150 Laurier Avenue West Transportation Impact Assessment

Step 1 Screening Report
Step 2 Scoping Report
Step 3 Forecasting Report
Step 4 Strategy Report

Prepared for:

Jadco Group 345, boul. Samson, suite 100, Laval (Québec) Canada H7X 2Z7

Prepared by:

6 Plaza Court Ottawa, ON K2H 7W1

August 2022

PN: 2022-074

Table of Contents

1		Screening					
2		Existi	ng and Planned Conditions	1			
	2.1	Pro	posed Development	1			
	2.2	Exis	ting Conditions	3			
	2.2	2.1	Area Road Network	3			
	2.2	2.2	Existing Intersections	4			
	2.2	2.3	Existing Driveways	5			
	2.2	2.4	Cycling and Pedestrian Facilities	5			
	2.2	2.5	Existing Transit	8			
	2.2	2.6	Existing Area Traffic Management Measures	9			
	2.2	2.7	Existing Peak Hour Travel Demand	9			
	2.2	2.8	Collision Analysis	11			
	2.3	Plar	nned Conditions	14			
	2.3	3.1	Changes to the Area Transportation Network	14			
	2.3	3.2	Other Study Area Developments	14			
3		Study	Area and Time Periods	15			
	3.1	Stud	dy Area	15			
	3.2	Tim	e Periods	15			
	3.3	Hor	izon Years	15			
4		Exem	ption Review	15			
5		Devel	lopment-Generated Travel Demand	16			
	5.1	Mo	de Sharesde	16			
	5.2	Trip	Generation	16			
	5.3	Trip	Distribution	18			
	5.4	Trip	Assignment	18			
6		Backg	ground Network Travel Demands	20			
	6.1	Trai	nsportation Network Plans	20			
	6.2	Bac	kground Growth	20			
	6.3	Oth	er Developments	21			
7			and Rationalization				
	7.1	202	7 Future Background Operations	21			
	7.2	203	2 Future Background Operations	23			
	7.3	202	7 Future Total Operations	24			
	7.4		2 Future Total Operations				
	7.5		dal Share Sensitivity and Demand Rationalization Conclusions				
8		Devel	lopment Design	28			
	8.1		ign for Sustainable Modes				
	8.2	Circ	culation and Access	28			
9		Parkir	ng	28			
	9.1	Parl	king Supply	28			
1()	Boun	dary Street Design	28			
11	1	Acces	ss Intersections Design	28			

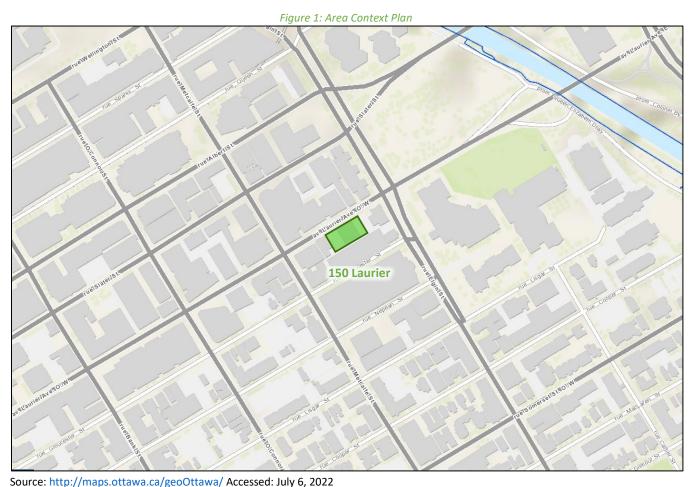
11.1 Location and Design of Access	28
11.2 Intersection Control	29
11.3 Access Intersection Design	29
11.3.1 Future Access Intersection Operations	29
11.3.2 Access Intersection MMLOS	29
11.3.3 Recommended Design Elements	29
12 Transportation Demand Management	29
12.1 Context for TDM	29
12.2 Need and Opportunity	29
12.3 TDM Program	29
13 Transit	29
13.1 Transit Priority	30
14 Network Intersection Design	30
14.1 Network Intersection Control	30
14.2 Network Intersection Design	30
14.2.1 2027 & 2032 Future Total Network Intersection Operation	ons 30
14.2.2 Network Intersection MMLOS	30
14.2.3 Recommended Design Elements	31
15 Summary of Improvements Indicated and Modifications Option	
16 Conclusion	33
List of Figures Figure 1: Area Context Plan	1
Figure 2: Concept Plan	
Figure 3: Existing Driveways	
Figure 4: Study Area Pedestrian Facilities	
Figure 5: Study Area Cycling Facilities	
Figure 6: Existing Pedestrian Volumes	
Figure 7: Existing Cyclist Volumes	
Figure 8: Existing Study Area Transit Service	
Figure 9: Existing Study Area Transit Stops	
Figure 10: Existing Traffic Counts	
Figure 11: Representation of Study Area Collision Records	
Figure 12: New Site Generation Auto Volumes	
Figure 13: Pass-By Volumes	
Figure 14: Background developments volumes	
Figure 15: 2027 Future Background Volumes	
Figure 16: 2032 Future Background Volumes	
Figure 17: 2027 Future Total Volumes	
Figure 18: 2032 Future Total Volumes	

Table of Tables

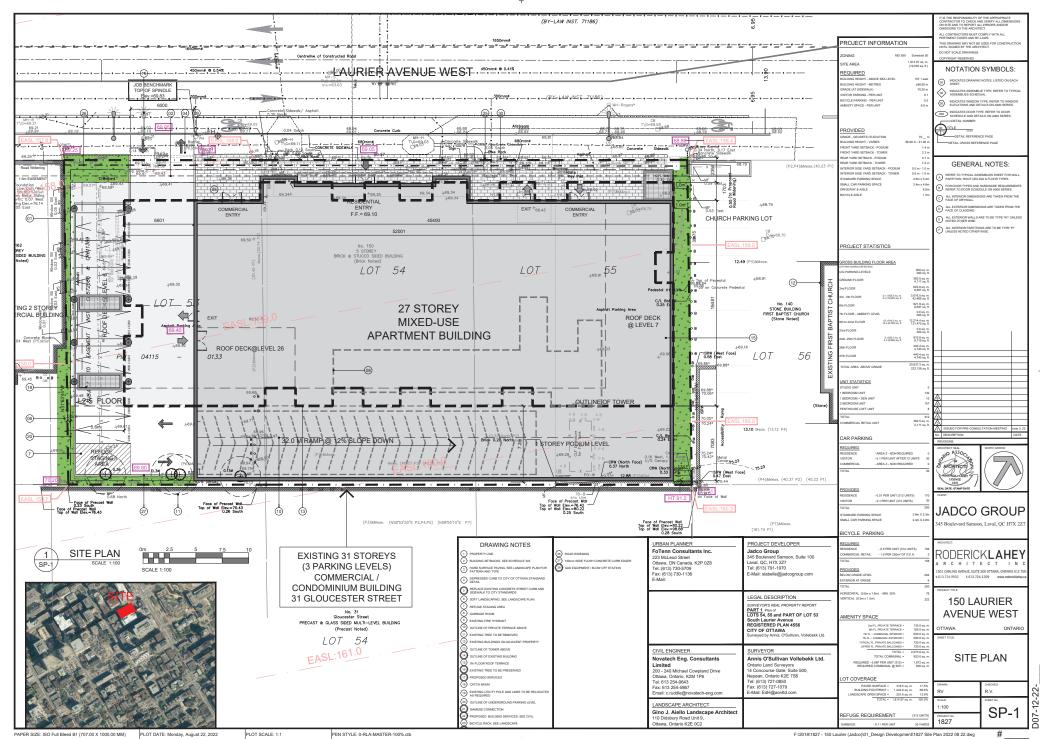
Table 1: Intersection Count Date	9
Fable 2: Existing Intersection Operations	10
Table 3: Study Area Collision Summary, 2016-2020	11
Table 4: Summary of Collision Locations, 2016-2020	12
Fable 5: Elgin Street at Laurier Avenue Collision Summary	13
Fable 6: Metcalfe Street at Laurier Avenue Collision Summary	13
Table 7: Laurier Avenue West between Metcalfe Street and Elgin Street Collision Summary	14
Table 8: Exemption Review	15
Fable 9: TRANS Trip Generation Manual Recommended Mode Shares – Ottawa Inner Area	16
Fable 10: Proposed Development Mode Shares – Within 450 m of Rapid Transit	16
Fable 11: Trip Generation Person Trip Rates by Peak Period	16
Fable 12: Total Residential Person Trip Generation by Peak Period	17
Table 13: Internal Capture Rates	17
Table 14: Trip Generation by Mode	18
Гable 15: OD Survey Distribution – Ottawa Inner	18
Table 16: Trip Assignment	19
Table 17: TRANS Regional Model Projections – Study Area Growth Rates	20
Table 18: Recommended Area Growth Rates	21
Fable 19: 2027 Future Background Intersection Operations	22
Table 20: 2032 Future Background Intersection Operations	24
Table 21: 2027 Future Total Intersection Operations	25
Table 22: 2032 Future Total Intersection Operations	
Table 23: Boundary Street MMLOS Analysis	
Table 24: Trip Generation by Transit Mode	30
Table 25: Study Area Intersection MMLOS Analysis	30

List of Appendices

- Appendix A TIA Screening Form and Certification Form
- Appendix B Turning Movement Count Data
- Appendix C Synchro Intersection Worksheets Existing Conditions
- Appendix D Collision Data
- Appendix E City TRANS Plots
- Appendix F Background Development Volumes
- Appendix G Synchro Intersection Worksheets 2027 Future Background Conditions
- Appendix H Synchro Intersection Worksheets 2032 Future Background Conditions
- Appendix I Synchro Intersection Worksheets –2027 Future Total Conditions
- Appendix J Synchro Intersection Worksheets 2032 Future Total Conditions
- Appendix K Turning Templates
- Appendix L MMLOS Analysis
- Appendix M TDM Checklist


1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component and the Network Impact Component. This study has been prepared to support a site plan application.


2 Existing and Planned Conditions

2.1 Proposed Development

The existing site, located at 150 Laurier Avenue West, is zoned as Mixed Use/Commercial Zone (MD S50). The proposed redevelopment will convert an existing 9-storey commercial/retail building to a 27-storey mixed-use building with ground floor commercial/retail and residential. In total, 312 residential units and 4,117 sq. ft. of commercial/retail will be provided with 200 auto parking spaces and 300 bike parking spaces. The existing surface and underground accesses on the east side will be removed, and an access located on the western limit of the site will remain. The anticipated build-out and occupancy horizon is assumed to be 2027 with construction occurring in a single phase. The site is located within the Central Area Secondary Plan area and Design Priority Area. Figure 1 illustrates the study area context. Figure 2 illustrates the proposed concept plan.

2.2 Existing Conditions

2.2.1 Area Road Network

Laurier Avenue West: Laurier Avenue West is a City of Ottawa arterial road with a three-lane cross-section, and a four-lane cross-section east of Elgin Street. Protected bikes lanes are provided west of Elgin Street, with a cycle track on the south side of the road to the west of Elgin Street and an on-street bike lane on the north side. Sidewalks are present on both sides of the road. An unposted speed limit is assumed to be 50km/h. The city-protected right-of-way is 20.0 metres west of Elgin Street and 26.0 metres east of Elgin Street.

O'Connor Street: O'Connor Street is a City of Ottawa one-way arterial road (southbound) with a three-lane cross-section. A two-way protected bike lane is present on the east side of the road south of Laurier Avenue West, and a southbound transition is located to the north. Sidewalks are present on both sides of the road. Within the study area, paid parking is provided on the west side north of Slater Street for a maximum of one hour on weekdays from 9:00AM to 3:30PM. Between Slater Street and Laurier Avenue West, on-street parking is restricted on the west side during 9:00AM to 3:00PM, and paid parking is provided on the east side of the road from 8:00AM to 5:30PM for a maximum of one hour on weekdays. Between Laurier Avenue West and Gloucester Street, paid parking is provided on both sides of the road for a maximum of one hour on weekdays from 8:00AM to 3:30PM. South of Gloucester Street, paid parking is provided on the west side for a maximum of one hour on weekdays from 8:00AM to 5:30PM. An unposted speed limit is assumed to be 50km/h. The city-protected right-of-way is 20.0 metres within the study area.

Metcalfe Street: Metcalfe Street is a City of Ottawa one-way arterial road (northbound) with a three-lane cross-section. Sidewalks are present on both sides of the road. Within the study area, paid parking was provided on the west side of the road between Slater Street and Laurier Avenue West for a maximum of one hour on weekdays from 9:00AM to 3:30PM and on-street parking is restricted on the east side during 9:00AM to 3:30PM. South of Laurier Avenue West, paid parking was provided on the east side of the road for a maximum of one hour on weekdays from 8:00AM to 5:00PM. No parking is allowed along Metcalfe Street within the study area due to the temporary restrictions in the area for construction. An unposted speed limit is assumed to be 50km/h. The city-protected right-of-way is 20.0 metres within the study area.

Elgin Street: Elgin Street is a City of Ottawa arterial road with a divided four-lane cross-section. Sidewalks are present on both sides of the road. Within the study area, paid parking is provided from 7:00AM to 7:00PM for a maximum of two hours on the east side of the road between Gloucester Street and Lisgar Street and on both sides of the road south of Lisgar Street. An unposted speed limit is assumed to be 50km/h. The city-protected right-ofway is 40.0 metres within the study area.

Gloucester Street: Gloucester Street is a City of Ottawa one-way local road (westbound) with a two-lane cross-section. Within the study area, paid parking is permitted on the north side and partially on the south side of the road for two hours during weekdays from 7:00AM to 7:00PM west of Metcalfe Street, and for one hour during weekdays from 7:00AM to 7:00PM between Metcalfe Street and O'Connor Street, and permitted for two hours during weekdays from 7:00AM to 7:00PM on both sides of the road east of O'Connor Street. An unposted speed limit is assumed to be 50km/h. The measured right-of-way is 18.0-20.5 metres within the study area.

Nepean Street: Nepean Street is a City of Ottawa one-way local road (eastbound) with a two-lane cross-section. Sidewalks are present on both sides of the road. Within the study area, paid parking is provided on the south side of the road east of Metcalfe Street and was provided on both sides of the road west of Metcalfe Street. Due to the temporary restrictions in the area for construction, parking is restricted along Nepean Street between

Metcalfe Street and O'Connor Street. An unposted speed limit is assumed to be 50km/h. The measured right-of-way is 18.0-20.5 metres within the study area.

2.2.2 Existing Intersections

The existing signalized area key intersections within 400 metres of the site have been summarized below:

Laurier Avenue West at O'Connor Street The intersection of Laurier Avenue West at O'Connor Street is a signalized intersection. The southbound approach consists of a protected bike lane, a shared left-turn/through lane, a through lane, and a shared through/right-turn lane, and the south leg of the intersection is inbound only with a bi-directional protected bike facility. The eastbound approach consists of a shared through/right-turn lane and a protected bike lane, and westbound approach consists of an auxiliary left-turn lane, a through lane and a protected bike lane. Right-turn on red is restricted on the southbound and eastbound movements. Bike boxes are provided on the north, south, and east legs.

Laurier Avenue West at Metcalfe Street

The intersection of Laurier Avenue West at Metcalfe Street is a signalized intersection. The northbound approach consists of a shared left-turn/through lane, a through lane, and a shared through/right-turn lane, and the north leg of the intersection is inbound only. The eastbound approach consists of a shared left-turn/through lane and a protected bike lane, and westbound approach consists of an auxiliary through lane, a shared through/right-turn lane, and a protected bike lane. Right-turn on red is restricted on the northbound and westbound movements. Westbound left-turn movement is restricted during 7:00 to 9:00AM and 3:30 to 5:30PM on weekdays. Bike box is provided on the south leg.

Laurier Avenue West at Elgin Street

The intersection of Laurier Avenue West at Elgin Street is a signalized intersection. The northbound approach consists of two through lanes and an auxiliary right-turn lane, and the southbound approach consists of two auxiliary left-turn lane, a through lane, and a shared through/right-turn lane. The eastbound approach consists of an auxiliary through lane, a shared through/right-turn lane, and a protected bike lane, and the westbound approach consists of a left-turn lane, a through lane, a protected bike lane, and an auxiliary right-turn lane. Northbound left-turn, eastbound left-turn, and eastbound right-turn on red are restricted. Bike box is provided on the west leg.

Gloucester Street at Metcalfe Street

The intersection of Gloucester Street at Metcalfe Street is a signalized intersection. The northbound approach consists of a shared left-turn/through lane and two through lanes, and the westbound approach consists of a shared left-turn/through lane and a through lane. The north and west legs of the intersection are inbound only.

Nepean Street at Elgin Street

The intersection of Nepean Street at Elgin Street is a signalized intersection. The northbound approach consists of a through lane and an a shared through/right-turn lane, and the southbound approach consists of an auxiliary left-turn lane and two through lanes. The

eastbound approach consists of a shared all-movement lane, and the westbound approach consists of a left-turn and a right-turn lane. The west leg provide access to the underground parking lot at City Hall.

2.2.3 Existing Driveways

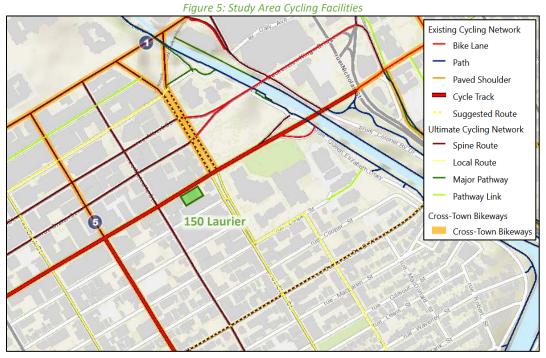
Within 200 metres of the proposed site access, a couple of driveways to underground parking and surface parking are present along Laurier Avenue West. Along Laurier Avenue West there are driveways to the First Baptist Church, two to private loading zones, the Ottawa Courthouse, and City Hall. Along Elgin Street, two driveways to a hotel are present on the west side of Elgin Street, and a driveway to the Ottawa Courthouse is present on the east side of Elgin Street. Driveways to underground parking are also present along Metcalfe Street. Figure 3 illustrates the existing driveways.

Figure 3: Existing Driveways

2.2.4 Cycling and Pedestrian Facilities

Figure 4 illustrates the pedestrian facilities in the study area and Figure 5 illustrates the cycling facilities.

Sidewalks are provided on both sides along all roads within the study area.


Cycling facilities include protected bikes lanes on both sides along Laurier Avenue West west of Elgin Street, a two-way protected bikes lane on the east side of O'Connor Street south of Laurier Avenue West, and a southbound transition is located to the north. Cycle track is provided on the south side and on-street bike lane is provided on the north side along Laurier Avenue West east of Elgin Street. Elgin Street is a suggested route.

Laurier Avenue West, Metcalfe Street, O'Connor Street, and Elgin Street north of Laurier Avenue West are spine routes and Elgin Street south of Laurier Avenue West is a local route. Elgin Street north of Laurier Avenue West, Laurier Avenue West, and O'Connor Street are cross-town bikeways.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: July 6, 2022

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 6 and Figure 7, respectively.

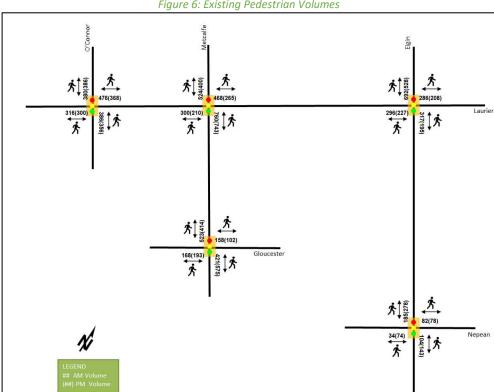
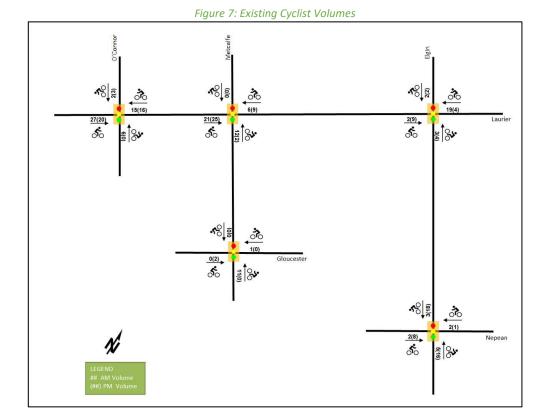



Figure 6: Existing Pedestrian Volumes

C|G|H TRANSPORTATION

2.2.5 Existing Transit

Within the study area, routes #5 and #14 travel along Elgin Street. The primary stop is located at the intersections of Elgin Street at Nepean Street. The frequency of these routes within proximity of the proposed site currently are:

- Route # 5 30-minute service all-day
- Route # 14 10-15-minute service all day, 30-minute service after 8:00 PM

Additionally, stops at the intersection of Slater Street and Metcalfe Street, which is within 300-metre walking distance from the site, provides service to transit routes #16 and #19, and stop at the intersection of Bank Street and Gloucester Street, which is within 550-metre walking distance from the site, provides service to transit routes #6, #7, and #11. Parliament LRT station is located within 650-metre walking distance, and it provides 5-minute service in the peak hours, 10-15 minute all-day.

Figure 8 illustrates the transit system map in the study area and Figure 9 illustrates nearby transit stops.

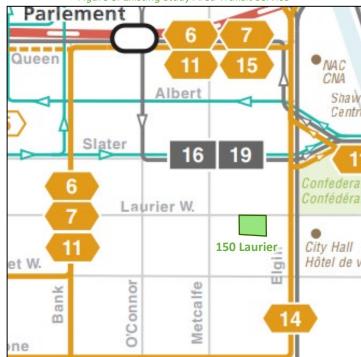


Figure 8: Existing Study Area Transit Service

Source: http://www.octranspo.com/ Accessed: July 6, 2022

Figure 9: Existing Study Area Transit Stops

Source: http://www.octranspo.com/ Accessed: July 6, 2022

2.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the study area.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa and the Traffic Specialist for the existing study area intersections, and the volumes were balanced along the roadway corridors. Table 1 summarizes the intersection count dates and sources.

Intersection **Count Date** Source Laurier Avenue West at O'Connor Street Tuesday, March 21, 2017 City of Ottawa Tuesday, April 04, 2017 City of Ottawa **Laurier Avenue West at Metcalfe Street** City of Ottawa **Laurier Avenue West at Elgin Street** Wednesday, February 27, 2019 **Gloucester Street at Metcalfe Street** Tuesday, April 04, 2017 City of Ottawa Nepean Street at Elgin Street Tuesday, July 12, 2022 The Traffic Specialist

Table 1: Intersection Count Date

Figure 10 illustrates the existing traffic counts and volumes were balanced along Laurier Avenue West and Elgin Street. Table 2 summarizes the existing intersection operations. The level of service for signalized intersections is based on volume to capacity ratio (v/c) calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and average delay for unsignalized intersections. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

Figure 10: Existing Traffic Counts 538(413) 495(427) 209(117) 332(271) 133(179) 256(166) 389(390) ↑ 59(161) ↑ 203(266) 22(10) <u></u>
283(241) <u></u> ↑ 74(126) ↑ 624(373) ↑ 96(33) 74(127) 162(207) ↑ 720(397) ↑ 223(96) 320(441) 17(7) ↑ 9(23) ↑ 1(31) 31(113) 7(1) 31(107) 7

Table 2: Existing Intersection Operations

Interception	Lana		AM Peak Hour			PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
I!	EBT/R	В	0.69	28.0	72.7	Α	0.60	24.4	61.8
Laurier Avenue	WBL	Α	0.38	7.6	m9.9	Α	0.47	21.7	37.0
West at O'Connor	WBT	Α	0.41	6.9	21.6	Α	0.33	16.2	46.4
Street	SB	Α	0.55	23.0	38.8	Α	0.52	22.4	40.1
Signalized	Overall	В	0.68	18.9	-	В	0.61	21.5	-
Laurier Avenue	EBL/T	Α	0.44	20.1	m61.4	Α	0.32	6.7	13.6
West at Metcalfe	WBT/R	Α	0.59	16.5	52.7	Α	0.42	12.0	37.5
Street	NB	Α	0.59	16.1	49.9	Α	0.50	18.2	21.2
Signalized	Overall	В	0.61	17.0	-	Α	0.46	13.5	-
	EBT/R	Α	0.42	30.6	44.1	Α	0.46	31.1	50.3
	WBL	В	0.67	31.4	45.9	Α	0.42	23.0	27.2
	WBT	В	0.64	23.3	112.0	Α	0.57	21.9	93.4
Laurier Avenue	WBR	F	1.01	57.3	#116.6	С	0.76	21.2	#58.1
West at Elgin	NBT	Α	0.31	34.0	30.0	Α	0.41	25.1	23.0
Street Signalized	NBR	Α	0.18	1.1	0.0	Α	0.51	8.4	8.7
Signulizea	SBL	Е	0.97	82.1	#69.4	E	0.95	76.6	#71.4
	SBT/R	Α	0.54	19.6	52.0	Α	0.43	18.6	43.9
	Overall	E	0.92	38.9	-	С	0.74	30.1	-

Intovocation	Lana	AM Peak Hour			PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
Gloucester Street	WBT/R	Α	0.34	21.3	23.5	Α	0.38	19.5	30.5
at Metcalfe Street	NBL/T	Α	0.40	7.7	30.8	Α	0.23	7.9	16.8
Signalized	Overall	Α	0.37	10.5	-	Α	0.27	12.6	-
	EB	Α	0.17	16.1	15.5	Α	0.38	16.5	42.7
	WBL	Α	0.00	23.0	1.3	Α	0.08	17.1	9.6
Nepean Street at	WBR	Α	0.02	0.1	0.0	Α	0.04	2.0	2.2
Elgin Street	NBT/R	Α	0.19	8.1	18.4	Α	0.26	17.8	31.4
Signalized	SBL	Α	0.04	8.3	4.1	Α	0.02	14.1	m1.3
	SBT	Α	0.19	9.0	20.4	Α	0.33	18.3	46.2
	Overall	Α	0.17	9.2	-	Α	0.35	17.3	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 0.90 m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, intersections within the study area operate well except for the Laurier Avenue West and Elgin Street intersection.

At the intersection of Laurier Avenue West and Elgin Street, during the AM peak, the westbound right-turn movement is over theoretical capacity and may be subject to extended queues, and the southbound left-turn movement may be subject to high delays and extended queues. During the PM peak, the westbound right-turn and southbound left-turn movements may exhibit extended queues.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study are road network. Table 3 summarizes the collision types and conditions in the study area, Table 3 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

Table 3: Study Area Collision Summary, 2016-2020

		Number	%
Total (Collisions	114	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	23	20%
	Property Damage Only	91	80%
	Angle	9	8%
	Rear end	24	21%
	Sideswipe	34	30%
Initial Impact Type	Turning Movement	26	23%
	SMV Unattended	9	8%
	SMV Other	8	7%
	Other	4	4%
	Dry	83	73%
	Wet	16	14%
Pood Surface Condition	Loose Snow	5	4%
Road Surface Condition	Slush	7	6%
	Packed Snow	1	1%
	Ice	2	2%
Pedestrian Involved		3	3%
Cyclists Involved		18	16%

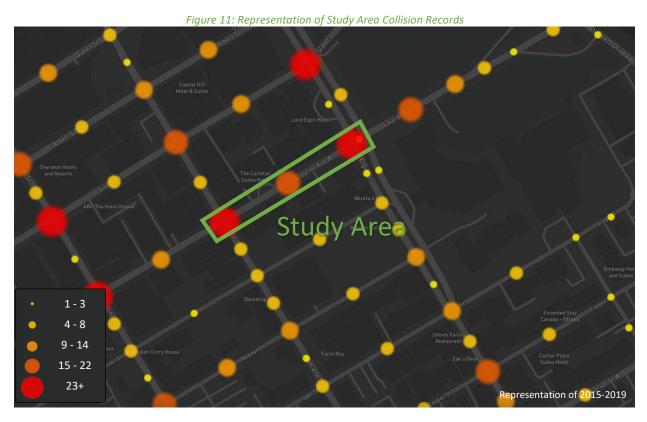


Table 4: Summary of Collision Locations, 2016-2020

	Number	%
Intersections / Segments	114	100%
Elgin St @ Laurier Ave	69	61%
Metcalfe St @ Laurier Ave	27	24%
Laurier Ave W btwn Metcalfe St & Elgin St	17	15%
Laurier Ave W btwn Elgin St & Elgin St	1	1%

Within the study area, the intersection of Elgin Street at Laurier Avenue, Metcalfe Street at Laurier Avenue and segments of Laurier Avenue West between Metcalfe Street and Elgin Street are noted to have experienced higher collisions than other locations. Table 5, Table 6, and Table 7 summarize the collision types and conditions for each location.

