Report

Project: 135925-6.4.3

BARRETT LANDS - BLOCK 178 SERVICING BRIEF

Table of Contents

1	INTRO	DDUCTION 1				
	1.1	Guidel	ines and Standards	1		
	1.2	Pre-Co	onsultation Meeting	2		
	1.3	Enviro	nmental Issues	2		
	1.4	Geote	chnical Concerns	2		
2	WATE	R DISTI	RIBUTION	3		
_	2.1		g Conditions			
	2.2		o n Criteria			
		2.2.1	Water Demands			
		2.2.2	System Pressures			
		2.2.3	Fire Flow Rate			
		2.2.4	Boundary Conditions	4		
		2.2.5	Hydraulic Model	4		
	2.3	Propos	sed Water Plan	4		
		2.3.1	Hydraulic Analysis	4		
		2.3.2	Summary of Results	5		
3	WAST	EWATE	R	6		
3	WAST 3.1		g Conditions			
3				6		
3		Existin 3.1.1	g Conditions	6 6		
3	3.1	Existin 3.1.1	g Conditions Verification of Existing Sanitary Sewer Capacity	6 6		
3	3.1	Existin 3.1.1 Propos	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers	6 6 6		
	3.1	Existin 3.1.1 Propos 3.2.1 3.2.2	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density:	6 6 6		
4	3.1 3.2	Existin 3.1.1 Propos 3.2.1 3.2.2	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density:	6 6 6		
	3.1	Existin 3.1.1 Propos 3.2.1 3.2.2 STORM Object	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density: VATER MANAGEMENT ive	6 6 6		
	3.1 3.2 SITE \$	Existin 3.1.1 Propos 3.2.1 3.2.2 STORM Object Existin	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density: NATER MANAGEMENT ive g Conditions	6 6 6 7		
	3.1 3.2 SITE \$ 4.1 4.2	Existin 3.1.1 Propos 3.2.1 3.2.2 STORMV Object Existin Design	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density: VATER MANAGEMENT ive g Conditions n Criteria	66 66 67 77 77		
	3.1 3.2 SITE \$ 4.1 4.2 4.3	Existin 3.1.1 Propos 3.2.1 3.2.2 STORMV Object Existin Design	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density: NATER MANAGEMENT ive g Conditions n Criteria n Concept	6 6 6 7 7		
	3.1 3.2 SITE \$ 4.1 4.2 4.3	Existin 3.1.1 Propos 3.2.1 3.2.2 STORMV Object Existin Design Systen	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density: VATER MANAGEMENT ive g Conditions n Criteria	6 6 7 7 7		
	3.1 3.2 SITE \$ 4.1 4.2 4.3	Existin 3.1.1 Propos 3.2.1 3.2.2 STORMV Object Existin Design System 4.4.1 4.4.2	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density: NATER MANAGEMENT ive g Conditions n Criteria n Concept. Dual Drainage Design	6 6 7 7 7		
	3.1 3.2 SITE \$ 4.1 4.2 4.3 4.4	Existin 3.1.1 Propos 3.2.1 3.2.2 STORMV Object Existin Design System 4.4.1 4.4.2	g Conditions Verification of Existing Sanitary Sewer Capacity sed Sewers Design Flow: Population Density: NATER MANAGEMENT ive g Conditions n Criteria n Concept Dual Drainage Design Proposed Minor System	6 6 6 7 7 7 8 8		

		4.5.3 2 Year Ponding	10	
		4.5.4 100 year + 20% Stress Test	10	
	4.6	Storm Hydraulic Grade Line	11	
5	SOUR	CE CONTROLS	12	
	5.1	General	12	
	5.2	Lot Grading	12	
	5.3	Roof Leaders	12	
	5.4	Vegetation	12	
6	CONVI	YEYANCE CONTROLS	13	
	6.1	General	13	
	6.2	Flat Vegetated Swales	13	
	6.3	Catchbasins	13	
	6.4	Pervious Landscaped Area Drainage	13	
7	SEDIM	MENT AND EROSION CONTROL PLAN	14	
	7.1	General	14	
	7.2	Trench Dewatering	14	
	7.3	Bulkhead Barriers	14	
	7.4	Seepage Barriers	14	
	7.5	Surface Structure Filters	14	
	7.6	Stockpile Management	15	
8	ROAD	S AND NOISE ATTENUATION	16	
	8.1	Aircraft Sound Levels	16	
9	SOILS)	17	
10	RECOMMENDATIONS			

List of Appendices

APPENDIX A

AOV Plan of Subdivision for the Barrett Lands Phase 3

Site Plan for Barrett Block 178

135925-001 General Plan of Services

City of Ottawa Pre-Consultation Meeting Notes

APPENDIX B

Water Distribution Model

APPENDIX C

Sanitary Sewer Design Sheet

135925-400 Sanitary Drainage Plan

Barret Lands Phase 3 Sanitary Design Sheet

Barret Lands Phase 3 Sanitary Drainage Area Plan

APPENDIX D

Storm Sewer Design Sheet

135925-500 Storm Drainage Plan

135925-600 Ponding Plan

Barret Lands Phase 3 Storm Design Sheet Barret Lands Phase 3 Storm Drainage Area Plan Modified Rational Method on-site SWM calculations

Storm HGL Calculations

Barret Lands Phase 3 HGL Reference Overflow Depth/Capacity Calculation

Temporary Orifice Sizing

Sample Runoff Coefficient Calculations

APPENDIX E

135925-900 Erosion and Sediment Control Plan

135925-200 Grading Plan

May 2022 iii

1 INTRODUCTION

Barrett Lands Block 178 is located in the northern portion of the Leitrim Development Area (LDA) and is part of the Barrett Lands subdivision. IBI Group Professional Services Inc. (IBI Group) has been retained by Barrett Co-Tenancy to provide professional engineering services for Block 178. The subject site is approximately 1.28 ha and consists of 50 townhouse units. The site consists of freehold frontage onto an 8.5m and a 6.0m wide private lane. There will be a common elements agreement in place for the shared elements of the site.

Block 178 is bounded by Barrett Farm Drive to the North, Barrett Lands Phase 3 lands to the west, Cemetery lands to the south and a future commercial to the east. Refer to key plan below for block location.

The proposed servicing design conforms to current City of Ottawa and MECP design criteria, and no pre-consultation meetings were requested from the South Nation Conservation (SNC) or the Ontario Ministry of Environment, Conservation and Parks (MECP).

1.1 Guidelines and Standards

This evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01, the June 2018 Technical Bulletin ISTB-2018-04, October 2019 Technical Bulletin 2019-01, and the July Technical Bulletin 2019-02.

It also considers the City of Ottawa Water Distribution Design Guidelines (OWDDG), and the 2010 Technical Bulletin 2010-02, the 2014 Technical Bulletin 2014-02, and the 2018 Technical Bulleting 2018-02.

All specifications are as per current City of Ottawa standards and specifications, and Province of Ontario (OPSS/D) standards, specifications and drawings.

May 2022

1.2 Pre-Consultation Meeting

The City of Ottawa hosted a virtual pre-consultation meeting on August 18th, 2021. Notes of the meeting are provided in **Appendix A**. There were no major engineering concerns flagged in this meeting. The City of Ottawa Servicing Study Checklist has also been included in **Appendix A**.

1.3 Environmental Issues

There are no environmental issues related to this site, as all environmental concerns were dealt with as part of the applicants Barrett Lands Phase 3 subdivision approval.

All existing watercourses or drainage features associated with this site have been addressed through SNCA permit number 2021-GLO-R234.

1.4 Geotechnical Concerns

Golder was retained by Barrett Co-Tenancy to review the grading plan to ensure that the recommendations with its original report for the subject area. There were no particular design concerns for this development.

2 WATER DISTRIBUTION

2.1 Existing Conditions

There is an existing 250mm watermain in Barrett Farm Drive in Barrett Lands Phase 3 to the north of the site, which is proposed to continue east on Barrett Farm Drive in Barrett Phase 3 to the north east of the site. The proposed development was considered in the water model for the Barrett Phase 2 and 3 development.

2.2 Design Criteria

2.2.1 Water Demands

Block 178 consists of 50 townhouse units. Per unit population density and consumption rates are taken from **Tables 4.1** and **4.2** of the Ottawa Design Guidelines – Water Distribution and are summarized as follows:

Semi Detach/Townhouse
 2.7 person per unit

Average Day Demand 280 l/cap/day
 Peak Daily Demand 700 l/cap/day
 Peak Hour Demand 1,540 l/cap/day

A water demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

Average Day 0.45 l/s
 Maximum Day 1.12 l/s
 Peak Hour 2.45 l/s

2.2.2 System Pressures

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure Minimum system pressure under peak hour demand conditions shall

not be less than 276 kPa (40 psi).

Fire Flow During the period of maximum day demand, the system pressure shall

not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure Maximum pressure at any point in the distribution system in

unoccupied areas shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code the maximum pressure should not exceed 552 kPa (80 psi) in occupied areas. Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rate

A Fire Underwriters Survey has been carried out on a representative block to determine the fire flow for the site. The calculations result in a fire flow of 10,000 l/min; a copy of the FUS calculation is included in **Appendix B**.

2.2.4 Boundary Conditions

The City of Ottawa has provided hydraulic boundary conditions two locations in Barrett Lands Phase 3. The City has provided existing condition and SUC Zone reconfiguration boundary conditions. The existing condition has the highest maximum HGL value and is used in the analysis to determine maximum pressure while the SUC Zone reconfiguration value has the lower values for peak hour and fire and is used in the analysis. A copy of the Boundary Condition is included in **Appendix B** and summarized as follows:

	HYDRAULIC HEAD		
CRITERIA	CONNECTION 1 Private Lane @ Barrett Farm Drive	CONNECTION 2 Private Lane @ Barrett Farm Drive	
Max HGL (Basic Day)	154.6 m	154.6 m	
Peak Hour	144.7 m	144.6 m	
Max Day + Fire (10,000 l/m)	121.8 m	125.3 m	

2.2.5 Hydraulic Model

A computer model for the Block 178 water distribution system has been developed using the InfoWater SA program. The model includes the boundary conditions provided by the City of Ottawa and a portion of Barrett Lands Phase 3 watermains.

2.3 Proposed Water Plan

2.3.1 Hydraulic Analysis

The hydraulic model was run under basic day conditions with the existing boundary condition to determine the maximum pressure for the site. The minimum pressure for the site is determined in the peak hour analysis using the SUC Zone reconfiguration boundary condition. There are two fire hydrants in the site and they are represented by nodes S11-515 and S11-520 in the model; the model was run under the max day plus fire (10,000 l/min) SUC Zone Reconfiguration Boundary condition to determine the design fire flow at the hydrant locations. Results of the analysis for the Block 178 site are summarized in Section 2.3.2 and the water model schematic and model results are included in **Appendix B**.

2.3.2 Summary of Results

Results of the hydraulic analysis for Block 178 are summarized as follows:

SCENARIO	EXISTING	suc
Basic Day Pressure (kPa)	507.6 – 513.48	453.7 – 467.42
Peak Hour Pressure (kPa)	409.63 – 424.27	425.28 – 439.00
Minimum Residual Pressure (kPa)	138.82	298.07

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure All nodes have basic day pressure below 552 kPa for existing

conditions; therefore, pressure reducing control is not required for this

site.

Minimum Pressure All nodes exceed the minimum requirement of 276 kPa during peak

hour conditions for the SUC Zone configuration.

Fire Flow The model was run with a fire flow of 10,000 I/min under the SUC

Zone Reconfiguration. The residual pressures at both nodes exceed

the minimum requirement of 276 kPa.

3 WASTEWATER

3.1 Existing Conditions

The Leitrim Pump Station is the wastewater outlet for all developed lands within the LDA, including the subject property. In 2002, the City constructed the station, associated forcemains and outlet sewers in Bank Street and Conroy Road. Sewage from the LDA outlets to the Conroy Road Trunk Sewer eventually discharging to a sewage treatment plant located near the Ottawa River. The Barrett Lands Phase 1 report prepared by IBI Group dated March 2017 confirmed that the existing 375mm sewer in Kelly Farm Drive has sufficient capacity for the Barret Lands at Findlay Creek property inclusive of the proposed development.

3.1.1 Verification of Existing Sanitary Sewer Capacity

There is an existing 200mm sanitary sewer in Barrett Farm Drive, which connects to the 375 mm diameter sub-trunk sewer in Kelly Farm Drive. In the previous Barrett Lands Phase 3 report, the design for Block 178 was for 84 apartment units, with an allocated population of 159.6 people, a site area of 1.28 and a total flow of 2.26 L/s, see **Appendix C** for excerpts from the Phase 3 report.

For the subject development, it is proposed to build a total of 50 units – 14 townhomes and 36 back to back townhouse units. The new total proposed population is 135.2 people, area 1.02 Ha and a total flow of 1.99L/s. This represents a total peaking flow decrease of **0.27L/s** when compared to the Phase 3 allocation. The decrease in flow on the existing system from the subject development is considered to have no negative impacts on downstream infrastructure.

3.2 Proposed Sewers

All on-site sewers have been designed to City of Ottawa and MOE design criteria which include but are not limited to the below listed criteria. A copy of the detailed sanitary tributary area plan 400 and the sanitary sewer design sheets are included in **Appendix C** illustrate the population densities and sewers which provide the necessary outlets.

3.2.1 Design Flow:

Average Residential Flow - 280 l/cap/day

Peak Residential Factor - Harmon Formula

Infiltration Allowance - 0.33 l/sec/Ha

Minimum Pipe Size - 200mm diameter

3.2.2 Population Density:

Semi-Detached & Townhouse - 2.7 person/unit

4 SITE STORMWATER MANAGEMENT

4.1 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for the Block 178 development. The design includes the assignment of inlet control devices, on-site storage, maximum depth of surface ponding and hydraulic grade line analysis. The evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01 and the June 2018 Technical Bulletin ISTB-2018-04.

4.2 Existing Conditions

The subject development is tributary to the Barrett Farm Drive storm sewer, which was approved for construction for the Barrett Lands Phase 3 development. Subsequent to the approval of Phase 3, the stormwater management analysis for Barrett Lands Phase 3 included an updated to the subject sites tributary allocation into the Barrett Farm Drive storm sewer. As part of that approval, a 675mm diameter storm sewer was approved for the subject block. The subject block is referenced as "R11304" in the Barrett Lands Phase 3 design. A copy of the design sheet, and approved drainage area plan for Phase 3 have been included in **Appendix D**.

Additionally, the Barrett Lands Phase 3 stormwater management identified a minor system restriction for this site to be the 5-year modelled flow of **234 l/s**. An excerpt from the Phase 3 report has been included in **Appendix D**.

4.3 Design Criteria

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

Design Storm

1:2-year return (Ottawa)

(It should be noted that the overall Barrett Lands Site utilized 1:5 year return storm for minor system release from the subject site, further details are provided in Section 4.4 and 4.5.2)

Rational Method Sewer Sizing

Initial Time of Concentration
 10 minutes

Runoff Coefficients

Front Yards
 Rear Yards
 C = 0.57
 C = 0.78

• Pipe Velocities 0.80 m/s to 3.0 m/s

Minimum Pipe Size
 250 mm diameter
 (200 mm CB Leads)

A sample calculation of run-off coefficients has been provided in Appendix D. The runoff coefficients used are based on the actual footprint in the site plan. Zoning setbacks do not apply to the site plan. The values calculated are lower than the values used, thus a conservative approach has been provided in this analysis.

4.4 System Concept

According to the Barrett Lands Phase 3 report prepared by IBI Group dated April 2022, the development of the adjacent downstream properties included the expected stormwater servicing needs of the subject property. The existing storm sewers constructed adjacent to the site were oversized to provide the needed capacity for minor storm runoff from the subject site. Minor storm runoff from the subject site will connect to the existing 675 mmØ sewer stub that connects to the existing 1050mmØ trunk storm sewer in Barrett Farm Drive.

4.4.1 Dual Drainage Design

The dual drainage system proposed for the subject site will accommodate both major and minor stormwater runoff. Minor flow from the subject site will be conveyed through the storm sewer network and discharge into the existing 675 mmØ sewer stub that connects to the existing 1050mm Ø trunk storm sewer in Barrett Farm Drive.

The balance of the surface flow not captured by the minor system will be conveyed via the major system. Where possible, storage will be provided in surface sags or low points within the roadway. Storage will also be provided within oversized storm pipes. Once the maximum storage is utilized, the excess flow will cascade to the next downstream street sag. Based on Phase 3 information, the 100 year overflow allocation related to the subject development lands is 350 l/s and the 100 year + 20% stress test allocation is 476 l/s. Major flow from street segments will overflow to the major flow block connecting to adjacent Barrett Lands Phase 3 at Delphinium Crescent to the west and to Barrett Farm Drive to the North, once on-site surface ponds have reach capacity.

4.4.2 Proposed Minor System

Using the criteria identified in Section 4.3, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan is included in **Appendix D**. The general plan of services, depicting all on-site storm sewers can be found in **Appendix A**.

The owner of the site will be responsible for regular maintenance of the on-site sewers, catch basins and inlet control devices (ICDs). Maintenance includes but is not limited to the cost of regular cleaning of the structures and ICDs as necessary. The site owner will also be responsible for replacement of damaged or missing catch basin structures, grates or ICDs as needed.

4.5 Stormwater Management

4.5.1 Water Quality Control

The subject site is part of the larger development referred to as the Leitrim Development Area. The stormwater management strategy was outlined in the following reports:

- Addendum to Leitrim Development Area Stormwater Management Environmental Study Report and Pre-Design Volumes 1 and II (IBI Group, July 2005);
- Design Brief and Amendment to MOE Certificate of Approval Findlay Creek Village Stormwater Facility (IBI Group, July 2005);
- Final Serviceability Report Leitrim Development Area City of Ottawa (IBI Group, March 2007).
- 2016 Final Updated Serviceability Report (Class EA OPA76 Areas 8a, 9a and 9b) Leitrim Development Area (IBI Group, September 2016)

The subject site is part of the drainage area which ultimately discharges into the existing Findlay Creek Village Stormwater Facility. The Findlay Creek Village Stormwater Facility was constructed

in 2006 and provides water quality control to an Enhanced Level of Protection according to MOE Stormwater Management Planning and Design Guidelines (March 2003).

4.5.2 Water Quantity Control

The subject site will be limited to a maximum minor system release rate of **234** L/s based on the Barrett Lands Phase 3 Servicing Brief, reference information is provided within **Appendix D**. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations, surface storage where possible and underground storage in oversized storm pipes where required.

There are 2 small locations where water is left to discharge uncontrolled from the subject property. The uncontrolled release can be calculated as follows;

Uncontrolled Release, where $Q_{uncontrolled} = 2.78(C \times i100_{yr} \times A_{uncontrolled})$

Quncontr	=23.83 L/s	
A_{unc}	=Area uncontrolled	=0.06Ha
$i100_{yr}$	=100yr intensity (1735.688 / (Tc + 6.014) ^{0.820}	=178.56
Tc	=Time of Concentration	=10min
С	=Runoff Coefficient	=0.80

The Maximum allowable release rate from the site can be determined by subtracting the Uncontrolled release rate from the minor system restricted flow rate.

$$Q_{max} = Q_{restricted} - Q_{uncontrolled}$$

 $Q_{max} = 234 \text{ L/s} - 23.83 \text{L/s}$
 $Q_{max} = 210.17 \text{ L/s}$

Surface flows in excess of the site's allowable release rate will be stored on site in strategic surface storage areas or oversized underground pipes and gradually released into the minor system to respect the site's allowable release rate. The maximum surface retention depth located within the developed areas will be limited to 300mm during a 1:100 year event as show on the ponding plan located in **Appendix D** and grading plans located in **Appendix E**. Overland flow routes will be provided in the grading to permit emergency overland flow.

The modified rational method was used to evaluate the on-site stormwater management. There are two uncontrolled areas on this site. The flows are calculated above. Therefore, the total restricted flow rate through the minor system will be the design flow rate of **210.17** I/s. This will be achieved by the used of Inlet Control Devices (ICD's) placed in all on-site catchbasins. A summary of the ICD's, their corresponding storage requirements, storage availability, and associated drainage areas has been provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100 YEAR STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	SUB-SURFACE STORAGE PROVIDED (m³)	100yr OVERFLOW (m³)
S20A	15.00	18.68	20.59	0.00	0.00
S10	40.00	16.34	0.32	0.00	16.02*
S4	26.00	30.25	1.16	0.00	29.09
S20B	15.00	3.65	1.41	0.00	2.24
S5	25.00	58.73	1.32	0.00	57.41
S6	55.00	113.37	9.71	0.00	103.66
R6	34.00	129.69	4.38	4.4	120.91*
TOTAL	210.00				136.93

*Overflow only during major storm events, directed to Delphinium Crescent and Barrett Farm Drive with no negative impact on downstream storm sewer system

4.5.3 2 Year Ponding

A review of the 2-year ponding has been completed using the modified rational method. A minimum Tc of 10min has been used. Where volumes are calculated as a negative value, 0.0m3 has been shown. A summary of each drainage area has been provided below.

DRAINAGE AREA	Total 2-Year Ponding Volume (m3)	Comment
S4	0.0	-
S5	0.0	-
S6	0.0	-
S10	0.0	-
S20A	0.22	Negligible volume of ponding during 2-year event
S20B	0.0	-
R6	4.38	This area is controlled at RYCB1, and there is 4.4m3 of subsurface storage provided in this area. The required ponding is provided underground, not on the street. A 50% reduction to the release rate was considered for this area.

Based on the above, there will be no surface ponding in the 2-year event.

4.5.4 100 year + 20% Stress Test

A cursory review of the 100yr event + 20% has been performed using the modified rational method. The Peak flow from each area during a 100-year event has been increased by 20%. The calculations have been included in **Appendix D**.

A summary of the require storage volumes, and overflow balances is provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100yr20 STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	100yr20 OVERFLOW (m³)
S20A	15.00	25.11	20.59	4.52
S10	40.00	26.53	0.32	26.21*
S4	26.00	40.67	1.16	39.51
S20B	15.00	5.46	1.41	4.05
S5	25.00	81.23	1.32	79.91
S6	55.00	158.95	9.71	149.24
R6	34.00	183.54	4.38	174.76*
TOTAL	210.00			200.97

^{*}Overflow from S10 to Barrett Farm Drive, and from R6 to Delphinium Crescent.

DRAINAGE AREA	100yr20 OVERFLOW (m³)	Time of Concentration	100yr20 OVERFLOW (I/s)	DEPTH (m)
S20A	4.52	15.00	5.02	0.02
S10	26.21*	5.00	87.36*	0.05
S4	39.51	14.00	47.04	0.05
S20B	4.05	6.00	11.24	0.03
S5	79.91	16.00	83.24	0.06
S6	149.24	18.00	138.19	0.05
R6	174.76*	15.00	194.18*	0.09
TOTAL	200.97		281.54	

As noted above, the overland flow from the rear yards (R6) is directed to Barrett Lands Phase 3 lands at Delphinium Crescent to the West. The volume of overflow is 174.76m3. Based on a Tc of 15minutes, this volume can be reverse calculated to 194.18 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

The stress test overflow from S10 will follow the intended overflow route as identified in the Phase 3 grading design drawings. The volume of overflow is 26.21m3. Based on the Tc of 5minutes, this volume can be reverse calculated to 87.36 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

4.6 Storm Hydraulic Grade Line

The Barrett Lands Phase 3 report indicates that the 100-year hydraulic grade line (HGL) in Bulkhead 11307N **93.68**, refer to **Appendix D** for the excerpt from the Barrett Lands Phase 3 HGL analysis. The HGL has been extended through the subject site have been calculated as follows:

LOCATION	MH#	USF ELEV (M)	STORM HGL (M)	FREEBOARD (M)
Unit 1-2	MH10	99.36	98.460	0.90
Unit 3	MH 9	99.53	98.520	1.010
Unit 4-18;23-27	MH 8	99.98	98.520	1.460
Unit 19-22;28-37	MH 5	100.43	99.030	1.400
Unit 38-46	MH 4	100.51	99.050	1.460
Unit 47-50	MH 2	100.65	99.340	1.310

All underside of footing elevations have been designed to provide a minimum of 300mm separation between the greater of governing pipe obvert or governing HGL. A copy of the storm HGL analysis for Block 178 is provided in **Appendix D**.

5 SOURCE CONTROLS

5.1 General

On site level or source control management of runoff will be provided to provide quality control for the subject lands. Such controls or mitigative measures are proposed for the development not only for final development but also during construction and build out. Some of these measures are:

- flat lot grading;
- split lot drainage;
- · Roof-leaders to vegetated areas;
- · vegetation planting; and
- groundwater recharge.

5.2 Lot Grading

There is an elevation difference of approximately 2m from southwest to northeast in Block 178. In accordance with local municipal standards, the parking lots will be graded northeast between 1.5% and 5.0%. Most landscaped area drainage will be directed into a swale drainage system, and connects to the storm sewer system. Typically swales will have slopes larger than 1.5% with subdrains. Copies of the grading plans have been included in **Appendix E.**

5.3 Roof Leaders

This development will consist of stacked homes and apartments. It is proposed that roof leaders from these units be constructed such that runoff is directed to grass areas adjacent to the units. This will promote water quality treatment through settling, absorption, filtration and infiltration and a slow release rate to the conveyance network.

5.4 Vegetation

As with most subdivision agreements, the developer will be required to complete a vegetation and planting program. Vegetation throughout the development including planting along roadsides and within public parks provides opportunities to re-create lost natural habitat.

6 CONVEYANCE CONTROLS

6.1 General

Besides source controls, the development also proposes to use several conveyance control measures to improve runoff quality. These will include:

- flat vegetated swales;
- catchbasin and maintenance hole sumps; and
- · pervious rear yard drainage.

6.2 Flat Vegetated Swales

The development will make use of relatively flat vegetated swales where possible to encourage infiltration and runoff treatment.

6.3 Catchbasins

All catchbasins within the development, either rear yard or street, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both rear yard and street catchbasins will be fabricated to OPSD 705.010 or 705.020. All storm sewer maintenance holes servicing local sewers less than 900 mm diameter shall be constructed with a 300 mm sump as per City standards.

6.4 Pervious Landscaped Area Drainage

Some of the landscaped area swales make use of a filter wrapped perforated drainage pipe constructed below the rear yard swale. This perforated system is designed to provide some ground water recharge and generally reduce both volumetric and pollutant loadings that enter the minor pipe system.

7 SEDIMENT AND EROSION CONTROL PLAN

7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- silt sacks will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use.

7.2 Trench Dewatering

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

7.3 Bulkhead Barriers

At the first manhole constructed immediately upstream of an existing sewer, a $\frac{1}{2}$ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment carrying flows, thus preventing any construction –related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

7.4 Seepage Barriers

These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the sediment and erosion control drawing. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

7.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures will be covered to prevent sediment from entering the minor storm sewer system. Until rear yards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be equipped with geotextile filter socks. These will stay in place and be maintained during construction and build until it is appropriate to remove them.

7.6 Stockpile Management

During construction of any development similar to that being proposed both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rearyard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern since these materials are quickly used and the mitigative measures stated previously, especially the use of filter fabric in catchbasins and manholes help to manage these concerns.

The roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

The construction of this development will involve a substantial rock blasting, breaking and crushing operation. Given the existing topography, a substantial cut and fill operation is required in order to construction a development that meets City Standards. As part of this operation, materials will be manipulated onsite, and provided the sediment and erosion control measures are in place, are generally inconsequential to the surrounding environment.

8 ROADS AND NOISE ATTENUATION

Vehicular access to Block 178 is provided by two private entrances from Barrett Farm Drive.

There are no sidewalks or pathways proposed within the development. Pedestrian access to the site will be via the private roadway.

The site has been designed in order to provide curbside municipal waste disposal.

There are no bus routes proposed within Block 178.

There are no collector streets or nearby noise sources that would trigger an environmental noise assessment.

8.1 Aircraft Sound Levels

As stated in Section 2.1, the site is within the Airport Vicinity Development Zone (AVDZ), the limit of the AVCZ is shown on Figure 2. The site however is outside of the 25 NEF/NEP contour line so the building components and ventilation requirements of Part 6 Prescribed Measures for Aircraft Noise of the Guidelines do not apply. A warning clause is required for the residential units inside the AVDZ.

Warning clause for aircraft noise is as follows:

"Purchasers/tenants are advised that due to the proximity of the airport, noise from the airport and individual aircraft may at times interfere with outdoor or indoor activities".

9 SOILS

Golder Associates Ltd. was retained to prepare a geotechnical investigation for the proposed mixed use development for the Barrett Lands Phase 3. The objectives of the investigation were to prepare a report to:

- Determine the subsoil and groundwater conditions at the site by means of test pits and boreholes and:
- To provide geotechnical recommendations pertaining to design of the proposed development including construction considerations.

The geotechnical report 20442530-100 was prepared by Golder Associates Ltd. in February 2022. The report contains recommendations which include but are not limited to the following:

- The maximum permissible grade raise is 3.5m
- In areas where finished grade exceeds grade raise limits, geotechnical reviews are required
- Fill placed below the foundations to meet OPSS Granular 'A' or Granular 'B' Type II placed in 300 mm lifts compacted to 98% SPMDD.
- Fill for roads to be suitable native material in 300mm lifts compared to 95% SPMDD

Pavement Structure:

LOCAL ROAD	THICKNESS
Asphaltic Concrete	90mm
OPSS Granular A Base	150mm
OPSS Granular B Type II Subbase	400mm

Pipe bedding and cover; bedding to be minimum 150 mm OPSS Granular 'A' up to spring line
of pipe. Cover to be 300 mm OPSS A (PUC and concrete pipes) or sand for concrete pipes.
Both bedding and cover to be placed in maximum 225 mm lifts compacted to 95% SPMDD.

In general the grading plan for Block 178 adheres to the grade raise constraints noted above. A copy of the grading plans is included in **Appendix E**. The site does not pose any significant grade raise; thus a grading plan review letter is not required for this development.

10 RECOMMENDATIONS

Water, wastewater and stormwater systems required to develop Barrett Lands Block 178 will be designed in accordance with MOE and City of Ottawa's current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the proposed sediment and erosion control plan during construction will minimize harmful impacts on surface water.

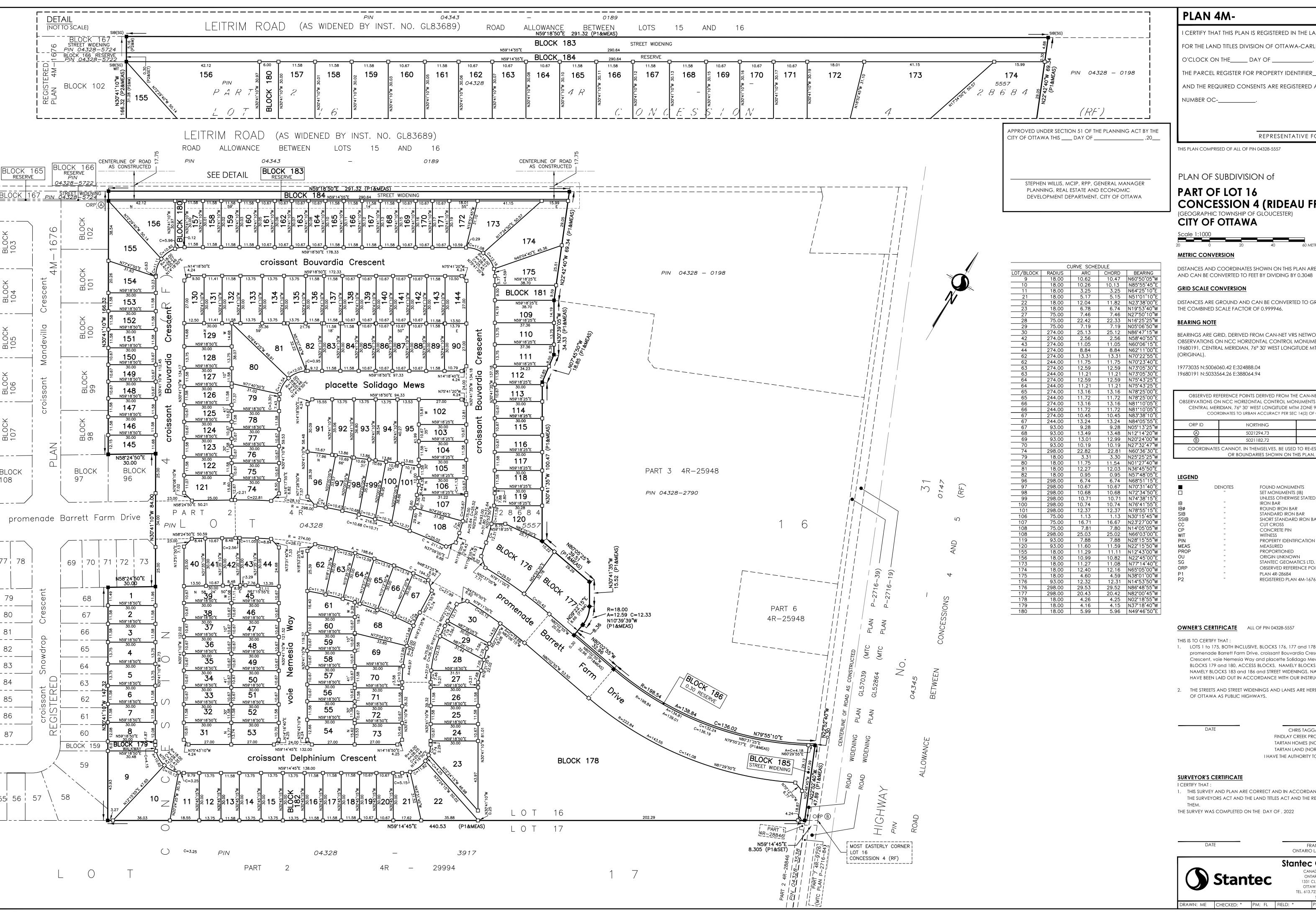
Final detail design will be subject to governmental approval prior to construction, including but not limited to the following:

- Block 178 Commence Work Order: City of Ottawa
- ECA for Sewage Works: MOECP Transfer of Review by City of Ottawa
- Block 178 Watermain Approval: City of Ottawa
- Block 178 Commence Work Order (utilities): City of Ottawa

Report prepared by:

PROFESSIONAL CASE OF ONT NO.

Demetrius Yannoulopoulos, P.Eng. Director


Ryan Magladry, C.E.T. Project Manager

Anton Chetrar, EIT Engineering Intern

https://ibigroup.sharepoint.com/sites/Projects1/135925/Internal Documents/6.0_Technical/6.04_Civil/03_Tech-Reports/Submission #1/CTR-Servicing Brief_2022-05.docx

APPENDIX A

AOV Plan of Subdivision for Barrett Lands Phase 3 Site Plan for Barrett Lands Block 178 135925-001 - General Plan of Services City of Ottawa Pre-Consultation Meeting Notes

I CERTIFY THAT THIS PLAN IS REGISTERED IN THE LAND REGISTRY OFFICE FOR THE LAND TITLES DIVISION OF OTTAWA-CARLETON No.4 AT___

O'CLOCK ON THE_____ DAY OF ______, 2022 AND ENTERED IN

AND THE REQUIRED CONSENTS ARE REGISTERED AS PLAN DOCUMENT

NUMBER OC-_____

REPRESENTATIVE FOR LAND REGISTRAF

THIS PLAN COMPRISED OF ALL OF PIN 04328-5557

PART OF LOT 16 CONCESSION 4 (RIDEAU FRONT) (GEOGRAPHIC TOWNSHIP OF GLOUCESTER)

METRIC CONVERSION

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

GRID SCALE CONVERSION

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999946.

BEARINGS ARE GRID, DERIVED FROM CAN-NET VRS NETWORK GPS OBSERVATIONS ON NCC HORIZONTAL CONTROL MONUMENTS 19773035 AND 19680191, CENTRAL MERIDIAN, 76° 30' WEST LONGITUDE MTM ZONE 9, NAD83

19773035 N:5006060.42 E:324888.04 19680191 N:5033564.26 E:388064.94

OBSERVED REFERENCE POINTS DERIVED FROM THE CAN-NET VRS NETWORK GPS OBSERVATIONS ON NCC HORIZONTAL CONTROL MONUMENTS 19773035 AND 19680191, CENTRAL MERIDIAN, 76° 30' WEST LONGITUDE MTM ZONE 9, NAD83 (ORIGINAL). COORDINATES TO URBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10

ORP ID	NORTHING	EASTING			
\otimes	5021294.73	374944.42			
B	5021182.72	375523.14			
COORDINATES CANNOT, IN THEMSELVES, BE USED TO RE-ESTABLISH CORNERS					

	DENOTES "	FOUND MONUMENTS SET MONUMENTS (IB) UNI ESS OTHERWISE STATED
IB	п	IRON BAR
ΪΒø	II .	ROUND IRON BAR
SIB	II .	STANDARD IRON BAR
SSIB	II .	SHORT STANDARD IRON BAR
CC	II .	CUT CROSS
CP	II .	CONCRETE PIN
WIT	II .	WITNESS
PIN	II .	PROPERTY IDENTIFICATION NUMBER
MEAS	II .	MEASURED
PROP	II .	PROPORTIONED
OU	II .	ORIGIN UNKNOWN
SG	II .	STANTEC GEOMATICS LTD.
ORP	"	OBSERVED REFERENCE POINT
P1	п	PLAN 4R-28684
P2	II .	REGISTERED PLAN 4M-1676

OWNER'S CERTIFICATE ALL OF PIN 04328-5557

THIS IS TO CERTIFY THAT:

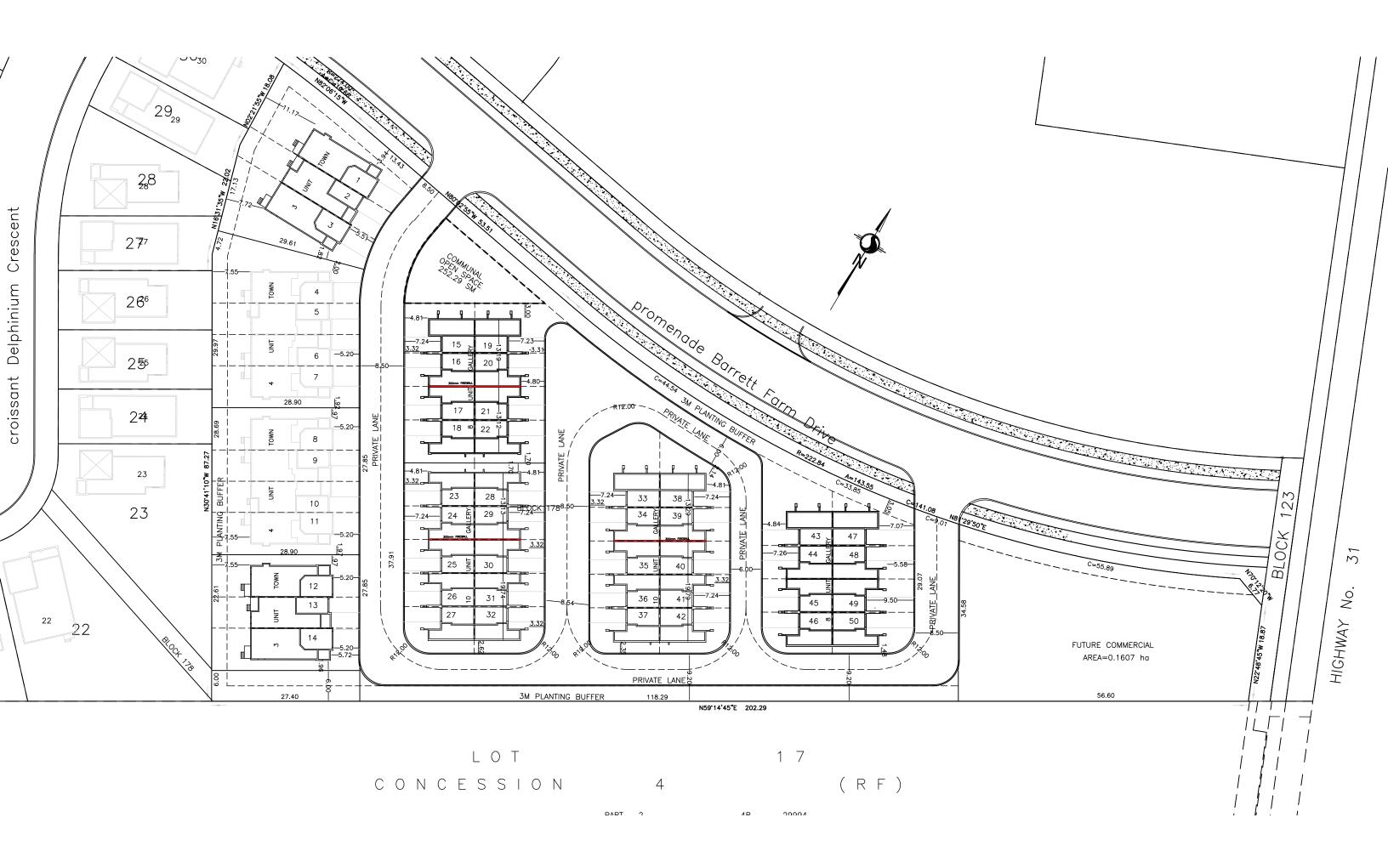
1. LOTS 1 to 175, BOTH INCLUSIVE, BLOCKS 176, 177 and 178, THE STREETS, NAMELY promenade Barrett Farm Drive, croissant Bouvardia Crescent, croissant Delphinium Crescent, voie Nemesia Way and placette Solidago Mews WALKWAYS, NAMELY BLOCKS 179 and 180, ACCESS BLOCKS, NAMELY BLOCKS 181 and 182, RESERVES, NAMELY BLOCKS 183 and 186 and STREET WIDENINGS, NAMELY BLOCKS 184 and 185 HAVE BEEN LAID OUT IN ACCORDANCE WITH OUR INSTRUCTIONS.

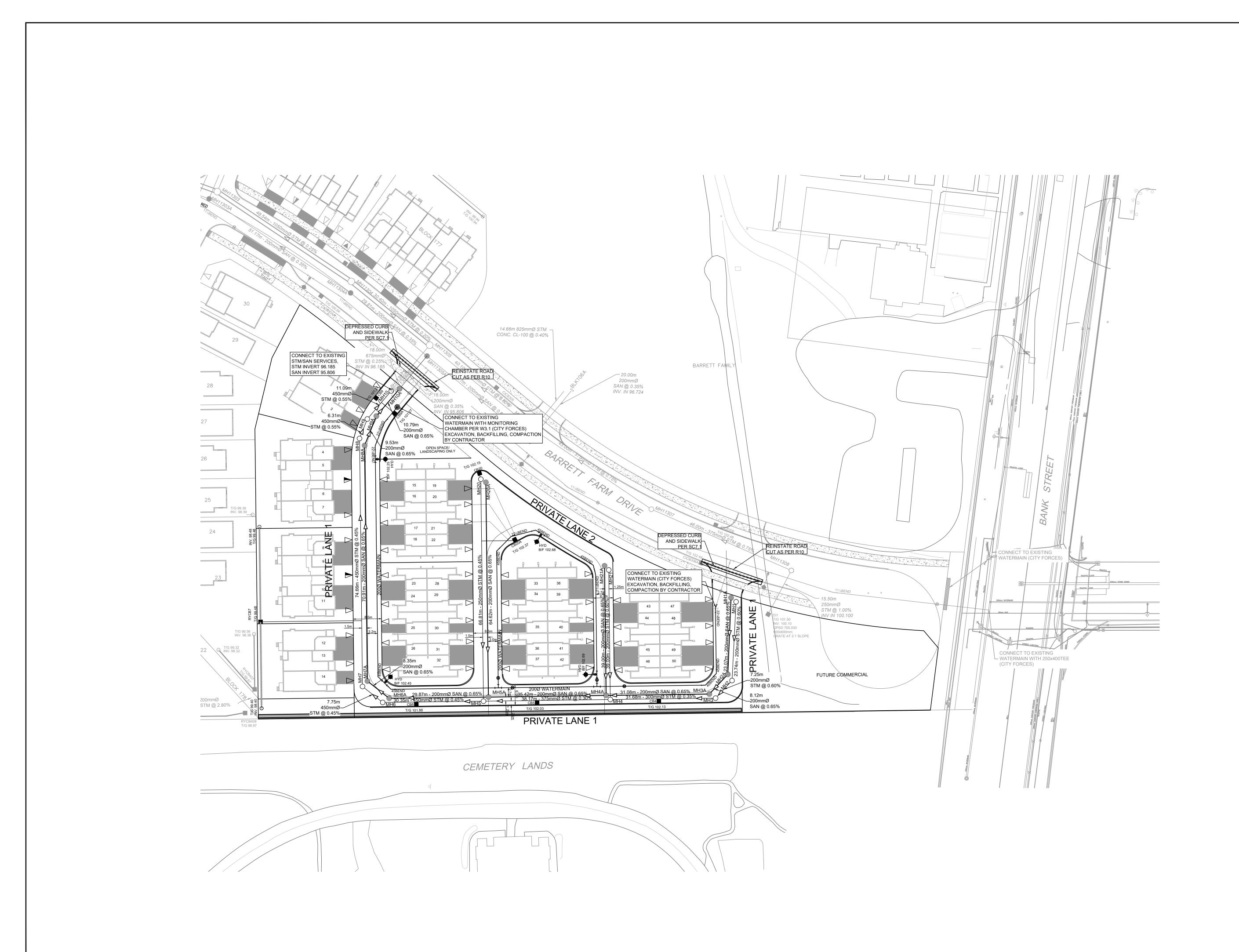
2. THE STREETS AND STREET WIDENINGS AND LANES ARE HEREBY DEDICATED TO THE CITY OF OTTAWA AS PUBLIC HIGHWAYS.

CHRIS TAGGART, PRESIDENT FINDLAY CREEK PROPERTIES (NORTH) LTD. TARTAN HOMES (NORTH LEITRIM) INC. TARTAN LAND (NORTH LEITRIM) INC. I HAVE THE AUTHORITY TO BIND THE CORPORATION

SURVEYOR'S CERTIFICATE

1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER


THE SURVEY WAS COMPLETED ON THE DAY OF, 2022


FRANCIS LAU ONTARIO LAND SURVEYOR

Stantec Geomatics Ltd. CANADA LANDS SURVEYORS Ontario land surveyors

PROJECT No.: 161614242-132 DRAWN: ME CHECKED: * PM: FL | FIELD: *

BARRETT CO-TENANCY

COPYRIGHT

CLIENT

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

No.	DESCRIPTION	DATE
1	SUBMISSION NO.1 FOR CITY REVIEW	2022-05-10
2		
3		
4		
5		
6		
7		
8		

SEE 010, 011, 012 FOR NOTES, LEGEND, CB TABLE,
STREET SECTIONS AND DETAILS
KEY PLAN LEITRIM ROAD
BARRETT FARM DRIVE CEMETERY CEMETERY NTS
CONSULTANTS

CONSULTANTS

SEAL

IBI GROUP
Suite 400 – 333 Preston Street
Ottawa ON K1S 5N4 Canada
tel 613 225 1311 / 613 241 3300 fax 613 225 9868
ibigroup.com

PROJECT

BARRETT BLOCK 178

PROJECT NO: 135925	
DRAWN BY: M.M.	CHECKED BY: A.C.
PROJECT MGR: R.M.	APPROVED BY: J.I.M.

GENERAL PLAN

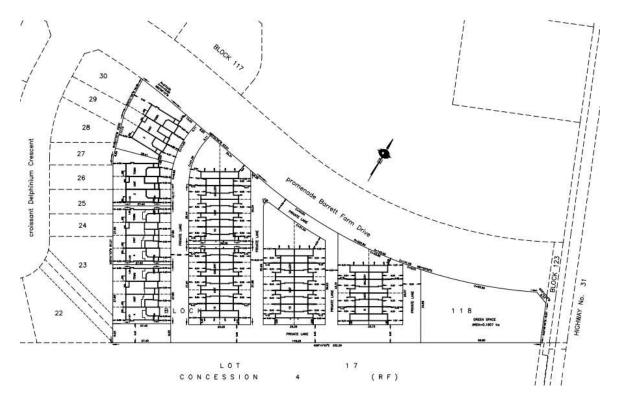
SHEET NUMBER ISSUE

CITY PLAN No. xxxxx

Blk 118, Bank Street at Barrett Farm

Meeting Summary Notes
July 27, 2021, Online Teams Meeting
Revised Aug 18, 2021

Attendees:


- Melissa Cote, Tartan
- Yvonne Mitchell, Planning Student, City of Ottawa
- Tracey Scaramozzino (File Lead, Planner, City of Ottawa)

Not in Attendance:

- Mark Young, Urban Design
- Burl Walker,
- John Sevigny
- Mark Richardson
- Matthew Hayley
- Mike Giampa
- James Holland, SNation

Issue of Discussion:

- Vacant site, within Plan of subdivision, Block 118
- PUD, 14 townhouse units, 38 back to back towns;
- Density of 40units/net ha (only half of CDP recommendation of 80 units/ha). The Developer doesn't have a product that provides the recommended density as they are no longer producing the Java product.
- Private laneways of 6m and 8.5m for servicing, utilities, and municipal garbage
- Site plan, Plan of Condo and Private Road Naming Applications are req'd
- The subdivision contemplated 90 units in this area and only 52 are being proposed. Therefore transportation/services should not be an issue

- 1. Official Plan, Current: General Urban Area
- 2. **Official Plan, Draft:** Suburban Transect, no overlays, no designations, Bank St in this area is a minor corridor
 - a. "Recognize this as suburban pattern, but to support the evolution to 15min n'hood"
- 3. **Leitrim CDP** (from 2005): Mixed Use (intended to be part of core retail along Bank st smaller parcels to provide n'hood uses; larger retail is focused south at existing commercial plaza
 - a. The CDP is not being converted into a secondary plan in the new OP and will remain in effect.

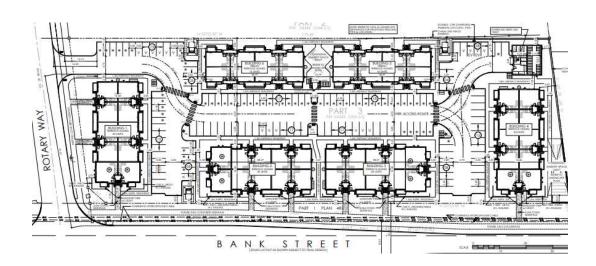
4. Zoning Information: GM12 - General Mixed Use permits residential (apt, PUD, townhouse etc) and non-residential (animal hospital, bank, community centre etc) Subzone 12 permits additional non-residential uses such as bar, cinema, gas bar, theatre, sports arena.

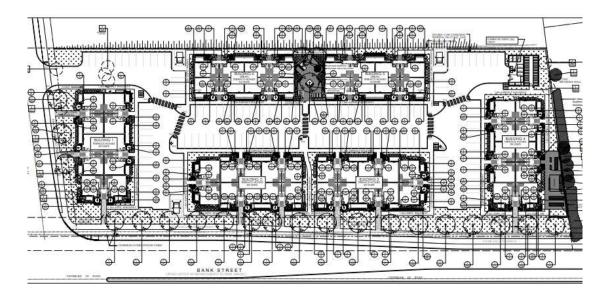
5. Infrastructure/Servicing (John Sevigny):

a. Servicing will be reviewed during Phase 3 of the subdivision, which as of July 26. hasn't been submitted.

6. Initial Planning Comments (Tracey Scaramozzino):

- a. Can density be increased as per the CDP (40u/ha is being provided; 80 u/ha was contemplated in the CDP).
- b. Possibly design open space along Bank St to have sitting area/plantings/soft surfaces, similar to POPS.
- c. Units in general should have higher floor-ceiling hts on ground floor to allow the conversion to commercial units over time.
- d. The 'empty' parcels along Barrett Farm should be nicely designed with trees and perennials and soft surfaces.
- e. The plan of subdivision does not provide guidance for development of this site.
- f. Within Airport Bird Hazard zone
- g. Follow up discussions between Tracey and Melissa:


May 28, 2021, from Melissa: I think there will be a lot of opportunity for trees and other soft landscaping along with a nice sitting area. I will wait to hear what Mark suggests and I'm following up with Tamarack regarding other product type suitable for possible conversion later on.


May 27, 2021 from Tracey: I was also thinking some more about the green spaces on your proposal and am wondering if the green areas fronting Barrett Farm Drive might be nice with a few trees and some perennials - soft surfaces to help with climate change and heat-island effect. The green location on the corner might be nice with a mixture of plantings, sitting areas and soft area - that may or may not be open to the general public like a POPS.....

- h. The almost-approved Glenview project on the east side of Bank St. at Rotary Way has back to back, stacked towns with the ability for future ground floor conversions to commercial (due to higher floor-ceiling hts) and were able to meet the req'd density for 'apts'.
- i. Tracey sent Melissa an example of a design brief, and details from Glenview PUD across the street at Rotary Way that is near approval, as per images below.

Document 7, Elevations sl@wing potential business signage

7. Urban Design Comments (Mark Young):

- 1. A design brief is required. Please see attached terms of reference.
- 2. Early consideration needs to be given to the allowance of street trees, both public and private. The proposed private roadway width of 6.0 m combined with a 4.0 m front yard setback, may present a challenge in the provision of trees. This should be addressed.
- 3. Please provide direction regarding the proposed "Green Space". Is this intended to be public or private?
- 4. Is any visitor parking proposed? Lay-by parking should be considered for visitors within the private development.
- 5. What is the purpose of the 9.0 m block abutting the southern property line? Is this for servicing and a walkway? Please advise.

8. Parks (Burl Walker):

a. Parks issues are being reviewed through the associated subdivision file.

9. Trees (Mark Richardson):

- a. Preserve and protect the healthy trees to create a visual buffer along southern property line.
- b. Tree permit is required prior to any tree removal on site
- c. Submit a TCR with application.

10. Environment (Matthew Hayley): (added August 18, 2021)

- a) They will need to have their TCR address butternut trees (or provide an EIS). Mark R will comment on tree conservation but I would point out that there is an excellent opportunity for tree retention along the southern property line.
- b) Landscaping OP Section 4.9 has some policies addressing energy conservation through design - in partic as ular for this area, I would recommend considering shading along the southern property line adjacent to that lane. This will combat urban heat island and to provide some screening from the adjacent use. Street trees are also important and should be provided.
- c) Integrated Environmental Review (IER) if they are providing a planning rational the IER can be contained within that document as per the TOR for the Planning Rational, otherwise they should have an IER provided.

