.96	146.51	139.96	249.12	139.96
6	6 🔲	J26	200.22	204.66	J26	139.96	140.78	139.96	204.66	139.96
- [7	7 🔲 S	11-515	200.00	302.12	J20	128.63	144.38	139.96	232.63	153.29
8	3 🔲 S	11-520	200.00	329.30	S11-520	139.96	155.88	139.96	329.30	139.96

SUC ZONE RECONFIGURATION - BASIC DAY (MAX HGL) PRESSURES

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	J16	0.07	102.20	147.50	443.90	0.00
2	J18	0.07	102.32	147.50	442.73	0.00
3	J20	0.11	102.60	147.50	439.98	0.00
4	J22	0.06	102.60	147.50	439.98	0.00
5	J24	0.04	102.60	147.50	439.98	0.00
6	J26	0.09	102.60	147.50	439.98	0.00
7	S11-515	0.00	101.40	147.50	451.74	0.00
8	S11-520	0.00	102.80	147.50	438.02	0.00

PEAK HOUR PRESSURES HGL 146m



	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	J16	0.39	102.20	145.80	427.23	0.00
2	J18	0.39	102.32	145.80	426.06	0.00
3	J20	0.63	102.60	145.80	423.32	0.00
4	J22	0.40	102.60	145.80	423.32	0.00
5	J24	0.19	102.60	145.80	423.32	0.00
6	J26	0.48	102.60	145.80	423.32	0.00
7	S11-515	0.00	101.40	145.80	435.08	0.00
8	S11-520	0.00	102.80	145.80	421.36	0.00

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1	P117	RES9000	S11-515	7.01	204.00	110.00	1.27	0.04	0.00	0.02	Open	0	0.00
2	P119	S11-515	J20	34.25	204.00	110.00	1.27	0.04	0.00	0.02	Open	0	0.00
3	P121	J16	J18	31.72	204.00	110.00	-0.24	0.01	0.00	0.00	Open	0	0.00
4	P123	J18	J22	35.97	204.00	110.00	-0.81	0.02	0.00	0.01	Open	0	0.00
5	P125	J16	J24	54.11	204.00	110.00	0.01	0.00	0.00	0.00	Open	0	0.00
6	P127	J20	J26	72.93	204.00	110.00	0.64	0.02	0.00	0.00	Open	0	0.00
7	P129	J22	S11-520	40.51	204.00	110.00	-1.21	0.04	0.00	0.02	Open	0	0.00
8	P131	J24	J18	58.07	204.00	110.00	-0.18	0.01	0.00	0.00	Open	0	0.00
9	P133	J26	J16	34.42	204.00	110.00	0.16	0.01	0.00	0.00	Open	0	0.00
10	P135	S11-520	RES9002	10.06	204.00	110.00	-1.21	0.04	0.00	0.02	Open	0	0.00

Date: Tuesday, November 22, 2022, Time: 13:54:34, Page 1

SUC ZONE RECONFIGURATION - Max Day + Fire 130m Residual Pressures

	ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1	J16	200.18	300.52	J16	139.96	216.65	139.96	300.52	139.96
2	J18	200.18	308.02	J18	139.96	219.43	139.96	308.02	139.96
3	J20	200.28	368.62	J20	139.96	231.95	139.96	368.62	139.97
4	J22	200.15	354.66	J22	139.96	233.82	139.96	354.66	139.96
5	J24	200.09	249.51	J24	139.96	187.41	139.96	249.51	139.96
6	J26	200.22	290.94	J26	139.96	209.69	139.96	290.94	139.96
7	S11-515	200.00	803.38	J20	150.93	265.49	139.96	803.38	139.96
8	S11-520	200.00	682.46	J22	163.39	270.46	139.96	682.46	139.96

Anton Chetrar

From: Cassidy, Tyler <tyler.cassidy@ottawa.ca>
Sent: Thursday, February 9, 2023 10:08 AM

To: Anton Chetrar Cc: Ryan Magladry

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

Follow Up Flag: Follow up Flag Status: Completed

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

Hi Anton,

We have discussed the possible water servicing scenarios in length and I've reviewed the various scenarios with our Water Resources team. Considering there are no other water demands or junctions on the City network between your connection points the HGL will remain constant within the watermain on Barrett Farm. In the interest of time, please feel free to extrapolate the various demand pressure(s) for the third connection, taking into account the road grade of Barrett Farm. Please note you can attach this email with the latest boundary conditions to the servicing report for confirmation. I will maintain ownership of this file.

If you do not wish to do that, I can submit a request for another set of boundary conditions, however it will trigger another 10 business day period to obtain the results. Please let me know how you wish to proceed.

Thank you,

Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

From: Anton Chetrar < Anton. Chetrar@ibigroup.com>

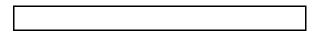
Sent: February 09, 2023 9:29 AM

To: Cassidy, Tyler <tyler.cassidy@ottawa.ca> **Cc:** Ryan Magladry <rmagladry@ibigroup.com>

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.


Hi Tyler,

Understood. Just wanted to confirm that we should be expecting new boundary conditions to include the 3rd connection.

Please let us know.

Thanks, Anton Chetrar | P.ENG. Cell 613-882-8197

Suite 500, 333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 64072

IBI Group is now proudly a part of Arcadis.

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel

From: Cassidy, Tyler <tyler.cassidy@ottawa.ca>
Sent: Wednesday, February 8, 2023 4:01 PM
To: Anton Chetrar <anton.chetrar@ibigroup.com>
Cc: Ryan Magladry <rmagladry@ibigroup.com>

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

Hi Anton,

Thank you for investigating these options and coordinating with the City beforehand. It certainly makes the review process more straightforward on our end once the submission comes in. Unfortunately, the residual pressure(s) during max day + fire flow need to be above 20 psi at every point in the distribution system. It appears as if the third connection is indeed necessary to meet this condition under the existing pressure configuration. Please finalize your water network with a design that satisfies that criteria.

Thank you,

Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

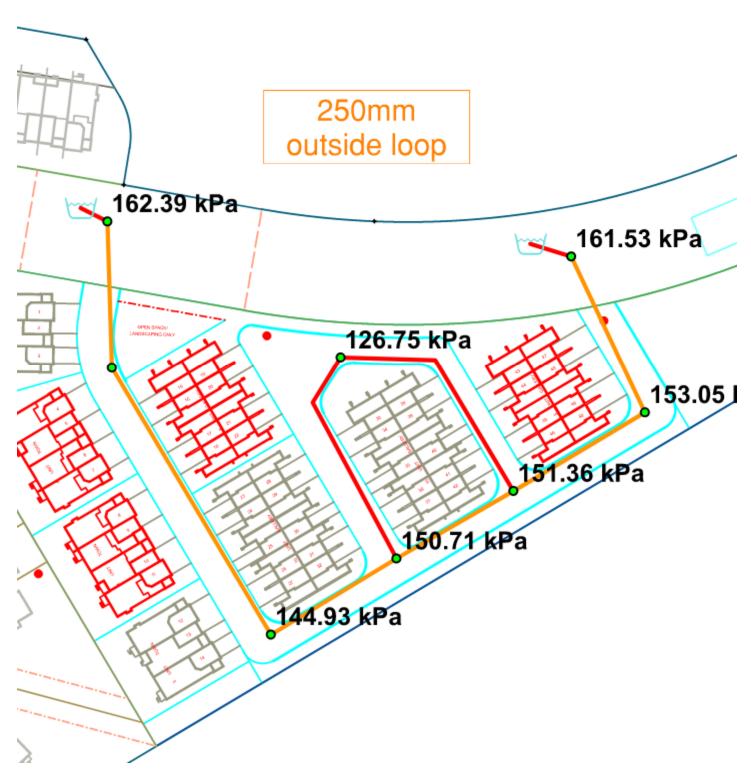
613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

From: Anton Chetrar < Anton. Chetrar@ibigroup.com >

Sent: February 06, 2023 4:24 PM

To: Cassidy, Tyler < tyler.cassidy@ottawa.ca Cc: Ryan Magladry rmagladry@ibigroup.com cc: Ryan Magladry rmagladry@ibigroup.com cc: rmagladry@ibigroup.com cc: rmagladry@ibigroup.com <

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration


CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Tyler,

Below are the results of the water model using the updated boundary conditions. A 250mm watermain outside loop meets the residual pressures at all locations except for one. Also noticed that on the provided Boundary Conditions, Connection 1 is located further West of the proposed connection to Block 178.

Please let us know if the results using a 250mm watermain outside loop are acceptable.

Thanks, Anton Chetrar | P.ENG. Cell 613-882-8197

Suite 500, 333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 64072 IBI Group is now proudly a part of Arcadis.

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel

From: Cassidy, Tyler < tyler.cassidy@ottawa.ca>

Sent: Friday, February 3, 2023 2:14 PM

To: Anton Chetrar <anton.chetrar@ibigroup.com> **Cc:** Ryan Magladry rmagladry@ibigroup.com>

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

Hi Anton,

Please find attached the Boundary Conditions for the proposed development at 3100 Leitrim Drive. Note that the City's water model has been updated between your first boundary condition request and this one. Please review your proposed water network with the latest boundary conditions – it appears as if a 3rd connection is not necessary, and it may be possible to revert to the 200 mm dia. watermain design, please confirm.

Thank you,

Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

From: Cassidy, Tyler

Sent: January 25, 2023 3:21 PM

To: Anton Chetrar < Anton.Chetrar@ibigroup.com > **Cc:** Ryan Magladry < rmagladry@ibigroup.com >

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

Hi Anton,

I've submitted your request for Boundary Conditions to the Water Resources group. Please allow for up to 10 business days for them to return the results.

Thank you,

Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

From: Anton Chetrar < Anton. Chetrar@ibigroup.com>

Sent: January 25, 2023 7:39 AM

To: Cassidy, Tyler < tyler.cassidy@ottawa.ca Cc: Ryan Magladry rmagladry@ibigroup.com cc: Ryan Magladry rmagladry@ibigroup.com cc: Ryan Magladry rmagladry@ibigroup.com co: co

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Tyler,

Thanks for looking into this option.

We can confirm that we have no objections to the proposal below, and would like to proceed with requesting the new boundary conditions with an additional connection as per attached markup.

As well attached the water demands and FUS calculations:

- Daily average demand 0.44 l/s
- Maximum daily demand 1.10 l/s
- Maximum hourly demand 2.42 l/s

Based on the attached calculations, the Fire Flow Demand remains as was previously submitted - 12,000 L/min or 200 L/s

Please let us know if you need anything else from us.

Regards, Anton Chetrar | P.ENG. Cell 613-882-8197

Suite 500, 333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 64072

IBI Group is now proudly a part of Arcadis.	

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

From: Cassidy, Tyler < tyler.cassidy@ottawa.ca > Sent: Tuesday, January 24, 2023 12:39 PM

To: Anton Chetrar < anton chetrar@ibigroup.com

To: Anton Chetrar <anton.chetrar@ibigroup.com> **Cc:** Ryan Magladry rmagladry@ibigroup.com

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

Hi Anton,

Thank you for your patience on this issue as I was getting back to you.

I can confirm the City will support your proposal in this situation to upsize parts of the private watermain network to a 250 mm dia. main and adding a third connection to Barrett Farm Drive. Please note that upsizing to a 250mm dia. does

go against Technical Bulletin ISTB-2014-02, however we do not feel it is fair to hold up development based on a reconfiguration project that has been delayed several times when you have offered a working solution.

One option we would like to keep open is the possibility of reverting the design back to the 200mm dia. main in the event the pressure zone reconfiguration goes ahead of schedule. I'm proposing we add a condition to the DAR that prior to commence work, your consultancy confirms with the City that the pressure zone reconfiguration has not gone ahead and there is still a need to implement the design with the 250mm dia. loop. We will issue the CWN with the drawings for whichever design is suitable at that moment in time.

Please confirm the above, and then you can proceed with requesting new boundary conditions for your design.

Thank you,

Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

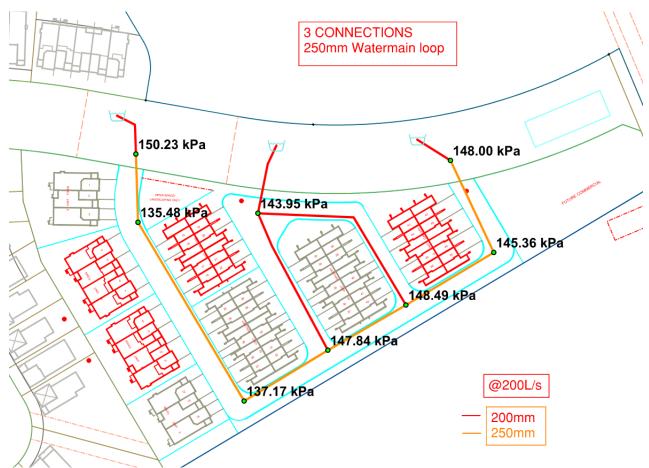
From: Anton Chetrar < Anton.Chetrar@ibigroup.com>

Sent: January 19, 2023 9:59 AM

To: Cassidy, Tyler < tyler.cassidy@ottawa.ca Cc: Ryan Magladry rmagladry@ibigroup.com rmagladry@ibigroup.com som som</a

Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.


ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Tyler,

We have taken another look at our water model for this site plan and explored a few other options in order to meet the minimum required residual pressures under the existing conditions.

The option of increasing the watermain size on the outside loop to 250mm and adding an additional connection at Barrett Farm Drive (shown on the attached) seems to work best at giving us the minimum residual pressures. To perform these calculations we interpolated the two existing boundary conditions to obtain an elevation at the proposed 3rd connection.

Let us know if increasing the watermain size to 250mm and adding an additional connection at Barrett Farm Drive is an option the city water group would entertain. If so we would like to go ahead and request updated water boundary conditions.

Please have a look and let us know if any questions/concerns.

Thanks, Anton Chetrar | P.ENG. Cell 613-882-8197

Suite 500, 333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 64072

IBI Group is now proudly a part of Arcadis.

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

From: Cassidy, Tyler < tyler.cassidy@ottawa.ca > Sent: Thursday, January 12, 2023 12:07 PM
To: Anton Chetrar < anton.chetrar@ibigroup.com > Cc: Ryan Magladry < rmagladry@ibigroup.com >

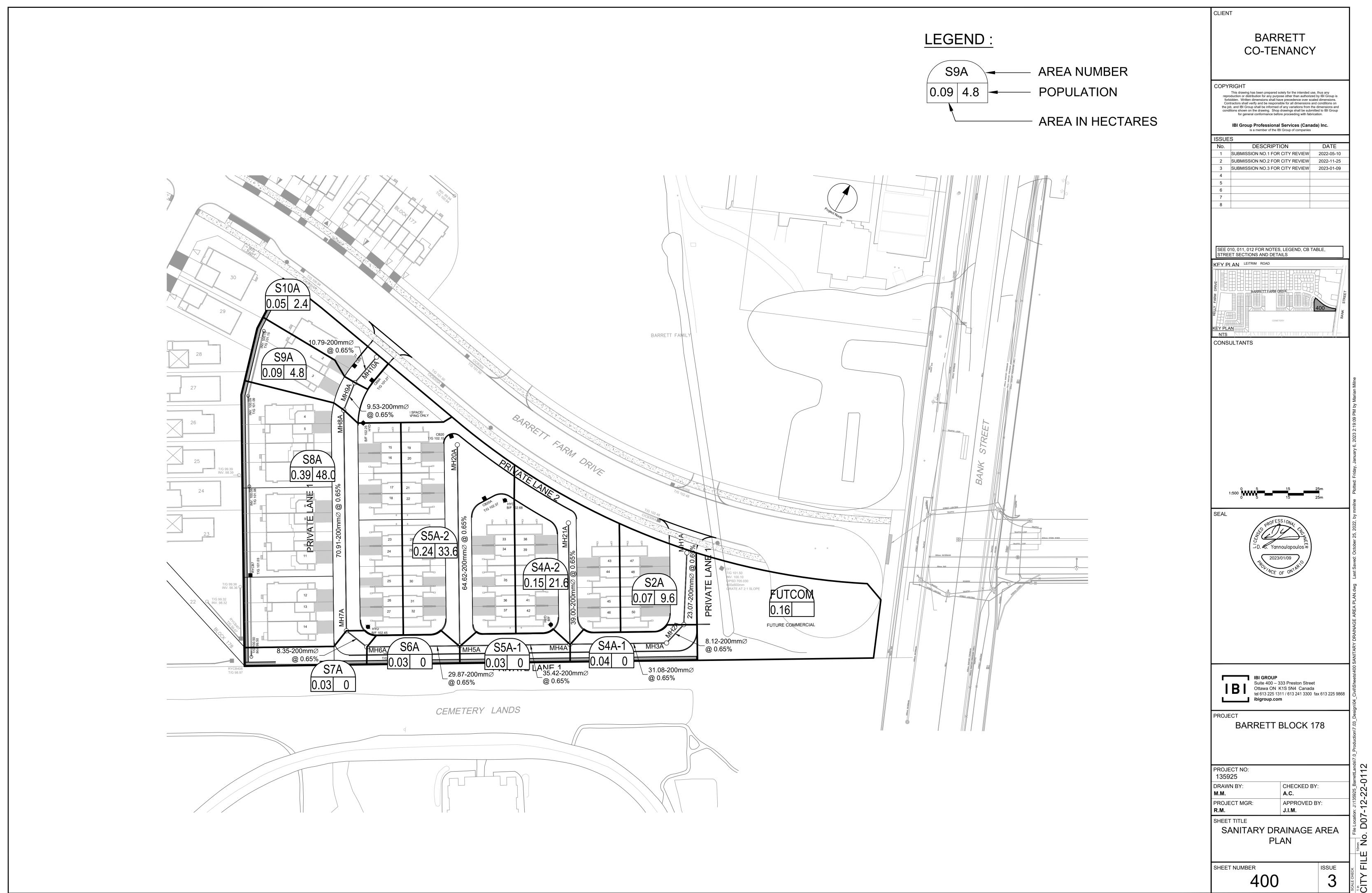
Subject: RE: Barrett Lands Phase 3 (Block 178) - SUZ Zone Reconfiguration

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

Hi Anton,

The City Project Manager for the SUC Zone Reconfiguration in the Leitrim area is Fraser Smith (<u>Fraser.Smith@Ottawa.ca</u>). He will be the best contact for further information into the project. I have inquired with a

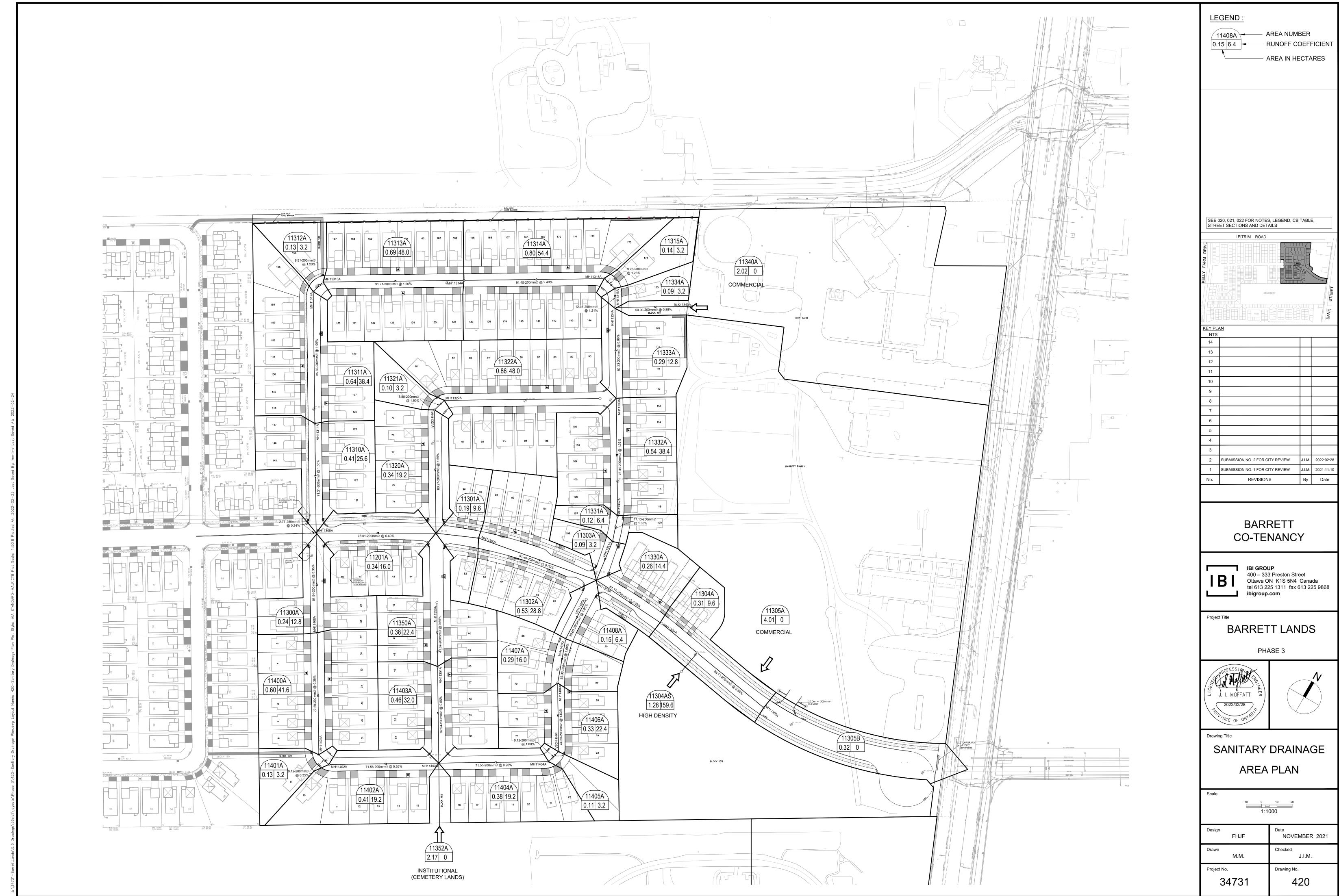
APPENDIX C


Sanitary Sewer Design Sheet 135925-400 - Sanitary Drainage Plan Barrett Lands Phase 3 Sanitary Design Sheet Barrett Lands Phase 3 Sanitary Drainage Area Plan

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Barrett Lands Block 178 CITY OF OTTAWA Barrett Co-Tenancy