Table 5: Elgin Street at Laurier Avenue Collision Summary

		Number	%
Total (Collisions	69	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	15	22%
	Property Damage Only	54	78%
	Angle	2	3%
	Rear end	15	22%
	Sideswipe	24	35%
Initial Impact Type	Turning Movement	17	25%
	SMV Unattended	1	1%
	SMV Other	7	10%
	Other	3	4%
	Dry	48	70%
	Wet	10	14%
Road Surface Condition	Loose Snow	5	7%
	Slush	5	7%
	Unknown	1	1%
Pedestrian Involved	3	4%	
Cyclists Involved		11	16%

The Elgin Street at Laurier Avenue intersection had a total of 69 collisions during the 2016-2020 time period, with 54 involving property damage only and the remaining 15 having non-fatal injuries. The collision types are most represented by sideswipe with 24 collisions, followed by 17 turning movement collisions and 15 rear end collisions. General congestion and the skew of the through movements crossing the intersection may be contributing factors to the sideswipe collisions. It is also noted that this period included the Elgin construction activities and various detours. The varying types of cycling facilities on each leg are considered a direct contributor to the cycling collision frequency noted at this intersection. Weather conditions do not affect collisions at this location. No further analysis is required as part of this study.

Table 6: Metcalfe Street at Laurier Avenue Collision Summary

		Number	%
Total (Collisions	27	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	3	11%
	Property Damage Only	24	89%
	Angle	5	19%
	Rear end	7	26%
	Sideswipe	8	30%
Initial Impact Type	Turning Movement	3	11%
	SMV Unattended	2	7%
	SMV Other	1	4%
	Other	1	4%
	Dry	19	70%
	Wet	4	15%
Road Surface Condition	Slush	2	7%
	Packed Snow	1	4%
	Ice	1	4%
Pedestrian Involved		0	0%
Cyclists Involved		2	7%

The Metcalfe Street at Laurier Avenue intersection had a total of 27 collisions during the 2016-2020 time period, with 24 involving property damage only and the remaining three having non-fatal injuries. The collision types are most represented by sideswipe with eight collisions, followed by seven rear end collisions and five angle collisions. The collisions are distributed across the various types and no overall pattern is noted. Weather conditions do not affect collisions at this location. No further analysis is required as part of this study.

Table 7: Laurier Avenue West between Metcalfe Street and Elgin Street Collision Summary

		Number	%	
Total (Total Collisions			
	Fatality	0	0%	
Classification	Non-Fatal Injury	5	29%	
	Property Damage Only	12	71%	
	Angle	2	12%	
	Rear end	2	12%	
Initial Impact Type	Sideswipe	2	12%	
	Turning Movement	5	29%	
	SMV Unattended	6	35%	
Road Surface Condition	Dry	16	94%	
Road Surface Condition	Wet	1	6%	
Pedestrian Involved	0	0%		
Cyclists Involved		5	29%	

The segment of Laurier Avenue West between Metcalfe Street and Elgin Street had a total of 17 collisions during the 2016-2020 time period, with twelve involving property damage only and the remaining five having non-fatal injuries. The collision types are most represented by SMV Unattended with six collisions, followed by five turning movement collisions, with the remaining collisions split between angle, rear end, and sideswipe collision types. The collisions are distributed across the various types and no overall pattern is noted. Weather conditions do not affect collisions at this location. No further analysis is required as part of this study.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

Within the Transportation Master Plan (TMP), the Rapid Transit and Transit Priority (RTTP) Network's Network Concept diagram shows an isolated measures transit priority corridor along Elgin Street between Gladstone Avenue and Wellington Street.

2.3.2 Other Study Area Developments

208-212 Slater Street

The proposed development application includes a site plan application for a mixed-use building containing either 180 apartment units and 1,000 ft² of retail GFA or 220 hotel units and approximately 1,000 ft² of retail GFA. To provide a conservative analysis, the hotel scenario has been carried forward for the intersection analysis in the report. The development built-out year is assumed to be 2022 and is predicted to generate 30 new AM and 27 new PM two-way peak hour auto trips. (Novatech, 2021)

180 Metcalfe Street

The proposed development application includes a site plan application for a 27-storey building with 311 apartment units. The development built-out year is assumed to be 2022/2023 and is predicted to generate 6 new AM and 26 new PM two-way peak hour auto trips. (Parsons, 2018)

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of:

- Laurier Avenue West at:
 - o O'Connor Street
 - Metcalfe Street
 - o Elgin Street
 - Site Access (Future)
- Gloucester Street at:
 - Metcalfe Street
- Nepean Street at:
 - o Elgin Street

The boundary road will be Laurier Avenue West and no screenlines are present within proximity to the site.

3.2 Time Periods

As the proposed development is a mixed-use development with residential units and commercial, the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2027. As a result, the full build-out plus five years horizon year is 2032.

4 Exemption Review

Table 8 summarizes the exemptions for this TIA.

Table 8: Exemption Review

Module	Element	Explanation	Exempt/Required
Design Review Compo	nent		
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Required
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Exempt
	4.2.1 Parking Supply	Only required for site plans	Required
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt
Network Impact Comp	onent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Exempt
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess	Exempt

Module	Element	Explanation	Exempt/Required
		of equivalent volume permitted by	
		established zoning	

5 Development-Generated Travel Demand

5.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the subject district, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use for Ottawa Inner Area have been summarized in Table 9.

Table 9: TRANS Trip Generation Manual Recommended Mode Shares – Ottawa Inner Area

Travel Mode	Multi-Unit	(High-Rise)	Commercial Generator		
Travel Mode	AM	PM	AM	PM	
Auto Driver	26%	25%	39%	22%	
Auto Passenger	6%	8%	2%	4%	
Transit	28%	21%	16%	12%	
Cycling	5%	6%	3%	4%	
Walking	34%	39%	40%	58%	
Total	100%	100%	100%	100%	

Being within 650 metres-walk (or a 450 metres linear distance) of the Parliament LRT station, a higher transit mode is considered achievable at this location. A five percent shift to transit mode from the auto mode is proposed for each of the land use. The proposed modified mode share targets are summarized in Table 10.

Table 10: Proposed Development Mode Shares – Within 450 m of Rapid Transit

Travel Mode	Single-D	etached	Multi-Unit (Low-Rise)		
Travel Mode	AM	PM	AM	PM	
Auto Driver	21%	20%	34%	17%	
Auto Passenger	6%	8%	2%	4%	
Transit	33%	26%	21%	17%	
Cycling	5%	6%	3%	4%	
Walking	34%	39%	40%	58%	
Total	100%	100%	100%	100%	

5.2 Trip Generation

This TIA has been prepared using the vehicle and person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020) and the vehicle trip rates and derived person trip rates for commercial component from the ITE Trip Generation Manual 10th Edition (2017) using the City-prescribed conversion factor of 1.28. Table 11 summarizes the person trip rates for the proposed residential land uses for each peak period and the person trip rates for the non-residential land uses by peak hour.

Table 11: Trip Generation Person Trip Rates by Peak Period

	1		,		
Land Use	Land Use Code	Peak Period	Vehicle Trip Rate	Person Trip Rates	
Multi Unit (Uiah Dian)	221 & 222	AM	-	0.80	
Multi-Unit (High-Rise)	(TRANS)	PM	-	0.90	
Land Use	Land Use	Peak	Vehicle Trip	Person Trip	
Lanu Ose	Code	Hour	Rate	Rates	
Strip Retail Plaza	822	AM	2.36	3.02	
(<40k)	(ITE)	PM	6.59	8.44	

Using the above person trip rates, the total person trip generation has been estimated. Table 12 summarizes the total person trip generation for the residential land uses and for the non-residential land uses.

Table 12: Total Residential Person Trip Generation by Peak Period

Land Use	Units	AM	AM Peak Period			PM Peak Period		
Land Ose	Units	In	Out	Total	In	Out	Total	
Multi-Unit (High-Rise)	312	78	173	250	163	118	281	
	CEA	AN	AM Peak Hour PN		1 Peak H			
Land Use	GFA	In	Out	Total	In	Out	Total	
Strip Retail Plaza (<40k)	4,117 sq. ft	7	5	12	18	18	35	

Internal capture rates from the ITE Trip Generation Handbook 3rd Edition have been assigned to the development's retail component for mixed-use developments. The rates summarized in Table 13 represent the percentage of trips to/from the retail use based on the residential component.

Table 13: Internal Capture Rates

Land Use	А	М	PM		
Land Ose	ln	Out	In	Out	
Residential to/from Strip Retail Plaza (<40k)	17%	14%	10%	26%	

Pass-by reductions applied to the retail trip generation at a rate of 35% have been included, a value taken as a moderately conservative interpretation from the rates presented in the ITE Trip Generation Handbook 3rd Edition.

Using the above mode share targets for a LRT area, the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Trip generation by peak hour has been forecasted using the prescribed peak period conversion factors presented in the TRANS Trip Generation Manual (2020) for the residential component. Table 14 summarizes the residential trip generation and the non-residential trip generation by mode and peak hour.

Table 14: Trip Generation by Mode

			M Peak I		on by wiede		PM Peak H	lour	
1	Fravel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
	Auto Driver	21%	8	17	25	20%	15	11	26
ie (e)	Auto Passenger	6%	2	5	7	8%	6	4	10
Multi-Unit (High-Rise)	Transit	33%	14	31	45	26%	20	15	35
ulti igh	Cycling	5%	2	5	7	6%	5	3	8
ΣΞ	Walking	34%	16	34	50	39%	33	24	57
	Total	100%	42	92	134	100%	79	57	134
	Auto Driver	34%	1	1	2	17%	2	1	3
za	Auto Passenger	2%	0	0	0	4%	1	0	1
Strip Retail Plaza (<40k)	Transit	21%	1	1	2	17%	3	2	5
ei ei ei	Cycling	3%	0	0	0	4%	1	0	1
Retail (<40k)	Walking	40%	2	2	4	58%	9	8	17
ë	Internal Capture	varies	-1	-1	-2	varies	-2	-5	-7
¥	Pass-by	35%	-1	0	-1	35%	-1	-1	-2
	Total	100%	4	4	8	100%	16	11	27
	Auto Driver	-	9	18	27	-	17	12	29
	Auto Passenger	-	2	5	7	-	7	4	11
Total	Transit	-	15	32	47	-	23	17	40
P	Cycling	-	2	5	7	-	6	3	9
	Walking	-	18	36	54	-	42	32	74
	Total	100%	46	96	142	100%	95	68	163

As shown above, a total of 27 AM and 29 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

5.3 Trip Distribution

To understand the travel patterns of the subject development, the OD Survey has been reviewed to determine the travel, and these patterns were applied based on the build-out of Ottawa Inner. Table 15 below summarizes the distributions.

Table 15: OD Survey Distribution – Ottawa Inner

To/From	% of Trips
North	10%
South	40%
East	10%
West	40%
Total	100%

5.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Table 16 summarizes the proportional assignment to the study area roadways, and Figure 12 and Figure 13 illustrate the new site generated volumes and pass-by volumes.

Table 16: Trip Assignment

To/From	Inbound Via	Outbound Via
North	10% Elgin (N)	10% Metcalfe (N)
South	15% Metcalfe (S) 25% Laurier (W)	20% O'Connor (S) 10% Laurier (E) 10% Nepean (S)
East	10% Laurier (E)	10% Laurier (E)
West	40% Laurier (W)	40% Laurier (W)
Total	100%	100%

Figure 12: New Site Generation Auto Volumes

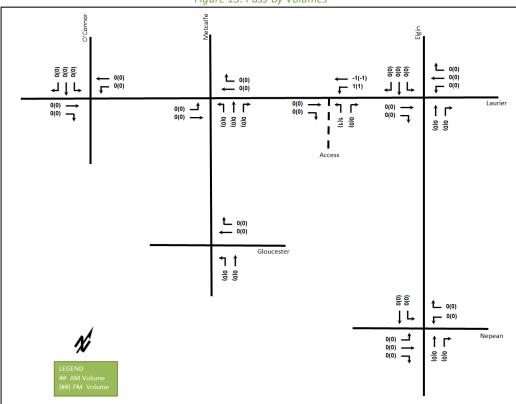


Figure 13: Pass-By Volumes

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3 and have been incorporated into the road network analysis.

6.2 Background Growth

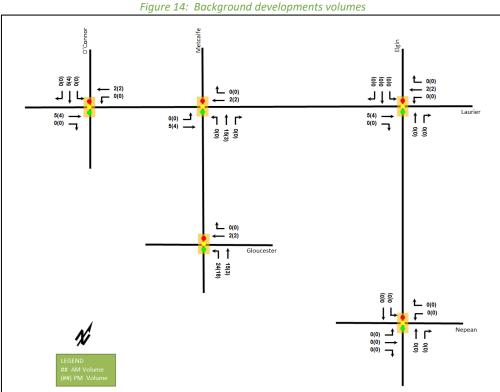
A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The background TRANS model growth rates are summarized in Table 17 and the TRANS model plots are provided in Appendix E.

TRANS Rate Street **Eastbound** Westbound Laurier -1.10% -1.08% Northbound Southbound O'Connor -0.44% Metcalfe 0.82% Elgin 0.58% 0.61%

Table 17: TRANS Regional Model Projections – Study Area Growth Rates

Given the various construction activities in the area, such as Elgin Street, a comparison to the existing traffic count data was not conducted. Therefore, the TRANS rates were generally applied to the area road network. It is noted that any negative growth values are conservative considered as 0%. Table 18 summarizes the recommended growth rates to be considered within the study area.

i abie 18: Ke	commenaea Ared	Growth Rates			
Chunch	Peak	Hour			
Street	Eastbound	Westbound			
Laurier	0% 0% Northbound Southbound				
	Northbound	Southbound			
O'Connor	-	0%			
Metcalfe	1.00%	-			
Elgin	0.50%	0.50%			


Table 10. Becommended Area Crowth Bates

6.3 Other Developments

The background developments explicitly considered in the background conditions (Section 6.2) include:

- 208-212 Slater Street
- 180 Metcalfe Street

Figure 14 illustrates the background developments volumes. The background development volumes within the study area have been provided in Appendix F.

Demand Rationalization

7.1 2027 Future Background Operations

Figure 15 illustrates the 2027 background volumes and Table 19 summarizes the 2027 background intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2027 future background horizon are provided in Appendix G.

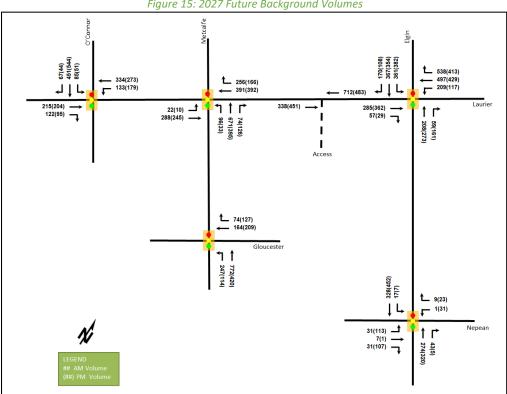


Figure 15: 2027 Future Background Volumes

Table 19: 2027 Future Background Intersection Operations

Intersection	Lana		AM Pe	ak Hour		PM Peak Hour				
	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
	EBT/R	В	0.63	25.6	64.6	Α	0.60	24.6	62.9	
Laurier Avenue	WBL	Α	0.32	7.1	9.3	Α	0.48	22.1	37.2	
West at O'Connor	WBT	Α	0.37	6.7	19.7	Α	0.33	16.2	46.7	
Street Signalized	SB	Α	0.50	22.3	34.9	Α	0.52	22.4	40.4	
Signanzea	Overall	В	0.61	17.9	-	В	0.61	21.6	-	
Laurier Avenue	EBL/T	Α	0.40	19.1	56.3	Α	0.32	6.6	13.5	
West at Metcalfe	WBT/R	Α	0.53	15.5	46.1	Α	0.42	12.0	37.8	
Street	NB	Α	0.55	15.6	47.1	Α	0.51	18.1	21.5	
Signalized	Overall	В	0.56	16.2	-	Α	0.47	13.5	-	
	EBT/R	Α	0.39	30.0	40.4	Α	0.47	31.2	50.7	
	WBL	Α	0.59	27.2	41.4	Α	0.42	23.1	27.2	
1	WBT	Α	0.58	21.6	97.3	Α	0.57	22.0	94.4	
Laurier Avenue	WBR	Е	0.91	35.5	#89.7	С	0.77	21.4	#58.5	
West at Elgin	NBT	Α	0.29	33.7	27.8	Α	0.42	25.2	23.2	
Street Signalized	NBR	Α	0.16	0.9	0.0	Α	0.51	8.4	8.5	
	SBL	D	0.87	65.4	#60.1	E	0.95	76.6	#71.4	
	SBT/R	Α	0.49	18.6	46.3	Α	0.43	18.8	45.1	
	Overall	D	0.82	31.4	-	С	0.74	30.2	-	

Intersection	Lana		AM Pe	ak Hour		PM Peak Hour				
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
Gloucester Street	WBT/R	Α	0.31	20.5	21.3	Α	0.38	19.6	30.8	
at Metcalfe Street	NBL/T	Α	0.39	7.6	29.5	Α	0.25	8.2	18.4	
Signalized	Overall	Α	0.35	10.0	-	Α	0.29	12.6	-	
	EB	Α	0.16	16.1	14.5	Α	0.38	16.5	42.7	
	WBL	Α	0.00	23.0	1.3	Α	0.08	17.1	9.6	
Nepean Street at	WBR	Α	0.02	0.1	0.0	Α	0.04	2.0	2.2	
Elgin Street	NBT/R	Α	0.17	8.0	16.9	Α	0.25	17.7	31.8	
Signalized	SBL	Α	0.03	8.2	3.8	Α	0.02	13.9	m1.3	
	SBT	Α	0.17	8.9	18.8	Α	0.34	18.0	47.2	
	Overall	Α	0.16	9.1	-	Α	0.35	17.2	-	

Saturation flow rate of 1800 veh/h/lane Notes:

Queue is measured in metres Peak Hour Factor = 1.00

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, intersections within the study area will operate similar to existing condition with improvement to the intersection operations due to the adjustment of the peak hour factor to 1.00 for forecasted conditions. No capacity issues are noted.

7.2 2032 Future Background Operations

Figure 16 illustrates the 2032 background volumes and Table 20 summarizes the 2032 background intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2032 future background horizon are provided in Appendix H.

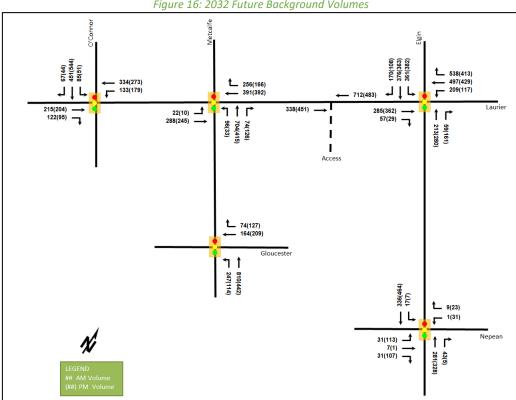


Figure 16: 2032 Future Background Volumes

Table 20: 2032 Future Background Intersection Operations

Intersection	Lane	AM Peak Hour			PM Peak Hour				
	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBT/R	В	0.63	25.6	64.6	Α	0.60	24.6	62.9
Laurier Avenue	WBL	Α	0.32	7.1	m9.3	Α	0.48	22.1	37.2
West at O'Connor	WBT	Α	0.37	6.7	19.8	Α	0.33	16.2	46.7
Street Signalized	SB	Α	0.50	22.3	34.9	Α	0.52	22.4	40.4
Signanzea	Overall	В	0.61	17.9	-	В	0.61	21.6	-
Laurier Avenue	EBL/T	Α	0.40	19.1	56.3	Α	0.32	6.6	13.5
West at Metcalfe	WBT/R	Α	0.53	15.5	46.1	Α	0.42	12.0	37.8
Street	NB	Α	0.57	15.7	49.0	Α	0.53	18.1	21.6
Signalized	Overall	Α	0.57	16.2	-	Α	0.48	13.5	-
	EBT/R	Α	0.39	30.0	40.4	Α	0.47	31.2	50.7
	WBL	Α	0.59	27.2	41.4	Α	0.42	23.1	27.2
Lavelan Avance	WBT	Α	0.58	21.6	97.3	Α	0.57	22.0	94.4
Laurier Avenue	WBR	Е	0.91	35.5	#89.7	С	0.77	21.4	#58.8
West at Elgin Street	NBT	Α	0.29	33.8	28.4	Α	0.43	25.1	23.6
Signalized	NBR	Α	0.16	0.9	0.0	Α	0.51	8.4	9.1
Signanzea	SBL	D	0.87	65.4	#60.1	Ε	0.95	76.6	#71.4
	SBT/R	Α	0.50	18.9	47.6	Α	0.44	19.0	46.2
	Overall	D	0.82	31.5	-	С	0.74	30.1	-
Gloucester Street	WBT/R	Α	0.31	20.8	21.5	Α	0.38	19.7	30.9
at Metcalfe Street	NBL/T	Α	0.40	7.7	30.9	Α	0.26	8.3	19.2
Signalized	Overall	Α	0.36	10.1	-	Α	0.29	12.6	-
	EB	Α	0.16	16.1	14.5	Α	0.38	16.5	42.7
	WBL	Α	0.00	23.0	1.3	Α	0.08	17.1	9.6
Nepean Street at Elgin Street	WBR	Α	0.02	0.1	0.0	Α	0.04	2.0	2.2
	NBT/R	Α	0.18	8.1	17.3	Α	0.25	17.8	32.5
Signalized	SBL	Α	0.03	8.2	3.8	Α	0.02	13.9	m1.2
	SBT	Α	0.18	9.0	19.3	Α	0.35	17.9	48.1
	Overall	Α	0.16	9.1	-	Α	0.36	17.2	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, intersections within the study area will operate similar to the 2027 future background horizon. No capacity issues are noted.

7.3 2027 Future Total Operations

Figure 17 illustrates the 2027 future total volumes and Table 21 summarizes the 2027 future total intersection operations. The level of service for signalized intersections is based on HCM 2010 calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and HCM average delay for unsignalized intersections. The synchro worksheets for the 2027 future total horizon are provided in Appendix I.

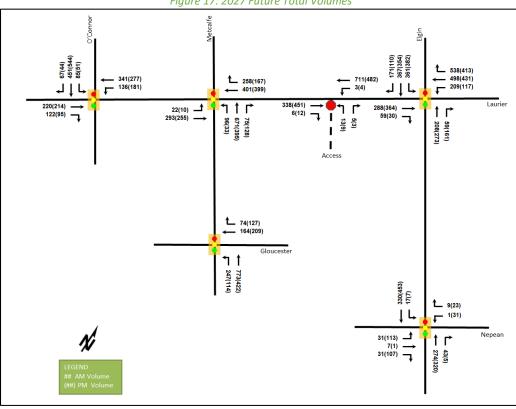


Figure 17: 2027 Future Total Volumes

Table 21: 2027 Future Total Intersection Operations

Intersection	Lane		AM Pe	AM Peak Hour			PM Peak Hour				
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)		
Laurier Avenue West at O'Connor Street	EBT/R	В	0.64	25.8	65.9	В	0.62	25.1	65.3		
	WBL	Α	0.33	7.1	9.4	Α	0.49	23.0	38.1		
	WBT	Α	0.38	6.7	19.8	Α	0.34	16.5	47.6		
Signalized	SB	Α	0.50	22.3	34.9	Α	0.52	22.4	40.4		
Signalizea	Overall	В	0.62	17.9	-	В	0.62	21.9	-		
Laurier Avenue	EBL/T	Α	0.40	19.3	57.1	Α	0.33	6.5	13.4		
West at Metcalfe	WBT/R	Α	0.54	15.6	47.2	Α	0.43	12.1	38.4		
Street	NB	Α	0.56	15.6	47.2	Α	0.52	18.1	21.4		
Signalized	Overall	Α	0.56	16.3	-	Α	0.48	13.4	-		
	EBT/R	Α	0.39	30.1	41.0	Α	0.47	31.2	51.0		
	WBL	Α	0.59	27.3	41.4	Α	0.42	23.1	27.2		
Laurier Avenue	WBT	Α	0.58	21.7	97.5	Α	0.57	22.0	94.8		
	WBR	Е	0.91	35.5	#89.7	С	0.77	21.4	#58.5		
West at Elgin Street	NBT	Α	0.29	33.7	27.8	Α	0.42	25.2	23.2		
Signalized	NBR	Α	0.16	0.9	0.0	Α	0.51	8.5	9.0		
Signanzea	SBL	D	0.87	65.4	#60.1	E	0.95	76.6	#71.4		
	SBT/R	Α	0.49	18.6	46.3	Α	0.44	18.8	45.3		
	Overall	D	0.82	31.4	-	С	0.74	30.2	-		
Gloucester Street	WBT/R	Α	0.31	20.6	21.4	Α	0.38	19.6	30.8		
at Metcalfe Street	NBL/T	Α	0.39	7.6	29.6	Α	0.25	8.2	18.5		
Signalized	Overall	Α	0.35	10.0	-	Α	0.29	12.6	-		

Intersection	Lama		AM Pe	ak Hour		PM Peak Hour					
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)		
	EB	Α	0.16	16.1	14.5	Α	0.38	16.5	42.7		
	WBL	Α	0.00	23.0	1.3	Α	0.08	17.1	9.6		
Nepean Street at	WBR	Α	0.02	0.1	0.0	Α	0.04	2.0	2.2		
Elgin Street	NBT/R	Α	0.17	8.0	16.9	Α	0.25	17.7	31.8		
Signalized	SBL	Α	0.03	8.2	3.8	Α	0.02	14.1	m1.2		
	SBT	Α	0.17	8.9	19.0	Α	0.34	18.1	47.2		
	Overall	Α	0.16	9.1	-	Α	0.35	17.2	-		
	EB	-	-	-	-	-	-	-	-		
Laurier Avenue West at Access Unsignalized	WB	Α	0.00	8.0	0.0	Α	0.00	8.4	0.0		
	NB	С	0.06	17.7	1.5	С	0.05	18.0	0.8		
Unsignanzea	Overall	Α	-	0.3	-	Α	-	0.3	-		

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, the study area intersection will operate similar to the 2027 future background horizon. No capacity issues are noted. The intersection of Laurier Avenue West at Access will operate well.

7.4 2032 Future Total Operations

Figure 18 illustrates the 2032 future total volumes and Table 22 summarizes the 2032 future total intersection operations. The level of service for signalized intersections is based on HCM 2010 calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and HCM average delay for unsignalized intersections. The synchro worksheets for the 2032 future total horizon are provided in Appendix J.