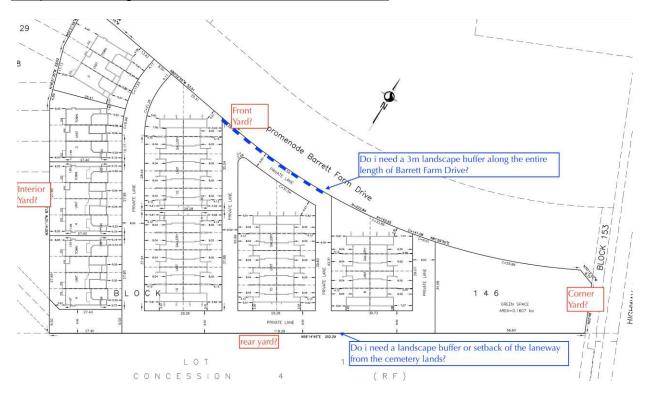
11. Conservation Authority (James Holland, South Nation):

a. All issues are being reviewed through the associated subdivision file.

12. Transportation (Mike Giampa):

a. Comments are outstanding at this time, likely dealt with during the plan of subdivision.

13. Waste Collection


- a. Residential properties will receive City collection on the private streets.
- b. 6m ROW is acceptable for waste collection.

14. General Information

a. Ensure that all plans and studies are prepared as per City guidelines – as available online...

https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans

Response to August 1, 2021 Questions from Melissa:

1. Front yard? Corner yard? Rear yard? Side yard?

Response: Based on my interpretation of the <u>definitions</u> of each in the zoning bylaw:

- Front yard = Bank Street
- Corner yard = Barrett Farm Drive
- Rear yard = empty residential lot
- Side yard = cemetery lands

2. Do I need a landscape buffer along the entire length of Barret Farm Drive?

Response: Yes, but this buffer can be <u>passed by</u> driveways or roads. The full landscape buffer requirements under the <u>zoning (GM12)</u> are as follows:

(h) Minimum width of landscaped area	(i) abutting a street	3 m
	(ii) abutting a residential or institutional zone	3 m
	(iii)other cases	No minimum

Based on the above requirement for the GM zone, a 3m landscape buffer would be required around the entire site, as it borders on streets, residential and institutional zones.

- 3. Do I need a landscape buffer or setback of the laneway from the cemetery lands? Response: As per previous question and Table 187 of the applicable zoning (GM12), a landscape buffer of 3m is required abutting an institutional zone. Regarding setbacks, the interior lot line setback would not apply from the lot line to the laneway but from the proposed townhomes as follows:
 - (d) Minimum interior side yard setbacks
 - (iii) For a residential use building
 - 1. For a building equal or lower than 11m in height = 1.2m
 - 2. For a building higher than 11m in height = 3m

APPENDIX B

Water Distribution Model

Boundary Conditions Findlay Creek Stage 5

Provided Information

Scenario	Demand	
Scenario	L/min	L/s
Average Daily Demand	27	0.45
Maximum Daily Demand	67	1.12
Peak Hour	147	2.45
Fire Flow Demand #1	10,000	166.67

Location

Results – Existing Conditions

Connection 1 – Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	154.6	77.1
Peak Hour	144.7	62.9
Max Day plus Fire 1	121.8	30.4

Ground Elevation = 100.4 m

Connection 2 - Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	154.6	73.4
Peak Hour	144.6	59.2
Max Day plus Fire 1	125.3	31.7

Ground Elevation = 103.0 m

Results - SUC Zone Reconfiguration

Connection 1 – Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	149.1	69.2
Peak Hour	146.2	65.1
Max Day plus Fire 1	138.1	53.6

Ground Elevation = 100.4 m

Connection 2 – Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	149.1	65.6
Peak Hour	146.2	61.4
Max Day plus Fire 1	141.5	54.7

Ground Elevation = 103.0 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S 5N4

WATERMAIN DEMAND CALCULATION SHEET

PROJECT: BLOCK 146

LOCATION: CITY OF OTTAWA

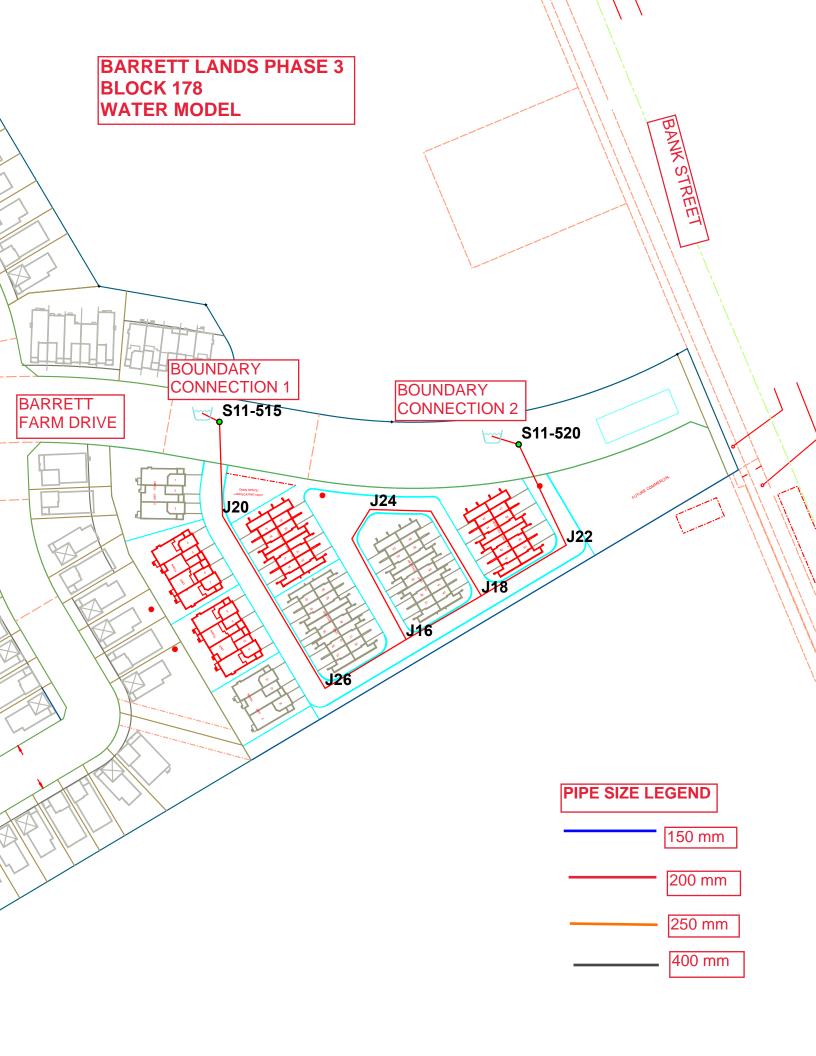
DEVELOPER: TAGGART PAGE:

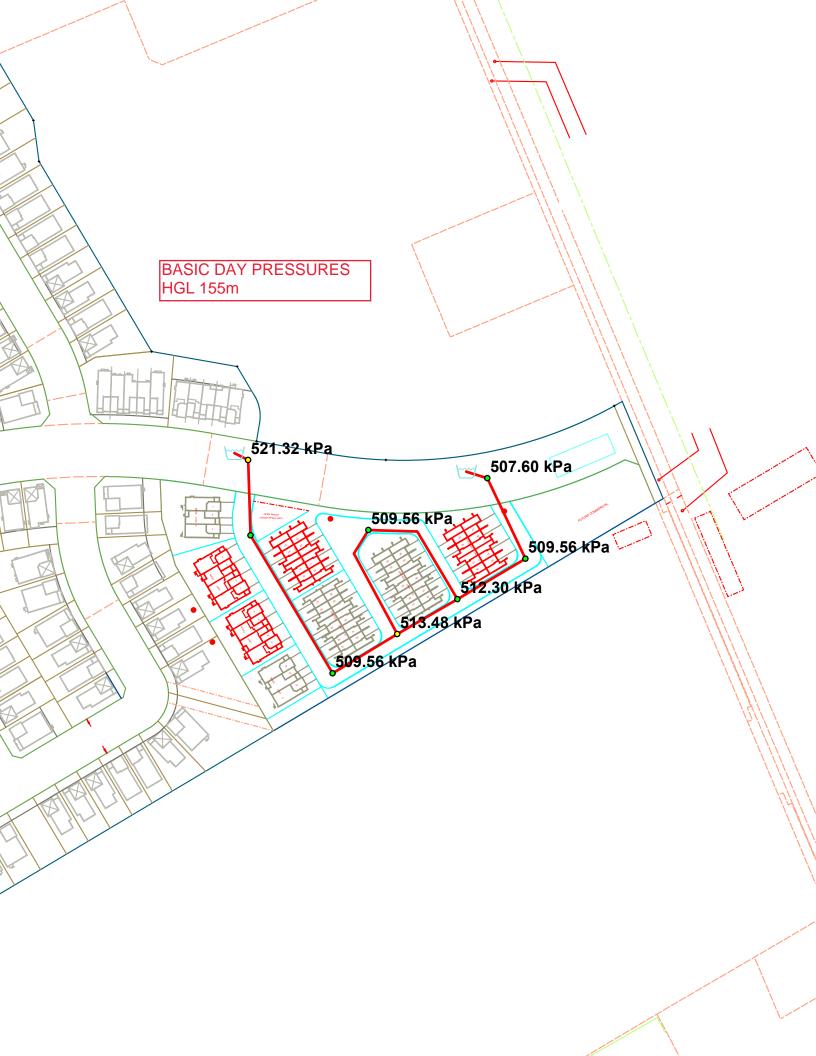
FILE:

DESIGN:

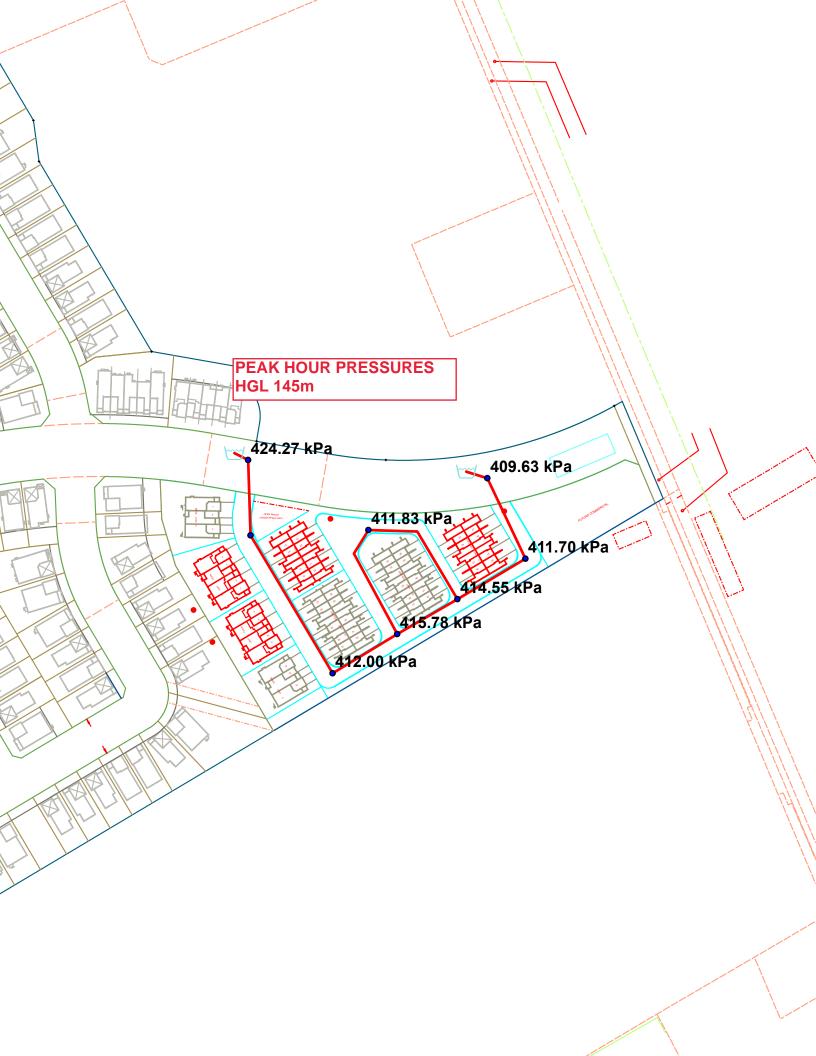
DATE PRINTED:

135925

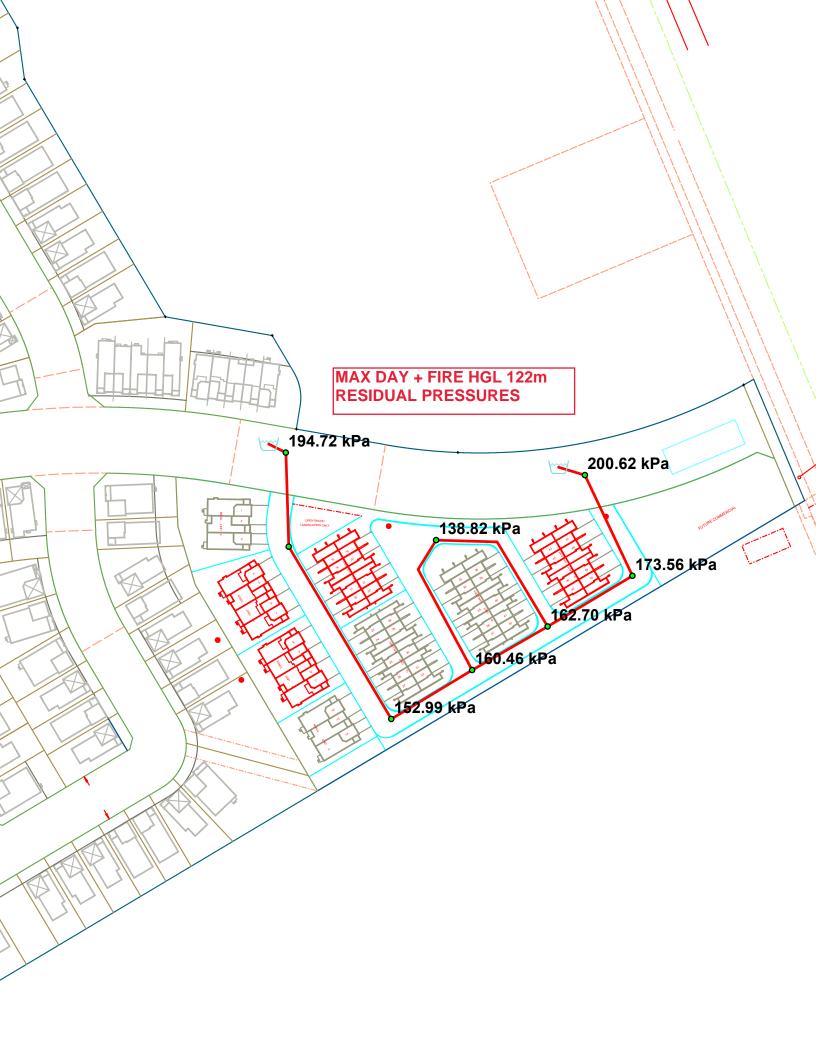

09-May-22

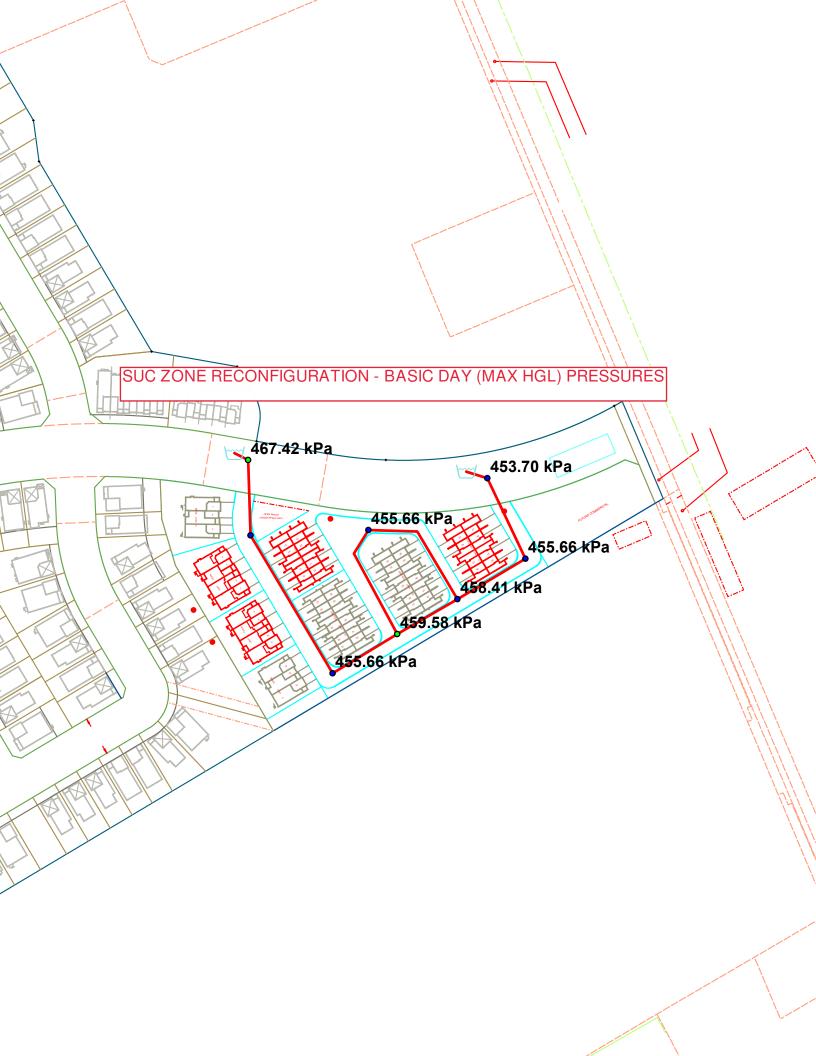

AC

1 OF 1


		RESID	ENTIAL		NON	I-RESIDEN	ITIAL		VERAGE D			AXIMUM DA			(IMUM HOU		FIRE
NODE		UNITS			INDTRL	COMM.	INST.		DEMAND ((l/s)	D	EMAND (I	/s)	D	EMAND (I	/s)	DEMAND
	SF	SD & TH	OTHER	POP'N	(ha.)	(ha.)	(ha.)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
Findlay Creek																	
J20		13		35				0.11	0.00	0.11	0.28	0.00	0.28	0.63	0.00	0.63	
J26		10		27				0.09	0.00	0.09	0.22	0.00	0.22	0.48	0.00	0.48	
J16		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J18		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J22		7		19				0.06	0.00	0.06	0.15	0.00	0.15	0.34	0.00	0.34	
J24		4		11				0.04	0.00	0.04	0.09	0.00	0.09	0.19	0.00	0.19	
TOTALS		50		135						0.44			1.10			2.42	

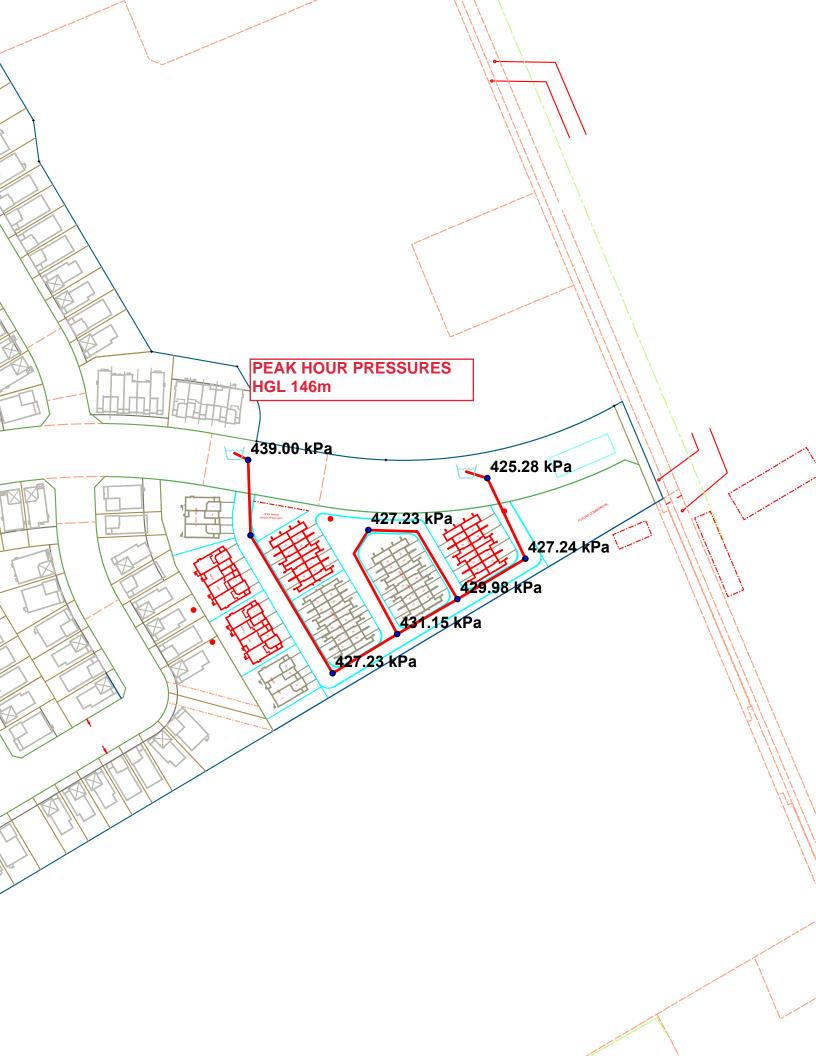
ASSUMPTIONS								
RESIDENTIAL DENSITIES		AVG. DAILY DEMAND		MAX. HOURLY DEMAND				
- Single Family (SF)	<u>3.4</u> p/p/u	- Residential	<u>280</u> I / cap / day	- Residential	<u>1,540</u> I / cap / day			
		- ICI	<u>50,000</u> I / ha / day	- ICI	<u>135,000</u> I / ha / day			
- Semi Detached (SD) & Townhouse (TH)	<u>2.7</u> p/p/u							
				FIRE FLOW				
- Apartment (APT)	<u>1.8</u> p/p/u	MAX. DAILY DEMAND		- SF, SD, TH & ST	<u>10,000</u> I / min			
		- Residential	<u>700</u> I / cap / day		I / min			
-Other	<u>66</u> u / p / ha	- ICI	<u>75.000</u> I / ha / day	- ICI	<u>13,000</u> I / min			


	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1 [J16	0.07	102.20	154.60	513.48	0.00
2 [J18	0.07	102.32	154.60	512.30	0.00
3 [J20	0.11	102.60	154.60	509.56	0.00
4 [J22	0.06	102.60	154.60	509.56	0.00
5 [J24	0.04	102.60	154.60	509.56	0.00
6 [J26	0.09	102.60	154.60	509.56	0.00
7 [S11-515	0.00	101.40	154.60	521.32	0.00
8 [S11-520	0.00	102.80	154.60	507.60	0.00


	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1 [J16	0.39	102.20	144.63	415.78	0.00
2 [J18	0.39	102.32	144.62	414.55	0.00
3 [J20	0.63	102.60	144.68	412.33	0.00
4	J22	0.40	102.60	144.61	411.70	0.00
5 [J24	0.19	102.60	144.63	411.83	0.00
6	J26	0.48	102.60	144.64	412.00	0.00
7 [S11-515	0.00	101.40	144.70	424.27	0.00
8	S11-520	0.00	102.80	144.60	409.63	0.00

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1	P117	RES9000	S11-515	7.01	204.00	110.00	8.03	0.25	0.00	0.54	Open	0	0.00
2	P119	S11-515	J20	34.25	204.00	110.00	8.03	0.25	0.02	0.54	Open	0	0.00
3	P121	J16	J18	31.72	204.00	110.00	4.28	0.13	0.01	0.17	Open	0	0.00
4	P123	J18	J22	35.97	204.00	110.00	5.95	0.18	0.01	0.31	Open	0	0.00
5	P125	J16	J24	54.11	204.00	110.00	2.26	0.07	0.00	0.05	Open	0	0.00
6	P127	J20	J26	72.93	204.00	110.00	7.40	0.23	0.03	0.46	Open	0	0.00
7	P129	J22	S11-520	40.51	204.00	110.00	5.55	0.17	0.01	0.27	Open	0	0.00
8	P131	J24	J18	58.07	204.00	110.00	2.07	0.06	0.00	0.04	Open	0	0.00
9	P133	J26	J16	34.42	204.00	110.00	6.92	0.21	0.01	0.41	Open	0	0.00
10	P135	S11-520	RES9002	10.06	204.00	110.00	5.55	0.17	0.00	0.27	Open	0	0.00

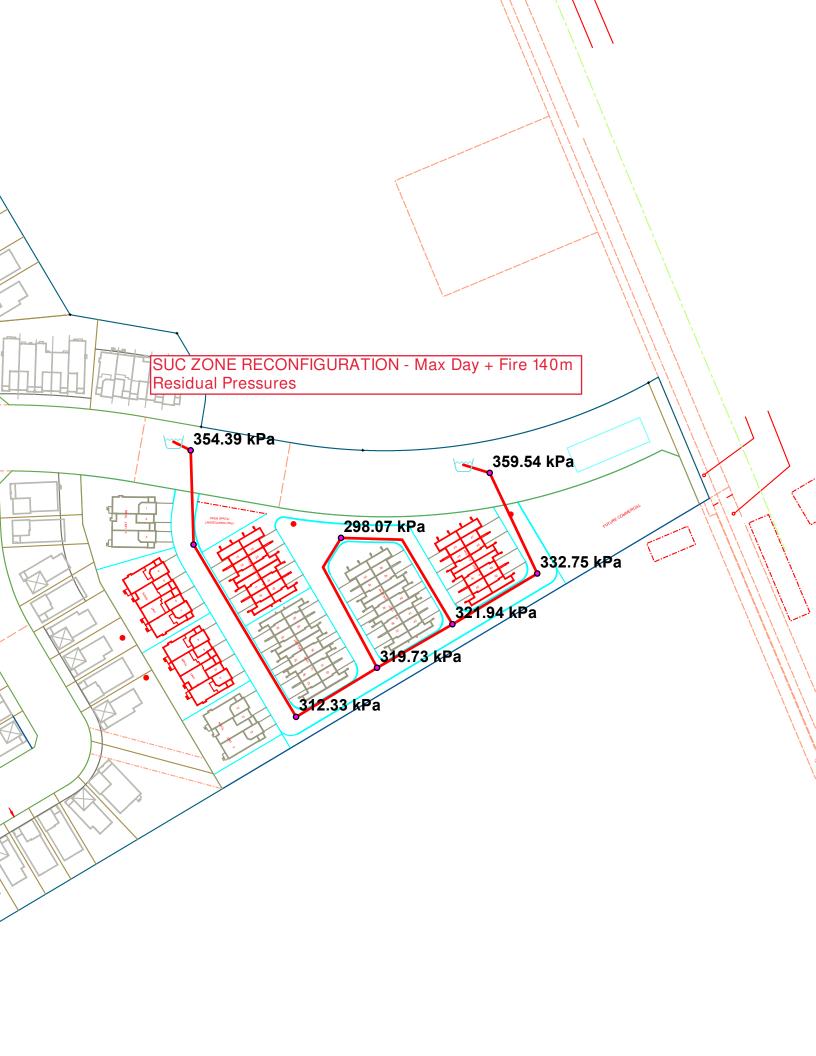
Date: Monday, May 09, 2022, Time: 13:25:47, Page 1



		ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1		J16	166.85	202.23	J16	139.96	160.46	139.96	202.23	139.96
2	2 🔲	J18	166.85	207.63	J18	139.96	162.70	139.96	207.63	139.96
3	3 🔲	J20	166.95	230.84	J20	139.96	165.22	139.96	230.84	139.96
4	1	J22	166.82	240.73	J22	139.96	173.56	139.96	240.73	139.96
5		J24	166.76	165.18	J24	139.96	138.82	139.96	165.18	139.96
e	i 🔲	J26	166.89	189.55	J26	139.96	152.99	139.96	189.55	139.96
7	7 🔲 :	S11-515	166.67	516.48	J20	141.31	188.41	139.96	516.48	139.96
8	3 🔲 :	S11-520	166.67	475.36	S11-520	139.96	200.62	139.96	475.37	139.96

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1 [J16	0.07	102.20	149.10	459.58	0.00
2 [J18	0.07	102.32	149.10	458.41	0.00
3 [J20	0.11	102.60	149.10	455.66	0.00
4 [J22	0.06	102.60	149.10	455.66	0.00
5 [J24	0.04	102.60	149.10	455.66	0.00
6 [J26	0.09	102.60	149.10	455.66	0.00
7 [S11-515	0.00	101.40	149.10	467.42	0.00
8 [S11-520	0.00	102.80	149.10	453.70	0.00

Date: Monday, May 09, 2022, Time: 13:46:17, Page 1



	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1 [J16	0.39	102.20	146.20	431.15	0.00
2 [J18	0.39	102.32	146.20	429.98	0.00
3 [J20	0.63	102.60	146.20	427.24	0.00
4 [J22	0.40	102.60	146.20	427.24	0.00
5 [J24	0.19	102.60	146.20	427.23	0.00
6 [J26	0.48	102.60	146.20	427.23	0.00
7 [S11-515	0.00	101.40	146.20	439.00	0.00
8 [S11-520	0.00	102.80	146.20	425.28	0.00

Date: Monday, May 09, 2022, Time: 13:54:52, Page 1

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1	P117	RES9000	S11-515	7.01	204.00	110.00	1.27	0.04	0.00	0.02	Open	0	0.00
2	P119	S11-515	J20	34.25	204.00	110.00	1.27	0.04	0.00	0.02	Open	0	0.00
3	P121	J16	J18	31.72	204.00	110.00	-0.24	0.01	0.00	0.00	Open	0	0.00
4	P123	J18	J22	35.97	204.00	110.00	-0.81	0.02	0.00	0.01	Open	0	0.00
5	P125	J16	J24	54.11	204.00	110.00	0.01	0.00	0.00	0.00	Open	0	0.00
6	P127	J20	J26	72.93	204.00	110.00	0.64	0.02	0.00	0.01	Open	0	0.00
7	P129	J22	S11-520	40.51	204.00	110.00	-1.21	0.04	0.00	0.02	Open	0	0.00
8	P131	J24	J18	58.07	204.00	110.00	-0.18	0.01	0.00	0.00	Open	0	0.00
9	P133	J26	J16	34.42	204.00	110.00	0.16	0.01	0.00	0.00	Open	0	0.00
10	P135	S11-520	RES9002	10.06	204.00	110.00	-1.21	0.04	0.00	0.02	Open	0	0.00

Date: Monday, May 09, 2022, Time: 13:56:36, Page 1

		ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1		J16	166.85	384.76	J16	139.96	319.73	139.96	384.76	139.96
2		J18	166.85	395.03	J18	139.96	321.94	139.96	395.03	139.96
3		J20	166.95	474.31	J20	139.96	324.74	139.96	474.31	139.96
4	5-1	J22	166.82	456.61	J22	139.96	332.75	139.96	456.61	139.96
5		J24	166.76	321.21	J24	139.96	298.07	139.96	321.21	139.96
6		J26	166.89	374.49	J26	139.96	312.33	139.96	374.49	139.96
7		S11-515	166.67	1,016.41	J20	163.59	347.95	139.96	1,016.41	139.97
8		S11-520	166.67	881.04	J22	176.40	359.11	139.96	881.04	139.97

Barrett Block 146 - 10 unit Gallery

Building Floor Area

18.0 m width depth 13.0 m stories 3 681.0 m² Area

F = 220C√A

С 1.5 C =1.5 wood frame 681 m^2 1.0 ordinary Α 0.8 non-combustile F 8,612 l/min 0.6 fire-resistive 8,500 l/min use

Occupancy Adjustment -25% non-combustile

-15% limited combustile Use -15% 0% combustile

+15% free burning +25% rapid burning

Adjustment -1275 l/min

Fire flow 7,225 I/min

Sprinkler Adjustment

Use 0%

0 I/min Adjustment

Building	Separation	Adjac	ent Exposed	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	3.3	18.0	3	54	18%
east	18.0	19.5	3	59	13%
south	2 hour rated	firewall			10%
west	19.0	16.0	3	48	13%
Total					54%
Adjustment			3,902	l/min	
Total adjust	ments		3,902	l/min	
Fire flow	_		11,127	l/min	•
Use			11,500	l/min	
			191.7	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Barrett Block 146 - 10 unit Gallery

Building Floor Area

width 18.0 mdepth 19.3 mstories 3Area $1,015.3 \text{ m}^2$

F = 220C√A

C 1.5 C = 1.5 wood frame
A 1,015 m^2 1.0 ordinary
0.8 non-combustile
F 10,515 I/min 0.6 fire-resistive
use 10,500 I/min

Occupancy Adjustment -25% non-combustile

Use -15% limited combustile
0% combustile
+15% free burning

Adjustment -1575 I/min +25% rapid burning
Fire flow 8,925 I/min

Sprinkler Adjustment

Use 0%

Adjustment 0 l/min

Building	Separation	Adjac	ent Exposed	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	2 hour rated	firewall			0%
east	18.0	19.0	3	57	13%
south	0.0	0.0	0	0	10%
west	19.0	16.0	3	48	13%
Total					36%
Adjustment			3,213	l/min	
Total adjust	ments		3,213	l/min	
Fire flow			12,138	l/min	
Use			12,000	l/min	
			200.0	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Barrett Block 146 - 8 unit Gallery

Building Floor Area

width 18.0 mdepth 13.0 mstories 3Area 702.0 m^2

F = 220C√A

C 1.5 C = 1.5 wood frame
A 683 m^2 1.0 ordinary
0.8 non-combustile
F 8,624 l/min 0.6 fire-resistive
use 8,500 l/min

Occupancy Adjustment

-25% non-combustile
-15% limited combustile
0% combustile

Use -15%

+15% free burning

Jse -197

-1275 l/min +25% rapid burning

Adjustment -1275 I/min
Fire flow 7,225 I/min

Sprinkler Adjustment

Use 0%

Adjustment 0 I/min

Building	Separation	Adjac	ent Exposed	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	2 hour rated	firewall			10%
east	0.0	0.0	0	0	0%
south	3.3	18.0	3	54	18%
west	19.0	20.0	3	60	13%
Total					41%
Adjustment			2,962	l/min	
					•
Total adjust	ments		2,962	l/min	
Fire flow			10,187	l/min	•
Use			10,500	l/min	
			175.0	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Barrett Block 146 - 4 unit Townhome

Building Floor Area

width 15.5 mdepth 12.0 mstories 3Area 558.0 m^2

F = 220C√A

C 1.5 C = 1.5 wood frame
A 558 m^2 1.0 ordinary
0.8 non-combustile
F 7,795 I/min 0.6 fire-resistive
use 8,000 I/min

Occupancy Adjustment -25% non-combustile

Use -15% limited combustile
0% combustile
+15% free burning

Adjustment -1200 l/min +25% rapid burning
Fire flow 6,800 l/min

Sprinkler Adjustment

Use 0%

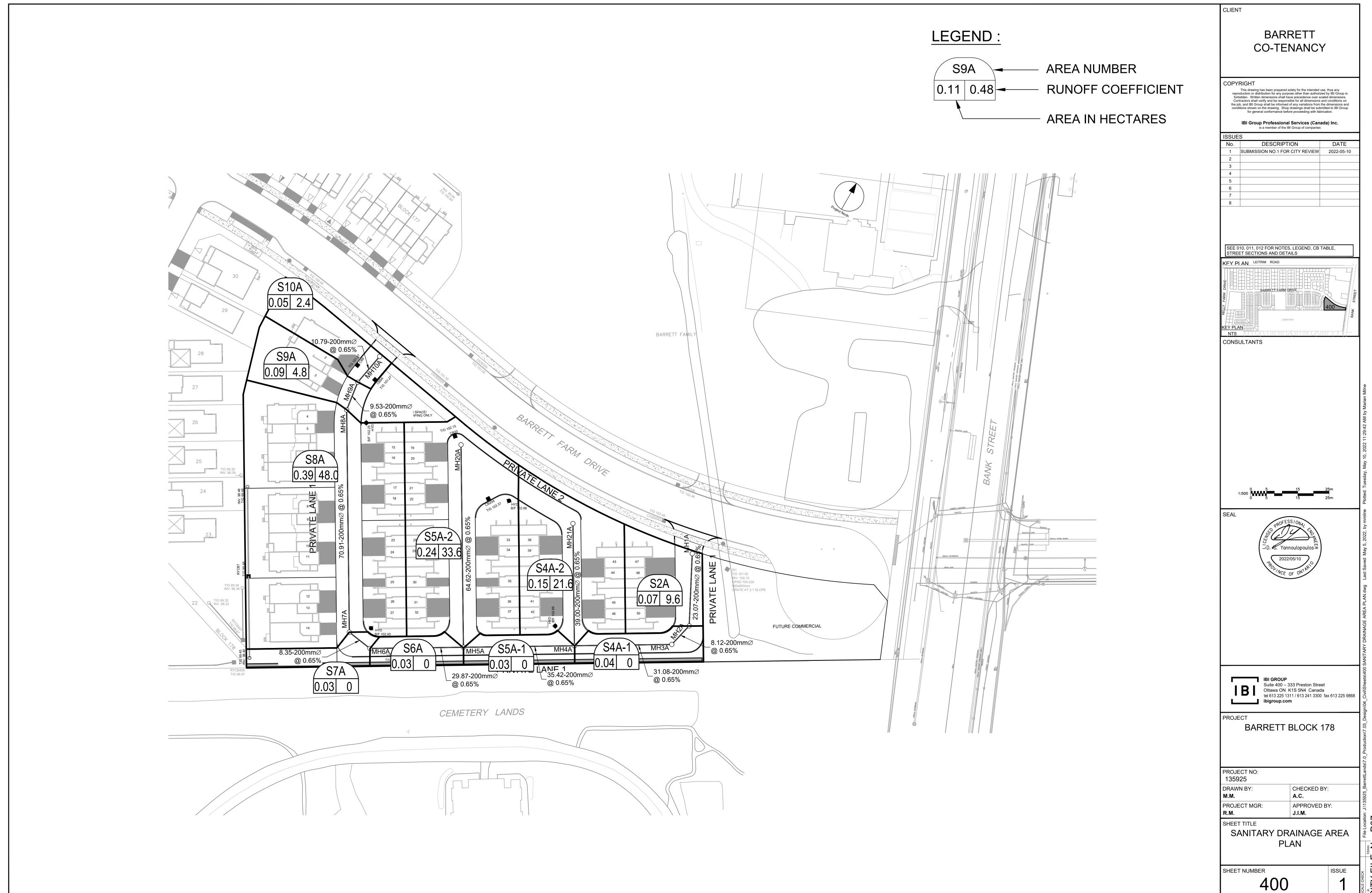
Adjustment 0 l/min

Building	Separation	Adjace	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	3.3	15.5	3	47	18%
east	19.0	24.5	3	74	14%
south*	2 hour rated	firewall			10%
west	14.5	24.5	3	74	14%
Total					56%
Adjustment			3,808	l/min	
Total adjust	ments		3,808	l/min	
Fire flow			10,608	l/min	
Use			10,500	l/min	
			175.0	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

APPENDIX C

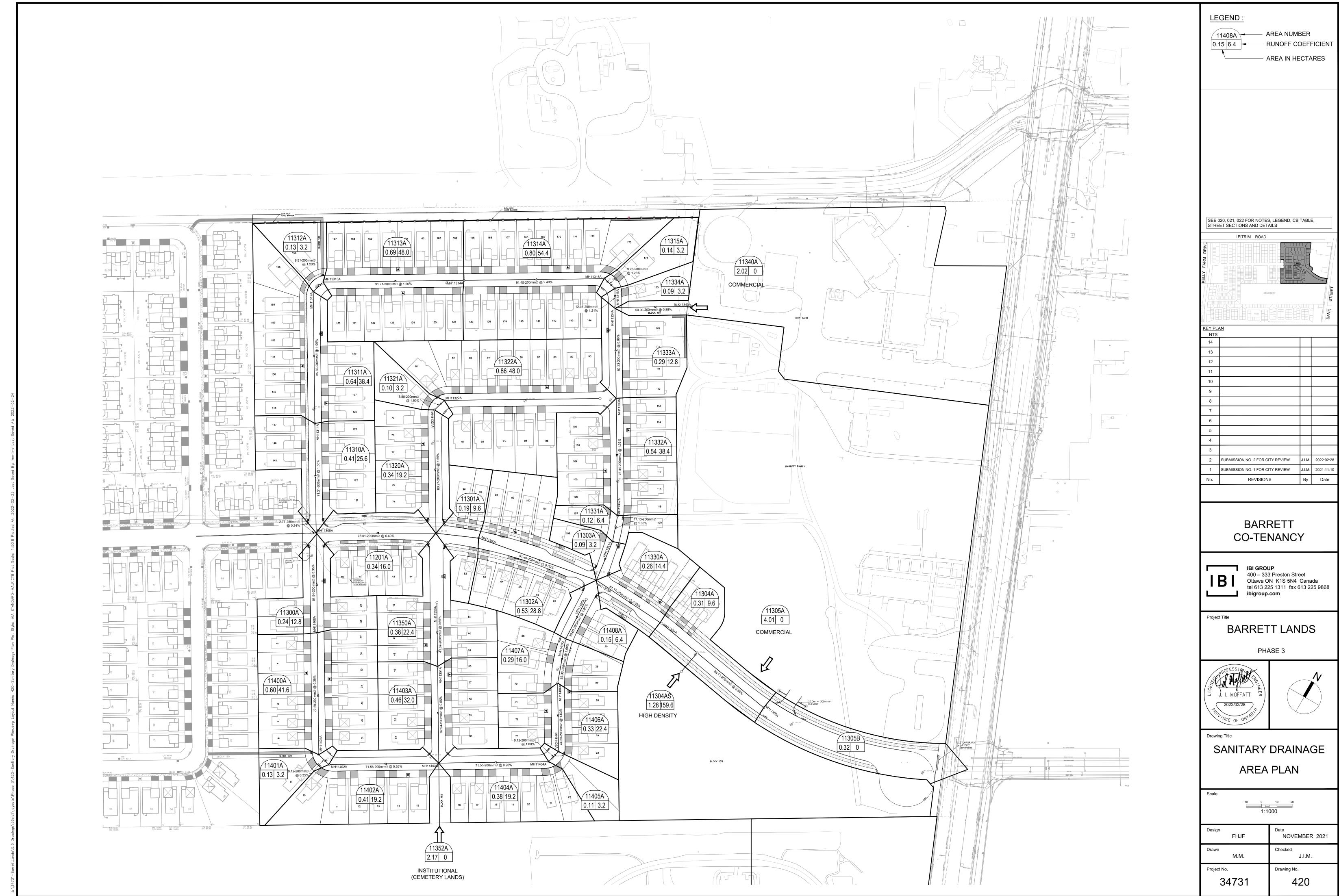
Sanitary Sewer Design Sheet 135925-400 - Sanitary Drainage Plan Barrett Lands Phase 3 Sanitary Design Sheet Barrett Lands Phase 3 Sanitary Drainage Area Plan



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Barrett Lands Block 146 CITY OF OTTAWA Barrett Co-Tenancy

	LOCA	TION						RESIDE	NTIAL							ICI AREAS				INFILT	RATION ALL	OWANCE	FIXED FL	OM (1 /=)	TOTAL			PROPO	SED SEWER	DESIGN		
	LUCA	TION		AREA		UNIT	TYPES		AREA	POPUL	ATION	RES	PEAK		AREA (H	a)		ICI	PEAK	ARE	A (Ha)	FLOW	FIXED FL	OW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	ILABLE
STREET	AREA ID	FROM	TO	w/ Units	SF	SD	TH	APT	w/o Units	IND	сим	PEAK	FLOW	INSTITUTIONAL	COMMERC	IAL	NDUSTRIAL	PEAK	FLOW	IND	CUM	(L/s)	IND	сим	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAP	PACITY
SIREEI	AREA ID	MH	MH	(Ha)	3F	30	In	AFI	(Ha)	IND	COW	FACTOR	(L/s)	IND CUM	IND (CUM I	ID CUN	FACTO	R (L/s)	IND	COIVI	(L/S)	IND	COW	(L/S)	(L/S)	(111)	(11111)	(70)	(m/s)	L/s	(%)
Delete Leve No. 4	004	MH1A	MH2A	0.07						0.0	0.0	0.70	0.40	0.00		0.00	0.00	4.00	0.00	0.07	0.07	0.00		0.00	0.44	07.50	00.07	000	0.05	0.054	07.45	00.500/
Private Lane No.1	S2A			0.07			4			9.6	9.6	3.73	0.12	0.00		0.00	0.00			0.07	0.07	0.02		0.00	0.14	27.59	23.07	200	0.65	0.851	27.45	
Private Lane No.1		MH2A	MH3A							0.0	9.6	3.73	0.12	0.00		0.00	0.00		0.00	0.00	0.07	0.02		0.00	0.14	27.59	8.12	200	0.65	0.851	27.45	99.50%
Private Lane No.1		MH3A	MH4A	_					0.04	2.4	12.0	3.73	0.14	0.00		0.00	0.00	1.00	0.00	0.04	0.11	0.04		0.00	0.18	27.59	31.08	200	0.65	0.851	27.41	99.34%
Private Lane No. 2	S4A-2	MH21A	MH4A	0.15			9			21.6	21.6	3.70	0.26	0.00	-	0.00	0.00	1.00	0.00	0.15	0.15	0.05		0.00	0.31	27.59	39.00	200	0.65	0.851	27.28	98.88%
Private Lane No. 2	S5A-2	MH20A	MH5A	0.24			14			33.6	33.6	3.68	0.40	0.00	- (0.00	0.00	1.00	0.00	0.24	0.24	0.08		0.00	0.48	27.59	64.92	200	0.65	0.851	27.11	98.26%
Private Lane No.1	S5A-1	MH4A	MH5A						0.03	1.8	35.4	3.67	0.42	0.00		0.00	0.00	1.00	0.00	0.03	0.29	0.10		0.00	0.52	27.59	35.42	200	0.65	0.851	27.07	98.13%
Private Lane No.1	S6A	MH5A	MH6A						0.03	1.8	70.8	3.63	0.83	0.00		0.00	0.00		0.00	0.03	0.56	0.18		0.00	1.02	27.59	29.87	200	0.65	0.851	26.57	96.31%
Private Lane No.1	S7A	MH6A	MH7A	0.03					0.00	0.0	70.8	3.63	0.83	0.00		0.00	0.00		0.00	0.03	0.59	0.19		0.00	1.03	27.59	8.35	200	0.65	0.851	26.56	96.28%
Private Lane No.1	S8A	MH7A	MH8A	0.39			20			48.0	118.8	3.58	1.38	0.00		0.00	0.00		0.00	0.39	0.98	0.32		0.00	1.70	27.59	70.91	200	0.65	0.851	25.89	93.83%
Private Lane No.1	S9A	MH8A	MH9A	0.09			2			4.8	123.6	3.57	1.43	0.00		0.00	0.00		0.00	0.09	1.07	0.35		0.00	1.78	27.59	9.53	200	0.65	0.851	25.80	93.53%
Private Lane No.1	S10A	MH9A	MH10A	0.05			1			2.4	126.0	3.57	1.46	0.00		0.00	0.00	1.00	0.00	0.05	1.12	0.37		0.00	1.83	27.59	10.79	200	0.65	0.851	25.76	93.37%
Block 178	11418A	MH10A	MH11305A							0.0	126.0	3.57	1.46	0.00		0.00	0.00	1.00	0.00	0.00	1.12	0.37		0.00	1.83	20.24	16.00	200	0.35	0.624	18.41	90.97%
Design Parameters:				Notes:								Designed:		AC		No.					F	Revision								Date		
				 Mannings 	coefficient	it (n) =		0.013								1.					Submission I	No. 1 for City Re	eview					1		2022-05-09		
Residential		ICI Areas		2. Demand (280	L/day	200 L	_/day																		1				
SF 3.2 p/p/u				Infiltration	allowance	e:	0.33	L/s/Ha				Checked:		RM														1				
TH/SD 2.4 p/p/u		3,000 L/Ha/day		Residentia																								1				
APT 1.9 p/p/u	COM 28	3,000 L/Ha/day			Harmon F	Formula = 1+	+(14/(4+(P/10	000)^0.5))0.8	8																			1				
Other 60 p/p/Ha	IND 35	i,000 L/Ha/day	MOE Chart		where K =	= 0.8 Correct	tion Factor					Dwg. Refe	rence:	135925 - 400														1				
	17	7000 L/Ha/day		Commerci				sed on total	l area,							File Re							Date:							Sheet No:		
				1.5 if gre	eater than 2	20%, otherw	vise 1.0					1				1359	25.00						2022-05-09					()		1 of 1		


