

Phase II Environmental Site Assessment

150 and 160 Laurier Avenue Ottawa, Ontario

Prepared for JADCO Corporation

Report: PE4822-2 October 25, 2022

Ottawa, Ontario

TABLE OF CONTENTS

EXE	CUTIV	'E SUMMARY	iii
1.0	INTF	RODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	1
	1.4	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	2
	2.1	Physical Setting	2
	2.2	Past Investigations	3
3.0	SCO	PE OF INVESTIGATION	3
	3.1	Overview of Site Investigation	
	3.2	Media Investigated	
	3.3	Phase I Conceptual Site Model	4
	3.4	Deviations from Sampling and Analysis Plan	
	3.5	Impediments	
4.0	INVE	STIGATION METHOD	
	4.1	Subsurface Investigation	
	4.2	Soil Sampling	
	4.3	Field Screening Measurements	
	4.4	Groundwater Monitoring Well Installation	
	4.5	Groundwater Sampling	
	4.6	Analytical Testing	
	4.7	Residue Management	
	4.8	Elevation Surveying	
	4.9	Quality Assurance and Quality Control Measures	
5.0		IEW AND EVALUATION	
	5.1	Geology	
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	
	5.3	Fine-Coarse Soil Texture	
	5.4	Soil: Field Screening	
	5.5	Soil Quality	
	5.6	Groundwater Quality	
	5.7	Quality Assurance and Quality Control Results	
	5.8	Phase II Conceptual Site Model	
6.0		CLUSIONS	
7.0	STA	TEMENT OF LIMITATIONS	27

List of Figures

Figure 1 - Key Plan

Drawing PE4822-3 – Test Hole Location Plan

Drawing PE4822-4 - Analytical Testing Plan - Soil - Metals, CrVI, Mercury

Drawing PE4822-4A - Cross-section A - A' - Soil - Metals, CrVI, Mercury

Drawing PE4822-4B - Cross-section B - B' - Soil - Metals, CrVI, Mercury

Drawing PE4822-5 – Analytical Testing Plan – Soil – PCBs, VOCs, PHCs

Drawing PE4822-5A - Cross-section A - A' - Soil - PCBs, VOCs, PHCs

Drawing PE4822-5B - Cross-section B - B' - Soil - PCBs, VOCs, PHCs

Drawing PE4822-6 - Analytical Testing Plan - Groundwater

Drawing PE4822-6A – Cross-section A – A' – Groundwater

Drawing PE4822-6B – Cross-section B – B' – Groundwater

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

Ottawa, Ontario

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 150 and 160 Laurier Avenue West, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II ESA Property.

The subsurface investigation consisted of four (4) boreholes, all which were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of fill material consisting of silty sand with gravel and clay, underlain by silty clay, overlying glacial till (clayey silt to silty sand, with cobbles and boulders), followed by shale bedrock.

Seven (7) soil samples were submitted for laboratory analysis of volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs, Fractions F₁-F₄), polychlorinated biphenyls (PCBs) and metals (including hydride forming compounds: arsenic (As), antimony (Sb), selenium (Se)), mercury and hexavalent chromium (CrVI). No VOC, PHC or PCB concentrations were identified in any of the soil samples analysed. Concentrations metal parameters, below the site standards, were identified in the samples analysed, with the exception of lead, mercury and vanadium concentrations identified in soil/fill of BH1, BH2 and BH4. The remaining soil results comply with MECP Table 3 Residential Standards.

Groundwater samples from monitoring wells BH2, BH3 and BH4 were collected during the August 31, 2022 sampling event. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling events.

Three groundwater samples (plus one duplicate) were submitted for laboratory analysis of VOCs, PHCs (F1-F4), PCBs, PAHs and metals (including CrVI and mercury). Based on the analytical test results, the groundwater results are in compliance with the MECP Table 3 standards. As a result, the groundwater beneath the subject site is not considered to be contaminated.

Ottawa, Ontario

Recommendations

Based on the findings of this assessment, metals impacted fill was identified underneath the asphaltic concrete parking areas on the subject site, requiring some remedial work. It is our understanding that the subject site is to be redeveloped for mixed commercial and residential purposes.

Soil

It is our recommendation that an environmental site remediation program be completed in conjunction with site redevelopment activities. This will require the segregation of clean soil from impacted soils, the latter of which will require disposal at an approved waste disposal facility and confirmatory testing.

It is recommended that Paterson personnel be present on-site during remediation activities to direct the excavation and segregation of impacted soil, as well as to conduct confirmatory sampling as required.

Prior to off-site disposal at a licensed landfill, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with the Ontario Regulation 347/558.

Any clean soil that requires removal from the Phase II Property for construction purposes must be handled in accordance with Ontario Regulation 406/19: On-site and Excess Soil Management. Further information regarding O.Reg 406/19 can be provided upon request.

Monitoring Wells

If the monitoring wells installed on the Phase II ESA Property are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation.

1.0 INTRODUCTION

At the request of JADCO Corporation, Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment at 150 and 160 Laurier Avenue West, in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified on the Phase II ESA Property, during the Phase I ESA conducted by Paterson in August of 2022.

1.1 Site Description

Address: 150 and 160 Laurier Avenue West, Ottawa, Ontario.

Location: The subject site is situated on the south side of Laurier

Avenue West, 100 m west of Elgin Street, in the City of

Ottawa.

Latitude and Longitude: 45° 25' 13.90" N, 75° 41' 37.72" W

Site Description:

Configuration: Rectangular

Area: 1,225 m² (approximately)

Zoning: MD – Mixed Use Downtown Zone.

1.2 Property Ownership

Paterson was engaged to conduct this Phase II-ESA by Mr. André Doudak of JADCO Corporation. The head office is located at 345 Samson Boulevard, Suite 100, Laval, Quebec. Mr. Doudak can be reached by telephone at (514) 591-6720.

1.3 Current and Proposed Future Uses

The Phase II ESA Property is currently occupied by a five-storey commercial office building with a single storey underground parking garage, and associated parking lots on the east and west sides of the property.

It is our understanding that the Phase II ESA Property will to be redeveloped with a high-rise building with up to five levels of underground parking. Due to the change in land use to a more sensitive land use (Residential to residential), a record of site condition (RSC) will be required as per O.Reg 154/03.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks (MECP), April 2011. The MECP selected Table 3 Standards are based on the following considerations:

Fine-grained soil conditions
Full depth generic site conditions
Non-potable groundwater conditions
Residential land use

Section 35 of O.Reg. 153/04 does apply to the Phase II ESA Property in that the property does not rely upon potable groundwater.

Section 41 of O.Reg. 153/04 does not apply to the Phase II ESA Property, as the property is not within 30m of an environmentally sensitive area.

Section 43.1 of O.Reg. 153/04 does not apply to the Phase II ESA Property in that the property is not a Shallow Soil property.

The intended use of the Phase II ESA Property is mixed use (residential and commercial); therefore, the Residential Standards have been selected for the purpose of this Phase II ESA.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II ESA Property is comprised of 150 and 160 Laurier Avenue West, which is situated on the south side of Laurier Avenue West, 100 m west of Elgin Street, in the City of Ottawa, Ontario. The site is situated a commercial use area.

The Phase II ESA Property is occupied by a five-storey commercial office building with associated parking lots on the east and west sides of the property. Site drainage consists primarily of infiltration and sheetflow to catch basins located on Laurier Avenue West.

The site is relatively flat and at the grade with adjacent properties, while the regional topography slopes gently down in an eastern direction.

2.2 Past Investigations

Paterson completed a due diligence Phase I ESA in August of 2022 for the Phase II ESA Property. Based on the findings of the Phase I ESA, four (4) potentially contaminating activities (PCAs) were determined to result in areas of potential environmental concern (APECs) on the Phase II ESA Property:

	APEC 1: Resulting from the presence of two above ground storage tanks (ASTs) on-site (PCA 28).
	APEC 2: Resulting from the presence of an on-site transformer (PCA 55).
	APEC 3: Resulting from fill material of unknown quality (PCA 30).
5	APEC 4: Resulting from the former presence of an automotive service garage on the adjacent property to the south; 15 Gloucester Avenue (PCA 52).

The rationale for identifying the above APECs is based on a review of fire insurance plans, aerial photographs, field observations, and personal interviews. A Phase II ESA was recommended to address the aforementioned APECs.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation was conducted on January 9, 2020 in conjunction with a geotechnical investigation. The field program consisted of drilling four (4) boreholes to address the APECs identified on the Phase II ESA Property. All of the boreholes (BH1 through BH4), with the exception of BH3, were cored into the bedrock. All boreholes were completed with monitoring well installations. Boreholes were drilled to a maximum depth of 21.2 m below the ground surface (mbgs).

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified in the Phase I ESA.

Contaminants of potential concern on the Phase II ESA Property include petroleum hydrocarbons (PHCs, F1-F4), volatile organic compounds (VOCs), polycyclic

aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals (including arsenic (As), antimony (Sb) and selenium (Se)), mercury (Hg) and hexavalent chromium (CrVI). These CPCs may be present in the soil and/or groundwater beneath the Phase II ESA Property.

3.3 Phase I Conceptual Site Model

According to the Geological Survey of Canada website, the bedrock in the area of the Phase I ESA Property is reported to consist of shale of the Carlsbad Formation. The overburden is reported to consist of offshore marine sediments, with a drift thickness of 10 to 25 m across the site.

Existing Buildings and Structures

The subject site is occupied by a five-storey commercial office building with a single storey underground parking garage. The building is surrounded by two asphaltic concrete parking lots.

Subsurface Structures and Utilities

The Phase I ESA Property is situated in a municipally serviced area.

Areas of Natural Significance

No areas of natural significance and features were identified on the subject property or within the Phase I ESA study area.

Water Bodies

There are no waterbodies on the subject property or within the Phase I ESA study area.

Drinking Water Wells

There are no potable water wells on the Phase I ESA Property, nor are they expected to be present as the subject land is situated in a municipally serviced area.

Neighbouring Land Use

Neighbouring land use in the Phase I study area consists of commercial office, institutional and residential apartment buildings.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

Based on the findings of the Phase I, four on-site PCAs were considered to result in APECs. These APECs have been summarized in Table 1, along with its respective location and contaminants of potential concern (CPCs) on the Phase I Property.

	Table 1: Potentially Contaminating Activities and									
Areas of Pote	Areas of Potential Environmental Concern Area of Location of Potentially Location Contaminants Media									
Area of Potential Environmental Concern	Potential Area of Environmental Potential		Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)					
APEC 1: Resulting from the presence of two above ground storage tanks (ASTs) on-site	Eastern portion of the Phase I ESA Property	PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	PHCs BTEX	Soil and/or Groundwater					
APEC 2: Resulting from the presence of several on-site transformers	Northern portion of the Phase I ESA Property	PCA 55 – Transformer Manufacturing, Processing and Use	On-site	PCBs PHCs PAHs	Soil and/or Groundwater					
APEC 3: Resulting from fill material of unknown quality	In the at grade parking lot areas of the Phase I ESA Property	PCA 30 – Importation of Fill Material of Unknown Quality	On-site	Metals As, Sb, Se Hg CrVI	Soil					
APEC 4: Resulting from the former presence of an automotive service garage on the adjacent property to the south: 15 Gloucester Avenue	Southeastern portion of the Phase I ESA Property	PCA 52 – Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-site	PHCs VOCs	Soil and/or Groundwater					

Contaminants of Potential Concern

As per the APEC in Table 1, the contaminants of potential concern (CPCs) in soil and/or groundwater include:

Volatile organic compounds (VOCs);
Petroleum hydrocarbons (PHCs, Fractions F ₁ -F ₄);
Polycyclic aromatic hydrocarbons (PAHs);
Polychlorinated biphenyls (PCBs);
Metals (including arsenic (As), antimony (Sb), selenium (Se));
Mercury (Hg); and
Hexavalent Chromium (CrVI).

These CPCs may be present in the soil and/or groundwater of the Phase I Property.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I- ESA is considered to be sufficient to conclude that there are PCAs that resulted in APECs on the Phase I Property.

A variety of independent sources were consulted as part of this assessment, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

There were no deviations from the Sampling and Analysis Plan which is included in Appendix 1 of this report.

3.5 Impediments

No physical impediments were encountered during the Phase II ESA field program.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation conducted for this Phase II ESA consisted of drilling four (4) boreholes (BH1 through BH4) across the Phase II ESA Property. The boreholes were drilled to a maximum depth of 21.2 m below ground surface (bgs) to intercept groundwater.

The boreholes were drilled using a low clearance track mounted drill rig operated by George Downing Estate Drilling of Hawkesbury, Ontario, under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE4822-3 - Test Hole Location Plan.

4.2 Soil Sampling

A total of 49 soil samples and eleven (11) rock core samples were obtained from the boreholes by means of grab sampling from auger flights/auger samples and split spoon sampling. Split spoon samples were taken at approximate 0.76 m intervals.

The depths at which grab samples, split spoon, and rock core samples were obtained from the boreholes are shown as "AU", "SS" and "RC", respectively on the Soil Profile and Test Data Sheets.

The borehole profiles generally consist of fill material consisting of silty sand with gravel and clay, underlain by silty clay, overlying glacial till (clayey silt to silty sand, with cobbles and boulders) followed by shale bedrock.

4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour and evidence of deleterious fill material, as well as olfactory screening.

4.4 Groundwater Monitoring Well Installation

Four (4) groundwater monitoring wells were installed on the Phase II ESA Property as part of the subsurface investigation. The monitoring wells consisted of 32 mm diameter, Schedule 40 threaded PVC risers and screens. BH1 was installed with a deep bedrock well, while the remaining boreholes were overburden wells. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Borehole locations and elevations were surveyed geodetically by Paterson personnel.

TABLE 2	TABLE 2. Monitoring Well Construction Details									
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type				
BH1	69.49	20.80	17.80-20.80	17.37- 20.80	0.08-17.37	Flushmount				
BH2	69.07	12.09	9.09-12.09	8.53- 12.11	0.08-8.53	Flushmount				
ВН3	69.65	15.47	12.47-15.47	11.81- 15.47	0.08-11.81	Flushmount				
BH4	68.82	12.19	9.19-12.19	8.53- 12.19	0.13-8.53	Flushmount				

4.5 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.6 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples, as well as analyzed parameters are presented in Tables 3 and 4.

TABLE 3: Soil Samples Submitted and Analyzed Parameters									
		F	Parame	eters	Ana	lyze	d		
Sample ID	Sample Depth / Stratigraphic Unit	VOCs	PHCs (F1-F4)	Metals	Hg	CrVI	PCBs	Rationale	
January 9, 2	020								
BH1-AU1	0.10-0.76m Fill							Assess the quality of the fill material.	
BH3-AU1	0.13-0.76m Fill			Χ	Χ	Χ		Assess the quality of the fill material.	
BH3-SS7	6.09-6.71m Clay	Х	Х					Assess potential impacts in the soil resulting from the onsite UST.	

Report: PE4822-2 October 25, 2022

Ottawa, Ontario

TABLE 3: Soil Samples Submitted and Analyzed Parameters										
		F	Parame	eters	Ana	lyze	d			
Sample ID	Sample Depth / Stratigraphic Unit	SOOA	PHCs (F1-F4)	Metals	БН	CrVI	PCBs	Rationale		
January 13,	2020									
BH2-SS2	0.76-1.37m Fill			Χ	Х	Χ		Assess the quality of the fill material.		
BH2-SS8	7.62-8.23m Clay	X	Х					Assess potential impacts in the soil resulting from the onsite UST and off-site garage.		
January 15,	January 15, 2020									
BH4-SS2	0.76-1.37m Fill			Х	Χ	X		Assess the quality of the fill material		
BH4-SS8	7.62-8.23m Clay	X	Х				Х	Assess potential impacts in the soil resulting from the onsite UST and transformers.		

TABLE 4: Groundwater Samples Submitted and Analyzed Parameters									
			Para	met	ers A				
Sample ID	Screened Interval	VOCs	PHCs (F1-F4)	Metals	ВН	CrVI	PCBs	PAHs	Rationale
August 31, 2	022								
BH2-GW	9.09-12.09m	Х	Х	Χ	Х	Χ		Х	Assess potential groundwater impacts
BH3-GW	12.47-15.47	Х	X	Х	Х	X		Х	from the UST on-site in the southeastern corner of the property.
BH4-GW	9.19-12.19	Х	х	X	X	X	X	X	Assess potential groundwater impacts from the UST on-site UST in the southeastern corner and transformers in the northern portion of the property.
DUP	12.47-15.47	Х							Duplicate groundwater sample (BH3-GW) for QA/QC purposes.

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory

Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.7 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained onsite.

4.8 Elevation Surveying

Borehole locations and elevations were surveyed in the field by Paterson personnel using laser level survey equipment. Ground surface elevations at the borehole locations were referenced to a temporary benchmark (TBM), consisting of the top of spindle of the fire hydrant located on the west side of Elgin Street in front of 150 Elgin Street. A Geodetic elevation of 70.16 m was previously provided for this TBM by Stantec Geomatics during a previous investigation for an adjacent site. This geodetic elevation was transferred to the fire hydrant in front of 160 Laurier Avenue West, which was used to survey the borehole locations.

Borehole locations, TBM, and ground surface elevations are presented on Drawing PE4822-3 – Test Hole Location Plan in Appendix 2.

4.9 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site soils consist of fill material consisting of silty sand with gravel and clay, underlain by silty clay, overlying glacial till (clayey silt to silty sand, with cobbles and boulders) and shale bedrock.

Bedrock was encountered at depths ranging from approximately 14.5 to 17.6m below grade in BH1, BH2, and BH4 and it was inferred at a depth of 15.47m in BH3. Bedrock was cored to a maximum depth of 21.2 m below grade.

Groundwater was encountered within the overburden at depths ranging from approximately 6.85 to 7.24 mbgs. Groundwater was encountered at 10.84 mbgs within the well screened in bedrock.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Initial groundwater levels were measured as per the geotechnical investigation on January 22 of 2020 using an electronic water level meter. Groundwater levels are summarized below in Table 5.

TABLE 5:	TABLE 5: Groundwater Level Measurements									
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement						
BH1*	69.49	10.84*	58.65	August 31, 2022						
BH2	69.07	7.24	61.83	August 31, 2022						
BH3	69.65	6.85	62.80	August 31, 2022						
BH4	68.82	7.02	61.80	August 31, 2022						
* The well in	* The well in BH1 is screened in the bedrock									

Based on the groundwater elevations measured during the sampling events, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4822-3.

Based on the contour mapping, groundwater flow at the subject site is in a northerly direction. A horizontal hydraulic gradient of approximately 0.02 m/m was calculated.

5.3 Fine-Coarse Soil Texture

Grain-size analysis was not completed for the Phase II ESA Property. However, it is assumed that fine-grained material is present on the Phase II ESA Property. As such, fine-grained soil standards were used.

5.4 Soil: Field Screening

Fill material was identified across the Phase II property beneath the pavement structure. The fill material generally consisted of brown silty sand with trace gravel and/or clay.

Page 11

Report: PE4822-2

The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 **Soil Quality**

Seven (7) soil samples were submitted for VOCs, PHCs (F1-F4), PCBs and/or metals analysis. The results of the analytical testing are presented below in Tables 6 through 9. The laboratory certificate of analysis is provided in Appendix 1.