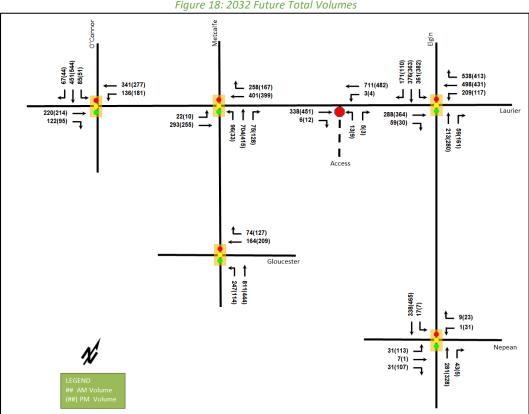


Figure 18: 2032 Future Total Volumes

Table 22: 2032 Future Total Intersection Operations

				ak Hour	,	PM Peak Hour					
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)		
	EBT/R	В	0.64	25.8	65.9	В	0.62	25.1	65.3		
Laurier Avenue West at O'Connor Street Signalized	WBL	Α	0.33	7.1	m9.3	Α	0.49	23.0	38.1		
	WBT	Α	0.38	6.7	19.8	Α	0.34	16.5	47.6		
	SB	Α	0.50	22.3	34.9	Α	0.52	22.4	40.4		
	Overall	В	0.62	17.9	-	В	0.62	21.9	-		
Laurier Avenue	EBL/T	Α	0.40	19.3	57.1	Α	0.33	6.5	13.4		
West at Metcalfe	WBT/R	Α	0.54	15.6	47.2	Α	0.43	12.1	38.4		
Street	NB	Α	0.57	15.7	49.0	Α	0.53	18.1	21.7		
Signalized	Overall	Α	0.57	16.3	-	Α	0.48	13.5	-		
	EBT/R	Α	0.39	30.1	41.0	Α	0.47	31.2	51.0		
	WBL	Α	0.59	27.3	41.4	Α	0.42	23.1	27.2		
1 1 A	WBT	Α	0.58	21.7	97.5	Α	0.57	22.0	94.8		
Laurier Avenue	WBR	Е	0.91	35.5	#89.7	С	0.77	21.4	#58.8		
West at Elgin Street	NBT	Α	0.29	33.8	28.4	Α	0.43	25.1	23.6		
Signalized	NBR	Α	0.16	0.9	0.0	Α	0.51	8.4	9.1		
Signalizea	SBL	D	0.87	65.4	#60.1	Ε	0.95	76.6	#71.4		
	SBT/R	Α	0.50	18.9	47.6	Α	0.44	19.0	46.4		
	Overall	D	0.82	31.5	-	С	0.75	30.2	-		
Gloucester Street at Metcalfe Street Signalized	WBT/R	Α	0.31	20.8	21.5	Α	0.38	19.7	30.9		
	NBL/T	Α	0.40	7.7	30.9	Α	0.26	8.3	19.4		
	Overall	Α	0.36	10.1	-	Α	0.29	12.6	-		
	EB	Α	0.16	16.1	14.5	Α	0.38	16.5	42.7		
	WBL	Α	0.00	23.0	1.3	Α	0.08	17.1	9.6		
Nepean Street at	WBR	Α	0.02	0.1	0.0	Α	0.04	2.0	2.2		
Elgin Street	NBT/R	Α	0.18	8.1	17.3	Α	0.25	17.8	32.5		
Signalized	SBL	Α	0.03	8.2	3.8	Α	0.02	13.6	m1.2		
	SBT	Α	0.18	9.0	19.4	Α	0.35	17.9	48.3		
	Overall	Α	0.16	9.1	-	Α	0.36	17.2	-		
Lavuian Avances	EB	-	-	-	-	-	-	-	-		
Laurier Avenue	WB	Α	0.00	8.0	0.0	Α	0.00	8.4	0.0		
West at Access Unsignalized	NB	С	0.06	17.7	1.5	С	0.05	18.0	0.8		
onsignalizea	Overall	Α	-	0.3	-	Α	-	0.3	-		
Notes: Saturation flo	w rate of 1800 v	oh/h/lano			m = metered c	1110110					

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, the study area intersection will operate similar to the 2032 future background horizon. No capacity issues are noted.

The intersection of Laurier Avenue West at Access will operate well.

7.5 Modal Share Sensitivity and Demand Rationalization Conclusions

No capacity constraints are noted within the study area. As such, no rationalization of the modal share and projected volumes is required.

8 Development Design

8.1 Design for Sustainable Modes

The proposed development is a mixed-use building with residential and ground floor commercial/retail, with the parking provided on five underground levels and surface. Bicycle parking is provided both external and internal to the building. Three bike racks are provided for external bicycle parking and bike rooms are provided for internal bike parking. Pedestrian and cycling facilities are provided along the boundary street.

8.2 Circulation and Access

Vehicle access is provided via a two-way access onto Laurier Avenue West. The two-way access is 6.0m wide and it connects to a 12% slope ramp to the underground parking. Garbage collection is proposed to collect from a staging area located in the southwest corner of the site, and emergency services are proposed to access the site via Laurier Avenue West. Appendix K illustrates the turning templates for the site.

9 Parking

9.1 Parking Supply

The site provides 170 residential parking spaces, 30 visitor parking spaces, and 300 bicycle spaces. A total of seven vehicle parking and six bicycle parking spaces will be provided on the ground level, and a total of 193 vehicle parking spaces and 294 bicycle parking spaces will be provided below ground level.

No requirement for the residential parking and the minimum parking provision is 30 visitor parking spaces and 158 bicycle parking spaces. The minimum visitor parking and bicycle parking requirements are satisfied.

10 Boundary Street Design

Table 23 summarizes the MMLOS analysis for the boundary streets of Laurier Avenue West. The existing and future conditions for both streets will be the same and are considered in one row. The boundary street analysis is based on the policy area of Central Area. The MMLOS worksheets has been provided in Appendix L.

Table 23: Boundary Street MMLOS Analysis

Segment	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS	
	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target
Laurier Avenue West	D	Α	Α	С	-	-	С	D

Laurier Avenue West does not meet the pedestrian MMLOS targets and would require traffic reductions to below 3000 vehicles a day to meet the target of 'A'.

11 Access Intersections Design

11.1 Location and Design of Access

The existing surface and underground accesses on the east side will be removed, and the access located on the western limit of the site will remain. The site access is provided as an all-movements driveway onto Laurier Avenue West, and the throat length is approximately 4.0 metres. Given the downtown urban environment, narrow site and low auto volumes anticipated, the typical throat length of 40 metres cannot be accommodated, nor is considered practical for the context. The existing light standard and fire hydrant, which are located east of the existing access, are proposed to be re-located.

The site access will connect to the adjacent arterial road network, and a 12% slope ramp will be provided to access the underground parking at the rear of the site.

11.2 Intersection Control

Based upon the projected volumes, the site access will have stop-control on the minor approach. No further traffic control is necessary to address operational issues.

11.3 Access Intersection Design

11.3.1 Future Access Intersection Operations

The operations are noted in Section 7.4 and no capacity issues are noted.

11.3.2 Access Intersection MMLOS

The access intersection is unsignalized, and therefore no access intersection MMLOS analysis has been conducted.

11.3.3 Recommended Design Elements

The existing surface and underground accesses on the east side are proposed to be removed, and the existing light standard and fire hydrant, which are located east of the existing access, are proposed to be re-located.

12 Transportation Demand Management

12.1 Context for TDM

The mode shares used within the TIA represent a shift from auto modes to transit modes. Overall, the modal shares are likely to be achieved and supporting TDM measures should be provided.

The subject site is within the Central Area design priority area. The total bedroom count within the development is anticipated to be 312 including 147 one-bedroom units, 157 two-bedroom units, and eight loft units.

12.2 Need and Opportunity

The subject site has been assumed to rely predominantly on all travel modes with an increase in transit ridership with the proximity to the LRT corridors, and those assumptions have been carried through the analysis.

12.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for the residential land uses. The checklist is provided in Appendix M. The key TDM measures recommended include:

- Provide bike repair station for site and public use
- Posting of pedestrian, cycling, and transit information and maps at primary entrances/exits
- Inclusion of a 1-month Presto card for first time new townhome purchase and apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
- Unbundle parking cost from purchase or rental costs

13 Transit

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 24 summarizes the transit trip generation.

Table 24: Trip Generation by Transit Mode

Tuescal Manda	Mada Chaua		AM Peak Hou	r	PM Peak Hour			
Travel Mode	Mode Share	In	Out	Total	In	Out	Total	
Transit	Varies	15	32	47	23	17	40	

The proposed development is anticipated to generate an additional 47 AM peak hour transit trips and 40 PM peak hour transit trips. Of these trips, 32 outbound AM trips and 23 inbound PM trips are anticipated.

Within 650-metre walking distance to the Parliament LRT station, which provides 5-minute service in the peak hours mainly for trips to/from the east and the west, and routes #6 and #7, which provide 10-15-minute service in the peak hours, provide trips to/from the north and the south. It is expected that the existing transit service will provide adequate transit capacity to support the increase in travel demand by the proposed development. Therefore, no service changes are anticipated as being required to accommodate site-generated transit trips.

13.1 Transit Priority

Examining the study area intersection delays, negligible impacts are noted on transit movements at the study area intersections as a result of the development site traffic.

14 Network Intersection Design

14.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections.

14.2 Network Intersection Design

14.2.1 2027 & 2032 Future Total Network Intersection Operations

The operations are noted in Section 7.4 and no capacity issues are noted.

14.2.2 Network Intersection MMLOS

Table 25 summarizes the MMLOS analysis for the network intersections within the study area. The existing and future conditions for both intersections will be the same and are considered in one row. The intersection analysis is based on the policy area of Central Area. The MMLOS worksheets has been provided in Appendix L.

Table 25: Study Area Intersection MMLOS Analysis

Intersection	Pedesti	rian LOS	Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Laurier Avenue West at O'Connor Street	D	А	Α	С	-	-	F	D	В	E
Laurier Avenue West at Metcalfe Street	D	А	F	С	-	-	F	D	Α	E
Laurier Avenue West at Elgin Street	F	А	F	С	E	D	E	D	D	E
Gloucester Street at Metcalfe Street	С	А	F	В	-	-	-	-	Α	E
Nepean Street at Elgin Street	F	А	F	В	С	D	-	-	Α	E

The pedestrian LOS targets will not be met at the intersections within the study area. As typical for arterial roads, the crossing distance does not permit the targets to be met. To meet pedestrian LOS targets, the maximum crossing distance on all pedestrian crossings would need to be reduced to two lane-widths.

The bicycle LOS targets will not be met at the intersections within the study area except for the Laurier Avenue West at O'Connor Street intersection. To meet bicycle LOS targets, the left-turn configurations would need to be two-stage or include turn boxes at the intersections along Metcalfe Street and Elgin Street.

The truck LOS targets will not be met at the intersection of Laurier Avenue West at Elgin Street and would need the delay to be below 30 seconds.

The truck LOS targets will not be met at the intersections along Laurier Avenue West and would need at least 15-meter effective corner radius or at least two receiving lands on departure from intersection.

14.2.3 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

15 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes 312 residential units and 4,125 sq. ft. of commercial/retail
- The existing surface and underground accesses on the east side will be removed
- An access on the western limit of the site on Laurier Avenue West will remain
- The development is proposed to be completed as a single phase by 2027
- The trip generation, location, and safety triggers were met for the TIA Screening

Existing Conditions

- Laurier Avenue West, O'Connor Street, Metcalfe Street, and Elgin Street are arterial roads, and Gloucester
 Street and Nepean Street are local roads in the study area
- Protected bikes lanes are provided on both sides along Laurier Avenue West west of Elgin Street, a bike lane and cycletrack to the east of Elgin, a two-way protected bikes lane on the east side of O'Connor Street south of Laurier Avenue West, and a southbound transition is located to the north
- Cycle track is provided on the south side and on-street bike lane is provided on the north side along Laurier
 Avenue West east of Elgin Street
- Sidewalks are provided on both sides along all roads within the study area
- Laurier Avenue West, Metcalfe Street, O'Connor Street, and Elgin Street north of Laurier Avenue West are spine routes and Elgin Street south of Laurier Avenue West is a local route
- Elgin Street north of Laurier Avenue West, Laurier Avenue West, and O'Connor Street are cross-town bikeways
- The high volumes roadways have produced a high number of collisions at the study area intersections, primarily at the Elgin Street at Laurier Avenue intersection (61% or 69 collisions), predominantly represented by sideswipe collisions, which may be contributed by general congestion and the skew of the through movements crossing the intersection
- The westbound right-turn movement at Laurier Avenue West and Elgin Street intersection is over theoretical capacity and may be subject to extended queues during the AM peak in the existing condition.

Development Generated Travel Demand

• The proposed development is forecasted produce 142 two-way people trips during the AM peak hour and 163 two-way people trips during the PM peak hour

- Of the forecasted people trips, 27 two-way trips will be vehicle trips during the AM peak hour and 29 twoway trips will be vehicle trips during the PM peak hour
- Of the forecasted trips, 20% are anticipated to travel to the north and the east and 40% to the south and the west

Background Conditions

- The background developments were explicitly included in the background conditions, along with background growth on Metcalfe Street and Elgin Street along the mainline volumes
- The study area intersections at future background horizons will operate similar to the existing conditions

Development Design

- The bike parking is provided both external and internal to the building
- Parking provided on five underground levels and surface
- The two-way access is 6.0m wide and it connects to a 12% slope ramp to the underground parking
- Pedestrian and cycling facilities are provided along the boundary street
- The existing light standard and fire hydrant, which are located east of the existing access, are proposed to be re-located
- Garbage collection is proposed to collect from a staging area located in the southwest corner of the site
- Emergency services are proposed to access the site via Laurier Avenue West

Parking

- The site provides 170 residential parking spaces, 30 visitor parking spaces, and 300 bicycle parking spaces
- No requirement for the residential parking
- The minimum visitor parking and bicycle parking requirements are satisfied

Boundary Street Design

 Laurier Avenue West does not meet the pedestrian MMLOS targets due to the vehicle volumes along the corridor

Access Intersections Design

- The site access is provided as an all-movements driveway onto Laurier Avenue West, and the throat length is approximately 4.0 metres
- Given the downtown urban environment, narrow site and low auto volumes anticipated, the typical throat length of 40 metres cannot be accommodated, nor is considered practical for the context
- The site access will connect to the adjacent arterial road network, and a 12% slope ramp will be provided to access the underground parking at the rear of the site
- The site access will have stop-control on the minor approach
- The existing surface and underground accesses on the east side are proposed to be removed
- The existing light standard and fire hydrant, which are located east of the existing access, are proposed to be re-located

TDM

- Supportive TDM measures to be included within the proposed development should include:
 - o Provide bike repair station for site and public use

- Posting of pedestrian, cycling, and transit information and maps at primary entrances/exits
- o Inclusion of a 1-month Presto card for first time new townhome purchase and apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
- Unbundle parking cost from purchase or rental costs

Transit

- Parliament LRT station and existing transit routes are expected to provide adequate transit capacity to support the increase transit trips
- No service changes are anticipated as being required to accommodate site-generated transit trips
- Negligible impacts are noted on transit movements at the study area intersections

Network Intersection Design

- No capacity issues are noted at the intersections within the study
- No change to the existing signalized control is recommended for the network intersections
- The pedestrian LOS targets will not be met at intersections within the study area, which require crossing distances need to be reduced to equal or less than two lane widths
- The bicycle LOS targets will not be met at the existing or future intersections within the study area except for the Laurier Avenue West at O'Connor Street intersection, and it is limited by the lack of dedicated facilities and improved left-turn configurations
- The transit LOS targets will not be met at the intersections of Laurier Avenue West at Elgin Street, which requires the delay to be below 30 seconds
- The truck LOS targets will not be met at the intersections along Laurier Avenue West and would need at least 15-meter effective corner radius or at least two receiving lands on departure from intersection

16 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

Yu-Chu Chen, EIT

Transportation Engineering-Intern

Reviewed By:

Andrew Harte, P.Eng.

Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form Date: 29-Aug-22
Project Number: 2022-074
Project Reference: 150 Laurier

1.1 Description of Proposed Development	
Municipal Address	150 Laurier Avenue West
Description of Location	Ward 14. On Laurier Avenue West between Elgin Street and Metcalfe Street
Land Use Classification	Mixed Use/Commercial Zone (MD S50)
Development Size	312 residitial units and 4,117 sq.ft of commerical space
Accesses	An access on Laurier Avenue West
Phase of Development	Single
Buildout Year	2027
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger	
Land Use Type	Townhomes or apartments
Development Size	312 Units
Trip Generation Trigger	Yes

1.3 Location Triggers		
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	Yes	Laurier Avenue West is a spine route
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?	Yes	Central Area DPA
Location Trigger	Yes	

1.4. Safety Triggers		
Are posted speed limits on a boundary street 80 km/hr or greater?	No	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	No	
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	Yes	Within 150 of intersections
Is the proposed driveway within auxiliary lanes of an intersection?	No	
Does the proposed driveway make use of an existing median break that serves an existing site?	No	
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?	Yes	Collisions at Laurier Avenue West and Elgin Street intersection
Does the development include a drive-thru facility?	No	
Safety Trigger	Yes	

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name:	Andrew Harte (Please Print)	
Professional Title:	Professional Engineer	
Signatura	of Individual certifier that s/he meets the above four criteria	
Signature	of marked a certifier that sine meets the above four criteria	

Office Contact Information (Please Print)								
Address: 6 Plaza Court								
C'. /P 1 C. 1 O / WALLTWI								
City / Postal Code: Ottawa / K2H 7W1								
Telephone / Extension: (613) 697-3797								
E-Mail Address: Andrew.Harte@CGHTransportation.com								

Appendix B

Turning Movement Counts

1700-1800

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

742 967

Summary: All Vehicles

Elgin Street & Nepean Street Ottawa, ON Survey Date: Tuesday, July 12, 2022 Start Time: 0700 AADT Factor: 0.9 Weather AM: Overcast 20º C Survey Duration: 8 Hrs. Survey Hours: 0700-1000. 1130-1330 & 1500-1800 Weather PM: Mostly Cloudy 23º C Surveyor(s): T. Carmody Nepean St. Ottawa City Hall Elgin St. Elgin St. Eastbound Westbound Northbound Southbound RT UT ST RT ST RT 263 715 0900-1000 36 280 312 276 293 605 694 1130-1230 41 41 278 295 386 404 699 813 1230-1330 283 1500-1600 284 292 1600-1700 215 304 449 1016 263 300 431 753

Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

41 225

225 1168

0 273

281

452

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr	649	Equival 35	627		ehicle v 1311	olumes 147		volum 165	nes are O	calcula 313		ying the 2990		by the 8 3200		on fact 0		1.39 4101	7300	8924
AADT 12-hr	584	Ave 31	rage dail 564	y 12- 0	hour vel 1180	133	lumes. 0		volum 0	es are 281	•	nultiply 2691	ing the 6 176	lent 12-l 2880	3532	the AA		tor of: 3690		8031
AADT 24 Hr	24 - 765	Hour A 41	ADT. The 739	ese v	olumes 1545	are calo	culated 0	•	ltiplyin 0	g the a 369		2-hour v 3525		s by the 3773		nsion f	actor 108	of 1.31 4834	8607	10521

AADT and expansion factors pro	vided by the	City of C)ttawa
--------------------------------	--------------	-----------	--------

AM Peak Ho	our Fa	ctor •	>	0.	96									Hig	hest	Hourl	y Vehi	icle Vo	lume	Betv	veen (700h &	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0815-0915	31	7	31	0	69	1	0	9	0	10	79	0	267	43	0	310	17	320	0	13	350	660	739
OFF Peak H	lour Fa	actor	•	0.	99									Hig	hest	Hourl	y Vehi	icle Vo	lume	Betv	veen 1	130h &	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1200-1300	42	1	47	0	90	10	0	18	0	28	118	0	293	15	2	310	7	403	0	5	415	725	843
PM Peak Ho	our Fac	ctor •	→	0.	97									Hig	hest	Hourl	y Vehi	icle Vo	lume	Betv	veen 1	500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1545-1645	113	- 1	107	0	221	31	0	23	0	54	275	- 1	312	5	1	319	7	441	٥	8	456	775	1050

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 49.08% of the heavy vehicle traffic. The bicycle totals include 26 Escooters (both stand-up type and Vespa style). The pedestrian crossing totals include 11 pedestrians with accessibility issues using either a cane, walker or electric wheelchair. Many pedestrians and cyclists either cross or drive through the intersection on a red signal.

Notes:

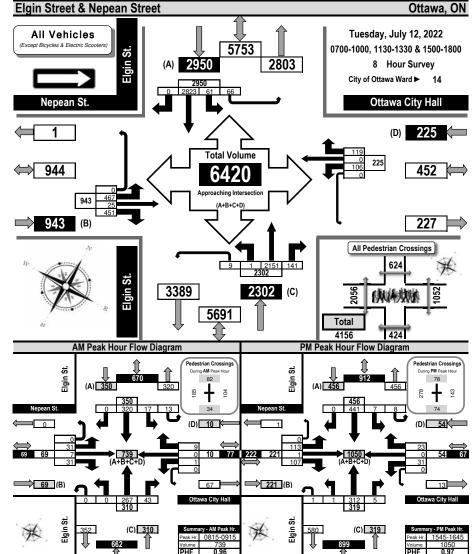
1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

184

0 26

85

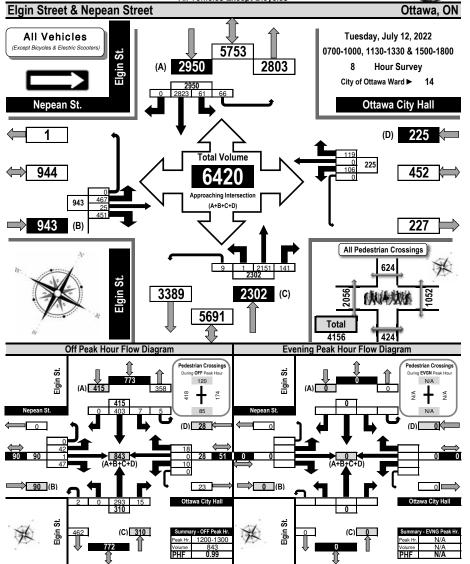
2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.


Printed on: 7/15/2022 Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles

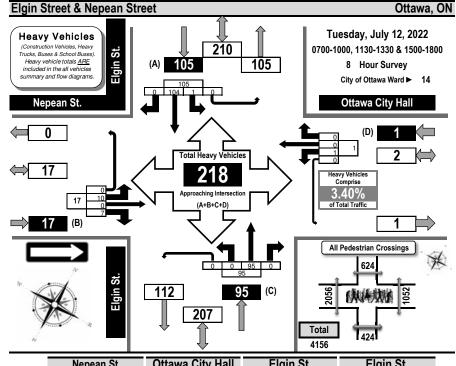
Printed on: 7/15/2022 Prepared by: thetrafficspecialist@gmail.com Flow Diagrams: AM PM Peak



Printed on: 7/15/2022

Turning Movement Count Summary, OFF and EVENING Peak Hour Flow Diagrams

All Vehicles Except Bicycles



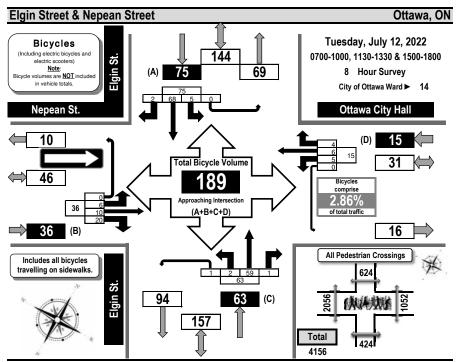
Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: OFF Peak

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

		Nepean St.					Ottawa City Hall						gin :	St.		Elgin St.						
		Eastbound					Westbound						thbo		Southbound							
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	L	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot	
0700-0800	1	0	1	0	2	0	0	0	0	0	0	11	0	0	11	0	11	0	0	11	24	
0800-0900	2	0	2	0	4	0	0	0	0	0	0	14	0	0	14	0	14	0	0	14	32	
0900-1000	5	0	1	0	6	0	0	0	0	0	0	14	0	0	14	0	15	0	0	15	35	
1130-1230	0	0	2	0	2	0	0	0	0	0	0	15	0	0	15	0	18	0	0	18	35	
1230-1330	1	0	0	0	1	0	0	0	0	0	0	14	0	0	14	0	14	0	0	14	29	
1500-1600	1	0	1	0	2	1	0	0	0	1	0	10	0	0	10	1	13	0	0	14	27	
1600-1700	0	0	0	0	0	0	0	0	0	0	0	9	0	0	9	0	10	0	0	10	19	
1700-1800	0	0	0	0	0	0	0	0	0	0	0	8	0	0	8	0	9	0	0	9	17	
Totals	10	0	7	0	17	1	0	0	0	1	0	95	0	0	95	1	104	0	0	105	218	

Comments:


OC Transpo and Para Transpo buses, private buses and school buses comprise 49.08% of the heavy vehicle traffic. The bicycle totals include 26 Escooters (both stand-up type and Vespa style). The pedestrian crossing totals include 11 pedestrians with accessibility issues using either a cane, walker or electric wheelchair. Many pedestrians and cyclists either cross or drive through the intersection on a red signal.

Printed on: 7/15/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Heavy Vehicles

Turning Movement Count Bicycle Summary Flow Diagram

	Nepean St. Ottawa City Hall								E	lgin S											
		Ea	stbou	nd		Westbound					No	rthbou	ınd								
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0	0	1	0	1	0	2	1	0	3	0	6	1	0	7	0	1	0	0	1	12
0800-0900	1	0	1	0	2	0	0	2	0	2	0	5	0	0	5	0	3	0	0	3	12
0900-1000	1	1	2	0	4	0	1	0	0	1	0	8	0	0	8	0	5	0	0	5	18
1130-1230	0	1	1	0	2	- 1	0	0	0	1	0	5	0	0	5	1	12	0	0	13	21
1230-1330	0	1	3	0	4	0	1	0	0	1	1	3	0	0	4	1	11	0	0	12	21
1500-1600	0	3	2	0	5	1	0	0	0	1	0	8	0	0	8	2	10	0	0	12	26
1600-1700	1	1	6	0	8	1	0	0	0	1	0	16	0	0	16	1	17	0	0	18	43
1700-1800	3	3	4	0	10	2	2	1	0	5	1	8	0	1	10	0	9	2	0	11	36
Totals	6	10	20	0	36	5	6	4	0	15	2	59	1	1	63	5	68	2	0	75	189

Comments:

Printed on: 7/15/2022

OC Transpo and Para Transpo buses, private buses and school buses comprise 49.08% of the heavy vehicle traffic. The bicycle totals include 26 E-scooters (both stand-up type and Vespa style). The pedestrian crossing totals include 11 pedestrians with accessibility issues using either a cane, walker or electric wheelchair. Many pedestrians and cyclists either cross or drive through the intersection on a red signal.

Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Elgin Street & Nepean Street		Ottawa, ON
Pedestrian Crossings	Elgin St.	Tuesday, July 12, 2022 0700-1000, 1130-1330 & 1500-1800 8 Hour Survey
_ 🚍	624	City of Ottawa Ward ► 14
Nepean St.	Grand Total 4156 Pedestrian Crossings	1052 Ottawa City Hall
n-	424	Note The values in the summary table below and the flow diagram represent the number of pedestrian crossings. NOT the number of individual pedestrians crossing. For example, some pedestrians will cross one approach, then another to reach their destination. Accordingly, one pedestrian crossing two approaches
	Elgin St.	will be recorded as two crossings.

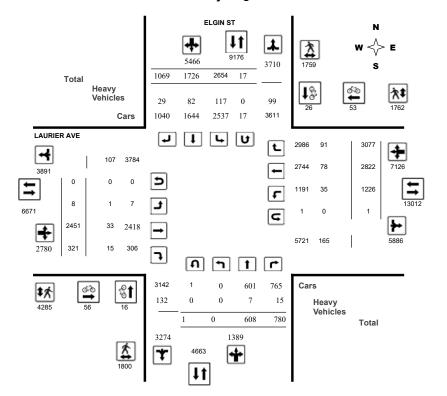
Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Nepean St.	Ottawa City Hall	Total	Elgin St.	Elgin St.	Total	Total
0700-0800	83	42	125	29	33	62	187
0800-0900	191	100	291	31	73	104	395
0900-1000	145	120	265	40	66	106	371
1130-1230	353	139	492	56	103	159	651
1230-1330	378	180	558	93	126	219	777
1500-1600	225	132	357	53	57	110	467
1600-1700	322	172	494	71	88	159	653
1700-1800	359	167	526	51	78	129	655
Totals	2056	1052	3108	424	624	1048	4156

Comments:

Summary: Bicycles

OC Transpo and Para Transpo buses, private buses and school buses comprise 49.08% of the heavy vehicle traffic. The bicycle totals include 26 Escooters (both stand-up type and Vespa style). The pedestrian crossing totals include 11 pedestrians with accessibility issues using either a cane, walker or electric wheelchair. Many pedestrians and cyclists either cross or drive through the intersection on a red signal.