CITY PLAN No. xxxxx

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

CITY OF OTTAWA Barrett Co-Tenancy

				1			RESID	ENTIAL				1		ICI AR	EAS				INFILTE	ATION ALL	OWANCE		1	TOTAL	1		PROPO	SED SEWE	R DESIGN		
	LOCATIO	N		AREA		UNIT TYPES			ULATION	RES	PEAK		ARE	EA (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	IXED FLOW	(L/s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE		/ AVA	AILABLE
STREET	AREA ID	FROM MH	TO MH	w/ Units (Ha)	SF	SD TH	APT	w/o Units IND	CUM	PEAK FACTOR	FLOW (L/s)	INSTITUTIONAL IND CUM		MERCIAL CUM	INDUSTR IND		PEAK FACTOR	FLOW (L/s)	IND	CUM	(L/s) I	IND C	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAF L/s	APACITY (%)
				(- 7				(iia)		TAGTOR	,						TACTOR	(13)											, ,		
Barrett Farm Drive	11305B	MH11306A	MH11305A	0.32				0.0	0.0	3.80	0.00	0.00	4.01	4.01		0.00	1.50	1.95	4.33	4.33	1.43	(0.00	3.38	26.50	56.11	200	0.60	0.817	23.13	87.25%
Block 178	11418A	BLK11305AS	MH11305A	1.28			84	159.6	159.6	3.55	1.83	0.00		0.00		0.00	1.00	0.00	1.28	1.28	0.42	(0.00	2.26	20.24	16.00	200	0.35	0.624	17.99	88.85%
Barrett Farm Drive	11304A	MH11305A	MH11304A	0.31		4		9.6	169.2	3.54	1.94	0.00		4.01		0.00	1.50	1.95	0.31	5.92	1.95	(0.00	5.84	20.24	29.81	200	0.35	0.624	14.40	71.13%
Barrett Farm Drive	11330A	MH11304A	MH11303A	0.26		6		14.4	183.6	3.53	2.10	0.00		4.01		0.00	1.50	1.95	0.26	6.18	2.04	(0.00	6.09	20.24	51.17	200	0.35	0.624	14.15	69.92%
Bouvardia Crescent	11334A	MH11316A	MH11334A	0.09	1			3.2			0.04	0.00		0.00		0.00	1.00	0.00	0.09	0.09	0.03		0.00	0.07	37.64	12.36	200	1.21	1.161	37.57	
Block 120 (City Yard) Bouvardia Crescent	COM2 11333A	BLK11120A MH11334A	MH11334A MH11333A	0.00	4			0.0	0.0 16.0		0.00	0.00	2.02	2.02 0.00		0.00	1.50	0.98	2.02 0.29	2.02 0.38	0.67 0.13		0.00	1.65 0.32	32.10 30.60	50.00 59.23	200 200	0.88	0.990	30.45 30.29	
Bouvardia Crescent	11333A 11332A	MH11333A	MH11333A MH11332A	0.29	12			38.4	54.4		0.19	0.00		2.02		0.00	1.00	0.65	0.29	2.65	0.13		0.00	2.17	39.76	76.44	200	1.35	1.226	37.58	
Bouvardia Crescent	11331A	MH11332A	MH11331A	0.12	2			6.4	60.8		0.72	0.00		2.02		0.00	1.00	0.65	0.12	2.77	0.91		0.00	2.29	39.76	17.13	200	1.35	1.226	37.47	
Bouvardia Crescent	11303A	MH11331A	MH11303A	0.09	1			3.2	64.0		0.75	0.00		2.02		0.00	1.50	0.98	0.09	2.86	0.94	(0.00	2.68	54.96	27.28	200	2.58	1.695	52.28	95.12%
Delphinium Crescent	11408A	MH11408A	MH11407A	0.15	2			6.4	6.4	3.75	0.08	0.00		0.00		0.00	1.00	0.00	0.15	0.15	0.05	(0.00	0.13	43.28	29.00	200	1.60	1.335	43.15	
Delphinium Crescent	11407A	MH11407A	MH11406A	0.29	5			16.0			0.27	0.00		0.00		0.00	1.00	0.00	0.29	0.44	0.15		0.00	0.41	43.28	29.33	200	1.60	1.335	42.87	
Delphinium Crescent	11406A	MH11406A	MH11405A	0.33	7			22.4			0.53	0.00		0.00		0.00	1.00	0.00	0.33	0.77	0.25		0.00	0.79	43.28	44.63	200	1.60	1.335	42.50	
Delphinium Crescent	11405A	MH11405A	MH11404A	0.11	1			3.2	48.0	3.65	0.57	0.00		0.00		0.00	1.00	0.00	0.11	0.88	0.29	(0.00	0.86	43.28	9.12	200	1.60	1.335	42.42	98.02%
Delphinium Crescent	11404A	MH11404A	MH11403A	0.38	6			19.2	67.2	3.63	0.79	0.00		0.00		0.00	1.00	0.00	0.38	1.26	0.42	(0.00	1.21	32.46	71.55	200	0.90	1.001	31.25	96.28%
Nemesia Way	11350A	MH11351A	MH11350A	0.38	7			22.4	22.4	3.70	0.27	0.00		0.00		0.00	1.00	0.00	0.38	0.38	0.13	(0.00	0.39	27.59	48.50	200	0.65	0.851	27.19	98.57%
Nemesia Way	11403A	MH11350A	MH11403A	0.46	10			32.0	54.4	3.65	0.64	0.00		0.00		0.00	1.00	0.00	0.46	0.84	0.28	(0.00	0.92	27.59	62.94	200	0.65	0.851	26.67	96.67%
Block 124 (Cemetery)	CEM, 11352A	BLK11352A	MH11403A	0.00				0.0	0.0	3.80	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.00	0.00	0.00	(0.00	0.00	27.59	42.00	200	0.65	0.851	27.59	100.00%
Delphinium Crescent Delphinium Crescent	11402A 11401A	MH11403A MH11402A	MH11402A MH11401A	0.41	6			19.2	140.8 144.0		1.62 1.66	0.00		0.00		0.00	1.00	0.00	0.41 0.13	2.51 2.64	0.83 0.87		0.00	2.45	20.24	71.56 9.12	200 200	0.35 0.35	0.624 0.624	17.79 17.71	
Delphinium Crescent	11400A	MH11401A	MH11400A	0.60	13			41.6	185.6		2.12	0.00		0.00		0.00	1.00	0.00	0.60	3.24	1.07		0.00	3.19	20.24	79.50	200	0.35	0.624	17.05	
Delphinium Crescent	11300A	MH11400A	MH11300A	0.24	4			12.8			2.26	0.00		0.00		0.00	1.00	0.00	0.24	3.48	1.15		0.00	3.41	20.24	64.94	200	0.35	0.624	16.83	
Barrett Farm Drive	11302A	MH11303A	MH11302A	0.53	9			28.8	276.4	3.47	3.11	0.00		6.03		0.00	1.50	2.93	0.53	10.34	3.41	(0.00	9.46	26.50	81.49	200	0.60	0.817	17.05	64.32%
Barrett Farm Drive	11301A	MH11302A	MH11301A	0.19	3			9.6	286.0	3.47	3.22	0.00		6.03		0.00	1.50	2.93	0.19	10.53	3.47	(0.00	9.62	32.46	27.85	200	0.90	1.001	22.84	70.36%
Solidago Mews	11322A	MH11323A	MH11322A	0.86	15			48.0	48.0	3.65	0.57	0.00		0.00		0.00	1.00	0.00	0.86	0.86	0.28	(0.00	0.85	49.58	101.40	200	2.10	1.529	48.73	98.28%
Solidago Mews	11321A	MH11322A	MH11321A	0.10	1			3.2	51.2		0.61	0.00		0.00		0.00	1.00	0.00	0.10	0.96	0.32		0.00	0.92	41.91	8.88	200	1.50	1.292	40.98	
Solidago Mews	11320A	MH11321A	MH11301A	0.34	6			19.2	70.4	3.63	0.83	0.00		0.00		0.00	1.00	0.00	0.34	1.30	0.43	(0.00	1.26	42.60	80.27	200	1.55	1.314	41.34	97.05%
Barrett Farm Drive	11201A	MH11301A	MH11300A	0.34	5			16.0	372.4	3.43	4.14	0.00		6.03		0.00	1.50	2.93	0.34	12.17	4.02	(0.00	11.09	26.50	78.01	200	0.60	0.817	15.42	58.17%
Bouvardia Crescent	11315A	MH11316A	MH11315A	0.14	1		1	3.2	3.2	3.76	0.04	0.00	1	0.00		0.00	1.00	0.00	0.14	0.14	0.05	(0.00	0.09	38.26	9.28	200	1.25	1.180	38.17	99.78%
Bouvardia Crescent	11314A	MH11315A	MH11314A	0.80	17			54.4			0.68	0.00		0.00		0.00	1.00	0.00	0.80	0.94	0.31		0.00	0.99	53.01	91.45	200	2.40	1.635	52.02	
Bouvardia Crescent	11313A	MH11314A	MH11313A	0.69	15			48.0	105.6		1.23	0.00		0.00		0.00	1.00	0.00	0.69	1.63	0.54		0.00	1.77	37.48	91.71	200	1.20	1.156	35.72	
Bouvardia Crescent	11312A	MH11313A	MH11312A	0.13	1			3.2	108.8		1.26	0.00		0.00		0.00	1.00	0.00	0.13	1.76	0.58		0.00	1.85	37.48	8.91	200	1.20	1.156	35.64	
Bouvardia Crescent Bouvardia Crescent	11311A 11310A	MH11312A MH11311A	MH11311A MH11300A	0.64 0.41	12 8			38.4 25.6			1.70 1.98	0.00		0.00		0.00	1.00	0.00	0.64 0.41	2.40 2.81	0.79 0.93		0.00	2.49	34.22 42.32	85.85 71.31	200 200	1.00 1.53	1.055 1.305	31.73 39.42	
Barrett Farm Drive	11205A	MH11300A	MH11204A	0.51	5	8		35.2	778.8	3.29	8.31	0.00		6.03		0.00	1.50	2.93	0.51	18.97	6.26		0.00	17.50	30.39	2.77	250	0.24	0.600	12.89	42.41%
Barrott ann Brito	1125671	WIII 1000/1	WITT LOW	0.01				00.2	770.0	0.20	0.01	0.00		0.00		0.00	1.00	2.00	0.01	10.07	0.20		5.00	17.00	00.00		200	0.21		12.00	12.1170
																													_	<u> </u>	\pm
Design Parameters:		1		Notes:	1	<u> </u>		1 1		Designed	:	AC	1	No.							Revision								Date		
				1. Mannings			0.013							1.							No. 1 for City Revie								2021-11-10	-	
Residential		ICI Areas		2. Demand (L/day	200 L/day						2.							No. 2 for City Revie								2022-02-24		
SF 3.2 p/p/u	INICT OCCO	/ / - /		Infiltration			l/s/Ha			Checked:		JIM		3.						Submission	No. 3 for City Revie	W					1		2022-04-06	<u>i </u>	
TH/SD 2.4 p/p/u APT 1.9 p/p/u) L/Ha/day) L/Ha/day		Residentia		actor: rmula = 1+(14/(4+(P/1	000)^0 5)\0	. 8						-																	
Other 60 p/p/Ha) L/Ha/day	MOE Chart			0.8 Correction Factor	0.07)0			Dwg. Refe	erence:	34731 - TBD		1													1				
01.10. 00 p/p/11a		L/Ha/day	MOL GIAIT			utional Peak Factors ba	ased on tota	al area.		Jug. Neit		5 51 - 1DD		File	e Reference:							Date:							Sheet No:		
	17000					0%, otherwise 1.0									34731-5.7							21-11-10							1 of 1		

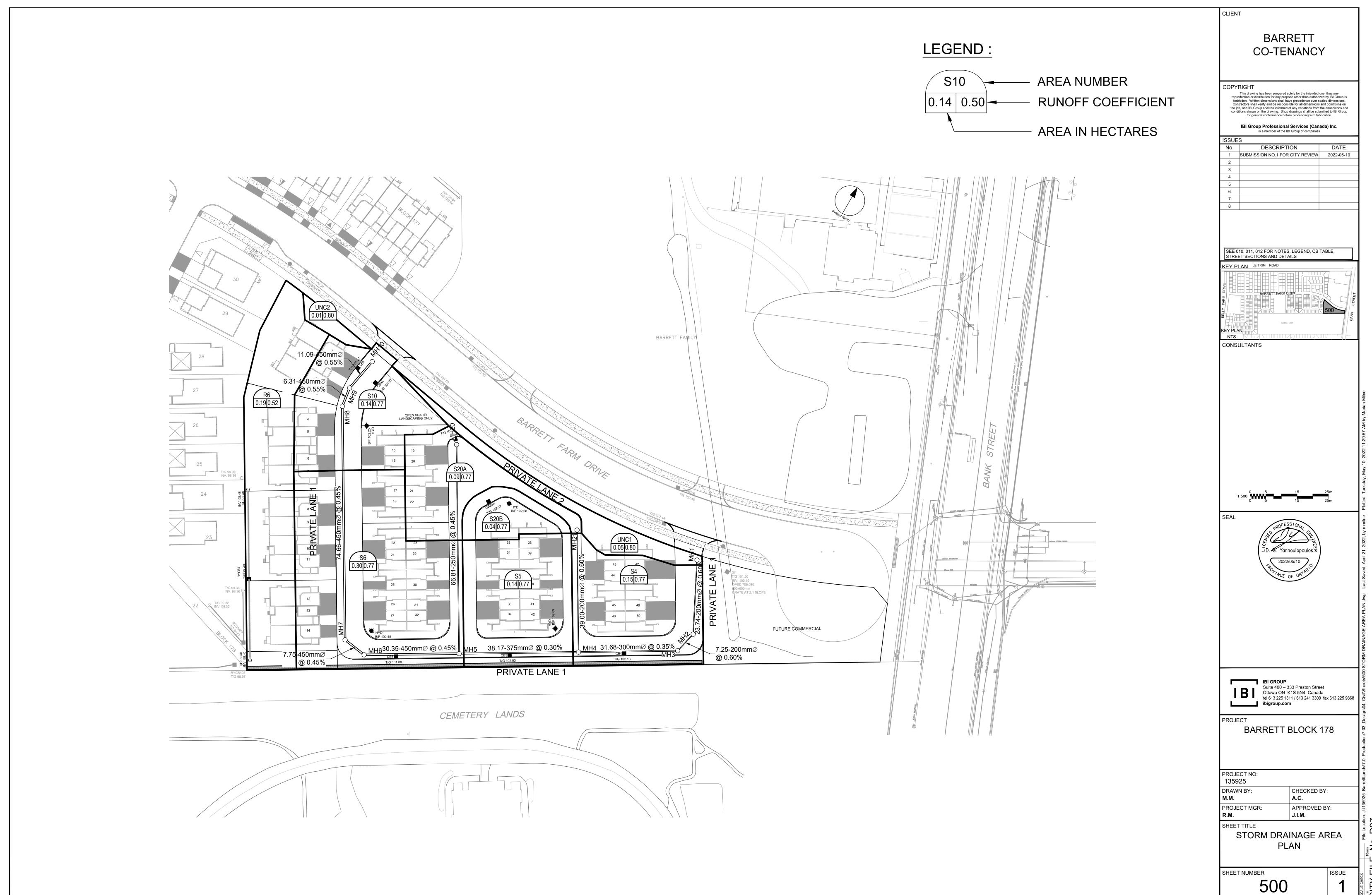
APPENDIX D

Storm Sewer Design Sheet
135925-500 - Storm Drainage Plan
135925-600 - Ponding Plan
Barrett Lands Phase 3 Storm Design Sheet
Barrett Lands Phase 3 Storm Drainage Area Plan
Modified Rational Method on-site SWM calculations
On-site Underground Storage System
Storm HGL Calculations
Barrett Lands Phase 3 HGL Reference
Overflow Depth/Capacity Calculation
Temporary Orifice Sizing
Sample Runoff Coefficient Calculations

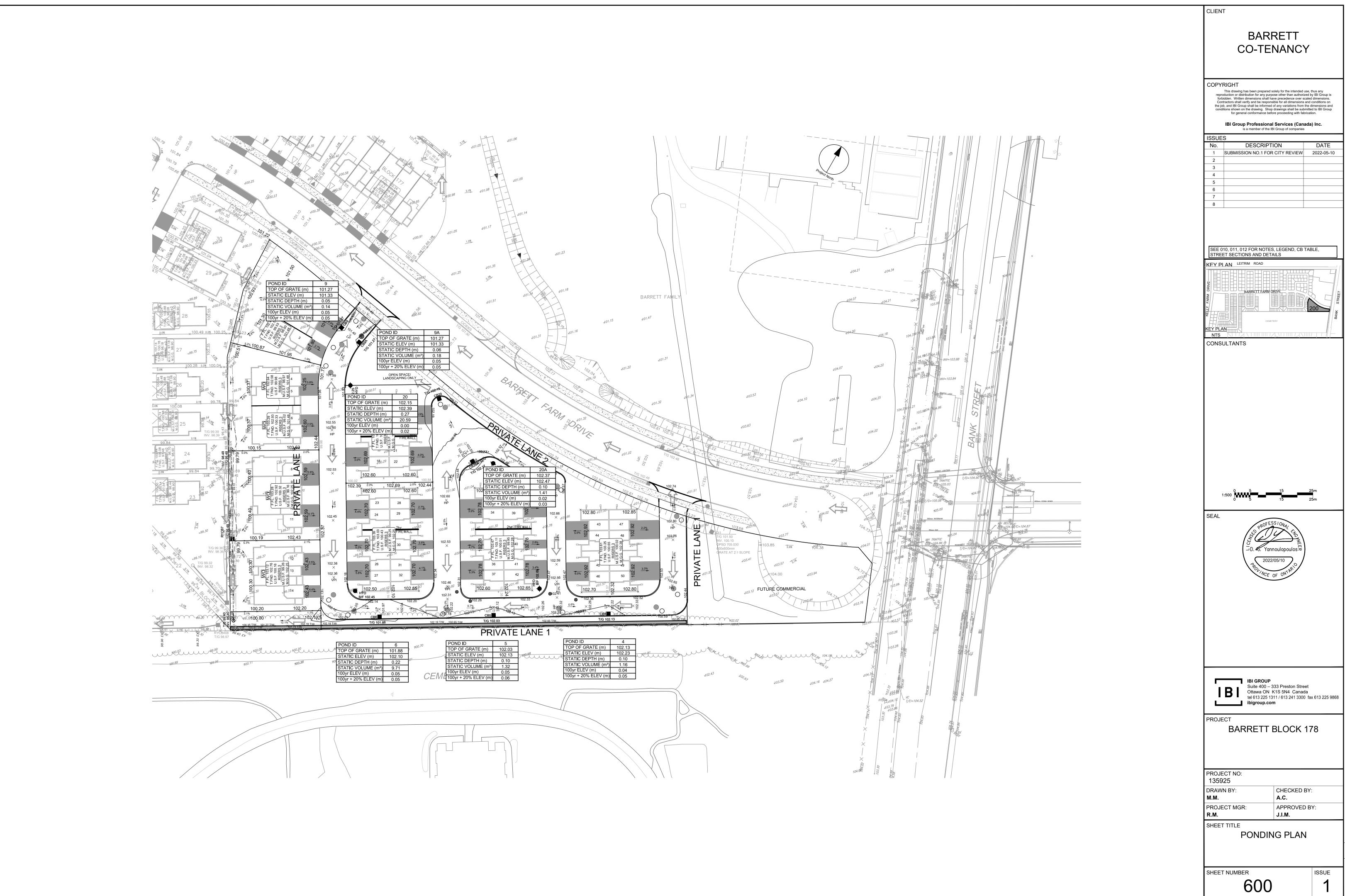
IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada

ibigroup.com

tel 613 225 1311 fax 613 225 9868


Black text 2 year event curve design
Blue text 5 year event curve design

Green Text 100 year design curve


STORM SEWER DESIGN SHEET

Barrett Lands Block 146 City of Ottawa Barrett Co-Tenancy

	LOCATION						ARE/	A (Ha)									R	RATIONAL	DESIGN FLOW								SEWER DAT	Α			
STREET	AREA ID	FROM	то							C= C=		CUM IN	NLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100) 2yr PEAK	5yr PEAK	10yr PEAK 100yr PEAK FIXED FLOW (L/s) FLOW (L/s) FLOW (L	DESIG	N CAPACIT	Y LENGTH		PIPE SIZE (I	mm)		VELOCITY		IL CAP
				0.20	0.30	0.42 0.50	0.52	0.72 0.7	3 0.77	0.85 1.00	2.78AC 2.	78AC ((min)	IN PIPE	(min)	(mm/hr)	(mm/nr)	(mm/nr) (mm/nr) FLOW (L/s) FLOW (L/S	FLOW (L/S) FLOW (L/S) FLOW (L	./S) FLOW (I	_/s) (L/s)	(m)	DIA	W	П	(%)	(m/s)	(L/s)	(%)
Private Lane No.1		MH1	MH2							+ +	0.00	0.00 1	10.00	0.48	10.48	76.81			0.00		0.00	0.00	26.50	23.74	200			0.60	0.817	26.50	100.00%
Private Lane No.1		MH2	MH3								0.00	0.00 1	10.48	0.15	10.63	74.99			0.00		0.00	0.00	26.50	7.25	200	1		0.60	0.817	26.50	100.00%
Private Lane No.1	S4	MH3	MH4						0.15		0.32			0.65	11.28	74.46			23.91		26.00	26.00	59.68	31.68	300			0.35	0.818	33.68	
Private Lane No. 2		MH21	MH4											0.80	10.80	76.81			0.00		0.00	0.00	26.50	39.00	200			0.60	0.817	26.50	100.00%
Private Lane No. 2	S20A, S20B	MH20	MH5						0.13		0.28	0.28 1	10.00	1.36	11.36	76.81			21.37		30.00	30.00	41.62	66.81	250			0.45	0.821	11.62	27.91%
Private Lane No.1	S5	MH4	MH5						0.14		0.30	0.62 1		0.72	12.00	72.22			44.84		51.00	51.00	100.18	38.17	375			0.30	0.879	49.18	
Private Lane No.1	S6	MH5	MH6						0.30			1.54 1	12.00	0.42	12.42	69.89			107.72		136.00	136.00	199.52	30.35	450			0.45	1.215	63.52	31.84%
Private Lane No.1	R6	MH6	MH7				0.19				0.27	1.82 1	12.42	0.11	12.52	68.62			124.61		170.00	170.00	199.52	7.75	450			0.45	1.215	29.52	14.80%
Private Lane No.1		MH7	MH8								0.00	1.82 1	12.52	1.02	13.55	68.30			124.03		170.00	170.00	199.52	74.66	450			0.45	1.215	29.52	14.80%
Private Lane No.1		MH8	MH9								0.00	1.82 1	13.55	0.08	13.63	65.42			118.80		170.00	170.00	220.58	6.31	450			0.55	1.344	50.58	22.93%
Private Lane No.1	S10	MH9	MH10						0.14		0.30	2.12 1	13.63	0.14	13.76	65.21			137.96		210.00	210.00	220.58	11.09	450			0.55	1.344	10.58	4.80%
Private Lane No.1		MH10	MH11305A								0.00	2.12 1	13.76	0.19	13.95	64.85			137.19		210.00	210.00	518.80	16.00	675			0.35	1.404	308.80	59.52%
Definitions:				Notes:								Des	signed:	4	AC				No.			Revision							Date		
Q = 2.78CiA, where:				1. Mar	nnings coef	fficient (n) =		0.013											1.		Submission N	o.1 for City R	leview						2022-05-09		
Q = Peak Flow in Litres per								0.024																							
A = Area in Hectares (Ha)												Che	ecked:		RM																
i = Rainfall intensity in milli																															
[i = 732.951 / (TC+6.199	, -	2 YEAR																													
[i = 998.071 / (TC+6.053	· -	5 YEAR										Dw	g. Referer	nce:	135925-500																
[i = 1174.184 / (TC+6.01		10 YEAR																		eference:			Date:						Sheet No:		
[i = 1735.688 / (TC+6.01	4)^0.820]	100 YEAR																	135	925.00			2022-05-09						1 of 1		

CITY PLAN No. xxxxx

CITY PLAN No. xxxxx

IBI

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com

Black text 2 year event curve design
Blue text 5 year event curve design (Barrett Farm Drive)
Green Text 100 year design curve

gn gn (Barrett Farm Drive) City of Ottawa Barrett Co-Tenancy

	LOCATION					AREA (Ha)							R	ATIONAL DE	SIGN FLOW							SEWEI	R DATA			
STREET	AREA ID	FROM	то		C= C= C=	C= C= C= C=	C= C=	IND CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100) 2yr PEA		10yr PEAK 100yr PEAK FIXED			LENGTH	PIPE	E SIZE (mm)		PE VELO	CITY AVAIL	CAP (2yr)
SIREEI	AREA ID	FROIVI	10	0.20	0.30 0.42 0.57	0.68 0.72 0.73 0.78	0.80 1.00	2.78AC 2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr) FLOW (L	s) FLOW (L/s) FLOW (L/s) FLOW (L/s) FLOW (L/s	FLOW (L/s)) (L/s)	(m)	DIA	W	H (%)	(m/	s) (L/s)	(%)
							1										 		_							
Temporary	Area 9	DI1	MH11307	+ +	0.24			0.28 0.28	12.00	0.21	12.21	69.89	94.70	110.96	162.13		45.43	45.43	62.04	15.50	250		1.00) 1.22	24 16.61	26.77%
Barrett Farm Drive	S11306	MH11307	MH11306	1	1 1 1	0.19		0.38 0.66		0.89		76.81	104.19	122.14		68.82		114.26		74.50			0.75			
Barrett Family	R11305	DI2	MH11306				4.01	8.92 8.92		0.14		69.89	94.70	110.96	162.13 623.33			623.33	821.24				0.50			24.10%
Temporary	Culvert	DI2 Ditch	MH11306 Ditch	+				See Barrett Fam See culvert desid	,		IX D							348.22 34.08	109.29	14.66 20.00	525 300		1.40 4.00		102.01	
Temporary	Cuivert	Ditori	Ditch					See culvert desig	ји и Арренил	(D					1			34.00	109.29	20.00	300		4.00	7 1.48	75.21	00.02 /0
Barrett Farm Drive		MH11306	MH11305	1				0.00 8.92	12.14	0.43	12.57	69.47	94.12	110.28	161.14 619.59			698.95	1,159.96	54.50	825		0.60	2.10	02 461.01	39.74%
Barrett Farm Drive	S11305	MH11306	MH11305			0.09		0.18 0.84	12.14	0.43	12.57	69.47	94.12	110.28	161.14	79.36		698.95	1,159.96	54.50	825		0.60	2.10	02 461.01	39.74%
D # 5 D :	D44004	D11(44005	N 14 4005				1.00	0.05	10.00	0.05	10.05	22.22	0.4.70	440.00	100.10			100.07	100.17	40.00	075			- 4.4	22 222 52	54.000/
Barrett Farm Drive	R11304	BLK11305	MH11305				1.28	2.85 2.85	12.00	0.25	12.25	69.89	94.70	110.96	162.13 198.97			198.97	438.47	18.00	675		0.25	5 1.18	87 239.50	54.62%
Barrett Farm Drive		MH11305	MH11304					0.00 11.76	12.57	0.36	12.92	68.18	92.34	108.18	158.06 802.08		 	820.82	1,274.02	30.40	1050		0.20) 1.42	25 453.20	35.57%
Barrett Farm Drive	S11305	MH11305	MH11304			0.10		0.20 0.20	12.57	0.36	12.92	68.18	92.34	108.18	158.06	18.74		820.82	1,274.02	30.40	1050		0.20			
Barrett Farm Drive	0440044	MH11304	MH11303	+		2.55		0.00 11.76		0.51		67.15	90.93		155.62 789.98	_	 	917.90	1,424.40				0.25			35.56%
Barrett Farm Drive	S11304A	MH11304	MH11303	+		0.25	+ + -	0.54 1.39	12.57	0.51	13.08	68.18	92.34	108.18	158.06	127.91	+ + + + + + + + + + + + + + + + + + + +	917.90	1,424.40	48.54	1050		0.25	1.59	94 506.50	35.56%
Bouvardia Crescent	R11334	MH11316	MH11334	+ +	0.03		+ + -	0.05 0.05	10.00	0.17	10.17	76.81	104.19	122.14	178.56 3.65		 	3.65	62.04	12.72	250	- 	1.00) 1.22	24 58.39	94.11%
Block 120	R11340	BLK11340	MH11334	<u> </u>			1.98	4.40 4.40	12.00	0.45	12.45	69.89	94.70		162.13 307.78			307.78	524.32	48.00	600		0.67			41.30%
Bouvardia Crescent	S11334, R11333	MH11334	MH11333		0.08	0.27		0.67 5.12	12.45	0.54	12.98	68.54	92.84	108.77	158.92 350.80			350.80	535.93	59.22	600		0.70		36 185.14	34.54%
Bouvardia Crescent	R11332, S11333	MH11333	MH11332	+	0.12	0.20		0.59 5.71		0.51		66.98	90.70		155.22 382.36		 	382.36	744.26		600		1.35			48.63%
Bouvardia Crescent Bouvardia Crescent	R11331, S11331	MH11332 MH11331	MH11331 MH11303	+		0.24 0.25	+ + -	0.95 6.66 0.00 6.66	13.49 13.60	0.11 0.16	13.60 13.77	65.57 65.27	88.76 88.36	103.98 103.50	151.88 436.87 151.18 434.90		+ + + + + + + + + + + + + + + + + + + +	436.87 434.90	744.26 744.26	16.85 25.07	600 600		1.35 1.35			41.30% 41.57%
Douvardia Oresoetti		IVIIIIIIIIII	IVII I I I I I I I I I I I I I I I I I	+ +	 		+ +	0.00	13.00	0.10	10.11	00.21	50.50	100.00	101.10 404.90		+ + + + + + + + + + + + + + + + + + + +	704.30	174.20	20.01	300		1.30	, 2.00	309.30	71.37 /0
Barrett Farm Drive		MH11303	MH11302	<u> </u>			<u> </u>	0.00 18.43	13.77	0.57	14.33	64.84	87.76	102.80	150.16 1,194.8			1,360.93		83.97			0.60	2.46	69 845.73	38.33%
Barrett Farm Drive	S11303A, S11303B	MH11303	MH11302			0.25		0.51 1.89	13.77	0.57	14.33	64.84	87.76	102.80	150.16	166.10		1,360.93	2,206.67	83.97	1050		0.60	2.40	69 845.73	38.33%
D #5 D:		N N N N N N N N N N	N 114 400 4					0.00 40.40	11.00	0.00	44.54	22.22	05.77	100.10	110 70 1 100 0			4.000.07	0.000.07	00.00	1050		0.00		070.00	00.740/
Barrett Farm Drive Barrett Farm Drive		MH11302 MH11302	MH11301 MH11301					0.00 18.43 0.00 1.89	14.33 14.33	0.20 0.20	14.54 14.54	63.38 63.38	85.77 85.77		146.72 1,168.0 146.72	162.33		1,330.37	2,206.67 2,206.67		1050		0.60 0.60			39.71% 39.71%
Darrett Failli Dilve		WITT1302	WITTIOT		- 			0.00 1.09	14.55	0.20	14.54	03.30	03.77	100.40	140.72	102.33		1,330.37	2,200.07	30.00	1030		0.00	2.40	09 870.29	39.7170
Solidago Mews	R11323, S11323	MH11323	MH11322		0.26	0.25		0.91 0.91	10.00	0.87	10.87	76.81	104.19	122.14	178.56 70.08			70.08	146.19	104.38	300		2.10	2.00	04 76.12	52.07%
Solidago Mews		MH11322	MH11321					0.00 0.91	10.87	0.09	10.96	73.62	99.82	116.99	170.99 67.17			67.17	123.55	8.91	300		1.50	1.69		
Solidago Mews	R11321, S11321, S11301	MH11321	MH11301		0.53	0.22 0.15		1.58 2.50	10.96	0.83	11.79	73.32	99.40	116.50	170.27 183.08			183.08	347.53	77.89	525		0.60	1.5	55 164.45	47.32%
Barrett Farm Drive		MH11301	MH11300	+ +				0.00 20.92	14.54	0.52	15.07	62.00	05 NO	00.65	145.52 1.215.0	1	 	1,569.35	2 206 67	70.16	1050		0.60) 2.44	60 627.22	20 000/
Barrett Farm Drive	R11301, S11301A, S11301B	MH11301	MH11300		0.43	0.20			14.54 14.54	0.53 0.53	15.07 15.07	62.88 62.88	85.08 85.08	99.65 99.65	145.53 1,315.8 145.53	253.54		1,569.35					0.60 0.60			28.88% 28.88%
Barrott ann Brive	111001, 0110011, 0110012	WIITTIGGT	WIITTOO		0.10	0.20		1.00 2.00	11.01	0.00	10.01	02.00	00.00	00.00	110.00	200.01		1,000.00	2,200.01	70.10	1000		0.00	2.10	307.02	20.0070
Bouvardia Crescent	R11315	MH11316	MH11315		0.14			0.22 0.22	10.00	0.11	10.11	76.81	104.19	122.14	178.56 17.04			17.04	69.36	9.12	250		1.25	5 1.36		75.43%
Bouvardia Crescent	S11314	MH11315	MH11314			0.30		0.60 0.82		0.79	10.90	76.38	103.61	121.46	177.55 62.81			62.81	96.11	89.59	250		2.40			
Bouvardia Crescent Bouvardia Crescent	R11313A, R11313B, S11313 R11313C	MH11314 MH11313	MH11313 MH11312		0.44	0.26		1.22 2.04 0.16 2.20		0.81	11.71 11.78	73.52 70.82	99.68 95.97	116.82 112.45	170.74 149.98 164.33 155.69		 	149.98 155.69	325.82 325.82	96.25 9.33	450 450		1.20 1.20			53.97% 52.22%
Bouvardia Crescent	R11311, S11312, S11311B	MH11313	MH11312		0.10	0.37			11.71 11.78	0.08 0.74	12.53	70.62	95.62		163.74 261.81			261.81	448.66	89.18			1.00			41.65%
Bouvardia Crescent	S11311, S11311A	MH11311	MH11300		0.10	0.25			12.53	0.55	13.07	68.30	92.51		158.36 288.04			288.04	590.57	66.44	600		0.85			51.23%
Delphinium Crescent		MH11408	MH11407					0.00 0.00		0.27	10.27	76.81	104.19		178.56 0.00			0.00	78.47	25.01	250		1.60			
Delphinium Crescent Delphinium Crescent	S11407 R11406	MH11407 MH11406	MH11406 MH11405		0.17	0.18		0.36 0.36 0.27 0.63	10.27 10.58	0.31 0.51	10.58	75.79	102.79 101.23	120.49 118.66	176.14 27.31 173.44 47.01		 	27.31 47.01	78.47	28.74 47.61	250		1.60			
Delphinium Crescent	K11406	MH11405	MH11405 MH11404		0.17			0.00 0.63		0.51	11.09 11.19	74.65 72.86	98.76		173.44 47.01 169.17 45.88			45.88	78.47 78.47	9.35	250 250		1.60 1.60			
Delphinium Crescent	S11404	MH11404	MH11403	+ +	0.48	0.49	+ +		11.19	0.72	11.19	72.51	98.29		168.35 171.94		 	171.94	282.17	74.37	450		0.90			
Nemesia Way	S11350, R11350A, R11350B	MH11350	MH11351		0.28	0.24		0.92 0.92		0.61	10.61	76.81	104.19		178.56 70.97			70.97		45.20			0.60			49.91%
Nemesia Way	S11351	MH11351	MH11403	+ +		0.25	+ + +	0.50 1.42	10.61	0.79	11.39	74.55	101.10	118.49	173.20 106.20		+ + + + + + + + + + + + + + + + + + + +	106.20	230.39	66.41	450		0.60	1.40	124.19	53.90%
Delphinium Crescent	S11401A, R11402	MH11403	MH11402	+ +	0.27	0.24	+ +	0.91 4.70	11.91	0.93	12.85	70.17	95.07	111.40	162.78 330.05		+ + + + + + + + + + + + + + + + + + + +	330.05	580.71	71.43	750		0.25	5 1.2	73 250.66	43.16%
Delphinium Crescent	5 5	MH11402	MH11401	+ +	0.21	V.2.1	 	0.00 4.70		0.12	12.97	67.36	91.22		156.13 316.86			316.86	580.71	9.06	750		0.25			
Delphinium Crescent	S11401B, R11401	MH11401	MH11400		0.31	0.18		0.85 5.56	12.97	1.05	14.02	67.03	90.76	106.33	155.33 372.35			372.35	580.71	80.19	750		0.25	1.27	73 208.36	35.88%
Delphinium Crescent	S11400, R11400A, R11400B	MH11400	MH11300	1	0.22	0.26		0.87 6.42	14.02	0.95	14.96	64.19	86.88	101.76	148.63 412.39			412.39	669.70	68.90	825		0.20) 1.2	14 257.31	38.42%
Barrett Farm Drive		MH11300	EX Blkhd	+			+ + -	0.00 31.57	15.07	0.02	15.09	61.60	83.33	97.58	142.50 1,944.4	1	 	2 102 70	4,658.21	2.51	1650		0.24	0.4	10 2465.42	52 020/
Barrett Farm Drive		MH11300 MH11300	EX Blkhd	+ +			+ +	0.00 31.57					83.33	97.58		248.31	+ + + + + + + + + + + + + + + + + + + +		4,658.21				0.24	2.1	10 2465.42 10 2465.42	52.93%
			ZX DIKIN	+ +	+ + +		+ +	2.00		0.02		300	55.50	57.00		210.01	 	_,	.,000.21			+	0.2-	2.1	2100.72	52.5575
Definitions:				Notes:					Designed:		AC				No.			Revision						Dat		
Q = 2.78CiA, where:	O (1 /)			1. Mannii	ings coefficient (n) =	0.013									1.		Submission No.							2021-1		
Q = Peak Flow in Litres pe	· · ·					0.024			Chaskast		118.4				2.		Submission No.:							2022-0		
A = Area in Hectares (Ha) i = Rainfall intensity in mill									Checked:		JIM			-	ა.		Submission No.:	o ioi Gily Rev	ICW			-		2022-0	J4-UD	
[i = 732.951 / (TC+6.199		2 YEAR																								
[i = 998.071 / (TC+6.053		5 YEAR							Dwg. Refere	ence:	34731-520															
[i = 1174.184 / (TC+6.01	14)^0.816]	10 YEAR														Reference:			Date:					Sheet		
[i = 1735.688 / (TC+6.01	14)^0.820]	100 YEAR													3	1731-5.7			2021-11-10					1 of	f 1	