	LOCA	TION						RESIDE	NTIAL							I	CIAREAS				INFILTE	RATION ALL	OWANCE	FIXED FL	OW (1 /=)	TOTAL			PROPO	SED SEWER	DESIGN		
	LUCA	IION		AREA		UNIT	TYPES		AREA	POPUL	ATION	RES	PEAK			AREA (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	FIXED FL	LOW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	ILABLE
		FROM	TO	w/ Units			TH	APT	w/o Units			PEAK	FLOW	INSTITU	TIONAL	COMMERCIAL	. INI	DUSTRIAL	PEAK	FLOW											(full)	CAP	ACITY
STREET	AREA ID	МН	МН	(Ha)	SF	SD	IH	API	(Ha)	IND	CUM	FACTOR	(L/s)	IND	CUM	IND CUI	/ IND	CUM	FACTOR	(L/s)	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
Private Lane No.1	S2A	MH1A	MH2A	0.07			4			9.6	9.6	3.73	0.12		0.00	0.00		0.00	1.00	0.00	0.07	0.07	0.02		0.00	0.14	27.59	23.07	200	0.65	0.851	27.45	99.50%
Private Lane No.1	FUTCOM	Blkhd	MH2A	0.00						0.0	0.0	3.80	0.00		0.00	0.16 0.10		0.00	1.50	0.08	0.16	0.16	0.05		0.00	0.13	27.59	8.12	200	0.65	0.851	27.46	
Private Lane No.1		MH2A	MH3A							0.0	9.6	3.73	0.12		0.00	0.10		0.00	1.50	0.08	0.00	0.07	0.02		0.00	0.22	27.59	8.12	200	0.65	0.851	27.37	99.21%
Private Lane No.1		MH3A	MH4A						0.04	2.4	12.0	3.73	0.14		0.00	0.10	3	0.00	1.50	0.08	0.04	0.11	0.04		0.00	0.26	27.59	31.08	200	0.65	0.851	27.33	99.06%
Private Lane No. 2	S4A-2	MH21A	MH4A	0.15			9			21.6	21.6	3.70	0.26		0.00	0.00)	0.00	1.00	0.00	0.15	0.15	0.05		0.00	0.31	27.59	39.00	200	0.65	0.851	27.28	98.88%
Private Lane No. 2	S5A-2	MH20A	MH5A	0.24			14			33.6	33.6	3.68	0.40		0.00	0.00)	0.00	1.00	0.00	0.24	0.24	0.08		0.00	0.48	27.59	64.92	200	0.65	0.851	27.11	98.26%
Private Lane No.1	S5A-1	MH4A	MH5A						0.03	1.8	35.4	3.67	0.42		0.00	0.10	3	0.00	1.50	0.08	0.03	0.29	0.10		0.00	0.59	27.59	35.42	200	0.65	0.851	26.99	97.84%
Private Lane No.1	S6A	MH5A	MH6A						0.03	1.8	70.8	3.63	0.83		0.00	0.10	3	0.00	1.50	0.08	0.03	0.56	0.18		0.00	1.09	27.59	29.87	200	0.65	0.851	26.49	96.03%
Private Lane No.1	S7A	MH6A	MH7A	0.03						0.0	70.8	3.63	0.83		0.00	0.10	3	0.00	1.50	0.08	0.03	0.59	0.19		0.00	1.10	27.59	8.35	200	0.65	0.851	26.48	96.00%
Private Lane No.1	S8A	MH7A	MH8A	0.39			20			48.0	118.8	3.58	1.38		0.00	0.10	3	0.00	1.00	0.05	0.39	0.98	0.32		0.00	1.75	27.59	70.91	200	0.65	0.851	25.83	93.65%
Private Lane No.1	S9A	MH8A	MH9A	0.09			2			4.8	123.6	3.57	1.43		0.00	0.10	3	0.00	1.00	0.05	0.09	1.07	0.35		0.00	1.84	27.59	9.53	200	0.65	0.851	25.75	93.34%
Private Lane No.1	S10A	MH9A	MH10A	0.05			1			2.4	126.0	3.57	1.46		0.00	0.10	3	0.00	1.00	0.05	0.05	1.12	0.37		0.00	1.88	27.59	10.79	200	0.65	0.851	25.71	93.19%
Block 178	11418A	MH10A	MH11305A							0.0	126.0	3.57	1.46		0.00	0.10	6	0.00	1.00	0.05	0.00	1.12	0.37		0.00	1.88	20.24	16.00	200	0.35	0.624	18.36	90.71%
Design Parameters:				Notes:								Designed:		AC		No							Revision								Date		
				 Mannings 				0.013								1.							No. 1 for City R								2022-05-09		
Residential		ICI Areas		2. Demand (L/day	200 L	L/day						2.						Submission N	No. 2 for City R	eview							2022-11-11		
SF 3.2 p/p/u				Infiltration			0.33	L/s/Ha				Checked:		RM																			
TH/SD 2.4 p/p/u		,000 L/Ha/day		Residentia								1																					
APT 1.9 p/p/u	COM 28,	,000 L/Ha/day			Harmon Fo	ormula = 1+((14/(4+(P/10	00)^0.5))0.8	:			1						-	-	-	-		·		-		-						-
Other 60 p/p/Ha	IND 35,	,000 L/Ha/day	MOE Chart		where K =	0.8 Correction	on Factor					Dwg. Refe	rence:	135925 - 40	0																		
	17	'000 L/Ha/day		Commerci	al and Instit	tutional Peak	Factors ba	sed on total	area,			1					File Refer	ence:						Date:							Sheet No:		
		•		1.5 if are	eater than 2	20%, otherwis	se 1.0					I					135925	.00						2022-05-09)						1 of 1		


CITY PLAN No. 18826

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

CITY OF OTTAWA Barrett Co-Tenancy

							RESID	ENTIAL						ICI AF	REAS				INFILTE	ATION ALL	OWANCE			TOTAL	I		PROPO	SED SEWE	R DESIGN		
	LOCATIO	N		AREA		UNIT TYPES			ULATION	RES	PEAK		AR	EA (Ha)	-		ICI	PEAK	ARE	A (Ha)	FLOW	XED FLOW (./s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE		/ AV/	AILABLE
STREET	AREA ID	FROM MH	TO MH	w/ Units (Ha)	SF	SD TH	APT	w/o Units IND	CUM	PEAK FACTOR	FLOW (L/s)	INSTITUTIONAL IND CUM		MERCIAL	INDUSTR IND		PEAK FACTOR	FLOW (L/s)	IND	CUM	(L/s) I	ND CI	М	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAF L/s	APACITY (%)
				\ '				(iia)		TAGTOR	(-/				IND		TACTOR	(2/3)								+			, ,		
Barrett Farm Drive	11305B	MH11306A	MH11305A	0.32				0.0	0.0	3.80	0.00	0.00	4.01	4.01		0.00	1.50	1.95	4.33	4.33	1.43	0.	00	3.38	26.50	56.11	200	0.60	0.817	23.13	87.25%
Block 178	11418A	BLK11305AS	MH11305A	1.28			84	159.6	159.6	3.55	1.83	0.00		0.00		0.00	1.00	0.00	1.28	1.28	0.42	0.	00	2.26	20.24	16.00	200	0.35	0.624	17.99	88.85%
Barrett Farm Drive	11304A	MH11305A	MH11304A	0.31		4		9.6	169.2	3.54	1.94	0.00		4.01		0.00	1.50	1.95	0.31	5.92	1.95	0.	00	5.84	20.24	29.81	200	0.35	0.624	14.40	71.13%
Barrett Farm Drive	11330A	MH11304A	MH11303A	0.26		6		14.4	183.6	3.53	2.10	0.00		4.01		0.00	1.50	1.95	0.26	6.18	2.04	0.	00	6.09	20.24	51.17	200	0.35	0.624	14.15	69.92%
Bouvardia Crescent	11334A	MH11316A	MH11334A	0.09	1			3.2			0.04	0.00		0.00		0.00	1.00	0.00	0.09	0.09	0.03	0.		0.07	37.64	12.36	200	1.21	1.161	37.57	
Block 120 (City Yard) Bouvardia Crescent	COM2 11333A	BLK11120A MH11334A	MH11334A MH11333A	0.00	4			0.0	0.0 16.0		0.00	0.00	2.02	2.02 0.00		0.00	1.50	0.98	2.02 0.29	2.02 0.38	0.67 0.13	0.		1.65 0.32	32.10 30.60	50.00 59.23	200 200	0.88	0.990	30.45 30.29	
Bouvardia Crescent	11333A 11332A	MH11334A MH11333A	MH11333A MH11332A	0.29	12			38.4	54.4		0.19	0.00		2.02		0.00	1.00	0.65	0.29	2.65	0.13	0.		2.17	39.76	76.44	200	1.35	1.226	37.58	
Bouvardia Crescent	11331A	MH11332A	MH11331A	0.12	2			6.4	60.8		0.72	0.00		2.02		0.00	1.00	0.65	0.12	2.77	0.91	0.		2.29	39.76	17.13	200	1.35	1.226	37.47	
Bouvardia Crescent	11303A	MH11331A	MH11303A	0.09	1			3.2	64.0		0.75	0.00		2.02		0.00	1.50	0.98	0.09	2.86	0.94	0.		2.68	54.96	27.28	200	2.58	1.695	52.28	95.12%
Delphinium Crescent	11408A	MH11408A	MH11407A	0.15	2			6.4	6.4	3.75	0.08	0.00		0.00		0.00	1.00	0.00	0.15	0.15	0.05	0.	00	0.13	43.28	29.00	200	1.60	1.335	43.15	
Delphinium Crescent	11407A	MH11407A	MH11406A	0.29	5			16.0			0.27	0.00		0.00		0.00	1.00	0.00	0.29	0.44	0.15	0.		0.41	43.28	29.33	200	1.60	1.335	42.87	
Delphinium Crescent	11406A	MH11406A	MH11405A	0.33	7			22.4			0.53	0.00		0.00		0.00	1.00	0.00	0.33	0.77	0.25	0.		0.79	43.28	44.63	200	1.60	1.335	42.50	
Delphinium Crescent	11405A	MH11405A	MH11404A	0.11	1			3.2	48.0	3.65	0.57	0.00		0.00		0.00	1.00	0.00	0.11	0.88	0.29	0.	00	0.86	43.28	9.12	200	1.60	1.335	42.42	98.02%
Delphinium Crescent	11404A	MH11404A	MH11403A	0.38	6			19.2	67.2	3.63	0.79	0.00		0.00		0.00	1.00	0.00	0.38	1.26	0.42	0.	00	1.21	32.46	71.55	200	0.90	1.001	31.25	96.28%
Nemesia Way	11350A	MH11351A	MH11350A	0.38	7			22.4	22.4	3.70	0.27	0.00		0.00		0.00	1.00	0.00	0.38	0.38	0.13	0.	00	0.39	27.59	48.50	200	0.65	0.851	27.19	98.57%
Nemesia Way	11403A	MH11350A	MH11403A	0.46	10			32.0	54.4	3.65	0.64	0.00		0.00		0.00	1.00	0.00	0.46	0.84	0.28	0.	00	0.92	27.59	62.94	200	0.65	0.851	26.67	96.67%
Block 124 (Cemetery)	CEM, 11352A	BLK11352A	MH11403A	0.00				0.0	0.0	3.80	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.00	0.00	0.00	0.	00	0.00	27.59	42.00	200	0.65	0.851	27.59	100.00%
Delphinium Crescent Delphinium Crescent	11402A 11401A	MH11403A MH11402A	MH11402A MH11401A	0.41	6			19.2	140.8 144.0		1.62 1.66	0.00		0.00		0.00	1.00	0.00	0.41 0.13	2.51 2.64	0.83 0.87	0.		2.45	20.24	71.56 9.12	200 200	0.35	0.624 0.624	17.79 17.71	
Delphinium Crescent	11400A	MH11401A	MH11400A	0.60	13			41.6	185.6		2.12	0.00		0.00		0.00	1.00	0.00	0.60	3.24	1.07	0.		3.19	20.24	79.50	200	0.35	0.624	17.05	
Delphinium Crescent	11300A	MH11400A	MH11300A	0.24	4			12.8			2.26	0.00		0.00		0.00	1.00	0.00	0.24	3.48	1.15	0.		3.41	20.24	64.94	200	0.35	0.624	16.83	
Barrett Farm Drive	11302A	MH11303A	MH11302A	0.53	9			28.8	276.4	3.47	3.11	0.00		6.03		0.00	1.50	2.93	0.53	10.34	3.41	0.	00	9.46	26.50	81.49	200	0.60	0.817	17.05	64.32%
Barrett Farm Drive	11301A	MH11302A	MH11301A	0.19	3			9.6	286.0	3.47	3.22	0.00		6.03		0.00	1.50	2.93	0.19	10.53	3.47	0.	00	9.62	32.46	27.85	200	0.90	1.001	22.84	70.36%
Solidago Mews	11322A	MH11323A	MH11322A	0.86	15			48.0	48.0	3.65	0.57	0.00		0.00		0.00	1.00	0.00	0.86	0.86	0.28	0.	00	0.85	49.58	101.40	200	2.10	1.529	48.73	98.28%
Solidago Mews	11321A	MH11322A	MH11321A	0.10	1			3.2	51.2		0.61	0.00		0.00		0.00	1.00	0.00	0.10	0.96	0.32	0.		0.92	41.91	8.88	200	1.50	1.292	40.98	
Solidago Mews	11320A	MH11321A	MH11301A	0.34	6			19.2	70.4	3.63	0.83	0.00		0.00		0.00	1.00	0.00	0.34	1.30	0.43	0.	00	1.26	42.60	80.27	200	1.55	1.314	41.34	97.05%
Barrett Farm Drive	11201A	MH11301A	MH11300A	0.34	5			16.0	372.4	3.43	4.14	0.00		6.03		0.00	1.50	2.93	0.34	12.17	4.02	0.	00	11.09	26.50	78.01	200	0.60	0.817	15.42	58.17%
Bouvardia Crescent	11315A	MH11316A	MH11315A	0.14	1	1		3.2	3.2	3.76	0.04	0.00		0.00		0.00	1.00	0.00	0.14	0.14	0.05	0.	00	0.09	38.26	9.28	200	1.25	1.180	38.17	99.78%
Bouvardia Crescent	11314A	MH11315A	MH11314A	0.80	17			54.4			0.68	0.00		0.00		0.00	1.00	0.00	0.80	0.94	0.31	0.		0.99	53.01	91.45	200	2.40	1.635	52.02	
Bouvardia Crescent	11313A	MH11314A	MH11313A	0.69	15			48.0	105.6		1.23	0.00		0.00		0.00	1.00	0.00	0.69	1.63	0.54	0.		1.77	37.48	91.71	200	1.20	1.156	35.72	
Bouvardia Crescent	11312A	MH11313A	MH11312A	0.13	1			3.2	108.8		1.26	0.00		0.00		0.00	1.00	0.00	0.13	1.76	0.58	0.		1.85	37.48	8.91	200	1.20	1.156	35.64	
Bouvardia Crescent Bouvardia Crescent	11311A 11310A	MH11312A MH11311A	MH11311A MH11300A	0.64 0.41	12 8			38.4 25.6			1.70 1.98	0.00		0.00		0.00	1.00	0.00	0.64 0.41	2.40 2.81	0.79 0.93	0.		2.49	34.22 42.32	85.85 71.31	200 200	1.00	1.055 1.305	31.73 39.42	
Barrett Farm Drive	11205A	MH11300A	MH11204A	0.51	5	8		35.2	778.8	3.29	8.31	0.00		6.03		0.00	1.50	2.93	0.51	18.97	6.26	0.	00	17.50	30.39	2.77	250	0.24	0.600	12.89	42.41%
Barrott ann Brito	11200/1	WWW 1000/1	MITTIZO IX	0.01		Ŭ		00.2	770.0	0.20	0.01	0.00		0.00		0.00	1.00	2.00	0.01	10.07	0.20			11.00	00.00		200	0.21		12.00	12.1170
																										<u> </u>			_		\pm
Design Parameters:	1	1		Notes:	<u> </u>	<u> </u>	1	1 1		Designed	:	AC	1	No.							Revision								Date		
				1. Mannings			0.013							1.							No. 1 for City Review								2021-11-10	-	
Residential		ICI Areas		2. Demand () L/day	200 L/day						2.							No. 2 for City Review								2022-02-24		
SF 3.2 p/p/u	INICT OCCOO	1/11=/-		Infiltration			3 L/s/Ha			Checked:		JIM		3.						Submission	No. 3 for City Review	W					1		2022-04-06		
TH/SD 2.4 p/p/u APT 1.9 p/p/u		L/Ha/day L/Ha/day		Residentia		=actor: ormula = 1+(14/(4+(P/1	000/40 E//0	Ω						 													1				
Other 60 p/p/Ha		L/Ha/day	MOE Chart			0.8 Correction Factor	000) 0.0))0			Dwg. Refe	oronco:	34731 - TBD		+ +													1				
omor oo prpri ia		L/Ha/day	WIGE CHAIL	5. Commercia		utional Peak Factors be	ased on tota	al area.		Day. Neit		37701 - 100		Fil	e Reference:							ate:							Sheet No:		
	17000	,				0%, otherwise 1.0	311 131								34731-5.7							1-11-10							1 of 1		

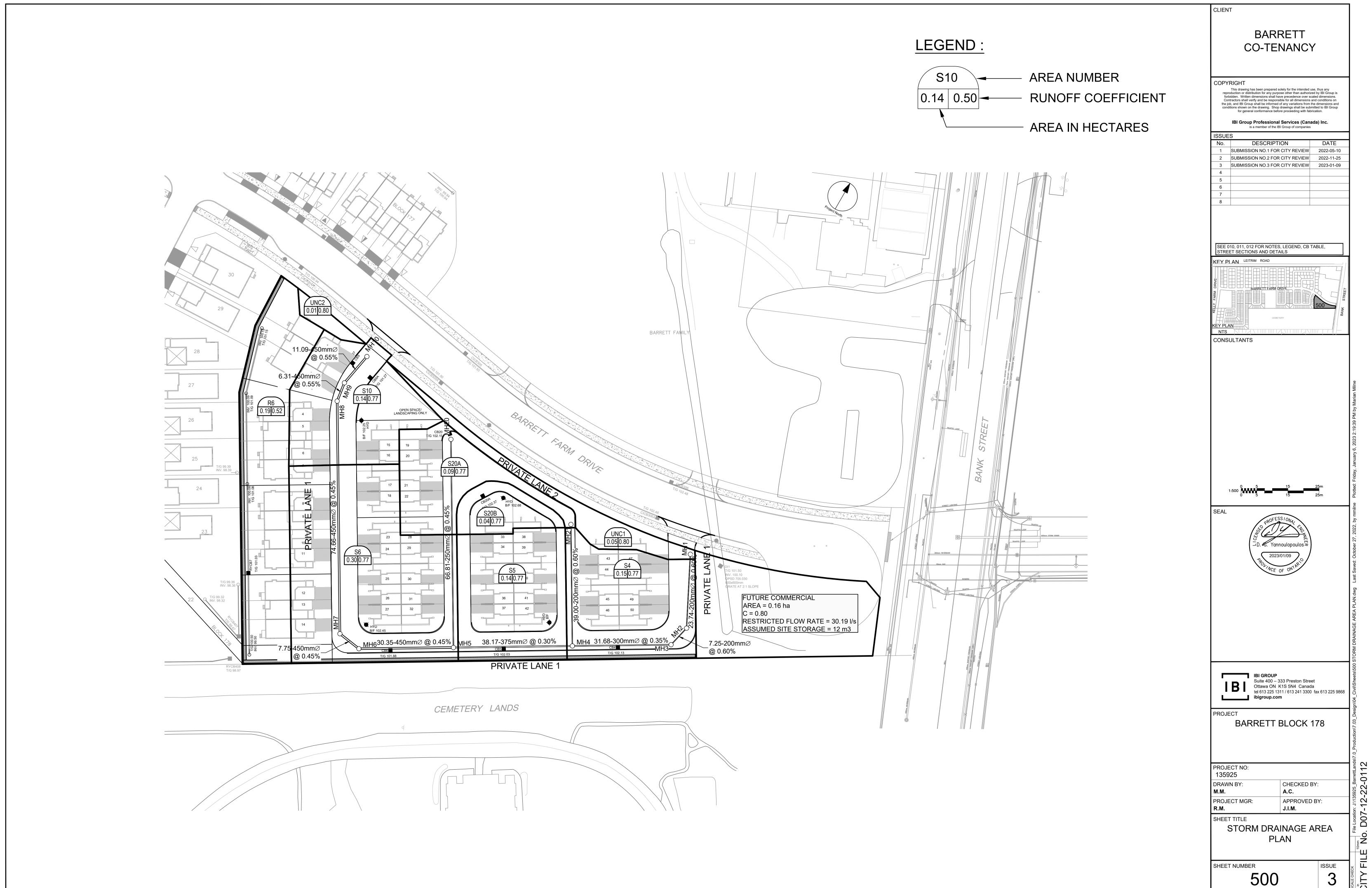
APPENDIX D

Storm Sewer Design Sheet
135925-500 - Storm Drainage Plan
135925-600 - Ponding Plan
Barrett Lands Phase 3 Storm Design Sheet
Barrett Lands Phase 3 Storm Drainage Area Plan
Modified Rational Method on-site SWM calculations
On-site Underground Storage System
Storm HGL Calculations
Barrett Lands Phase 3 HGL Reference
Overflow Depth/Capacity Calculation
Temporary Orifice Sizing
Sample Runoff Coefficient Calculations
Minor system release rate (Barrett Lands Phase 3)

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada

ibigroup.com

tel 613 225 1311 fax 613 225 9868


Black text 2 year event curve design
Blue text 5 year event curve design

Green Text 100 year design curve

STORM SEWER DESIGN SHEET

Barrett Lands Block 178 City of Ottawa Barrett Co-Tenancy

	LOCATION						ARE	\ (Ha)									F	RATIONAL	DESIGN FLOW							,	SEWER DAT	ΓΑ			
STREET	AREA ID	FROM	то	C=	C=	C= C=	C=	C= C	:= C=	C=	C= IN	D CUM	INLET	TIME		i (2)	i (5)	i (10)	i (100) 2yr PEAK	5yr PEAK	10yr PEAK 100yr PEAK FIXED	DESIG	N CAPACIT	Y LENGTH	PII	PE SIZE (n	nm)	SLOPE	VELOCITY	AVAIL	_ CAP
SIREEI	AREA ID	FROM	10	0.20	0.30	0.42 0.5	0 0.52	0.72 0.	73 0.77	0.85	1.00 2.78	3AC 2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/h	r) (mm/hr) FLOW (L/s	FLOW (L/s	s) FLOW (L/s) FLOW (L/s) FLOW (L	/s) FLOW (L	./s) (L/s)	(m)	DIA	W	Н	(%)	(m/s)	(L/s)	(%)
Divista Larra No. 4		MUIA	MILO								0.0	20 0.00	40.00	0.40	40.40	70.04			0.00		0.00	0.00	00.50	00.74	000			0.00	0.047	00.50	400.000
Private Lane No.1		MH1	MH2								0.0		10.00	0.48	10.48	76.81			0.00		0.00	0.00						0.60	0.817		
Private Lane No.1		MH2	MH3								0.0		10.48		10.63	74.99			0.00		0.00	0.00		7.25	200			0.60	0.817		
Private Lane No.1	S4	MH3	MH4	-					0.15)	0.3	32 0.32	10.63	0.65	11.28	74.46			23.91		26.00	26.00	59.68	31.68	300		1	0.35	0.818	33.68	56.44%
Private Lane No. 2		MH21	MH4									0.00			10.80	76.81			0.00		0.00	0.00	26.50	39.00	200			0.60	0.817	26.50	100.00%
Private Lane No. 2	S20A, S20B	MH20	MH5						0.13	3	0.2	28 0.28	10.00	1.36	11.36	76.81			21.37		25.00	25.00	41.62	66.81	250			0.45	0.821	16.62	39.93%
Private Lane No.1	S5	MH4	MH5						0.14		0.3	30 0.62	11.28	0.72	12.00	72.22			44.84		51.00	51.00	100.18	38.17	375			0.30	0.879	49.18	49.09%
Private Lane No.1	S6	MH5	MH6						0.30)	0.6	64 1.54	12.00	0.42	12.42	69.89			107.72		126.00	126.00	199.52	30.35	450			0.45	1.215	73.52	36.85%
Private Lane No.1	R6	MH6	MH7				0.19				0.2	27 1.82	12.42	0.11	12.52	68.62			124.61		146.00	146.00	199.52	7.75	450			0.45	1.215	53.52	26.83%
Private Lane No.1		MH7	MH8								0.0	00 1.82	12.52	1.02	13.55	68.30			124.03		146.00	146.00	199.52	74.66	450			0.45	1.215	53.52	26.83%
Private Lane No.1		MH8	MH9								0.0	00 1.82	13.55	0.08	13.63	65.42			118.80		146.00	146.00	220.58	6.31	450			0.55	1.344	74.58	33.81%
Private Lane No.1	S10	MH9	MH10						0.14		0.3	30 2.12	13.63	0.14	13.76	65.21			137.96		179.00	179.00	220.58	11.09	450			0.55	1.344	41.58	18.85%
Private Lane No.1		MH10	MH11305A								0.0	00 2.12	13.76	0.19	13.95	64.85			137.19		179.00	179.00	518.80	16.00	675			0.35	1.404	339.80	65.50%
Definitions:				Notes:	1								Designed		AC				No.			Revision							Date		
Q = 2.78CiA, where:				1. Mar	nnings coe	efficient (n) =		0.013											1.		Submission No								2022-05-09		
Q = Peak Flow in Litres per	Second (L/s)							0.024											2.		Submission No	o.2 for City R	eview						2022-11-11		
A = Area in Hectares (Ha)													Checked:		RM																
i = Rainfall intensity in millir	meters per hour (mm/hr)																														
[i = 732.951 / (TC+6.199)	•	2 YEAR																													
[i = 998.071 / (TC+6.053))^0.814]	5 YEAR											Dwg. Refe	erence:	135925-50)															
[i = 1174.184 / (TC+6.014	4)^0.816]	10 YEAR																	File R	eference:			Date:						Sheet No:		
[i = 1735.688 / (TC+6.014	4)^0.820]	100 YEAR																	135	925.00			2022-05-09						1 of 1		