Printed on: 7/15/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings


Turning Movement Count - Study Results

ELGIN ST @ LAURIER AVE

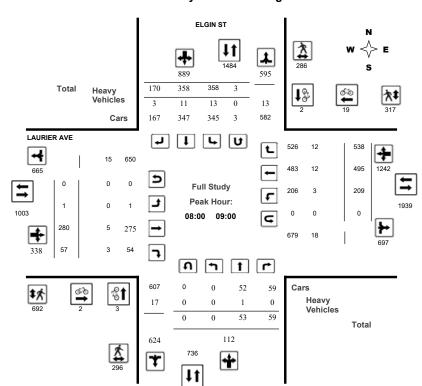
 Survey Date:
 Wednesday, February 27, 2019
 WO No:
 38383

 Start Time:
 07:00
 Device:
 Miovision

Full Study Diagram

Transportation Services - Traffic Services

Turning Movement Count - Study Results


ELGIN ST @ LAURIER AVE

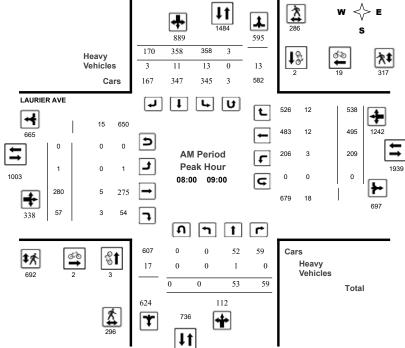
Survey Date: Wednesday, February 27, 2019 Start Time: 07:00 WO No:

Device:

38383 Miovision

Full Study Peak Hour Diagram

 July 6, 2022
 Page 1 of 8
 July 6, 2022
 Page 2 of 8



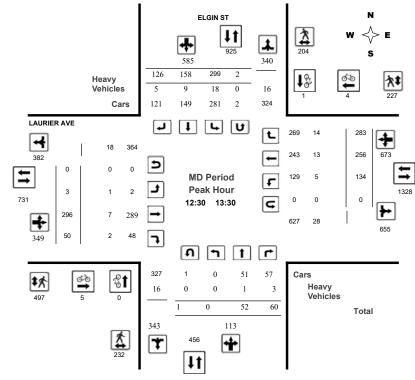
Turning Movement Count - Peak Hour Diagram

ELGIN ST @ LAURIER AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38383
Start Time: 07:00 Device: Miovision

ELGIN ST

Comments

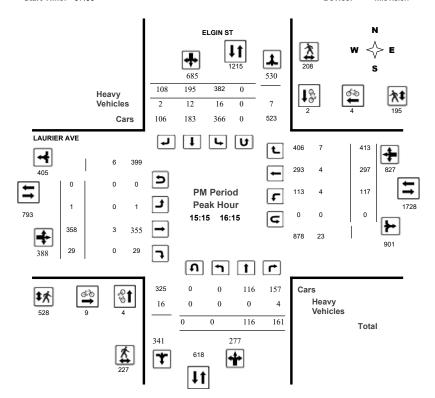

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

ELGIN ST @ LAURIER AVE

 Survey Date:
 Wednesday, February 27, 2019
 WO No:
 38383

 Start Time:
 07:00
 Device:
 Miovision


Comments

Turning Movement Count - Peak Hour Diagram

ELGIN ST @ LAURIER AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38383
Start Time: 07:00 Device: Miovision

Comments

2022-Jul-06 Page 3 of 9

Transportation Services - Traffic Services

Turning Movement Count - Study Results

ELGIN ST @ LAURIER AVE

 Survey Date:
 Wednesday, February 27, 2019
 WO No:
 38383

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

AADT Factor

Survey Date: Wednesday, February 27, Total Observed U-Turns

		2019					1	Northbou	nd: 1		Sout	hbound	: 17						
								Eastbou	nd: 0		Wes	tbound:	1				1.00		
			E	LGIN S	ST							LAI	JRIER	AVE					
	No	rthbou	ınd		Sc	uthbo	und			Е	astbou	und		V	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	0	45	56	101	274	227	138	639	740	0	260	40	300	188	484	470	1142	1442	2182
08:00 09:00	0	53	59	112	358	358	170	886	998	1	280	57	338	209	495	538	1242	1580	2578
09:00 10:00	0	45	70	115	285	277	170	732	847	1	273	61	335	200	418	445	1063	1398	2245
11:30 12:30	0	51	69	120	299	177	116	592	712	1	257	41	299	131	310	258	699	998	1710
12:30 13:30	0	52	60	112	299	158	126	583	695	3	296	50	349	134	256	283	673	1022	1717
15:00 16:00	0	102	148	250	402	184	99	685	935	1	377	29	407	130	294	367	791	1198	2133
16:00 17:00	0	158	172	330	343	184	123	650	980	1	366	19	386	109	288	390	787	1173	2153
17:00 18:00	0	102	146	248	394	161	127	682	930	0	342	24	366	125	277	326	728	1094	2024
Sub Total	0	608	780	1388	2654	1726	1069	5449	6837	8	2451	321	2780	1226	2822	3077	7125	9905	16742
U Turns	1			1	17			17	18	0			0	1			1	1	19
Total	1	608	780	1389	2671	1726	1069	5466	6855	8	2451	321	2780	1227	2822	3077	7126	9906	16761
EQ 12Hr	1	845	1084	1930	3713	2399	1486	7598	9528	11	3407	446	3864	1706	3923	4277	9906	13770	23298
Note: These v	alues a	re calcu	ulated by	y multip	lying the	totals b	by the a	ppropriat	e expans	ion fac	tor.			1.39					
AVG 12Hr	1	845	1084	1930	3713	2399	1486	7598	9528	11	3407	446	3864	1706	3923	4277	9906	13770	23298
Note: These v	olumes	are cal	culated	by mult	iplying t	he Equi	valent 1	12 hr. tota	ls by the	AADT	factor.			1.00					
AVG 24Hr	1	1107	1420	2528	4864	3143	1947	9954	12482	14	4463	584	5061	2235	5139	5603	12977	18038	30520

Note: These volumes are calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 expansion factor.

Note: U-Turn' Report for specific breakdown.

July 6, 2022 Page 3 of 8

Turning Movement Count - Study Results

ELGIN ST @ LAURIER AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38383
Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

			i an otaay	Cyonot v	oranno		
		ELGIN ST			LAURIER AV	E	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	1	1	1
07:15 07:30	0	0	0	0	3	3	3
07:30 07:45	0	0	0	0	2	2	2
07:45 08:00	0	2	2	2	1	3	5
08:00 08:15	1	0	1	1	7	8	9
08:15 08:30	1	2	3	0	7	7	10
08:30 08:45	1	0	1	1	3	4	5
08:45 09:00	0	0	0	0	2	2	2
09:00 09:15	0	2	2	1	2	3	5
09:15 09:30	0	1	1	2	1	3	4
09:30 09:45	1	3	4	3	2	5	9
09:45 10:00	1	0	1	1	1	2	3
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	1	2	3	3
12:00 12:15	0	1	1	2	2	4	5
12:15 12:30	0	0	0	1	0	1	1
12:30 12:45	0	0	0	2	1	3	3
12:45 13:00	0	1	1	1	0	1	2
13:00 13:15	0	0	0	1	3	4	4
13:15 13:30	0	0	0	1	0	1	1
15:00 15:15	0	2	2	1	0	1	3
15:15 15:30	3	0	3	2	0	2	5
15:30 15:45	1	0	1	6	2	8	9
15:45 16:00	0	2	2	0	2	2	4
16:00 16:15	0	0	0	1	0	1	1
16:15 16:30	1	0	1	3	1	4	5
16:30 16:45	1	0	1	3	0	3	4
16:45 17:00	1	0	1	8	1	9	10
17:00 17:15	0	2	2	3	2	5	7
17:15 17:30	4	5	9	4	4	8	17
17:30 17:45	0	1	1	2	0	2	3
17:45 18:00	0	2	2	3	1	4	6
Total	16	26	42	56	53	109	151

Transportation Services - Traffic Services

Turning Movement Count - Study Results

ELGIN ST @ LAURIER AVE

 Survey Date:
 Wednesday, February 27, 2019
 WO No:
 38383

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume ELGIN ST LAURIER AVE

	NB Approach or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
7:00 07:15	17	25	42	64	17	81	123
7:15 07:30	23	19	42	90	10	100	142
7:30 07:45	41	45	86	129	32	161	247
7:45 08:00	67	46	113	137	49	186	299
3:00 08:15	63	51	114	148	54	202	316
3:15 08:30	67	68	135	174	90	264	399
3:30 08:45	74	81	155	184	93	277	432
3:45 09:00	92	86	178	186	80	266	444
9:00 09:15	65	61	126	140	62	202	328
9:15 09:30	49	42	91	101	60	161	252
9:30 09:45	51	25	76	80	42	122	198
9:45 10:00	37	29	66	74	39	113	179
1:30 11:45	52	35	87	91	34	125	212
1:45 12:00	54	51	105	130	43	173	278
2:00 12:15	56	68	124	136	59	195	319
2:15 12:30	61	68	129	165	58	223	352
2:30 12:45	59	45	104	139	57	196	300
2:45 13:00	61	72	133	134	59	193	326
3:00 13:15	58	52	110	118	53	171	281
3:15 13:30	54	35	89	106	58	164	253
5:00 15:15	45	29	74	62	40	102	176
5:15 15:30	57	55	112	120	39	159	271
5:30 15:45	49	40	89	105	42	147	236
5:45 16:00	51	56	107	126	59	185	292
6:00 16:15	70	57	127	177	55	232	359
6:15 16:30	61	67	128	164	61	225	353
6:30 16:45	63	95	158	179	64	243	401
6:45 17:00	52	88	140	168	72	240	380
7:00 17:15	68	101	169	202	80	282	451
7:15 17:30	59	68	127	169	80	249	376
7:30 17:45	67	49	116	178	64	242	358
7:45 18:00	57	50	107	109	57	166	273
otal	1800	1759	3559	4285	1762	6047	9606

 July 6, 2022
 Page 5 of 8
 July 6, 2022
 Page 6 of 8

Turning Movement Count - Study Results

ELGIN ST @ LAURIER AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38383 Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

				EL	GIN S	ST							LAU	JRIER	AVE					
		N	orthbo	und		Sc	outhbou	ınd			E	astbour	nd		W	estbour	nd			
Time	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	(
07:00	07:15	0	1	0		3	3	2		9	0	2	0		2	3	5		12	
07:15	07:30	0	1	0		5	3	0		9	0	1	0		1	2	3		7	
07:30	07:45	Ω	0	0		2	2	Ο		4	0	2	0		1	3	2		8	

Time Period CT ST RT NO LT ST RT ST RT ST RT ST RT ST RT TOT TOT TOT Total Total			INC	טעוווווע	unu		30	uuiibot	IIIu				asiboui	iu		VV	estboui	IU			
07:15 07:30 0 1 0 5 3 0 9 0 1 0 1 2 3 7 16 07:30 07:45 0 0 0 2 2 0 4 0 2 0 1 3 2 8 12 07:45 08:00 0 1 6 1 1 1 9 0 1 3 2 4 12 21 08:00 08:15 0 1 0 5 3 0 9 0 1 1 1 2 1 6 13 08:05 08:05 0 0 0 3 3 1 7 0 1 1 1 6 13 08:35 09:00 0 0 0 2 4 0 1 1 1 8 0 2 1 1 7	Time	Period	LT	ST	RT		LT	ST	RT		STR TOT	LT	ST	RT		LT	ST	RT	W TOT	STR	Grand Total
07:30 07:45 0 0 0 2 2 0 4 0 2 0 1 3 2 8 12 07:45 08:00 0 0 1 6 1 1 9 0 1 2 3 2 4 12 21 08:00 08:15 0 1 0 5 3 0 9 0 1 1 3 5 111 20 08:15 08:30 0	07:00	07:15	0	1	0		3	3	2		9	0	2	0		2	3	5		12	21
07:45 08:00 0 0 1 6 1 1 9 0 1 2 3 2 4 12 21 08:00 08:15 0 1 0 5 3 0 9 0 1 1 1 3 5 11 20 08:15 08:30 08:45 0 0 0 0 2 1 1 4 0 1 1 1 2 1 6 13 08:30 08:45 0 0 0 0 2 1 1 1 4 0 1 1 1 6 13 7 08:45 09:00 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 6 0 1 1 1 2 4 0 6 0 1 1 <	07:15	07:30	0	1	0		5	3	0		9	0	1	0		1	2	3		7	16
08:00 08:15 0 1 0 5 3 0 9 0 1 1 1 1 1 3 5 11 20 08:15 08:30 0 0 0 0 0 3 3 3 1 7 7 0 1 1 1 1 1 1 2 1 6 13 08:30 08:45 0 0 0 0 0 2 1 1 1 1 4 0 0 1 1 1 1 1 1 2 1 1 6 13 7 08:45 09:00 0 0 0 0 0 3 3 4 1 1 8 8 0 2 1 1 1 1 7 7 4 15 23 09:00 09:15 0 1 1 1 8 3 1 1 14 0 1 1 1 1 2 2 6 10 20 34 09:15 09:30 09:45 0 1 1 1 3 3 6 3 1 1 4 0 1 1 1 1 2 2 4 5 13 19 09:30 09:45 0 1 1 1 3 3 6 3 1 1 4 0 1 1 1 1 1 2 2 4 5 13 19 09:30 09:45 0 1 1 1 3 3 6 3 1 1 4 0 1 1 1 1 1 1 3 6 1 12 26 19:45 10:00 0 0 0 1 1 4 3 2 2 1 1 0 0 2 2 2 3 3 4 3 14 24 11:30 11:45 0 0 0 0 0 2 2 3 1 1 6 0 0 0 0 2 2 3 2 7 13 11:45 12:00 0 0 0 0 5 1 1 2 8 0 0 2 1 1 1 1 5 1 1 10 18 12:00 12:15 0 0 0 0 5 1 2 8 0 0 2 1 1 1 1 3 0 7 7 15 12:15 12:30 0 1 1 0 0 4 2 2 2 9 0 1 0 0 1 1 3 3 4 9 18 12:30 12:45 0 0 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	07:30	07:45	0	0	0		2	2	0		4	0	2	0		1	3	2		8	12
08:15 08:30 0 0 0 0 0 3 3 3 1 7 7 0 1 1 1 1 2 1 6 13 08:30 08:45 0 0 0 0 0 2 1 1 1 4 0 0 0 0 0 2 3 3 7 08:45 09:00 0 0 0 0 0 3 4 1 1 8 8 0 2 1 1 1 7 4 15 23 09:15 09:00 09:15 0 1 1 1 8 8 3 1 1 14 0 1 1 2 4 5 13 09:15 09:30 0 0 0 0 0 2 4 0 0 6 0 1 1 2 2 4 5 13 19 09:30 09:45 0 1 1 1 3 6 3 14 0 1 1 1 2 4 5 13 19 09:30 09:45 0 1 1 1 3 6 3 14 0 1 1 1 1 1 3 6 12 26 09:45 10:00 0 0 1 1 4 3 2 10 0 0 2 2 2 3 3 4 3 14 24 11:30 11:45 0 0 0 0 2 2 3 1 1 6 0 0 0 2 2 3 2 7 13 11:45 12:00 0 0 0 0 5 1 2 8 0 2 1 1 1 5 1 10 18 12:00 12:15 0 0 0 0 5 1 2 8 0 2 1 1 1 5 1 10 18 12:00 12:15 0 0 0 0 5 1 2 8 0 2 1 1 1 5 1 10 18 12:30 12:45 0 0 1 1 1 5 2 0 9 0 1 1 1 1 2 0 0 0 2 2 5 16 12:45 13:30 0 1 1 1 5 2 0 0 0 0 4 4 2 4 11 1 2 0 0 0 0 2 5 16 12:45 13:30 0 0 1 1 1 5 1 1 1 8 8 0 2 1 1 1 1 5 2 3 14 15:00 13:15 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07:45	08:00	0	0	1		6	1	1		9	0	1	2		3	2	4		12	21
08:30 08:45 0 0 0 0 0 2 1 1 1 4 0 1 1 0 0 0 0 2 3 7 7 08:45 09:00 0 0 0 0 0 0 3 4 1 1 8 8 0 2 1 1 1 1 7 4 15 23 09:00 09:15 00 1 1 1 8 8 3 1 1 14 0 1 1 1 2 6 10 20 34 19:15 09:30 09:45 0 1 1 1 3 6 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08:00	08:15	0	1	0		5	3	0		9	0	1	1		1	3	5		11	20
08:45 09:00 0 0 0 3 4 1 8 0 2 1 1 7 4 15 23 09:00 09:15 0 1 1 1 8 3 1 14 0 1 1 2 6 10 20 34 09:15 09:30 09:45 0 0 0 2 4 0 6 0 1 1 2 4 5 13 19 09:30 09:45 0 1 1 3 6 3 14 0 1 1 1 3 6 3 14 0 1 1 4 3 2 10 0 1 1 4 3 2 10 0 0 1 4 24 1 1 1 10 1 1 2 8 0 2 1 1 <	08:15	08:30	0	0	0		3	3	1		7	0	1	1		1	2	1		6	13
09:00 09:15 0 1 1 1 8 3 1 1 14 0 1 1 1 2 6 10 20 34 09:15 09:30 0 0 0 0 0 2 4 0 0 6 0 1 1 1 2 4 5 13 19 09:30 09:45 0 1 1 1 3 6 3 14 0 1 1 1 1 2 4 5 13 19 09:30 09:45 10:00 0 0 1 1 4 3 2 10 0 2 2 3 3 4 3 14 24 11:30 11:45 0 0 0 0 1 4 3 3 2 10 0 2 2 3 3 4 3 14 24 11:30 11:45 10 0 0 0 0 5 1 2 3 1 1 6 0 0 0 0 2 3 3 2 7 13 11:45 12:00 0 0 0 0 5 1 2 8 0 2 1 1 1 5 1 1 10 18 12:00 12:15 10 0 0 0 5 1 2 8 0 2 1 1 1 1 3 0 7 15 11 10 18 12:30 12:45 0 0 1 1 0 4 2 2 9 9 0 1 1 0 1 1 3 4 9 9 18 12:30 12:45 0 0 1 1 4 4 2 2 9 9 0 1 1 0 1 1 3 4 9 9 18 12:30 12:45 0 0 1 1 1 5 2 4 11 1 1 2 0 0 0 0 0 2 5 16 15 23 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08:30	08:45	0	0	0		2	1	1		4	0	1	0		0	0	2		3	7
09:15 09:30 0 0 0 0 0 2 4 0 0 6 0 1 1 1 2 4 5 13 19 09:30 09:45 0 1 1 1 3 6 3 144 0 1 1 1 1 1 3 6 12 26 09:45 10:00 0 0 1 1 4 3 2 10 0 0 2 2 3 3 4 3 14 24 11:30 11:45 0 0 0 0 0 2 3 3 1 6 0 0 0 0 2 2 3 2 7 13 11:45 12:00 0 0 0 0 5 1 2 8 0 2 1 1 1 5 1 10 18 12:00 12:15 0 0 0 0 5 1 2 8 0 2 1 1 1 5 1 10 18 12:00 12:15 0 0 0 0 5 1 2 8 0 2 1 1 1 3 0 7 15 12:15 12:30 0 1 1 0 4 2 2 9 9 0 1 0 0 1 3 4 9 18 12:30 12:45 0 0 1 1 1 4 2 4 11 1 2 0 0 0 0 2 2 5 16 12:45 13:30 0 1 1 1 1 5 5 2 0 9 9 0 1 1 0 1 0 1 3 4 9 18 12:30 12:45 0 0 1 1 1 5 5 2 0 9 9 0 1 1 1 0 0 3 3 3 8 17 13:00 13:15 0 0 0 0 4 4 4 0 0 8 0 2 1 1 0 0 3 3 3 8 17 13:00 13:15 0 0 0 0 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	08:45	09:00	0	0	0		3	4	1		8	0	2	1		1	7	4		15	23
09:30 09:45 0 1 1 3 6 3 14 0 1 1 1 3 6 12 26 09:46 10:00 0 0 1 4 3 2 10 0 2 2 3 4 3 14 24 11:30 11:45 0 0 0 0 2 3 1 6 0 0 0 2 3 14 24 11:45 12:00 0 0 0 5 1 2 8 0 2 1 1 5 1 10 18 12:00 12:15 0 0 0 5 1 2 8 0 2 1 1 1 3 0 7 15 12:15 1 1 2 8 0 2 1 1 3 4 9 18 1 1	09:00	09:15	0	1	1		8	3	1		14	0	1	1		2	6	10		20	34
09:45 10:00 0 0 1 4 3 2 10 0 2 2 3 4 3 14 24 11:30 11:45 0 0 0 2 3 1 6 0 0 0 2 3 2 7 13 11:45 12:00 0 0 0 5 1 2 8 0 2 1 1 5 1 10 18 12:200 12:15 0 0 0 5 1 2 8 0 2 1 1 1 5 1 10 18 12:15 12:30 0 1 0 4 2 2 9 0 1 0 1 4 9 18 12:35 13:00 13:15 0 0 1 1 5 2 0 9 0 1 1 <td>09:15</td> <td>09:30</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>2</td> <td>4</td> <td>0</td> <td></td> <td>6</td> <td>0</td> <td>1</td> <td>1</td> <td></td> <td>2</td> <td>4</td> <td>5</td> <td></td> <td>13</td> <td>19</td>	09:15	09:30	0	0	0		2	4	0		6	0	1	1		2	4	5		13	19
11:30 11:45 0 0 0 2 3 1 6 0 0 0 2 3 2 7 13 11:45 12:00 0 0 0 5 1 2 8 0 2 1 1 5 1 10 18 12:00 12:15 10 0 0 5 1 2 8 0 2 1 1 5 1 10 18 12:15 12:30 0 1 0 4 2 2 9 0 1 0 4 9 18 12:30 12:45 0 0 1 4 2 4 11 1 2 0 0 0 2 5 16 12:45 13:00 0 1 1 5 2 0 9 0 1 1 0 0 2 5	09:30	09:45	0	1	1		3	6	3		14	0	1	1		1	3	6		12	26
11:45 12:00 0 0 0 5 1 2 8 0 2 1 1 5 1 10 18 12:00 12:15 0 0 0 5 1 2 8 0 2 1 1 3 0 7 15 12:15 12:30 0 1 0 4 2 2 9 0 1 0 1 3 4 9 18 12:30 12:45 0 0 1 4 2 4 11 1 2 0 0 0 2 5 16 12:45 13:00 0 1 1 5 2 0 9 0 1 1 0 3 3 8 17 13:00 13:15 0 0 0 4 4 0 8 0 2 1 5 3	09:45	10:00	0	0	1		4	3	2		10	0	2	2		3	4	3		14	24
12:00 12:15 0 0 0 5 1 2 8 0 2 1 1 3 0 7 15 12:15 12:30 0 1 0 4 2 2 9 0 1 0 1 3 4 9 18 12:30 12:45 13:00 0 1 1 4 2 4 11 1 2 0 0 0 0 2 5 16 12:45 13:00 0 1 1 5 2 0 9 0 1 1 0 3 3 8 17 13:00 13:15 0 0 0 4 4 0 8 0 2 1 3 5 3 14 22 13:15 13:30 0 0 1 5 1 1 8 0 2 0	11:30	11:45	0	0	0		2	3	1		6	0	0	0		2	3	2		7	13
12:15 12:30 0 1 0 4 2 2 9 0 1 0 1 3 4 9 18 12:30 12:45 0 0 0 1 4 2 4 11 1 2 0 0 0 0 2 5 16 12:45 13:00 0 1 1 5 2 0 9 0 1 1 0 3 3 8 17 13:00 13:15 0 0 0 4 4 0 8 0 2 0 2 5 6 15 23 15:00 15:15 13:30 0 0 1 5 1 1 8 0 2 0 2 5 6 15 23 15:15 15:30 0 0 0 6 4 1 13 0 0 <td>11:45</td> <td>12:00</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>5</td> <td>1</td> <td>2</td> <td></td> <td>8</td> <td>0</td> <td>2</td> <td>1</td> <td></td> <td>1</td> <td>5</td> <td>1</td> <td></td> <td>10</td> <td>18</td>	11:45	12:00	0	0	0		5	1	2		8	0	2	1		1	5	1		10	18
12:30 12:45 0 0 0 1 4 2 4 11 1 2 0 0 0 0 2 5 16 16 12:45 13:00 0 1 1 1 5 2 0 9 0 1 1 1 0 0 3 3 3 8 17 13:00 13:15 0 0 0 0 4 4 4 0 8 0 2 1 3 3 5 3 14 22 13:15 13:30 0 0 1 1 5 1 1 8 0 2 0 2 5 6 15 23 15:00 15:15 0 0 0 0 0 6 2 0 8 0 1 0 0 3 0 3 7 15 15:00 15:15 0 0 0 0 0 6 2 0 8 0 1 0 0 3 0 0 3 7 15 15:15 15:30 0 0 2 6 4 1 1 13 0 0 0 0 4 0 2 6 19 15:30 15:45 0 0 1 1 2 2 2 1 1 6 0 0 1 0 0 0 3 4 8 14 15:45 16:00 0 0 1 1 2 2 2 1 1 6 0 0 1 1 0 0 0 3 4 8 14 15:45 16:00 0 0 1 1 3 3 3 0 7 0 0 0 0 0 1 1 2 2 9 16:00 16:15 0 0 0 0 5 3 3 0 8 0 2 0 0 0 0 1 1 2 2 9 10 16:15 16:30 0 0 0 0 5 3 3 0 8 0 2 0 0 0 0 1 1 2 2 9 10 16:15 16:30 0 0 0 0 1 1 1 2 0 10 10 10 10 1 1 1 1	12:00	12:15	0	0	0		5	1	2		8	0	2	1		1	3	0		7	15
12:45 13:00 0 1 1 5 2 0 9 0 1 1 0 3 3 3 8 17 13:00 13:15 0 0 0 0 4 4 0 8 0 2 1 3 5 3 14 22 13:15 13:30 0 0 1 5 1 1 8 0 2 0 2 5 6 15 23 15:00 15:15 0 0 0 6 2 0 8 0 1 0 3 0 3 7 15 15:15 15:30 0 0 2 6 4 1 13 0 0 0 2 6 19 15:30 15:45 0 0 1 2 2 1 6 0 1 0 2 6	12:15	12:30	0	1	0		4	2	2		9	0	1	0		1	3	4		9	18
13:00 13:15 0 0 0 4 4 0 8 0 2 1 3 5 3 14 22 13:15 13:30 0 0 1 5 1 1 8 0 2 0 2 5 6 15 23 15:00 15:15 16:30 0 0 0 6 2 0 8 0 1 0 3 0 3 7 15 15:15 15:30 0 0 2 6 4 1 13 0 0 4 0 2 6 19 15:50 15:45 0 0 1 2 2 1 6 0 1 0 2 6 19 15:45 16:00 0 0 1 3 3 0 7 0 0 0 3 4 8 14 <td>12:30</td> <td>12:45</td> <td>0</td> <td>0</td> <td>1</td> <td></td> <td>4</td> <td>2</td> <td>4</td> <td></td> <td>11</td> <td>1</td> <td>2</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>2</td> <td></td> <td>5</td> <td>16</td>	12:30	12:45	0	0	1		4	2	4		11	1	2	0		0	0	2		5	16
13:15 13:30 0 0 1 5 1 1 8 0 2 0 2 5 6 15 23 15:00 15:15 16:16 0 0 0 6 2 0 8 0 1 0 3 0 3 7 15 15:15 15:30 0 0 0 2 6 4 1 13 0 0 0 4 0 2 6 19 15:30 15:45 0 0 1 2 2 1 6 0 1 0 0 3 4 8 14 15:45 16:00 0 0 1 3 3 0 7 0 0 0 0 1 1 2 9 16:00 16:15 16:00 0 0 5 3 0 8 0 2 0 0 0 2 10 16:15 16:30 16:45 0 0	12:45	13:00	0	1	1		5	2	0		9	0	1	1		0	3	3		8	17
15:00 15:15 0 0 0 6 2 0 8 0 1 0 3 0 3 7 15 15:15 15:30 0 0 2 6 4 1 13 0 0 0 4 0 2 6 19 15:30 15:45 16:00 0 1 2 2 1 6 0 1 0 0 3 4 8 14 15:45 16:00 0 0 1 3 3 0 7 0 0 0 1 1 2 9 16:00 16:15 0 0 0 5 3 0 8 0 2 0 0 0 0 2 10 16:15 16:30 16:45 0 0 3 2 1 1 7 0 0 1 4 6 <td>13:00</td> <td>13:15</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>4</td> <td>4</td> <td>0</td> <td></td> <td>8</td> <td>0</td> <td>2</td> <td>1</td> <td></td> <td>3</td> <td>5</td> <td>3</td> <td></td> <td>14</td> <td>22</td>	13:00	13:15	0	0	0		4	4	0		8	0	2	1		3	5	3		14	22
15:15 15:30 0 0 2 6 4 1 13 0 0 0 4 0 2 6 19 15:30 15:45 0 0 1 2 2 1 6 0 1 0 0 3 4 8 14 15:45 16:00 0 0 1 3 3 0 7 0 0 0 0 1 1 2 9 16:00 16:15 0 0 0 5 3 0 8 0 2 0 0 0 0 2 10 16:15 16:30 0 0 0 5 3 2 10 0 1 1 4 6 16 16:45 0 0 3 2 1 1 7 0 0 1 1 3 10 16:45 17:00 0 0 0 4 2 0 6 0 0 0	13:15	13:30	0	0	1		5	1	1		8	0	2	0		2	5	6		15	23
15:30 15:45 0 0 1 2 2 1 6 0 1 0 0 3 4 8 14 15:45 16:00 0 0 1 3 3 0 7 0 0 0 0 1 1 2 9 16:00 16:15 0 0 0 5 3 0 8 0 2 0 0 0 0 2 10 16:15 16:30 0 0 0 5 3 2 10 0 1 0 0 0 2 10 16:15 16:30 0 0 0 5 3 2 10 0 1 0 1 4 6 16 16:45 0 0 3 2 1 1 7 0 0 1 1 3 10 16:45	15:00	15:15	0	0	0		6	2	0		8	0	1	0		3	0	3		7	15
15:45 16:00 0 0 1 3 3 0 7 0 0 0 0 1 1 2 9 16:00 16:15 0 0 0 5 3 0 8 0 2 0 0 0 0 0 2 10 16:15 16:30 0 0 0 5 3 2 10 0 1 0 0 1 4 6 16 16:30 16:45 0 0 3 2 1 1 1 7 0 0 1 1 1 3 10 16:45 17:00 0 0 0 4 2 0 6 0 0 0 0 4 3 7 13 17:45 17:45 0 0 1 1 2 4 0 0 0 0 0 0 6 17:45 18:00 0 0 0 1 3 0 4 0 0 0 0 0 0 0 6 17:45 18:00 0 0 0 0	15:15	15:30	0	0	2		6	4	1		13	0	0	0		4	0	2		6	19
16:00 16:15 0 0 0 5 3 0 8 0 2 0 0 0 0 0 2 10 16:15 16:30 0 0 0 5 3 2 10 0 1 0 0 1 4 6 16 16:33 16:45 0 0 3 2 1 1 7 0 0 1 0 1 1 3 10 16:45 17:00 0 0 0 0 4 2 0 6 0 0 0 4 3 7 13 17:00 17:15 0 0 1 1 2 0 4 0 0 0 0 2 2 6 17:15 17:30 0 0 0 1 1 2 0 4 0 0 0 0 0 0 6 17:45 17:30 0 0 0 1 3 <td>15:30</td> <td>15:45</td> <td>0</td> <td>0</td> <td>1</td> <td></td> <td>2</td> <td>2</td> <td>1</td> <td></td> <td>6</td> <td>0</td> <td>1</td> <td>0</td> <td></td> <td>0</td> <td>3</td> <td>4</td> <td></td> <td>8</td> <td>14</td>	15:30	15:45	0	0	1		2	2	1		6	0	1	0		0	3	4		8	14
16:15 16:30 0 0 0 5 3 2 10 0 1 0 0 1 4 6 16 16:30 16:45 0 0 3 2 1 1 7 0 0 1 0 1 1 1 3 10 16:45 17:00 0 0 0 0 4 2 0 6 0 0 0 0 4 3 7 13 17:00 17:15 0 0 1 1 1 2 0 4 0 0 0 0 2 2 6 17:15 17:30 0 0 0 2 4 0 0 0 0 0 2 2 6 17:15 17:45 0 0 0 1 3 0 4 0 0 0 0 0 0 0 6 17:15 17:30 17:45 0 0 0 1 3 0 4 0 0 0 0 0 0 0 6 17:45 18:00 0 0	15:45	16:00	0	0	1		3	3	0		7	0	0	0		0	1	1		2	9
16:30 16:45 0 0 3 2 1 1 7 0 0 1 0 1 1 3 10 16:45 17:00 0 0 0 0 4 2 0 6 0 0 0 0 4 3 7 13 17:00 17:15 0 0 1 1 2 0 4 0 0 0 0 2 2 6 17:15 17:30 0 0 0 2 4 0 6 0 0 0 0 0 0 6 17:30 17:45 0 0 0 0 1 3 0 4 0 0 0 0 1 5 17:45 18:00 0 0 0 0 1 0 0 0 0 0 1 0	16:00	16:15	0	0	0		5	3	0		8	0	2	0		0	0	0		2	10
16:45 17:00 0 0 0 4 2 0 6 0 0 0 0 4 3 7 13 17:00 17:15 0 0 0 1 1 2 0 4 0 0 0 0 0 2 2 6 17:15 17:30 0 0 0 0 2 4 0 0 0 0 0 0 0 0 0 17:30 17:45 0 0 0 0 1 3 0 4 0 0 0 0 0 1 5 17:45 18:00 0 0 0 1 0 1 0 0 0 1 0 1 2	16:15	16:30	0	0	0		5	3	2		10	0	1	0		0	1	4		6	16
17:00 17:15 0 0 1 1 2 0 4 0 0 0 0 0 2 2 6 17:15 17:30 0 0 0 0 2 4 0 6 0 0 0 0 0 0 0 0 17:30 17:45 0 0 0 1 3 0 4 0 0 0 0 1 0 1 5 17:45 18:00 0 0 0 0 1 0 1 0 0 0 1 0 1 2	16:30	16:45	0	0	3		2	1	1		7	0	0	1		0	1	1		3	10
17:15 17:30 0 0 0 0 2 4 0 6 0 0 0 0 0 0 0 0 6 17:30 17:45 0 0 0 1 3 0 4 0 0 0 0 1 0 1 5 17:45 18:00 0 0 0 0 1 0 0 0 1 0 1 2	16:45	17:00	0	0	0		4	2	0		6	0	0	0		0	4	3		7	13
17:30 17:45 0 0 0 1 3 0 4 0 0 0 0 1 0 1 5 17:45 18:00 0 0 0 0 1 0 0 0 1 0 1 2	17:00	17:15	0	0	1		1	2	0		4	0	0	0		0	0	2		2	6
17:45 18:00 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 2	17:15	17:30	0	0	0		2	4	0		6	0	0	0		0	0	0		0	6
	17:30	17:45	0	0	0		1	3	0		4	0	0	0		0	1	0		1	5
Total: None 0 7 15 0 117 82 29 0 250 1 33 15 0 35 78 91 0 253 503	17:45	18:00	0	0	0		0	1	0		1	0	0	0		0	1	0		1	2
	Total:	None	0	7	15	0	117	82	29	0	250	1	33	15	0	35	78	91	0	253	503