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

PROJECT: 3arrett Block 146 **DATE:** 2022-04-30 FILE: 135925-6.4.4 REV #: DESIGNED BY: CHECKED BY: RM

STORMWATER MANAGEMENT

Formulas and Descriptions

 $i_{2yr} = 1:2 \text{ year Intensity} = 732.951 / (T_c + 6.199)^{0.810}$ i_{5yr} = 1:5 year Intensity = 998.071 / $(T_c + 6.053)^{0.814}$ i_{100yr} = 1:100 year Intensity = 1735.688 / $(T_c+6.014)^{0.820}$ T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha) Q = Flow = 2.78CiA (L/s)

Maximum Allowable Release Rate

Restricted Flowrate (based on 85 L/s/Ha)

234.000 l/s From Barrett Phase 3 234.00 L/s Uncontrolled Release (Q_{uncontrolled} = 2.78*C*i_{100yr}*A_{uncontrolled})

> 8.0 $T_c =$ 10 min 178.56 mm/hr i _{100yr} = 0.06 Ha 23.83 L/s

Maximum Allowable Release Rate (Q max allowable = Q restricted - Q uncontrolled)

Q_{max allowable} = 210.17 L/s

OVERFLOW SUMMARY TABLE Overflow to Barrett Farm Driv 53.39 134.35 194.1 Delphinium Cres. 187.74 Total 281.54 Barrett Phase 3 allowance 350

S20A

Overflow

0.00

Drainage Area

MODIFIED RATIONAL METHOD (100-Year, 100-Year +20% & 2-Year Ponding)

Drainage Area	S20A							
Area (Ha)	0.090							
C =	1.00	Restricted Flow Q _r (L	/s)=	15.00				
		100-Year Pondir	ıg				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
5	242.70	60.72	15.00	45.72	13.72			
10	178.56	44.68	15.00	29.68	17.81			
15	142.89	35.75	15.00	20.75	18.68	42.90	27.90	25.11
20	119.95	30.01	15.00	15.01	18.01			
25	103.85	25.98	15.00	10.98	16.47			

T _c Variable (min)	i _{2yr} (mm/hour)	Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s)	Q _r (L/s)	Q _p -Q _r (L/s)	Volume 2yr (m³)
8	85.46	17.11	15.00	2.11	1.01
9	80.87	16.19	15.00	1.19	0.64
10	76.81	15.37	15.00	0.37	0.22
11	73.17	14.65	15.00	-0.35	-0.23
12	69.89	13.99	15.00	-1.01	-0.73

Required

0.22

Storage (m3)

Surface

20.59

0.80 Restricted Flow Q_r (L/s)= 2-Year Ponding

Storage (m3) 100+20 Required 25.11 Overflow Surface Sub-surface Balance Overflow Balance 20.59 0.00 0.00 4.52 0.00 5.02 overflows to: S10

overflows to: S10

Sub-surface

Balance

0.00

 $https://ibigroup.sharepoint.com/sites/Projects1/135925/Internal\ Documents/6.0_Technical/6.04_Civil/04_Design-Analysis/Submission\ No.1/CCS_swm$

1 of 3

Drainage Area	S10							
Area (Ha)	0.140)						
; =	1.00	Restricted Flow Q _r (L	/s)=	40.00				
		100-Year Pondin	ıg				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
-5	1716.01	667.87	40.00	627.87	-188.36			
0	398.62	155.14	40.00	115.14	0.00			
5	242.70	94.46	40.00	54.46	16.34	113.35	73.35	22.01
10	178.56	69.50	40.00	29.50	17.70			
15	142.89	55.61	40.00	15.61	14.05	1		

	St	orage (m3)				100+20	
Overflow 0.00	Required 16.34	Surface 0.32	Sub-surface 0	Balance 16.02	Overflow 4.52	Required 26.53	Balance 26.21
			L/s =	53.39		L/s =	87.36

Volume 100+20

(m3)

Drainage Area S20B

Qp - Qr (L/s)

48.42

Drainage Area S4

Area (Ha) 0.150
C = 1.00 Restricted Flow Q_r (L/s)= 26.00

100-Year Ponding 100Yr +20%

100-Year Pondi	ng			
Dook Flow				
Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQ 20%
r) (L/s)	(L/s)	(L/s)	(m³)	(L/s)
109.42	26.00	83.42	20.02	1
78.50	26.00	52.50	28.35	1
62.02	26.00	36.02	30.25	74.42
51.65	26.00	25.65	29.24	1
44.48	26.00	18.48	26.62]
	$Q_p = 2.78xCi_{100yr}A$ (L/s) 109.42 78.50 62.02 51.65	$Q_p = 2.78 \times Ci_{100yr} A$ (L/s) (L/s) (L/s) (L/s) (0.5)	$Q_p = 2.78 \times \text{Ci}_{100yr} A$ (L/s)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	St	orage (m³)				100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	30.25	1.16	0	29.09	0.00	40.67	39.51
			L/s =	34.64		L/s =	47.04
			overflows to: \$	S5			

Drainage Area	S20B							
Area (Ha)	0.040							
C =	1.00	Restricted Flow Q _r (L	./s)=	15.00				
		100-Year Pondir	ng				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q_r	Q _p -Q _r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
-4	977.56	108.70	15.00	93.70	-22.49			
1	351.38	39.07	15.00	24.07	1.44			
6	226.01	25.13	15.00	10.13	3.65	30.16	15.16	5.46
11	169.91	18.89	15.00	3.89	2.57			
16	137.55	15.30	15.00	0.30	0.28			

	St	orage (m3)		100+20			
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	3.65	1.41	0	2.24	0.00	5.46	4.05
			L/s =	6.22		L/s =	11.24
			averfloure to C	C E			

Drainage Area	S10							
Area (Ha)	0.140				_			
C =	0.80	Restricted Flow Q _r (I	_/s)=	40.00				
	2-Year Ponding							
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q_p - Q_r	Volume 2yr			
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)			
8	85.46	26.61	40.00	-13.39	-6.43			
9	80.87	25.18	40.00	-14.82	-8.00			
10	76.81	23.91	40.00	-16.09	-9.65			
11	73.17	22.78	40.00	-17.22	-11.36			
12	69.89	21.76	40.00	-18.24	-13.13			

	S	torage (m ³)		
Overflow	Required	Surface	Sub-surface	Balance
0.00	-9.65	0.32	0	0.00

overflows to: Barrett Farm Dr

Drainage Area	S4				
Area (Ha)	0.150				
C =	0.80	Restricted Flow Q _r (L	Restricted Flow Q _r (L/s)=		
		2-Year Pondir	ng		
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	28.51	26.00	2.51	1.20
9	80.87	26.98	26.00	0.98	0.53
10	76.81	25.62	26.00	-0.38	-0.23
11	73.17	24.41	26.00	-1.59	-1.05
12	69.89	23.32	26.00	-2.68	-1.93

		S	torage (m3)		
0	verflow	Required	Surface	Sub-surface	Balance
	0.00	-0.23	1.16	0	0.00

overflows to: S5

=	0.80	Restricted Flow Q _r (L 2-Year Pondir		15.00)
T _c Variable (min)	i _{2yr} (mm/hour)	Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s)	Q, (L/s)	Q _p -Q _r (L/s)	Volume 2yr (m³)
8	85.46	7.60	15.00	-7.40	-3.55
9	80.87	7.19	15.00	-7.81	-4.21
10	76.81	6.83	15.00	-8.17	-4.90
11	73.17	6.51	15.00	-8.49	-5.60
12	69.89	6.22	15.00	-8.78	-6.32

	S	torage (m³)			
Overflow	Required	Surface	Sub-surface	Balance	
0.00	-4.90	1.41	0	0.00	

overflows to: S5

Drainage Area	S5							
Area (Ha)	0.140							
C =	1.00	Restricted Flow Q _r (L	_/s)=	25.00				
		100-Year Pondii			100Yr +20%			
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
6	226.01	87.96	25.00	62.96	22.67			
11	169.91	66.13	25.00	41.13	27.14			
16	137.55	53.53	25.00	28.53	27.39	64.24	39.24	37.67
21	116.30	45.26	25.00	20.26	25.53			
26	101.18	39.38	25.00	14.38	22.43			

	St			100+20			
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
31.33	58.73	1.32	0	57.41	43.56	81.23	79.91
			L/s =	59.80		L/s =	83.24
			overflows to: S	66			

Alca (i ia)	0.140				
C =	0.80	Restricted Flow Q _r (L	_/s)=	25.00	
		2-Year Pondii	ng		
T _c	i-	Peak Flow	Q,	Q _n -Q _r	Volume
Variable	I _{2yr}	$Q_p = 2.78xCi_{2yr}A$	α,	∝ _p -∝ _r	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	26.61	25.00	1.61	0.77
q	80 87	25 18	25.00	0.18	0.10

Drainage Area

I _с Variable (min)	i _{2yr} (mm/hour)	Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s)	Q _r (L/s)	Q _ρ -Q _r (L/s)	2yr (m³)
8	85.46	26.61	25.00	1.61	0.77
9	80.87	25.18	25.00	0.18	0.10
10	76.81	23.91	25.00	-1.09	-0.65
11	73.17	22.78	25.00	-2.22	-1.46
12	69.89	21.76	25.00	-3.24	-2.33
		-			

	S	torage (m3)		
Overflow	Required	Surface	Sub-surface	Balance
0.00	-0.65	78.75	0	0.00

overflows to: S6

Drainage Area	S6	1							Drainage Area	
Area (Ha)	0.300	1							Area (Ha)	
C =	1.00	Restricted Flow Q _r (L	/s)=	55.00					C =	
	100-Year Ponding 100Yr									
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20	T _c Variable	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)	(min)	
8	199.20	166.13	55.00	111.13	53.34				8	
13	155.11	129.36	55.00	74.36	58.00				9	
18	128.08	106.82	55.00	51.82	55.97	128.19	73.19	79.04	10	
23	109.68	91.47	55.00	36.47	50.33				11	
28	96.27	80.29	55.00	25.29	42.49	1			12	

	Storage (m ³)					100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
57.41	113.37	9.71	0	103.66	79.91	158.95	149.24
			L/s =	95.98		L/s =	138.19
			overflows to: I	₹6			

Area (na)	0.300	'				
C =	0.80	Restricted Flow Q _r (I	55.00			
2-Year Ponding						
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q _p -Q _r	Volume 2yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
8	85.46	57.02	55.00	2.02	0.97	
9	80.87	53.96	55.00	-1.04	-0.56	
10	76.81	51.24	55.00	-3.76	-2.25	
11	73.17	48.82	55.00	-6.18	-4.08	
12	69.89	46.63	55.00	-8.37	-6.02	

		S	torage (m ³)		
_	Overflow	Required	Surface	Sub-surface	Balance
	0.00	-2.25	9.71	0	0.00

overflows to: R6

Drainage Area	R6	1							Drainage Area	R6	ı
Area (Ha)	0.170	Restricted Flow Q _r (L	/s)=	34.00					Area (Ha)	0.170	ı
C =	0.68	50% Restricted Flow	$Q_r (L/s)=$	17.00					C =	0.68	R
		100-Year Pondir	ng				100Yr +20%				
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q _r	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20	T _c Variable	i _{2yr}	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)	(min)	(mm/hour)	
5	242.70	78.00	17.00	61.00	18.30	1			8	85.46	Г
10	178.56	57.38	17.00	40.38	24.23				9	80.87	
15	142.89	45.92	17.00	28.92	26.03	55.11	38.11	34.30	10	76.81	
20	119.95	38.55	17.00	21.55	25.86				11	73.17	
25	103.85	33.37	17.00	16.37	24.56				12	69.89	Г

	Storage (m³)					100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
103.66	129.69	4.38	4.4	120.91	149.24	183.54	174.76
			L/s =	134.35		L/s =	194.18
			overflows to: [Delphinium Cre	es.		

Area (Ha) C =	0.170	Restricted Flow Q _r (L		17.00	
T _c Variable (min)	i _{2yr} (mm/hour)	Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 2yr (m³)
8	85.46	27.46	17.00	10.46	5.02
9	80.87	25.99	17.00	8.99	4.85
10	76.81	24.68	17.00	7.68	4.61
11	73.17	23.51	17.00	6.51	4.30
12	69.89	22.46	17.00	5.46	3.93

Overflow	Required	Surface	Sub-surface	Balance	
0.00	4.61	4.38	4.4	0.00	

Storage (m³)

overflows to: Delphinium Cre

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 Barrett Block 146

 DATE:
 2022-05-09

 FILE:
 135925-6.4.4

 REV #:
 1

 DESIGNED BY:
 AC

 CHECKED BY:
 RM

UNDERGROUND STORAGE CALCULATIONS - BARRETT BLOCK 146

Pipe Storage	Area R6				
From	То	Length	Diameter	X-sec Area	Volume
ECB1	RYCB1	28.60	250	0.049	1.40
RYCB1	ECB2	26.01	250	0.049	1.28
				Total	2.68

Structure St	orage	Are	a 3				
	Base	Тор		Height	diameter	X-sec Area	Volume
ECB 1	98.48	9	9.48	1.00	300	0.071	0.07
ECB2	98.40	9	9.40	1.00	300	0.071	0.07
RYCB1	98.08	9	9.48	1.40	1200	1.131	1.58
						Total	1.72

TOTAL AREA 2	4.41

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER JOB #: 352925 - 6.04
DATE: 2022-05-09
DESIGN: AC
CHECKED: RM
REV #: 1

FRICTION LOSS					7						
Block 146	FRICTION LOSS				MANNING F	FORMULA - F	LOWING FULL				
NOVERT ELEVATION (m) 96.000 96.001 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.541 96.400 96.540 96.400 96.540 96.40	Di1- 440			ID	DIA	A	Danisa	01	LLI.D.	1/-1	
DAME PROPERTY DAME DAME PROPERTY DAME	BIOCK 146	10	9								
DRIVERT ELEVATION (m)	NVERT ELEVATION (m)	98.030	98.091							. ,	
DAMETER (mm)				-1					ii ii		
LEIGHT	. ,	1		450	_				ii		
Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifold simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifolds simplified method p, 71 (MWDM) Head loss in manifold simplified method p, 71 (MWDM	, ,			11.1	_				21		
Head loss in manhole simplified method p, 71 (MAYOM) No. 1	. ,			210.00	i				<u> </u>		
MANNINGE COEF Ke 0.75 LOSS (m) 0.007		96.430	96 490		1	Head loss in	manhole simplifie	ad method n	71 (MM/DM)		1
MANHOLE COEF Ke 0.78 LOSS (m) 0.667	HGL (III)	90.430	30.430	- 0.060			•		7 I (IVIVV DIVI)	K0.75	
H		4		_				ends			
	MANHOLE COEF K= 0.7	5 LOSS (m)	0.067			,			1.32	m/s	
### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO PIPE MANNING FORMULA - FLOWING FULL ### PRICTION LOSS FROM TO						HL = K∟ * \	/^2/ 2g				
FRICTION LOSS			98.456								
Block 148	MAX. SURCHARGE (mm)	<u> </u>	-85		J						
Memory M		1			·						
Block 146 9 8	FRICTION LOSS				MANNING F	FORMULA - F	LOWING FULL				
NVERT ELEVATION (m)	71 1 4 4 9			ID	514	1 .	5 .	Lou			
O.45	BIOCK 146	9	8	_							
DAMATER ELEVATION (m)	INVERTELEVATION (m)	08 121	08 156								
DIAMETER (mm)									0.11	1.54	212.23
DESIGN FLOW DEPTH		96.571	96.000	450	_]] };		
FLOW (v/s)	. ,						,		41		
Head loss in manhole simplified method p. 71 (MWDM) Head loss in manhole simplified method p. 71 (, ,				DESIGN FL	OW DEFIN -		0.302	<u>:11</u>		
MANHOLE COEF K= 0.78 LOSS (m) 0.044		<u> </u>			4						-
MANHOLE COEF K= 0.78 LOSS (m)	HGL (m) ***	98.456	98.478	0.022		Head loss in	manhole simplifie	ed method p. 7	71 (MWDM)		
TOTAL HGL (m) 98.522 MAX. SURCHARGE (mm) 98.522 MAX. SURCHARGE (mm) 98.522 MAX. SURCHARGE (mm) 98.186 8 7 DA Area Perim. Slope Hyd. R. Vel. (m) (m/2) (m) (s/6) (m) (m/s) (s/6) DIAMETER (mm) 98.536 98.972 DIAMETER (mm) 98.522 98.787 DESIGN FLOW TO FULL FLOW RATIO (G. 0.889) LENGTH (m) 98.522 98.787 OZAB DESIGN FLOW TO FULL FLOW RATIO (G. 0.710) MANNING FORMULA - FLOWING FULL Head loss in manhole simplified method p. 71 (MWDM) straight through was straight through (m/2) (m/2) (m/3) (m						fig1.7.1, Krat	tio = 0.75 for 45 b	ends		K _L =0.75	
HL = KL * V^2/2 g	MANHOLE COEF K= 0.7	5 LOSS (m)	0.044	=		Velocity = FI	ow / Area =		1.07	m/s	
Second S				=		,					
## PRICTION LOSS FROM MH MH MH D D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D P MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH MH D MANNING FORMULA - FLOWING FULL ## PRICTION LOSS FROM MH	TOTAL HGL (m)		98.522	=			, -9				1
FRICTION LOSS				=							
MH					<u> </u>						
MH					7						
MH	FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - F	LOWING FULL				
NVERT ELEVATION (m)		MH	MH	ID							
NVERT ELEVATION (m)	Block 146	8	7		DIA		Perim.		Hyd.R.		
Second					_ ` /	\ /	. ,			, ,	. ,
DESIGN FLOW TO FULL FLOW RATIO (\(\) 0.889 DESIGN FLOW TO FULL FLOW RATIO (\(\) 0.889 DESIGN FLOW DEPTH = 0.329 DESIGN FLOW TO FULL FLOW RATIO (\(\) (II) DESIGN FLOW TO FULL FLOW RATIO (\(\) (III) DESIGN FLOW TO FULL FLOW RATIO (\(\) (III) DESIGN FLOW DEPTH = 0.279 DESIGN FLOW DEPTH = 0.279 DESIGN FLOW DEPTH = 0.86 m/s DESIGN FLOW DEPTH = 0.86 m/s DESIGN FLOW DEPTH = 0.86 m/s DESIGN FLOW Area = 0.86 m/s DESIGN FLO	, ,						1.41	0.450	0.11	1.20	191.17
LENGTH (m)		98.636	98.972		_][
TOTAL HGL (m) SINCE SINC	, ,								21		
Head loss in manhole simplified method p. 71 (MWDM) straight through KL = 0.05	LENGTH (m)			74.7	DESIGN FL	OW DEPTH =		0.329	<u>ll</u>		
MANHOLE COEF K= 0.05 LOSS (m) 0.003 Straight through Velocity = Flow / Area = 1.07 m/s HL = KL * V^2/ 2g	FLOW (I/s)			170.00							
Straight through KL=0.05	HGL (m) ***	98.522	98.787	0.266	1	Head loss in	manhole simplifie	ed method p.	71 (MWDM)		1
MANHOLE COEF K= 0.05 LOSS (m) 0.003 Velocity = Flow / Area = 1.07 m/s		1		=1		straight throu	ıah .	•	,	Kı=0.05	
HL = KL * V^2/ 2g	MANHOLE COEE K- 0.0	E LOSS (m)	0.003	=			-		1.07		
MANNING FORMULA - FLOWING FULL	MANHOLE COEF K- 0.0	5 LO33 (III)	0.003	- 					1.07	111/5	
MAX. SURCHARGE (mm)	TOTAL LIQUIA	_		4		TL - KL	v-2/29				
FRICTION LOSS	7	1 1		_							
MH	MAX. SURCHARGE (mm)	<u> </u>	-121								
MH					7						
MH	EDICTION LOSS	EDOM I	TO.	DIDE	MANNING	ODMI!! A F	LOWING THE				
DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (m3) (m) (m3) (m	FRICTION LOSS				MANNING	-ORIVIOLA - FI	LOWING FULL				
MONTH Mont	Block 146			10	DIA	Area	Perim	Slone	Hvd R	Vel	0
NVERT ELEVATION (m) 98.552 98.587 0.45 0.16 1.41 0.450 0.11 1.20 191.50				1							
OBVERT ELEVATION (m) 99.002 99.037 HYDRAULIC SLOPE = 0.25 % DIAMETER (mm) 450 DESIGN FLOW TO FULL FLOW RATIO (Q ₀ 0.710) LENGTH (m) 7.8 DESIGN FLOW DEPTH = 0.279 FLOW (l/s) 136.00 HGL (m) **** 98.851 98.868 MANHOLE COEF K= 0.05 LOSS (m) 0.002 MANHOLE COEF K= 0.05 LOSS (m) 0.002 TOTAL HGL (m) 98.870	INVERT ELEVATION (m)	98.552	98.587	-1 1	_ ` '	. ,				, ,	
DIAMETER (mm)				ᅰ					i i		
TOTAL HGL (m) T.8 DESIGN FLOW DEPTH = 0.279				450					ii		
Head loss in manhole simplified method p. 71 (MWDM) Straight through KL=0.05 WANHOLE COEF K= 0.05 LOSS (m) 0.002 USS (m)	, ,										
Head loss in manhole simplified method p. 71 (MWDM) Straight through KL=0.05 WANHOLE COEF K= 0.05 LOSS (m) 0.002 USS (m) USS	• • • • • • • • • • • • • • • • • • • •	1			 			5.2.7	1		
Note (iii) St.		00.074	20.222	_	#	Use at 1			74 (1.014/214)		1
MANHOLE COEF K= 0.05 LOSS (m) 0.002 Velocity = Flow / Area = 0.86 m/s HL = KL * V^2/ 2g TOTAL HGL (m) 98.870	IHGL (M)	98.851	98.868	U.018				ea metnod p.	/ I (MWDM)	14 0 0 =	
HL = K _L * V ² / 2g TOTAL HGL (m) 98.870	()			ll .		etraight throu	Jah			KL=0.05	
TOTAL HGL (m) 98.870					III	Straight thiot	-9				
TOTAL HGL (m) 98.870		5 LOSS (m)	0.002			-	-		0.86	m/s	
		5 LOSS (m)	0.002			Velocity = Fl	ow / Area =		0.86	m/s	
	MANHOLE COEF K= 0.0	5 LOSS (m)				Velocity = Fl	ow / Area =		0.86	m/s	