TABLE 6: Analytical Test Results – Soil Metals								
Parameter	MDL (µg/g)		MECP Table 3					
		January 9, 2020	January 13, 2020	January 9, 2020	January 15, 2020	Residential Standards		
		BH1-AU1	BH2-SS2	BH3-AU1 BH4-SS2		(µg/g)		
Chromium (VI)	0.2	nd	0.7	nd	0.3	10		
Mercury	0.1	nd	0.8	nd	<u>6.0</u>	1.8		
Antimony	1.0	1.4	nd	nd	nd	7.5		
Arsenic	1.0	8.1	3.3	3.6	2.8	18		
Barium	1.0	140	362	46.5	171	390		
Beryllium	0.5	nd	0.6	nd	nd	5		
Boron	5.0	18.1	5.8	5.7	nd	120		
Cadmium	0.5	nd	nd	nd	0.7	1.2		
Chromium	5.0	19.5	93.4	16.9	23.5	160		
Cobalt	1.0	4.5	18.0	5.1	6.4	22		
Copper	5.0	43.4	44.9	11.6	19.7	180		
Lead	1.0	<u>277</u>	30.3	41.6	<u>161</u>	120		
Molybdenum	1.0	1.5	nd	1.8	nd	6.9		
Nickel	5.0	13.1	51.1	36.9	14.5	130		
Selenium	1.0	nd	nd	nd	nd	2.4		
Silver	0.3	0.4	nd	nd	0.9	25		
Thallium	1.0	nd	nd	nd	nd	1		
Uranium	1.0	nd	nd	nd	nd	23		
Vanadium	10.0	18.2	<u>88.8</u>	18.6	29.6	86		
Zinc	20.0	77.5	120	30.6	84.1	340		
Notes:								

- MDL Method Detection Limit
- nd not detected above the MDL
- NA Parameter not analyzed
- Bold and Underlined Exceeds selected MECP Standards

All metal concentrations comply with the selected MECP Table 3 Standards, with the exception of lead, mercury and vanadium identified in Samples BH1-AU1 (Lead, 277 ug/g), BH2-SS2 (Vanadium, 88.8 ug/g) and BH4-SS2 (Lead, 161 ug/g; Mercury, 6 ug/g).

Suspect vanadium in BH2-SS2 is due to the underlying clay material. Barium, cobalt and chromium levels were also identified above background levels within the samples.

TABLE 7: Analytical Test Results – Soil PCBs								
Parameter	MDL (µg/g)	Soil Samples (µg/g)	MECP Table 3 Residential					
	_	January 15, 2020	Standards					
		BH4-SS8	(µg/g)					
PCBs, total	0.05	nd	0.35					

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- NA Parameter not analyzed
- Bold and Underlined Exceeds selected MECP Standards

No detectable PCB concentration was identified in the soil sample analyzed. All soil samples comply with the MECP Table 3 Residential Standards.

TABLE 8: Ana PHCs F ₁ -F ₄	alytical T	est Results –	Soil			
		So	MECP			
Parameter	MDL (µg/g)	January 13, 2020	- 1		Table 3 Residential	
		BH2-SS8 BH3-SS7		BH4-SS8	Standards (µg/g)	
PHC F ₁	7	nd	nd	nd	55	
PHC F ₂	4	nd	nd	nd	98	
PHC F ₃	8	nd	nd	nd	300	
PHC F ₄	6	nd	nd	nd	2800	
•	nd – not det	nod Detection Limit ected above the MD neter not analyzed	L			

No detectable PHC parameters were identified in any of the soil samples analyzed. All of the results comply with the MECP Table 3 Residential Standards.

Parameter	MDL	Soil	MECP		
	(µg/g)	January 13, 2020	January 9, 2020	January 15, 2020	Table 3 Residential Standards
		BH2-SS8	BH3-SS7	BH4-SS8	(µg/g)
Acetone	0.50	nd	nd	nd	28
Benzene	0.02	nd	nd	nd	0.17
Bromodichloromethane	0.05	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	0.26
Bromomethane	0.05	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	0.12
Chlorobenzene	0.05	nd	nd	nd	2.7
Chloroform	0.05	nd	nd	nd	0.18
Dibromochloromethane	0.05	nd	nd	nd	9.4
Dichlorodifluoromethane	0.05	nd	nd	nd	25
1,2-Dichlorobenzene	0.05	nd	nd	nd	4.3
1,3-Dichlorobenzene	0.05	nd	nd	nd	6
1,4-Dichlorobenzene	0.05	nd	nd	nd	0.097
1,1-Dichloroethane	0.05	nd	nd	nd	11
1,2-Dichloroethane	0.05	nd	nd	nd	0.05
1,1-Dichloroethylene	0.05	nd	nd	nd	0.05
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	30
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	0.75
1,2-Dichloropropane	0.05	nd	nd	nd	0.085
cis-1,3-Dichloropropylene	0.05	nd	nd	nd	
trans-1,3-Dichloropropylene	0.05	nd	nd	nd	
1,3-Dichloropropene, total	0.05	nd	nd	nd	0.083
Ethylbenzene	0.05	nd	nd	nd	15
Ethylene dibromide	0.05	nd	nd	nd	0.05
Hexane	0.05	nd	nd	nd	34
Methyl Ethyl Ketone	0.50	nd	nd	nd	44
Methyl Isobutyl Ketone	0.50	nd	nd	nd	4.3
Methyl tert-butyl ether	0.05	nd	nd	nd	1.4
Methylene Chloride	0.05	nd	nd	nd	0.96
Styrene	0.05	nd	nd	nd	2.2
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	0.05
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	2.3
Toluene	0.05	nd	nd	nd	6
1,1,1-Trichloroethane	0.05	nd	nd	nd	3.4
1,1,2-Trichloroethane	0.05	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	0.52
Trichlorofluoromethane	0.05	nd	nd	nd	5.8
Vinyl Chloride	0.02	nd	nd	nd	0.022

Ottawa, Ontario

TABLE 9 Continue VOCs	d: Analytical 1	Test Results	s – Soil			
Parameter	MDL	MDL Soil Samples (μg/g)				
	(µg/g)	January 13, 2020	January 9, 2020	January 15, 2020	Table 3 Residential	
		BH2-SS8	BH3-SS7	BH4-SS8	Standards (µg/g)	
m/p-Xylene	0.05	nd	nd	nd		
o-Xylene	0.05	nd	nd	nd		
Xylenes, total	0.05	nd	nd	nd	25	
· · · · · · · · · · · · · · · · · · ·			-	_		

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- NA Parameter not analyzed

No detectable VOC parameters were identified in any of the soil samples analyzed. All of the results comply with the MECP Table 3 Residential Standards.

The analytical results for VOCs, PHCs, PCBs and Metals tested in soil are shown on Drawing PE4822-4 – and Drawing PE4822-5 -.

The maximum concentrations of analyzed parameters in the soil at the site are summarized below in Table 10.

TABLE 10: Maximum Concentrations – Soil					
Parameter	Maximum Concentration (μg/g)	Borehole	Depth Interval (m BGS)		
Antimony	1.4	BH1-AU1	0-0.10m; Fill		
Arsenic	8.1	BH1-AU1	0-0.10m; Fill		
Barium	362	BH2-SS2	0.76-1.37m; Fill		
Beryllium	0.6	BH2-SS2	0.76-1.37m; Fill		
Boron	18.1	BH1-AU1	0-0.10m; Fill		
Cadmium	0.7	BH4-SS2	0.76-1.37m; Fill		
Chromium	93.4	BH2-SS2	0.76-1.37m; Fill		
Chromium (VI)	0.7	BH2-SS2	0.76-1.37m; Fill		
Cobalt	18	BH2-SS2	0.76-1.37m; Fill		
Copper	44.9	BH2-SS2	0.76-1.37m; Fill		
Lead	<u>277</u>	BH1-AU1	0-0.10m; Fill		
Mercury	6.0	BH4-SS2	0.76-1.37m; Fill		
Molybdenum	1.8	BH3-AU1	0-0.13m; Fill		
Nickel	51.1	BH2-SS2	0.76-1.37m; Fill		
Silver	0.9	BH4-SS2	0.76-1.37m; Fill		
Vanadium	88.8	BH2-SS2	0.76-1.37m; Fill		
Zinc	84.1	BH4-SS2	0.76-1.37m; Fill		
Note:			•		
 Bold and Underlined 	<u>l</u> – Parameters in parer	nthesis exceed the Tabl	e 3 Background Standards.		

Remaining parameters analysed were not identified above the laboratory method detection limits.

5.6 Groundwater Quality

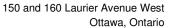

Groundwater samples from monitoring wells installed in BH2 through BH4 were submitted for laboratory analysis of VOCs, PHCs (fractions, F1-F4), PAHs, PCBs and metals analyses. The groundwater samples were obtained from the screened intervals noted in Table 2. The results of the analytical testing are presented in Tables 11 through 15. The laboratory certificates of analysis are provided in Appendix 1.

TABLE 11: Analytical Test Results – Groundwater Metals (including CrVI and Mercury)					
Parameter	MDL (μg/L)	Ground	MECP Table 3		
		Α	ugust 31, 20	22	Standards
		BH2-GW	BH3-GW	BH4-GW	(µg/L)
Antimony	0.5	nd	nd	0.6	20000
Arsenic	1	nd	6	nd	1900
Barium	1	20	24	9	29000
Beryllium	0.5	nd	nd	nd	67
Boron	10	42	604	104	45000
Cadmium	0.1	nd	nd	nd	2.7
Chromium	1	nd	nd	2	810
Chromium (VI)	10	nd	nd	nd	140
Cobalt	0.5	nd	nd	nd	66
Copper	0.5	1.8	1.1	3.7	87
Lead	0.1	0.4	nd	0.1	25
Mercury	0.1	nd	nd	nd	2.8
Molybdenum	0.5	0.9	12.1	3.8	9200
Nickel	1	nd	2	nd	490
Selenium	1	nd	nd	nd	63
Silver	0.1	nd	nd	nd	1.5
Sodium	200	20200	258000	102000	2300000
Thallium	0.1	nd	nd	nd	510
Uranium	0.1	0.1	0.5	1.1	420
Vanadium	0.5	1.1	0.6	6.9	250
Zinc	5	61	13	5	1100

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL

All metal concentrations comply with the selected MECP Table 3 standards.

TABLE 12: A	Inalytical ⁻	Test Results – Groundwater	
Parameter	MDL (µg/L)	Groundwater Samples (μg/L)	MECP Table 3
		August 31, 2022	Standards
		BH4-GW	(µg/L)
PCBs, total	0.05	nd	15
	ethod Detecti detected above		

No detectable PCB concentration was identified in the groundwater sample analyzed. The groundwater results comply with the MECP Table 3 Standards.

Parameter	MDL (µg/L)	Gr	MECP Table 3			
	" "	August 31, 2022				Standards
		BH2-GW	BH3-GW	BH4-GW	DUP	(µg/L)
PHC F₁	25	nd	nd	nd	nd	750
PHC F ₂	100	nd	nd	nd	nd	150
PHC F ₃	100	nd	nd	nd	nd	500
PHC F ₄	100	nd	nd	nd	nd	500

- nd not detected above the MDL

No detectable PHC concentrations were identified in the groundwater samples analyzed. The groundwater results comply with the MECP Table 3 Standards.

Report: PE4822-2 October 25, 2022

Parameter	MDL (μg/L)	Grou	ndwater S	Samples	(µg/L)	MECP Table 3
	(1-9. –)			Standards		
		BH2- GW	BH3- GW	31, 2022 BH4- GW	DUP*	(µg/L)
Acetone	5.0	16.3	nd	12.4	nd	130000
Benzene	0.5	nd	nd	nd	nd	430
Bromodichloromethane	0.5	nd	nd	nd	nd	85000
Bromoform	0.5	nd	nd	nd	nd	770
Bromomethane	0.5	nd	nd	nd	nd	56
Carbon Tetrachloride	0.2	nd	nd	nd	nd	8.4
Chlorobenzene	0.5	nd	nd	nd	nd	630
Chloroform	0.5	nd	nd	nd	nd	22
Dibromochloromethane	0.5	nd	nd	nd	nd	82000
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	4400
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	9600
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	9600
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	67
1,1-Dichloroethane	0.5	nd	nd	1.6	nd	3100
1,2-Dichloroethane	0.5	nd	nd	nd	nd	12
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	17
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	17
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	17
1,2-Dichloropropane	0.5	nd	nd	nd	nd	140
cis-1,3-Dichloropropylene	0.5	nd	nd	nd	nd	
trans-1,3-Dichloropropylene	0.5	nd	nd	nd	nd	
1,3-Dichloropropene, total	0.5	nd	nd	nd	nd	45
Ethylbenzene	0.5	nd	nd	nd	nd	2300
Ethylene dibromide	0.2	nd	nd	nd	nd	0.83
Hexane	1.0	nd	nd	nd	nd	520
Methyl Ethyl Ketone (2-Butanone)	5.0	nd	nd	nd	nd	1500000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	580000
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	1400
Methylene Chloride	5.0	nd	nd	nd	nd	5500
Styrene	0.5	nd	nd	nd	nd	9100
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	28
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	nd	15
Tetrachloroethylene	0.5	nd	nd	nd	nd	17
Toluene	0.5	nd	nd	nd	nd	18000
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	6700
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	30
Trichloroethylene	0.5	nd	nd	nd	nd	17
Trichlorofluoromethane	1.0	nd	nd	nd	nd	2500

Report: PE4822-2 October 25, 2022

Ottawa, Ontario

TABLE 14 Continued: Anal VOCs	ytical Te	st Resul	ts – Gro	undwate	er	
Parameter	MDL (µg/L)	Groundwater Samples (μg/L)			MECP Table 3 Standards	
			August	31, 2022		(µg/L)
		BH2- GW	BH3- GW	BH4- GW	DUP*	
Vinyl Chloride	0.5	nd	nd	nd	nd	1.7
m/p-Xylene	0.5	nd	nd	nd	nd	
o-Xylene	0.5	nd	nd	nd	nd	
Xylenes, total	0.5	nd	nd	nd	nd	4200

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- * Duplicate of BH3

Several VOC parameters were detected in the groundwater samples analyzed. All VOC concentrations comply with the selected MECP Table 3 Standards.

TABLE 15: Analytical Test Results – Groundwater PAHs						
Parameter	MDL (µg/L)	Ground	Groundwater Samples (μg/L)			
	(1.3.)	Α	ugust 31, 20	22	Standards	
		BH2-GW	BH3-GW	BH4-GW	(µg/L)	
Acenaphthene	0.05	nd	nd	nd	1700	
Acenaphthylene	0.05	nd	nd	nd	1.8	
Anthracene	0.01	nd	nd	nd	2.4	
Benzo[a]anthracene	0.01	nd	nd	nd	4.7	
Benzo[a]pyrene	0.01	nd	nd	nd	0.81	
Benzo[b]fluoranthene	0.05	nd	nd	nd	0.75	
Benzo[g,h,i]perylene	0.05	nd	nd	nd	0.2	
Benzo[k]fluoranthene	0.05	nd	nd	nd	0.4	
Chrysene	0.05	nd	nd	nd	1	
Dibenzo[a,h]anthracene	0.05	nd	nd	nd	0.52	
Fluoranthene	0.01	0.04	nd	nd	130	
Fluorene	0.05	nd	nd	nd	400	
Indeno [1,2,3-cd] pyrene	0.05	nd	nd	nd	0.2	
1-Methylnaphthalene	0.05	nd	nd	nd	1800	
2-Methylnaphthalene	0.05	nd	nd	nd	1800	
Methylnaphthalene (1&2)	0.10	nd	nd	nd	1800	
Naphthalene	0.05	nd	nd	nd	6400	
Phenanthrene	0.05	nd	nd	nd	580	
Pyrene	0.01	0.03	nd	nd	68	
Notes:			<u></u>	<u> </u>	<u>L</u>	

- MDL Method Detection Limit
- nd not detected above the MDL

Several PAH parameters were detected in one of the groundwater samples analyzed. All PAH concentrations comply with the selected MECP Table 3 Standards.

The maximum concentrations of analyzed parameters in the groundwater at the site are summarized below in Table 16.

TABLE 16: Maximum Concentrations – Groundwater					
Parameter	Maximum Concentration (µg/L)	Borehole	Screened Interval (m BGS)		
Arsenic	6	BH3-GW	7.77-10.88		
Barium	24	BH3-GW	7.77-10.88		
Boron	604	BH3-GW	7.77-10.88		
Chromium	2	BH4-GW	8.53-12.19		
Copper	3.7	BH4-GW	8.53-12.19		
Lead	0.4	BH2-GW	9.04-12.11m		
Molybdenum	12.1	BH3-GW	7.77-10.88		
Nickel	2	BH3-GW	7.77-10.80		
Sodium	258000	BH3-GW	7.77-10.80		
Uranium	1.1	BH4-GW	8.53-12.19		
Vanadium	6.9	BH4-GW	8.53-12.19		
Zinc	61	BH2-GW	9.04-12.11m		
Acetone	16.3	BH2-GW	9.04-12.11m		
1,1-Dichloroethane	1.6	BH4-GW	8.53-12.19		
Fluoranthene	0.04	BH2-GW	9.09-12.09m		
Pyrene	0.03	BH2-GW	9.09-12.09m		
Note: Bold and Underlined –	Parameters in parenthesis	exceed the Table 3 E	Background Standards.		

Remaining parameters analysed were not identified above the laboratory method detection limits.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of this Phase II ESA were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04, as amended, under the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

A duplicate groundwater sample was obtained from BH3 and analysed for VOCs. Test results for the duplicate groundwater sample were non-detect, as were the results of the original BH3 sample.

Based on the analytical laboratory results, it is our opinion that the overall quality of the field data collected during this Phase II-ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

Based on the results of the Phase I ESA completed for the subject site, four (4) PCAs and the resultant APECs are summarized in Table1 in Section 3.3, along with their respective locations and contaminants of potential concern (CPCs).

Contaminants of Potential Concern

As per Section 3.3, the contaminants of potential concern (CPCs) in soil and/or groundwater include volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs, F1-F4), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals (including arsenic (As), antimony (Sb) and selenium (Se)), mercury (Hg) and hexavalent chromium (CrVI).

Subsurface Structures and Utilities

The Phase II ESA Property is situated in a municipally serviced area.

Based on the findings of the Phase II ESA, underground utilities are not expected to have affected contaminant distribution and transport.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on Drawings PE4822-4A, 4B. The stratigraphy consists of:

An asphaltic concrete structure of approximately 0.1 m thick, overlies the fill material consisting of brown silty sand with trace gravel and/or clay was identified in all of the boreholes. The fill material extended to depths of approximately 0.81 to 1.52 mbgs. Groundwater was not encountered in this layer.

_	Silty clay was encountered in all of the boreholes below the fill, extending to depths of approximately 12.20 to 14.60 mbgs. Groundwater was encountered in this layer.
	Glacial till consisting of silty clay to silty sand with gravel, cobbles and possible boulders was encountered in all of the boreholes below the silty clay, extending to depths of approximately 14.50 to 17.60 mbgs.
	Shale bedrock was encountered in all of the boreholes, with the exception of BH3. The remaining holes were terminated in this layer at depths ranging from approximately 20.80 to 21.21 mbgs. BH3 was terminated at a depth of 15.47 m on the inferred bedrock surface.