Transportation Services - Traffic Services

Turning Movement Count - Study Results

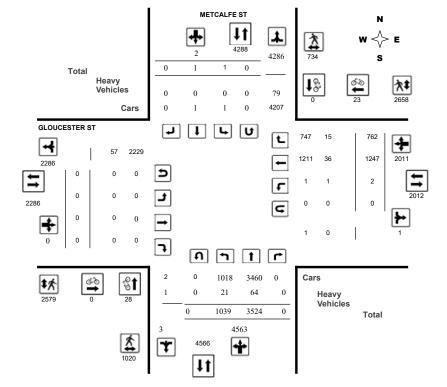
ELGIN ST @ LAURIER AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38383 Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total

		ELGIN S	ST	LAI	JRIER AVE	
Time	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	1	0	0	1
08:45	09:00	0	2	0	0	2
09:00	09:15	0	1	0	1	2
09:15	09:30	0	2	0	0	2
09:30	09:45	0	0	0	0	0
09:45	10:00	0	2	0	0	2
11:30	11:45	0	1	0	0	1
11:45	12:00	0	2	0	0	2
12:00	12:15	0	1	0	0	1
12:15	12:30	0	0	0	0	0
12:30	12:45	1	0	0	0	1
12:45	13:00	0	0	0	0	0
13:00	13:15	0	1	0	0	1
13:15	13:30	0	1	0	0	1
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	2	0	0	2
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	1	0	0	1
T	otal	1	17	0	1	19

July 6, 2022 Page 7 of 8 July 6, 2022 Page 8 of 8


Turning Movement Count - Study Results

GLOUCESTER ST @ METCALFE ST

 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36839

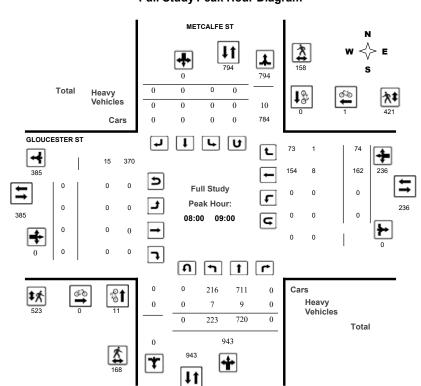
 Start Time:
 07:00
 Device:
 Miovision

Full Study Diagram

Start Time: 07:00

Transportation Services - Traffic Services

Turning Movement Count - Study Results


GLOUCESTER ST @ METCALFE ST

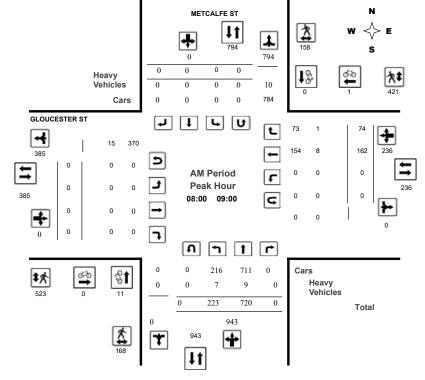
Survey Date: Tuesday, April 04, 2017

WO No: Device:

36839 Miovision

Full Study Peak Hour Diagram

 July 6, 2022
 Page 1 of 8
 July 6, 2022
 Page 2 of 8



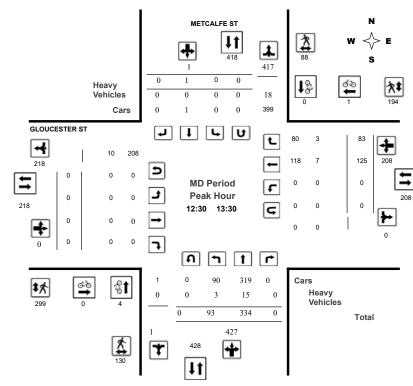
Turning Movement Count - Peak Hour Diagram

GLOUCESTER ST @ METCALFE ST

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36839

 Start Time: 07:00
 Device:
 Miovision

Comments


Transportation Services - Traffic Services

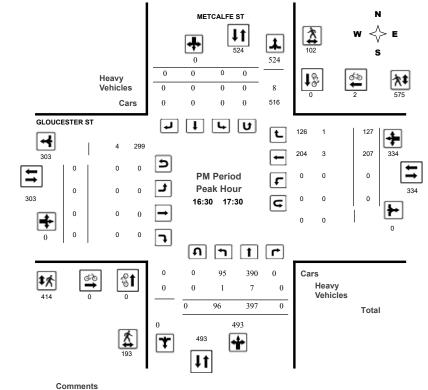
Turning Movement Count - Peak Hour Diagram

GLOUCESTER ST @ METCALFE ST

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36839

 Start Time:
 07:00
 Device:
 Miovision

Comments



Turning Movement Count - Peak Hour Diagram

GLOUCESTER ST @ METCALFE ST

 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36839

 Start Time:
 07:00
 Device:
 Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Study Results

GLOUCESTER ST @ METCALFE ST

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36839

 Start Time: 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, April 04, 2017 Total Observed U-Turns AADT Factor

Northbound: 0 Southbound: 0 .90

	Eastbound:	0	Westbound: ()
METCALFE ST			GLOUCESTER ST

				O/ (LI L									JOEO!		-				
	No	rthbou	nd		Sou	ıthbou	ınd			Ea	astbou	ınd		V	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	190	556	0	746	1	0	0	1	747	0	0	0	0	0	130	64	194	194	941
08:00 09:00	223	720	0	943	0	0	0	0	943	0	0	0	0	0	162	74	236	236	1179
09:00 10:00	161	518	0	679	0	0	0	0	679	0	0	0	0	1	166	88	255	255	934
11:30 12:30	109	326	0	435	0	0	0	0	435	0	0	0	0	0	107	79	186	186	621
12:30 13:30	93	334	0	427	0	1	0	1	428	0	0	0	0	0	125	83	208	208	636
15:00 16:00	84	303	0	387	0	0	0	0	387	0	0	0	0	1	165	114	280	280	667
16:00 17:00	91	376	0	467	0	0	0	0	467	0	0	0	0	0	190	146	336	336	803
17:00 18:00	88	391	0	479	0	0	0	0	479	0	0	0	0	0	202	114	316	316	795
Sub Total	1039	3524	0	4563	1	1	0	2	4565	0	0	0	0	2	1247	762	2011	2011	6576
U Turns	0			0	0			0	0	0			0	0			0	0	0
Total	1039	3524	0	4563	1	1	0	2	4565	0	0	0	0	2	1247	762	2011	2011	6576
EQ 12Hr	1444	4898	0	6342	1	1	0	2	6344	0	0	0	0	3	1733	1059	2795	2795	9139
Note: These v	values a	re calcul	ated by	y multiply	ing the	totals b	y the ap	propriat	e expans	ion facto	or.			1.39					
AVG 12Hr	1300	4408	0	5708	1	1	0	2	5710	0	0	0	0	3	1560	953	2516	2516	8226
Note: These v	volumes	are calc	ulated	by multip	olying th	e Equiv	alent 12	2 hr. tota	ls by the	AADT f	actor.			.90					
AVG 24Hr	1703	5774	0	7477	- 4	- 1	0	2	7479	0	0	0	0	4	2044	1248	3296	3296	10775

Note: These volumes are calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 expansion factor.

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2022-Jul-06 Page 2 of 9 July 6, 2022 Page 3 of 8

Turning Movement Count - Study Results

GLOUCESTER ST @ METCALFE ST

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36839

 Start Time: 07:00
 Device:
 Miovision

Full Study Cyclist Volume

		METCALFE ST	· un oluuy		GLOUCESTER	ST		
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total	
07:00 07:15	1	0	1	0	0	0	1	
07:15 07:30	0	0	0	0	1	1	1	
07:30 07:45	2	0	2	0	0	0	2	
07:45 08:00	0	0	0	0	0	0	0	
08:00 08:15	2	0	2	0	0	0	2	
08:15 08:30	4	0	4	0	0	0	4	
08:30 08:45	0	0	0	0	0	0	0	
08:45 09:00	5	0	5	0	1	1	6	
09:00 09:15	0	0	0	0	2	2	2	
09:15 09:30	3	0	3	0	0	0	3	
09:30 09:45	0	0	0	0	0	0	0	
09:45 10:00	1	0	1	0	0	0	1	
11:30 11:45	0	0	0	0	0	0	0	
11:45 12:00	0	0	0	0	1	1	1	
12:00 12:15	0	0	0	0	3	3	3	
12:15 12:30	0	0	0	0	2	2	2	
12:30 12:45	0	0	0	0	1	1	1	
12:45 13:00	2	0	2	0	0	0	2	
13:00 13:15	0	0	0	0	0	0	0	
13:15 13:30	2	0	2	0	0	0	2	
15:00 15:15	1	0	1	0	1	1	2	
15:15 15:30	1	0	1	0	1	1	2	
15:30 15:45	2	0	2	0	1	1	3	
15:45 16:00	1	0	1	0	2	2	3	
16:00 16:15	0	0	0	0	0	0	0	
16:15 16:30	0	0	0	0	3	3	3	
16:30 16:45	0	0	0	0	2	2	2	
16:45 17:00	0	0	0	0	0	0	0	
17:00 17:15	0	0	0	0	0	0	0	
17:15 17:30	0	0	0	0	0	0	0	
17:30 17:45	0	0	0	0	2	2	2	
17:45 18:00	1	0	1	0	0	0	1	
T	00	^		^	00			

Transportation Services - Traffic Services

Turning Movement Count - Study Results

GLOUCESTER ST @ METCALFE ST

 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36839

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

	METCALFE ST	(GLOUCESTER ST
NR Approach	CP Approach	ER Approach	MD Assessed

ime Period (E	NB Approach or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
7:00 07:15	11	14	25	45	55	100	125
7:15 07:30	18	19	37	59	57	116	153
7:30 07:45	27	12	39	86	73	159	198
7:45 08:00	32	22	54	105	93	198	252
3:00 08:15	34	29	63	96	110	206	269
3:15 08:30	43	33	76	128	95	223	299
3:30 08:45	42	53	95	142	101	243	338
3:45 09:00	49	43	92	157	115	272	364
9:00 09:15	39	27	66	91	65	156	222
9:15 09:30	25	27	52	85	75	160	212
:30 09:45	15	19	34	70	59	129	163
:45 10:00	16	16	32	46	48	94	126
:30 11:45	24	10	34	38	58	96	130
:45 12:00	29	28	57	47	50	97	154
::00 12:15	30	25	55	59	65	124	179
::15 12:30	28	19	47	66	61	127	174
::30 12:45	35	21	56	88	44	132	188
2:45 13:00	27	20	47	77	42	119	166
3:00 13:15	40	31	71	80	54	134	205
3:15 13:30	28	16	44	54	54	108	152
5:00 15:15	30	15	45	71	50	121	166
5:15 15:30	38	16	54	47	66	113	167
5:30 15:45	32	12	44	57	69	126	170
5:45 16:00	25	11	36	61	81	142	178
6:00 16:15	31	20	51	70	162	232	283
6:15 16:30	28	30	58	76	104	180	238
:30 16:45	48	26	74	114	139	253	327
:45 17:00	38	25	63	93	121	214	277
:00 17:15	56	29	85	101	168	269	354
:15 17:30	51	22	73	106	147	253	326
:30 17:45	33	26	59	77	91	168	227
7:45 18:00	18	18	36	87	86	173	209
otal	1020	734	1754	2579	2658	5237	6991

 July 6, 2022
 Page 5 of 8
 July 6, 2022
 Page 6 of 8

Northbound

Transportation Services - Traffic Services

Turning Movement Count - Study Results

GLOUCESTER ST @ METCALFE ST

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36839

 Start Time: 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

Eastbound

Westbound

METCALFE ST GLOUCESTER ST

Southbound

		000	uiiu			,				_	aotooa.				JOID OU.				
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	0	0		0	0	0		0	0	0	0		0	1	0		1	1
07:15 07:30	0	1	0		0	0	0		1	0	0	0		0	1	0		1	2
07:30 07:45	1	2	0		0	0	0		3	0	0	0		0	3	0		3	6
07:45 08:00	1	2	0		0	0	0		3	0	0	0		0	1	0		1	4
08:00 08:15	1	4	0		0	0	0		5	0	0	0		0	2	0		2	7
08:15 08:30	5	1	0		0	0	0		6	0	0	0		0	1	1		2	8
08:30 08:45	1	3	0		0	0	0		4	0	0	0		0	4	0		4	8
08:45 09:00	0	1	0		0	0	0		1	0	0	0		0	1	0		1	2
09:00 09:15	0	1	0		0	0	0		1	0	0	0		1	3	0		4	5
09:15 09:30	0	3	0		0	0	0		3	0	0	0		0	2	1		3	6
09:30 09:45	1	4	0		0	0	0		5	0	0	0		0	0	1		1	6
09:45 10:00	2	2	0		0	0	0		4	0	0	0		0	2	2		4	8
11:30 11:45	0	2	0		0	0	0		2	0	0	0		0	1	0		1	3
11:45 12:00	1	1	0		0	0	0		2	0	0	0		0	0	2		2	4
12:00 12:15	0	3	0		0	0	0		3	0	0	0		0	1	0		1	4
12:15 12:30	0	2	0		0	0	0		2	0	0	0		0	0	0		0	2
12:30 12:45	1	7	0		0	0	0		8	0	0	0		0	1	0		1	9
12:45 13:00	2	4	0		0	0	0		6	0	0	0		0	3	0		3	9
13:00 13:15	0	4	0		0	0	0		4	0	0	0		0	1	0		1	5
13:15 13:30	0	0	0		0	0	0		0	0	0	0		0	2	3		5	5
15:00 15:15	1	3	0		0	0	0		4	0	0	0		0	2	1		3	7
15:15 15:30	0	2	0		0	0	0		2	0	0	0		0	0	0		0	2
15:30 15:45	1	1	0		0	0	0		2	0	0	0		0	0	0		0	2
15:45 16:00	0	1	0		0	0	0		1	0	0	0		0	1	2		3	4
16:00 16:15	0	3	0		0	0	0		3	0	0	0		0	0	1		1	4
16:15 16:30	1	0	0		0	0	0		1	0	0	0		0	0	0		0	1
16:30 16:45	1	1	0		0	0	0		2	0	0	0		0	0	0		0	2
16:45 17:00	0	2	0		0	0	0		2	0	0	0		0	0	0		0	2
17:00 17:15	0	2	0		0	0	0		2	0	0	0		0	2	1		3	5
17:15 17:30	0	2	0		0	0	0		2	0	0	0		0	1	0		1	3
17:30 17:45	0	0	0		0	0	0		0	0	0	0		0	0	0		0	0
17:45 18:00	1	0	0		0	0	0		1	0	0	0		0	0	0		0	1
Total: None	21	64	0	0	0	0	0	0	85	0	0	0	0	1	36	15	0	52	137

Transportation Services - Traffic Services

Turning Movement Count - Study Results

GLOUCESTER ST @ METCALFE ST

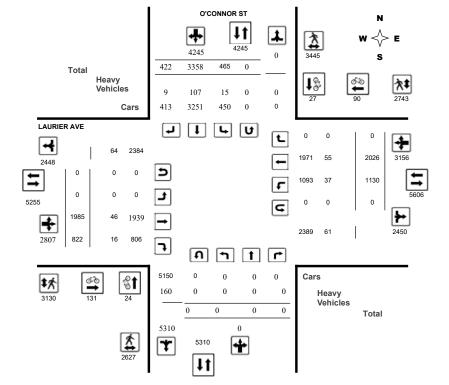
 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36839

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total METCALFE ST GLOUCESTER ST

Time Period Northbound U-Turn Total Southbound U-Turn Total Eastbound U-Turn Total Westbound U-Turn Total Total 07:00 07:15 0							
07:15 07:30 0	Time	Period					Total
07:30 07:45 0	07:00	07:15	0	0	0	0	0
07:45 08:00 0	07:15	07:30	0	0	0	0	0
08:00 08:15 0	07:30	07:45	0	0	0	0	0
08:15 08:30 0	07:45	08:00	0	0	0	0	0
08:30 08:45 0	08:00	08:15	0	0	0	0	0
08:45 09:00 0	08:15	08:30	0	0	0	0	0
09:00 09:15 0 0 0 0 0 09:15 09:30 0 0 0 0 0 0 09:30 09:45 0 0 0 0 0 0 0 09:45 10:00 0	08:30	08:45	0	0	0	0	0
09:15 09:30 0	08:45	09:00	0	0	0	0	0
09:30 09:45 0	09:00	09:15	0	0	0	0	0
09:45 10:00 0 0 0 0 0 11:30 11:45 0 0 0 0 0 0 11:45 12:00 0 0 0 0 0 0 0 12:15 12:00 12:15 0	09:15	09:30	0	0	0	0	0
11:30 11:45 0 0 0 0 0 11:45 12:00 0 0 0 0 0 12:00 12:15 0 0 0 0 0 12:15 12:30 0 0 0 0 0 12:30 12:45 0 0 0 0 0 0 12:45 13:00 0 <td< td=""><td>09:30</td><td>09:45</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	09:30	09:45	0	0	0	0	0
11:45 12:00 0 0 0 0 0 12:00 12:15 0 0 0 0 0 0 12:15 12:30 0 0 0 0 0 0 0 12:30 12:45 0	09:45	10:00	0	0	0	0	0
12:00 12:15 0 0 0 0 0 12:15 12:30 0 0 0 0 0 12:30 12:45 0 0 0 0 0 0 12:45 13:00 0 0 0 0 0 0 0 13:00 13:15 0	11:30	11:45	0	0	0	0	0
12:15 12:30 0 0 0 0 0 12:30 12:45 0 0 0 0 0 0 12:45 13:00 0 <td>11:45</td> <td>12:00</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	11:45	12:00	0	0	0	0	0
12:30 12:45 0 0 0 0 0 12:45 13:00 0 0 0 0 0 0 13:15 0	12:00	12:15	0	0	0	0	0
12:45 13:00 0 0 0 0 0 13:15 0 <	12:15	12:30	0	0	0	0	0
13:00 13:15 0 0 0 0 0 13:15 13:30 0 0 0 0 0 0 15:00 15:15 0 <td>12:30</td> <td>12:45</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	12:30	12:45	0	0	0	0	0
13:15 13:30 0 0 0 0 0 15:00 15:15 0 0 0 0 0 15:15 15:30 0 0 0 0 0 0 15:45 16:30 0	12:45	13:00	0	0	0	0	0
15:00 15:15 0 0 0 0 0 15:15 15:30 0 0 0 0 0 15:30 15:45 0 0 0 0 0 0 15:45 16:00 0	13:00	13:15	0	0	0	0	0
15:15 15:30 0 0 0 0 0 15:30 15:45 0 0 0 0 0 0 15:45 16:00 0 <td>13:15</td> <td>13:30</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	13:15	13:30	0	0	0	0	0
15:30 15:45 0 0 0 0 0 15:45 16:00 0 0 0 0 0 16:00 16:15 0 0 0 0 0 0 16:15 16:30 0	15:00	15:15	0	0	0	0	0
15:45 16:00 0 0 0 0 0 16:00 <	15:15	15:30	0	0	0	0	0
16:00 16:15 0 0 0 0 0 16:15 16:30 0 0 0 0 0 16:30 16:45 0 0 0 0 0 16:45 17:00 0 0 0 0 0 16:45 17:00 0 0 0 0 0 17:00 17:15 0 0 0 0 0 17:15 17:30 0 0 0 0 0 17:15 17:30 0 0 0 0 0 17:30 17:45 0 0 0 0 0 17:45 18:00 0 0 0 0 0	15:30	15:45	0	0	0	0	0
16:15 16:30 0 0 0 0 0 16:30 16:45 0 0 0 0 0 16:45 17:00 0 0 0 0 0 17:00 17:15 0 0 0 0 0 0 17:15 17:30 0 0 0 0 0 0 0 17:45 18:00 0 0 0 0 0 0 0	15:45	16:00	0	0	0	0	0
16:30 16:45 0 0 0 0 0 16:45 17:00 0 0 0 0 0 17:00 17:15 0 0 0 0 0 0 17:15 17:30 0	16:00	16:15	0	0	0	0	0
16:45 17:00 0 0 0 0 0 17:00 17:15 0 0 0 0 0 17:15 17:30 0 0 0 0 0 17:30 17:45 0 0 0 0 0 17:45 18:00 0 0 0 0 0	16:15	16:30	0	0	0	0	0
17:00 17:15 0 0 0 0 0 17:15 17:30 0 0 0 0 0 17:30 17:45 0 0 0 0 0 17:45 18:00 0 0 0 0 0	16:30	16:45	0	0	0	0	0
17:15 17:30 0 0 0 0 0 17:30 17:45 0 0 0 0 0 17:45 18:00 0 0 0 0 0	16:45	17:00	0	0	0	0	0
17:30 17:45 0 0 0 0 0 17:45 18:00 0 0 0 0 0	17:00	17:15	0	0	0	0	0
17:45 18:00 0 0 0 0 0	17:15	17:30	0	0	0	0	0
	17:30	17:45	0	0	0	0	0
Total 0 0 0 0 0	17:45	18:00	0	0	0	0	0
	Т	otal	0	0	0	0	0

 July 6, 2022
 Page 7 of 8
 July 6, 2022
 Page 8 of 8



Turning Movement Count - Study Results

LAURIER AVE @ O'CONNOR ST

Survey Date: Tuesday, March 21, 2017 36788 WO No: Start Time: 07:00 Device: Miovision

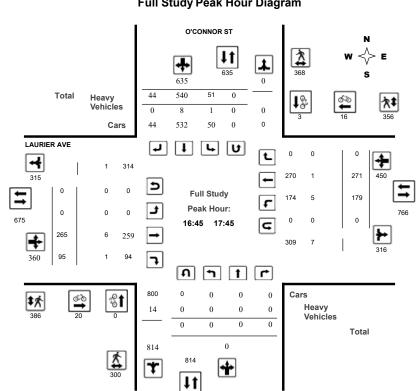
Full Study Diagram

Start Time: 07:00

Transportation Services - Traffic Services

Turning Movement Count - Study Results

LAURIER AVE @ O'CONNOR ST


Survey Date: Tuesday, March 21, 2017 WO No:

Full Study Peak Hour Diagram

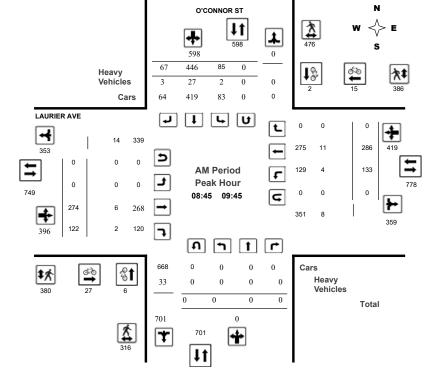
Device:

36788

Miovision

July 6, 2022 July 6, 2022 Page 1 of 8 Page 2 of 8

Comments


Transportation Services - Traffic Services

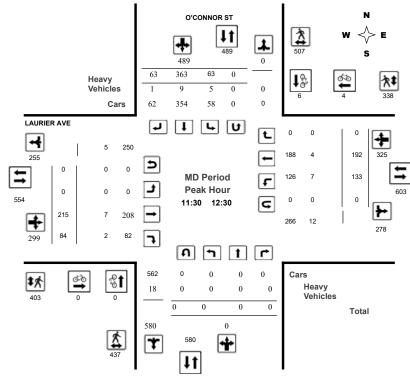
Turning Movement Count - Peak Hour Diagram

LAURIER AVE @ O'CONNOR ST

 Survey Date: Tuesday, March 21, 2017
 WO No:
 36788

 Start Time: 07:00
 Device:
 Miovision

Ottawa

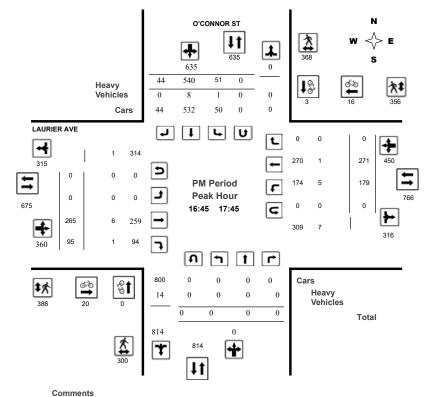

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

LAURIER AVE @ O'CONNOR ST

 Survey Date: Tuesday, March 21, 2017
 WO No:
 36788

 Start Time:
 07:00
 Device:
 Miovision


Comments

Turning Movement Count - Peak Hour Diagram

LAURIER AVE @ O'CONNOR ST

Survey Date: Tuesday, March 21, 2017 WO No: 36788
Start Time: 07:00 Device: Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Study Results

LAURIER AVE @ O'CONNOR ST

 Survey Date: Tuesday, March 21, 2017
 WO No:
 36788

 Start Time: 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, March 21, 2017 Total Observed U-Turns

Eastbound: 0 Westbound: 0

			O'C	ONNO	R ST				0			LAI	JRIER	AVE					
	Nor	thbou	nd		So	uthbou	ınd			Е	astbo	und		V	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	0	0	0	0	48	338	45	431	431	0	239	117	356	103	302	0	405	761	119
08:00 09:00	0	0	0	0	55	380	68	503	503	0	272	126	398	124	294	0	418	816	131
09:00 10:00	0	0	0	0	86	456	76	618	618	0	257	121	378	137	274	0	411	789	140
11:30 12:30	0	0	0	0	63	363	63	489	489	0	215	84	299	133	192	0	325	624	111
12:30 13:30	0	0	0	0	50	320	48	418	418	0	228	87	315	119	180	0	299	614	103
15:00 16:00	0	0	0	0	65	473	38	576	576	0	265	106	371	154	273	0	427	798	137
16:00 17:00	0	0	0	0	43	506	43	592	592	0	252	97	349	183	238	0	421	770	136
17:00 18:00	0	0	0	0	55	522	41	618	618	0	257	84	341	177	273	0	450	791	140
Sub Total	0	0	0	0	465	3358	422	4245	4245	0	1985	822	2807	1130	2026	0	3156	5963	1020
U Turns	0			0	0			0	0	0			0	0			0	0	(
Total	0	0	0	0	465	3358	422	4245	4245	0	1985	822	2807	1130	2026	0	3156	5963	1020
EQ 12Hr	0	0	0	0	646	4668	587	5901	5901	0	2759	1143	3902	1571	2816	0	4387	8289	1419
Note: These v	alues ar	e calcul	lated by	y multipl	ying the	totals b	y the a	ppropriat	e expans	ion fac	tor.			1.39					
AVG 12Hr	0	0	0	0	646	4668	587	5901	5901	0	2759	1143	3902	1571	2816	0	4387	8289	1419
Note: These v	olumes	are calc	ulated	by multi	plying t	he Equiv	alent 1	2 hr. tota	als by the	AADT	factor.			1.00					
AVG 24Hr	0	0	0	0	846	6115	769	7730	7730	0	3614	1497	5111	2058	3689	0	5747	10858	1858
Note: These v	olumes	are calc	ulated	hv multi	nlvina t	he Avera	ne Dai	lv 12 hr	totals by	12 to 2	4 exnar	sion fac	tor	1.31					

Note: U-Turn's provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2022-Jul-06 Page 2 of 9 July 6, 2022 Page 3 of 8

Turning Movement Count - Study Results

LAURIER AVE @ O'CONNOR ST

 Survey Date: Tuesday, March 21, 2017
 WO No:
 36788

 Start Time: 07:00
 Device:
 Miovision

O'CONNOR ST

Full Study Cyclist Volume

LAURIER AVE

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	1	1	2	2
07:15 07:30	1	0	1	2	6	8	9
07:30 07:45	1	0	1	3	1	4	5
07:45 08:00	1	1	2	4	1	5	7
08:00 08:15	1	0	1	4	8	12	13
08:15 08:30	2	0	2	9	10	19	21
08:30 08:45	7	2	9	10	6	16	25
08:45 09:00	0	1	1	16	9	25	26
09:00 09:15	3	1	4	3	1	4	8
09:15 09:30	2	0	2	4	4	8	10
09:30 09:45	1	0	1	4	1	5	6
9:45 10:00	0	1	1	2	5	7	8
11:30 11:45	0	2	2	0	0	0	2
11:45 12:00	0	2	2	0	0	0	2
12:00 12:15	0	2	2	0	1	1	3
2:15 12:30	0	0	0	0	3	3	3
12:30 12:45	1	0	1	4	2	6	7
12:45 13:00	0	0	0	2	0	2	2
3:00 13:15	0	1	1	2	1	3	4
3:15 13:30	0	0	0	2	0	2	2
5:00 15:15	0	1	1	5	0	5	6
5:15 15:30	0	2	2	7	1	8	10
15:30 15:45	0	1	1	4	4	8	9
15:45 16:00	0	1	1	0	4	4	5
6:00 16:15	4	2	6	6	0	6	12
16:15 16:30	0	1	1	5	1	6	7
16:30 16:45	0	2	2	7	0	7	9
16:45 17:00	0	1	1	4	0	4	5
7:00 17:15	0	0	0	7	4	11	11
17:15 17:30	0	0	0	5	3	8	8
7:30 17:45	0	2	2	4	9	13	15
17:45 18:00	0	1	1	5	4	9	10
Total	24	27	51	131	90	221	272

Transportation Services - Traffic Services

Turning Movement Count - Study Results

LAURIER AVE @ O'CONNOR ST

 Survey Date:
 Tuesday, March 21, 2017
 WO No:
 36788

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume O'CONNOR ST LAURIER AVE

Time Period (NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	30	41	71	45	28	73	144
07:15 07:30	58	59	117	59	51	110	227
07:30 07:45	45	64	109	66	62	128	237
07:45 08:00	66	88	154	91	105	196	350
08:00 08:15	84	124	208	119	105	224	432
08:15 08:30	67	131	198	120	132	252	450
08:30 08:45	133	148	281	144	138	282	563
08:45 09:00	120	170	290	113	144	257	547
09:00 09:15	88	110	198	102	108	210	408
09:15 09:30	75	100	175	90	89	179	354
09:30 09:45	33	96	129	75	45	120	249
09:45 10:00	65	63	128	77	58	135	263
11:30 11:45	71	83	154	80	57	137	291
11:45 12:00	116	121	237	101	78	179	416
12:00 12:15	134	156	290	126	116	242	532
12:15 12:30	116	147	263	96	87	183	446
12:30 12:45	121	169	290	124	106	230	520
12:45 13:00	128	148	276	115	122	237	513
13:00 13:15	124	124	248	103	89	192	440
13:15 13:30	93	101	194	88	94	182	376
15:00 15:15	64	97	161	96	69	165	326
15:15 15:30	53	88	141	73	45	118	259
15:30 15:45	64	89	153	77	63	140	293
15:45 16:00	59	121	180	110	77	187	367
16:00 16:15	93	132	225	140	90	230	455
16:15 16:30	75	112	187	112	82	194	381
16:30 16:45	91	131	222	118	94	212	434
16:45 17:00	87	105	192	104	80	184	376
17:00 17:15	84	97	181	113	108	221	402
17:15 17:30	67	86	153	85	95	180	333
17:30 17:45	62	80	142	84	73	157	299
17:45 18:00	61	64	125	84	53	137	262
Total	2627	3445	6072	3130	2743	5873	11945

 July 6, 2022
 Page 5 of 8
 July 6, 2022
 Page 6 of 8

Turning Movement Count - Study Results

LAURIER AVE @ O'CONNOR ST

 Survey Date: Tuesday, March 21, 2017
 WO No:
 36788

 Start Time: 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

O'CONNOR ST LAURIER AVE

	N	orthbo	und		Sc	outhbou	ınd			Е	astboui	nd		W	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	0	0		0	8	0		8	0	1	1		1	0	0		3	11
07:15 07:30	0	0	0		2	5	0		7	0	3	0		2	3	0		8	15
07:30 07:45	0	0	0		0	3	0		3	0	0	0		1	2	0		3	6
07:45 08:00	0	0	0		1	5	0		6	0	1	1		0	1	0		3	9
08:00 08:15	0	0	0		0	6	0		6	0	2	0		1	3	0		6	12
08:15 08:30	0	0	0		1	6	0		7	0	1	0		1	3	0		5	12
08:30 08:45	0	0	0		0	4	1		5	0	1	2		2	1	0		6	11
08:45 09:00	0	0	0		0	5	1		6	0	2	1		0	4	0		7	13
09:00 09:15	0	0	0		1	7	0		8	0	3	0		0	3	0		6	14
09:15 09:30	0	0	0		0	8	1		9	0	1	1		1	3	0		6	15
09:30 09:45	0	0	0		1	7	1		9	0	0	0		3	1	0		4	13
09:45 10:00	0	0	0		0	3	1		4	0	2	0		1	3	0		6	10
11:30 11:45	0	0	0		2	4	1		7	0	0	1		2	2	0		5	12
11:45 12:00	0	0	0		0	1	0		1	0	3	1		2	2	0		8	9
12:00 12:15	0	0	0		1	2	0		3	0	1	0		0	0	0		1	4
12:15 12:30	0	0	0		2	2	0		4	0	3	0		3	0	0		6	10
12:30 12:45	0	0	0		0	2	0		2	0	2	0		1	2	0		5	7
12:45 13:00	0	0	0		2	5	0		7	0	1	0		1	3	0		5	12
13:00 13:15	0	0	0		0	3	1		4	0	4	2		3	2	0		11	15
13:15 13:30	0	0	0		0	1	1		2	0	3	1		3	3	0		10	12
15:00 15:15	0	0	0		0	1	1		2	0	0	0		1	2	0		3	5
15:15 15:30	0	0	0		1	1	0		2	0	1	2		0	2	0		5	7
15:30 15:45	0	0	0		0	1	0		1	0	0	0		0	2	0		2	3
15:45 16:00	0	0	0		0	3	0		3	0	1	0		2	4	0		7	10
16:00 16:15	0	0	0		0	0	0		0	0	2	1		0	0	0		3	3
16:15 16:30	0	0	0		0	4	0		4	0	2	0		0	1	0		3	7
16:30 16:45	0	0	0		0	0	0		0	0	0	1		1	2	0		4	4
16:45 17:00	0	0	0		0	3	0		3	0	0	0		1	1	0		2	5
17:00 17:15	0	0	0		0	2	0		2	0	1	1		2	0	0		4	6
17:15 17:30	0	0	0		1	2	0		3	0	1	0		1	0	0		2	5
17:30 17:45	0	0	0		0	1	0		1	0	4	0		1	0	0		5	6
17:45 18:00	0	0	0		0	2	0		2	0	0	0		0	0	0		0	2
Total: None	0	0	0	0	15	107	9	0	131	0	46	16	0	37	55	0	0	154	285

Transportation Services - Traffic Services

Turning Movement Count - Study Results

LAURIER AVE @ O'CONNOR ST

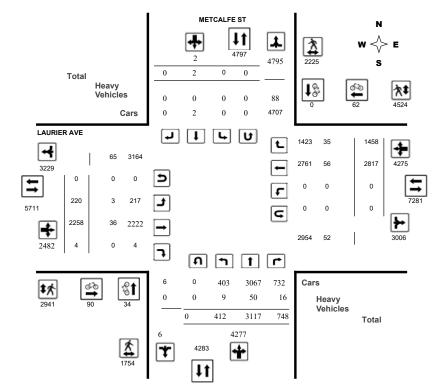
 Survey Date:
 Tuesday, March 21, 2017
 WO No:
 36788

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total O'CONNOR ST LAURIER AVE

Time	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
T	otal	0	0	0	0	0

 July 6, 2022
 Page 7 of 8
 July 6, 2022
 Page 8 of 8


Turning Movement Count - Study Results

METCALFE ST @ LAURIER AVE

 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36840

 Start Time:
 07:00
 Device:
 Miovision

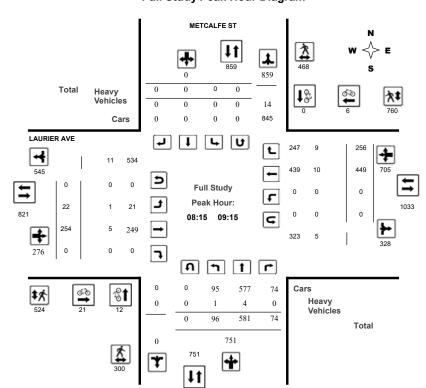
Full Study Diagram

Start Time: 07:00

Transportation Services - Traffic Services

Turning Movement Count - Study Results

METCALFE ST @ LAURIER AVE

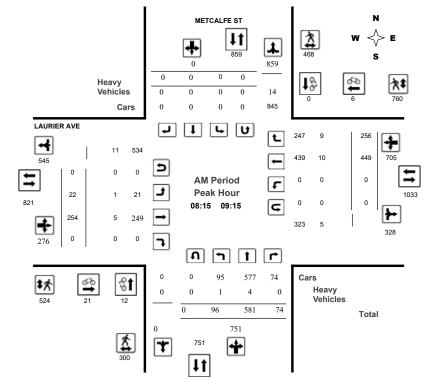

Survey Date: Tuesday, April 04, 2017 WO No:

Full Study Peak Hour Diagram

Device:

36840

Miovision



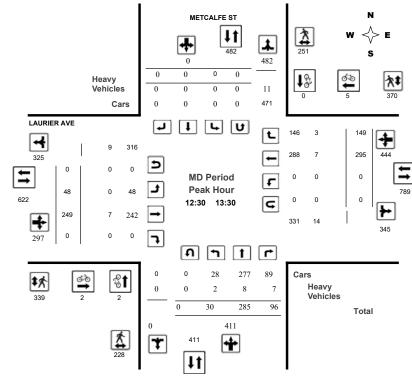
Turning Movement Count - Peak Hour Diagram

METCALFE ST @ LAURIER AVE

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36840

 Start Time: 07:00
 Device:
 Miovision

Comments


Transportation Services - Traffic Services

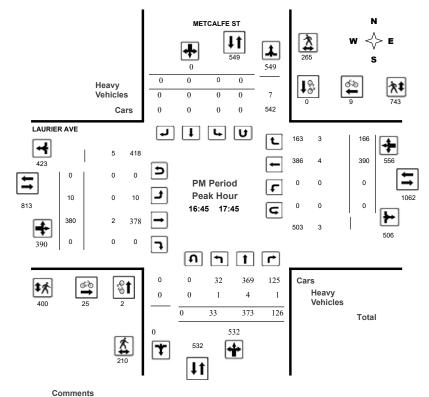
Turning Movement Count - Peak Hour Diagram

METCALFE ST @ LAURIER AVE

 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36840

 Start Time:
 07:00
 Device:
 Miovision

Comments



Turning Movement Count - Peak Hour Diagram

METCALFE ST @ LAURIER AVE

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36840

 Start Time: 07:00
 Device:
 Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Study Results

METCALFE ST @ LAURIER AVE

 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36840

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, April 04, 2017 Total Observed U-Turns AADT Factor

Northbound: 0 Southbound: 0 .90

								Eastboun	nd: ()		West	bound:	0						
			MET	CALFE	ST							LAI	JRIER	AVE					
	No	rthbou	ınd		So	uthbou	nd			Е	astbou	ınd		٧	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	80	485	56	621	0	0	0	0	621	8	235	4	247	0	392	204	596	843	1464
08:00 09:00	99	597	72	768	0	0	0	0	768	9	271	0	280	0	443	239	682	962	1730
09:00 10:00	81	416	98	595	0	1	0	1	596	40	249	0	289	0	350	249	599	888	1484
11:30 12:30	26	294	95	415	0	1	0	1	416	67	221	0	288	0	262	164	426	714	1130
12:30 13:30	30	285	96	411	0	0	0	0	411	48	249	0	297	0	295	149	444	741	1152
15:00 16:00	29	313	91	433	0	0	0	0	433	23	318	0	341	0	328	134	462	803	1236
16:00 17:00	37	381	116	534	0	0	0	0	534	5	346	0	351	0	357	162	519	870	1404
17:00 18:00	30	346	124	500	0	0	0	0	500	20	369	0	389	0	390	157	547	936	1436
Sub Total	412	3117	748	4277	0	2	0	2	4279	220	2258	4	2482	0	2817	1458	4275	6757	11036
U Turns	0			0	0			0	0	0			0	0			0	0	0
Total	412	3117	748	4277	0	2	0	2	4279	220	2258	4	2482	0	2817	1458	4275	6757	11036
EQ 12Hr	573	4333	1040	5946	0	3	0	3	5949	306	3139	6	3451	0	3916	2027	5943	9394	15343
Note: These	values a	re calcu	ılated b	y multiply	ing the	totals b	y the a	ppropriate	e expans	ion fac	tor.			1.39					
AVG 12Hr	516	3900	936	5352	0	3	0	3	5355	275	2825	5	3105	0	3524	1824	5348	8453	13808
Note: These	volumes	are cal	culated	by multip	olying th	e Equiv	alent 1	2 hr. total	ls by the	AADT	factor.			.90					
AVG 24Hr	676	5109	1226	7011	0	4	0	4	7015	360	3701	7	4068	0	4616	2389	7005	11073	18088
Note: These	volumes	are cal	culated	by multip	olying th	ne Avera	ge Dai	ly 12 hr. t	totals by	12 to 2	4 expan	sion fac	tor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2022-Jul-06 Page 3 of 9 July 6, 2022 Page 3 of 8

Turning Movement Count - Study Results

METCALFE ST @ LAURIER AVE

 Survey Date: Tuesday, April 04, 2017
 WO No:
 36840

 Start Time: 07:00
 Device:
 Miovision

Full Study Cyclist Volume

		METCALFE ST	· un olday	-	LAURIER AV	E	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	3	2	5	5
07:15 07:30	0	0	0	1	7	8	8
07:30 07:45	1	0	1	0	2	2	3
07:45 08:00	3	0	3	1	6	7	10
08:00 08:15	2	0	2	6	0	6	8
08:15 08:30	4	0	4	0	2	2	6
08:30 08:45	3	0	3	7	1	8	11
08:45 09:00	4	0	4	12	1	13	17
09:00 09:15	1	0	1	2	2	4	5
09:15 09:30	3	0	3	0	6	6	9
09:30 09:45	1	0	1	1	3	4	5
09:45 10:00	1	0	1	2	1	3	4
11:30 11:45	0	0	0	1	0	1	1
11:45 12:00	0	0	0	1	2	3	3
12:00 12:15	1	0	1	1	2	3	4
12:15 12:30	0	0	0	1	0	1	1
12:30 12:45	1	0	1	0	1	1	2
12:45 13:00	1	0	1	1	1	2	3
13:00 13:15	0	0	0	0	3	3	3
13:15 13:30	0	0	0	1	0	1	1
15:00 15:15	1	0	1	2	0	2	3
15:15 15:30	1	0	1	1	0	1	2
15:30 15:45	1	0	1	2	0	2	3
15:45 16:00	1	0	1	1	2	3	4
16:00 16:15	0	0	0	4	3	7	7
16:15 16:30	0	0	0	5	2	7	7
16:30 16:45	1	0	1	6	4	10	11
16:45 17:00	0	0	0	6	7	13	13
17:00 17:15	0	0	0	7	0	7	7
17:15 17:30	0	0	0	6	2	8	8
17:30 17:45	2	0	2	6	0	6	8
17:45 18:00	1	0	1	3	0	3	4
Total	34	0	34	90	62	152	186

Transportation Services - Traffic Services

Turning Movement Count - Study Results

METCALFE ST @ LAURIER AVE

 Survey Date:
 Tuesday, April 04, 2017
 WO No:
 36840

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume METCALFE ST LAURIER AVE

Time Period (NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	20	44	64	54	114	168	232
07:15 07:30	30	55	85	76	116	192	277
07:30 07:45	30	59	89	98	163	261	350
07:45 08:00	59	94	153	101	206	307	460
08:00 08:15	64	90	154	104	192	296	450
08:15 08:30	74	108	182	132	181	313	495
08:30 08:45	69	143	212	151	222	373	585
08:45 09:00	97	124	221	157	205	362	583
09:00 09:15	60	93	153	84	152	236	389
09:15 09:30	54	57	111	92	110	202	313
09:30 09:45	44	67	111	63	103	166	277
09:45 10:00	48	60	108	64	83	147	255
11:30 11:45	49	38	87	63	76	139	226
11:45 12:00	49	67	116	89	82	171	287
12:00 12:15	67	78	145	83	97	180	325
12:15 12:30	68	78	146	94	105	199	345
12:30 12:45	65	60	125	84	85	169	294
12:45 13:00	73	90	163	94	111	205	368
13:00 13:15	58	49	107	91	100	191	298
13:15 13:30	32	52	84	70	74	144	228
15:00 15:15	52	59	111	87	123	210	321
15:15 15:30	44	54	98	66	102	168	266
15:30 15:45	49	44	93	72	123	195	288
15:45 16:00	44	46	90	62	118	180	270
16:00 16:15	65	68	133	99	261	360	493
6:15 16:30	64	54	118	94	153	247	365
16:30 16:45	80	76	156	125	209	334	490
6:45 17:00	59	74	133	118	190	308	441
17:00 17:15	61	84	145	98	219	317	462
7:15 17:30	49	55	104	96	195	291	395
7:30 17:45	41	52	93	88	139	227	320
7:45 18:00	36	53	89	92	115	207	296
Total	1754	2225	3979	2941	4524	7465	11444

 July 6, 2022
 Page 5 of 8
 July 6, 2022
 Page 6 of 8

Turning Movement Count - Study Results

METCALFE ST @ LAURIER AVE

Survey Date: Tuesday, April 04, 2017 WO No: 36840 Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

METCALFE ST LAURIER AVE

	1	Northbo	und		Sc	outhbou	ınd			Е	astboui	nd		W	estbour	nd			
Time Period	d LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR	Grand Total
07:00 07:1	5 0	0	0		0	0	0		0	0	1	0		0	3	1		5	5
07:15 07:3	0 0	1	0		0	0	0		1	0	1	0		0	4	0		5	6
07:30 07:4	5 0	2	0		0	0	0		2	0	0	0		0	3	1		4	6
07:45 08:0	0 1	1	0		0	0	0		2	0	2	0		0	4	1		7	9
08:00 08:1	5 0	3	0		0	0	0		3	0	1	0		0	1	0		2	5
08:15 08:3	0 0	2	0		0	0	0		2	0	2	0		0	0	3		5	7
08:30 08:4	5 0	1	0		0	0	0		1	1	1	0		0	3	2		7	8
08:45 09:0	0 1	0	0		0	0	0		1	0	2	0		0	4	1		7	8
09:00 09:1	5 0	1	0		0	0	0		1	0	0	0		0	3	3		6	7
09:15 09:3	0 0	3	2		0	0	0		5	1	0	0		0	2	0		3	8
09:30 09:4	5 0	5	0		0	0	0		5	0	6	0		0	1	3		10	15
09:45 10:0	0 0	5	1		0	0	0		6	0	0	0		0	3	3		6	12
11:30 11:4	5 0	1	0		0	0	0		1	0	1	0		0	2	3		6	7
11:45 12:0	0 1	1	1		0	0	0		3	0	1	0		0	1	1		3	6
12:00 12:1	5 0	2	2		0	0	0		4	0	1	0		0	0	1		2	6
12:15 12:3	0 0	3	0		0	0	0		3	0	0	0		0	1	0		1	4
12:30 12:4	5 0	5	2		0	0	0		7	0	1	0		0	1	0		2	9
12:45 13:0	0 1	1	2		0	0	0		4	0	3	0		0	1	0		4	8
13:00 13:1	5 1	1	1		0	0	0		3	0	1	0		0	1	1		3	6
13:15 13:3	0 0	1	2		0	0	0		3	0	2	0		0	4	2		8	11
15:00 15:1	5 0	3	0		0	0	0		3	0	2	0		0	0	0		2	5
15:15 15:3	0 1	0	0		0	0	0		1	0	0	0		0	3	1		4	5
15:30 15:4	5 1	0	1		0	0	0		2	0	2	0		0	2	2		6	8
15:45 16:0	0 1	0	0		0	0	0		1	0	0	0		0	3	0		3	4
16:00 16:1	5 0	3	1		0	0	0		4	0	1	0		0	0	1		2	6
16:15 16:3	0 0	0	0		0	0	0		0	0	1	0		0	0	1		2	2
16:30 16:4	5 0	1	0		0	0	0		1	0	2	0		0	0	1		3	4
16:45 17:0	0 0	2	0		0	0	0		2	0	0	0		0	0	0		0	2
17:00 17:1	5 0	2	0		0	0	0		2	0	1	0		0	1	0		2	4
17:15 17:3	0 1	0	1		0	0	0		2	0	0	0		0	1	1		2	4
17:30 17:4	5 0	0	0		0	0	0		0	0	1	0		0	2	2		5	5
17:45 18:0	0 0	0	0		0	0	0		0	1	0	0		0	2	0		3	3
Total: Non	e 9	50	16	0	0	0	0	0	75	3	36	0	0	0	56	35	0	130	205

Transportation Services - Traffic Services

Turning Movement Count - Study Results

METCALFE ST @ LAURIER AVE

Survey Date: Tuesday, April 04, 2017 WO No: 36840 Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total METCALFE ST LAURIER AVE

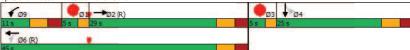
Time	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
T	otal	0	0	0	0	0