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER

DESIGN: CHECKED: REV #:

JOB #: 352925 - 6.04 DATE: 2022-05-09 DESIGN: AC

CKED: RM REV#: 1

FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING FORMULA - FLOWING FULL							
Block 146	6	5		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q	
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)	
INVERT ELEVATION (m)	98.617	98.753		0.45	0.16	1.41	0.450	0.11	1.20	190.76	
OBVERT ELEVATION (m)	99.067	99.203		HYDRAULIC	SLOPE =	0.53	%				
DIAMETER (mm)			450	DESIGN FL	OW TO FULL	FLOW RATIO (Q	0.713				
LENGTH (m)			30.4	DESIGN FLOW DEPTH = 0.279							
FLOW (I/s)			136.00					-			
HGL (m) ***	98.870	98.939	0.069		Head loss in	manhole simplifie	ed method p. 7	71 (MWDM)			
			ĺ		straight thro	ugh			KL=0.05		
MANHOLE COEF K= 0.05	LOSS (m)	0.002	i		Velocity = FI	low / Area =		0.86	m/s		
			1		HL = K∟ * `	V^2/ 2g					
TOTAL HGL (m)		99.032								•	
MAX. SURCHARGE (mm)		-171	1								

FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING FORMULA - FLOWING FULL							
Block 146	5	4		DIA (m)	Area (m2)	Perim. (m)	Slope (%)	Hyd.R. (m)	Vel. (m/s)	Q (I/s)	
INVERT ELEVATION (m)	98.848	98.963		0.375	0.11	1.18	0.300	0.09	0.87	96.19	
OBVERT ELEVATION (m)	99.223	99.338		HYDRAULIC	SLOPE =	0.32	%				
DIAMETER (mm)			375	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	0.530	l			
LENGTH (m)			38.2	DESIGN FLO	OW DEPTH =	i	0.191				
FLOW (I/s)			51.00					1		_	
HGL (m) ***	99.032	99.064	0.032	1	Head loss in	manhole simplifie	d method p. 7	1 (MWDM)			
					straight throu	ugh			KL=0.05		
MANHOLE COEF K= 0.05	LOSS (m)	0.001			Velocity = Fl	ow / Area =		0.46	m/s		
					HL = K∟ * \	V^2/ 2g					
TOTAL HGL (m)		99.154		1							
MAX. SURCHARGE (mm)		-184									

FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - F	LOWING FULL					
	MH	MH	ID)							
Block 146	5	20		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q	
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)	
INVERT ELEVATION (m)	99.013	99.314		0.25	0.05	0.79	0.450	0.06	0.81	39.90	
OBVERT ELEVATION (m)	99.263	99.564		HYDRAULIC	SLOPE =	0.66	%				
DIAMETER (mm)			250	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	0.752	1			
LENGTH (m)			66.8	DESIGN FLOW DEPTH = 0.160							
FLOW (I/s)			30.00					1			
HGL (m) ***	99.032	99.202	0.170	1	Head loss in	manhole simplifie	d method p. 7	1 (MWDM)			
			1		straight throu	ugh			KL=0.05		
MANHOLE COEF K= 0.05	LOSS (m)	0.001	1		Velocity = Fl	ow / Area =		0.61	m/s		
			1		HL = K _L * \	V^2/ 2g					
TOTAL HGL (m)		99.474	i	∥ '	•					<u>I</u> I	
MAX. SURCHARGE (mm)		-90	1								

FRICTION LOSS	FROM	ТО	PIPE	MANNING FORMULA - FLOWING FULL								
	MH	MH	ID									
Block 146	4	21		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q		
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)		
INVERT ELEVATION (m)	99.198	99.432		0.2	0.03	0.63	0.600	0.05	0.81	25.39		
OBVERT ELEVATION (m)	99.398	99.632		HYDRAULIC	SLOPE =	0.00	%					
DIAMETER (mm)			200	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	0.000	1				
LENGTH (m)			39.0	DESIGN FLO	OW DEPTH =		0.002					
FLOW (I/s)			0.00					4				
HGL (m) ***	99.474	99.474	0.000		Head loss in	manhole simplifie	d method p. 7	'1 (MWDM)				
			i		straight throu	ıgh			KL=0.05			
MANHOLE COEF K= 0.05	LOSS (m)	0.000	i		Velocity = Flo	ow / Area =		0.00	m/s			
	` '				HL = K∟ * \	/^2/ 2g						
TOTAL HGL (m)		99.474		1					<u> </u>			
MAX. SURCHARGE (mm)		-158										

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA

DEVELOPPER

JOB #: 352925 - 6.04 DATE: 2022-05-09 DESIGN: AC CHECKED: RM

(l/s)

(l/s)

(m/s)

Vel.

(m/s)

REV #:

FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - FI	LOWING FULL				
	MH	MH	ID							
Block 146	4	3		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	99.058	99.168		0.3	0.07	0.94	0.350	0.08	0.81	56.95
OBVERT ELEVATION (m)	99.358	99.468		HYDRAULIC	SLOPE =	0.49	%			
DIAMETER (mm)			300	DESIGN FLO	W TO FULL	FLOW RATIO (Q	0.457	1		
LENGTH (m)			31.7	DESIGN FLO)W DEPTH =	i	0.141			
FLOW (I/s)			26.00					1		
HGL (m) ***	99.154	99.177	0.023		Head loss in	manhole simplifie	d method p. 7	1 (MWDM)		
					straight throu	ıgh			KL=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = Flo	ow / Area =		0.37	m/s	
					HL = K _L * \	/^2/ 2g				
TOTAL HGL (m)		99.309		∥ '						•
MAX. SURCHARGE (mm)		-159								

FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING FORMULA - FLOWING FULL			
Block 146	3	2		DIA (m)	Area (m2)	Perim. (m)	
INVERT ELEVATION (m)	99.298	99.342	1	0.2	0.03	0.63	
OBVERT ELEVATION (m)	99.498	99.542		HYDRAULIC	SLOPE =	0.48	
DIAMETER (mm)			200	DESIGN FLO	OW TO FULL	. FLOW RATIO (Q	
LENGTH (m)			7.3	DESIGN FLOW DEPTH =			
FLOW (I/s)			0.00				
HGL (m) ***	99.309	99.309	0.000		Head loss in	manhole simplified	
					straight thro	ugh	
MANHOLE COEF K= 0.05	LOSS (m)	0.000	1		Velocity = FI	low / Area =	
			1		HL = K∟ * `	V^2/ 2g	
TOTAL HGL (m)		99.344]				
MAX. SURCHARGE (mm)		-198		JI			

Head loss in manhole simplified method p. 71 (MWDM) KL=0.05 straight through Velocity = Flow / Area = 0.00 m/s HL = K∟ * V^2/ 2g

Slope (%)

0.000

0.002

Slope (%)

0.600

0.000

0.002

0.05

Hyd.R.

(m)

				1				
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING F	MANNING FORMULA - FLOWING FULL			
Block 146	2	1		DIA	Area	Perim.	Ī	
INVERT ELEVATION (m)	99.372	99.514	4	(m) 0.2	(m2) 0.03	(m) 0.63	Ŧ	
OBVERT ELEVATION (m)	99.572	99.714	1	HYDRAULIC SLOPE =				
DIAMETER (mm)			200	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	U	
LENGTH (m)			23.7	DESIGN FLOW DEPTH =				
FLOW (I/s)			0.00					
HGL (m) ***	99.344	99.344	0.000]	Head loss in	manhole simplifie	d	
					straight throu	ugh		
MANHOLE COEF K= 0.05	LOSS (m)	0.000]		Velocity = Fl	ow / Area =		
					HL = K _L * \	√^2/ 2g		
TOTAL HGL (m)		99.516		•				
MAX. SURCHARGE (mm)		-198	7					

Head loss in manhole simplified method p. 71 (MWDM) KL=0.05 straight through 0.00 m/sVelocity = Flow / Area = HL = K∟ * V^2/ 2g

IBI GROUP REPORT
PROJECT: 34731-5.2.2
DESIGN BRIEF
BARRETT LANDS - PHASE 3
3100 LEITRIM ROAD
LEITRIM DEVELOPMENT AREA
Prepared for BARRETT CO-TENANCY

Table 5.10 Storm Hydraulic Grade Line - Local Sewers within Barrett Lands Phase 3 for the 100 Year 3 Hour Chicago and 100 Year 3 Hour Chicago increased by 20% Storm Events

			STORM HYDRAULIC GRADE LINE (1)										
			100 YEAR 3 H	OUR CHICAG	iO		100 YEAR 3 HOU	IR CHICAGO +	+ 20 %				
XPSWMM NODE	USF (M)	RARE EVE	NT SANITARY	ANNUAL EV	ENT SANITARY	RARE EVE	NT SANITARY	ANNUAL E	ENT SANITARY				
			LOW USF-HGL	F	LOW		LOW USF-HGL		LOW				
		HGL (M)*	(M)	HGL (M)*	USF-HGL (M)	HGL (M)*	(M)	HGL (M)*	USF-HGL (M)				
MH11300	95.63	93.91	1.72	93.91	1.72	93.96	1.67	93.96	1.67				
MH11301	96.58	94.96	1.62	94.96	1.62	94.96	1.62	94.96	1.62				
MH11302	97.98	95.70	2.28	95.70	2.28	95.71	2.27	95.71	2.27				
MH11303	98.67	96.23	2.44	96.23	2.44	96.23	2.44	96.23	2.44				
MH11304	99.23	96.36	2.87	96.36	2.87	96.36	2.87	96.36	2.87				
MH11305	99.28	96.43	2.85	96.43	2.85	96.43	2.85	96.43	2.85				
MH11311	96.38	94.90	1.48	94.90	1.48	94.90	1.48	94.90	1.48				
MH11312	97.28	95.85	1.43	95.85	1.43	95.85	1.43	95.85	1.43				
MH11313	97.48	96.13	1.35	96.13	1.35	96.13	1.35	96.13	1.35				
MH11314	98.63	97.27	1.36	97.27	1.36	97.27	1.36	97.27	1.36				
MH11315	100.93	99.51	1.42	99.51	1.42	99.51	1.42	99.51	1.42				
MH11316	100.93	99.60	1.33	99.60	1.33	99.60	1.33	99.60	1.33				
MH11321	97.63	96.11	1.52	96.11	1.52	96.11	1.52	96.11	1.52				
MH11322	97.88	96.61	1.27	96.61	1.27	96.61	1.27	96.61	1.27				
MH11323	100.08	98.80	1.28	98.80	1.28	98.80	1.28	98.80	1.28				
MH11331	98.93	97.60	1.33	97.60	1.33	97.60	1.33	97.60	1.33				
MH11332	98.93	97.73	1.21	97.73	1.21	97.73	1.21	97.73	1.21				
MH11333	100.38	98.71	1.67	98.71	1.67	98.71	1.67	98.71	1.67				
MH11334	100.88	99.24	1.64	99.24	1.64	99.24	1.64	99.24	1.64				
MH11350	96.48	95.77	0.71	95.77	0.71	95.77	0.71	95.77	0.71				
MH11351	96.63	95.42	1.21	95.42	1.21	95.42	1.21	95.42	1.21				
MH11400	95.43	94.56	0.87	94.56	0.87	94.59	0.84	94.59	0.84				
MH11401	96.03	94.85	1.18	94.85	1.18	94.89	1.14	94.89	1.14				
MH11402	95.78	94.89	0.89	94.89	0.89	94.94	0.84	94.94	0.84				
MH11403	96.01	95.06	0.95	95.06	0.95	95.11	0.90	95.11	0.90				
MH11404	96.73	95.62	1.11	95.62	1.11	95.63	1.10	95.63	1.10				
MH11405	97.13	96.03	1.10	96.03	1.10	96.03	1.10	96.03	1.10				
MH11406	97.68	96.77	0.91	96.77	0.91	96.77	0.91	96.77	0.91				
MH11407	98.08	97.23	0.85	97.23	0.85	97.23	0.85	97.23	0.85				
MH11408	98.73	97.49	1.24	97.49	1.24	97.49	1.24	97.49	1.24				

[|] MH11408 | 98.73 | 97.49 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24 |