Hydrogeological Characteristics

Groundwater on the subject property was encountered in the overburden. During the most recent groundwater monitoring event, groundwater flow was measured in a northerly direction, with a hydraulic gradient of 0.02 m/m. Groundwater contours are shown on Drawing PE4822-3 – Test Hole Location Plan.

Approximate Depth to Bedrock

Bedrock was encountered during the drilling program at depths ranging from approximately 14.50 to 17.58 mbgs.

Approximate Depth to Water Table

The depth to the water table at the subject site varies between approximately 6.85 to 10.84 m below existing grade. Groundwater was observed in the overburden wells (BH2, BH3, and BH4) between 6.85 to 7.24 mbgs, whereas groundwater in the bedrock seated well (BH1) was observed at 10.84 mbgs.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the Phase II ESA Property, in that the subject property is not within 30m of an environmentally sensitive area.

Section 43.1 of the Regulation does not apply to the Phase II ESA Property as bedrock is located more than 2 m below ground surface.

Fill Placement

The fill material consisted of brown silty sand with trace gravel and/or clay was identified in all of the boreholes and formed the base for the asphaltic concrete layer. The fill extended to depths of 0.81 to 1.52 mbgs.

Existing Buildings and Structures

The subject site is occupied by a five-storey commercial office building with an underground parking garage. No other permanent structures are present on the Phase II property.

Proposed Buildings and Other Structures

The Phase II ESA Property is anticipated to be redeveloped with a high-rise building with up to five levels of underground parking.

Areas of Natural Significance

There are no areas of natural significance in the Phase II Study Area.

Water Bodies

There are no natural water bodies in the Phase II Study Area.

Environmental Condition

Areas Where Contaminants are Present

Based on the findings of the Phase II ESA, the fill material in BH1, BH2 and BH4 is shown to be impacted with some metals (i.e lead, mercury and vanadium). Vanadium is suspected naturally occurring in silty clay within the area, therefore it is not considered a contaminant.

Types of Contaminants

Based on the findings of this Phase II ESA, soil and/or groundwater contaminants at the Phase II Property include the following:

Lead;
Mercury.

Contaminated Media

The fill material extending from 0.30 to 0.76 m in BH1 is impacted with lead in excess of the selected MECP Table 3 residential standards. The fill material

extending from 0.76 to 1.37 m in BH2 is impacted with mercury in excess of the selected MECP Table 3 residential standards. The fill material extending from 0.76 to 1.37 m in BH4 is impacted with lead and mercury in excess of the selected MECP Table 3 residential standards.

What Is Known About Areas Where Contaminants Are Present

Based on the findings of the Phase II ESA, metals (lead) impacted fill was identified within the western portion of the site (BH1). This contaminant is associated with the fill material of unknown quality.

Metals (lead, mercury and vanadium) impacted soil/fill was identified on the eastern portion of the subject site (BH2 and BH4). This contamination is associated with the presence of fill material of unknown quality and possibly naturally occurring levels in silty clay for vanadium.

Distribution and Migration of Contaminants

Based on the findings of the Phase II ESA, distribution and migration of contaminants is not considered to have occurred on the Phase II ESA Property.

Discharge of Contaminants

Based on the findings of the Phase II ESA, discharge of contaminants is not considered to have occurred on the Phase II ESA Property.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Downward leaching is not considered to have affected contaminant distribution at the subject site, as the site is largely paved, and the groundwater test results comply with the MECP Table 3 standards. Fluctuations in the groundwater level and groundwater flow are also not considered to have affected the contaminant based on the depth of the water table, well below the shallow soil/fill material.

Potential for Vapour Intrusion

Based on the findings of the Phase II ESA there is no potential for vapour intrusion on the Phase II ESA Property.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 150 and 160 Laurier Avenue West, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II ESA Property.

The subsurface investigation consisted of four (4) boreholes, all which were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of fill material consisting of silty sand with gravel and clay, underlain by silty clay, overlying glacial till (clayey silt to silty sand, with cobbles and boulders), followed by shale bedrock.

Seven (7) soil samples were submitted for laboratory analysis of volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs, Fractions F₁-F₄), polychlorinated biphenyls (PCBs) and metals (including hydride forming compounds: arsenic (As), antimony (Sb), selenium (Se)), mercury and hexavalent chromium (CrVI). No VOC, PHC or PCB concentrations were identified in any of the soil samples analysed. Concentrations metal parameters, below the site standards, were identified in the samples analysed, with the exception of lead, mercury and vanadium concentrations identified in soil/fill of BH1, BH2 and BH4. The remaining soil results comply with MECP Table 3 Residential Standards.

Groundwater samples from monitoring wells BH2, BH3 and BH4 were collected during the August 31, 2022 sampling event. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling events.

Three groundwater samples (plus one duplicate) were submitted for laboratory analysis of VOCs, PHCs (F1-F4), PCBs, PAHs and metals (including CrVI and mercury). Based on the analytical test results, the groundwater results are in compliance with the MECP Table 3 standards. As a result, the groundwater beneath the subject site is not considered to be contaminated.

Recommendations

Based on the findings of this assessment, metals impacted fill was identified underneath the asphaltic concrete parking areas on the subject site, requiring some remedial work. It is our understanding that the subject site is to be redeveloped for mixed commercial and residential purposes.

Soil

It is our recommendation that an environmental site remediation program be completed in conjunction with site redevelopment activities. This will require the segregation of clean soil from impacted soils, the latter of which will require disposal at an approved waste disposal facility and confirmatory testing.

It is recommended that Paterson personnel be present on-site during remediation activities to direct the excavation and segregation of impacted soil, as well as to conduct confirmatory sampling as required.

Prior to off-site disposal at a licensed landfill, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with the Ontario Regulation 347/558.

Any clean soil that requires removal from the Phase II Property for construction purposes must be handled in accordance with Ontario Regulation 406/19: On-site and Excess Soil Management. Further information regarding O.Reg 406/19 can be provided upon request.

Monitoring Wells

If the monitoring wells installed on the Phase II ESA Property are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation.

7.0 STATEMENT OF LIMITATIONS

This Phase II – Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04, as amended, and meets the requirements of CSA Z769-00 (reaffirmed 2022). The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represented conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of JADCO Corporation. Notification from JADCO Corporation and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Jóshua Dempsey, B.Sc.

Mark D'Arcy, P.Eng., QPESA

M.S. D'ARCY 90377839 PROFESSIONAL CIRCLES 90377839

Report Distribution:

- JADCO Corporation
- Paterson Group

FIGURES

Figure 1 - Key Plan

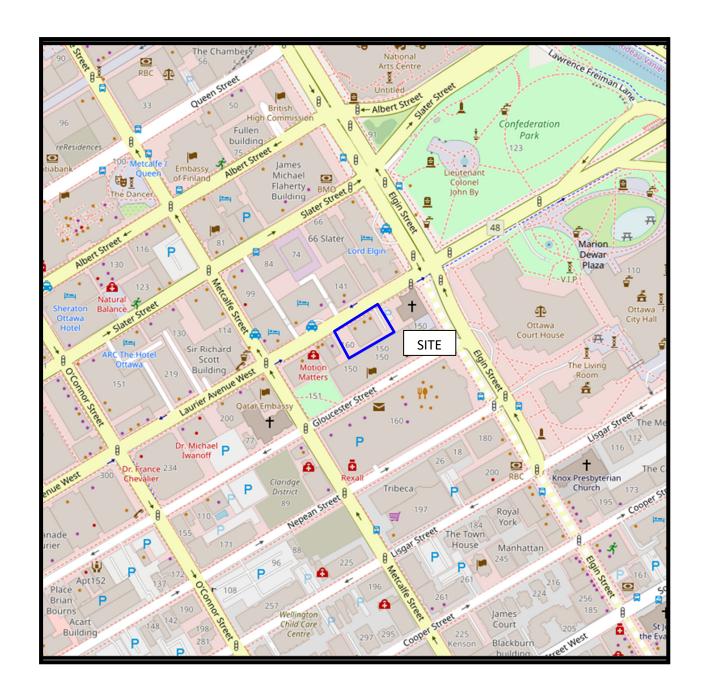
Drawing PE4822-3 – Test Hole Location Plan

Drawing PE4822-4 – Analytical Testing Plan – Soil – Metals, CrVI, Mercury

Drawing PE4822-4A – Cross-section A – A' – Soil – Metals, CrVI, Mercury

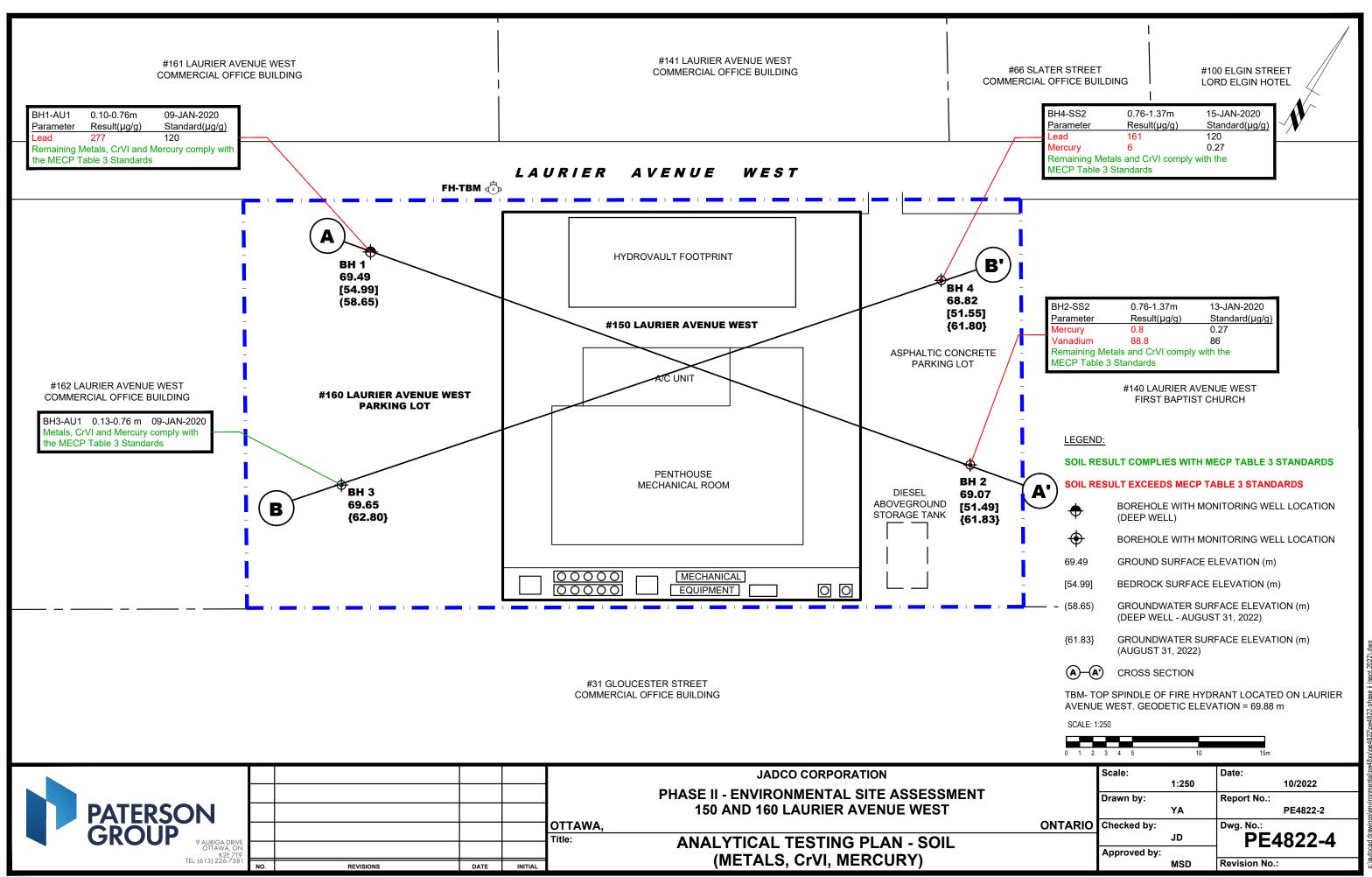
Drawing PE4822-4B – Cross-section B – B' – Soil – Metals, CrVI, Mercury

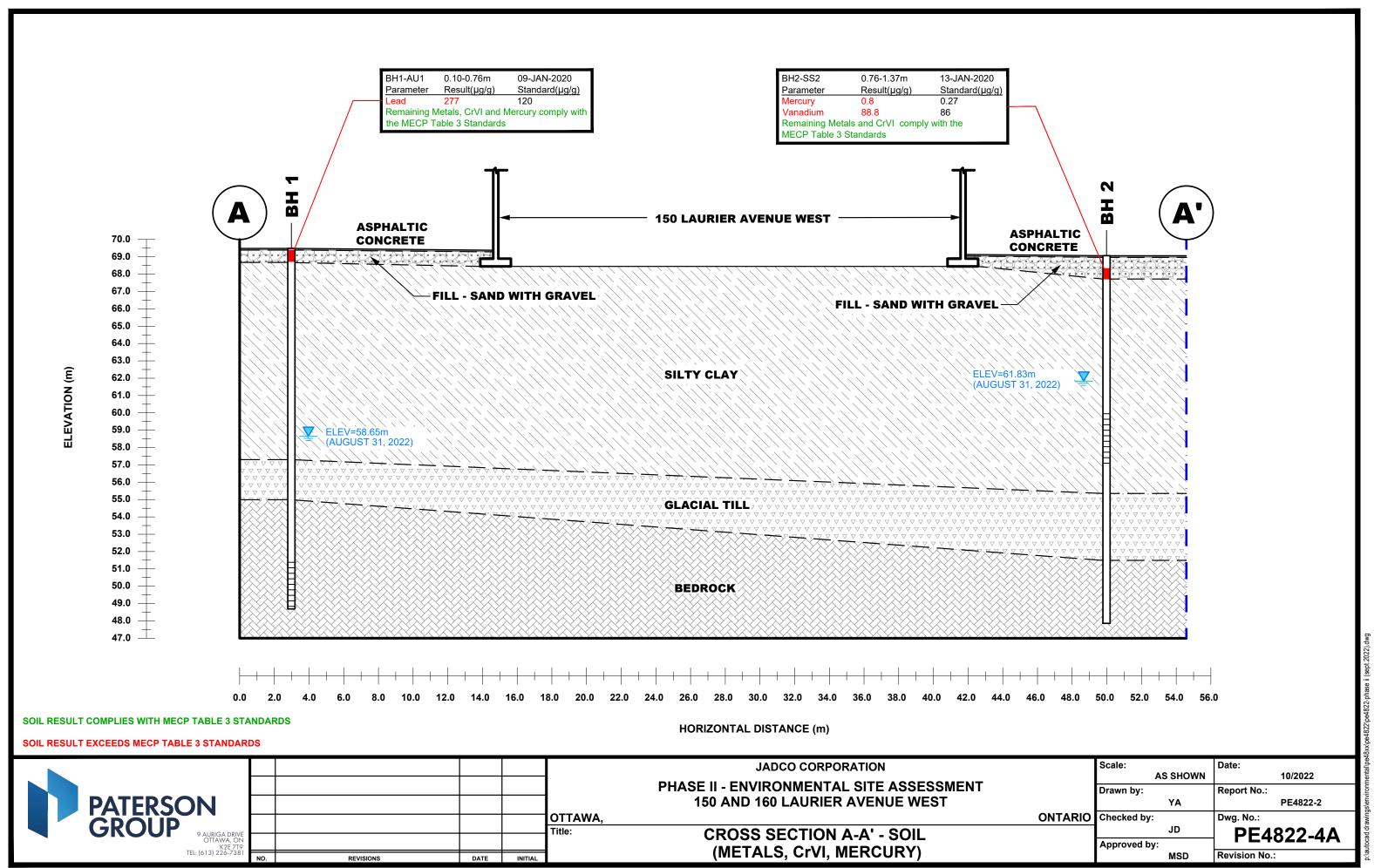
Drawing PE4822-5 – Analytical Testing Plan – Soil – PCBs, VOCs, PHCs