CITY PLAN No. 18826

Runoff Coefficient Used(C):

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

Run-off Coefficients

PROJECT: Barrett Block 146

DATE: 2022-04-22

CLIENT: Barrett Co-Tennancy

0.77

FILE: 135925.6.4

									S2&R3		
			В	ACK TO BAC	CK	T	OWNS - REA	٨R	TOV	VNS - FRONT	
			GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHAL
			255.00	1121.00		492.00	400.00		380.00	1601.00	
TOTAL (2)			255.00	1121.00		492.00	400.00		380.00	1601.00	
TOTAL (m ²)				1376.00			892.00			1981.00	
Dunoff Coefficient (C)	ı	ī	0.2	0.0	0.0	0.3	0.0	0.0	0.2	0.0	0.0
Runoff Coefficient (C):			0.2	0.9	0.9	0.2	0.9	0.9	0.2	0.9	0.9
ve. Runoff Coefficient (C):				0.77			0.51			0.77	

0.77

0.52

IBI

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com

Black text 2 year event curve design
Blue text 5 year event curve design (Barrett Farm Drive)
Green Text 100 year design curve

gn gn (Barrett Farm Drive) City of Ottawa Barrett Co-Tenancy

	LOCATION					AREA (Ha)							R	ATIONAL DE	SIGN FLOW							SEW	VER DATA				
STREET	AREA ID	FROM	то		C= C= C=	C= C= C= C=	C= C=	IND CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100) 2yr P		EAK 10yr PEAK 100yr PEAK			Y LENGTH	PI	PE SIZE (mm)		SLOPE V	ELOCITY A	AVAIL CA	P (2yr)
SIREEI	AREA ID	FROIVI	10	0.20	0.30 0.42 0.57	0.68 0.72 0.73 0.78	0.80 1.00	2.78AC 2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr) FLOW	(L/s) FLOW	(L/s) FLOW (L/s) FLOW (L/s) FL	OW (L/s) FLOW (L	/s) (L/s)	(m)	DIA	W	Н	(%)	(m/s) ((L/s)	(%)
				<u> </u>			1 1																				
Temporary	Area 9	DI1	MH11307	+ +	0.24			0.28 0.28	12.00	0.21	12.21	69.89	94.70	110.96	162.13		45.43	45.43	62.04	15.50	250			1.00	1.224 1	6.61	26.77%
Barrett Farm Drive	S11306	MH11307	MH11306	1	1 1 1	0.19		0.38 0.66		0.89		76.81	104.19	122.14		68.		114.26		74.50				0.75			27.87%
Barrett Family	R11305	DI2	MH11306				4.01	8.92 8.92		0.14		69.89	94.70	110.96	162.13 623	33		623.33			+			0.50		97.92	
Temporary	Culvert	DI2 Ditch	MH11306 Ditch					See Barrett Fam See culvert desid	,		IX D							348.22 34.08	109.29	14.66 20.00	525 300			1.40 4.00			34.40% 68.82%
Temporary	Cuivert	Ditori	Ditch	+ +	 			See culvert desig	Ji iii Appelidiz	(D		I						34.00	109.29	20.00	300			4.00	1.490 7	5.21	30.02 /0
Barrett Farm Drive		MH11306	MH11305					0.00 8.92	12.14	0.43	12.57	69.47	94.12	110.28	161.14 619	59		698.95	1,159.96	54.50	825			0.60	2.102 40	61.01	39.74%
Barrett Farm Drive	S11305	MH11306	MH11305			0.09		0.18 0.84	12.14	0.43	12.57	69.47	94.12	110.28	161.14	79.	36	698.95	1,159.96	54.50	825			0.60	2.102 40	61.01	39.74%
D # 5 D :	D44004	D11444005	N N N N N N N N N N				1.00	0.05	10.00	0.05	10.05	20.00	0.4.70	440.00	100.10			400.07	100.17	10.00	075			0.05	4.407	00.50	54.000/
Barrett Farm Drive	R11304	BLK11305	MH11305				1.28	2.85 2.85	12.00	0.25	12.25	69.89	94.70	110.96	162.13 198	97		198.97	438.47	18.00	675			0.25	1.187 23	39.50	54.62%
Barrett Farm Drive		MH11305	MH11304	+ +				0.00 11.76	12.57	0.36	12.92	68.18	92.34	108.18	158.06 802	08	 	820.82	1,274.02	30.40	1050			0.20	1.425 4	53.20	35.57%
Barrett Farm Drive	S11305	MH11305	MH11304			0.10		0.20 0.20	12.57	0.36	12.92	68.18	92.34	108.18	158.06	18.	74	820.82		2 30.40	1050			0.20			35.57%
Barrett Farm Drive	0440044	MH11304	MH11303	+		2.55		0.00 11.76		0.51		67.15	90.93	+	155.62 789		04	917.90			 			0.25		06.50	
Barrett Farm Drive	S11304A	MH11304	MH11303	+ +		0.25	+ + -	0.54 1.39	12.57	0.51	13.08	68.18	92.34	108.18	158.06	127	91	917.90	1,424.40	48.54	1050			0.25	1.594 50	06.50	35.56%
Bouvardia Crescent	R11334	MH11316	MH11334	+ +	0.03		+ + -	0.05 0.05	10.00	0.17	10.17	76.81	104.19	122.14	178.56 3.6	5		3.65	62.04	12.72	250			1.00	1.224 5	8.39	94.11%
Block 120	R11340	BLK11340	MH11334	<u> </u>			1.98	4.40 4.40	12.00	0.45	12.45	69.89	94.70	110.96	162.13 307	78		307.78			600			0.67		16.54	
Bouvardia Crescent	S11334, R11333	MH11334	MH11333		0.08	0.27		0.67 5.12	12.45	0.54	12.98	68.54	92.84	108.77	158.92 350			350.80			600			0.70	1.836 18	85.14	34.54%
Bouvardia Crescent	R11332, S11333	MH11333	MH11332		0.12	0.20	 	0.59 5.71		0.51		66.98	90.70	106.25	155.22 382			382.36			600			1.35		61.90	
Bouvardia Crescent Bouvardia Crescent	R11331, S11331	MH11332 MH11331	MH11331 MH11303	+ +		0.24 0.25	+ + -	0.95 6.66 0.00 6.66	13.49 13.60	0.11 0.16	13.60 13.77	65.57 65.27	88.76 88.36	103.98 103.50	151.88 436 151.18 434			436.87 434.90			600 600			1.35 1.35		07.39 09.36	
Douvardia Oresoetti		IVIIIIIIIIII	IVII I I I I I I I I I I I I I I I I I	+ +	 		+ +	0.00	13.00	0.10	10.11	00.21	00.00	100.00	101.10 404	00	 	434.90	144.20	20.01	000			1.00	2.000 30	00.00	T1.01 /0
Barrett Farm Drive		MH11303	MH11302	<u> </u>			<u> </u>	0.00 18.43	13.77	0.57	14.33	64.84	87.76	102.80	150.16 1,194			1,360.9		83.97				0.60	2.469 84		38.33%
Barrett Farm Drive	S11303A, S11303B	MH11303	MH11302			0.25		0.51 1.89	13.77	0.57	14.33	64.84	87.76	102.80	150.16	166	10	1,360.9	3 2,206.67	83.97	1050			0.60	2.469 84	45.73	38.33%
D #5 D:		N N N N N N N N N N	N N N N N N N N N N					0.00 40.40	11.00	0.00	44.54	22.22	05.77	100.10	110.70			4.000.0			4050			0.00	0.400	70.00	00.740/
Barrett Farm Drive Barrett Farm Drive		MH11302 MH11302	MH11301 MH11301					0.00 18.43 0.00 1.89	14.33 14.33	0.20 0.20	14.54 14.54	63.38 63.38	85.77 85.77	100.46	146.72 1,168 146.72	162	22	1,330.3 1,330.3	7 2,206.67 7 2,206.67		1050			0.60		76.29 76.29	39.71%
Darrett Failli Dilve		WITT1302	WITTIOT		- 			0.00 1.09	14.55	0.20	14.54	03.30	03.11	100.40	140.72	102	33	1,330.3	7 2,200.07	30.00	1000			0.00	2.409	70.29	39.7 1 /0
Solidago Mews	R11323, S11323	MH11323	MH11322	1	0.26	0.25		0.91 0.91	10.00	0.87	10.87	76.81	104.19	122.14	178.56 70.0)8		70.08	146.19	104.38	300			2.10	2.004 7	6.12	52.07%
Solidago Mews		MH11322	MH11321					0.00 0.91	10.87	0.09	10.96	73.62	99.82	116.99	170.99 67.	17		67.17	123.55	8.91	300			1.50			45.63%
Solidago Mews	R11321, S11321, S11301	MH11321	MH11301		0.53	0.22 0.15		1.58 2.50	10.96	0.83	11.79	73.32	99.40	116.50	170.27 183	08		183.08	347.53	77.89	525			0.60	1.555 10	64.45	47.32%
Barrett Farm Drive		MH11301	MH11300					0.00 20.92	14.54	0.52	15.07	62.00	95 N9	00.65	145.52 1.24	: 01		1,569.3	5 2 206 67	7 70.16	1050			0.60	2.460 69	27 22	20 000/
Barrett Farm Drive	R11301, S11301A, S11301B	MH11301	MH11300		0.43	0.20			14.54 14.54	0.53 0.53	15.07 15.07	62.88 62.88	85.08 85.08	99.65 99.65	145.53 1,315 145.53	253	54	1,569.3						0.60		37.32 37.32	
Barrott i ann Brivo	111001, 0110011, 0110012	WIITTIGGT	WIITTIGG	1	0.10	0.20		1.00 2.00	11.01	0.00	10.01	02.00	00.00	00.00	110.00	200		1,000.0	2,200.07	70.10	1000			0.00	2.100	01.02	20.0070
Bouvardia Crescent	R11315	MH11316	MH11315		0.14			0.22 0.22	10.00	0.11	10.11	76.81	104.19	122.14	178.56 17.			17.04	69.36	9.12	250			1.25		52.32	75.43%
Bouvardia Crescent	S11314	MH11315	MH11314			0.30		0.60 0.82		0.79	10.90	76.38	103.61	121.46	177.55 62.8			62.81	96.11	89.59	250			2.40			34.65%
Bouvardia Crescent Bouvardia Crescent	R11313A, R11313B, S11313 R11313C	MH11314 MH11313	MH11313 MH11312		0.44	0.26		1.22 2.04 0.16 2.20		0.81	11.71 11.78	73.52 70.82	99.68 95.97	116.82 112.45	170.74 149 164.33 155			149.98 155.69			450 450			1.20		75.84 70.13	53.97%
Bouvardia Crescent	R11311, S11312, S11311B	MH11313	MH11312		0.10	0.37			11.71 11.78	0.08 0.74	12.53	70.62	95.62	112.45	163.74 261			261.81						1.00		86.85	
Bouvardia Crescent	S11311, S11311A	MH11311	MH11300	1	0.10	0.25			12.53	0.55	13.07	68.30	92.51		158.36 288			288.04						0.85		02.52	
Delphinium Crescent		MH11408	MH11407					0.00 0.00	+	0.27	10.27	76.81	104.19		178.56 0.0			0.00	78.47					1.60			100.00%
Delphinium Crescent Delphinium Crescent	S11407 R11406	MH11407 MH11406	MH11406 MH11405	+ +	0.17	0.18	+	0.36 0.36 0.27 0.63	10.27 10.58	0.31 0.51	10.58	75.79 74.65	102.79 101.23	120.49 118.66	176.14 27.3 173.44 47.4			27.31 47.01	78.47	28.74 47.61	250			1.60			65.20% 40.10%
Delphinium Crescent Delphinium Crescent	K11400	MH11406 MH11405	MH11405 MH11404	+ +	0.17		+ +	0.27 0.63		0.51	11.09 11.19	74.65 72.86	98.76	118.66	173.44 47.0 169.17 45.0			47.01	78.47 78.47		250 250			1.60 1.60			40.10%
Delphinium Crescent	S11404	MH11404	MH11403	+ +	0.48	0.49	+ +		11.19	0.72	11.19	72.51	98.29		168.35 171			171.94			450			0.90			39.07%
Nemesia Way	S11350, R11350A, R11350B	MH11350	MH11351	 	0.28	0.24		0.92 0.92		0.61	10.61	76.81	104.19		178.56 70.9			70.97		45.20				0.60		0.71	
Nemesia Way	S11351	MH11351	MH11403	+ +		0.25	+	0.50 1.42	10.61	0.79	11.39	74.55	101.10	118.49	173.20 106	20		106.20	230.39	66.41	450			0.60	1.403 12	24.19	53.90%
Delphinium Crescent	S11401A, R11402	MH11403	MH11402	+ +	0.27	0.24	+ +	0.91 4.70	11.91	0.93	12.85	70.17	95.07	111.40	162.78 330	05		330.05	580.71	71.43	750			0.25	1.273 25	50.66	43.16%
Delphinium Crescent	5 5	MH11402	MH11401	+ +	0.21	V.2.1	 	0.00 4.70	+	0.12	12.97	67.36	91.22	106.87	156.13 316			316.86			750			0.25			45.44%
Delphinium Crescent	S11401B, R11401	MH11401	MH11400		0.31	0.18		0.85 5.56	12.97	1.05	14.02	67.03	90.76	106.33	155.33 372	35		372.35	580.71	80.19	750			0.25	1.273 20	08.36	35.88%
Delphinium Crescent	S11400, R11400A, R11400B	MH11400	MH11300	 	0.22	0.26	<u> </u>	0.87 6.42	14.02	0.95	14.96	64.19	86.88	101.76	148.63 412	39		412.39	669.70	68.90	825			0.20	1.214 2	57.31	38.42%
Barrett Farm Drive		MH11300	EX Blkhd	+ +				0.00 31.57	15.07	0.02	15.00	61.60	02.22	97.58	142.50 1,944	40		0.400.7	0 4650.04	0.54	1650			0.24	2 1 1 0 0 4	65.40	52.020/
Barrett Farm Drive		MH11300 MH11300	EX Blkhd	+ +			+ +	0.00 31.57				61.60 61.60	83.33 83.33	97.58		248	31		9 4,658.21 9 4,658.21					0.24	2.110 24 2.110 24	65.42	52.93%
Danott ann Divo		1411111000	LA DINIU	+ +			+ +	2.00	10.01	0.02	10.00	31.00	00.00	07.00	2.00	240	 	2,132.7	σ,,υυυ.Ζ1	2.01	1000			V.2T	2.110 24	JU12	52.0070
				<u> </u>																							
Definitions:				Notes:					Designed:		AC				No.			Revision							Date		
Q = 2.78CiA, where:	0 14.7			1. Mannir	ings coefficient (n) =	0.013									1.			sion No.1 for City R							021-11-10		
Q = Peak Flow in Litres pe	· · ·					0.024			Chastrad		118.4				2.			sion No.2 for City R							022-02-24		
A = Area in Hectares (Ha) i = Rainfall intensity in mill									Checked:		JIM			-	J.		Submis	sion No.3 for City R	EVIEW					- 2	022-04-06		
[i = 732.951 / (TC+6.199		2 YEAR												-													
[i = 998.071 / (TC+6.053		5 YEAR							Dwg. Refere	ence:	34731-520																
[i = 1174.184 / (TC+6.01	14)^0.816]	10 YEAR														le Referenc	9:		Date:					S	heet No:		
[i = 1735.688 / (TC+6.01	14)^0.820]	100 YEAR														34731-5.7			2021-11-10						1 of 1		

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com PROJECT: Barrett Block 178

DATE: 2022-11-11

FILE: 135925-6.4.4

REV #: 2

DESIGNED BY: AC

CHECKED BY: RM

STORMWATER MANAGEMENT

Formulas and Descriptions

 i_{2yr} = 1:2 year Intensity = 732.951 / $(T_c+6.199)^{0.810}$

 i_{5yr} = 1:5 year Intensity = 998.071 / $(T_c+6.053)^{0.814}$

 i_{100yr} = 1:100 year Intensity = 1735.688 / $(T_c+6.014)^{0.820}$

T_c = Time of Concentration (min)

C = Average Runoff Coefficient

A = Area (Ha) Q = Flow = 2.78CiA (L/s)

Maximum Allowable Release Rate

Restricted Flowrate (based on modelled flow from Phase 3)

 EXT
 234.000 l/s
 From Barrett Phase 3

 Private Residential Future Commercial
 203.31 | 1.060 ha | 0.160 ha

Q_{restricted} = 203.31 L/s

Uncontrolled Release (Q uncontrolled = 2.78*C*i 100yr *A uncontrolled)

C = 0.8 $T_c = 10 \text{ min}$ $i_{100yr} = 178.56 \text{ mm/hr}$ $A_{uncontrolled} = 0.06 \text{ Ha}$ $Q_{uncontrolled} = 23.83 \text{ L/s}$

Maximum Allowable Release Rate (Q_{max allowable} = Q_{restricted} - Q_{uncontrolled})

Q_{max allowable} = 179.48 L/s

 OVERFLOW SUMMARY TABLE

 Area ID
 Overflow to
 100year
 100year+20%

 S10
 Barrett Farm Drive
 39.68
 62.70

 R6
 Delphinium Cres.
 97.70
 140.55

 Total
 137.38
 203.25

 Barrett Phase 3 allowance
 350
 476

S20A

Overflow 0.00

Drainage Area

MODIFIED RATIONAL METHOD (100-Year, 100-Year +20% & 2-Year Ponding)

Drainage Area	S20A							
Area (Ha)	0.090	j i						
C =	1.00	Restricted Flow Q _r (L	_/s)=	15.00				
		100-Year Pondir	ng				100Yr +20%	,
T _c		Peak Flow		0.0	Volume	100YRQp	Qp - Qr	Volume
Variable	I _{100yr}	Q p = 2.78xCi 100yrA	Q,	$Q_p - Q_r$	100yr	20%		100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
5	242.70	60.72	15.00	45.72	13.72			
10	178.56	44.68	15.00	29.68	17.81			
15	142.89	35.75	15.00	20.75	18.68	42.90	27.90	25.11
20	110.05	20.04	1E 00	15.01	10.01	1		

	St	100+20					
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	18.68	20.59	0	0.00	0.00	25.11	4.52
			L/s =	0.00		L/s =	5.02
			overflows to: 9	210			

C =	0.80	Restricted Flow Q _r (L	./s)=	15.00						
2-Year Ponding										
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q_p - Q_r	Volume 2yr					
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)					
8	85.46	17.11	15.00	2.11	1.01					
9	80.87	16.19	15.00	1.19	0.64					
10	76.81	15.37	15.00	0.37	0.22					
11	73.17	14.65	15.00	-0.35	-0.23					
12	69.89	13.99	15.00	-1.01	-0.73					

0.22

Storage (m³)

20.59

overflows to: S10

0.00

1 of 3

https://ibigroup.sharepoint.com/sites/Projects1/135925/Internal Documents/6.0_Technical/6.04_Civil/04_Design-Analysis/Submission No.2/CCS_swm

Drainage Area	S10	1						
Area (Ha)	0.140							
C =	1.00	Restricted Flow Q _r (L	_/s)=	33.00				
	•	100-Year Pondii	ng				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
-1	462.72	180.09	33.00	147.09	-8.83			
4	262.41	102.13	33.00	69.13	16.59			
9	188.25	73.27	33.00	40.27	21.75	87.92	54.92	29.66
14	148.72	57.88	33.00	24.88	20.90			
19	123.87	48.21	33.00	15.21	17.34			
			rage (m³)				100+20	
	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
	0.00	21.75	0.32	0	21.43	4.52	34.18	33.86
				L/s =	39.68 Barrett Farm D	ris co	L/s =	62.70
				overnows to.	Danell Faili D	live		
Drainage Area	FUTCOM	1						
Area (Ha)	0.160							
C =	1.00	Restricted Flow Q _r (L	_/s)=	30.69				
		100-Year Pondii	ng				100Yr +20%	
T _c	i _{100vr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	100YRQp	Qp - Qr	Volume
Variable	100yr	Q p = 2.78xCi 100yr A	Q,	Q _p -Q _r	100yr	20%		100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
4	262.41	116.72	30.69	86.03	20.65	1		
9	188.25	83.74	30.69	53.05	28.65			
14	148.72	66.15	30.69	35.46	29.79	79.38	48.69	40.90
19	123.87	55.10	30.69	24.41	27.83			
24	106.68	47.45	30.69	16.76	24.14			

	St	100+20					
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	29.79	12.00	0	17.79	0.00	40.90	28.90
			L/s =	21.18		L/s =	34.41
			overflows to: \$	54			

Drainage Area	S4	4						
Area (Ha)	0.150)						
C =	1.00	Restricted Flow Q _r (L	_/s)=	26.00				
		100-Year Pondir	ng				100Yr +20%	•
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q_r	Q _p -Q _r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
4	262.41	109.42	26.00	83.42	20.02	1		
9	188.25	78.50	26.00	52.50	28.35			
14	148.72	62.02	26.00	36.02	30.25	74.42	48.42	40.67
19	123.87	51.65	26.00	25.65	29.24			
24	106.68	44.48	26.00	18.48	26.62			

	St	100+20					
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
17.79	48.04	1.16	0	46.88	28.90	69.58	68.42
			L/s =	55.81		L/s =	81.45
			overflows to:	35			

Drainage Area	S20B							
Area (Ha)	0.040)						
C =	1.00	Restricted Flow Q _r (L	./s)=	10.00	Ī			
		100-Year Pondir	ng				100Yr +20%)
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q _r	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
-4	977.56	108.70	10.00	98.70	-23.69	1		
1	351.38	39.07	10.00	29.07	1.74			
6	226.01	25.13	10.00	15.13	5.45	30.16	20.16	7.26
11	169.91	18.89	10.00	8.89	5.87			
16	137 55	15.30	10.00	5.30	5.08	1		

	Sto	100+20					
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	5.45	1.41	0	4.04	0.00	7.26	5.85
			L/s =	11.22		L/s =	16.24
			overflows to: S	S5			

Drainage Area	S10				
Area (Ha)	0.140	1			
C =	0.80	Restricted Flow Q _r (L	_/s)=	33.00	
		2-Year Pon	ding		
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	26.61	33.00	-6.39	-3.07
9	80.87	25.18	33.00	-7.82	-4.22
10	76.81	23.91	33.00	-9.09	-5.45
11	73.17	22.78	33.00	-10.22	-6.74
12	69.89	21.76	33.00	-11.24	-8.09

Storage (m ³)								
Overflow	Required	Surface	Sub-surface	Balance				
0.00	-5.45	0.32	0	0.00				

overflows to: Barrett Farm Drive

Drainage Area	FUTCOM				
Area (Ha)	0.160				-
C =	0.80	Restricted Flow Q _r (I	_/s)=	30.69	
		2-Year Pon	ding		
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	30.41	30.69	-0.28	-0.13
9	80.87	28.78	30.69	-1.91	-1.03
10	76.81	27.33	30.69	-3.36	-2.01
11	73.17	26.04	30.69	-4.65	-3.07
12	69.89	24.87	30.69	-5.82	-4.19