July 6, 2022 Page 7 of 8 July 6, 2022 Page 8 of 8

Appendix C

Synchro Intersection Worksheets – Existing Conditions

	•	→	*	1	•	*	1	1	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ĵ.		7	↑						414	
Traffic Volume (vph)	0	210	122	133	332	0	0	0	0	85	446	6
Future Volume (vph)	0	210	122	133	332	0	0	0	0	85	446	6
Satd. Flow (prot)	0	1425	0	1642	1712	0	0	0	0	0	4173	(
Flt Permitted				0.350							0.993	
Satd. Flow (perm)	0	1425	0	605	1712	0	0	0	0	0	3782	(
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	369	0	148	369	0	0	0	0	0	664	
Turn Type	-	NA	-	pm+pt	NA	-		-	-	Perm	NA	
Protected Phases		2		9	6						4	
Permitted Phases		_		6	•					4	•	
Detector Phase		2		9	6					4	4	
Switch Phase		_		0	U					-		
Minimum Initial (s)		10.0		5.0	10.0					10.0	10.0	
Minimum Split (s)		23.9		10.8	21.9					22.5	22.5	
Total Split (s)		29.0		11.0	45.0					25.0	25.0	
Total Split (%)		38.7%		14.7%	60.0%					33.3%	33.3%	
Yellow Time (s)		3.3		3.3	3.3					3.3	3.3	
All-Red Time (s)		2.6		2.5	2.6					2.6	2.6	
		0.0		0.0	0.0					2.0	0.0	
Lost Time Adjust (s) Total Lost Time (s)		5.9		5.8	5.9						5.9	
		5.9		Lead	5.9					1		
Lead/Lag				Yes						Lag	Lag	
Lead-Lag Optimize? Recall Mode		C-Max		Max	C-Max					Yes Max	Yes Max	
										IVIAX		
Act Effct Green (s)		28.1		39.2	39.1						24.1	
Actuated g/C Ratio		0.37		0.52	0.52						0.32	
v/c Ratio		0.69		0.38	0.41						0.55	
Control Delay		28.0		7.6	6.9						23.0	
Queue Delay		0.0		0.0	0.0						0.0	
Total Delay		28.0		7.6	6.9						23.0	
LOS		С		Α	Α						С	
Approach Delay		28.0			7.1						23.0	
Approach LOS		С			Α						С	
Queue Length 50th (m)		43.0		5.8	14.8						27.9	
Queue Length 95th (m)		72.7		m9.9	21.6						38.8	
Internal Link Dist (m)		71.8			158.7			39.2			62.3	
Turn Bay Length (m)												
Base Capacity (vph)		533		388	892						1215	
Starvation Cap Reductn		0		0	0						0	
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.69		0.38	0.41						0.55	
Intersection Summary	<u> </u>				<u> </u>		<u> </u>			<u> </u>	<u> </u>	
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 63 (84%), Reference	d to phase	2:EBT an	d 6:WBT	L, Start of	of Green							
Natural Cycle: 70												
Control Type: Actuated-Coo	rdinated											


Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		_
y		

Existing AM Peak Hour

Maximum v/c Ratio: 0.69 Intersection Signal Delay: 18.9 Intersection LOS: B Intersection Capacity Utilization 60.9% ICU Level of Service B Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier

Existing AM Peak Hour

	•	→	*	1	—	*	1	†	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ર્લ			† p			41472				
Traffic Volume (vph)	22	283	0	0	389	256	96	624	74	0	0	(
Future Volume (vph)	22	283	0	0	389	256	96	624	74	0	0	(
Satd. Flow (prot)	0	1734	0	0	2510	0	0	4316	0	0	0	(
Flt Permitted		0.929						0.994				
Satd. Flow (perm)	0	1604	0	0	2510	0	0	4102	0	0	0	(
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	338	0	0	716	0	0	882	0	0	0	(
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2				_		4					
Detector Phase	2	2			6		4	4				
Switch Phase					-							
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (%)	49.3%	49.3%			49.3%		44.0%	44.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)	2.7	0.0			0.0		2.2	0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag			0.0				
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)	O-IVIGA	36.3			36.3		IVICA	27.5				
Actuated g/C Ratio		0.48			0.48			0.37				
v/c Ratio		0.44			0.59			0.59				
Control Delay		20.1			16.5			15.7				
Queue Delay		0.0			0.0			0.4				
Total Delay		20.1			16.5			16.1				
LOS		20.1 C			10.3 B			В				
Approach Delay		20.1			16.5			16.1				
Approach LOS		20.1 C			10.5 B			В				
Queue Length 50th (m)		36.1			36.4			37.6				
Queue Length 95th (m)		m61.4			52.7			49.9				
Internal Link Dist (m)		158.7			172.2			51.7			65.1	
(/		130.7			112.2			31.7			00.1	
Turn Bay Length (m)		776			1214			1504				
Base Capacity (vph)		0			1214			225				
Starvation Cap Reductn		0			0			225				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		-			-			-				
Reduced v/c Ratio		0.44			0.59			0.69				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 48 (64%), Reference	ed to phase	2:EBTL a	ind 6:WB	T, Start o	f Green							
Natural Cycle: 75												
Control Type: Actuated-Coo	ordinated											

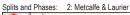
Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 Existing

Page 4

Lanes, Volumes, Timings 2: Metcalfe & Laurier

Existing AM Peak Hour

Lane Group	Ø1	Ø5
Lane Configurations	Ю 1	100
Traffic Volume (vph) Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
	لممما	اممط
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		_


Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 Existing

Synchro 11 Report Page 5

Lanes, Volumes, Timings 2: Metcalfe & Laurier

Existing AM Peak Hour

Maximum v/c Ratio: 0.59 Intersection Signal Delay: 17.0 Intersection LOS: B Intersection Capacity Utilization 64.0% ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

	•	-	*	1	—	*	1	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		† 1>		ሻ	A	7		44	7	ሻሻ	† 1>	
Traffic Volume (vph)	0	280	57	209	495	538	0	203	59	361	358	17
Future Volume (vph)	0	280	57	209	495	538	0	203	59	361	358	17
Satd. Flow (prot)	0	3041	0	1658	1745	1483	0	3316	1483	3154	2408	
Flt Permitted	-		-	0.503			-			0.950		
Satd. Flow (perm)	0	3041	0	739	1745	920	0	3316	680	1900	2408	
Satd. Flow (RTOR)	-		-			238	-		149		99	
Lane Group Flow (vph)	0	374	0	232	550	598	0	226	66	401	587	
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	5.6	3		4	9	3	8	
Permitted Phases		_		6	0.0	6		-	4	U	U	
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase		_		0	0.0	0		-	J	U	U	
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		15.0		20.8		28.2	15.0	20.8	49.0	
Total Split (%)		31.0%		15.0%		20.8%		28.2%	15.0%	20.8%	49.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
All-Red Time (s)												
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
Lead/Lag				Lead		Lead		Lag	Lead	Lead		
Lead-Lag Optimize?		0.14		Yes		Yes		Yes	Yes	Yes		
Recall Mode		C-Max		Max	40.0	None		Max	Max	None	Max	
Act Effct Green (s)		29.0		37.0	49.0	41.4		22.0	29.2	13.1	42.8	
Actuated g/C Ratio		0.29		0.37	0.49	0.41		0.22	0.29	0.13	0.43	
v/c Ratio		0.42		0.67	0.64	1.01		0.31	0.18	0.97	0.54	
Control Delay		30.6		31.4	23.3	57.3		34.0	1.1	82.1	19.6	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		30.6		31.4	23.3	57.3		34.0	1.1	82.1	19.6	
_OS		С		С	С	E		С	Α	F	В	
Approach Delay		30.6			39.4			26.6			44.9	
Approach LOS		С			D			С			D	
Queue Length 50th (m)		30.8		28.5	76.4	~53.6		19.4	0.0	40.4	35.8	
Queue Length 95th (m)		44.1		45.9	112.0	#116.6		30.0	0.0	#69.4	52.0	
Internal Link Dist (m)		172.2			106.8			136.3			52.8	
Turn Bay Length (m)									90.0	85.0		
Base Capacity (vph)		881		346	855	594		729	368	413	1087	
Starvation Cap Reductn		0		0	0	0		0	0	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductn		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.42		0.67	0.64	1.01		0.31	0.18	0.97	0.54	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 64 (64%), Reference	d to phase	2:EBT an	d 6:WB	TL, Start o	f Green							
Natural Cycle: 100												
Control Type: Actuated-Coo	rdinated											

Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
Permitted Phases	'			.5
Detector Phase				
Switch Phase				
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
Total Split (s)	5.0	10.0	36.0	5.0
Total Split (%)	5%	10%	36%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag	Lag	Lag		Lead
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)				
Actuated q/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				
intersection outlindly				

Maximum v/c Ratio: 1.01	
Intersection Signal Delay: 38.9	Intersection LOS: D
Intersection Capacity Utilization 83.8%	ICU Level of Service E
Analysis Period (min) 15	
 Volume exceeds capacity, queue is theoretically infinite. 	
Queue shown is maximum after two cycles.	
# 95th percentile volume exceeds capacity, queue may be lo	onger.
Queue shown is maximum after two cycles	

Splits and Phases: 3: Elgin & Laurier/City Hall **▼** Ø8

	۶	-	*	•	←	*	1	1	1	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					†			414				
Traffic Volume (vph)	0	0	0	0	162	74	223	720	0	0	0	0
Future Volume (vph)	0	0	0	0	162	74	223	720	0	0	0	0
Satd. Flow (prot)	0	0	0	0	2844	0	0	4696	0	0	0	0
Flt Permitted								0.988				
Satd. Flow (perm)	0	0	0	0	2844	0	0	4325	0	0	0	0
Satd. Flow (RTOR)					27			82				
Lane Group Flow (vph)	0	0	0	0	262	0	0	1048	0	0	0	0
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					25.0		50.0	50.0				
Total Split (%)					33.3%		66.7%	66.7%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag					0.1			0.0				
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					19.9		O-IVIAX	45.0				
Actuated g/C Ratio					0.27			0.60				
v/c Ratio					0.27			0.40				
Control Delay					21.3			7.7				
Queue Delay					0.0			0.0				
Total Delay					21.3			7.7				
LOS					21.3 C			Α.				
Approach Delay					21.3			7.7				
					21.3 C			7.7 A				
Approach LOS					14.0			23.1				
Queue Length 50th (m)												
Queue Length 95th (m)		34.9			23.5			30.8			E4 7	
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)					774			0007				
Base Capacity (vph)					774			2627				
Starvation Cap Reductn					0			0				
Spillback Cap Reductn					0			163				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.34			0.43				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 73 (97%), Referenced	to phase	2:NBTL,	Start of G	reen								
Natural Cycle: 60												
Control Type: Actuated-Coord	dinated											

Lanes, Volumes, Timings

4: Metcalfe & Gloucester

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

Existing AM Peak Hour

Maximum v/c Ratio: 0.40 Intersection Signal Delay: 10.5 Intersection LOS: B Intersection Capacity Utilization 41.7% Analysis Period (min) 15 ICU Level of Service A

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

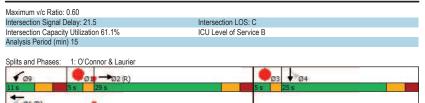
Existing AM Peak Hour

	•	\rightarrow	*	1	←	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7		† 1>		7	44	
Traffic Volume (vph)	31	7	31	1	0	9	0	267	43	17	320	0
Future Volume (vph)	31	7	31	1	0	9	0	267	43	17	320	C
Satd. Flow (prot)	0	1508	0	1658	0	1483	0	3072	0	1658	3252	0
Flt Permitted		0.978		0.708						0.545		
Satd. Flow (perm)	0	1429	0	1182	0	1294	0	3072	0	836	3252	0
Satd. Flow (RTOR)		34				53		34				
Lane Group Flow (vph)	0	76	0	1	0	10	0	345	0	19	356	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6	-	
Detector Phase	4	4		8		8		2		6	6	
Switch Phase								-				
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	27.0	27.0		27.0		27.0		58.0		58.0	58.0	
Total Split (%)	30.0%	30.0%		30.0%		30.0%		64.4%		64.4%	64.4%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)	2.0	0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag		0.4		0.7	0.1	
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)	IVICIA	25.9		25.9		25.9		52.6		52.6	52.6	
Actuated g/C Ratio		0.29		0.29		0.29		0.58		0.58	0.58	
v/c Ratio		0.23		0.29		0.02		0.30		0.04	0.19	
Control Delay		16.1		23.0		0.02		8.1		8.3	9.0	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.1		23.0		0.0		8.1		8.3	9.0	
LOS		В		23.0 C		Α		Α.		0.5 A	9.0 A	
Approach Delay		16.1		U	2.2			8.1			9.0	
Approach LOS		10.1 B			Z.Z A			Α			9.0 A	
Queue Length 50th (m)		5.3		0.1	A	0.0		12.0		1.3	13.9	
Queue Length 95th (m)		15.5		1.3		0.0		18.4		4.1	20.4	
Internal Link Dist (m)		54.5		1.3	21.0	0.0		120.5		4.1	136.3	
Turn Bay Length (m)		34.3			21.0			120.5		20.0	130.3	
Base Capacity (vph)		435		340		410		1809		488	1900	
		435		340		410		1809		488	1900	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.17		0.00		0.02		0.19		0.04	0.19	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												

Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated


Lane Group	Ø3	Ø7
Lane Configurations	100	וטי
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		_
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Nouvoca Wo Natio		
Intersection Summary		

Maximum v/c Ratio: 0.19		
Intersection Signal Delay: 9.2	Intersection LOS: A	
Intersection Capacity Utilization 66.3%	ICU Level of Service C	
Analysis Period (min) 15		
Splits and Phases: 5: Elgin & Nepean/City Hall	● Ø3 → Ø4	E NA
58 s	5 s 27 s	
₩ Ø6 (R)	● 27 Ø8	10.715
58 s	5 s 27 s	

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

	•	→	*	1	←	*	4	1	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		1>		7	^						414	
Traffic Volume (vph)	0	200	95	179	271	0	0	0	0	51	540	
Future Volume (vph)	0	200	95	179	271	0	0	0	0	51	540	4
Satd. Flow (prot)	0	1467	0	1642	1745	0	0	0	0	0	4479	
Flt Permitted				0.391							0.996	
Satd, Flow (perm)	0	1467	0	676	1745	0	0	0	0	0	4246	
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	328	0	199	301	0	0	0	0	0	706	
Turn Type	_	NA	_	pm+pt	NA	-	_	•	-	Perm	NA	
Protected Phases		2		9	6						4	
Permitted Phases				6	-					4	•	
Detector Phase		2		9	6					4	4	
Switch Phase		_		ŭ	•						•	
Minimum Initial (s)		10.0		5.0	10.0					10.0	10.0	
Minimum Split (s)		23.9		10.8	21.9					22.5	22.5	
Total Split (s)		29.0		11.0	45.0					25.0	25.0	
Total Split (%)		38.7%		14.7%	60.0%					33.3%	33.3%	
Yellow Time (s)		3.3		3.3	3.3					3.3	3.3	
All-Red Time (s)		2.6		2.5	2.6					2.6	2.6	
Lost Time Adjust (s)		0.0		0.0	0.0					2.0	0.0	
Total Lost Time (s)		5.9		5.8	5.9						5.9	
Lead/Lag		5.5		Lead	3.3					Lag	Lag	
Lead-Lag Optimize?				Yes						Yes	Yes	
Recall Mode		C-Max		Max	C-Max					Max	Max	
Act Effct Green (s)		28.1		39.2	39.1					IVIAA	24.1	
Actuated g/C Ratio		0.37		0.52	0.52						0.32	
v/c Ratio		0.60		0.32	0.32						0.52	
Control Delay		24.4		21.7	16.2						22.4	
Queue Delay		0.0		0.0	0.0						0.0	
Total Delay		24.4		21.7	16.2						22.4	
LOS		24.4 C		21.7 C	10.2 B						22.4 C	
Approach Delay		24.4		U	18.4						22.4	
Approach LOS		24.4 C			10.4 B						22.4 C	
		36.5		18.4	25.4						29.4	
Queue Length 50th (m)		61.8		37.0	46.4						40.1	
Queue Length 95th (m)		71.8		37.0	158.7			39.2			62.3	
Internal Link Dist (m)		/ 1.0			100.1			39.2			02.3	
Turn Bay Length (m)		540		400	000						4004	
Base Capacity (vph)		549		420	909						1364	
Starvation Cap Reductn		0		0	0						0	
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.60		0.47	0.33						0.52	
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
	d to phase	2:EBT an	d 6:WB1	L, Start	of Green							
Offset: 22 (29%), Reference Natural Cycle: 70 Control Type: Actuated-Coor	·	2:EBT an	d 6:WB1	TL, Start o	of Green							

Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)	Lane Group	Ø1	Ø3
Traffic Volume (vph) Future Volume (vph) Future Volume (vph) Satd. Flow (prot) FIt Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) 5.0 5.0 Total Split (%) 7% 7% 7% 7% 78 Yellow Time (s) 2.0 2.0 All-Red Time (s) 2.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach LOS Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Solilback Cap Reductn Reduced V/c Ratio	Lane Configurations		
Satd. Flow (prot) FIt Permitted Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LoS Queue Length 50th (m) Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Storage Cap Reducth Storage Cap Reducth Storage Cap Reducth Storage Cap Reductn			
Satd. Flow (prot) FIt Permitted Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LoS Queue Length 50th (m) Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Storage Cap Reducth Storage Cap Reducth Storage Cap Reducth Storage Cap Reductn	Future Volume (vph)		
Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Switch Phase Whinimum Initial (s) Minimum Split (s) Total Split (%) Total Loght (%) Total Capit (%) Total Cap			
Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Protected Phases Switch Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Initial (s) Minimum Split (s) Total Lost Time (s) Lead/Lag Lead Lead Lead Uset Time (s) Lead/Lag Lead Lead-Lag Optimize? Recall Mode None None Act Effc Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Storage Cap Reducth Scorage Cap Reductn	Flt Permitted		
Lane Group Flow (vph) Turn Type Protected Phases 1 3 Permitted Phases Detector Phase Switch Phase Winimum Initial (s) 1.0 1.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 7% 7% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Satd. Flow (perm)		
Lane Group Flow (vph) Turn Type Protected Phases 1 3 Permitted Phases Detector Phase Switch Phase Winimum Initial (s) 1.0 1.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 7% 7% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Type Protected Phases Protected Phases Defector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Total Lost Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Cead/Lag Lead/Lag Lost Time (s) None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LoS Queue Length 50th (m) Queue Length 50th (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Protected Phases 1 3 Permitted Phases Detector Phase Switch Phase Switch Phase Switch Phase Switch Phase Switch Phase Minimum Initial (s) 1.0 1.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 7% 7% Yellow Time (s) 2.0 2.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Reduced v/c Ratio			
Detector Phase Switch Phase Switch Phase Switch Phase Switch Phase Minimum Initial (s) 1.0 1.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (%) 7% 7% 7% 7% 7% 7% 7% 7% 7%		1	3
Switch Phase Minimum Initial (s) Minimum Split (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	Permitted Phases		
Switch Phase Minimum Initial (s) Minimum Split (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	Detector Phase		
Minimum Initial (s) 1.0 1.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 7% 7% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lead/Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Spillback Cap Reducth Storage Cap Reducth Storage Cap Reducth Storage Cap Reducth Reduced v/c Ratio			
Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 7% 7% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LoS Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		1.0	1.0
Total Split (s) 5.0 5.0 5.0 Total Split (%) 7% 7% 7% 7% 7% 7% 7%			
Total Split (%) 7% 7% 7% Yellow Time (s) 2.0 2.0 2.0 All-Red Time (s) 0.0 0.0 0.0 Color Time Adjust (s) Total Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode None None None Act Effct Green (s) Actuated g/C Ratio V/c V/c Ratio V/c V/c Ratio V/c			
Yellow Time (s)			
All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag			
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Lead Lead/Lag Lead Lead/Lag Lead Lead/Lag Lead Lead Lead Lead Lead Lead Lead Lead			
Total Lost Time (s) Lead/Lag Lead/Lag Lead-Lag Optimize? Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Storage Cap Reducth Storage Cap Reducth Reduced v/c Ratio		0.0	0.0
Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach Delay Approach LOS Queue Length 50th (m) Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio			
Lead-Lag Optimize? Yes Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio		Lag	Lead
Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Storage Cap Reducth Storage Cap Reducth Reduced v/c Ratio			
Act Effct Green (s) Actuated g/C Ratio vic Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio			
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach Delay Approach LOS Queue Length 50th (m) Queue Length 55th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio		110110	110110
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio			
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio			
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio			
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Reduced v/c Ratio			
Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Reduced v/c Ratio			
Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Reduced v/c Ratio			
Queue Length 50th (m) Queue Length 95th (m) Intermal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Standardion Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio			
Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Storage Cap Reductn Reduced v/c Ratio			
Reduced v/c Ratio			
Intersection Summary			
	Intersection Summary		

	*	→	*	1	←	*	1	†	1	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		લ			† }			414				
Traffic Volume (vph)	10	241	0	0	390	166	33	373	126	0	0	0
Future Volume (vph)	10	241	0	0	390	166	33	373	126	0	0	0
Satd. Flow (prot)	0	1742	0	0	2809	0	0	3706	0	0	0	0
Flt Permitted		0.973						0.997				
Satd. Flow (perm)	0	1689	0	0	2809	0	0	3621	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	279	0	0	617	0	0	591	0	0	0	0
Turn Type	Perm	NA	-	-	NA		Perm	NA	•	-	-	
Protected Phases		2			6			4				
Permitted Phases	2	_					4	•				
Detector Phase	2	2			6		4	4				
Switch Phase	_	_			·							
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		19.5	19.5				
Total Split (s)	40.0	40.0			40.0		30.0	30.0				
Total Split (%)	53.3%	53.3%			53.3%		40.0%	40.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)	2.4	0.0			0.0		2.2	0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag			3.3				
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)	U-IVIAX	39.3			39.3		IVIdX	24.5				
		0.52			0.52			0.33				
Actuated g/C Ratio v/c Ratio		0.32			0.52			0.50				
		6.7			12.0			17.9				
Control Delay		0.7			0.0			0.3				
Queue Delay		6.7			12.0			18.2				
Total Delay LOS												
		A			В			В				
Approach Delay		6.7			12.0			18.2				
Approach LOS		A			В			В				
Queue Length 50th (m)		8.9			26.1			16.4				
Queue Length 95th (m)		13.6			37.5			21.2			CF 4	
Internal Link Dist (m)		158.7			172.2			51.7			65.1	
Turn Bay Length (m)								4400				
Base Capacity (vph)		885			1471			1182				
Starvation Cap Reductn		0			0			174				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.32			0.42			0.59				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 30 (40%), Reference	ed to phase	2:EBTL a	ind 6:WB	T, Start o	f Green							
Natural Cycle: 65												
Control Type: Actuated-Con	ordinated											

Lanes, Volumes, Timings

2: Metcalfe & Laurier

Synchro 11 Report Page 3

Lanes, Volumes, Timings 2: Metcalfe & Laurier

Cylotina

	XISL	ıng
PM	Peak	Hour

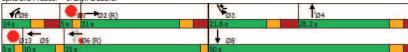
Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		- 3
Detector Phase		
Switch Phase		
	1.0	1.0
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary	_	

Lanes, Volumes, Timings 2: Metcalfe & Laurier

Existing PM Peak Hour

Maximum v/c Ratio: 0.50 Intersection Signal Delay: 13.5 Intersection LOS: B Intersection Capacity Utilization 47.4% Analysis Period (min) 15 ICU Level of Service A

Splits and Phases: 2: Metcalfe & Laurier


	*	\rightarrow	7	1	—	*	1	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		†		7	^	7		^	7	77	† 1>	
Traffic Volume (vph)	0	358	29	117	427	413	0	266	161	382	345	10
Future Volume (vph)	0	358	29	117	427	413	0	266	161	382	345	10
Satd. Flow (prot)	0	3155	0	1642	1745	1483	0	3316	1483	3154	2624	
Flt Permitted				0.468						0.950		
Satd. Flow (perm)	0	3155	0	627	1745	976	0	3316	680	2228	2624	
Satd. Flow (RTOR)						215			149		53	
ane Group Flow (vph)	0	430	0	130	474	459	0	296	179	424	503	
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	56	3		4	9	3	8	
Permitted Phases				6		6			4			
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase				-		-			-	-		
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		14.0		21.8		28.2	14.0	21.8	50.0	
Total Split (%)		31.0%		14.0%		21.8%		28.2%	14.0%	21.8%	50.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
All-Red Time (s)		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
_ead/Lag		7.0		Lead		Lead		Lag	Lead	Lead	0.2	
_ead-Lag Optimize?				Yes		Yes		Yes	Yes	Yes		
Recall Mode		C-Max		None		None		Max	None	None	Max	
Act Effct Green (s)		29.0		35.0	48.0	41.4		22.0	28.2	14.1	43.8	
Actuated g/C Ratio		0.29		0.35	0.48	0.41		0.22	0.28	0.14	0.44	
//c Ratio		0.47		0.45	0.57	0.76		0.41	0.51	0.95	0.43	
Control Delay		31.2		23.9	21.9	21.2		25.2	8.5	76.6	18.5	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		31.2		23.9	21.9	21.2		25.2	8.5	76.6	18.5	
OS		C		C	C	C		C	A	7 0.0 E	В	
Approach Delay		31.2			21.8			18.9			45.1	
Approach LOS		C			C C			10.3 B			D	
Queue Length 50th (m)		36.0		15.2	63.2	29.6		15.8	1.4	42.6	30.6	
Queue Length 95th (m)		50.5		27.2	93.4	#58.1		22.9	8.7	#71.4	43.9	
nternal Link Dist (m)		172.2		21.2	106.8	που. ι		136.3	0.1	πιι.π	52.8	
Furn Bay Length (m)		112.2			100.0			100.0	90.0	85.0	52.0	
Base Capacity (vph)		915		290	837	601		729	354	444	1179	
Starvation Cap Reductn		913		290	037	001		129	0	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductn		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.47		0.45	0.57	0.76		0.41	0.51	0.95	0.43	
		0.41		0.43	0.57	0.70		0.41	0.01	0.55	0.43	
ntersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 52 (52%), Reference	d to phase	2:EBT an	d 6:WB	ΓL, Start o	f Green							
Natural Cycle: 100												

Lane Configurations Traffic Volume (vph)
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Satd. Flow (RTOR)
Lane Group Flow (vph)
Turn Type
Protected Phases 1 5 6 13
Permitted Phases
Detector Phase
Switch Phase
Total Split (s) 5.0 10.0 35.0 5.0
Total Split (%) 5% 10% 35% 5%
Yellow Time (s) 2.0 2.0 2.0 2.0
All-Red Time (s) 0.0 0.0 0.0 0.0
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag Lag Lead
Lead-Lag Optimize? Yes Yes Yes
Recall Mode None None C-Max None
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn Reduced v/c Ratio
Reduced V/C Rallo

Existing PM Peak Hour

Maximum v/c Ratio: 0.95
Intersection Signal Delay: 30.2
Intersection Capacity Utilization 79.1%
ICU Level of Service D
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: Elgin & Laurier

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

Existing PM Peak Hour

	•	\rightarrow	7	1	-	*	1	†	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					† p			414				
Traffic Volume (vph)	0	0	0	0	207	127	96	397	0	0	0	0
Future Volume (vph)	0	0	0	0	207	127	96	397	0	0	0	0
Satd. Flow (prot)	0	0	0	0	2922	0	0	4716	0	0	0	0
Flt Permitted								0.990				
Satd. Flow (perm)	0	0	0	0	2922	0	0	4427	0	0	0	0
Satd. Flow (RTOR)					19			93				
Lane Group Flow (vph)	0	0	0	0	371	0	0	548	0	0	0	0
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					30.0		45.0	45.0				
Total Split (%)					40.0%		60.0%	60.0%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag					0.1			0.0				
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					24.9		O max	40.0				
Actuated g/C Ratio					0.33			0.53				
v/c Ratio					0.38			0.23				
Control Delay					19.5			7.9				
Queue Delay					0.0			0.0				
Total Delay					19.5			7.9				
LOS					В			7.5 A				
Approach Delay					19.5			7.9				
Approach LOS					19.5 B			7.9 A				
Queue Length 50th (m)					19.6			11.3				
Queue Length 95th (m)					30.5			16.8				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)		UT.U			40.0			55.0			51.7	
Base Capacity (vph)					982			2404				
Starvation Cap Reductn					0			0				
Spillback Cap Reductn					0			0				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.38			0.23				
					0.30			0.23				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75	مام ما ام	O.NIDTI	Chart of C									
Offset: 67 (89%), Reference Natural Cycle: 60	u to pnase	Z.NBTL,	SIART OF G	neen								
Control Type: Actuated-Coo	rdinated											

Existing PM Peak Hour

Maximum v/c Ratio: 0.38
Intersection Signal Delay: 12.6
Intersection LOS: B
Intersection Capacity Utilization 41.9%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall Existing PM Peak Hour