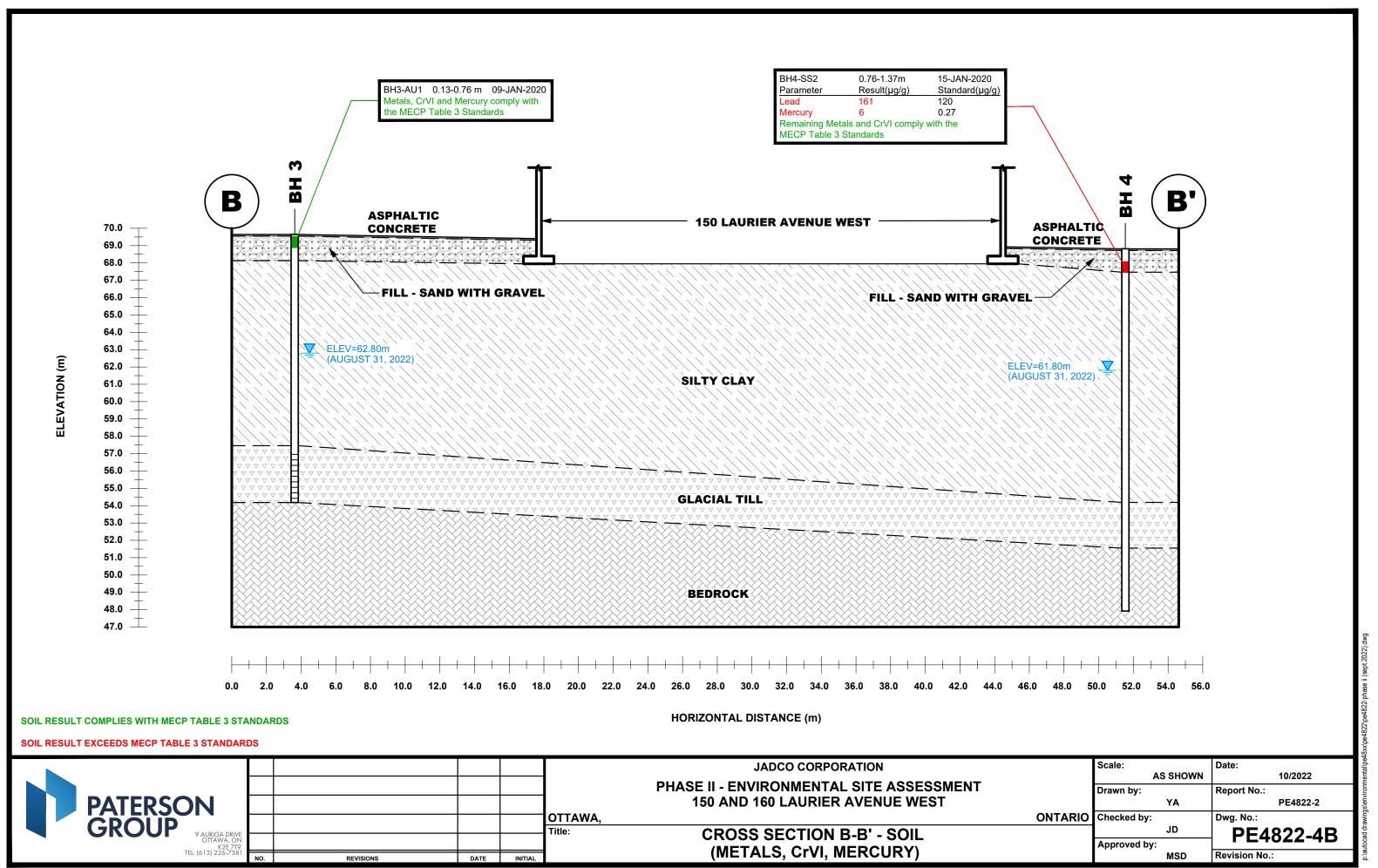

Drawing PE4822-5A – Cross-section A – A' – Soil – PCBs, VOCs, PHCs

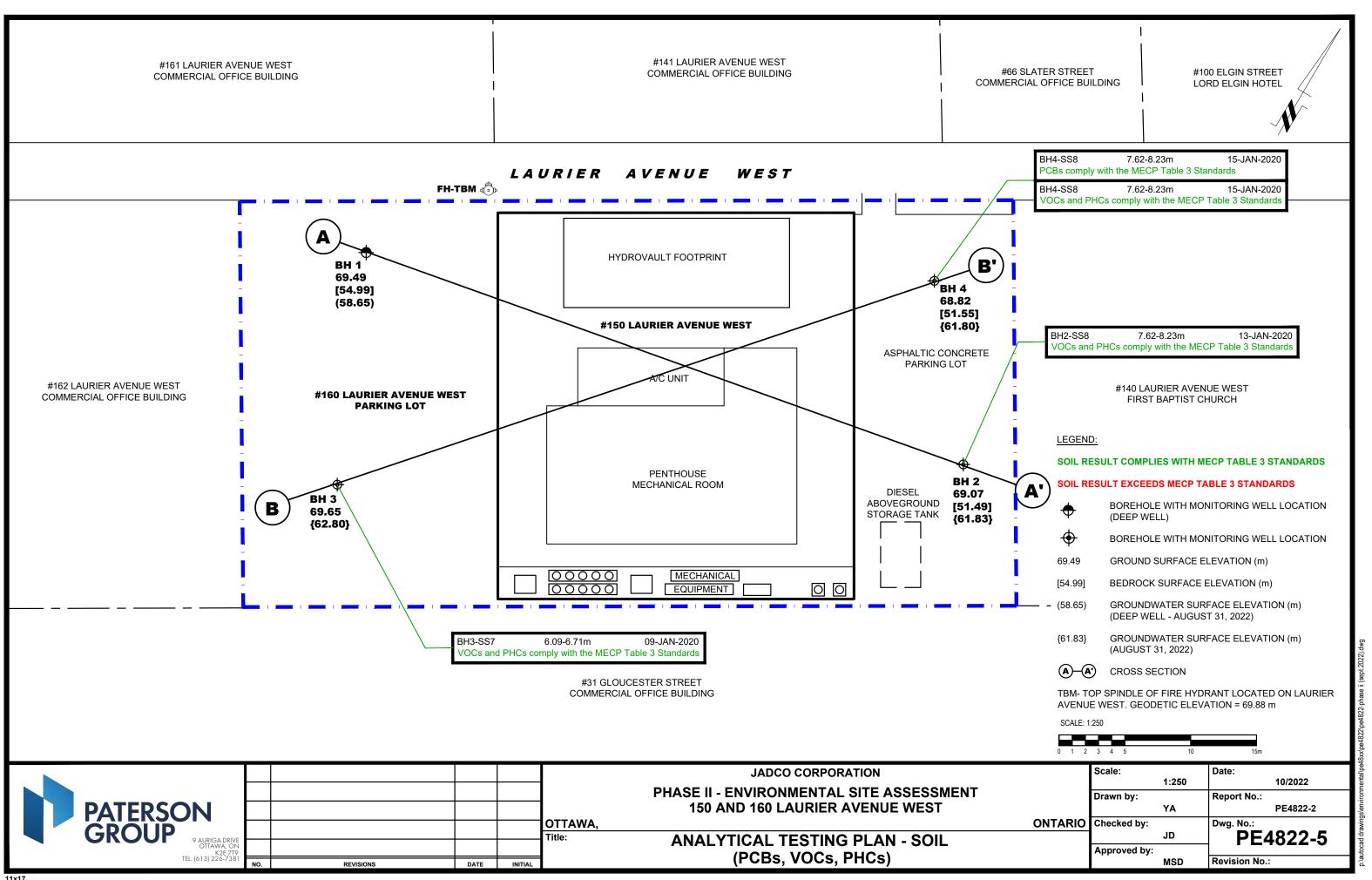
Drawing PE4822-5B – Cross-section B – B' – Soil – PCBs, VOCs, PHCs

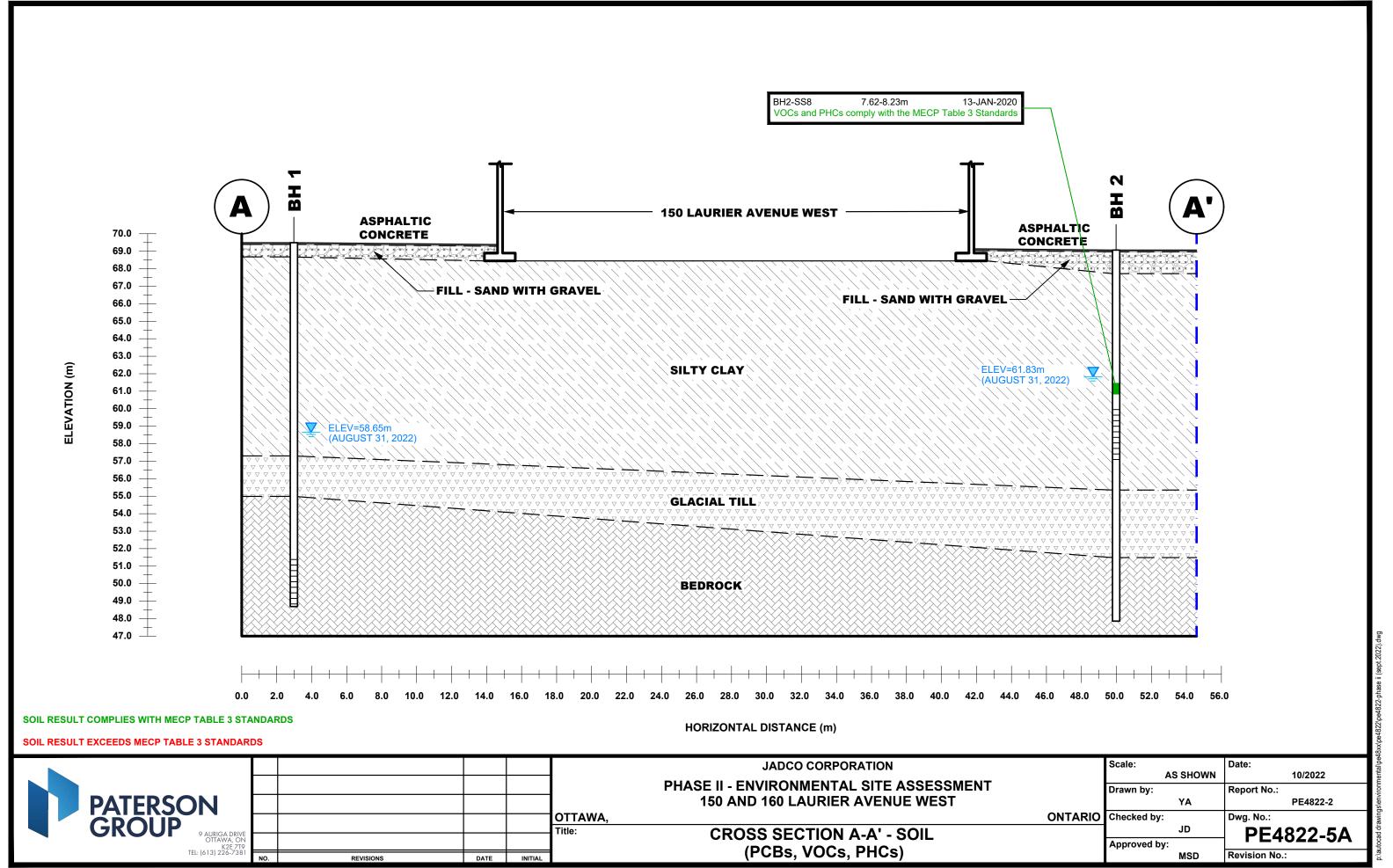
Drawing PE4822-6 – Analytical Testing Plan – Groundwater