		Storage (m	3)	
Overflow	Required	Surface	Sub-surface	Balance
0.00	-2.01	12.00	0	0.00

overflows to: S4

Drainage Area	S4									
Area (Ha)	0.150				_					
C =	0.80	Restricted Flow Q _r (I	_/s)=	26.00						
2-Year Ponding										
T _c Variable (min)	i _{2yr} (mm/hour)	Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s)	Q , (L/s)	Q _p -Q, (L/s)	Volume 2yr (m³)					
8	85.46	28.51	26.00	2.51	1.20					
9	80.87	26.98	26.00	0.98	0.53					
10	76.81	25.62	26.00	-0.38	-0.23					
11	73.17	24.41	26.00	-1.59	-1.05					
12	69.89	23.32	26.00	-2.68	-1.93					

		Storage (m	3)	
Overflow	Required	Surface	Sub-surface	Balance
0.00	-0.23	1.16	0	0.00

overflows to: S5

rea (Ha)	0.040 0.80	Restricted Flow Q _r (L		10.00	
T _c Variable	i _{2yr}	2-Year Pond Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	7.60	10.00	-2.40	-1.15
9	80.87	7.19	10.00	-2.81	-1.51
10	76.81	6.83	10.00	-3.17	-1.90
11	73.17	6.51	10.00	-3.49	-2.30
12	69.89	6.22	10.00	-3.78	-2.72

Storage (m ³)									
Overflow	Required	Surface	Sub-surface	Balance	_				
0.00	-1.90	1.41	0	0.00					

overflows to: S5

Drainage Area	S5	i						
Area (Ha)	0.140	0						
C =	1.00	Restricted Flow Q _r (L	./s)=	25.00	1			
		100-Year Pondir	ng				100Yr +20%	•
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
6	226.01	87.96	25.00	62.96	22.67			
11	169.91	66.13	25.00	41.13	27.14	1		
16	137.55	53.53	25.00	28.53	27.39	64.24	39.24	37.67
21	116.30	45.26	25.00	20.26	25.53	1		
26	101.18	39.38	25.00	14.38	22.43	1		

	St	100+20					
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
50.92	78.31	1.32	0	76.99	74.26	111.93	110.61
			L/s =	80.20		L/s =	115.22

		- · · · · /							
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance		
50.92	78.31	1.32	0	76.99	74.26	111.93	110.61		
			L/s =	80.20		L/s =	115.22		
overflows to: S6									

Drainage Area	S6	1						
Area (Ha)	0.300							
C =	1.00	Restricted Flow Q _r (L	_/s)=	50.00				
	•	100-Year Pondir	ng				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q_r	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
8	199.20	166.13	50.00	116.13	55.74	1		
13	155.11	129.36	50.00	79.36	61.90			
18	128.08	106.82	50.00	56.82	61.37	128.19	78.19	84.44
23	109.68	91.47	50.00	41.47	57.23			
28	96.27	80.29	50.00	30.29	50.89	1		

	St	orage (m³)	100+20				
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
76.99	138.36	9.71	0	128.65	110.61	195.06	185.35
			L/s =	119.12		L/s =	171.62
			overflows to: I	R6			

Drainage Area	R6	1						
Area (Ha)	0.170	Restricted Flow Q _r (L	/s)=	20.00	Ì			
C =	0.68	50% Restricted Flow	$Q_r(L/s)=$	10.00	1			
		100-Year Pondir	ng				100Yr +20%	1
T _c Variable	i _{100yr}	Peak Flow $Q_p = 2.78 x Ci_{100yr} A$	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
16	137.55	44.20	10.00	34.20	32.84			
21	116.30	37.37	10.00	27.37	34.49			
26	101.18	32.52	10.00	22.52	35.12	39.02	29.02	45.27
31	89.83	28.87	10.00	18.87	35.09			
36	80.96	26.02	10.00	16.02	34.60			

	St		100+20				
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
128.65	163.78	4.38	6.98	152.42	185.35	230.61	219.25
			L/s =	97.70		L/s =	140.55
			overflows to: I	Oalphinium Cre	ac .		

Drainage Area	S5				
Area (Ha) C =		Restricted Flow Q _r (L	./s)=	25.00	
		2-Year Pond	ding		
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	26.61	25.00	1.61	0.77
9	80.87	25.18	25.00	0.18	0.10
10	76.81	23.91	25.00	-1.09	-0.65
11	73.17	22.78	25.00	-2.22	-1.46
12	69.89	21.76	25.00	-3.24	-2.33

	Storage (m ³)								
Overflow	Required	Surface	Sub-surface	Balance					
0.00	-0.65	1.32	0	0.00					

overflows to: S6

Draillage Area	30										
Area (Ha)	0.300										
C =	0.80	Restricted Flow Q _r (L	Restricted Flow Q _r (L/s)= 50.00								
	2-Year Ponding										
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q_r	Q_p - Q_r	Volume 2yr						
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)						
8	85.46	57.02	50.00	7.02	3.37						
9	80.87	53.96	50.00	3.96	2.14						
10	76.81	51.24	50.00	1.24	0.75						
11	73.17	48.82	50.00	-1.18	-0.78						
12	69.89	46.63	50.00	-3.37	-2.42						

	Storage (m ³)							
_	Overflow	Required	Surface	Sub-surface	Balance			
	0.00	0.75	9.71	0	0.00			

overflows to: R6

Drainage Area	R6	1								
Area (Ha)	0.170									
C =										
2-Year Ponding										
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q_r	Q_p - Q_r	Volume 2yr					
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)					
11	73.17	23.51	10.00	13.51	8.92					
12	69.89	22.46	10.00	12.46	8.97					
13	66.93	66.93 21.51 10.00 1		11.51	8.98					
14	64.23	20.64	10.00	10.64	8.94					
15	61.77	19.85	10.00	9.85	8.87					

	Storage (m ³)								
Overflow	Required	Surface	Sub-surface	Balance					
0.00	8.98	4.38	6.98	0.00					

overflows to: Delphinium Cres.

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 Barrett Block 178

 DATE:
 2022-10-27

 FILE:
 135925-6.4.4

 REV #:
 2

 DESIGNED BY:
 AC

 CHECKED BY:
 RM

UNDERGROUND STORAGE CALCULATIONS - BARRETT BLOCK 178

Pipe Storage	Area R6				
From	То	Length	Diameter	X-sec Area	Volume
ECB1	RYCB7	26.07	250	0.049	1.28
RYCB7	ECB2	28.46	250	0.049	1.40
ECB2	ECB3	29.13	250	0.049	1.43
ECB3	ECB4	20.50	250	0.049	1.01
				Total	5.11

Structure S	torage	Area				
	Base	Тор	Height	diameter	X-sec Area	Volume
ECB1	98.480	99.48	1.00	300	0.071	0.07
ECB2	100.080	101.08	1.00	300	0.071	0.07
ECB3	100.090	101.09	1.00	300	0.071	0.07
ECB4	100.150	101.15	1.00	300	0.071	0.07
RYCB7	99.630	101.03	1.40	1200	1.131	1.58
					Total	1.87

TOTAL AREA	6.98

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER JOB #: 135925 - 6.04
DATE: 2022-11-11
DESIGN: AC
CHECKED: RM
REV #: 2

Mode											
Sick 178	FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING F	ORMULA - FI	LOWING FULL				
DAME TELEVATION (m)	Block 178			1							
DECEMBER Color C	NIVEDT ELEVATION (***)	00.020	00.001	_						, ,	
MANUFICE (mm)	()								0.11	1.33	211.34
ERIGH	` '	90.400	90.541	450					l İ		
175.00 1	, ,										
Head loss in manhole simplified method p, 71 (MWDM) MWAW SURGHARDE (mm) MANHOLE COEF K= 0.78 LOSS (m) 0.048 MH MM MM MWAW SURGHARDE (mm) MANHOLE COEF K= 0.78 MANHOLE COEF K= 0.05 (km) MANHOLE COEF K= 0	, ,				DEGIGITIE	OW DEI III-		0.010			
MANNOLE COEF K					4						1
MANNOLE COEF Ke 0.78 LOSS (m) 0.048	HGL (m) ****	96.430	96.474	0.044					. ,		
H				<u> </u>		fig1.7.1, Krat	tio = 0.75 for 45 b	ends			
	MANHOLE COEF K= 0.75	LOSS (m)	0.048	_		Velocity = Flo	ow / Area =		1.13	m/s	
MAX_SURCHARGE (mm)				_]		HL = K _L * \	/^2/ 2g				
PRICTION LOSS	. ,		98.406								
Memory M	MAX. SURCHARGE (mm)	<u> </u>	-135		_]						
Memory M	EDICTION LOGO	EDOM I	TO	DIDE	UMANININO F	CODMILIA FI	LOWING FULL				
Block 178 9 8	FRICTION LOSS				MANNING F	-ORMULA - FI	LOWING FULL				
MANNHOLE COSE Mannhole Mann	Block 178			III	DIA	Area	Perim	Slone	Hvd R	\/el	0
DIAMETER (mm) 98.121 98.196 98.597 98.597 98.596 98.422 98.595 98.597 98.696 98.426 98.		├	<u> </u>	1							
MANNING FORMULA - FLOWING FULL MANNING FORMULA - FLOWING FULL	INVERT ELEVATION (m)	98.121	98.156	1		. ,	, ,			, ,	, ,
LENGTH (m)	` '			1	HYDRAULIC	SLOPE =	0.92				
Had loss in manhole simplified method p. 71 (MWDM) Had loss in manhole simplified	DIAMETER (mm)			450	DESIGN FL	OW TO FULL	FLOW RATIO (C	0.749	ĺ		
Head loss in manhole simplified method p. 71 (MWDM) Head loss in manhole simplified method p. 71 (LENGTH (m)			6.3	DESIGN FL	OW DEPTH =		0.288			
MANNING COFF K 0.75 LOSS (m) 0.038 MANNING FORMULA - FLOWING FULL MANNING FORMULA - F	FLOW (I/s)			159.00					_		
MANHOLE COEF K	HGL (m) ***	98.406	98.426	0.020		Head loss in	manhole simplifie	ed method p. 7	1 (MWDM)		
Velocity = Flow / Area = 1.00 m/s Velocity = Flow / Area = 1.0				=					. ,	KL=0.75	
HL = KL * V^2/2 g	MANHOLE COEE K= 0.75	LOSS (m)	0.038	=				0.140	1.00	m/e	
Second S	WIANTOLL GOLF IV- 0.70	2000 (III)	0.000	#		,			1.00	111/3	
## PIPE MANNING FORMULA - FLOWING FULL	TOTAL HGL (m)		00 464	4		TIE - IXE	v 2/29				
Priction Loss				╣							
Min	WIAX. GOTGLIARGE (HIII)	<u> </u>	-142	H	_						
Min					7						
DIA	FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - FI	LOWING FULL				
MVERT ELEVATION (m)		MH		ID							
NVERT ELEVATION (m)	Block 178	8	7								
Name				4		. ,	· /	. ,	. ,	. ,	. ,
DESIGN FLOW TO FULL FLOW RATIO (\(\)	` '			4					0.11	1.20	191.17
Total High Tot	()	96.636	90.972	450							
FLOW (I/s) 159.00 159.00 Head loss in manhole simplified method p. 71 (MWDM) Straight through KL = 0.05 MANHOLE COEF K = 0.05 LOSS (m) 0.003 MAX. SURCHARGE (mm) 139 MAX. SURCHARGE (mm) 139 MAX. SURCHARGE (mm) 1439 MAX. SURCHARGE (mm) 1439 MAX. SURCHARGE (mm) 1439 MAX. SURCHARGE (mm) MH MH DID MANNING FORMULA - FLOWING FULL MAX. SURCHARGE (mm) MH MH DID MANNING FORMULA - FLOWING FULL MAX. SURCHARGE (mm) MH MH DID MAX. SURCHARGE (mm) Slope Hyd.R. Vel. Q (m) (m2) (m) (m2) (m) (m3) (l/s) (. ,										
Head loss in manhole simplified method p. 71 (MWDM) Straight through KL=0.05 MANHOLE COEF K= 0.05 LOSS (m) 0.003 MANHOLE COEF K= 0.05 LOSS (m) 0.002 MANHOLE COEF MANNING FORMULA - FLOWING FULL					DEGIGIALE	OW DEI III-		0.011			
MANHOLE COEF K= 0.05 LOSS (m) 0.003 Straight through NL=0.05 LOSS (m) 0.003 HL = KL * V^2/2 g	1 /	22.424		_	_						Ī
MANHOLE COEF K	HGL (m)	98.464	98.696	0.232				ed method p. i	` ,	IC 0.05	
HL = KL * V^2/ 2g					II	etraight throu				KL=0.05	
MANNING FORMULA - FLOWING FULL				4		Ŭ	•				
MAX. SURCHARGE (mm)	WANTULE CUEF K= 0.05	LOSS (m)	0.003			Velocity = Flo	ow / Area =		1.00		
FRICTION LOSS		LOSS (m)				Velocity = Flo	ow / Area =		1.00		
MH	TOTAL HGL (m)	LOSS (m)	98.833			Velocity = Flo	ow / Area =		1.00		
MH	TOTAL HGL (m)	LOSS (m)	98.833			Velocity = Flo	ow / Area =		1.00		
MH	TOTAL HGL (m)	LOSS (m)	98.833]]] 	<u> </u>	Velocity = Flo	ow / Area =		1.00		
DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (m3) (TOTAL HGL (m) MAX. SURCHARGE (mm)		98.833 -139		MANINICA	Velocity = Floor	ow / Area = /^2/ 2g		1.00		
MANHOLE COEF K= 0.05 LOSS (m) 0.002 98.853 Manhole Coef K= 0.05 LOSS (m) 0.002 Manhole Coef K= 0.05 Manhole Coef	TOTAL HGL (m) MAX. SURCHARGE (mm)	FROM	98.833 -139		MANNING F	Velocity = Floor	ow / Area = /^2/ 2g		1.00		
NVERT ELEVATION (m) 98.552 98.587 0.45 0.16 1.41 0.450 0.11 1.20 191.50	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS	FROM	98.833 -139 TO MH			Velocity = Floor HL = KL * \	ow / Area = V^2/ 2g LOWING FULL	Slope		m/s	0
DIAMETER (mm)	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS	FROM	98.833 -139 TO MH		DIA	Velocity = Floor HL = KL * \ FORMULA - Floor	ow / Area = //^2/ 2g LOWING FULL Perim.		Hyd.R.	m/s Vel.	
TOTAL HGL (m) T.8 DESIGN FLOW DEPTH = 0.266	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m)	FROM MH	98.833 -139 TO MH 6		DIA (m)	Velocity = FIL HL = KL * \ FORMULA - FIL Area (m2)	ow / Area = //^2/ 2g LOWING FULL Perim. (m)	(%)	Hyd.R. (m)	Vel. (m/s)	(l/s)
Head loss in manhole simplified method p. 71 (MWDM) Straight through KL=0.05 WANHOLE COEF K= 0.05 LOSS (m) 0.002 HL = KL * V^2/2g HEAD loss in manhole simplified method p. 71 (MWDM) Straight through KL=0.05 Velocity = Flow / Area = 0.79 m/s HL = KL * V^2/2g HL = KL * V^2/2g HEAD loss in manhole simplified method p. 71 (MWDM) Straight through KL=0.05 Velocity = Flow / Area = 0.79 m/s HL = KL * V^2/2g H	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m)	FROM MH 7 98.552	98.833 -139 TO MH 6	ID	DIA (m) 0.45 HYDRAULIO	Velocity = Fit HL = KL * \ HL = KL * \ ORMULA - Fit Area (m2) 0.16 C SLOPE =	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26	(%) 0.450	Hyd.R. (m)	Vel. (m/s)	(l/s)
HGL (m) *** 98.833 98.848 0.015 MANHOLE COEF K= 0.05 LOSS (m) 0.002 TOTAL HGL (m) 98.853 P8.848 0.015 Head loss in manhole simplified method p. 71 (MWDM) straight through Velocity = Flow / Area = 0.79 m/s HL = KL * V^2/ 2g	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	FROM MH 7 98.552	98.833 -139 TO MH 6	450	DIA (m) 0.45 HYDRAULIO	Velocity = FIL HL = KL * \ HL = KL * \ Area (m2) 0.16 C SLOPE = OW TO FULL	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C	(%) 0.450 5 % 0.0658	Hyd.R. (m)	Vel. (m/s)	(l/s)
Straight through Straight through KL=0.05	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	FROM MH 7 98.552	98.833 -139 TO MH 6	450	DIA (m) 0.45 HYDRAULIO	Velocity = FIL HL = KL * \ HL = KL * \ Area (m2) 0.16 C SLOPE = OW TO FULL	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C	(%) 0.450 5 % 0.0658	Hyd.R. (m)	Vel. (m/s)	(l/s)
MANHOLE COEF K= 0.05 LOSS (m) 0.002 Velocity = Flow / Area = 0.79 m/s HL = KL * V^2/ 2g	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	FROM MH 7 98.552	98.833 -139 TO MH 6	450 7.8	DIA (m) 0.45 HYDRAULIO	Velocity = FIL HL = KL * \ HL = KL * \ Area (m2) 0.16 C SLOPE = OW TO FULL	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C	(%) 0.450 5 % 0.0658	Hyd.R. (m)	Vel. (m/s)	(l/s)
MANHOLE COEF K= 0.05 LOSS (m) 0.002 Velocity = Flow / Area = 0.79 m/s HL = KL * V^2/ 2g TOTAL HGL (m) 98.853	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/S)	FROM MH 7 98.552 99.002	98.833 -139 TO MH 6 98.587 99.037	450 7.8 126.00	DIA (m) 0.45 HYDRAULIO	Velocity = Flor HL = KL * \ HL = KL * \ Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C	(%) 0.450 0 0.658 0.266	Hyd.R. (m) 0.11	Vel. (m/s)	(l/s)
HL = KL * V^2/ 2g TOTAL HGL (m) 98.853	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BIOCK 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/S)	FROM MH 7 98.552 99.002	98.833 -139 TO MH 6 98.587 99.037	450 7.8 126.00	DIA (m) 0.45 HYDRAULIO	Velocity = Flor HL = KL * \ HL = KL * \ Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C) manhole simplifies	(%) 0.450 0 0.658 0.266	Hyd.R. (m) 0.11	Vel. (m/s) 1.20	(l/s)
TOTAL HGL (m) 98.853	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m)	FROM MH 7 98.552 99.002 98.833	98.833 -139 TO MH 6 98.587 99.037	450 7.8 126.00	DIA (m) 0.45 HYDRAULIO	Velocity = Floring Velocity = Floring Velocity = Floring Velocity = Floring Velocity = V	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C) manhole simplifie	(%) 0.450 0 0.658 0.266	Hyd.R. (m) 0.11	Vel. (m/s) 1.20	(l/s)
	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m)	FROM MH 7 98.552 99.002 98.833	98.833 -139 TO MH 6 98.587 99.037	450 7.8 126.00	DIA (m) 0.45 HYDRAULIO	Velocity = Flank HL = KL * \ HL = KL * \ Area (m2) ON TO FULL OW DEPTH = Head loss in straight throuvelocity = Flank	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C) manhole simplified agh ow / Area =	(%) 0.450 0 0.658 0.266	Hyd.R. (m) 0.11	Vel. (m/s) 1.20	(l/s)
	TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BIOCK 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.05	FROM MH 7 98.552 99.002 98.833	98.833 -139 TO MH 6 98.587 99.037	450 7.8 126.00	DIA (m) 0.45 HYDRAULIO	Velocity = Flank HL = KL * \ HL = KL * \ Area (m2) ON TO FULL OW DEPTH = Head loss in straight throuvelocity = Flank	ow / Area = //^2/ 2g LOWING FULL Perim. (m) 1.41 0.26 FLOW RATIO (C) manhole simplified agh ow / Area =	(%) 0.450 0 0.658 0.266	Hyd.R. (m) 0.11	Vel. (m/s) 1.20	(l/s)

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER JOB #: 135925 - 6.04
DATE: 2022-11-11
DESIGN: AC
CHECKED: RM
REV #: 2