APRIL 2022 34

Barrett Block 146 2022-05-06 Barrett Co-Tenancy

Ditch S6 New Ditch Section Required 1:10	00 yr. flow = 95.98 l/s	Length = 17.26 m 0.096 Cu m/sec		
From Seelye use n = choose: slope S =	0.013 (Channels) 12.17 %	Up Stream Ditch btm=	area= 102.10 wp=	0.04
Ditch Bottom	0.00 metres	Dn Stream Ditch Btm =	100.00	1.00
Ditch slopes Water depth	20.00 :1 0.047 metres (depth neer	Difference = ded to carry 0.13 Cu. M/sec)	2.10 Top Bank = 100.15	
Check Ditch Capacity (Q) Q =	0.097 Cu M/sec	and Velocity = 2.20 M/s	Free Board = 0.10	
	0.097 Cd Misec			
Ditch S6 New Ditch Section Required 1:10	00 vr +20% flow = 138 19 l/s	Length = 17.26 m 0.138 Cu m/sec		
From Seelye use n =	0.013 (Channels)		area=	0.06
choose: slope S = Ditch Bottom	12.17 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.10 wp= 100.00	2.16
Ditch slopes Water depth	20.00 :1	Difference =	2.10 Top Bank = 100.15	
Water depth Check Ditch Capacity (Q)		ded to carry 0.13 Cu. M/sec)	Free Board = 0.10	
Q =	0.141 Cu M/sec	and Velocity = 2.41 M/s		
Ditch S10		Length = 38.00 m		
New Ditch Section Required 1:10 From Seelye use n =	00 yr. flow = 53.39 l/s 0.013 (Channels)	0.053 Cu m/sec	area=	0.09
choose: slope S =	0.89 %	Up Stream Ditch btm=	101.44 wp=	3.37
Ditch Bottom Ditch slopes	0.00 metres 33.00 :1	Dn Stream Ditch Btm = Difference =	101.10	
Water depth Check Ditch Capacity (Q)	0.051 metres (depth need	ded to carry 0.13 Cu. M/sec)	Top Bank = 101.25 Free Board = 0.10	
Q =	0.054 Cu M/sec	and Velocity = 0.63 M/s	Pree Board - 0.10	
Ditch S10		Length = 38.00 m		
New Ditch Section Required 1:10		0.047 Cu m/sec		
From Seelye use n = choose: slope S =	0.013 (Channels) 0.89 %	Up Stream Ditch btm=	area= 101.44 wp=	0.08
Ditch Bottom	0.00 metres	Dn Stream Ditch Btm =	101.10	
Ditch slopes Water depth	33.00 :1 0.049 metres (depth neer	Difference = ded to carry 0.13 Cu. M/sec)	0.34 Top Bank = 101.25	
Check Ditch Capacity (Q)	0.049 Cu M/sec	and Velocity = 0.61 M/s	Free Board = 0.10	
Q =	0.049 Cu M/sec			
Ditch S20 New Ditch Section Required 1:10	00 or flow = 0 l/-	Length = 26.64 m 0.000 Cu m/sec		
From Seelye use n =	0.013 (Channels)		area=	0.00
choose: slope S = Ditch Bottom	3.72 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.39 wp= 101.40	0.01
Ditch slopes	33.00 :1	Difference =	0.99	J
Water depth Check Ditch Capacity (Q)	0.000 metres (depth nee	ded to carry 0.13 Cu. M/sec)	Top Bank = 101.55 Free Board = 0.15	J
Q=	0.000 Cu M/sec	and Velocity = 0.02 M/s		
Ditch S20		Length = 26.64 m		
New Ditch Section Required 1:10 From Seelye use n =	00 yr. +20% flow = 5.02 l/s 0.013 (Channels)	0.005 Cu m/sec	area=	0.01
choose: slope S =	3.72 %	Up Stream Ditch btm=	102.39 wp=	1.06
Ditch Bottom Ditch slopes	0.00 metres 33.00 :1	Dn Stream Ditch Btm = Difference =	101.40 0.99	
Water depth		ded to carry 0.13 Cu. M/sec)	Top Bank = 101.55	
Check Ditch Capacity (Q) Q =	0.005 Cu M/sec	and Velocity = 0.59 M/s	Free Board = 0.13	
Ditch S20B New Ditch Section Required 1:10	00 yr. flow = 6.22 l/s	Length = 37.00 m 0.006 Cu m/sec		$\overline{}$
From Seelye use n = choose: slope S =	0.013 (Channels) 0.85 %	Up Stream Ditch btm=	area= 102.47 wo=	0.02
Ditch Bottom	0.00 metres	Dn Stream Ditch Btm =	102.15	1.02
Ditch slopes Water depth	33.00 :1 0.023 metres (depth nee	Difference = ded to carry 0.13 Cu. M/sec)	0.32 Top Bank = 102.3	
Check Ditch Capacity (Q)			Free Board = 0.13	
Q =	0.006 Cu M/sec	and Velocity = 0.36 M/s		
DO 1 0000				
Ditch S20B		Length = 37.00 m		_
New Ditch Section Required 1:10	00 yr. +20% flow = 11.24 l/s 0.013 (Channels)	Length = 37.00 m 0.011 Cu m/sec	area=	0.03
New Ditch Section Required 1:10 From Seelye use n = choose: slope S =	0.013 (Channels) 0.86 %	0.011 Cu m/sec Up Stream Ditch btm=	102.47 wp=	0.03 1.85
New Ditch Section Required 1:10 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1	0.011 Cu m/sec Up Stream Ditch btm= Dn Stream Ditch Btm = Difference =	102.47 wp= 102.15 0.32	
New Ditch Section Required 1:10 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1	0.011 Cu m/sec Up Stream Ditch btm= Dn Stream Ditch Btm =	102.47 wp= 102.15 0.32 Top Bank = 102.3	
New Ditch Section Required 1:10 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1	0.011 Cu m/sec Up Stream Ditch btm= Dn Stream Ditch Btm = Difference =	102.47 wp= 102.15 0.32	
New Ditch Section Required 1:10 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (O)	0.013 (Channels) 0.85 % 0.00 metres 33.00 :1 0.028 metres (depth nee	0.011 Cu misec Up Stream Ditch bitm= Dn Stream Ditch Btm = Difference = ded to carry 0.13 Cu. M/sec)	102.47 wp= 102.15 0.32 Top Bank = 102.3	
New Ditch Section Required 1:10 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (0) Q = Ditch Stopes New Ditch Section Required 1:10	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1 0.028 metres (depth nee-	0.011 Cu m/sec Up Stream Ditch bitm= On Stream Ditch Bitm = Difference = ded to carry 0.13 Cu. M/sec) and Velocity = 0.42 M/s	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12	1.85
New Ditch Section Required 1:10 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q) Q = Ditch S5 New Ditch Section Required 1:10 From Seelye use n = choose: slope S =	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1 0.028 metres (depth nee- 0.011 Cu M/sec 0.013 (Channels) 1.20 %	0.011 Cu misec Up Stream Ditch bim= Dn Stream Ditch Btm = Difference = Difference = ded to carry 0.13 Cu. Misec) and Velocity = 0.42 Mis Length = 21.30 m Up Stream Ditch bim=	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 area= 102.47 wp=	
New Ditch Section Required 1:10 From Seelye use 1 choose: slope S = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q) Q = Ditch SS New Ditch Section Required 1:10 From Seelye use n = choose: slope S = Ditch Bottom	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1 0.028 metres (depth nee 0.011 Cu M/sec 0.011 Cu M/sec 1.20 % 0.013 (Channels) 1.20 % 0.00 metres	0.011 Cu mixec Up Stream Dich bitm= Dn Stream Dich Bitm = Difference = ded to carry 0.13 Cu Mixe) and Velocity = 0.42 Mix Length = 21.30 m 0.000 Cu mixec Up Stream Dich bitm= Dn Stream Dich Bitm =	102.47 wp= 102.15 102.15 Top Bank = 102.3 Free Boand = 0.12 area= 102.47 wp= 102.15	0.09
New Ditch Section Required 1:10 From Seelys use 150pc 8 =	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1 0.022 metres (depth nee 0.011 Cu Misec 0.011 (Channels) 1.20 % 0.00 metres 0.00 metres 33.00 :1	0.011 Cu misec Up Stream Ditch bim= Dn Stream Ditch Btm = Difference = Difference = ded to carry 0.13 Cu. Misec) and Velocity = 0.42 Mis Length = 21.30 m Up Stream Ditch bim=	102.47 wp= 102.16 0.32 Top Blank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Blank = 102.3	0.09
New Ditch Section Required 1:16 From Seely use 1: shoose: slope \$= shoose: slope \$= shoose: slope \$= Ditch slopes Water depth Check Ditch Capacity (c) Q = Ditch \$6 New Ditch Section Required 1:16 From Seely use n = choose: slope \$= Ditch Bottom Ditch slopes	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1 0.022 metres (depth nee 0.011 Cu Misec 0.011 (Channels) 1.20 % 0.00 metres 0.00 metres 33.00 :1	0.011 Cu misec Up Stream Ditch bitm = Dn Stream Ditch Bitm = Dn Stream Ditch Bitm = ded to carry 0.13 Cu. Misec) and Velocity = 0.42 Mis Length = 2.130 m 0.000 Cu misec Up Stream Ditch Bitm = Dn Stream Ditch Bitm = Dn Stream Ditch Bitm =	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 sp= 102.16 0.32 Free Board = 102.3 Free Board = 102.3	0.09
New Ditch Section Required 1:10 From Seely use 15 cps 5 = choose: slope 5 = choose: Stope 5 = Ditch Bettom Ditch slopes Ditch Section Check Ditch Capacity (Q) Ditch S5 New Ditch Section Required 1:10 Prom Beelye use 1 = dhoose: Ditch Bettom Ditch Section Required 1:10 Ditch S5 New Ditch Section Required 1:10 Ditch S6 New Ditch Section Required 1:10 Ditch S6 New Ditch Section Required 1:10 Ditch S6 Ditch S6 Ditch Section Required 1:10 Ditch S6 D	0.013 (Channels) 0.86 % 0.00 metres 33.00 :1 0.028 metres (depth nee 0.011 Cu Misec 0.011 (Cu Misec 0.013 (Channels) 1.20 % 0.00 metres 3.00 :1 0.051 metres (depth nee	BOTT C milec Up Steam Did bear Di Steam Did Steam Di Steam Did Steam Di	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 sp= 102.16 0.32 Free Board = 102.3 Free Board = 102.3	0.09
New Ditch Section Required 1.15 From Seely use or slope 8 = choose: slope 8 = choose: slope 8 = choose: Water depth Check Ditch Section Required 1.15 Ditch 55 New Ditch Section Required 1.15 Section Section Required 1.15 Ditch 56 Ditch 5	0.013 (Channels) 0.06 1/k 0.00 metes 3.3.00 :1 0.028 metes (depth nee 0.011 Cu Misec 0.011 Cu Misec 0.07 : flow = 98.8 lis 0.013 (Channels) 0.00 metes 3.3.00 :1 0.00 metes 0.003 Cu Misec 0.003 Cu Misec	0.011 Cu misec Up Stream Ditch blem= Dis Stream Ditch Blem = Difference = and Velocity = 0.42 Mis Length = 0.21.30 m sec 0.000 Cu misec Up Stream Ditch Blem = Difference = Difference = ded to carry 0.13 Cu. Misec)	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 sp= 102.16 0.32 Free Board = 102.3 Free Board = 102.3	0.09
New Duth Section Required 1156 Fermi Seeley use in schoose 1 signs S = thickness is signs S = thickness is signs S = thickness in Seeley use in 1 shows Duth Section Required 1156 Fermi Seeley use in 1 shows Duth Section Required 1156 Fermi Seeley use in 1 shows Duth Section Seeley use in 1 shows Duth Section Seeley use in 1 shows Duth Section Seeley use in 1 shows Duth Seeley use in 1 shows Duth Section Seeley use in 1 shows Duth Seeley	0.013 (Channels) 0.06 % 0.00 metes 3.3.00 :1 0.028 metres (depth nee 0.011 Cu Misec 0.011 Cu Misec 0.013 (Channels) 1.20 % 0.00 metes 3.30.0 :1 0.00 metes 0.001 (depth nee 0.063 Cu Misec	0.011 C in misses. Up Stream Dilich biter:	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 sp= 102.16 0.32 Free Board = 102.3 Free Board = 102.3	0.09
New Duth Section Required 11/6 Ferm Seleyie use in schoolses days 8 in street of the selection of the select	0.013 (Channels) 0.05 (N 0.00 metes 3.310: 11 0.00 metes 3.310: 10 0.00 metes (depth nee 0.011 (Channels) 1.00 N 0.013 (Channels) 1.00 N 0.013 (Channels) 1.00 N 0.00 metes 0.003 Channels) 1.00 N 0.00 metes 0.003 Channels	0.011 Cum mixes 1	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 Top Bank = 102.3 Free Board = 0.10	0.09
New Duth Seaton Required 11/6 From Seleyie use n = schoose: sleg 8 Bitter	0.013 (Channels) 0.05 % 0.00 metes 3.3.00 .1 8.022 metes (depth nee 0.011 Ch Mesc 0.011 Ch Mesc 0.013 (Channels) 1.20 % 0.00 metes 3.30.01 1 0.00 metes 0.003 Cu Mesc 0.003 (Channels) 1.20 % 0.00 metes 3.30.01 1 0.00 metes 3.30.01 3	0.011 Cu milece Up Stream Ditch berr Do Beream Ditch berr Do Good Cur menc Up Stream Ditch berr Do Stream Ditch berr	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10	0.09
New Duth Section Required 11/6 From Seleyie use in shoose: sleye S = Dath Bosom From Seleyie use in shoose: sleye S = Dath Bosom From Seleyie use in Seleyie S = Dath Bosom From Seleyie use in shoose: sleye S =	0.013 (Chamnels) 0.05 % 0.00 metes 0.028 metes (depth nea 0.028 metes (depth nea 0.028 metes (depth nea 0.011 Cu Metes 0.011 Cu Metes 0.03 (Chamnels) 0.03 (Chamnels 0.03 Ch Metes 0.04 (depth nea 0.05 Ch Metes 0.0	0.011 C to missec. Up Stream Ditch Stem = Dis Stream Ditch Stem = Distream Stem = Distream =	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.50 Top Bank = 102.3 Free Board = 0.10 ATRIBUTION ATRIBUTI	0.09
New Duth Seaton Required 11/6 From Seleyie use 1 - schoolses 4 (sep 5 8 cm) of the selection of the selectio	0.013 (Channels) 0.05 % 0.00 metes 3.3.00 .1 8.022 metes (depth nee 0.011 Ch Mesc 0.011 Ch Mesc 0.013 (Channels) 1.20 % 0.00 metes 3.30.01 1 0.00 metes 0.003 Cu Mesc 0.003 (Channels) 1.20 % 0.00 metes 3.30.01 1 0.00 metes 3.30.01 3	0.011 C in milesc. Up Stream Dicts berr	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10	0.09
New Duth Section Required 11/6 From Seelye use in a choose size of the Duth Debton Berlin Seel (1996 S = 10 thoose size of the Duth Debton Duth Debton Duth Debton Duth Debton Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of the Duth Seel (1996 S = 10 thoose size of thoose size of the Duth Seel (1996 S = 10 thoose size of thoose size	0.013 (Channels) 0.05 % 0.05 % 0.00 metes 0.028 metes (depth nos 0.028 metes (depth nos 0.011 Cu Mines 1.20 % 0.011 Cu Mines 1.20 % 0.00 metes 3.30.0 : 1 0.05 yr -20% floor = 83.24 is 0.07 yr -20% floor = 83.24 is 0.07 cmetes 3.30.0 : 1 0.07 yr -20% floor = 83.24 is 0.00 yr -20% floor = 83.24 is 0.00 yr -20% floor = 83.24 is 0.00 yr -20% floor = 83.24 is	0.011 Cum mixes Up Stream Ditab them = Dit Beheam Ditab them = Ditab them Ditab t	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10	0.09
New Duth Section Required 115 (Firm Seelye use n = shoose: sley 6 = s = those sley 6 = s = Date Between Seelye 1 = sley 6 = sleep 6 = sleep 6 = sley 6 = sleep 6 =	0.013 (Charmels) 0.05 th 0.00 metes 0.00 metes 0.002 metes (depth nee 0.022 metes (depth nee 0.011 (Du Mare) 0.011 (Du Mare) 0.011 (Du Mare) 0.003 (Charmels) 1.00 th 0.00 metes 3.30.0 :1 0.00 metes 3.30.0 :1 0.00 yr -20 M fore = 8.3 24 (s 0.013 (Charmels) 1.00 th 0.005 metes (depth nee 0.004 Charmels)	0.011 C in misses. 10 p Stream Ditch bear 10 n Stream Ditch bear 10 0.000 C in misses. 10 DOS C in misses. 10 DOS C in misses. 10 DOS C in misses. 10 p Stream Ditch bear 10 DOS C in misses. 10 DOS C in misses. 10 p Stream Ditch bear 10 DOS C in misses. 10 p Stream Ditch bear 10	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.50 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 wp= 102.50 Top Bank = 102.3 Free Board = 0.00	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Firm Seeple use in shoose: 4 (a) 6 (a) 6 (b) 6 (b) 6 (c) 6	0.013 (Channels) 0.05 (N 0.00 metes 3.3100 11 0.007 metes (depth new 0.011 (Channels) 0.011 (Channels) 0.013 (Channels) 1.00 metes 3.300 11 0.0081 metes (depth new 0.003 (Channels) 1.00 (N 0.0081 metes (depth new 0.003 (Channels) 1.00 (N 0.0081 metes (depth new 0.003 (Channels) 1.00 (N 0.0081 metes 0.004 (Channels) 1.00 (N 0.0081 metes 0.004 (Channels) 0.007 metes 0.004 (Channels)	0.011 Cum mixes Up Stream Ditab them = Dit Beheam Ditab them = Ditab them Ditab t	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10	0.09 3.37 0.11 3.76
New Duth Section Required 11/6 Ferm Seleyie use n = chooses size S = Date Notes S	0.013 (Channels) 0.06 % 0.00 metes 3.3.00 :1 9.028 metes (depth nee 0.011 Cla Mese 0.011 Cla Mese 0.013 (Channels) 1.20 % 0.00 metes 0.003 Cla Mese 0.003 Cla Mese 0.003 Cla Mese 0.004 Cla Mese 0.005 Cla Mese	0.011 C to missec. Up Stream Ditab them = Do Beream Ditab them = Do	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 mp= 102.47	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Ferm Seeple use 1 st. Stores See) and 1 st. Stores Seeple use 1 st. Sto	0.013 (Chamnels) 0.05 th 0.00 metes 0.028 metes (depth nea 0.028 metes (depth nea 0.028 metes (depth nea 0.011 Ou Mines 0.011 Ou Mines 0.011 Ou Mines 0.011 Ou Mines 0.00 metes 0.000 for metes	0.011 C. In milece 10 p Stream Ditab filter = 10 n Beream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 Difference = 10 Difference = 10 Difference = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 0.000 C. In milece 10 p Stream Ditab filter = 10 p Str	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.5 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.48 wp	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Fermi Seeple use n = shotoce 450 g S Hotoca S Hope	0.013 (Channels) 0.06 % 0.00 metes 3.3.00 :1 9.028 metes (depth nee 0.011 Cla Mese 0.011 Cla Mese 0.013 (Channels) 1.20 % 0.00 metes 0.003 Cla Mese 0.003 Cla Mese 0.003 Cla Mese 0.004 Cla Mese 0.005 Cla Mese	0.011 C to missec. Up Stream Ditab them = Do Beream Ditab them = Do	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.5 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.48 wp	0.09 3.37 0.11 3.76
New Duth Section Required 11/6 (Perm Seley) use in a choose size in Seley 8 share in those size in Seley 8 share in the Seley 8 share in the Seley 8 share in Seley 8 share in Seley 8 share in Seley 10 (Perm Seley 10) (Perm	0.013 (Channels) 0.06 % 0.00 metes 3.3100 ;1 9.028 metes (depth nee 0.011 CLa Marco 0.011 CLa Marco 0.013 (Channels) 1.00 % 1.00 metes 1.00 %	0.011 C in milece Dis Gleveran Dilich bere Di	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.5 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.48 wp	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Fem Seeple use n = shooses 4 (see S = 1) (see S	0.013 (Chamnels) 0.05 th 0.00 metes 0.05 th 0.00 metes 0.028 metes (depth nee 0.011 Ou Milwe 0.011 Ou Milwe 0.011 Ou Milwe 0.011 Ou Milwe 0.00 metes 0.000 yr. +2016 floor = 83.24 is 0.00 metes 0.007 (Chamnels) 0.00 metes 0.004 Cu Milwe 0.0013 (Chamnels) 1.00 th 0.00 metes 0.004 Cu Milwe 0.005 (Ou Milwe 0.004 Ou Milwe 0.004 Ou Milwe 0.005 (Ou Milwe	0.011 Cu milece Up Stream Ditch Stem = Dit Beham Ditch Stem = Dit Beham Ditch Stem = Ditch Stem D	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.5 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.48 wp	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Ferm Seep) use in a choose day 6 S common Seep 1 S common Seep 2 S common Seep	0.013 (Channels) 0.05 (% 0.00 metes 0.001 (Channels) 0.011 (Channels) 0.011 (Channels) 0.011 (Channels) 0.013 (Channels) 0.003 (Channels) 1.00 (% 0.003 (Channels)	0.011 C in milece 1	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 37 cp Bank = 102.3 Free Board = 0.09 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.09	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Ferm Seeple use 1 = shotocas days 8 in the control of the control	0.013 (Channels) 0.05 vs. 0.00 metes 0.010 channels 0.011 Channels 0.011 Channels 0.013 (Channels) 0.00 metes 0.0011 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.004 Co Micec 0.00 metes 0.005 Channels 0.00 metes 0.005 Channels 0.005 vs. 200 file of the color of	0.011 C in milece 1 bit Steam Did bear Di Bream Did Blam = Diblerener Diblerener Diblerener Diblerener Diblerener Diblerener 0.022 Mile 0.022 Mile 0.025 Mile 0.027 Mile 0.025 Mile 0.02	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Fem Seeple use n = shooses 4 (see S = s	0.013 (Channels) 0.05 vs. 0.00 metes 0.010 channels 0.011 Channels 0.011 Channels 0.013 (Channels) 0.00 metes 0.0011 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.004 Co Micec 0.00 metes 0.005 Channels 0.00 metes 0.005 Channels 0.005 vs. 200 file of the color of	0.011 C to missec. Up Stream Ditab filter = Do Beream Ditab filter = D	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.5 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 up= 102.47 up	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Ferm Seeple use 1 = shotocas days 8 in the control of the control	0.013 (Channels) 0.05 vs. 0.00 metes 0.010 channels 0.011 Channels 0.011 Channels 0.013 (Channels) 0.00 metes 0.0011 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.003 Channels 0.00 metes 0.004 Co Micec 0.00 metes 0.005 Channels 0.00 metes 0.005 Channels 0.005 vs. 200 file of the color of	0.011 C in milece 1 bit Steam Did bear Di Bream Did Blam = Diblerener Diblerener Diblerener Diblerener Diblerener Diblerener 0.022 Mile 0.022 Mile 0.025 Mile 0.027 Mile 0.025 Mile 0.02	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 up= 102.47	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Ferm Seep) use in a shoose size of the section of	0.013 (Channels) 0.05 (N 0.00 netes 1.010 / 1.02 Mes ontes (depth neo 0.011 Cb Mes ontes (depth neo 0.011 Cb Mes ontes (depth neo 0.013 (Channels) 1.00 / 1.00 Mes ontes (depth neo 0.003 Cb Mes ontes (depth neo 0.003 Cb Mes ontes (depth neo 0.004 Cb Mes ontes (depth neo 0.005	### ADD TO LA milesc Dis Bleam Dish bers Dis Bleam Dish Bills in Dish Bleam Dish Bills in #### ADD TO LA Milesc) ##### ADD TO LA Milesc) ##### ADD TO LA Milesc) ##### ADD TO LA Milesc) ######## ADD TO LA Milesc) ###################################	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 up= 102.47	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Ferm Seeple use 1 = shoose 1 step 8 = thouse 1 step 8	0.013 (Chamnels) 0.05 th other countries 0.05 th other countries 0.028 metres (depth nea 0.028 metres (depth nea 0.028 metres (depth nea 0.028 metres (depth nea 0.011 Cu Mines 0.013 (Chamnels) 1.00 th 0.00 metres 3.30.0 :1 0.00 yr - 200 floor = 83.34 (s) 0.013 (Chamnels) 1.00 th 0.00 yr - 200 floor = 83.34 (s) 0.013 (Chamnels) 1.00 th 0.00 floor = 83.34 (s) 0.00 yr - 200 floor = 83.34 (s) 0.00 floor = 83.34 (s) 0.00 yr - 200 floor = 83.34 (s) 0.00 floor = 83.34 (s)	0.011 C in milece Do Beream Dilich bere Do Sterem Dilich Bill in Difference a Do Ster	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.10 See Board = 0.10 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.11 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.11	0.09 3.37 0.11 3.76
New Duth Section Required 115 (Ferm Seeple use n = shooses 4 (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.013 (Channels) 0.05 % 0.00 metes 0.05 % 0.00 metes 0.052 metes (depth neo 0.052 metes (depth neo 0.053 metes (depth neo 0.054 metes (depth neo 0.055 metes 0.053 for neces (depth neo 0.055 metes 0.050 for neces (depth neo 0.056	0.011 Cum misec. 1	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp=	0.09 3.37 0.11 3.76
New Duth Section Required 11/6 (Perm Seley) use in a choose is sign 8 shared in the control of t	0.013 (Channels) 0.05 (No. 0.00 metes 3.3100 11 0.000 metes 3.3100 11 0.000 metes 0.011 Cla Metes 0.011 Cla Metes 0.013 (Channels) 1.00 metes 3.300 11 0.0013 (Channels) 1.00 metes 0.003 Cla Metes 0.004 Cla Metes 0.005 Cla	8011 C umbec Dis Beream Ditch bere	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.47 wp= 102.47 mp= 102.47	0.09 0.37 0.11 3.76
New Duth Section Required 115 (Fem Seeple use 1 sections stage 5 sections	0.013 (Channels) 0.05 % 0.00 metes 0.011 Cu Mines 0.013 (Channels) 1.20 % 0.013 (Channels) 0.010 metes 0.035 Cu Mines 0.010 (Channels) 0.010 metes	0.011 Cum misec. 1	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.11 102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.11	0.09 0.37 0.11 3.76
New Duth Section Required 11/6 Firm Seleyie use n = shotoce size of set of selection for selection of selection size of selection for selection of selection for s	0.013 (Channels) 0.05 % 0.00 metes 0.011 Cu Mines 0.013 (Channels) 1.20 % 0.013 (Channels) 0.010 metes 0.035 Cu Mines 0.010 (Channels) 0.010 metes	### OFFICE OFFIC	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47	0.09 0.37 0.11 3.76
New Duth Section Required 115 (Ferm Seeple use 1 in choose: size 8 in the control of the control	0.013 (Channels) 0.05 (% 0.00 netes (depth nee 0.011 Clu Mines 0.003 Clu Mines	0.011 C to missec. Up Stream Dicks bear D Dicks bear D D D D D D D D D D D D D D D D D D	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47	0.09 0.37 0.11 3.76
New Duth Section Required 115 (Ferm Seeple use n = shotoce size of section Required 115 (Ferm Seeple use n = shotoce size of section Seeple Se	0.013 (Channels) 0.05 % 0.00 metes 0.05 % 0.00 metes 0.011 Cu Mines 0.013 (Channels) 1.00 % 0.00 metes 0.013 (Channels) 1.00 % 0.00 metes 0.043 metes (depth nee 0.044 metes (depth nee 0.045 (Channels) 1.00 % 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.014 (Channels) 0.015 (Channels) 0.015 (Channels) 0.016 (Channels) 0.017 % 0.00 metes 0.018 (Channels) 0.018 (Channels) 0.019 (Channels)	0.011 Cum misec. 1	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47	0.09 0.37 0.11 3.76
New Duth Section Required 115 (Ferm Seep) use in a shoose size 5 in the section of the section o	0.013 (Channels) 0.05 th 0.00 metes 0.011 Cu Mines 0.013 (Channels 0.013 (Channels 0.013 (Channels 0.013 (Channels) 0.013 (Channels) 0.014 Cu Mines 0.015 Cu Mines 0.017 Cu Mines 0.017 Cu Mines 0.018 Cu Mines 0.018 Cu Mines 0.019 Cu	### OPT C mmisec **De Steam Disk Bern **De	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 up= 102.47	0.09 0.11 0.11 3.76 0.06 2.84
New Duth Section Required 115 (Ferm Seeple use n = shotoce size 8 in the part of the seeple 115 (Ferm Seeple use n = shotoce size 8 in the seeple 8 in the seeple 115 (Ferm Seeple use n = shotoce size 9 in seeple use n = shoto	0.013 (Chameles) 0.05 (% 0.00 metes 0.011 Cu Mines 0.011 Cu Mines 0.011 Cu Mines 0.013 (Chameles) 0.013 (Chameles) 0.013 (Chameles) 0.003 (Cu Mines 0.003 (Cu Mines 0.003 (Chameles) 0.003 (Chameles) 0.003 (Chameles) 0.004 (Cu Mines 0.005 (0.011 Cum misec. 1/2 Steam Did bear 1/2 Steam Did bear 2 Did bear 3 Did bear 3 Did bear 3 Did bear 4 13 Did bear 5 Did bear 6 Did bear 5 Did bear 5 Did bear 6 Did	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47	0.00 0.37 0.11 0.06 2.84
New Duth Section Required 115 (Ferm Seeple use n = shooses 4 size S = Date No. 1 size S = Date No. 2 size	0.013 (Channels) 0.05 % 0.00 metes 0.05 % 0.00 metes 0.028 metes (depth nea 0.03 (Channels) 0.03 (Channels) 0.00 metes	0.011 C. u misec. 10 p Stream Ditab them = Do Beream Ditab them = Do Beream Ditab them = Do Beream Ditab them = 0.012 C. u Misec) and Veledoly = 0.42 Min 0.00 C. u misec. 10 p Stream Ditab them = Do Strea	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 wp= 102.47 rp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 up= 102.47	0.09 0.11 0.11 3.76 0.06 2.84
New Duth Section Required 1115 (Ferm Seley use n = 1 shootes days 8 shows to be selected as the selected as th	0.013 (Chamels) 0.05 % 0.00 metes 0.010 to Misses 0.028 metes (slepth nee 0.011 to Misses 0.011 (Chamels) 1.00 to Misses 0.011 (Chamels) 0.013 (Chamels) 0.013 (Chamels) 0.013 (Chamels) 0.014 (to Misses 0.015 (to Mi	0.011 C in milece 1	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47	0.09 0.11 0.11 3.76 0.06 2.84
New Duth Section Required 11/6 (Perm Seeple use n = shotoce: size of Set Unit No. 10 (Perm Seeple use n) and the size of Set Unit No. 10	0.013 (Chamnels) 0.05 th 0.00 metes 0.028 metes (depth nee 0.028 metes (depth nee 0.011 Cu Mines 0.011 Cu Mines 0.011 Cu Mines 0.011 Cu Mines 0.013 (Chamnels) 1.00 th 0.00 metes 3.30.01 1 0.00 metes 3.30.01 1 0.00 metes 0.004 metes (depth nee 0.005 (Cu Mines 0.005 (Cu M	0.011 C. u misec. 10 p Stream Ditab them = Do Beream Ditab them = Do Beream Ditab them = Do Beream Ditab them = 0.012 C. u Misec) and Veledoly = 0.42 Min 0.00 C. u misec. 10 p Stream Ditab them = Do Strea	102.47 wp= 102.19 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47	0.09 0.11 0.11 3.76 0.06 2.84

n = friction coefficient R = hydraulic radius = A/wetted perimetre (wp) in m

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 BARRETT BLOCK 146

 DATE:
 2022-04-28

 FILE:
 135925.6.04

 REV #:
 1

 DESIGNED BY:
 Anton Chetrar

 CHECKED BY:
 Ryan Magladry

TEMPORARY ICD ORIFICE SIZING

ı	Orifice coefficients								
ı	Cv = 0.60								
ı	Cv = 0.65								

						The	oretical	I Recommended		
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Hydraulic Slope	Target Flow	Orifice	Actual Flow	Orifice	Actual Flow
	(m)	(mm)	(m)	(m)	(m)	(I/s)	(m)	(l/s)	(m)	(I/s)
SANITARY MH	95.810	200	95.910	101.40	2.000	1.99	0.0230	1.99	0.075	21.14
STORM MH	96.180	675	96.518	101.40	2.000	136.00	0.1905	136.40	0.190	135.68

^{*} minimum orifice size to be 0.075m

Runoff Coefficient Used(C):

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

Run-off Coefficients

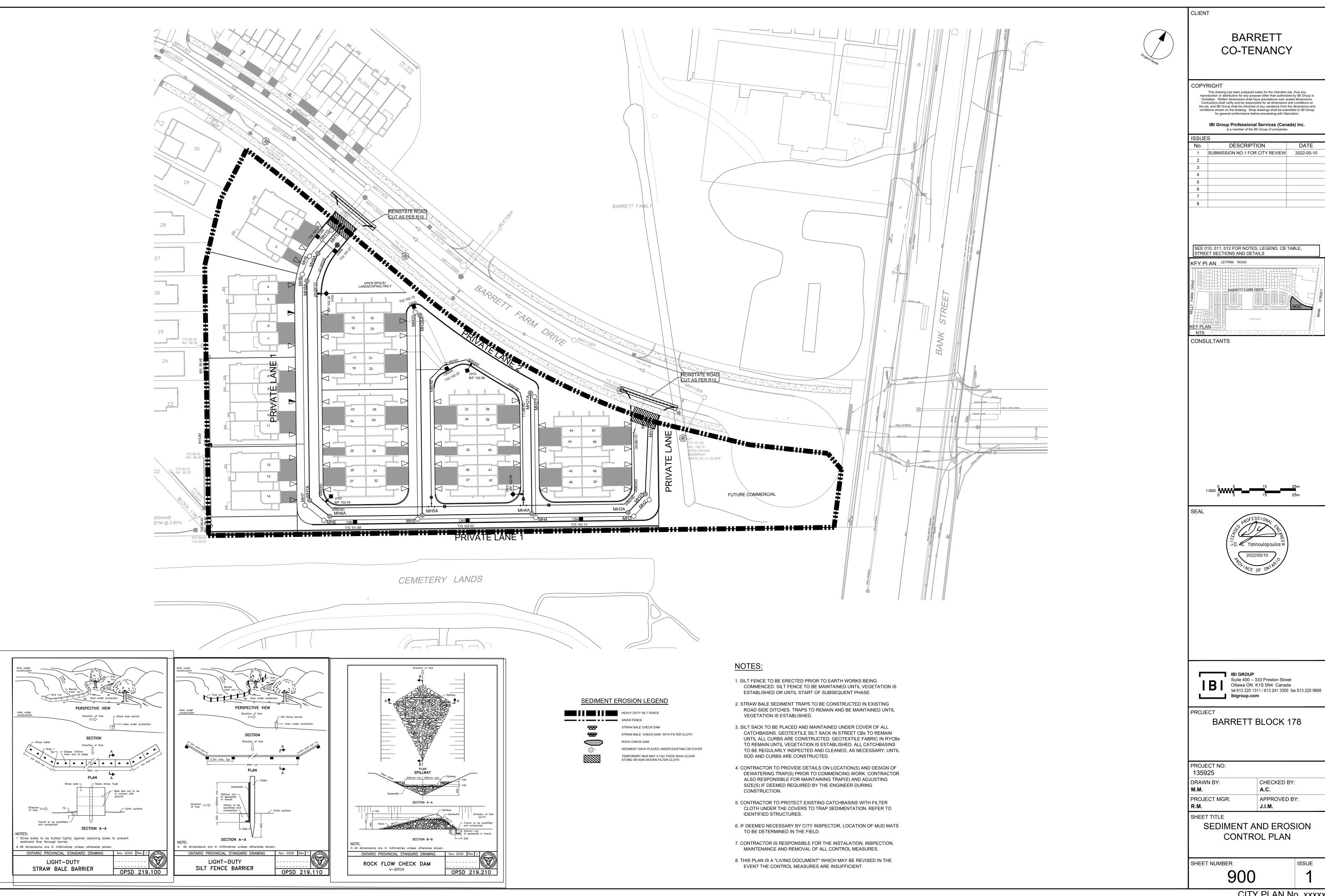
PROJECT: Barrett Block 146

DATE: 2022-04-22

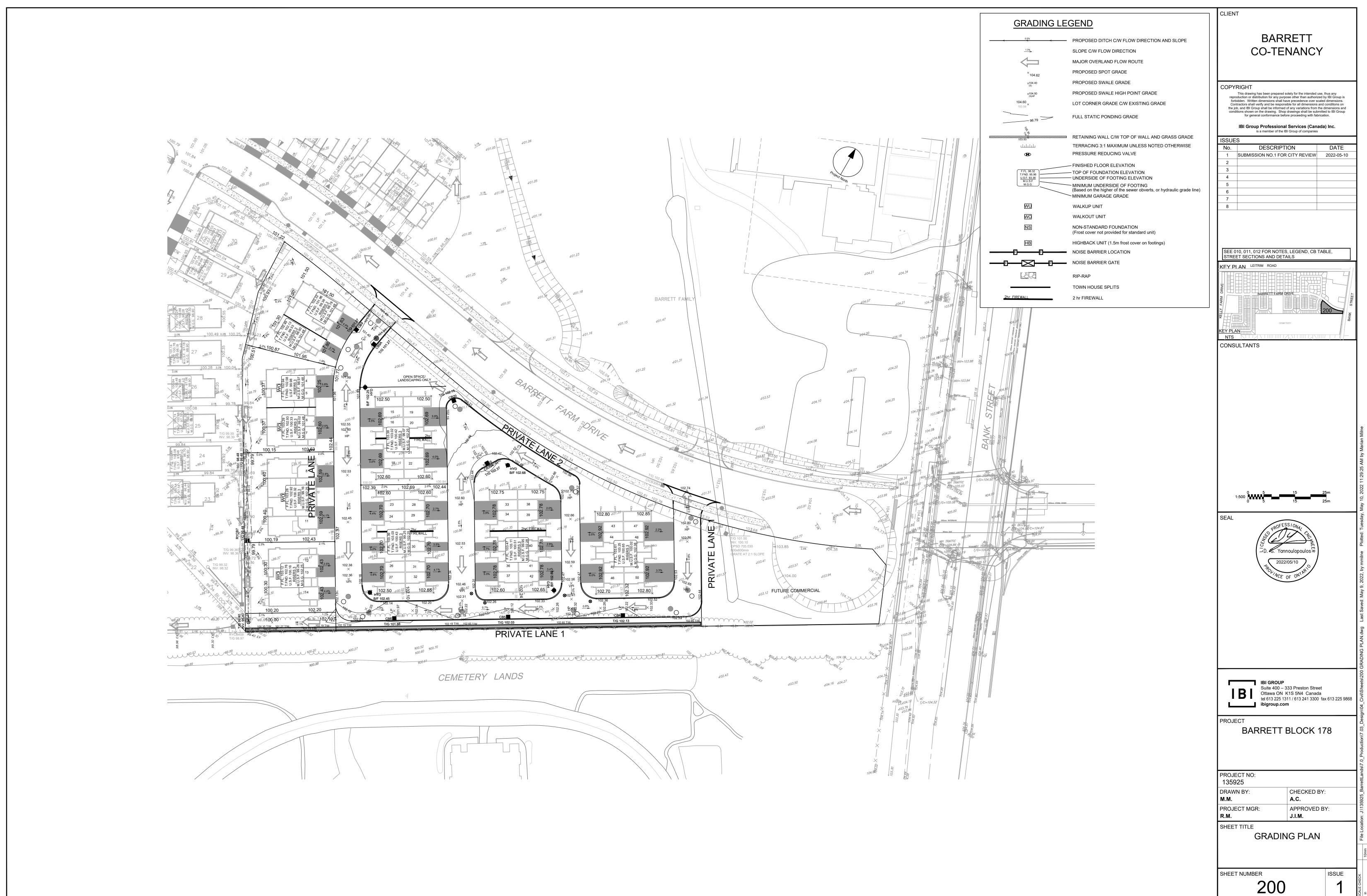
CLIENT: Barrett Co-Tennancy

0.77

FILE: 135925.6.4


										S2&R3		
				BACK TO BACK			TOWNS - REAR			TOWNS - FRONT		
				GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHAL
				255.00	1121.00		492.00	400.00		380.00	1601.00	
TOTAL (2)				255.00	1121.00		492.00	400.00		380.00	1601.00	
TOTAL (m ²)				1376.00			892.00			1981.00		
Dunoff Coefficient (C)	ı		ī	0.2	0.0	0.0	0.3	0.0	0.0	0.2	0.0	0.0
Runoff Coefficient (C):				0.2	0.9	0.9	0.2	0.9	0.9	0.2	0.9	0.9
ve. Runoff Coefficient (C):	kunon Coemcient (C):			0.77			0.51			0.77		

0.77


0.52

APPENDIX E

135925-900 - Erosion and Sediment Control Plan 135925-200 - Grading Plan

ISSUE

CITY PLAN No. xxxxx