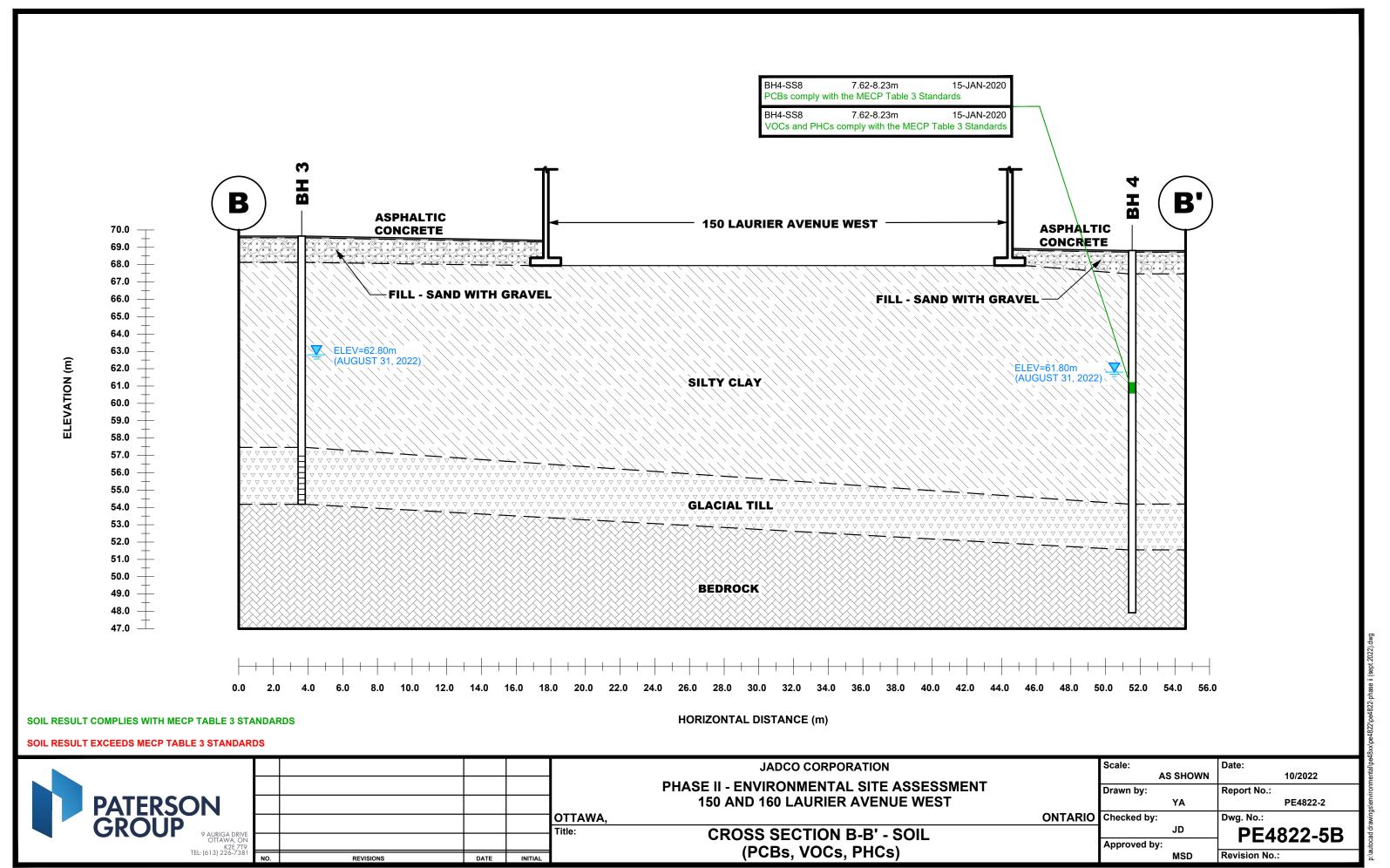

Drawing PE4822-6A – Cross-section A – A' – Groundwater

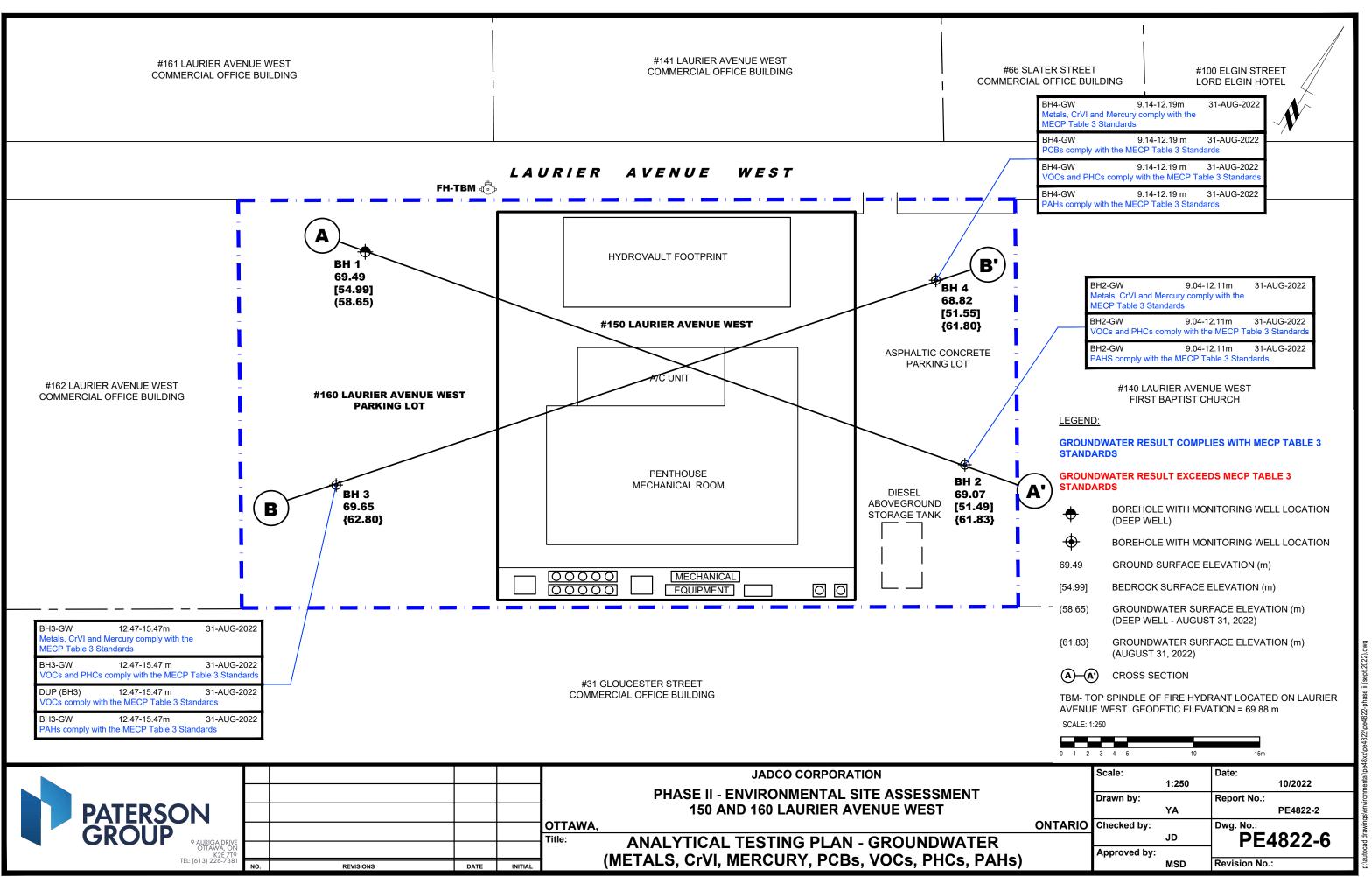

Drawing PE4822-6B – Cross-section B – B' – Groundwater

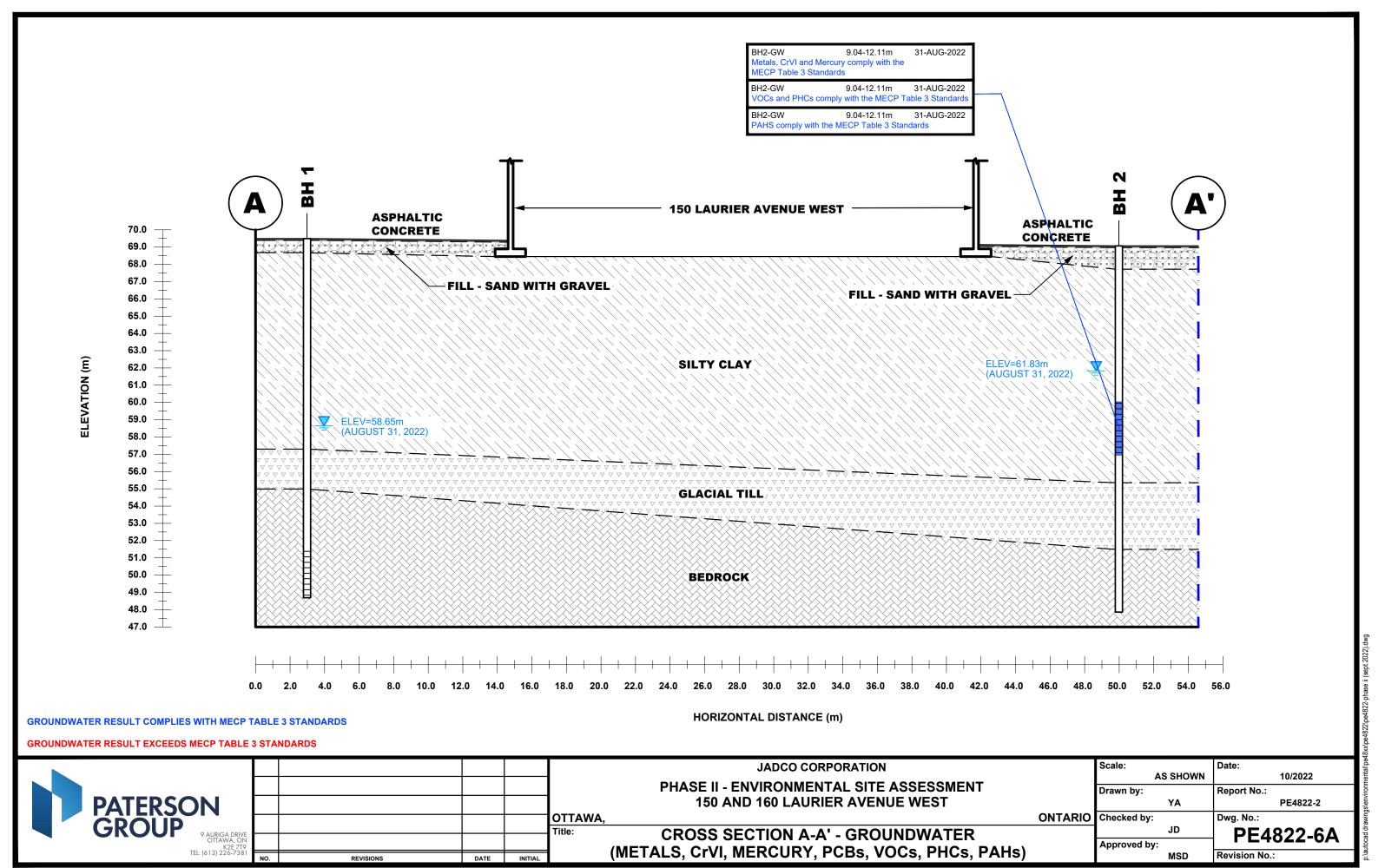


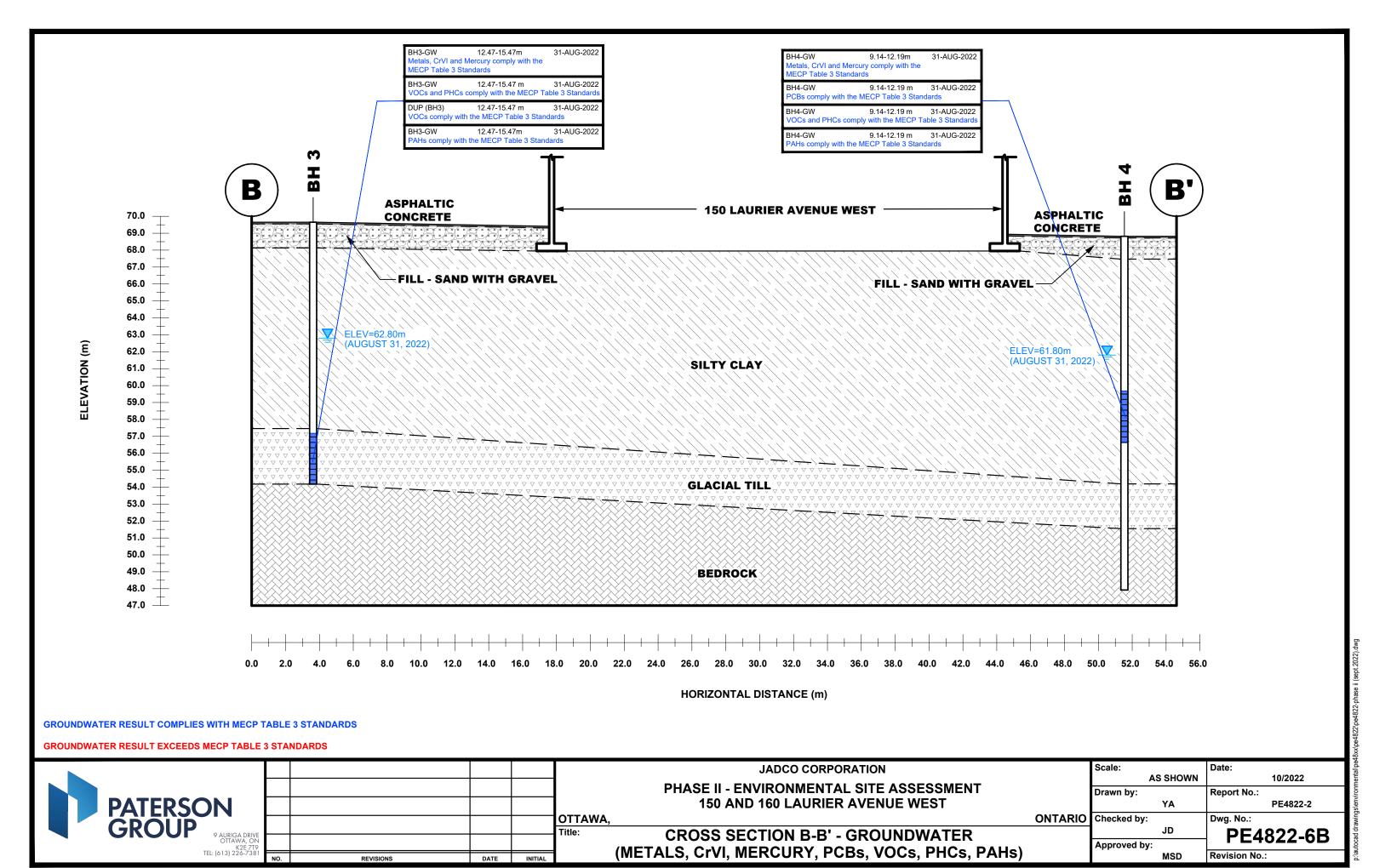

FIGURE 1 KEY PLAN











APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Sampling and Analysis

150 and 160 Laurier Avenue West Ottawa, Ontario

Prepared for JADCO Corporation

Report: PE4822-SAP January 9, 2020

TABLE OF CONTENTS

1.0	SAMPLING PROGRAM	1
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	3
	3.2 Monitoring Well Installation Procedure	6
	3.3 Monitoring Well Sampling Procedure	7
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
5.0	DATA QUALITY OBJECTIVES	9
6.0	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	10

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by JADCO Corporation, to conduct a Phase II – Environmental Site Assessment (Phase II ESA) at 150 and 160 Laurier Avenue West, in the City of Ottawa, Ontario.

Based on the findings of the Phase I ESA, the following subsurface investigation program was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1	Placed on the northwest portion of the Phase II property to assess for potential soil and groundwater impacts resulting from the potential fill material of unknown quality, hydro vault along the northern portion of the building.	5-7 m; Drill to intercept water table for monitoring well installation. Core bedrock if there is no evidence of water in the overburden.
BH2	Placed on the southeast portion of the Phase II property to assess for potential soil and groundwater impacts from the potential fill material of unknown quality, presence of an above ground storage tank located at the southeast corner of the property and an off-site garage to the south.	5-7 m; Drill to intercept water table for monitoring well installation. Core bedrock if there is no evidence of water in the overburden.
ВН3	Placed on the southwest portion of the Phase II property to assess for potential soil and groundwater impacts resulting from the potential fill material of unknown quality.	5-7 m; Drill to intercept water table for monitoring well installation. Core bedrock if there is no evidence of water in the overburden.
BH4	Placed on the northeast portion of the Phase II property to assess for potential soil and groundwater impacts resulting from the potential fill material of unknown quality, hydro vault along the northern portion of the building.	5-7 m; Drill to intercept water table for monitoring well installation. Core bedrock if there is no evidence of water in the overburden.

Borehole locations are shown on Drawing PE4822-3 – Test Hole Location Plan, appended to the main report.

At each borehole, split-spoon samples of the overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following the borehole drilling, groundwater monitoring wells will be installed in all boreholes for the collection of groundwater samples.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations: At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site. ☐ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site. ☐ In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards. ☐ In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase LESA. The analytical testing program for soil at the subject site is based on the following general considerations: ☐ Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained). Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs. At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing. Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

Report: PE4822-SAP January 9, 2020

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

Glass soil sample jars
two buckets
cleaning brush (toilet brush works well)
dish detergent
methyl hydrate
water (if not available on site - water jugs available in trailer)
latex or nitrile gloves (depending on suspected contaminant)
RKI Eagle organic vapour meter or MiniRae photoionization detector
(depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

	Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every
	0.76 m or 2'6") are required.
	Make sure samples are well sealed in plastic bags with no holes prior to
	screening and are kept cool but unfrozen.
	If sampling for VOCs, BTEX, or PHCs F ₁ , a soil core from each soil sample,
	which may be analyzed, must be taken and placed in the laboratory-provided
	methanol vial.
	Note all and any odours or discolouration of samples.
	Split spoon samplers must be washed between samples.
	If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
	As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
	If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.
Sp	oon Washing Procedure
	sampling equipment (spilt spoons, etc.) must be washed between samples in der to prevent cross contamination of soil samples.
	Obtain two buckets of water (preferably hot if available) Add a small amount of dish soap to one bucket
	Scrub spoons with brush in soapy water, inside and out, including tip
	Rinse in clean water
	Apply a small amount of methyl hydrate to the inside of the spoon. (A spray
	bottle or water bottle with a small hole in the cap works well)
	Allow to dry (takes seconds)
	Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing.

Report: PE4822-SAP January 9, 2020

Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used. ☐ Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen. ☐ Turn instrument on and allow to come to zero - calibrate if necessary ☐ If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed. ☐ Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered. Break up large lumps of soil in the sample bag, taking care not to puncture bag. ☐ Insert probe into soil bag, creating a seal with your hand around the opening. ☐ Gently manipulate soil in bag while observing instrument readings. ☐ Record the highest value obtained in the first 15 to 25 seconds ☐ Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).

☐ Jar samples and refrigerate as per Sampling and Analysis Plan.

Report: PE4822-SAP January 9, 2020

3.2 Monitoring Well Installation Procedure

Ec	uipment
	5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 $\frac{1}{4}$ " if installing in cored hole in bedrock)
	5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" if installing in cored hole in bedrock)
	Threaded end-cap
	Slip-cap or J-plug
	Asphalt cold patch or concrete
	Silica Sand
	Bentonite chips (Holeplug)
	Steel flushmount casing
Pr	ocedure
	Drill borehole to required depth, using drilling and sampling procedures
_	described above.
	If borehole is deeper than required monitoring well, backfill with bentonite chips
	to required depth. This should only be done on wells where contamination is
	not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole.
	unit to prevent potential migration of contaminants between units.
	Where LNAPLs are the suspected contaminants of concern, monitoring wells
	should be screened straddling the water table in order to capture any free
	product floating on top of the water table.
	Thread the end cap onto a section of screen. Thread second section of screen
	if required. Thread risers onto screen. Lower into borehole to required depth.
_	Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
U	As drillers remove augers, backfill borehole annulus with silica sand until the
	level of sand is approximately 0.3 m above the top of the screen. Backfill with holeplug until at least 0.3 m of holeplug is present above the top
	of the silica sand.
П	Backfill remainder of borehole with holeplug or with auger cuttings (if
_	contamination is not suspected).

annulus with concrete, cold patch, or holeplug to match surrounding ground

surface.

Equipment

3.3 Monitoring Well Sampling Procedure

	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles
Sa	mpling Procedure
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
	Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
	Measure total depth of well.
	Clean water level tape or interface probe using methanol and water. Change gloves between wells.
	Calculate volume of standing water within well and record.
	Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
	Replace well cap and flushmount casing cap.

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) 4.0

ın	e QA/QC program for this Phase II ESA is as follows:
	All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
	All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
	Where groundwater samples are to be analyzed for VOCs, one laboratory provided trip blank will be submitted for analysis with every laboratory submission.
	Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
	Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

January 9, 2020

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Ph	ysical impediments to the Sampling and Analysis plan may include:							
	The location of underground utilities Poor recovery of split-spoon soil samples Insufficient groundwater volume for groundwater samples Breakage of sampling containers following sampling or while in transit to the							
	laboratory							
	Elevated detection limits due to matrix interference (generally related to soi colour or presence of organic material)							
	Elevated detection limits due to high concentrations of certain parameters necessitating dilution of samples in laboratory							
	Drill rig breakdowns							
	Winter conditions							
	Other site-specific impediments							
	Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II ESA report.							

Report: PE4822-SAP Page 10

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 150 Laurier Avenue West Ottawa, Ontario

DATUM Geodetic

REMARKS

BORINGS BY CME-55 Low Clearance Drill

DATE January 9, 2020

BH 1

BORINGS BY CME-55 Low Clearance	Drill	ı		D	ATE .	January 9	9, 2020	1	HOLE	: NO.	BH 1		
SOIL DESCRIPTION			SAMPLE				ELEV.		Ionization Detector atile Organic Rdg. (ppm)				
GROUND SURFACE		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)				Limit %	Monitoring Well	
Asphaltic concrete 0.10	0 💢	¥ AU	1	''		0-	69.49						
FILL: Brown silty sand with gravel 0.81		ss	2	54	14	1-	68.49						
		ss	3	62	12	2-	67.49						
		X ss	4	100	Р		66.49						
/ery stiff to stiff, brown SILTY CLAY		<u> </u>	-	100	'	4-	65.49						
·		ss	5	100	Р	5-	64.49						
grey by 4.6m depth		∑ ss	6	100	Р	6-	63.49						
						7-	62.49						
		∑ ss	7	100	Р	8-	61.49						
		∑ ss	8	100	Р	9-	60.49						
							-59.49						
		X ss	9	100	Р	11-	-58.49						
12.19 GLACIAL TILL: Grey silty clay with		∑-ss	10	100	3		-57.49 -56.49						
gravel, cobbles and boulders, trace cand		X ss	11	100	5		55.49						
14.50)\^^^^	RC	1	100	53		54.49						
		RC	2	100	15		53.49	-0-1-0-1-0-1			1		
BEDROCK: Fair quality, black shale		- RC	3	100	68		52.49						
DEDITION: Fall quality, black shale		_				18-	51.49						
		RC	4	100	77	19-	50.49					1	
20.80)	RC	5	88	54	20-	49.49						
End of Borehole	 	-										1	
(GWL @ 10.84 - August 31, 2022)													
									200 Eagle I			⊣ 5 00	

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 150 Laurier Avenue West Ottawa, Ontario

DATUM Geodetic

REMARKS

BORINGS BY CME-55 Low Clearance Drill

DATE January 14, 2020

BH 2

BORINGS BY CME-55 Low Clearance		D	ATE .	January 1	1	BH 2							
SOIL DESCRIPTION	PLOT	SAMPLE				DEPTH	ELEV.		Photo Ionization Detector Volatile Organic Rdg. (ppm) C Lower Explosive Limit %				
		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Lov	ver Ex	plosiv	/e Lim	nit %	onitoring
GROUND SURFACE	STRATA		Z	88	z o		69.07	20	40	60	8 (0	Σ
Asphaltic concrete 0.1	0	AU	1									::3:2::3::	
ILL: Brown silty sand with gravel nd clay	5	<u></u> SS	2	54	19	1-	68.07						Ē
		<u>∦</u> ss	3	58	10	2-	67.07						
		<u>∦</u> ss	4	50	4	3-	66.07						E
Stiff, brown SILTY CLAY		∑ ss	5	100	Р								
grov by 2 0m donth						4-	65.07						E
grey by 3.0m depth		∦ss	6	100	Р	5-	64.07						E
						6-	63.07			1			
		∑ ss	7	100	Р								E
						7-	-62.07						Ē
		∑ ss	8	100	Р	8-	61.07						
						9-	60.07						
		∑ss	9	42	Р								
						10-	-59.07						
		∑ ss	10	62	Р	11-	58.07						
						12-	57.07						
		∏ ss	11	100	Р								
13.7						13-	-56.07						
GLACIAL TILL: Grey clayey silt with	- 	[™] ss	12	100	Р	14-	55.07						
gravel, cobbles and boulders 15.2	رُمْمُمْ مُمْمُمُ	<u></u>				15-	-54.07						
		∏ss	13	21	3								
GLACIAL TILL: Grey silty sand with gravel, cobbles and boulders, some	^^^^	<u>^</u>				16-	-53.07						
clay	`^^^^!	∑ ss	14	0	5	17-	52.07						
<u>17.5</u>	8 ^,^,^	RC	1	100	0	1Ω-	-51.07						
PEDDOCK: Vary poor to poor			_			10	31.07						
BEDROCK: Very poor to poor quality, grey shale		RC	2	100	27	19-	-50.07						
						20-	49.07						
21.0		RC	3	100	41	0.1	40.07						
<u>21.2</u> End of Borehole	'	-				21-	48.07						
(GWL @ 7.24 - August 31, 2022)													
_ Δ. Γ. Δ. Τ August 31, 2022)													
								100	200 I E agl	30 e Rdg			00
										esp. 🛆			

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment **150 Laurier Avenue West** Ottawa, Ontario

Geodetic DATUM FILE NO. **PE4822 REMARKS** HOLE NO.

ORINGS BY CME-55 Low Clearance [Drill				ATE .	January 9	9, 2020		HOL	E NO.	BH 3	
SOIL DESCRIPTION			SAMPLE			DEPTH	ELEV.	Photo Ionization Detector Volatile Organic Rdg. (ppm)				Well
		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)				Limit %	Monitoring Well
GROUND SURFACE		¥		2	z °	0-	69.65	20	40	60	80	2
sphaltic concrete0.13		Ž AU ∣	1									
ace clay 1.52		<u> </u>	2	17	12	1-	-68.65	- 61-66-			5-1	
		SS	3	100	13	2-	67.65	100000000000000000000000000000000000000			<u> </u>	
OU TV OLAV		SS	4	100	6	3-	66.65					
ery stiff to stiff, brown SILTY CLAY		∑ SS	5	100	P							
grey by 3.0m depth		7			_	4-	65.65					
g. c, c, c.c dopu.		∑ SS	6	100	P	5-	64.65					E
		7	_		_	6-	63.65	-6-1-6-1-6		-5-1	6	E
		∑ SS	7	100	P	7-	62.65					Ē
		7	_		_							E
		∑ SS	8	100	P	8-	61.65					
		7	_		_	9-	60.65					E
		∑ SS	9	71	P	10-	59.65					Ē
		7										E
		∑ ss	10	100	P	11-	-58.65					
12.19		7-				12-	57.65					
LACIAL TILL: Grey silty clay to layey silt with sand, gravel, cobbles	\^^^^	SS	11	83	10	13-	56.65	-0-1-0		2 - 1 - 1 - 1 - 1 -		
nd boulders 13.72	\^^^^	<u> </u>	12	75	3			-0-1-0-1-0				
LACIAL TILL: Grey silty sand with	\^^^^	∑ SS	13	58	53	14-	-55.65					
lay, gravel, cobbles and boulders		- 00	14	89	50+	15-	54.65					
nd of Borehole	1	٥٥.۵	14	09	30+							Ť
ractical refusal to augering at 5.47m depth												
GWL @ 6.85 - August 31, 2022)												
								100	200	300		500
										Rdg. (ppm) ethane Elim.	