		DEVELOPPER		_				REV #		?
	1		1							
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING FORM	1ULA - FI	LOWING FULL				
Block 178	6	5			Area (m2)	Perim. (m)	Slope (%)	Hyd.R. (m)	Vel. (m/s)	Q (l/s)
INVERT ELEVATION (m)	98.617	98.753	=		0.16	1.41	0.450	0.11	1.20	190.76
OBVERT ELEVATION (m)	99.067	99.203		HYDRAULIC SLO		0.55	5 %		•	
DIAMETER (mm)			450	DESIGN FLOW T	O FULL	FLOW RATIO (C	0.661	Ï		
LENGTH (m)			30.4	DESIGN FLOW D	DEPTH =	,	0.266			
FLOW (I/s)			126.00					3		
HGL (m) ***	98.853	98.912	0.059	Hea	d loss in	manhole simplifie	ed method n	71 (MWDM)		7
	00.000		=		ight throu		и пошов р	(KL=0.05	
MANUAL E 0055 1/	1000()	2 222	=		-	-		0.70		
MANHOLE COEF K= 0.0	LOSS (m)	0.002	_	II I	-	ow / Area =		0.78	m/s	
			<u> </u>	HL	= K _L * \	/^2/ 2g				J
TOTAL HGL (m)	<u> </u>	99.019	_							
MAX. SURCHARGE (mm)		-185		_]						
				7						
FRICTION LOSS	FROM	ТО	PIPE	MANNING FORM	1ULA - FI	LOWING FULL				
Plack 179	MH 5	MH 4	ID	DIA I	Aros	Dorina	Clana	ם גיים	1/21	
Block 178	°	4	-		Area (m2)	Perim. (m)	Slope (%)	Hyd.R. (m)	Vel. (m/s)	Q (l/s)
INVERT ELEVATION (m)	98.848	98.963	1		0.11	1.18	0.300	0.09	0.87	96.19
OBVERT ELEVATION (m)	99.223	99.338		HYDRAULIC SLO		0.36		0.00	0.07	00.10
DIAMETER (mm)	55.225	22.000	375			FLOW RATIO (C)! 		
LENGTH (m)	1		38.2	DESIGN FLOW D		- (-	0.191	21		
FLOW (I/s)	1		51.00					ij		
,	20.040					1 1 1 116		74 (101/014)		7
HGL (m) ***	99.019	99.051	0.032			manhole simplifie	ed method p. i	71 (MWDM)	14 0 05	
				strai	ight throu	ıgh			K _L =0.05	
	LOSS (m)	0.001		Velo	city = Flo	ow / Area =		0.46	m/s	
MANHOLE COEF K= 0.09	LO33 (III)	0.001		VOIC	,					
MANHOLE COEF K= 0.09	D E033 (III)	0.001	1		= K̃L * \	/^2/ 2g				
MANHOLE COEF K= 0.09 TOTAL HGL (m)	LOGG (III)	99.154				V^2/ 2g				j
	LO33 (III)					V^2/ 2g				J
TOTAL HGL (m)		99.154				J^2/ 2g				J
TOTAL HGL (m) MAX. SURCHARGE (mm)		99.154 -184		HL.	= K _L * \	J				l
TOTAL HGL (m)	FROM	99.154 -184	PIPE		= K _L * \	J				
TOTAL HGL (m) MAX. SURCHARGE (mm)		99.154 -184	PIPE	HL MANNING FORM	= K _L * \	J	Slope	Hyd.R.	Vel.] Q
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178	FROM MH 5	99.154 -184 TO MH 20		MANNING FORM DIA (m)	= K _L * \ MULA - Fl Area (m2)	LOWING FULL Perim. (m)	(%)	Hyd.R.	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m)	FROM MH 5 99.013	99.154 -184 TO MH 20		MANNING FORM DIA (m) 0.25	= K _L * \ MULA - Fl Area (m2) 0.05	LOWING FULL Perim. (m) 0.79	(%) 0.450	Hyd.R.	Vel.	
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m)	FROM MH 5	99.154 -184 TO MH 20	ID	MANNING FORM DIA (m) 0.25 HYDRAULIC SL0	MULA - FI Area (m2) 0.05 OPE =	Perim. (m) 0.79	(%) 0.450	Hyd.R. (m) 0.06	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	FROM MH 5 99.013	99.154 -184 TO MH 20	250	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW 1	Area (m2) 0.05 OPE =	Perim. (m) 0.79 0.66 FLOW RATIO (C	(%) 0.450 5 % 0. 0.627	Hyd.R. (m) 0.06	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m)	FROM MH 5 99.013	99.154 -184 TO MH 20	ID	MANNING FORM DIA (m) 0.25 HYDRAULIC SL0	Area (m2) 0.05 OPE =	Perim. (m) 0.79 0.66 FLOW RATIO (C	(%) 0.450	Hyd.R. (m) 0.06	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	FROM MH 5 99.013	99.154 -184 TO MH 20	250	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW 1	Area (m2) 0.05 OPE =	Perim. (m) 0.79 0.66 FLOW RATIO (C	(%) 0.450 5 % 0. 0.627	Hyd.R. (m) 0.06	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)	FROM MH 5 99.013	99.154 -184 TO MH 20	250 66.8	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I	Area (m2) 0.05 OPE = TO FULL DEPTH =	Perim. (m) 0.79 0.66 FLOW RATIO (C	(%) 0.450 6 % 0.0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	FROM MH 5 99.013 99.263	99.154 -184 TO MH 20 99.314 99.564	250 66.8 25.00	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea	Area (m2) 0.05 OPE = FO FULL DEPTH =	Perim. (m) 0.79 0.666 FLOW RATIO (C)	(%) 0.450 6 % 0.0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ****	FROM MH 5 99.013 99.263 99.019	99.154 -184 TO MH 20 99.314 99.564	250 66.8 25.00	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I Hea strai	Area (m2) 0.05 OPE = TO FULL DEPTH =	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplifie	(%) 0.450 6 % 0.0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	FROM MH 5 99.013 99.263 99.019	99.154 -184 TO MH 20 99.314 99.564	250 66.8 25.00	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai	Area (m2) 0.05 OPE = TO FULL DEPTH = d loss in ight throughing the first opinion of the first opinion	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplifie	(%) 0.450 6 % 0.0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.00	FROM MH 5 99.013 99.263 99.019	99.154 -184 TO MH 20 99.314 99.564 99.137	250 66.8 25.00	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai	Area (m2) 0.05 OPE = TO FULL DEPTH =	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplifie	(%) 0.450 6 % 0.0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.09 TOTAL HGL (m)	FROM MH 5 99.013 99.263 99.019	99.154 -184 TO MH 20 99.314 99.564 99.137	250 66.8 25.00	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai	Area (m2) 0.05 OPE = TO FULL DEPTH = d loss in ight throughing the first opinion of the first opinion	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplifie	(%) 0.450 6 % 0.0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.00	FROM MH 5 99.013 99.263 99.019	99.154 -184 TO MH 20 99.314 99.564 99.137	250 66.8 25.00	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai	Area (m2) 0.05 OPE = TO FULL DEPTH = d loss in ight throughing the first opinion of the first opinion	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplifie	(%) 0.450 6 % 0.0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.09 TOTAL HGL (m)	FROM MH 5 99.013 99.263 99.019 UCSS (m) FROM	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001	250 66.8 25.00 0.118	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai	Area (m2) 0.05 OPE = OFULL DEPTH = d loss in ight throucity = Fl = KL * \	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplifies ligh ow / Area = //^2/2g	(%) 0.450 6 % 0.0627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) MANHOLE COEF K= 0.09 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS	FROM MH 5 99.013 99.263 99.019 FROM MH	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001 70 MH	250 66.8 25.00 0.118	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai Velo HL	Area (m2) 0.05 0.05 0.0F = TO FULL DEPTH = d loss in ight throtocity = Fic = KL * \	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplified up bow / Area = V^2/ 2g	(%) 0.450 5 % 0 0.627 0.143	Hyd.R. (m) 0.06	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.09 TOTAL HGL (m) MAX. SURCHARGE (mm)	FROM MH 5 99.013 99.263 99.019 UCSS (m) FROM	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001	250 66.8 25.00 0.118	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai Velc HL MANNING FORM	Area (m2) 0.05 OPE = TO FULL DEPTH = d loss in ight throughing the second through the se	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim.	(%) 0.450 5 % 0 0.627 0.143 ed method p. 7	Hyd.R. (m) 0.06 71 (MWDM) 0.51	Vel. (m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) MANHOLE COEF K= 0.09 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 4	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001 99.457 -108 TO MH 21	250 66.8 25.00 0.118	MANNING FORM DIA OLSS HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I Hea strai Velc HL MANNING FORM	Area (m2) AIULA - FI	Perim. (m) O.79 0.66 FLOW RATIO (C manhole simplifies and control of the cont	(%) 0.450 1 0.627 0.143 ed method p. 7	Hyd.R. (m) 0.06 71 (MWDM) 0.51	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.09 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001 70 H 21 99.432	250 66.8 25.00 0.118	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai Velc HL MANNING FORM DIA (m) 0.22	MULA - FI Area (m2) 0.03	Perim. (m) 0.79 0.66 FLOW RATIO (C manhole simplifie ugh ow / Area = //2/ 2g LOWING FULL Perim. (m) 0.63	(%) 0.450 0.0627 0.143 ed method p. 7	Hyd.R. (m) 0.06 71 (MWDM) 0.51	Vel. (m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.09 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 4	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001 99.457 -108 TO MH 21	250 66.8 25.00 0.118	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I Hea strai Velo HL MANNING FORM DIA (m) 0.2 HYDRAULIC SLI	Area (m2) d loss in ight through the KL * \ d LA - FI d loss in ight through the KL * \ d LA - FI d loss in ight through the KL * \ d LA - FI d loss in ight through the KL * \ d LA - FI d loss in ight through the KL * \ d LA - FI d loss in ight through the KL * \ d loss in ight through through through through the KL *	manhole simplified by Area = VAZ/ 2g LOWING FULL Perim. (m) 0.79 0.66 FLOW RATIO (Cooperation of the cooperation of the coop	(%) 0.450 3 % 0.627 0.143 ed method p. 7	Hyd.R. (m) 0.06 71 (MWDM) 0.51	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.09 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001 70 H 21 99.432	250 66.8 25.00 0.118	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai Velo HL MANNING FORM 0.2 HYDRAULIC SL DESIGN FLOW I Area (m2) ODE = TO FULL DEPTH = KL * \ IULA - FI Area (m2) ODE = TO FULL DEPTH = TO FULL ODE = KL * \ IULA - FI Area (m2) ODE = TO FULL	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplified ghow / Area = V^2/ 2g LOWING FULL Perim. (m) 0.63 0.00 FLOW RATIO (C)	(%) 0.450 3 % 0.627 0.143 ed method p. 7	Hyd.R. (m) 0.06 71 (MWDM) 0.51	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90	
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.00 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) DIAMETER (mm)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001 70 H 21 99.432	250 66.8 25.00 0.118	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I Hea strai Velo HL MANNING FORM DIA (m) 0.2 HYDRAULIC SLI	Area (m2) ODE = TO FULL DEPTH = KL * \ IULA - FI Area (m2) ODE = TO FULL DEPTH = TO FULL ODE = KL * \ IULA - FI Area (m2) ODE = TO FULL	Perim. (m) 0.79 0.66 FLOW RATIO (C) manhole simplified ghow / Area = V^2/ 2g LOWING FULL Perim. (m) 0.63 0.00 FLOW RATIO (C)	(%) 0.450 3 % 0.627 0.143 ed method p. 7	Hyd.R. (m) 0.06 71 (MWDM) 0.51	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) MANHOLE COEF K= 0.09 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198 99.398	99.154 -184 TO MH 20 99.314 99.564 99.437 -108 TO MH 21 99.432 99.632	250 66.8 25.00 0.118 PIPE ID	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I Hea strai Velc HL MANNING FORM DIA (m) 0.2 HYDRAULIC SLI DESIGN FLOW I	Area (m2) 0.03 Area (m2) 0.03 Area (m2) 0.03 Area (m2) 0.03 Area (m2) 0.07 Area (m2) 0.07 Area (m2)	Perim. (m) 0.79 0.66 FLOW RATIO (C manhole simplifies and process	(%) 0.450 5 % 0.0627 0.143 ed method p. 7 Slope (%) 0.600 0.000 0.0002	Hyd.R. (m) 0.06	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.00 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) DIAMETER (mm)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198	99.154 -184 TO MH 20 99.314 99.564 99.137 0.001 70 H 21 99.432	250 66.8 25.00 0.118	MANNING FORM DIA O.25 HYDRAULIC SL DESIGN FLOW T DESIGN FLOW T Hea MANNING FORM DIA (m) 0.2 HYDRAULIC SL DESIGN FLOW T DESIGN FLOW T HEA HEA HEA HEA HEA HEA HEA HE	Area (m2) 0.08 Area d loss in ight through the loss in ight through th	Perim. (m) 0.79 0.66 FLOW RATIO (City) manhole simplifies gh ow / Area = J^2/ 2g LOWING FULL Perim. (m) 0.63 0.00 FLOW RATIO (City) manhole simplifies	(%) 0.450 5 % 0.0627 0.143 ed method p. 7 Slope (%) 0.600 0.000 0.0002	Hyd.R. (m) 0.06	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) MANHOLE COEF K= 0.00 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) DIAMETER (mm) LENGTH (m) DIAMETER (mm) LENGTH (m) FLOW (I/s)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198 99.398	99.154 -184 TO MH 20 99.314 99.564 99.457 -108 TO MH 21 99.432 99.632	250 66.8 25.00 0.118 PIPE ID	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I Hea strai Velc HL MANNING FORM DIA (m) 0.2 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I HYDRAULIC SLI DESIGN FLOW I HEA strai	Area (m2) 0.03	Perim. (m) 0.79 0.66 FLOW RATIO (C manhole simplifies and the simplif	(%) 0.450 5 % 0.0627 0.143 ed method p. 7 Slope (%) 0.600 0.000 0.0002	Hyd.R. (m) 0.06 71 (MWDM) 0.51 Hyd.R. (m) 0.05	Vel. (m/s) 0.81 KL=0.05 I m/s Vel. (m/s) 0.81	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) MANHOLE COEF K= 0.00 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) DIAMETER (mm) LENGTH (m) DIAMETER (mm) LENGTH (m) FLOW (I/s)	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198 99.398 99.457	99.154 -184 TO MH 20 99.314 99.564 99.437 -108 TO MH 21 99.432 99.632	250 66.8 25.00 0.118 PIPE ID	MANNING FORM DIA (m) 0.25 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I Hea strai Velc HL MANNING FORM DIA (m) 0.2 HYDRAULIC SLI DESIGN FLOW I DESIGN FLOW I HYDRAULIC SLI DESIGN FLOW I HEA strai	Area (m2) 0.03	Perim. (m) 0.79 0.66 FLOW RATIO (City) manhole simplifies gh ow / Area = J^2/ 2g LOWING FULL Perim. (m) 0.63 0.00 FLOW RATIO (City) manhole simplifies	(%) 0.450 5 % 0.0627 0.143 ed method p. 7 Slope (%) 0.600 0.000 0.0002	Hyd.R. (m) 0.06 71 (MWDM) 0.51 Hyd.R. (m) 0.05	Vel. (m/s) 0.81 KL=0.05 I m/s	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.00 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198 99.398 99.457	99.154 -184 TO MH 20 99.314 99.564 99.457 -108 TO MH 21 99.432 99.632	250 66.8 25.00 0.118 PIPE ID	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai Velc (m) 0.2 HYDRAULIC SL HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I HEA STRAI Velc HEA STRAI Velc	Area (m2) 0.03	Perim. (m) 0.79 0.66 FLOW RATIO (C manhole simplifie agh ow / Area = //^2/ 2g LOWING FULL Perim. (m) 0.63 0.00 FLOW RATIO (C	(%) 0.450 5 % 0.050 0.143 ed method p. 7 Slope (%) 0.600 0.000 0.000	Hyd.R. (m) 0.06 71 (MWDM) 0.51 Hyd.R. (m) 0.05	Vel. (m/s) 0.81 KL=0.05 I m/s Vel. (m/s) 0.81	(l/s) 39.90
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.00 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 178 INVERT ELEVATION (m) OBVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	FROM MH 5 99.013 99.263 99.019 LOSS (m) FROM MH 4 99.198 99.398 99.457	99.154 -184 TO MH 20 99.314 99.564 99.457 -108 TO MH 21 99.432 99.632	250 66.8 25.00 0.118 PIPE ID	MANNING FORM DIA (m) 0.25 HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I Hea strai Velc (m) 0.2 HYDRAULIC SL HYDRAULIC SL DESIGN FLOW I DESIGN FLOW I HEA STRAI Velc HEA STRAI Velc	Area (m2) 0.03 OPE = FO FULL DEPTH = Area (m2) 0.03 OPE = FO FULL DEPTH = Area (m2) 0.03 OPE = FO FULL DEPTH =	Perim. (m) 0.79 0.66 FLOW RATIO (C manhole simplifie agh ow / Area = //^2/ 2g LOWING FULL Perim. (m) 0.63 0.00 FLOW RATIO (C	(%) 0.450 5 % 0.050 0.143 ed method p. 7 Slope (%) 0.600 0.000 0.000	Hyd.R. (m) 0.06 71 (MWDM) 0.51 Hyd.R. (m) 0.05	Vel. (m/s) 0.81 KL=0.05 I m/s Vel. (m/s) 0.81	(l/s) 39.90

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA

DEVELOPPER

JOB #: 135925 - 6.04 DATE: 2022-11-11 DESIGN: AC CHECKED: REV #: RM

Q (l/s) 25.54

FRICTION LOSS	FROM	TO	PIPE	MANNING FORMULA - FLOWING FULL						
	MH	MH	ID							
Block 178	4	3		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	99.058	99.168		0.3	0.07	0.94	0.350	0.08	0.81	56.95
OBVERT ELEVATION (m)	99.358	99.468		HYDRAULIC	SLOPE =	0.49	%			
DIAMETER (mm)			300	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	0.457	Ī		
LENGTH (m)			31.7	DESIGN FLO	OW DEPTH =		0.141			
FLOW (I/s)			26.00					1		
HGL (m) ***	99.154	99.177	0.023		Head loss in	manhole simplifie	d method p. 7	'1 (MWDM)		
					straight throu	ugh			KL=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = Fl	ow / Area =		0.37 m/s		
					HL = K∟ * \	V^2/ 2g				
TOTAL HGL (m)		99.309								
MAX. SURCHARGE (mm)		-159		J						

				1					
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING F	ORMULA - F	LOWING FULL			
Block 178	3	2		DIA	Area	Perim.	Slope	Hyd.R.	Vel.
				(m)	(m2)	(m)	(%)	(m)	(m/s)
INVERT ELEVATION (m)	99.298	99.342	11	0.2	0.03	0.63	0.600	0.05	0.81
OBVERT ELEVATION (m)	99.498	99.542		HYDRAULIC	SLOPE =	0.48	%		
DIAMETER (mm)			200	DESIGN FL	OW TO FULL	FLOW RATIO (Q	0.000		
LENGTH (m)			7.3	DESIGN FL	OW DEPTH =		0.002		
FLOW (I/s)			0.00						
HGL (m) ***	99.309	99.309	0.000	1	Head loss in	manhole simplifie	d method p. 7	'1 (MWDM)	
			1		straight thro	ıgh			KL=0.05
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = FI	ow / Area =		0.00	m/s
			1		HL = K _L * \	/^2/ 2g			
TOTAL HGL (m)		99.344	1						
MAX, SURCHARGE (mm)		-198	1						

FRICTION LOSS	FROM	TO	PIPE	MANNING FORMULA - FLOWING FULL						
	MH	MH	ID							
Block 178	2	1		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	99.372	99.514		0.2	0.03	0.63	0.600	0.05	0.81	25.35
OBVERT ELEVATION (m)	99.572	99.714		HYDRAULIC	SLOPE =	0.72	%			
DIAMETER (mm)			200	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	0.000	1		
LENGTH (m)			23.7	DESIGN FLO	OW DEPTH =		0.002			
FLOW (I/s)			0.00					1		
HGL (m) ***	99.344	99.344	0.000	1	Head loss in	manhole simplifie	d method p. 7	1 (MWDM)		
					straight throu	ıgh			KL=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.000		Velocity = Flow / Area = 0.00 m/s						
					HL = K _L * \	/^2/ 2g				
TOTAL HGL (m)		99.516			-					1
MAX. SURCHARGE (mm)		-198								

IBI GROUP REPORT
PROJECT: 34731-5.2.2
DESIGN BRIEF
BARRETT LANDS - PHASE 3
3100 LEITRIM ROAD
LEITRIM DEVELOPMENT AREA
Prepared for BARRETT CO-TENANCY

Table 5.10 Storm Hydraulic Grade Line - Local Sewers within Barrett Lands Phase 3 for the 100 Year 3 Hour Chicago and 100 Year 3 Hour Chicago increased by 20% Storm Events

		STORM HYDRAULIC GRADE LINE (1)									
			100 YEAR 3 H	OUR CHICAG	iO	D 100 YEAR 3 HOUR CHICAGO + 20%					
XPSWMM NODE	USF (M)	RARE EVE					RARE EVENT SANITARY		ENT SANITARY		
			LOW USF-HGL	F	LOW	FLOW USF-HGL		FLOW			
		HGL (M)*	(M)	HGL (M)*	USF-HGL (M)	HGL (M)*	(M)	HGL (M)*	USF-HGL (M)		
MH11300	95.63	93.91	1.72	93.91	1.72	93.96	1.67	93.96	1.67		
MH11301	96.58	94.96	1.62	94.96	1.62	94.96	1.62	94.96	1.62		
MH11302	97.98	95.70	2.28	95.70	2.28	95.71	2.27	95.71	2.27		
MH11303	98.67	96.23	2.44	96.23	2.44	96.23	2.44	96.23	2.44		
MH11304	99.23	96.36	2.87	96.36	2.87	96.36	2.87	96.36	2.87		
MH11305	99.28	96.43	2.85	96.43	2.85	96.43	2.85	96.43	2.85		
MH11311	96.38	94.90	1.48	94.90	1.48	94.90	1.48	94.90	1.48		
MH11312	97.28	95.85	1.43	95.85	1.43	95.85	1.43	95.85	1.43		
MH11313	97.48	96.13	1.35	96.13	1.35	96.13	1.35	96.13	1.35		
MH11314	98.63	97.27	1.36	97.27	1.36	97.27	1.36	97.27	1.36		
MH11315	100.93	99.51	1.42	99.51	1.42	99.51	1.42	99.51	1.42		
MH11316	100.93	99.60	1.33	99.60	1.33	99.60	1.33	99.60	1.33		
MH11321	97.63	96.11	1.52	96.11	1.52	96.11	1.52	96.11	1.52		
MH11322	97.88	96.61	1.27	96.61	1.27	96.61	1.27	96.61	1.27		
MH11323	100.08	98.80	1.28	98.80	1.28	98.80	1.28	98.80	1.28		
MH11331	98.93	97.60	1.33	97.60	1.33	97.60	1.33	97.60	1.33		
MH11332	98.93	97.73	1.21	97.73	1.21	97.73	1.21	97.73	1.21		
MH11333	100.38	98.71	1.67	98.71	1.67	98.71	1.67	98.71	1.67		
MH11334	100.88	99.24	1.64	99.24	1.64	99.24	1.64	99.24	1.64		
MH11350	96.48	95.77	0.71	95.77	0.71	95.77	0.71	95.77	0.71		
MH11351	96.63	95.42	1.21	95.42	1.21	95.42	1.21	95.42	1.21		
MH11400	95.43	94.56	0.87	94.56	0.87	94.59	0.84	94.59	0.84		
MH11401	96.03	94.85	1.18	94.85	1.18	94.89	1.14	94.89	1.14		
MH11402	95.78	94.89	0.89	94.89	0.89	94.94	0.84	94.94	0.84		
MH11403	96.01	95.06	0.95	95.06	0.95	95.11	0.90	95.11	0.90		
MH11404	96.73	95.62	1.11	95.62	1.11	95.63	1.10	95.63	1.10		
MH11405	97.13	96.03	1.10	96.03	1.10	96.03	1.10	96.03	1.10		
MH11406	97.68	96.77	0.91	96.77	0.91	96.77	0.91	96.77	0.91		
MH11407	98.08	97.23	0.85	97.23	0.85	97.23	0.85	97.23	0.85		
MH11408	98.73	97.49	1.24	97.49	1.24	97.49	1.24	97.49	1.24		

[|] MH11408 | 98.73 | 97.49 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 |