Bhaco

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Phase II - Environmental Site Assessment 150 Laurier Avenue West Ottawa, Ontario

DATUM Geodetic FILE NO. **PE4822 REMARKS** HOLE NO. **BH 4** BORINGS BY CME-55 Low Clearance Drill DATE January 15, 2020 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY STRATA VALUE r RQD NUMBER TYPE **Lower Explosive Limit %** N o v **GROUND SURFACE** 80 0+68.82Asphaltic concrete 1 0.10 ΑU FILL: Brown silty sand with gravel, 1+67.82SS 2 50 9 some clay and concrete debris 100 SS 3 5 2+66.82SS 4 8 4 3+65.82Stiff, brown SILTY CLAY SS 5 Ρ 100 4+64.82- grey by 3.0m depth SS 6 58 Ρ 5+63.826+62.827 SS Ρ 71 7+61.82SS Ρ 8 100 8+60.82 9+59.8210+58.82 11+57.8212+56.82 13+55.82 14+54.82 15 + 53.82GLACIAL TILL: Grey silty sand with SS 9 25 24 gravel, cobbles and boulders, some 16+52.82clay 17+51.82 17.27 SS 10 29 24 RC 1 100 84 18 + 50.82 2 **BEDROCK:** Good to fair quality, RC 96 91 19 + 49.82black shale 20+48.82 RC 3 100 68 20.90 End of Borehole (GWL @ 7.02 - August 31, 2022) 200 300 500 RKI Eagle Rdg. (ppm)

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value	
Very Soft	<12	<2	
Soft	12-25	2-4	
Firm	25-50	4-8	
Stiff	50-100	8-15	
Very Stiff	100-200	15-30	
Hard	>200	>30	

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube
PS	-	Piston sample
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% - Natural moisture content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic limit, % (water content above which soil behaves plastically)

PI - Plasticity index, % (difference between LL and PL)

Dxx - Grain size which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

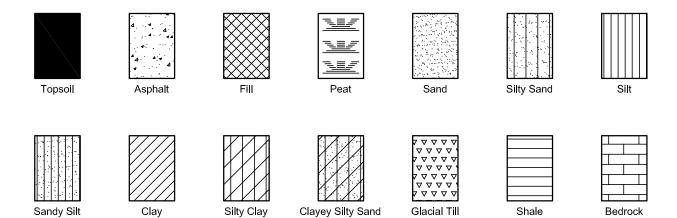
p'_o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

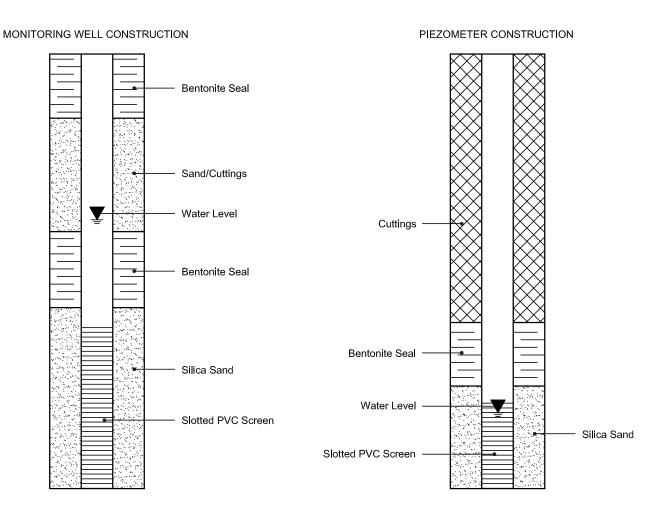
Ccr - Recompression index (in effect at pressures below p'c)
Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'_c/p'_o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Mark D'Arcy

Client PO: 28474 Project: PE4822 Custody: 125917

Report Date: 27-Jan-2020 Order Date: 22-Jan-2020

Order #: 2004395

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2004395-01	BH1-AU1
2004395-02	BH2-SS2
2004395-03	BH2-SS8
2004395-04	BH3-AU1
2004395-05	BH3-SS7
2004395-06	BH4-SS2
2004395-07	BH4-SS8

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Certificate of AnalysisReport Date: 27-Jan-2020Client: Paterson Group Consulting EngineersOrder Date: 22-Jan-2020Client PO: 28474Project Description: PE4822

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	23-Jan-20	24-Jan-20
Mercury by CVAA	EPA 7471B - CVAA, digestion	24-Jan-20	24-Jan-20
PCBs, total	SW846 8082A - GC-ECD	21-Jan-20	24-Jan-20
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	23-Jan-20	23-Jan-20
PHC F1	CWS Tier 1 - P&T GC-FID	24-Jan-20	25-Jan-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	23-Jan-20	24-Jan-20
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	24-Jan-20	24-Jan-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	24-Jan-20	25-Jan-20
Solids, %	Gravimetric, calculation	23-Jan-20	25-Jan-20

Report Date: 27-Jan-2020

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 22-Jan-2020 Client PO: 28474 **Project Description: PE4822**

	Client ID: Sample Date: Sample ID:	BH1-AU1 09-Jan-20 09:00 2004395-01	BH2-SS2 13-Jan-20 09:00 2004395-02	BH2-SS8 13-Jan-20 09:00 2004395-03	BH3-AU1 09-Jan-20 09:00 2004395-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			1		
% Solids	0.1 % by Wt.	93.1	76.6	59.6	94.3
General Inorganics			1	Г	1
рН	0.05 pH Units	-	8.03	-	-
Metals	1.0 ug/g dry				1
Antimony		1.4	<1.0	-	<1.0
Arsenic	1.0 ug/g dry	8.1	3.3	-	3.6
Barium	1.0 ug/g dry	140	362	-	46.5
Beryllium	0.5 ug/g dry	<0.5	0.6	-	<0.5
Boron	5.0 ug/g dry	18.1	5.8	-	5.7
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	<0.5
Chromium	5.0 ug/g dry	19.5	93.4	-	16.9
Chromium (VI)	0.2 ug/g dry	<0.2	0.7	-	<0.2
Cobalt	1.0 ug/g dry	4.5	18.0	-	5.1
Copper	5.0 ug/g dry	43.4	44.9	-	11.6
Lead	1.0 ug/g dry	277	30.3	-	41.6
Mercury	0.1 ug/g dry	<0.1	0.8	-	<0.1
Molybdenum	1.0 ug/g dry	1.5	<1.0	-	1.8
Nickel	5.0 ug/g dry	13.1	51.1	-	36.9
Selenium	1.0 ug/g dry	<1.0	<1.0	-	<1.0
Silver	0.3 ug/g dry	0.4	<0.3	-	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	-	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	-	<1.0
Vanadium	10.0 ug/g dry	18.2	88.8	-	18.6
Zinc	20.0 ug/g dry	77.5	120	-	30.6
Volatiles	!				!
Acetone	0.50 ug/g dry	-	-	<0.50	-
Benzene	0.02 ug/g dry	-	-	<0.02	-
Bromodichloromethane	0.05 ug/g dry	-	-	<0.05	-
Bromoform	0.05 ug/g dry	-	-	< 0.05	-
Bromomethane	0.05 ug/g dry	-	-	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	-	-	<0.05	-
Chlorobenzene	0.05 ug/g dry	-	-	<0.05	-
Chloroform	0.05 ug/g dry	-	-	<0.05	-
Dibromochloromethane	0.05 ug/g dry	-	-	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	_	<0.05	-

Report Date: 27-Jan-2020

Order Date: 22-Jan-2020

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 28474 Project Description: PE4822

Г	Client ID: Sample Date: Sample ID: MDL/Units	BH1-AU1 09-Jan-20 09:00 2004395-01 Soil	BH2-SS2 13-Jan-20 09:00 2004395-02 Soil	BH2-SS8 13-Jan-20 09:00 2004395-03 Soil	BH3-AU1 09-Jan-20 09:00 2004395-04 Soil
1,2-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	-	-	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	-	-	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	-	-	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	-	-	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	-
Ethylene dibromide (dibromoethan	0.05 ug/g dry	-	-	<0.05	-
Hexane	0.05 ug/g dry	-	-	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	-	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	-	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	-	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	-	<0.05	-
Styrene	0.05 ug/g dry	-	-	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	-	<0.05	-
Toluene	0.05 ug/g dry	-	-	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	-	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	-	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	-	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	-	-	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	-	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	-
o-Xylene	0.05 ug/g dry	-	-	<0.05	-
Xylenes, total	0.05 ug/g dry	-	-	<0.05	-
4-Bromofluorobenzene	Surrogate	-	-	111%	-
Dibromofluoromethane	Surrogate	-	-	71.3%	-
Toluene-d8	Surrogate	-	-	123%	-

Hydrocarbons

Report Date: 27-Jan-2020

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 22-Jan-2020 Client PO: 28474 **Project Description: PE4822**

	Client ID: Sample Date:	09-Jan-20 09:00	BH2-SS2 13-Jan-20 09:00	BH2-SS8 13-Jan-20 09:00	BH3-AU1 09-Jan-20 09:00
	Sample ID: MDL/Units	2004395-01 Soil	2004395-02 Soil	2004395-03 Soil	2004395-04 Soil
F1 PHCs (C6-C10)	7 ug/g dry	-	-	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	-	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	-	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	-	-	<6	-

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client PO: 28474

Report Date: 27-Jan-2020 Order Date: 22-Jan-2020

Project Description: PE4822

	Client ID: Sample Date: Sample ID:	BH3-SS7 09-Jan-20 09:00 2004395-05	BH4-SS2 15-Jan-20 09:00 2004395-06	BH4-SS8 15-Jan-20 09:00 2004395-07	- - -
Physical Characteristics	MDL/Units	Soil	Soil	Soil	-
% Solids	0.1 % by Wt.	57.3	87.8	59.4	
General Inorganics	,,	57.3	07.0	39.4	-
pH	0.05 pH Units	8.50	_	-	-
Metals			1		
Antimony	1.0 ug/g dry	-	<1.0	-	-
Arsenic	1.0 ug/g dry	-	2.8	-	-
Barium	1.0 ug/g dry	-	171	-	-
Beryllium	0.5 ug/g dry	-	<0.5	-	-
Boron	5.0 ug/g dry	-	<5.0	-	-
Cadmium	0.5 ug/g dry	-	0.7	-	-
Chromium	5.0 ug/g dry	-	23.5	-	-
Chromium (VI)	0.2 ug/g dry	-	0.3	-	-
Cobalt	1.0 ug/g dry	-	6.4	-	-
Copper	5.0 ug/g dry	-	19.7	-	-
Lead	1.0 ug/g dry	-	161	-	-
Mercury	0.1 ug/g dry	-	6.0	-	-
Molybdenum	1.0 ug/g dry	-	<1.0	-	-
Nickel	5.0 ug/g dry	-	14.5	-	-
Selenium	1.0 ug/g dry	-	<1.0	-	-
Silver	0.3 ug/g dry	-	0.9	-	-
Thallium	1.0 ug/g dry	-	<1.0	-	-
Uranium	1.0 ug/g dry	-	<1.0	-	-
Vanadium	10.0 ug/g dry	-	29.6	-	-
Zinc	20.0 ug/g dry	-	84.1	-	-
Volatiles					
Acetone	0.50 ug/g dry	<0.50	-	<0.50	-
Benzene	0.02 ug/g dry	<0.02	-	<0.02	-
Bromodichloromethane	0.05 ug/g dry	< 0.05	-	<0.05	-
Bromoform	0.05 ug/g dry	< 0.05	-	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	-	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	<0.05	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	-	<0.05	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	<0.05	-

Report Date: 27-Jan-2020

Order Date: 22-Jan-2020

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client PO: 28474 Project Description: PE4822

Sample ID Solid		Client ID: Sample Date:	BH3-SS7 09-Jan-20 09:00	BH4-SS2 15-Jan-20 09:00	BH4-SS8 15-Jan-20 09:00	- -
1,2-Dichlorobenzene 0.05 ugʻg dry <0.05 - <0.05 - 1,3-Dichlorobenzene 0.05 ugʻg dry <0.05 - <0.05 - 1,4-Dichlorobenzene 0.05 ugʻg dry <0.05 - <0.05 - 1,2-Dichloroethane 0.05 ugʻg dry <0.05 - <0.05 - 1,2-Dichloroethylene 0.05 ugʻg dry <0.05 - <0.05 - 1,2-Dichloroethylene 0.05 ugʻg dry <0.05 - <0.05 - 0is-1,2-Dichloroethylene 0.05 ugʻg dry <0.05 - <0.05 - 1,2-Dichloropropylene 0.05 ugʻg dry <0.05 - <0.05		Sample ID:	2004395-05	2004395-06	2004395-07	-
1,3-Dichlorobenzene 0.05 ugʻg dry < 0.05				Soil		-
1,4-Dichlorobenzene 0.05 ugʻg dry <0.05	1,2-Dichlorobenzene		<0.05	-		-
1,1-Dichloroethane 0.05 ug/g dry <0.05	1,3-Dichlorobenzene		<0.05	-	<0.05	-
1,2-Dichloroethane 0.05 ug/g dry <0.05	1,4-Dichlorobenzene		<0.05	-	<0.05	-
1,1-Dichloroethylene 0.05 ug/g dry <0.05	1,1-Dichloroethane		<0.05	-	<0.05	-
cis-1,2-Dichloroethylene 0.05 ug/g dry <0.05	1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
trans-1,2-Dichloroethylene	1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
1,2-Dichloropropane 0.05 ug/g dry <0.05	cis-1,2-Dichloroethylene		<0.05	-	<0.05	-
cis-1,3-Dichloropropylene 0.05 ug/g dry <0.05	trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
trans-1,3-Dichloropropylene	1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	<0.05	-
1,3-Dichloropropene, total 0.05 ug/g dry <0.05	cis-1,3-Dichloropropylene	0.05 ug/g dry	< 0.05	-	<0.05	-
Ethylbenzene 0.05 ug/g dry <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.	trans-1,3-Dichloropropylene	0.05 ug/g dry	< 0.05	-	< 0.05	-
Ethylene dibromide (dibromoethar 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 ug/g dry <0.05 - 0.05	1,3-Dichloropropene, total	0.05 ug/g dry	< 0.05	-	< 0.05	-
Hexane	Ethylbenzene	0.05 ug/g dry	<0.05	-	<0.05	-
Methyl Ethyl Ketone (2-Butanone) 0.50 ug/g dry <0.50 - <0.50 - Methyl Isobutyl Ketone 0.50 ug/g dry <0.50	Ethylene dibromide (dibromoethar	0.05 ug/g dry	<0.05	-	<0.05	-
Methyl Isobutyl Ketone 0.50 ug/g dry <0.50	Hexane	0.05 ug/g dry	<0.05	-	<0.05	-
Methyl tert-butyl ether 0.05 ug/g dry <0.05 - <0.05 - Methylene Chloride 0.05 ug/g dry <0.05	Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	<0.50	-
Methylene Chloride 0.05 ug/g dry <0.05 - <0.05 - Styrene 0.05 ug/g dry <0.05	Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	<0.50	-
Styrene 0.05 ug/g dry <0.05 - <0.05 - 1,1,1,2-Tetrachloroethane 0.05 ug/g dry <0.05	Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	< 0.05	-
1,1,1,2-Tetrachloroethane 0.05 ug/g dry <0.05	Methylene Chloride	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,2,2-Tetrachloroethane 0.05 ug/g dry <0.05 - <0.05 - Tetrachloroethylene 0.05 ug/g dry <0.05	Styrene	0.05 ug/g dry	<0.05	-	<0.05	-
Tetrachloroethylene 0.05 ug/g dry <0.05 - <0.05 - Toluene 0.05 ug/g dry <0.05	1,1,1,2-Tetrachloroethane	0.05 ug/g dry	< 0.05	-	<0.05	-
Toluene 0.05 ug/g dry <0.05 - <0.05 - <0.05 - <1,1,1-Trichloroethane 0.05 ug/g dry <0.05 - <0.05 - <0.05 - <1,1,2-Trichloroethane 0.05 ug/g dry <0.05 - <0.05 - <0.05 - <1,1,2-Trichloroethane 0.05 ug/g dry <0.05 - <0.05 - <0.05 - <1,1,2-Trichloroethylene 0.05 ug/g dry <0.05 - <0.05 - <0.05 - <1,1,2-Trichloroethylene 0.05 ug/g dry <0.05 - <0.05 - <1,2,2,2,2,2 ug/g ug/g - <0.05 - <1,2,2,2,2 ug/g ug/g - <0.05 - <1,2,2,2 ug/g ug/g - <0.05 - <1,2,2 ug/g ug/g - <0.05 - <1,2,2 ug/g ug/g - <0.05 - <1,2,2 ug/g ug/g ug/g - <0.05 - <1,2,2 ug/g ug/g ug/g - <0.05 - <1,2,2 ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/	1,1,2,2-Tetrachloroethane	0.05 ug/g dry	< 0.05	-	<0.05	-
1,1,1-Trichloroethane 0.05 ug/g dry <0.05	Tetrachloroethylene	0.05 ug/g dry	< 0.05	-	<0.05	-
1,1,2-Trichloroethane 0.05 ug/g dry <0.05	Toluene	0.05 ug/g dry	< 0.05	-	<0.05	-
Trichloroethylene 0.05 ug/g dry <0.05 - <0.05 - Trichlorofluoromethane 0.05 ug/g dry <0.05	1,1,1-Trichloroethane	0.05 ug/g dry	< 0.05	-	<0.05	-
Trichlorofluoromethane 0.05 ug/g dry <0.05 - <0.05 - Vinyl chloride 0.02 ug/g dry <0.02	1,1,2-Trichloroethane	0.05 ug/g dry	< 0.05	-	<0.05	-
Vinyl chloride 0.02 ug/g dry <0.02 - <0.02 - m,p-Xylenes 0.05 ug/g dry <0.05	Trichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
m,p-Xylenes 0.05 ug/g dry <0.05	Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	<0.05	-
o-Xylene 0.05 ug/g dry <0.05	Vinyl chloride	0.02 ug/g dry	<0.02	-	<0.02	-
Xylenes, total 0.05 ug/g dry <0.05 - <0.05 - 4-Bromofluorobenzene Surrogate 115% - 115% - Dibromofluoromethane Surrogate 71.0% - 73.2% -	m,p-Xylenes	0.05 ug/g dry	<0.05	-	<0.05	-
4-Bromofluorobenzene Surrogate 115% - 115% - Dibromofluoromethane Surrogate 71.0% - 73.2% -	o-Xylene	0.05 ug/g dry	<0.05	-	<0.05	-
Dibromofluoromethane Surrogate 71.0% - 73.2% -	Xylenes, total	0.05 ug/g dry	<0.05	-	<0.05	-
	4-Bromofluorobenzene	Surrogate	115%	-	115%	-
Toluene-d8 Surrogate 126% - 126% -	Dibromofluoromethane	Surrogate	71.0%	-	73.2%	-
	Toluene-d8	Surrogate	126%	-	126%	-

Report Date: 27-Jan-2020

Order Date: 22-Jan-2020

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Client PO: 28474 **Project Description: PE4822**

	Client ID:	BH3-SS7	BH4-SS2	BH4-SS8	-
	Sample Date:	09-Jan-20 09:00	15-Jan-20 09:00	15-Jan-20 09:00	-
	Sample ID:	2004395-05	2004395-06	2004395-07	-
	MDL/Units	Soil	Soil	Soil	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	<6	-
PCBs			•		
PCBs, total	0.05 ug/g dry	-	-	<0.05	-
Decachlorobiphenyl	Surrogate	-	-	117%	-

Order #: 2004395

Report Date: 27-Jan-2020 Order Date: 22-Jan-2020

Client: Paterson Group Consulting EngineersOrder Date: 22-Jan-2020Client PO: 28474Project Description: PE4822

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium Beryllium	ND ND	1.0 0.5	ug/g						
Boron	ND	5.0	ug/g ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium `	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury Molybdenum	ND ND	0.1 1.0	ug/g						
Nickel	ND	5.0	ug/g ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
PCBs									
PCBs, total	ND	0.05	ug/g						
Surrogate: Decachlorobiphenyl	0.108		ug/g		108	60-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND ND	0.05 0.05	ug/g ug/g						
Dibromochloromethane	ND	0.05	ug/g ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ND ND	0.05 0.05	ug/g ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
Hexane Methyl Ethyl Ketone (2-Butanone)	ND ND	0.05 0.50	ug/g						
Methyl Isobutyl Ketone	ND ND	0.50	ug/g ug/g						
	שויו	0.00	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						

Order #: 2004395

Report Date: 27-Jan-2020 Order Date: 22-Jan-2020

Project Description: PE4822

Client: Paterson Group Consulting Engineers

Client PO: 28474

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.52		ug/g		110	50-140			
Surrogate: Dibromofluoromethane	2.17		ug/g		68.0	50-140			
Surrogate: Toluene-d8	3.88		ug/g		121	50-140			

Report Date: 27-Jan-2020

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 22-Jan-2020 Client PO: 28474 **Project Description: PE4822**

Method Quality Control: Duplicate

Analyte		Reporting Limit	l Inita	Source	0/ DEC	%REC	DDD	RPD Limit	Notes
mayto	Result	LIIIIIL	Units	Result	%REC	Limit	RPD	Limit	inotes
General Inorganics									
pH	7.29	0.05	pH Units	7.26			0.4	2.3	
- Hydrocarbons			·						
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Metals			g, g ,						
Antimony	1.3	1.0	ug/a dni	ND			0.0	30	
Anumony	2.4	1.0	ug/g dry ug/g dry	2.4			0.0	30	
Barium	38.4	1.0	ug/g dry ug/g dry	34.3			11.2	30	
Beryllium	ND	0.5	ug/g dry ug/g dry	ND			0.0	30	
Boron	5.6	5.0	ug/g dry	ND			0.0	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND			2.0	35	
Chromium	12.9	5.0	ug/g dry	12.5			3.4	30	
Cobalt	3.4	1.0	ug/g dry	3.2			4.9	30	
Copper	13.6	5.0	ug/g dry	12.1			11.7	30	
Lead	18.4	1.0	ug/g dry	16.9			8.3	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	7.7	5.0	ug/g dry	7.4			3.3	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	0.3 ND	0.3	ug/g dry	ND			0.0 0.0	30	
Thallium Uranium	ND ND	1.0 1.0	ug/g dry	ND ND			0.0	30 30	
Vanadium	17.3	10.0	ug/g dry	17.6			1.3	30	
Zinc	39.2	20.0	ug/g dry ug/g dry	35.1			11.0	30	
	09.2	20.0	ug/g ui y	00.1			11.0	50	
PCBs		0.65	, .					46	
PCBs, total	ND	0.05	ug/g dry	ND	100	00 1 10		40	
Surrogate: Decachlorobiphenyl	0.149		ug/g dry		122	60-140			
Physical Characteristics									
% Šolids	86.7	0.1	% by Wt.	86.6			0.1	25	
/olatiles									
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50 50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50 50	
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ND ND	0.05 0.05	ug/g dry	ND ND				50 50	
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	0.05	ug/g dry	ND ND				50 50	
1,2-Dichloroethane	ND ND	0.05	ug/g dry ug/g dry	ND				50 50	
1,1-Dichloroethylene	ND ND	0.05	ug/g dry ug/g dry	ND				50 50	
cis-1,2-Dichloroethylene	ND ND	0.05	ug/g dry ug/g dry	ND				50 50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	

Order #: 2004395

Report Date: 27-Jan-2020 Order Date: 22-Jan-2020

Client: Paterson Group Consulting EngineersOrder Date: 22-Jan-2020Client PO: 28474Project Description: PE4822

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: 4-Bromofluorobenzene	4.21		ug/g dry		111	50-140			
Surrogate: Dibromofluoromethane	2.52		ug/g dry		66.5	50-140			
Surrogate: Toluene-d8	4.79		ug/g dry		126	50-140			

Order #: 2004395

Report Date: 27-Jan-2020 Order Date: 22-Jan-2020

Client: Paterson Group Consulting Engineers Client PO: 28474 **Project Description: PE4822**

Method Quality Control: Snike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	175	7	ug/g		87.3	80-120			
F2 PHCs (C10-C16)	81	4	ug/g	ND	81.3	60-140			
F3 PHCs (C16-C34)	213	8	ug/g	ND	87.8	60-140			
F4 PHCs (C34-C50)	121	6	ug/g	ND	79.0	60-140			
Metals									
Antimony	39.3		ug/L	ND	78.4	70-130			
Arsenic	51.2		ug/L	1.0	101	70-130			
Barium	60.8		ug/L	13.7	94.2	70-130			
Beryllium	46.2		ug/L	ND	92.3	70-130			
Boron	44.6		ug/L	ND	85.5	70-130			
Cadmium	45.4		ug/L	ND	90.8	70-130			
Chromium (VI)	1.6	0.2	ug/g	ND	27.5	70-130			QM-05
Chromium	56.0		ug/L	5.0	102	70-130			
Cobalt	51.6		ug/L	1.3	101	70-130			
Copper	53.8		ug/L	ND	97.8	70-130			
Lead	53.4		ug/L	6.8	93.3	70-130			
Mercury	1.65	0.1	ug/g	ND	110	70-130			
Molybdenum	48.1		ug/L	ND	96.0	70-130			
Nickel	51.5		ug/L	ND	97.0	70-130			
Selenium	47.6		ug/L	ND	95.0	70-130			
Silver	44.0		ug/L	ND	87.8	70-130			
Thallium	46.5		ug/L	ND	93.0	70-130			
Uranium	48.4		ug/L	ND	96.4	70-130			
Vanadium	57.8		ug/L	ND	102	70-130			
Zinc	60.8		ug/L	ND	93.6	70-130			
PCBs									
PCBs, total	0.475	0.05	ug/g	ND	97.0	60-140			
Surrogate: Decachlorobiphenyl	0.156		ug/g		127	60-140			
Volatiles									
Acetone	7.25	0.50	ug/g		72.5	50-140			
Benzene	2.44	0.02	ug/g		61.0	60-130			
Bromodichloromethane	2.70	0.05	ug/g		67.4	60-130			
Bromoform	3.80	0.05	ug/g		94.9	60-130			
Bromomethane	2.63	0.05	ug/g		65.8	50-140			
Carbon Tetrachloride	2.84	0.05	ug/g		71.0	60-130			
Chlorobenzene	3.62	0.05	ug/g		90.5	60-130			
Chloroform	2.70	0.05	ug/g		67.4	60-130			
Dibromochloromethane	3.91	0.05	ug/g		97.8	60-130			
Dichlorodifluoromethane	2.55	0.05	ug/g		63.7	50-140			
1,2-Dichlorobenzene	3.23	0.05	ug/g		80.6	60-130			
1,3-Dichlorobenzene	3.13	0.05	ug/g		78.2	60-130			
1,4-Dichlorobenzene	3.21	0.05	ug/g		80.4	60-130			
1,1-Dichloroethane	2.91	0.05	ug/g		72.8	60-130			
1,2-Dichloroethane	2.88	0.05	ug/g		72.1	60-130			
1,1-Dichloroethylene	2.62	0.05	ug/g		65.4	60-130			
cis-1,2-Dichloroethylene	2.54	0.05	ug/g		63.4	60-130			
trans-1,2-Dichloroethylene	4.95	0.05	ug/g		124	60-130			
1,2-Dichloropropane	2.70	0.05	ug/g		67.5	60-130			
cis-1,3-Dichloropropylene	2.51	0.05	ug/g		62.7	60-130			
trans-1,3-Dichloropropylene	2.46	0.05	ug/g		61.4	60-130			

Client PO: 28474

Order #: 2004395

Report Date: 27-Jan-2020 Order Date: 22-Jan-2020

Project Description: PE4822

Method Quality Control: Spike

Client: Paterson Group Consulting Engineers

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Ethylbenzene	3.67	0.05	ug/g		91.8	60-130			
Ethylene dibromide (dibromoethane	3.62	0.05	ug/g		90.5	60-130			
Hexane	3.41	0.05	ug/g		85.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	9.36	0.50	ug/g		93.6	50-140			
Methyl Isobutyl Ketone	6.03	0.50	ug/g		60.3	50-140			
Methyl tert-butyl ether	7.55	0.05	ug/g		75.5	50-140			
Methylene Chloride	3.04	0.05	ug/g		76.0	60-130			
Styrene	3.58	0.05	ug/g		89.5	60-130			
1,1,1,2-Tetrachloroethane	3.81	0.05	ug/g		95.2	60-130			
1,1,2,2-Tetrachloroethane	2.49	0.05	ug/g		62.3	60-130			
Tetrachloroethylene	3.37	0.05	ug/g		84.2	60-130			
Toluene	3.53	0.05	ug/g		88.2	60-130			
1,1,1-Trichloroethane	2.72	0.05	ug/g		68.0	60-130			
1,1,2-Trichloroethane	2.54	0.05	ug/g		63.5	60-130			
Trichloroethylene	3.05	0.05	ug/g		76.2	60-130			
Trichlorofluoromethane	2.95	0.05	ug/g		73.7	50-140			
Vinyl chloride	3.34	0.02	ug/g		83.4	50-140			
m,p-Xylenes	7.56	0.05	ug/g		94.5	60-130			
o-Xylene	3.88	0.05	ug/g		97.0	60-130			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 28474

Report Date: 27-Jan-2020

Order Date: 22-Jan-2020

Project Description: PE4822

Qualifier Notes:

QC Qualifiers:

QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2004395

Paracel Order Number (Lab Use Only)

Chain Of Custody · (Lab Use Only)

Nº 125917

Client Name: Porterson Groyp		Project	t Ref:	PE4	827							7777		Р	age _/	of_		
Contact Name: Nhoy & D'Aray		Quote	#:											Turn	aroun	d Time		
Address:		PO#:		2847	4] 1 da	Y			3 day	,
		E-mail:	:										2 da	у		J	Regu	lar
Telephone: 226 - 7381												Date	e Req	uired:				_
Regulation 153/04 Other Regulation	N	1atrix T	ype:	S (Soil/Sed.) GW (Gr	ound Water)							Requ	uired.	Analys	is			
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO	9	SW (Su		Vater) SS (Storm/San aint) A (Air) O (Oth					_								_	
☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME ☐ MISA	_	_	T (T T T T T T T T T T T T T T T T T T T	0)	×	10											
Table 3 Agri/Other SU-Sani SU-Storm		0000	ners		- 1	+BTEX	10		ICP					-4				
Table Mun:		ume	of Containers	Sample	Taken	F1-F4+	4		by			(\$)	H	8				
For RSC: Yes Yes No Other:	Matrix	Air Volume		Date	Time	PHCs	VOCs	PAHs	Metals	Hg	CrVI	B (HWS)	6	20				
Sample ID/Location Name	2	۷ .	12	T a ho	Time	4	>	а.	_/	./	J	В		1		-	70	\dashv
1 BHI-AVI	2	-	1	7 011 /		+	\$	\dashv	Y /	<u>v</u>	1	\dashv	1			25	0	\dashv
2 BH2-552)		1	Jan 13/20		+	1		*	·	đ	-	V			(20	-	_
3 BM2-55B	5	^	7	/1		1	V		ţ	Z	3	Ц				120	+1	IA
4 BH3-AU1	5	-	1	Jan 9/20					V	√	√					. 25	0	
5 BH3-557	5		2	()			/						\vee			120	+1	16
6 BH4-552	S	-	1	Jan 15/20					1	V	/					25	0	
7 RIJ4-558	5	-	2	11			J							$\sqrt{}$		120	tv	19/
8						T												
9	\vdash					T											\top	\neg
10						+	Н										+	\neg
Comments						_			_	-	Met	hod o	f Delive	erv.				
come dates taken from Container	, ,	. (.	~	-02)						(1	5.	ft	-		
Relinquished By (Sign): A Relinquished By (S	giver D	epot:_	Ol	X 1. 785x	Received at Urb:	0,1	-	0			Veri	fied B	y:	VI				
400		16	6	6	N	l	1			1				E	Jan.	1		
Relinquished By (Print): Nic Oou Lottes Date/Time:	3	123	3		Date Time:	2/	200	20	3	. >	201	/Time	(12020	9	52	
Date/Time: Temperature:				°C	Temperature:	8.	7	°C			рн V	erifie	ed:	Ву:				
Chain of Custody (Env.) xlsx				Revision 3.0														

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Mark D'Arcy

Client PO: 55701 Project: PE4822 Custody: 139367

Report Date: 9-Sep-2022 Order Date: 2-Sep-2022

Order #: 2236538

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2236538-01	BH2-GW
2236538-02	BH3-GW
2236538-03	BH4-GW
2236538-04	DUP

Approved By:

Mark Foto, M.Sc. Lab Supervisor

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

Project Description: PE4822

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 55701

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - water	MOE E3056 - colourimetric	6-Sep-22	6-Sep-22
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	6-Sep-22	6-Sep-22
Metals, ICP-MS	EPA 200.8 - ICP-MS	6-Sep-22	6-Sep-22
PCBs, total	EPA 608 - GC-ECD	8-Sep-22	8-Sep-22
PHC F1	CWS Tier 1 - P&T GC-FID	6-Sep-22	6-Sep-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Sep-22	8-Sep-22
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	8-Sep-22	9-Sep-22
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	6-Sep-22	6-Sep-22

Report Date: 09-Sep-2022

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

Project Description: PE4822

Client: Paterson Group Consulting Engineers

Client PO: 55701

Certificate of Analysis

BH3-GW Client ID: BH2-GW BH4-GW DUP Sample Date: 31-Aug-22 09:00 31-Aug-22 09:00 31-Aug-22 09:00 31-Aug-22 09:00 2236538-01 2236538-02 2236538-03 2236538-04 Sample ID: MDL/Units Water Water Water Water Metals 0.1 ug/L Mercury < 0.1 <0.1 < 0.1 0.5 ug/L Antimony <0.5 0.6 < 0.5 1 ug/L Arsenic 6 <1 <1 1 ug/L Barium 20 24 9 0.5 ug/L Beryllium < 0.5 < 0.5 < 0.5 10 ug/L Boron 42 104 604 _ 0.1 ug/L Cadmium <0.1 < 0.1 < 0.1 Chromium 1 ug/L 2 <1 <1 Chromium (VI) 10 ug/L <10 <10 <10 0.5 ug/L Cobalt < 0.5 < 0.5 < 0.5 0.5 ug/L Copper 1.8 1.1 3.7 0.1 ug/L Lead 0.4 < 0.1 0.1 0.5 ug/L Molybdenum 0.9 12.1 3.8 1 ug/L Nickel 2 <1 <1 Selenium 1 ug/L <1 <1 <1 0.1 ug/L Silver < 0.1 <0.1 <0.1 200 ug/L Sodium 102000 20200 258000 0.1 ug/L Thallium <0.1 < 0.1 < 0.1 0.1 ug/L Uranium 0.1 0.5 1.1 0.5 ug/L Vanadium 6.9 1.1 0.6 5 ug/L Zinc 61 13 5 Volatiles Acetone 5.0 ug/L 16.3 <5.0 12.4 <5.0 0.5 ug/L Benzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L <0.5 Bromodichloromethane < 0.5 <0.5 < 0.5 0.5 ug/L Bromoform < 0.5 < 0.5 <0.5 < 0.5 0.5 ug/L Bromomethane <0.5 <0.5 <0.5 < 0.5 0.2 ug/L Carbon Tetrachloride <0.2 <0.2 <0.2 <0.2 Chlorobenzene 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L Chloroform <0.5 <0.5 < 0.5 <0.5 0.5 ug/L Dibromochloromethane < 0.5 < 0.5 < 0.5 < 0.5 1.0 ug/L Dichlorodifluoromethane <1.0 <1.0 <1.0 <1.0 0.5 ug/L 1,2-Dichlorobenzene <0.5 <0.5 <0.5 < 0.5 0.5 ug/L 1,3-Dichlorobenzene < 0.5 <0.5 <0.5 < 0.5 0.5 ug/L 1,4-Dichlorobenzene <0.5 <0.5 <0.5 <0.5

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 55701 **Project Description: PE4822**

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

1	Client ID: Sample Date: Sample ID: MDL/Units	BH2-GW 31-Aug-22 09:00 2236538-01 Water	BH3-GW 31-Aug-22 09:00 2236538-02 Water	BH4-GW 31-Aug-22 09:00 2236538-03 Water	DUP 31-Aug-22 09:00 2236538-04 Water
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	1.6	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	81.8%	81.8%	80.4%	80.4%
Dibromofluoromethane	Surrogate	94.5%	96.0%	95.1%	96.4%
Toluene-d8	Surrogate	111%	109%	110%	109%
Hydrocarbons	1		1		<u> </u>
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	-

Report Date: 09-Sep-2022

Order Date: 2-Sep-2022
Project Description: PE4822

Client: Paterson Group Consulting Engineers

Client PO: 55701

Certificate of Analysis

BH3-GW Client ID: BH2-GW BH4-GW DUP Sample Date: 31-Aug-22 09:00 31-Aug-22 09:00 31-Aug-22 09:00 31-Aug-22 09:00 2236538-01 2236538-02 2236538-03 2236538-04 Sample ID: MDL/Units Water Water Water Water 100 ug/L F4 PHCs (C34-C50) <100 <100 <100 Semi-Volatiles 0.05 ug/L Acenaphthene < 0.05 < 0.05 < 0.05 0.05 ug/L Acenaphthylene < 0.05 < 0.05 < 0.05 0.01 ug/L Anthracene < 0.01 < 0.01 < 0.01 0.01 ug/L Benzo [a] anthracene < 0.01 < 0.01 < 0.01 0.01 ug/L Benzo [a] pyrene < 0.01 < 0.01 < 0.01 -0.05 ug/L Benzo [b] fluoranthene < 0.05 < 0.05 < 0.05 0.05 ug/L Benzo [g,h,i] perylene < 0.05 < 0.05 < 0.05 Benzo [k] fluoranthene 0.05 ug/L < 0.05 < 0.05 < 0.05 0.05 ug/L Chrysene < 0.05 < 0.05 < 0.05 0.05 ug/L Dibenzo [a,h] anthracene < 0.05 < 0.05 < 0.05 0.01 ug/L Fluoranthene < 0.01 0.04 < 0.01 0.05 ug/L Fluorene < 0.05 < 0.05 < 0.05 0.05 ug/L Indeno [1,2,3-cd] pyrene < 0.05 <0.05 < 0.05 1-Methylnaphthalene 0.05 ug/L < 0.05 < 0.05 < 0.05 0.05 ug/L 2-Methylnaphthalene < 0.05 <0.05 < 0.05 0.10 ug/L Methylnaphthalene (1&2) < 0.10 < 0.10 < 0.10 0.05 ug/L Naphthalene < 0.05 < 0.05 < 0.05 0.05 ug/L Phenanthrene < 0.05 < 0.05 < 0.05 0.01 ug/L Pyrene < 0.01 0.03 < 0.01 2-Fluorobiphenyl Surrogate 90.7% 86.9% 80.4% Terphenyl-d14 Surrogate 104% 100% 89.7% _ **PCBs** PCBs, total 0.05 ug/L < 0.05 Decachlorobiphenyl Surrogate 96.9%