APRIL 2022 34

Barrett Block 178
Barrett Co-Tenancy

Ditch S6 New Ditch Section Required 1:	100 vr. flow = 119.12 l/s	Length = 17.26 m 0.119 Cu m/sec			
From Seelye use n =	0.013 (Channels)		102.10	area=	0.01
choose: slope S = Ditch Bottom	12.17 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.10	wp=	0.92
Ditch slopes Water depth	22.00 :1 0.021 metres (depth neede	Difference =	2.10 Top Bank	= 100.15	
Check Ditch Capacity (Q)			Free Boar		
Q =	0.012 Cu M/sec	and Velocity = 1.29 M/	s		
Ditch S6		Length = 17.26 m			
New Ditch Section Required 1: From Seelye use n =	0.013 (Channels)	0.172 Cu m/sec		area=	0.07
choose: slope S = Ditch Bottom	12.17 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.10 100.00	wp=	2.48
Ditch slopes	22.00 :1	Difference =	2.10		
Water depth Check Ditch Capacity (Q)	0.056 metres (depth neede	d to carry 0.13 Cu. M/sec)	Top Bank Free Boar		
Q =	0.172 Cu M/sec	and Velocity = 2.48 M/			
Ditch S10		Length = 38.00 m			
New Ditch Section Required 1: From Seelye use n =	100 yr. flow = 39.68 l/s 0.013 (Channels)	0.040 Cu m/sec		area=	0.04
choose: slope S = Ditch Bottom	0.89 %	Up Stream Ditch btm=	101.44	wp=	0.71
Ditch Bottom Ditch slopes	0.00 metres 3.00 :1	Dn Stream Ditch Btm = Difference =	101.10 0.34		
Water depth Check Ditch Capacity (Q)	0.113 metres (depth neede	d to carry 0.13 Cu. M/sec)	Top Bank Free Board		
Q =	0.040 Cu M/sec	and Velocity = 1.03 M/		0.04	
Ditch S10		Length = 38.00 m			
New Ditch Section Required 1: From Seelye use n =	100 yr. +20% flow = 62.7 l/s 0.013 (Channels)	0.063 Cu m/sec			0.05
choose: slope S =	0.89 %	Up Stream Ditch btm=	101.44	area= wp=	0.05
Ditch Bottom Ditch slopes	0.00 metres 3.00 :1	Dn Stream Ditch Btm = Difference =	101.10 0.34		
Water depth	0.135 metres (depth neede		Top Bank		
Check Ditch Capacity (Q) Q =	0.064 Cu M/sec	and Velocity = 1.16 M/	Free Boards	d = 0.02	
Ditch S20		Length = 26.64 m			
New Ditch Section Required 1:		Length = 26.64 m 0.000 Cu m/sec			
From Seelye use n = choose: slope S =	0.013 (Channels) 3.72 %	Up Stream Ditch btm=	102.39	area= wp=	0.00
Ditch Bottom	0.00 metres	Dn Stream Ditch Btm =	101.40		3.00
Ditch slopes Water depth	3.00 :1 0.000 metres (depth neede	Difference = d to carry 0.13 Cu. M/sec)	0.99 Top Bank		
Check Ditch Capacity (Q) Q =	0.000 Cu M/sec		Free Boar	d = 0.15	
	J.000 Cd M/SEC		-		
Ditch S20 New Ditch Section Required 1:	100 yr. +20% flow = 5.02 l/e	Length = 26.64 m 0.005 Cu m/sec			
From Seelye use n =	0.013 (Channels) 3.72 %		400.05	area=	0.00
Ditch Bottom	0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.39 101.40	wp=	0.25
Ditch slopes Water depth	3.00 :1 0.039 metres (depth neede	Difference =	0.99 Top Bank	= 101.55	
Check Ditch Capacity (Q)			Free Boar		
Q =	0.005 Cu M/sec	and Velocity = 1.04 M/	s		
Ditch S20B New Ditch Section Required 1:	100 vr flow = 11 22 15	Length = 37.00 m 0.011 Cu m/sec			
From Seelye use n =	0.013 (Channels)			area=	0.01
choose: slope S = Ditch Bottom	0.86 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.47 102.15	wp=	0.44
Ditch slopes	3.00 :1	Difference =	0.32	_ 40	
Water depth Check Ditch Capacity (Q)	0.070 metres (depth neede		Top Bank Free Boar		
Q =					
4-	0.011 Cu M/sec	and Velocity = 0.74 M/	s		
Ditch S20B		Length = 37.00 m	s		
Ditch S20B New Ditch Section Required 1: From Seelye use n =	100 yr. +20% flow = 16.24 l/s 0.013 (Channels)	Length = 37.00 m 0.016 Cu m/sec		area=	0.02
Ditch S20B New Ditch Section Required 1:	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 %	Length = 37.00 m 0.016 Cu m/sec Up Stream Ditch btm=	102.47	area= wp=	0.02
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1	Length = 37.00 m 0.016 Cu m/sec Up Stream Dikch btm= Dn Stream Dikch Btm = Difference =	102.47 102.15 0.32	wp=	
Ditch \$20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q)	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede	Length = 37.00 m 0.016 Cu m/sec Up Stream Ditch bitm= Dn Stream Ditch Bitm = Difference = d to carry 0.13 Cu. M/sec)	102.47 102.15 0.32 Top Bank Free Boar	wp= = 102.3	
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1	Length = 37.00 m 0.016 Cu m/sec Up Stream Dikch btm= Dn Stream Dikch Btm = Difference =	102.47 102.15 0.32 Top Bank Free Boar	wp= = 102.3	
Ditch S20B New Ditch Section Required 1: From Seebye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q) Q = Ditch S5	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede	Length = 37.00 m	102.47 102.15 0.32 Top Bank Free Boan	wp= = 102.3	
Ditch \$20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q) Q =	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede	Length = 37.00 m 0.016 Cu m/sec Up Stream Ditch btm= Dn Stream Ditch Btm = Difference = d to carry 0.13 Cu. M/sec) and Velocity = 0.81 M/s	102.47 102.15 0.32 Top Bank Free Boan	wp= = 102.3	
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: stope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (D) Q = Ditch S5 New Ditch Section Required 1: From Seelye use n = choose: stope s =	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.013 (Channels) 1.20 %	Length = 37.00 m 0.016 Cu m/sec Up Steam Ditch tim= Difference = Difference = d to carry 0.13 Cu. M/sec) and Velocity = 0.81 M/s Length = 21.30 m 0.880 Cu m/sec Up Steam Ditch bim=	102.47 102.15 0.32 Top Bank Free Boan s	wp= = 102.3 d = 0.07	0.51
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: stope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (D) Q = Ditch S5 New Ditch Section Required 1: From Seelye use n = choose: stope S = Ditch Bottom Ditch Sotos Ditch Sotos Ditch Sotos	100 yr. + 20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 etc. 64pth neede 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.013 (Channels) 1.20 % 0.00 metres 3.00 :1	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Dich Stem Dich Stem Dich Stem = Difference = 4 carry 61.30 L. Misec) and Velocity = 0.81 Mi Length = 21.30 m 0.00 Length = 0.00 Lengt	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08	wp= = 102.3 d = 0.07 area= wp=	0.51
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Stope S = Ditch slopes Water depth Check Ditch Capacity (0) Ditch SS New Ditch Section Required 1: From Seelye use n = choose: slope S = choose: slope S = Chick Stope S = Chick SS New Ditch Stope S = Chick SS New Ditch Stope S = Chick SS New Ditch Stope S = Chick SS Water depth	100 yr. +20% flow = 16.24 i/s .0.013 (Channels) 0.88 % .0.00 metres 3.00 :1 .0.081 metres (depth needs .0.016 C.U.M/sec 100 yr. flow = 80.20 i/s .0.013 (Channels) 1.20 % .0.00 metres	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Dich Stem Dich Stem Dich Stem = Difference = 4 carry 61.30 L. Misec) and Velocity = 0.81 Mi Length = 21.30 m 0.00 Length = 0.00 Lengt	102.47 102.15 0.32 Top Bank Free Boan 5	wp= = 102.3 d = 0.07 area= wp= = 102.35	0.51
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: stope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (D) Q = Ditch S5 New Ditch Section Required 1: From Seelye use n = choose: stope S = Ditch Bottom Ditch Sotos Ditch Sotos Ditch Sotos	100 yr. + 20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 etc. 64pth neede 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.013 (Channels) 1.20 % 0.00 metres 3.00 :1	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Dich Stem Dich Stem Dich Stem = Difference = 4 carry 61.30 L. Misec) and Velocity = 0.81 Mi Length = 21.30 m 0.00 Length = 0.00 Lengt	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank	wp= = 102.3 d = 0.07 area= wp= = 102.35	0.51
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch editors Ditch editors Ditch editors Ditch editors Ditch slopes Ditch S5 Ditch S5 Ditch B4 D4 D4 D4 D4 D4 D4 D4 D4 D4	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 3.00.0 1.00 metres 0.001 metres (depth neede 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.013 (Channels) 1.13 (Channels) 1.20 % 0.00 metres 3.00 1.19 metres (depth neede	Length * 37.00 m 0.016 Cu m/sec Up Stream Dilato hitem Up Stream Dilato hitem Dilatement Dilato Bitm = Dilatement = 0 carry 613 Out Mexec) and Velocity = 0.81 M 0.080 Cu m/sec Up Stream Dilato Bitm = Dilatement = 0.080 Cu m/sec Up Stream Dilato Bitm = Dilatement = 0.080 Cu m/sec 10 Stream Dilato Bitm = 0.080 Cu m/sec	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank	wp= = 102.3 d = 0.07 area= wp= = 102.35	0.51
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Ditch Bottom Ditch slopes Ditch Section Required 1: Prom Seelye use n = choose: Ditch Section Required 1: Prom Seelye use n = choose: Ditch Section Required 1: Prom Seelye use n = choose: Ditch Section Required 1: Ditch Required 1: Ditch Required 1:	100 yr. +20% flow + 16.24 i/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede 0.018 (Channels) 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 10 yr. flow + 80.20 i/s 0.013 (Channels) 10 0 metres 3.00 :1 0.138 metres (depth neede	Length = 37.00 m 0.016 Cu m/sec Up Searan Dilch Shem = Difference = 10 carry 0.13 Cu Misec) and Velocity = 0.81 Mi Length = 21.00 m 0.080 Cu m/sec Up Searan Dilch Shem = Difference = 4 to carry 0.13 Cu Misec) and Velocity = 1.38 Mi Misec) and Velocity = 1.38 Mi Misec) and Velocity = 1.38 Mi	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06	0.06
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Ditch Bottom Ditch slopes Ditch Bottom Ditch slopes (Ditch Section Required 1: From Seelye use n = choose: slope S new Ditch Section Required 1: Ditch S5 New Ditch Section Required 1: Ditch S5 Ditch S6 Ditch	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede 0.018 (Channels) 1.00 yr. flow = 80.20 i/s 0.013 (Channels) 1.20 % 0.00 metres 3.00 :1 0.109 metres (depth neede 0.080 Cu M/sec	Length = 37.00 m 0.016 Cu milesc Up Steam Dilich bitms Dich Bitm = Dilich Bitm = 2 milesche Bitm = 2 m	102.47 102.15 0.32 Top Bank Free Boan s	wp= = 102.3 d = 0.07 area= wp= = 102.35	0.51
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (Q) Ditch S5 Ditch Bottom Ditch Capacity (Q) Ditch S5 Ditch Bottom Required 1: From Seelye use n = choose: slope 5 choose: slope 5 choose: slope Check Ditch Capacity (Q) Ditch S5 New Ditch Bottom Ditch slopes (Water depth Check Ditch Capacity (Q) Ditch S5 New Ditch Section Required 1: From Seelye use n = Check Ditch Capacity (Q)	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.88 % 0.00 metres 3.00.0 1 0.00 metres 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.110 (Channels) 1.20 % 0.00 metres 3.00.0 1 0.00 metres 3.00.0 Cu M/sec 100 yr. +20% flow = 115.22 l/s 0.013 (Channels)	Length * 37.00 m 0.016 Cu misec Up Stream Ditch bitem Do Stream Ditch bitem Do Stream Ditch bitem Do Stream Ditch bitem Do Stream Ditch Stream and Velocity * 0.81 M Length * 21.30 m 0.080 Cu misec Up Stream Ditch Stream Districts Districts Districts 13.00 Misec) Length * 13.00 Misec) Length * 13.00 Misec) Length * 21.30 m 0.015 Cu misec	102.47 102.15 0.32 Top Bank Free Boan 8 102.23 102.15 0.08 Free Boan	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06	0.06
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch S50 Ditch S6 = Ditch Capacity (C) Ditch S6 = Ditch Capacity (C) Ditch S6 = Ditch Bottom Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch Bottom Ditch Spoots Water depth Check Ditch Capacity (C) Ditch S6 = Ditch Bottom Ditch Spoots Water depth Check Ditch Capacity (C) Ditch S8 = Ditch Bottom Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch Spoots Water Ditch Ditch Bottom Ditch Stopes Water Ditch Bottom Ditch Bottom Ditch Spoots Water Ditch Bottom Ditch Bottom Ditch slopes Water depth	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.88 % 0.00 metres 3.00.01 0.00 metres 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.013 (Channels) 1.20 % 0.00 metres 3.00.01 0.139 metres (depth neede	Length = 37.00 m 0.016 Cu minec Up Steam Dilich bitm Up Steam Dilich bitm Dis Steam Dilich Bitm = Dilich Bitm = 10 carry 0.13 Cu Misec) and Velocity = 0.81 M. Length = 21.30 m 0.080 Cumber Up Steam Dilich bitm = 0.081 cum bitm Di Steam Dilich bitm = 0.081 cum bitm Di Steam Dilich Bitm = 0.011 Su misec Up Steam Dilich bitm = 0.115 Cu misec Up Steam Dilich bitm = 0.0115 Cu misec Up Steam Dilich bitm = 0.016 steam Bitm = 0.016 steam Dilich Bitm = 0.016 steam Bitm = 0.016	102.47 102.15 0.32 Top Bank s 102.23 102.15 0.08 Top Bank s 102.23 102.15 0.08 Top Bank s	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35	0.06
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Bottom Ditch stopes Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch S5 Ditch S5 Ditch S5 Ditch S6	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede 0.016 Channels) 1.00 yr. flow = 80.20 i/s 0.013 (Channels) 1.20 % 0.139 metres (depth neede 0.080 Cu M/sec 100 yr. +20% flow = 115.22 i/s 0.013 (Channels) 1.20 % 0.00 metres 3.00 :1 1.20 %	Length = 37.00 m 0.016 Cu minec Up Steam Dilich bitm Up Steam Dilich bitm Dis Steam Dilich Bitm = Dilich Bitm = 10 carry 0.13 Cu Misec) and Velocity = 0.81 M. Length = 21.30 m 0.080 Cumber Up Steam Dilich bitm = 0.081 cum bitm Di Steam Dilich bitm = 0.081 cum bitm Di Steam Dilich Bitm = 0.011 Su misec Up Steam Dilich bitm = 0.115 Cu misec Up Steam Dilich bitm = 0.0115 Cu misec Up Steam Dilich bitm = 0.016 steam Bitm = 0.016 steam Dilich Bitm = 0.016 steam Bitm = 0.016	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank 5 102.23 102.25 102.25 102.85	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35	0.06
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch shopes Check Ditch Capacity (C) Ditch S5 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch School Check Ditch Capacity (G) Ditch S5 Check Ditch Capacity (G) Ditch S5 Ditch S6 D	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth needs 0.016 CU M/sec 100 yr. flow = 80.20 i/s 0.013 (Channels) 1.20 % 0.00 metres 3.00 :1 100 yr. flow = 80.20 i/s 1.20 % 0.00 metres 0.080 Cu M/sec 100 yr. +20% flow = 115.22 i/s 0.013 (Channels) 1.20 % 0.00 metres 3.00 :1 2.0 % 0.00 metres 3.00 :1 0.160 metres (depth needs	Length = 37.00 m 0.016 Cu minec Up Steam Dilich bitm Up Steam Dilich Bitm = Dilich Bitm = 10 carry 0.13 Cu Misec) and Velocity = 0.81 M Length = 21.30 m 0.080 Cu minec Up Steam Dilich Bitm = 0.080 cu minec Up Steam Dilich Bitm = 0.080 cu minec Up Steam Dilich Bitm = 0.0115 Cu minec Up Steam Dilich Bitm = 0.0115 Cu minec Up Steam Dilich Bitm = 0.0115 Cu minec Up Steam Dilich Bitm = 0.015 cu minec Up Steam Dili	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank 5 102.23 102.25 102.25 102.85	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35	0.06
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch editors Ditch editors Ditch stopes Ditch S5 Ditch S5 Ditch B4 Ditch	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.88 % 0.80 % 0.00 metres 3.00.0 1.00 metres 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.013 (Channels) 1.20 % 0.00 metres 3.00.0 1.00 metres 4.018 metres (depth neede	Length + 37.00 m 0.016 Cu m/sec Up Stream Ditch bitm Ditch Blank Bitch Bitm Ditch Blank Bitm d to carry 0.13 Cu. M/sec) and Velocity = 0.81 Mix Length + 21.30 m 0.005 Cu m/sec Up Stream Ditch bitm Ditch Bitm Bitm d to carry 0.13 Cu. M/sec) and Velocity = 1.38 Mix Length + 21.30 m 0.115 Cu m/sec Up Stream Ditch bitm 0.115 Cu m/sec Up Stream Ditch bitm 0.115 Cu m/sec Up Stream Ditch Bitm d to carry 0.13 Cu. M/sec) and Velocity = 1.38 Mix d to carry 0.13 Cu. M/sec) d to carry 0.13 Cu. M/sec) and Velocity = 1.51 Mix d to carry 0.13 Cu. M/sec)	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank 5 102.23 102.25 102.25 102.85	wp= 102.3 d = 0.07 wp= 102.35 d = 0.08 wp= 102.35 d = 0.04	0.08 0.08 0.08
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Section Required 1: From Seelye use n = Choose: slope S = Ditch S6 Ditch S6 Ditch S6 Ditch S6 Ditch S6 Ditch S6 Ditch Bottom Ditch Section Required 1: From Seelye use n = Choose: slope S = Ditch Bottom Ditch Section Required 1: From Seelye use n = Choose: slope S = Ditch Bottom Ditch Section Required 1: From Seelye use n = Choose: slope S = C	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.081 metres (depth neede 0.016 Channels) 120 % 0.00 metres 3.00 :1 0.13 metres (depth neede 0.080 Cu M/sec 100 yr. +20% flow = 115.22 i/s 0.00 metres 3.00 :1 0.130 (Channels) 120 % 0.00 metres 3.00 :1 0.130 (Channels) 1.00 metres 3.00 :1 0.150 (Channels) 1.00 metres 3.00 :1 0.150 (Channels) 1.00 metres 3.00 :1 0.150 (Channels) 1.00 metres 3.00 :1	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Dis Steam Dich Stem Dis Steam Dich Stem Dis Steam Dich Stem Dis Steam Dich Stem Length = 21.30 m Length = 21.30 m Up Steam Dich Stem Up Steam Dich Stem Difference = 4 to carry 0.13 Cu Mixec) and Velocity = 1.38 M Length = 21.30 m 0.115 Cu m/sec Up Steam Dich Stem Difference = 4 to carry 0.13 Cu Mixec) and Velocity = 1.38 M Length = 21.30 m 0.115 Cu m/sec Up Steam Dich Stem Difference = 4 to carry 0.13 Cu Mixec) Up Steam Dich Stem Difference = 5 to carry 0.15 Length = 5 to carry 0.15 Length = 6 to carry 0.15 Length = 151 M Length = 20.10 m 0.056 Cu m/sec	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35	0.06
Ditch S208 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Ditch School Ditch School Ditch Section Required 1: From Seely use n = Chool Ditch School Ditch Section Required 1: From Seely use n = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch S6 Ditch S6 Ditch Bottom Ditch Section Required 1: From Seely use n = Chool Ditch Section Required 1: From Seely use n = Ditch Section Required 1: From Seely use n = Ditch Section Required 1: From Seely use n = Ditch Section Required 1: From Seely use n = Ditch Section Required 1: From Seely use n = Chool Ditch Section Required 1: From Seely use n = Chool Section Required 1: From Red	100 yr. +20% flow + 16.24 i/s 0.013 (Channels) 0.88 % 0.00 melres 3.00 :1 0.08 melres (depth neede 0.016 Cu M/sec 120 % 0.00 melres 3.00 :1 0.13 (Channels) 1.20 % 0.00 melres 3.00 :1 0.13 melres (depth neede 0.016 Cu M/sec 100 yr. +20% flow = 115.22 i/s 0.013 (Channels) 1.20 % 0.00 melres 3.00 :1 0.10 (Channels) 1.20 % 0.00 melres 3.00 :1	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Un Steam Dich Stem Up Steam Dich Stem Un Steam Dich Stem Un Steam Dich Stem Up Steam Dich Stem Un Steam Dich Stem Un Steam Dich Stem Un Steam Dich Stem Un Steam Dich Stem Up Steam Dich Stem	102.47 102.15 0.32 Top Bank Free Boan 102.23 0.08 Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.06	0.06 0.88 0.08
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Section Required 1: Prom Seelye use n = choose: Slope S = Ditch S50 New Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Ditch Section Required 1: Prom Seelye use n = Section	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.88 % 0.00 metres 3.00.01 = 0.00 metres 0.081 metres (depth neede 0.016 Cu M/sec 100 yr. flow = 60.20 l/s 0.013 (Channels) 1.20 % 0.00 metres 3.00.01 0.010 (Chu M/sec	Length * 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Uh Steam Dich Stem 21.30 m 0.080 Cu m/sec Up Steam Dich Stem Difference = 0.110 Cu m/sec Up Steam Dich Stem 0.115 Cu m/sec Up Steam Dich Stem 0.050 Cu m/sec	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Top Bank Top Bank Top Bank Top Bank	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04	0.06 0.88 0.08
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Size of the Size of th	100 yr. +20% flow = 16.24 /s 0.013 (Channels) 0.88 % 0.00 metres 3.00.01 at 0.00 metres 0.000 (Channels) 1.20 % 0.00 metres 0.000 (L M/sec 0.000 0.000	Length * 37.00 m 0.016 Cu m/sec Up Stream Dich bitms Un Steven Dich Sim Up Steven Dich Si	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04	0.06 0.88 0.08
Ditch S208 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 Ditch Bottom Ditch Speak (C) Ditch S6 Ditch Bottom Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S5 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch Speak (C) Ditch S5 New Ditch Section Required 1: From Seely use n = choose: Slope S = Ditch Bottom Ditch Speak (C) Ditch S5 New Ditch Section Required 1: From Seely use n = choose: Slope S = Ditch Bottom Ditch Speak (C) Ditch S4 New Ditch Section Required 1: From Seely use n = slope S = Slope S = Slope S = Slope S = Ditch Section Seed (C) Ditch S4 New Ditch Section Required 1: From Seely use n = slope S = Sl	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.86 % 0.000 metres 3.00 :1 0.081 metres (depth neede 0.016 Cu M/sec 100 yr. flow = 80.20 i/s 0.013 (Channels) 1.20 % 0.000 metres 3.00 :1 0.139 metres (depth neede 0.010 Cu M/sec 100 yr. 50% flow = 115.22 i/s 0.00 metres 3.00 :1 0.100 flow = 115.22 i/s 0.00 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.100 flow = 115.22 i/s 0.000 metres 3.00 :1 0.110 flow = 115.22 i/s 0.013 (Channels) 1.000 flow = 115.22 i/s 0.013 (Channels)	Length * 37.00 m 0.016 Cu m/sec Up Stream Dich bitms Un Stream Dich bitms Difference * 2 0 carry 0.13 Cu Mixee) and Velocity * 0.81 M Length * 2.13 0 m 0.0000 Cu m/sec Up Stream Dich bitms Difference * 2 0 carry 0.13 Cu Mixee) and Velocity * 1.30 LM Length * 2.13 0 m 0.115 Cu m/sec Up Stream Dich bitms 0.0160 Cu m/sec Up Stream Dich bitms 0.056 Cu m/sec dich carry 0.13 Cu Mixec) and Velocity * 1.51 M Length * 20.10 m 0.056 Cu m/sec dich carry 0.13 Cu Mixec) and Velocity * 1.51 M Length * 20.10 m 0.056 Cu m/sec dich carry 0.13 Cu M/sec)	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04	0.06 0.88 0.08
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch S5 Ditch S6 Ditch S6 Ditch S6 Ditch S6 Ditch S6 Ditch Bottom Ditch stopes Ditch S6 Ditch S6 Ditch S6 Ditch Bottom Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (2) Ditch S6 New Ditch Section Required 1: From Seelye use n = choose: slope S = choose: slope S = choose: See Seely use S = choose: Se	100 yr. +20% flow = 15.24 i/s 0.013 (Channels) 0.88 % 0.00 metres 3.00.1 0.08 metres (depth neede 0.016 Channels) 1.20 % 0.00 metres 3.00.1 1.20 % 0.00 metres 3.00.1 0.13 metres (depth neede 0.018 Channels) 1.20 % 0.00 metres 3.00.1 0.130 metres (depth neede 0.080 Cu Missec 100 yr. 50% flow = 115.22 i/s 0.00 metres 3.00.1 0.10 metres 3.00.1 0.10 % 0.00 metres 3.00.1 0.116 Cu Missec	Length * 37.00 m 0.016 Cu m/sec Up Stream Dich bitms Un Steven Dich Sim Up Steven Dich Si	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04	0.06 0.88
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water Seel Seel Seel Seel Seel Seel Seel Se	100 yr. +20% flow = 16.24 l/s .0.13 (Channels) 0.88 % 0.00 metres 3.00.01 metres (depth neede 0.016 Cu M/sec 100 yr. flow = 80.20 l/s 0.013 (Channels) 1.20 % 0.00 metres 3.00.01 metres (depth neede 0.016 Cu M/sec 100 yr. flow = 15.22 l/s 0.013 (Channels) 1.20 % 0.00 metres 3.00.01 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.00 metres 3.00.01 (Channels) 1.00 % 0.00 metres 0.116 Cu M/sec	Length * 37.00 m 0.016 Cu m/sec Up Stream Ditch bitm Distream Ditch bitm Distream Ditch bitm d to carry 0.13 cu, Mixec) and Velocity * 0.81 Mixec 1.00 Stream Ditch bitm Distream Ditch Bitm Distream Ditch Bitm Distream Distream Ditch Bitm Distream Ditch Bitm Distream Ditch Bitm 0.0000 Cu m/sec Up Stream Ditch Bitm 0.115 Cu m/sec Up Stream Ditch Bitm Distream Ditch Bitm 0.115 Cu m/sec Up Stream Ditch Bitm Distream Ditch Bitm 0.0050 Cu m/sec Up Stream Ditch Bitm Distream Ditch Bitm Distream Distre	102.47 102.15 0.32 To Blank Free Boan 102.23 102.15 0.00 Tog Blank Free Boan 102.23 102.15 0.00 Tog Blank Free Boan 102.23 102.15 0.00 Tog Blank Free Boan 102.23 102.23 102.23 102.23 102.23 102.27 102.23 102.23 102.23	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= up= area= up= 0.06	0.06 0.88 0.06 1.01
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes New Ditch S5 Ditch S5 Ditch B5 Ditch	100 yr. +20% flow = 16.24 l/s .0.13 (Channels) .0.86 % .0.00 metres .0.00 metres .0.00 metres .0.016 Cu M/sec .0.017 (Channels) .1.20 % .0.00 metres .3.00 :1 .0.15 (Channels) .1.20 % .0.00 metres .3.00 :1 .0.16 Cu M/sec .0.16 Cu M/sec .0.17 (Channels) .1.00 % .0.00 metres .3.00 :1 .0.18 Cu M/sec .0.19 (Channels) .1.00 % .0.00 metres .3.00 :1 .0.10 metres (depth neede	Length * 37.00 m 0.016 Cu m/sec Up Stream Ditch bitms Distresmon Bitch 80m = Distresmon B	102.47 102.15 0.32 To Blank Free Boan 102.23 102.15 0.00 Tog Blank Free Boan 102.23 102.23 102.23 102.23	wp= 102.3 d = 102.3 d = 102.35 d = 10	0.06 0.88