Order #: 2236538

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 2-Sep-2022

 Client PO:
 55701
 Project Description: PE4822

Method Quality Control: Blank

Analyte	Result	Reporting	l leite	Source	0/ DEC	%REC	DDD	RPD Limit	Notes
	Nesuit	Limit	Units	Result	%REC	Limit	RPD	Limit	ivotes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND ND	0.1	ug/L						
Vanadium	ND ND	0.5 5	ug/L						
Zinc PCBs	ND	J	ug/L						
	110	0.05							
PCBs, total Surrogate: Decachlorobiphenyl	ND 0.390	0.05	ug/L <i>ug/</i> L		78.1	60-140			
Semi-Volatiles	0.390		ug/L		70.1	00-140			
	ND	0.05	n						
Acenaphthylana	ND ND	0.05	ug/L						
Acenaphthylene	ND ND	0.05	ug/L						
Anthracene Benzo [a] anthracene	ND ND	0.01 0.01	ug/L						
Benzo [a] pyrene	ND ND	0.01	ug/L ug/L						
Benzo [b] fluoranthene	ND ND	0.05	ug/L ug/L						
Benzo [g,h,i] perylene	ND ND	0.05	ug/L ug/L						
Benzo [k] fluoranthene	ND ND	0.05	ug/L ug/L						
Chrysene	ND ND	0.05	ug/L ug/L						
Dibenzo [a,h] anthracene	ND ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.7		ug/L		93.6	50-140			
Surrogate: Terphenyl-d14	22.6		ug/L		113	50-140			
	ND	5.0	ug/L						
Volatiles Acetone Benzene	ND ND	5.0 0.5	ug/L ug/L						
Volatiles Acetone									
Volatiles Acetone Benzene	ND	0.5	ug/L						

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

Project Description: PE4822

Certificate of Analysis

Client: Paterson Group Consulting Engineers
Client PO: 55701

Method Quality Control: Blank

Analyte Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane	Result ND ND ND	Limit 0.2	Units ug/L	Result	%REC	Limit	RPD	Limit	Notes
Chlorobenzene Chloroform	ND		ua/l						
Chloroform			ug/L						
	ND	0.5	ug/L						
Dibromochloromethane		0.5	ug/L						
2 Di Offico filo di fallo	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	65.0	0.0	ug/L		81.3	50-140			
Surrogate: Dibromofluoromethane	75.1		ug/L		93.9	50-140			
Surrogate: Distribution of the triane Surrogate: Toluene-d8	87.0		ug/L ug/L		93.9 109	50-140 50-140			

Order #: 2236538

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

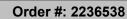
 Client:
 Paterson Group Consulting Engineers
 Order Date: 2-Sep-2022

 Client PO:
 55701
 Project Description: PE4822

Method Quality Control: Duplicate

Amaka		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals	115		~g, ∟						
	ND	0.4	/I	MD			NO	20	
Mercury	ND ND	0.1	ug/L	ND			NC NC	20	
Antimony Arsenic	ND ND	0.5 1	ug/L	ND ND			NC NC	20 20	
Arsenic Barium	ND 80.3	1 1	ug/L	ND 73.1			NC 9.5	20 20	
	80.3 ND	1 0.5	ug/L	/3.1 ND			9.5 NC	20 20	
Beryllium Boron	ND 48	0.5 10	ug/L ug/l	ND 51			NC 5.8	20 20	
Boron Cadmium	48 ND	10 0.1	ug/L ug/L	51 ND			5.8 NC	20 20	
Cadmium Chromium (VI)	ND ND	0.1 10	ug/L ug/L	ND ND			NC NC	20	
Chromium (VI) Chromium	ND ND	10 1	ug/L ug/L	ND ND			NC NC	20	
Coromium	ND UD	0.5	ug/L ug/L	ND ND			NC NC	20 20	
Copper	1.80	0.5 0.5	ug/L ug/L	1.82			1.0	20 20	
Lead	ND	0.5 0.1	ug/L ug/L	1.82 ND			NC	20 20	
Molybdenum	2.57	0.1	ug/L ug/L	2.76			7.3	20	
Nickel	2.57 1.1	0.5 1	ug/L ug/L	2.76 1.2			7.3 6.7	20	
Selenium	ND	1	ug/L ug/L	ND			NC	20 20	
Silver	ND ND	0.1	ug/L ug/L	ND ND			NC NC	20	
Sodium	32200	200	ug/L ug/L	32300			0.5	20	
Thallium	32200 ND	0.1	ug/L ug/L	32300 ND			NC	20	
Uranium	0.7	0.1	ug/L ug/L	0.7			1.2	20	
Vanadium	0.7	0.1	ug/L ug/L	0.7			0.2	20	
Zinc	ND	5	ug/L ug/L	ND			NC	20	
Volatiles	140	·	~g, ∟	.,,,			.,,5		
	ND	5.0	ua/I	ND			NC	30	
Acetone	ND ND	5.0 0.5	ug/L	ND ND			NC NC	30 30	
Benzene Bromodichloromethane	ND ND	0.5 0.5	ug/L ug/l	ND ND			NC NC	30 30	
Bromodichloromethane Bromoform	ND ND	0.5 0.5	ug/L	ND ND			NC NC	30 30	
		0.5 0.5	ug/L	ND ND			NC NC	30 30	
Bromomethane Carbon Tetrachloride	ND ND	0.5 0.2	ug/L ug/l	ND ND			NC NC	30 30	
	ND ND		ug/L				NC NC	30 30	
Chlorobenzene Chloroform	ND 0.81	0.5 0.5	ug/L ug/l	ND 0.88			NC 8.3	30 30	
Chloroform Dibromochloromethane	0.81 ND	0.5 0.5	ug/L ug/l	0.88 ND			8.3 NC	30 30	
Dibromochloromethane Dichlorodifluoromethane	ND ND	0.5 1.0	ug/L	ND ND			NC NC	30 30	
		1.0 0.5	ug/L				NC NC	30 30	
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND	0.5 0.5	ug/L ug/l	ND ND			NC NC	30 30	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	0.5 0.5	ug/L	ND ND			NC NC	30 30	
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	0.5 0.5	ug/L	ND ND			NC NC	30 30	
1,1-Dichloroethane 1,2-Dichloroethane	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
1,2-Dichloroethane 1,1-Dichloroethylene	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
trans-1,2-Dichloroetnylene 1,2-Dichloropropane	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
cis-1,3-Dichloropropylene	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
trans-1,3-Dicnioropropylene Ethylbenzene	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
Ethylene dibromide (dibromoethane, 1,2	ND ND	0.5	ug/L ug/L	ND ND			NC NC	30 30	
Hexane	ND ND	0.2 1.0	ug/L ug/L	ND ND			NC NC	30 30	
Methyl Ethyl Ketone (2-Butanone)	ND ND	5.0	ug/L ug/L	ND ND			NC NC	30 30	
Methyl Isobutyl Ketone (2-Butanone)	ND ND	5.0 5.0	ug/L ug/L	ND ND			NC NC	30 30	
Methyl Isobutyl Ketone Methyl tert-butyl ether	ND ND	5.0 2.0	ug/L ug/L	ND ND			NC NC	30 30	
Methylene Chloride	ND ND	2.0 5.0	ug/L ug/L	ND ND			NC NC	30 30	
Styrene	ND ND	5.0 0.5	ug/L ug/L	ND ND			NC NC	30 30	
Styrene 1,1,1,2-Tetrachloroethane	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ND ND	0.5 0.5		ND ND			NC NC	30 30	
			ug/L ug/l						
Tetrachloroethylene Toluene	ND ND	0.5 0.5	ug/L ug/l	ND ND			NC NC	30 30	
Toluene	ND	0.5	ug/L	ND			NC	30	

Order #: 2236538


Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 2-Sep-2022

 Client PO:
 55701
 Project Description: PE4822

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	63.0		ug/L		78.8	50-140			
Surrogate: Dibromofluoromethane	76.1		ug/L		95.2	50-140			
Surrogate: Toluene-d8	90.0		ug/L		113	50-140			

Client: Paterson Group Consulting Engineers

Client PO: 55701

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

Project Description: PE4822

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1830	25	ug/L	ND	91.7	68-117			
F2 PHCs (C10-C16)	1490	100	ug/L	ND	93.2	60-140			
F3 PHCs (C16-C34)	3240	100	ug/L	ND	82.7	60-140			
F4 PHCs (C34-C50)	1820	100	ug/L	ND	73.4	60-140			
Metals									
Mercury	2.73	0.1	ug/L	ND	91.0	70-130			
Arsenic	50.5	1	ug/L	ND	99.4	80-120			
Barium	115	1	ug/L	73.1	84.8	80-120			
Beryllium	46.7	0.5	ug/L ug/L	ND	93.3	80-120			
Boron	83	10	ug/L ug/L	42	81.3	80-120			
Cadmium	43.9	0.1	ug/L ug/L	ND	87.8	80-120			
Chromium (VI)	190	10	ug/L ug/L	ND	95.0	70-130			
Chromium	48.0	10		ND	95.8 95.8	80-120			
			ug/L						
Copper	45.6 46.2	0.5	ug/L	ND 1.82	91.0	80-120 80-120			
Copper	46.2	0.5	ug/L	1.82	88.9 97.4	80-120			
Lead	43.7	0.1	ug/L	ND	87.4 97.7	80-120			
Molybdenum	46.6	0.5	ug/L	2.76	87.7	80-120			
Nickel	45.5	1	ug/L	1.2	88.6	80-120			
Selenium	45.7	1	ug/L	ND	91.1	80-120			
Silver	41.2	0.1	ug/L	ND	82.2	80-120			
Sodium	28800	200	ug/L	20200	85.5	80-120			
Thallium	44.9	0.1	ug/L	ND	89.7	80-120			
Uranium	46.9	0.1	ug/L	0.7	92.5	80-120			
Vanadium	48.7	0.5	ug/L	0.53	96.4	80-120			
Zinc	45	5	ug/L	ND	86.1	80-120			
PCBs									
PCBs, total	0.711	0.05	ug/L	ND	71.1	65-135			
Surrogate: Decachlorobiphenyl	0.415		ug/L		83.0	60-140			
Semi-Volatiles									
Acenaphthene	4.02	0.05	ug/L	ND	80.4	50-140			
Acenaphthylene	3.71	0.05	ug/L	ND	74.2	50-140			
Anthracene	4.06	0.01	ug/L	ND	81.3	50-140			
Benzo [a] anthracene	4.34	0.01	ug/L	ND	86.7	50-140			
Benzo [a] pyrene	4.84	0.01	ug/L	ND	96.9	50-140			
Benzo [b] fluoranthene	5.77	0.05	ug/L	ND	115	50-140			
Benzo [g,h,i] perylene	4.26	0.05	ug/L	ND	85.2	50-140			
Benzo [k] fluoranthene	4.77	0.05	ug/L	ND	95.4	50-140			
Chrysene	4.29	0.05	ug/L	ND	85.8	50-140			
Dibenzo [a,h] anthracene	4.62	0.05	ug/L	ND	92.4	50-140			
Fluoranthene	4.01	0.01	ug/L	ND	80.2	50-140			
Fluorene	3.85	0.05	ug/L	ND	77.0	50-140			
Indeno [1,2,3-cd] pyrene	4.85	0.05	ug/L	ND	97.0	50-140			
1-Methylnaphthalene	4.38	0.05	ug/L	ND	87.5	50-140			
2-Methylnaphthalene	4.76	0.05	ug/L ug/L	ND	95.2	50-140			
Naphthalene	4.01	0.05	ug/L ug/L	ND	80.2	50-140			
Phenanthrene	3.74	0.05	ug/L ug/L	ND	74.9	50-140			
Pyrene	4.10	0.03	ug/L ug/L	ND	81.9	50-140			
Surrogate: 2-Fluorobiphenyl	17.3	0.01	ug/L ug/L	ND	86.3	50-140 50-140			

Client PO: 55701

Order #: 2236538

Report Date: 09-Sep-2022

Order Date: 2-Sep-2022

Project Description: PE4822

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Terphenyl-d14	21.7		ug/L		109	50-140			
Volatiles									
Acetone	91.3	5.0	ug/L	ND	91.3	50-140			
Benzene	44.8	0.5	ug/L	ND	112	60-130			
Bromodichloromethane	36.3	0.5	ug/L	ND	90.6	60-130			
Bromoform	39.7	0.5	ug/L	ND	99.2	60-130			
Bromomethane	36.0	0.5	ug/L	ND	89.9	50-140			
Carbon Tetrachloride	32.3	0.2	ug/L	ND	80.7	60-130			
Chlorobenzene	34.1	0.5	ug/L	ND	85.4	60-130			
Chloroform	31.4	0.5	ug/L	ND	78.4	60-130			
Dibromochloromethane	36.7	0.5	ug/L	ND	91.8	60-130			
Dichlorodifluoromethane	38.2	1.0	ug/L	ND	95.5	50-140			
1,2-Dichlorobenzene	31.4	0.5	ug/L	ND	78.6	60-130			
1,3-Dichlorobenzene	30.1	0.5	ug/L	ND	75.2	60-130			
1,4-Dichlorobenzene	30.6	0.5	ug/L	ND	76.6	60-130			
1,1-Dichloroethane	30.5	0.5	ug/L	ND	76.3	60-130			
1,2-Dichloroethane	41.8	0.5	ug/L	ND	105	60-130			
1,1-Dichloroethylene	38.1	0.5	ug/L	ND	95.3	60-130			
cis-1,2-Dichloroethylene	38.6	0.5	ug/L	ND	96.5	60-130			
trans-1,2-Dichloroethylene	36.6	0.5	ug/L	ND	91.6	60-130			
1,2-Dichloropropane	38.7	0.5	ug/L	ND	96.8	60-130			
cis-1,3-Dichloropropylene	39.2	0.5	ug/L	ND	98.1	60-130			
trans-1,3-Dichloropropylene	37.2	0.5	ug/L	ND	92.9	60-130			
Ethylbenzene	31.0	0.5	ug/L	ND	77.4	60-130			
Ethylene dibromide (dibromoethane, 1,2-	32.2	0.2	ug/L	ND	80.6	60-130			
Hexane	43.1	1.0	ug/L	ND	108	60-130			
Methyl Ethyl Ketone (2-Butanone)	99.6	5.0	ug/L	ND	99.6	50-140			
Methyl Isobutyl Ketone	78.0	5.0	ug/L	ND	78.0	50-140			
Methyl tert-butyl ether	57.3	2.0	ug/L	ND	57.3	50-140			
Methylene Chloride	31.4	5.0	ug/L	ND	78.5	60-130			
Styrene	31.8	0.5	ug/L	ND	79.4	60-130			
1,1,1,2-Tetrachloroethane	36.6	0.5	ug/L	ND	91.6	60-130			
1,1,2,2-Tetrachloroethane	29.3	0.5	ug/L	ND	73.2	60-130			
Tetrachloroethylene	38.4	0.5	ug/L	ND	96.0	60-130			
Toluene	32.7	0.5	ug/L	ND	81.8	60-130			
1,1,1-Trichloroethane	30.7	0.5	ug/L	ND	76.6	60-130			
1,1,2-Trichloroethane	36.7	0.5	ug/L	ND	91.8	60-130			
Trichloroethylene	35.4	0.5	ug/L	ND	88.5	60-130			
Trichlorofluoromethane	34.1	1.0	ug/L	ND	85.2	60-130			
Vinyl chloride	35.1	0.5	ug/L	ND	87.7	50-140			
m,p-Xylenes	63.8	0.5	ug/L	ND	79.7	60-130			
o-Xylene	31.4	0.5	ug/L	ND	78.5	60-130			
Surrogate: 4-Bromofluorobenzene	64.2		ug/L		80.3	50-140			
Surrogate: Dibromofluoromethane	74.4		ug/L		93.0	50-140			
Surrogate: Toluene-d8	75.2		ug/L		93.9	50-140			

Client: Paterson Group Consulting Engineers

Order #: 2236538

Report Date: 09-Sep-2022 Order Date: 2-Sep-2022

Client PO: 55701 Project Description: PE4822

Qualifier Notes:

Sample Data Revisions

Certificate of Analysis

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2236538

Paracel Order Number (Lab Use Only) Chain Of Custody (Lab Use Only)

2236538

Nº 139367

Plant Name																	
Client Name: PATENSON			Projec	t Ref:	PE 482.	2								Pag	ge <u>/</u>	of (
Contact Name: MARK DARCY / JOSH.	DEMPSE	.4	Quote	#:										Turnar			-
Address: 9 AURIGA Dr. NEPER	4) - 1	PO#: 5570									□ 1 day				☐ 3 day		
			MOARCY @PATERSONGROUP. Cd MOARCY @PATERSONGROUP. Cd							1 0	2 day			Ø R	■ Regular		
Telephone: 613 ZZC 7381		m	09	RCYEPAS	-Erescon (TRO	up	. С.			Date Required:				- (
☑ REG 153/04 ☐ REG 406/19 Other Reg	gulation		atula T		e le-ille-il enile						243						
□ Table 1 □ Res/Park □ Med/Fine □ REG 558	□ PWQ0	Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer)					Re					equired Analysis					
□ Table 2 □ Ind/Comm □ Coarse □ CCME	☐ MISA	P (Paint) A (Air) O (Other)				X	Π			Π				\top		Г	
l	□ SU-Storm			SLIS			F1-F4+BTEX			1							
Table Mun:		Oontaine Sample Taken				Taken	-F4			by ICP				3,5		-	
For RSC: Yes No Other:		trix	Air Volume	f Con				8	<u>s</u>			_	(HWS)	PCB			
Sample ID/Location Name		Matrix	Air	# of	Date	Time	PHCs	VOCs	PAHs	Metals	βĤ	CrV	B (F	Copo			
1 BH 2-GW		ઉપ	\	7	AUG 31/22)	7	7	$\overline{}$	7	7					
2 BH3 - 600			\	7	'	-	2	>	7		7	7			\top		П
3 BH4-6W			/	8		_	~	>	7		7	7		7	\top	\top	
4 DUP.		Bu	\	2	V	_		>							\top		Н
5														\top	\top		\vdash
6														\top	+		\vdash
7		\neg												\dashv	+		\vdash
8				1-2-7									\dashv	+	+	+	\vdash
9		+												+	+	+	\vdash
10		_	\dashv							-			\dashv	+	+	+-	\vdash
omments: -> TIMES ARE MOTE	O ON TI	не	5A	mρ	رقت .					-	Matha	d of Del	luanu		74,1		
.) /											Wetho	THE	AC.	52	La	I II KIEL	_
elinquished By (Sign):	Received By Driv	er/Dep	ot:	1	Fauce	Received at Jab:			· ,		Verif		1-	7	_		-
elinquished By (Print):	Date/Time:	-/	_	//	COULE	Jate/Timer 21	_		21		1	W	10	_	-		
ate/Time:	Temperature:	10	7/	ZZ	310	Sept 4.	22		: 20	-	5	ept	41	17	171	10_	
AUG 31/2022				233	°C PH.	emperatore.	806	,C			pH Ver	ified; L	1£	The same of the sa		1 / 1	7,2