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes G = Ditch S2 = Ditch S3 = Ditch S4 =	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.88 % 0.00 metres 3.00 :1 0.08 metres (depth neede 0.916 Cu M/sec 100 yr. flow = 80.20 i/s 0.00 metres 3.00 :1 0.13 (Channels) 1.20 % 0.00 metres 3.00 :1 0.139 metres (depth neede 0.080 Cu M/sec 100 yr. +20% flow = 115.22 i/s 0.00 cu M/sec 100 yr20% flow = 15.22 i/s 0.00 :1 0.190 (Channels) 1.00 % 0.00 cu M/sec 100 yr. flow = 58.81 i/s 0.013 (Channels) 1.00 % 0.00 metres 3.00 :1 0.110 Cu M/sec 100 yr. flow = 58.81 i/s 0.013 (Channels) 1.00 % 0.00 metres (depth neede 0.056 Cu M/sec	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Difference = 0.81 M Length = 21.30 m 0.080 Cu m/sec or 0.080 Cu m/sec up Steam Dich Stem = 0.080 Cu m/sec or 0.080 Cu m/sec or 0.080 Cu m/sec or 0.080 Cu m/sec or 0.130 Cu Mace) and Velocity = 1.38 M Length = 1.38 M Cu m/sec Up Steam Dich Stem = 0.110 Cu m/sec Up Steam Dich Stem = 0.110 Cu m/sec Up Steam Dich Stem = 0.016 Stem = 0.016 Cu m/sec Up Steam Dich Stem = 0.016 Cu m/sec On 0.016 Cu m/sec up Steam Dich Stem = 0.016 Cu m/sec	102.47 102.15 0.33 Top Bank Free Boars 102.23 102.15 0.08 Top Bank Free Boars 102.23 102.15 0.08 Top Bank Free Boars 102.23 102.15 0.08 Top Bank Free Boars 102.23 102.23 102.24 102.23 102.24 102.23 102.25	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 area= wp= = 102.4	0.06 0.88 0.06 1.01
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch S50 Ditch S60 Dit	100 yr. +20% flow + 16.24 i/s 0.013 (Channels) 0.86 % 0.00 melres 3.00 :1 0.081 melres (depth neede 0.016 Channels) 100 yr. flow + 80.20 i/s 0.015 (Channels) 120 % 0.00 melres 3.00 :1 0.139 melres (depth neede 0.080 Cu M/sec 100 yr. +20% flow + 115.22 i/s 0.00 melres 3.00 :1 0.100 (Channels) 1.20 % 0.00 melres 3.00 :1 0.100 melres 3.00 :1 0.100 % 0.00 melres 3.00 :1 0.100 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.00 melres 3.00 :1 0.120 melres (depth neede 0.056 Cu M/sec	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Un Steam Dich Stem Difference = 0.81 M Length = 21.30 m 0.080 Cu m/sec Up Steam Dich Stem 0.080 Cu m/sec Up Steam Dich Stem 0.13 Cu Maec) and Velocity = 1.38 M Length = 1.38 M 0.115 Cu m/sec Up Steam Dich Stem 0.115 Cu m/sec Up Steam Dich Stem 0.050 Cu m/sec	102.47 102.15 0.32 Top Bank Free Boan 102.23 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 0.24 Top Bank Free Boan 102.23 0.24 Top Bank Free Boan 102.23	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 area= wp= = 102.4	0.06 0.88 0.06 1.01
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Ditch Section Required 1: From Seelye use n = Choose: slope S = Ditch S5 = Ditch Section Required 1: From Seelye use n = Ditch Section Required 1: From Seelye use n = Ditch Section Required 1: From Seelye use n = Ditch Section Required 1: From Seelye use n = Choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (2) Q = Ditch Séction Required 1: From Seelye use n = Choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (2) Q = Ditch Séction Required 1: From Seelye use n = Choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (2) Q = Ditch Section Required 1: From Seelye use n = Choose: slope S = Ditch slopes Water depth Check Ditch Capacity (3) Q = Ditch Section Required 1: From Seelye use n = Choose: Slope S = Ditch slopes Water depth Check Ditch Capacity (4) Q = Ditch slopes Water depth Check Ditch Capacity (4) Q = Ditch slopes Water depth Check Ditch Capacity (6) Q = Chec	100 yr. +20% flow + 16.24 i/s 0.013 (Channels) 0.86 % 0.00 metres 3.00 :1 0.08 metres (depth neede 0.016 Channels) 100 yr. flow + 80.20 i/s 0.015 (Channels) 120 % 0.00 metres 3.00 :1 0.139 metres (depth neede 0.080 Cu M/sec 100 yr. +20% flow + 115.22 i/s 0.00 metres 3.00 :1 0.100 flow flow flow flow flow flow flow flow	Length * 37.00 m 0.016 Cu m/sec Up Stream Dilato bitem Dollstermone 10 carry 61 30 Lu Mesc) and Velocity = 0.81 Mi Length * 2.00 Mesc) Up Stream Dilato Bitem 0.000 Cu m/sec Up Stream Dilato Bitem Diliterence 10 Stream Dilato Bitem Diliterence 10 Stream Dilato Bitem 0.115 Cu m/sec Up Stream Dilato Bitem 0.005 Cu m/sec	102.47 102.15 0.32 Top Blank Free Boan 102.23 102.15 0.08 Top Blank Free Boan 102.23 102.15 0.08 Top Blank Free Boan 102.27 102.23 0.24 Top Blank Free Boan 102.47 102.23 0.24 Top Blank Free Boan 102.47 102.23 0.24 Top Blank Free Boan	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 area= wp= = 102.4	0.06 0.88 0.06 1.01
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch SS = Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch SS = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch SS = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch SS = Ditch Bottom Ditch stopes Ditch stopes Ditch stopes Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch SS = Ditch Section Required 1: From Seelye use n = Choose: Slope S = Ditch Section Required 1: From Seelye use n = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch S4 = New Ditch Section Required 1: From Seelye use n = choose: slope S = choose: Slope S = Ditch Bottom Ditch Section Required 1: From Seelye use n = choose: Slope S = Ditch Bottom Ditch Section Required 1: From Seelye use n = choose: slope S = choose: Slope S = Ditch Bottom Ditch Bottom Ditch Bottom Ditch Bottom Water depth Check Ditch Capacity (C) Q = Ditch R8	100 yr. +20% flow = 15.24 i/s 0.013 (Channels) 0.86 % 0.000 metres 3.00.01 0.0014 (Channels) 0.000 metres 3.00.01 100 yr. flow = 80.20 i/s 0.013 (Channels) 1.20 % 0.000 metres 3.00.1 0.130 (Channels) 1.20 % 0.000 metres 3.00.1 0.100 (Channels) 1.0013 (Channels) 1.0014 (Channels) 1.0015 (Channels)	Length = 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Un Steam Dich Stem Difference = 0.81 M Length = 21.30 m 0.080 Cu m/sec Up Steam Dich Stem 0.080 Cu m/sec Up Steam Dich Stem 0.13 Cu Maec) and Velocity = 1.38 M Length = 1.38 M 0.115 Cu m/sec Up Steam Dich Stem 0.115 Cu m/sec Up Steam Dich Stem 0.050 Cu m/sec	102.47 102.15 0.32 Top Blank Free Boan 102.23 102.15 0.08 Top Blank Free Boan 102.23 102.15 0.08 Top Blank Free Boan 102.27 102.23 0.24 Top Blank Free Boan 102.47 102.23 0.24 Top Blank Free Boan 102.47 102.23 0.24 Top Blank Free Boan	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 area= wp= = 102.4	0.06 0.88 0.06 1.01
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch S5 Ditch S5 Ditch S5 Ditch S6 Ditch Bottom Ditch stopes Ditch School Ditch School Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch S5 New Dibth Section Required 1: From Seelye use n = choose: Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch S4 New Dibth Section Required 1: From Seelye use n = choose: Slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Q = Ditch S4 New Dibth Section Required 1: From Seelye use n = choose: Slope S = Ditch Section Required 1: From Seelye use n = choose: Slope S = Ditch Section Required 1: From Seelye use n = choose: Slope S = Ditch Section Required 1: From Seelye use n = Ditch Section Required 1: From Seelye use n = Choose: Slope S = Ditch Section Required 1: From Seelye use n = Ditch Section Required 1: From Seelye use n = Ditch Section Required 1: From Seelye use n = Choose: Slope S = Ditch Re New Ditch Section Required 1: From Seelye use n Seely use n Section Required 1: From Seelye use n Seely use n Seely use not Seely use no	100 yr. +20% flow = 15.24 i/s 0.013 (Channels) 0.88 % 0.000 metres 3.00.1 0.000 metres 3.00.1 0.001 (Channels) 1.00 yr. flow = 80.20 i/s 0.010 (Channels) 1.20 % 0.000 metres 3.00.1 0.130 (Channels) 1.20 % 0.000 metres 3.00.1 0.130 metres (depth neede 0.0180 Cu Milsee 1.00 yr. flow = 115.22 i/s 0.00 metres 3.00.1 0.013 (Channels) 1.00 yr. flow = 58.81 i/s 0.010 yr. flow = 58.81 i/s 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.000 metres 3.00 or 1 0.013 (Channels) 1.00 % 0.000 metres 3.00 or 1 0.013 (Channels) 1.00 % 0.000 metres 3.00 or 1 0.000 metres 3.000 or 1	Length = 37.00 m 0.016 Cu m/sec Up Stream Dich bism Di Stevem Dich Sim = Diberence = 10 carry 0.13 Cu Msec) and Velocity = 0.81 M Length = 2.13 0 m 0.0080 Cu m/sec Up Stream Dich Bim = Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.38 M Length = 2.30 m 0.115 Cu m/sec Up Stream Dich Bim = Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.51 M Length = 2.010 m 0.056 Cu m/sec Up Stream Dich Bim = Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.51 M Length = 0.016 Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.51 M Length = 0.016 Um Stream Dich Bim = Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.18 M Length = 0.016 Cu m/sec Up Stream Dich bim = Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.18 M Length = 0.016 Cu m/sec Up Stream Dich Bim = Difference = 10 Cu m/sec Up Stream Dich Bim = 0.016 Cu m/sec Up Stream Dich Bim = 0.016 1 Cu m/sec Up Stream Dich Bim = 0.016 1 Cu m/sec	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 0.24 Top Bank	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.35 d = 0.04	0.06 0.86 0.06 0.06 0.06 0.06
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (C) = Ditch S5 New Dath Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) = Ditch S6 New Dath Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) = Ditch S6 New Dath Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) = Ditch S4 New Ditch Section Required 1: From Seelye use n = choose: slope S = Choose Ditch Capacity (C) = Ditch S4 New Ditch Section Required 1: From Seelye use n = choose: slope S = Choose Ditch Capacity (C) = Ditch S4 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (C) = Ditch S4 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (C) = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (C) = Ditch R6 New Ditch Section Required 1: From Seelye use n = choose: slope S = Check Ditch Capacity (C) = Ditch R6 New Ditch Section Required 1: From Seelye use n = choose: slope S = Check Ditch Capacity (C) = Ditch R6 New Ditch Section Required 1: From Seelye use n = choose: slope S = Check Ditch Capacity (C) = Ditch R6 New Ditch Section Required 1: From Seelye use n = choose: slope S = Check Ditch Capacity (C) = Ditch R6 New Ditch Section Required 1: From Seelye use n = choose: slope S = Check Ditch Ditch Bottom Ditch Botto	100 yr. +20% flow = 15.24 i/s 0.013 (Channels) 0.88 % 0.000 metres 3.00.01 0.005 (Channels) 0.000 metres 3.00.01 0.005 (Channels) 1.20 % 0.000 metres 3.00.11 0.130 (Channels) 1.20 % 0.000 metres 3.00.11 0.130 metres (depth neede 0.0100 Cu Milsee 100 yr. 500% flow = 115.22 i/s 0.000 metres 3.00.11 0.100 flow = 15.00	Length = 37.00 m 0.016 Cu m/sec Up Stream Dich bitms Di Stevent Dich Steve Length = 21.30 m 0.000 Cu m/sec Up Stream Dich Steve Up Stream Dich Steve Up Stream Dich Steve 1.33 LM Length = 21.30 m 0.000 Cu m/sec Up Stream Dich bitms Di Stevent Dich Steve 1.34 Length = 21.30 m 0.115 Cu m/sec Up Stream Dich bitms Di Stevent Dich Steve 0.115 Cu m/sec Up Stream Dich bitms Di Stevent Dich Steve Di Stevent Dich Steve Up Stream Dich bitms Di Stevent Dich Steve Di Stevent Dich Steve Up Stream Dich bitms Di Stevent Dich Steve Di Stevent Dich Steve Dich Stevent Dich Steve Dich Stevent Dich Steve Dich Stevent Dich Steve Dich Stevent	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 Top Bank Free Boan 102.23 Top Bank Free Boan 102.23 Top Bank Free Boan 102.47 102.23 102.47 102.23 Top Bank Free Boan 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04	0.06 0.86 0.06 1.01
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 New Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 New Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 New Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 New Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 New Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 New Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 New Ditch Bottom Ditch stopes	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.88 % 0.000 metres 3.00.01 = 0.000 metres 0.0016 Cu M/sec 100 yr. flow = 60.20 l/s 0.013 (Channels) 1.20 % 0.000 metres 3.00.01 = 0.013 (Channels) 1.00 % 0.000 metres 3.00.01 = 0.013 (Channels) 1.00 % 0.000 metres 3.00.01 % 0.000 metres	Length * 37.00 m 0.016 Cu m/sec Up Stream Ditch bitms Difference * 0.81 Mc comp 15 Cu Missec) and Velocity * 0.81 Mc Length * 20.0 Mesc) Up Stream Ditch Bitm * 0.000 Cu m/sec Up Stream Ditch Bitm * 0.000 Cu m/sec Up Stream Ditch bitms Difference * 130 Mc Cu m/sec Up Stream Ditch bitms Difference * 10.0 Ms Cu m/sec Up Stream Ditch Bitm * 0.115 Cu m/sec	102.47 102.15 0.33 To Blank Free Boan 102.23 102.15 0.08 Top Blank Free Boan 102.23 0.24 Top Blank Free Boan 102.27 0.23 0.24 Top Blank Free Boan 102.27 0.24 Top Blank Free Boan 102.27 0.24 Top Blank Free Boan 102.27 0.24 Top Blank 102.27 Top Blank 102.27 Top Blank 102.27 Top Blank 102.27 Top Blank 1	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 d = 0.04 area= wp= = 102.4 d = 0.00	0.06 0.86 0.06 0.06 0.06 0.06
Ditch S208 New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch S5 Ditch S5 Ditch S5 Ditch S5 Ditch S6 Ditch Bottom Ditch stopes New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes New	100 yr. +20% flow = 16.24 /s 0.013 (Channels) 0.88 % 0.0013 (Channels) 0.88 % 0.00 metres 3.00.01 10.00 metres 0.0016 Cut M/sec 0.016 Cut M/sec 0.016 Cut M/sec 0.016 Cut M/sec 0.016 Cut M/sec 0.017 (Channels) 1.20 % 0.00 metres 3.00.01 0.130 (Channels) 1.20 % 0.00 metres 3.00.01 0.013 (Channels) 1.20 % 0.00 metres 3.00.1 0.10 (Channels) 1.00 % 0.00 metres 3.00.1 0.126 metres (depth neede 0.056 Cut M/sec 0.00 metres 3.00.1 0.126 metres (depth neede 0.056 Cut M/sec 0.000 metres 3.00.1 0.126 metres (depth neede 0.056 Cut M/sec 0.000 metres 3.00.1 0.000 metres 3.00.000 metres 3.00.000 metres 3.00.0000 metres 3.00.000 metres 3.00.0000 m	Length * 37.00 m 0.016 Cu m/sec Up Steam Dich Stem Dichterenz * 10 carry 61.00 m/sec Up Steam Dich Stem Dichterenz * 2 carry 61.00 m/sec Length * 21.30 m 0.008 Cu m/sec Up Steam Dich Stem Differenz * 138 M Length * 21.30 m 0.115 Cu m/sec Up Steam Dich Stem On 150 cu m/sec Up Steam Dich Stem 0.115 Cu m/sec Up Steam Dich Stem 0.115 Cu m/sec Up Steam Dich Stem 0.115 Cu m/sec Up Steam Dich Stem 0.008 Cu m/sec Up Steam Dich Stem Differenz * 10 carry 61.30 u Msec) and Velocity * 1.18 M Length * 20.10 m 0.008 Cu m/sec Up Steam Dich Stem 0.008 Cu m/sec	102.47 102.15 0.33 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.47 102.23 102.15 0.08 Top Bank Free Boan 102.47 102.23 0.24 102.47 102.23 0.24 102.23 0.24 Top Bank Free Boan 102.47 Top Bank Free Boan	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 d = 0.04	0.06 0.86 0.06 0.06 0.06 0.06
Ditch S208 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Medical Properties of the Control of	100 yr. +20% flow = 16.24 l/s 0.013 (Channels) 0.88 % 0.000 metres 3.00.01 = 0.000 metres 0.0016 Cu M/sec 100 yr. flow = 60.20 l/s 0.013 (Channels) 1.20 % 0.000 metres 3.00.01 = 0.013 (Channels) 1.00 % 0.000 metres 3.00.01 = 0.013 (Channels) 1.00 % 0.000 metres 3.00.01 % 0.000 metres	Length = 37.00 m 0.016 Cu m/sec 0.016 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) and Velocity = 0.81 M Length = 21.30 m 0.000 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.38 M Length = 21.30 m 0.115 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.51 M Length = 20.10 m 0.000 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.51 M Length = 20.10 m 0.000 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.18 M Length = 20.10 m 0.000 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.18 M Length = 20.10 m 0.000 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) Length = 20.10 m 0.000 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) Length = 10.00 m 0.000 Cu m/sec Up Stream Dich bitms Difference = 10 carry 0.13 Cu Msec) and Velocity = 1.20 M 0.000 Cu m/sec	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.27 Top Bank Free Boan 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 103.41 105.31 105.31 105.31 105.31	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.06 area= wp= = 102.4 d = 0.04 area= wp= = 102.4 d = 0.03	0.06 0.86 0.06 0.06 0.06 0.06
Ditch S20B New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes on the control of the	100 yr. +20% flow = 16.24 l/s .0.13 (Channels) .0.86 % .0.00 metres .0.013 (Channels) .1.20 % .0.00 metres .0.010 (Channels) .1.20 % .0.00 metres .0.013 (Channels) .1.20 % .0.013 (Channels) .1.20 % .0.10 metres (depth neede .0.110 Channels) .1.20 % .0.10 metres .0.10 metres .0.10 metres .0.10 metres .0.10 metres .0.10 (Channels) .1.20 % .0.10 metres .0.10 (Channels) .1.20 % .0.10 metres .0.10 (Channels) .1.20 % .0.10 (Channels) .1.20 % .0.10 metres .0.10 (Channels) .1.20 % .0.21 (Channels) .1.20 % .0.21 (Channels) .1.20 % .0.21 (Channels) .1.20 % .0.21 (Channels) .1.20 % .20	Length * 37.00 m 0.016 Cu misec Up Stevam Ditch bitem Distributed Ditch Bitem Distributed Ditch Bitem d to carry 0.13 Cu. Misec) and Velocity * 0.81 Mis Length * 21.30 m 0.005 Cu misec Up Stevam Ditch Bitem Distributed Distribute	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.27 Top Bank Free Boan 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 103.41 105.31 105.31 105.31 105.31	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.06 area= wp= = 102.4 d = 0.04 area= wp= = 102.4 d = 0.03	0.06 0.86 0.06 0.06 0.06 0.06
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes (Part of the Part of	100 yr. +20% flow = 16.24 l/s .0.13 (Channels) .0.86 % .0.013 (Channels) .0.86 % .0.00 metres .0.00 metres .0.00 metres .0.00 metres .0.00 metres .0.010 (Channels) .1.20 % .0.10 (Channels) .1.20 % .0.10 metres (depth neede .0.13 (Channels) .1.20 % .0.13 (Channels) .1.20 % .0.10 metres .0.10 (Channels) .1.20 % .0.10 metres .0.10 (Channels) .1.20 % .0.10 (Channels) .1.20 % .0.10 metres .0.10 (Channels) .1.20 % .0.10 (Channels) .1.20 % .0.10 metres .3.00 -1 .1.20 % .0.10 metres .3.00 -1 .1.20 % .0.10 metres .3.00 -1 .1.20 % .0.10 (Channels) .1.00 % .0.10 metres .3.00 -1 .0.126 metres (depth neede .0.116 Cu Mface .0.100 % .0.00 metres .3.00 -1 .0.126 metres (depth neede .0.116 Cu Mface .0.056 (Cu Mface .0.057 (Channels) .1.00 metres .3.00 -1 .0.00 metres .3.00 -1 .00 metres .3.00 -	Length * 37.00 m 0.016 Cu misec Up Stream Dicto bitem Dr. Stream Dicto bitem Dr. Stream Dicto bitem dr. Stream Dicto bitem Dr. Stream Dicto bitem 0.000 Cu misec Up Stream Dicto bitem Dr. Stream Dicto bitem Dr. Stream Dicto Stream Dr. Stream Di	102.47 102.15 0.32 Top Bank, Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.00 Top Bank Free Boan 102.23 102.15 0.00 Top Bank Free Boan 102.27 102.23 0.24 Top Bank Free Boan 102.47 102.23 0.24 Top Bank Free Boan 102.47 102.23 0.25 Top Bank Free Boan 102.47 102.23 0.24 Top Bank Free Boan 102.47 102.23 0.25 Top Bank Free Boan 102.47 102.23 0.25 Top Bank Free Boan 102.47 102.23 0.25 Top Bank Free Boan 102.47 102.23	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.08 area= wp= = 102.35 d = 0.00 area= wp= = 102.4 d = 0.04 area= wp= = 102.4 d = 0.03	0.05 0.06 0.08 0.06 0.06 0.06 0.09 0.09 0.09
Ditch S208 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 Ditch S6 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S6 Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S6 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S6 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S4 New Ditch Section Required 1: From Seely use n = choose: Slope S = Ditch S4 New Ditch Section Required S1 From Seely use n = choose: Slope S = Ditch S4 New Ditch Section Required S1 Ditch Bottom Ditch Bottom Ditch Supper Water depth Check Ditch Capacity (C) Ditch R6 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch Supper Water depth Check Ditch Capacity (C) Ditch R6 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch R6 New Ditch Section Required 1: Ditch S4 New Ditch Section Required 1: Ditch S4 Ditch Bottom Ditch Supper S4 Ditch Bottom Ditch Section Required 1: Ditch S4 Ditch Bottom Ditch Section Required 1: Ditch S4 Ditch Bottom Ditch Section Required 1: Ditch S4 Ditch Bottom Ditch Section Section Required 1: Ditch S4 Ditch Bottom Ditch Section Se	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.88 % 0.88 % 0.000 metres 3.00.01 0.000 metres 0.016 Cu M/sec 100 yr. flow = 80.20 i/s 0.013 (Channels) 1.20 % 0.000 metres 3.00.01 0.139 metres (depth neede 0.010 Cu M/sec 100 yr. +20% flow = 115.22 i/s 0.000 metres 3.00.01 0.100 (Channels) 1.20 % 0.000 metres 3.00.01 0.100 (Channels) 1.00 % 0.000 metres 0.000 (Channels) 1.00 % 0.000 metres	Length * 37.00 m 0.016 Cu misec Up Stevam Ditch bitem Dis Stevam Ditch bitem and Velocity * 0.81 Mix Length * 21.30 m 0.000 Cu misec Up Stevam Ditch bitem Distressor Ditch bitem O.015 Cu misec Up Stevam Ditch bitem Distressor Distre	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.27 Top Bank Free Boan 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 102.47 102.23 103.41 105.31 105.31 105.31 105.31	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 d = 0.04 area= wp= = 102.4 d = 0.04	0.06 0.86 0.06 0.06 0.06 0.06 0.07
Ditch S208 New Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (C) Ditch S5 New Dish Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S5 New Dish Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S5 New Dish Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S5 New Dish Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Water depth Check Ditch Capacity (C) Ditch S4 New Dish Section Required 1: From Seely use n = choose: slope S = Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Ditch R6 New Dish Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Bottom Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Bottom Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Bottom Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes Ditch Bottom Ditch Section Required 1: From Seely use n = choose: slope S = Ditch Bottom Ditch stopes	100 yr. +20% flow = 16.24 i/s 0.013 (Channels) 0.86 % 0.003 (Channels) 0.00 metres 3.00.01 0.005 metres (depth neede 0.016 Cu Mfsec 100 yr. flow = 80.20 i/s 0.013 (Channels) 1.20 % 0.00 metres 3.00.01 0.130 metres (depth neede 0.010 Cu Mfsec 100 yr. +20% flow = 115.22 i/s 0.00 metres 3.00.01 0.010 (Channels) 1.00 % 0.00 metres 3.00.11 0.100 metres 3.00 i/s 0.110 (Channels) 1.00 yr. flow = 80.20 i/s 0.013 (Channels) 1.00 yr. flow = 80.20 i/s 0.000 metres 3.00 i/s 0.100 metres 3.00 i/s 0.110 (Channels) 1.00 yr. flow = 81.45 i/s 0.013 (Channels) 1.00 yr. +20% flow = 81.45 i/s 0.013 (Channels) 1.00 weders 3.00 i/s 0.000 metres 1.000 i/s 0.000 metres 1.000 i/s 0.000 metres 1.000 i/s 0.000 metres 1.000 metres	Length = 37.00 m 0.016 Cu m/sec 0.016 Cu m/sec Up Stream Dich Stem Dich St	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 0.24 Top Bank Free Boan 102.23 0.24 Top Bank Free Boan 102.23 0.24 Top Bank Free Boan 102.27 0.23 0.24 Top Bank Free Boan 102.37 102.37 102.37 102.37 102.37 102.37 102.38 100.31 100.31 100.31	wp= = 102.3 d = 0.07 area= wp= = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.35 d = 0.04 area= wp= = 102.35 d = 0.04	0.05 0.06 0.08 0.06 0.06 0.06 0.09 0.09 0.09
Ditch S20B New Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes Check Ditch Capacity (Q) Ditch S5 Ditch S6 Ditch Bottom Ditch stopes Water depth (C) Ditch S6 Ditch Bottom Ditch stopes (C) Ditch S6 Ditch Bottom Ditch stopes (C) Ditch S6 Ditch Bottom Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes (C) Ditch S6 Ditch Bottom Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes (C) Ditch S6 Ditch Bottom Ditch stopes (C) Ditch R6 New Dish Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes (C) Ditch R6 New Dish Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch stopes (C) Ditch R6 New Dish Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes (C) Ditch Bottom Ditch stopes (C) Ditch Bottom Ditch slopes (C) Ditch Bottom Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes (C) Ditch Bottom Ditch Section Required 1: From Seelye use n = choose: slope S = Ditch Bottom Ditch Section Required Section Required Section Required Section Required Section Required Sectio	100 yr. +20% flow = 16.24 l/s .0.13 (Channels) .0.86 % .0.00 metres .0.00 metres .0.00 metres .0.00 metres .0.00 metres .0.010 (Channels) .100 yr. flow = 80.20 l/s .0.13 (Channels) .120 % .0.00 metres .3.00 :1 .0.13 (Channels) .120 % .0.00 metres .3.00 :1 .0.13 (Channels) .120 % .0.013 (Channels) .120 % .0.013 (Channels) .120 % .0.00 metres .3.00 :1 .0.16 Cu Mfrec .0.16 Cu Mfrec .0.17 (Channels) .100 % .0.00 metres .3.00 :1 .0.10 (Channels) .100 % .0.00 metres .3.00 :1 .0.13 (Channels) .100 % .0.00 metres .3.00 :1 .0.140 metres (depth neede	Length = 37.00 m 0.016 Cu m/sec 0.016 Cu m/sec Up Stream Dich Stem Dich St	102.47 102.15 0.32 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.23 102.15 0.08 Top Bank Free Boan 102.27 Top Bank Free Boan 102.47 102.23 102.47 102.23 102.47 102.23 103.41 104.47 105.53 Top Bank Free Boan 105.54 Top Bank Free Boan 105.55 Top Bank Free Boan	wp= = 102.3 d = 102.35 d = 102.35 d = 0.06 area= wp= = 102.35 d = 0.04 area= wp= = 102.4 d = 0.04 area= wp= = 102.4 d = 0.04	0.05 0.06 0.08 0.06 0.06 0.06 0.09 0.09 0.09

 $Q = A^*(1.0 \text{ln})^*R^*2/3^*S^*1/2 \hspace{1cm} \text{where:} \hspace{1cm} A = \text{cross sectional area in Sq. m}$

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 BARRETT BLOCK 178

 DATE:
 2022-10-27

 FILE:
 135925.6.04

 REV #:
 2

 DESIGNED BY:
 Anton Chetrar

 CHECKED BY:
 Ryan Magladry

TEMPORARY ICD ORIFICE SIZING

Orifice coeffic	ients
Cv =	0.60
Cv =	0.65

							Thec	pretical	Recommended	
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Hydraulic Slope	Target Flow	Orifice	Actual Flow	Orifice	Actual Flow
	(m)	(mm)	(m)	(m)	(m)	(l/s)	(m)	(l/s)	(m)	(I/s)
SANITARY MH	95.810	200	95.910	101.40	2.000	1.99	0.0230	1.99	0.075	21.14
STORM MH	96.180	675	96.518	101.40	2.000	136.00	0.1905	136.40	0.190	135.68

^{*} minimum orifice size to be 0.075m

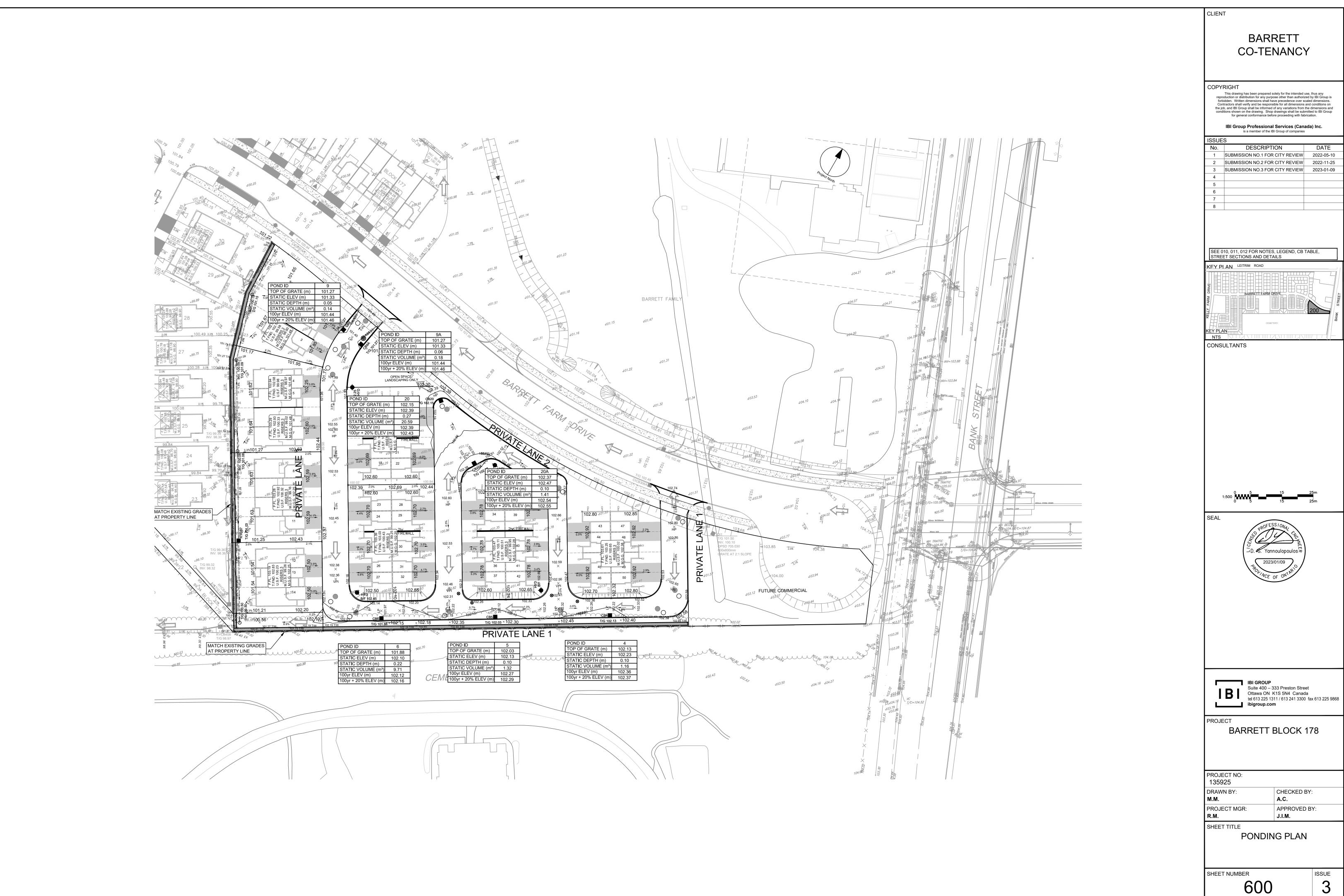
IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 BARRETT BLOCK 178

 DATE:
 2022-10-27

 FILE:
 135925.6.04

 REV #:
 1

 DESIGNED BY:
 Anton Chetrar


 CHECKED BY:
 Ryan Magladry

ICD ORIFICE SIZING

Orifice coeffic	ients
Cv =	0.60
Cv =	0.65

							The	oretical		Recommended
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Hydraulic Slope	Target Flow	Orifice	Actual Flow	Orifice	Actual Flow
	(m)	(mm)	(m)	(m)	(m)	(l/s)	(m)	(l/s)	(m)	(I/s)
CB4	100.730	200	100.830	102.23	1.400	26.00	0.0910	26.04	0.090	25.47
CB5	100.630	200	100.730	102.13	1.400	25.00	0.0892	25.02	0.089	24.91
CB6	100.480	200	100.580	102.10	1.520	50.00	0.1236	50.06	0.123	49.57
CB9	99.870	200	99.970	101.33	1.360	16.50	0.0730	16.50	0.075	17.43
CB9A	99.870	200	99.970	101.33	1.360	16.50	0.0730	16.50	0.075	17.43
CB20	100.750	200	100.850	102.39	1.540	15.00	0.0675	15.00	0.075	18.55
CB20A	100.970	200	101.070	102.47	1.400	10.00	0.0564	10.00	0.075	17.69
RYCB7	99.850	250	99.975	101.40	1.425	20.00	0.0794	20.00	0.079	19.80
				·						

^{*} minimum orifice size to be 0.075m

CITY PLAN No. 18826

ECHECK | File Location: J:\135925_BarrettLands\7.0_Product | Product | Produ

IBI GROUP REPORT PROJECT: 34731-5.2.2 **DESIGN BRIEF** BARRETT LANDS - PHASE 3 3100 LEITRIM ROAD LEITRIM DEVELOPMENT AREA Prepared for BARRETT CO-TENANCY

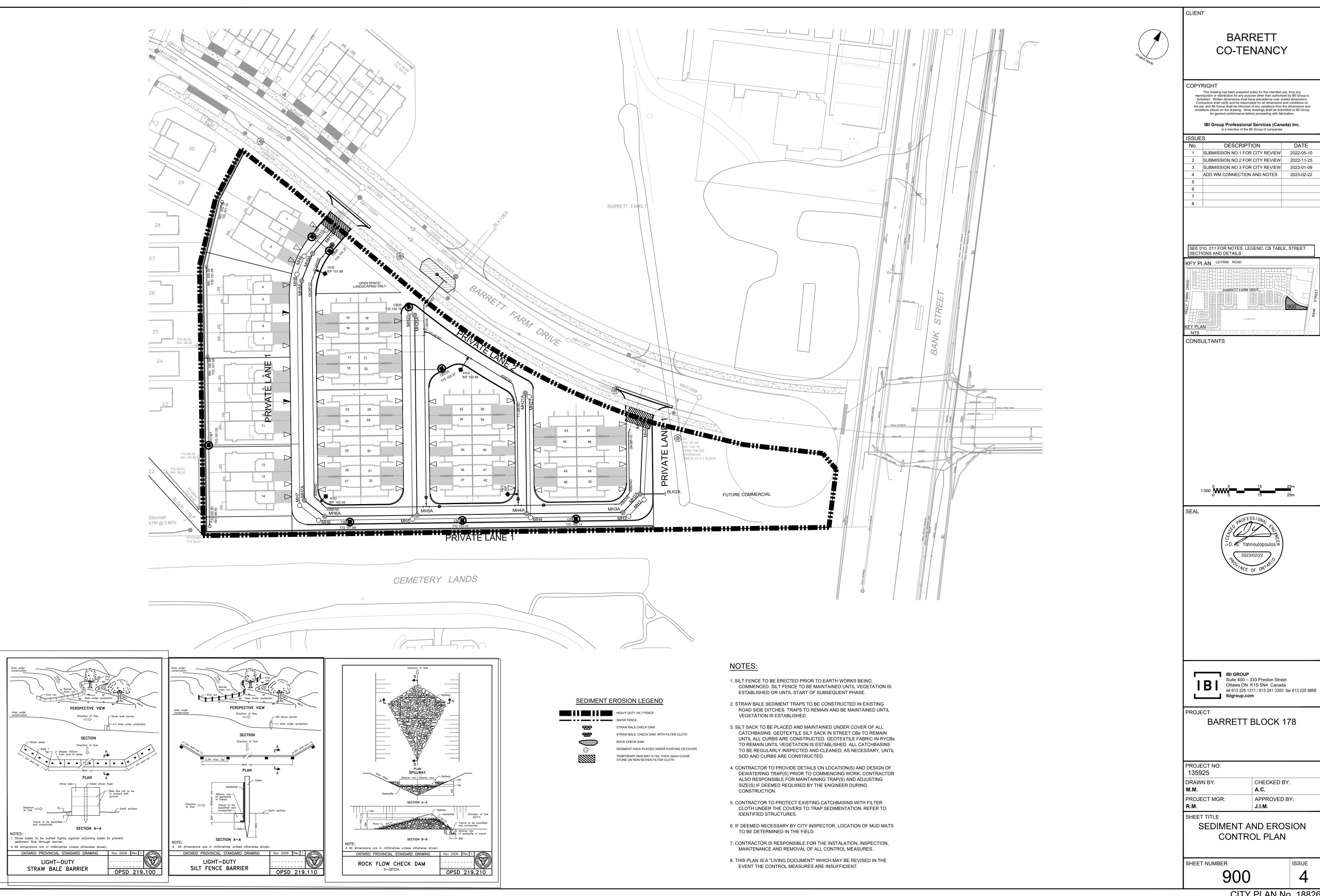
DRAINAGE	CONTINUOUS			SYSTEM DESIGN TARGET SED ON ROAD TYPE)	MINOR SYSTEM	
AREA ID	/SAG (1)(2)	ROAD TYPE	MINOR SYSTEM DESIGN STORM	GENERATED FLOW ON INDIVIDUAL SEGMENT SIMULATED (L/S)	RE- STRICTION (L/S)	NOTES ⁽³⁾
R11315	Rear Yard	Rear Yard	5	12	17	
R11321	Rear Yard	Rear Yard	5	73	80	
R11323	Rear Yard	Rear Yard	5	36	40	
R11331	Rear Yard	Rear Yard	5	36	40	
R11332	Rear Yard	Rear Yard	5	17	17	
R11334	Rear Yard	Rear Yard	5	10	17	
R11333	Rear Yard	Rear Yard	5	11	16	
R11350A	Rear Yard	Rear Yard	5	7	17	
R11350B	Rear Yard	Rear Yard	5	31	40	
R11400A	Rear Yard	Rear Yard	5	6	6	
R11400B	Rear Yard	Rear Yard	5	25	80	
R11401	Rear Yard	Rear Yard	5	44	60	
R11402	Rear Yard	Rear Yard	5	38	45	
R11403A	Rear Yard	Rear Yard	5	34	40	
R11403B	Rear Yard	Rear Yard	5	33	40	
R11403C	Rear Yard	Rear Yard	5	6	40	
R11406	Rear Yard	Rear Yard	5	19	22	
Т	otal restricted f	low (ICD flow) – Re	ar Yard Se	gments (L/s)	756	
External Are	as					
R11304	Rear Yard	Rear Yard	2	234	234	
R11305	Rear Yard	Rear Yard	2	581	581	
R11340	Rear Yard	Rear Yard	2	287	287	

⁽¹⁾ Capture on continuous grade is limited to capacity of grate.

The storage available on-site and its maximum depth and the results of the DDSWMM evaluation for the subject site are presented in **Table 5.4**. The ponding plan for the subject site is presented on Drawing 34731-620. The DDSWMM output files are presented in Appendix E.

Table 5.4 Summary of On-Site Storage during the Target Minor System Design Storm

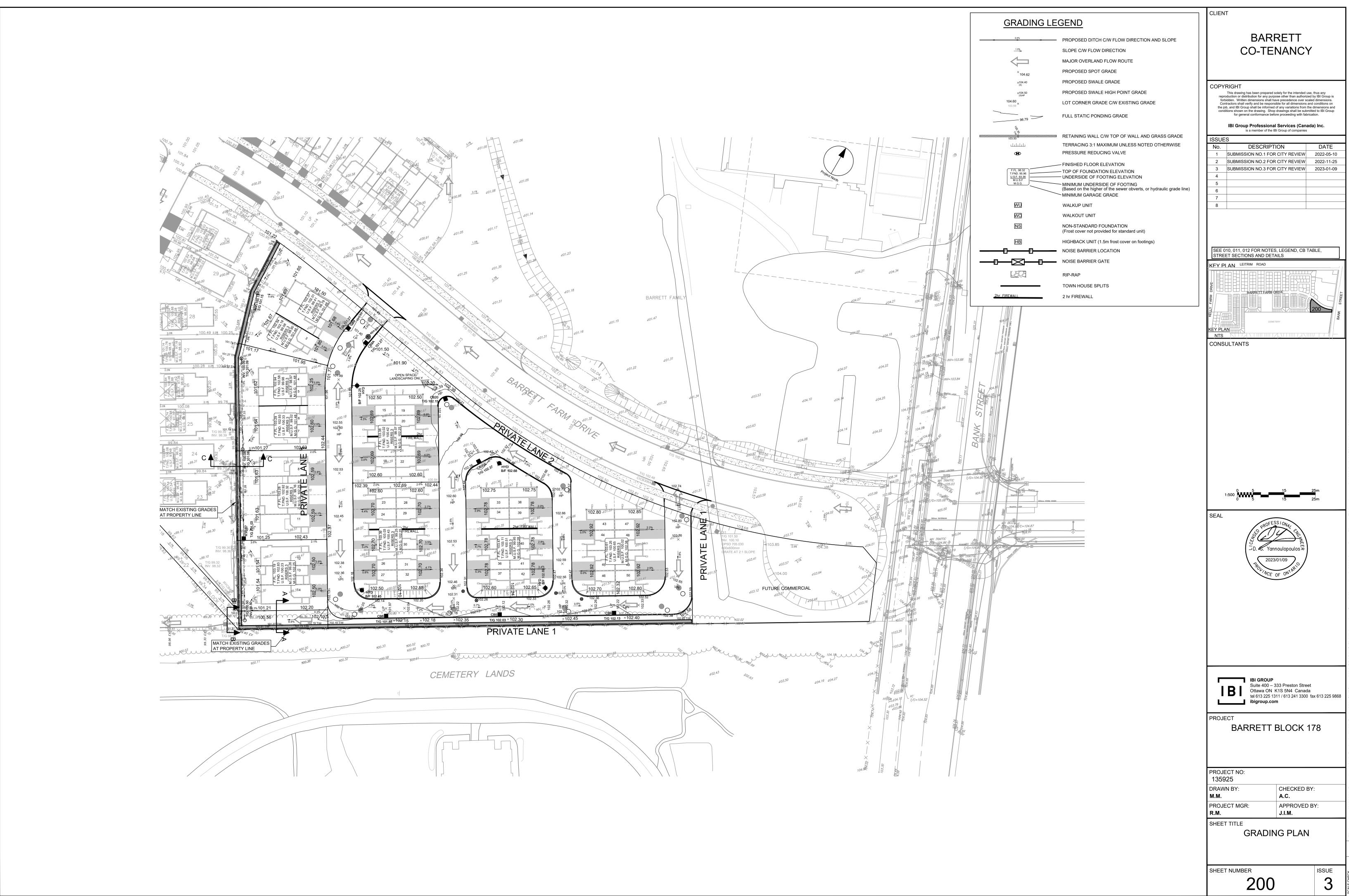
DRAINAGE AREA ID	MINOR SYSTEM DESIGN STORM	AVAILABLE STATIC STORAGE (CU-M)	TOTAL STORAGE USED (CU-M)	OVERFLOW (L/S)
S11304A	5	5.67	0	0
S11304B	5	6.17	0	0
S11401A	2	38.98	0	0
S11401B	2	7.14	0	0
S11400	2	20.04	0	0
S11311A	2	6.22	0	0


APRIL 2022 26

⁽²⁾ The minor flow restriction has been increased in sags to allow full capture of overflow from upstream segments on continuous grade during the design storm event without ponding.

(3) Where CB lead restricts flow, lead diameter is specified in the CB Data Table.

APPENDIX E


135925-900 - Erosion and Sediment Control Plan 135925-200 - Grading Plan

CITY PLAN No. 18826

ISSUE

e Location: J/135925_BarrettLand

CITY PLAN No. 18826

SCALE CHECK | File Location: J:\135925_BarrettLands\7.0_Pr