	*	→	*	1	←	*	1	1	1	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		٦		7		† \$		7	^	
Traffic Volume (vph)	113	1	107	31	0	23	1	312	5	7	441	0
Future Volume (vph)	113	1	107	31	0	23	1	312	5	7	441	0
Satd. Flow (prot)	0	1491	0	1658	0	1483	0	3256	0	1658	3316	0
Flt Permitted		0.975		0.605				0.954		0.528		
Satd. Flow (perm)	0	1397	0	983	0	1286	0	3105	0	757	3316	0
Satd. Flow (RTOR)		55				48		2				
Lane Group Flow (vph)	0	246	0	34	0	26	0	354	0	8	490	0
Turn Type	Perm	NA		Perm		Perm	Perm	NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8		8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1	31.4	31.4		31.4	31.4	
Total Split (s)	45.0	45.0		45.0		45.0	50.0	50.0		50.0	50.0	
Total Split (%)	45.0%	45.0%		45.0%		45.0%	50.0%	50.0%		50.0%	50.0%	
Yellow Time (s)	3.3	3.3		3.3		3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8	2.1	2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max	C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		43.9		43.9		43.9	-	44.6		44.6	44.6	
Actuated g/C Ratio		0.44		0.44		0.44		0.45		0.45	0.45	
v/c Ratio		0.38		0.08		0.04		0.26		0.02	0.33	
Control Delay		16.5		17.1		2.0		17.8		14.1	18.3	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.5		17.1		2.0		17.8		14.1	18.3	
LOS		В		В		A		В		В	В	
Approach Delay		16.5			10.6	- / \		17.8			18.2	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		23.7		3.7		0.0		21.7		0.6	37.5	
Queue Length 95th (m)		42.7		9.6		2.2		31.4		m1.3	46.2	
Internal Link Dist (m)		54.5		5.0	21.0	2.2		120.5		1111.0	136.3	
Turn Bay Length (m)		04.0			21.0			120.0		20.0	100.0	
Base Capacity (vph)		644		431		591		1385		337	1478	
Starvation Cap Reductn		044		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.38		0.08		0.04		0.26		0.02	0.33	
		0.00		0.00		0.04		0.20		0.02	0.00	
Intersection Summary												

Intersection Summa

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65

Lane Group	Ø3	Ø7
Lane Configurations		~ ~ /
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type	3	7
Protected Phases	3	- 1
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Neudoed We Rallo		
Intersection Summary		

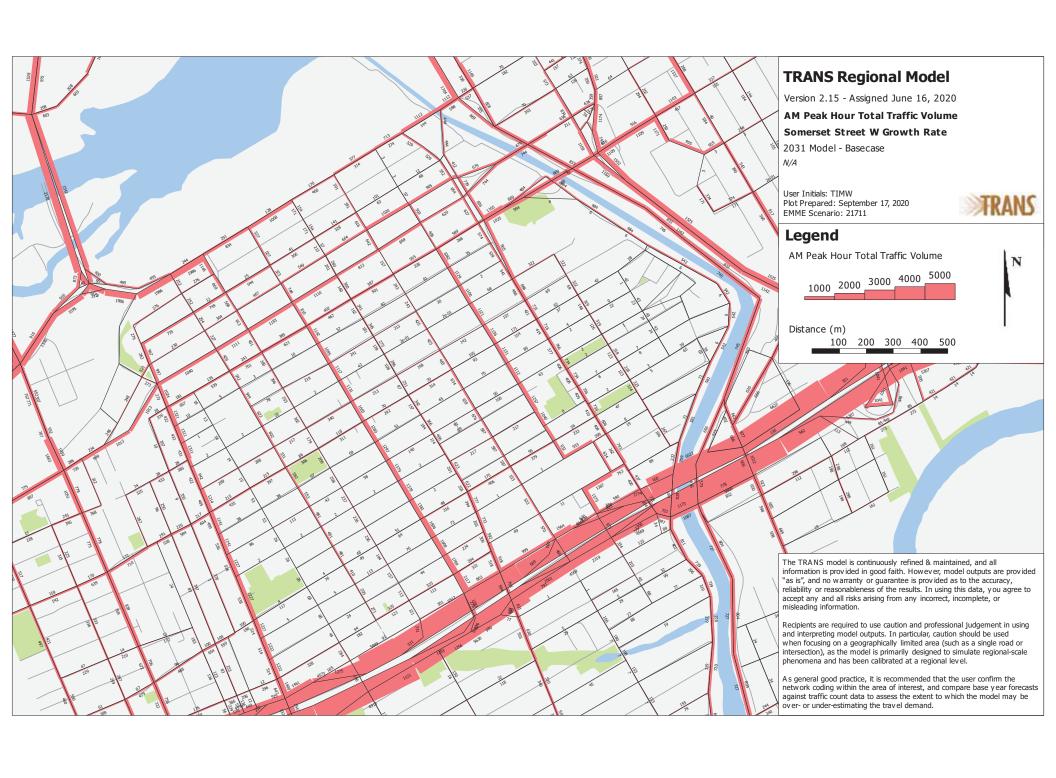
Maximum v/c Ratio: 0.38		
Intersection Signal Delay: 17.3	Intersection LOS: B	
Intersection Capacity Utilization 66.6%	ICU Level of Service C	
Analysis Period (min) 15		
m Volume for 95th percentile queue is metered by upstre	eam signal.	

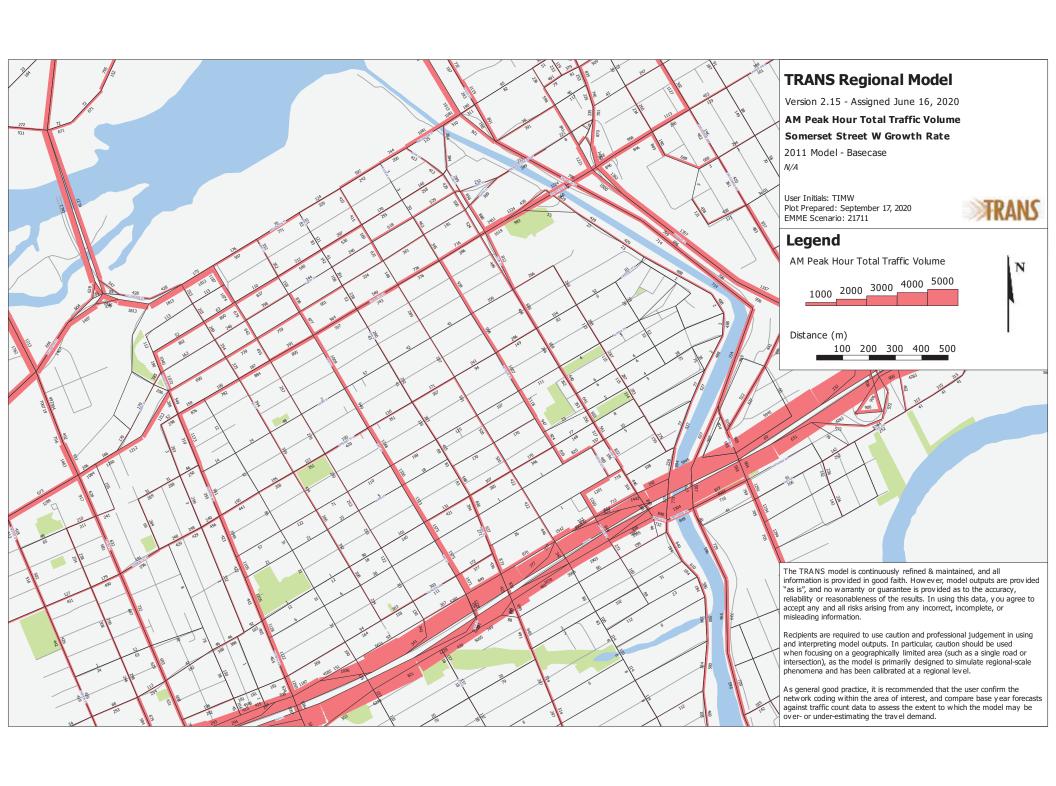
Splits and Phases: 5: Elgin & Nepean/City Hall

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

Appendix D

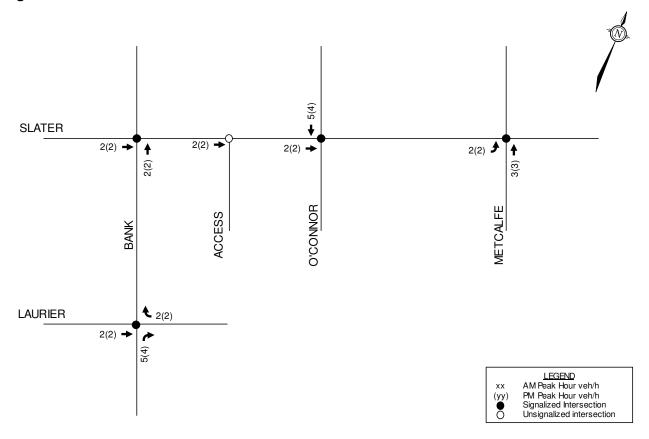
Collision Data


Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition	# Vehicles	# Motorcycles	# Bicycles	# Pedestrians
11/5/2018 9/26/2016	2018 2016	12:51 3:24	LAURIER AVE W btwn ELGIN ST & ELGIN ST (_3ZA35X) FIGIN ST @ LAURIER AVE (0002232)	02 - Rain 01 - Clear	01 - Daylight 07 - Dark	10 - No control 01 - Traffic signal	0 01 - Functioning	03 - P.D. only 03 - P.D. only	05 - Turning movement 07 - SMV other	02 - Wet 01 - Dry	2	0	0	0
11/1/2016	2016	16:51	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	05 - Dusk	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
12/1/2016 12/20/2016	2016 2016	17:28 21:45	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	02 - Rain 01 - Clear	07 - Dark 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 99 - Other	02 - Wet 04 - Slush	2	0	0	0
2/12/2016	2016	15:24	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	03 - Snow	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	03 - Loose snow	2	0	Ö	0
12/21/2016 5/5/2016	2016 2016	20:09 15:30	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	07 - Dark 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 04 - Sideswipe	02 - Wet 01 - Dry	2	0	0	0
5/20/2016	2016	2:47	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Daylight	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	02 - Angle	01 - Dry	2	0	1	0
6/25/2016	2016	18:32	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
7/4/2016 6/22/2016	2016 2016	18:11 14:30	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-fatal injury 02 - Non-fatal injury	05 - Turning movement 04 - Sideswipe	01 - Dry 01 - Dry	2	0	1	0
7/26/2016 7/11/2016	2016 2016	7:54 15:33	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 02 - Non-fatal injury	03 - Rear end 05 - Turning movement	01 - Dry 01 - Dry	2	0	0	0
9/8/2016	2016	20:35	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Daylight	01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-fatal injury	05 - Turning movement 05 - Turning movement	01 - Dry	2	0	1	0
9/10/2016	2016	21:15	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	07 - SMV other 04 - Sideswipe	01 - Dry	1	0	0	1
1/27/2017 10/9/2017	2017 2017	14:30 0:23	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	03 - Snow 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	07 - SMV other	02 - Wet 01 - Dry	1	0	0	0
10/26/2017 12/17/2017	2017 2017	13:20 22:29	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	03 - Rear end	01 - Dry 02 - Wet	2	0	0	0
12/1//201/	2017	22:29 8:43	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	07 - Dark 01 - Daylight	01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 02 - Non-fatal injury	05 - Turning movement 05 - Turning movement	02 - Wet 01 - Dry	2	0	1	0
2/21/2017	2017	21:24	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
3/6/2017 3/14/2017	2017 2017	20:04 16:30	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	07 - Dark 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	05 - Turning movement 05 - Turning movement	02 - Wet 03 - Loose snow	2	0	0	0
3/24/2017	2017	9:52	ELGIN ST @ LAURIER AVE (0002232)	03 - Snow	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	03 - Loose snow	2	0	0	0
4/27/2017 4/29/2017	2017 2017	16:51 7:07	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 04 - Sideswipe	01 - Dry 01 - Dry	2	0	0	0
6/9/2017 7/11/2017	2017 2017	12:28	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-fatal injury 03 - P.D. only	05 - Turning movement 04 - Sideswipe	01 - Dry	2	0	1	0
7/11/2017 8/12/2017	2017	18:15 1:42	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal	00 - Unknown	03 - P.D. only 03 - P.D. only	06 - SMV unattended vehicle	01 - Dry 01 - Dry	1	0	0	0
9/29/2017	2017	6:50	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	03 - Dawn	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
9/26/2017 1/18/2018	2017 2018	17:27 20:25	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-fatal injury 03 - P.D. only	07 - SMV other 03 - Rear end	01 - Dry 01 - Dry	1 2	0	0	1
10/7/2018	2018	16:21	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	2	0	0	0
11/28/2018 12/12/2018	2018 2018	7:46 10:20	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-fatal injury 03 - P.D. only	05 - Turning movement 05 - Turning movement	02 - Wet 01 - Dry	2	0	1	0
12/29/2018	2018	12:25	ELGIN ST @ LAURIER AVE (0002232)	04 - Freezing Rain	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	07 - SMV other	06 - Ice	1	0	ō	ō
2/8/2018 2/1/2018	2018 2018	15:26 18:17	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	03 - Snow 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	03 - Rear end 03 - Rear end	03 - Loose snow 01 - Dry	2	0	0	0
2/13/2018	2018	12:05	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	ō	ō
2/22/2018 2/18/2018	2018	15:08 16:27	ELGIN ST @ LAURIER AVE (0002232) FIGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-fatal injury 03 - P.D. only	05 - Turning movement 03 - Rear end	01 - Dry 01 - Dry	2	0	0	0
3/21/2018	2018	19:30	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	Ö	0
5/16/2018 5/9/2018	2018 2018	17:15 18:42	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 02 - Non-fatal injury	04 - Sideswipe 05 - Turning movement	01 - Dry 01 - Dry	2	0	0	0
5/29/2018	2018	16:51	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	3	0	0	0
6/6/2018 6/20/2018	2018 2018	17:00	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	00 - Unknown 01 - Functioning	03 - P.D. only 02 - Non-fatal injury	05 - Turning movement 07 - SMV other	01 - Dry	2	0	0	0
5/20/2018 7/2/2018	2018 2018	16:36 2:10	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-ratal injury 03 - P.D. only	07 - SMV other	01 - Dry 01 - Dry	1	0	0	0
7/20/2018	2018	13:09	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
7/25/2018 7/23/2018	2018 2018	12:06 14:15	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	02 - Rain 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	02 - Non-fatal injury 03 - P.D. only	05 - Turning movement 03 - Rear end	02 - Wet 01 - Dry	2	0	1	0
8/29/2018	2018	23:40	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	03 - P.D. only	05 - Turning movement	01 - Dry	2	0	1	ō
9/21/2019 10/5/2019	2019 2019	19:33 16:10	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	07 - Dark 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 04 - Sideswipe	01 - Dry 01 - Dry	2	0	0	0
1/25/2019	2019	17:42	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	02 - Wet	2	0	ō	0
12/9/2019 1/24/2019	2019 2019	17:48 8:45	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	02 - Rain 03 - Snow	07 - Dark 01 - Davlight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 04 - Sideswipe	02 - Wet 04 - Slush	2	0	0	0
1/30/2019	2019	18:00	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	05 - Turning movement	04 - Slush	2	0	0	0
1/30/2019 2/15/2019	2019 2019	18:15	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	03 - Snow 03 - Snow	07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only	04 - Sideswipe	03 - Loose snow 04 - Slush	2	0	0	0
4/1/2019	2019	12:19 17:30	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only 03 - P.D. only	03 - Rear end 04 - Sideswipe	01 - Dry	2	0	0	0
7/3/2019 1/22/2020	2019 2020	15:00 14:15	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	05 - Turning movement 03 - Rear end	01 - Dry 02 - Wet	2	0	0	0
2/7/2020	2020	14:15	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	03 - Snow	01 - Daylight 01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	02 - Wet 04 - Slush	2	0	0	0
2/20/2020	2020	12:55	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	99 - Other	01 - Dry	2	0	0	0
4/25/2020 6/17/2020	2020 2020	18:30 23:36	ELGIN ST @ LAURIER AVE (0002232) ELGIN ST @ LAURIER AVE (0002232)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 99 - Other	01 - Dry 01 - Dry	2 2	0	0	0
8/5/2020	2020	17:00	ELGIN ST @ LAURIER AVE (0002232)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	3	0	0	0
9/17/2020 11/23/2016	2020 2016	12:10 11:39	ELGIN ST @ LAURIER AVE (0002232) LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA35P)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 10 - No control	01 - Functioning 0	03 - P.D. only 03 - P.D. only	03 - Rear end 02 - Angle	01 - Dry 01 - Dry	2 2	0	0	0
4/5/2016	2016	16:09	LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA35P)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	03 - Rear end	01 - Dry	2	0	0	0
5/12/2016 7/15/2016	2016 2016	14:50 8:41	LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA3SP) LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA3SP)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	10 - No control 10 - No control	0	02 - Non-fatal injury 03 - P.D. only	05 - Turning movement 04 - Sideswipe	01 - Dry 01 - Dry	2 2	0	0	0
9/13/2016	2016	16:15	LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA3SP)	01 - Clear	01 - Daylight	10 - No control	0	02 - Non-fatal injury	05 - Turning movement	01 - Dry	2	0	1	0
10/7/2017 2/20/2017	2017 2017	15:15 18:09	LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA35P) LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA35P)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	10 - No control 10 - No control	0	02 - Non-fatal injury 03 - P.D. only	05 - Turning movement 06 - SMV unattended vehicle	01 - Dry 01 - Dry	2	0	1	0
6/22/2017	2017	Unknown	LAURIER AVE W btwn METCALFE ST & ELGIN ST (_3ZA35P)	01 - Clear	00 - Unknown	10 - No control	0	03 - P.D. only	06 - SMV unattended vehicle	01 - Dry	1	0	0	0
8/9/2017 9/13/2017	2017 2017	Unknown 17:18	LAURIER AVE W blwn METCALFE ST & ELGIN ST (_3ZA35P) LAURIER AVE W blwn METCALFE ST & ELGIN ST (_3ZA35P)	01 - Clear 01 - Clear	00 - Unknown 01 - Daylight	10 - No control 10 - No control	0	03 - P.D. only 02 - Non-fatal injury	06 - SMV unattended vehicle 05 - Turning movement	01 - Dry 01 - Dry	1 2	0	0	0
10/4/2018	2018	14:55	LAURIER AVE W btwn METCALFE ST & ELGIN ST (_3ZA35P)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	03 - Rear end	01 - Dry	2	0	0	0
2/21/2018 4/11/2018	2018 2018	16:07 12:00	LAURIER AVE W btwn METCALFE ST & ELGIN ST (_3ZA35P) LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA35P)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	10 - No control 10 - No control	0	03 - P.D. only 03 - P.D. only	06 - SMV unattended vehicle 06 - SMV unattended vehicle	02 - Wet 01 - Dry	1	0	0	0
5/22/2018	2018	14:59	LAURIER AVE W btwn METCALFE ST & ELGIN ST (3ZA35P)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	06 - SMV unattended vehicle	01 - Dry	1	0	0	0
6/5/2018 7/8/2019	2018 2019	14:39 8:21	LAURIER AVE W blwn METCALFE ST & ELGIN ST (3ZA35P) LAURIER AVE W blwn METCALFE ST & ELGIN ST (3ZA35P)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	10 - No control 10 - No control	0	03 - P.D. only 02 - Non-fatal injury	02 - Angle 05 - Turning movement	01 - Dry 01 - Dry	2	0	0	0
7/10/2019	2019	8:42	LAURIER AVE W btwn METCALFE ST & ELGIN ST (_3ZA35P)	01 - Clear	01 - Daylight	10 - No control	ō	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	ō	0
12/26/2016 6/10/2016	2016 2016	17:06 11:02	METCALFE ST @ LAURIER AVE (0002231) METCALFE ST @ LAURIER AVE (0002231)	04 - Freezing Rain 01 - Clear	07 - Dark 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	02 - Angle 06 - SMV unattended vehicle	06 - Ice 01 - Dry	2	0	0	0
9/9/2016	2016	21:12	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	05 - Turning movement	01 - Dry	2	0	1	0
11/8/2017 2/16/2017	2017 2017	15:25 12:00	METCALFE ST @ LAURIER AVE (0002231) METCALFE ST @ LAURIER AVE (0002231)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 00 - Unknown	03 - P.D. only 03 - P.D. only	05 - Turning movement 06 - SMV unattended vehicle	01 - Dry 04 - Slush	2	0	1	0
5/7/2017	2017	13:20	METCALFE ST @ LAURIER AVE (0002231)	02 - Rain	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	02 - Wet	2	0	0	0
7/20/2017 8/4/2017	2017 2017	18:01 15:47	METCALFE ST @ LAURIER AVE (0002231) METCALFE ST @ LAURIER AVE (0002231)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	03 - Rear end 02 - Angle	01 - Dry	2	0	0	0
2/2/2018	2018	13:43	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry 01 - Dry	2	0	0	0
7/31/2018	2018	12:45	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	07 - SMV other	01 - Dry	1	Ō	0	ō
9/20/2019 10/23/2019	2019 2019	15:00 18:50	METCALFE ST @ LAURIER AVE (0002231) METCALFE ST @ LAURIER AVE (0002231)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 02 - Angle	01 - Dry 01 - Dry	2 2	0	0	0
11/19/2019	2019	23:20	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
11/27/2019 12/19/2019	2019 2019	17:17 10:20	METCALFE ST @ LAURIER AVE (0002231) METCALFE ST @ LAURIER AVE (0002231)	02 - Rain 01 - Clear	07 - Dark 01 - Davlight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 02 - Non-fatal injury	05 - Turning movement 03 - Rear end	02 - Wet 01 - Dry	2	0	0	0
12/12/2019	2019	16:20	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	05 - Dusk	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	ō	ő	0
12/17/2019 3/15/2019	2019 2019	16:15 8:55	METCALFE ST @ LAURIER AVE (0002231) METCALFE ST @ LAURIER AVE (0002231)	03 - Snow 01 - Clear	05 - Dusk 01 - Daylight	01 - Traffic signal 01 - Traffic signal	01 - Functioning 01 - Functioning	03 - P.D. only 03 - P.D. only	04 - Sideswipe 03 - Rear end	04 - Slush 02 - Wet	2	0	0 n	0
1/9/2019	2019	12:10	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	02 - Wet	2	ő	ō	0


6/16/2019	2019	10:45	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	3	0	0	0
7/24/2019	2019	9:34	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
7/31/2019	2019	10:20	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	2	0	0	0
8/12/2019	2019	12:27	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
1/25/2020	2020	7:53	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	03 - Dawn	01 - Traffic signal	01 - Functioning	03 - P.D. only	99 - Other	01 - Dry	2	0	0	0
7/3/2020	2020	9:03	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	2	0	0	0
9/28/2020	2020	14:27	METCALFE ST @ LAURIER AVE (0002231)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	02 - Angle	01 - Dry	2	0	0	0
1/19/2020	2020	4:59	METCALFE ST @ LAURIER AVE (0002231)	03 - Snow	07 - Dark	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	05 - Packed snow	2	0	0	0

Appendix E

City TRANS Plots



Appendix F

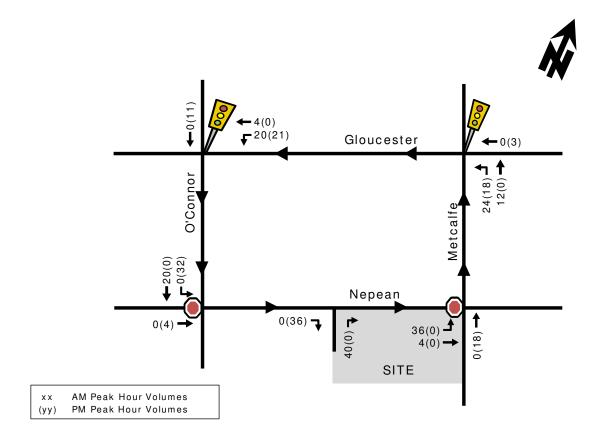

Background Development Volumes

Figure 6: Site Generated Traffic

Novatech Page 17

Appendix G

Synchro Intersection Worksheets – 2027 Future Background Conditions

	•	-	7	1	-	*	1	1	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ĵ»			1						4147>	
Traffic Volume (vph)	0	215	122	133	334	0	0	0	0	85	451	67
Future Volume (vph)	0	215	122	133	334	0	0	0	0	85	451	67
Satd. Flow (prot)	0	1430	0	1642	1712	0	0	0	0	0	4174	0
Flt Permitted				0.382							0.993	
Satd. Flow (perm)	0	1430	0	660	1712	0	0	0	0	0	3784	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	337	0	133	334	0	0	0	0	0	603	0
Turn Type		NA		pm+pt	NA					Perm	NA	
Protected Phases		2		9	6						4	
Permitted Phases				6						4		
Detector Phase		2		9	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0		5.0	10.0					10.0	10.0	
Minimum Split (s)		23.9		10.8	21.9					22.5	22.5	
Total Split (s)		29.0		11.0	45.0					25.0	25.0	
Total Split (%)		38.7%		14.7%	60.0%					33.3%	33.3%	
Yellow Time (s)		3.3		3.3	3.3					3.3	3.3	
All-Red Time (s)		2.6		2.5	2.6					2.6	2.6	
Lost Time Adjust (s)		0.0		0.0	0.0					2.0	0.0	
Total Lost Time (s)		5.9		5.8	5.9						5.9	
_ead/Lag		0.0		Lead	0.0					Lag	Lag	
_ead-Lag Optimize?				Yes						Yes	Yes	
Recall Mode		C-Max		Max	C-Max					Max	Max	
Act Effct Green (s)		28.1		39.2	39.1					IVICA	24.1	
Actuated g/C Ratio		0.37		0.52	0.52						0.32	
//c Ratio		0.63		0.32	0.32						0.50	
Control Delay		25.6		7.1	6.7						22.3	
Queue Delay		0.0		0.0	0.0						0.0	
Total Delay		25.6		7.1	6.7						22.3	
OS		25.6 C									22.3 C	
		25.6		Α	A 6.8						22.3	
Approach Delay		25.6 C			6.8 A						22.3 C	
Approach LOS				5 0							24.9	
Queue Length 50th (m)		38.1		5.2	13.3							
Queue Length 95th (m)		64.6		9.3	19.7			00.0			34.9	
nternal Link Dist (m)		71.8			158.7			39.2			62.3	
Turn Bay Length (m)		===		440							1015	
Base Capacity (vph)		535		413	892						1215	
Starvation Cap Reductn		0		0	0						0	
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.63		0.32	0.37						0.50	
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 63 (84%), Reference	d to phase	2:EBT ar	d 6:WB	L, Start	of Green							
Natural Cycle: 70												
Control Type: Actuated-Coo	rdinated											

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Staniation Can Baduata		
Starvation Cap Reductn		
Spillback Cap Reductn		
Spillback Cap Reductn Storage Cap Reductn		
Spillback Cap Reductn		

Lanes, Volumes, Timings
1: O'Connor & Laurier

Lanes, Volumes, Timings 1: O'Connor & Laurier

2027 Future Background AM Peak Hour

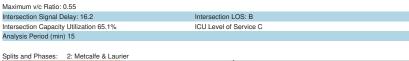
Maximum v/c Ratio: 0.63 Intersection LOS: B Intersection Signal Delay: 17.9 Intersection Capacity Utilization 61.2% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier

2027 Future Background AM Peak Hour

	*	→	*	1	←	*	1	1	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			† p			4143				
Traffic Volume (vph)	22	288	0	0	391	256	96	671	74	0	0	C
Future Volume (vph)	22	288	0	0	391	256	96	671	74	0	0	0
Satd. Flow (prot)	0	1734	0	0	2511	0	0	4339	0	0	0	0
Flt Permitted		0.938						0.994				
Satd. Flow (perm)	0	1617	0	0	2511	0	0	4137	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	310	0	0	647	0	0	841	0	0	0	0
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (%)	49.3%	49.3%			49.3%		44.0%	44.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag			0.0				
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)	O max	36.3			36.3		max	27.5				
Actuated g/C Ratio		0.48			0.48			0.37				
v/c Ratio		0.40			0.53			0.55				
Control Delay		19.1			15.5			15.2				
Queue Delay		0.0			0.0			0.4				
Total Delay		19.1			15.5			15.6				
LOS		В			13.3 B			13.0 B				
Approach Delay		19.1			15.5			15.6				
Approach LOS		19.1 B			15.5 B			15.6 B				
Queue Length 50th (m)		31.3			31.6			35.2				
Queue Length 95th (m)		56.3			46.1			47.1				
Internal Link Dist (m)		158.7			172.2			51.7			65.1	
Turn Bay Length (m)		130.7			172.2			31.7			03.1	
		782			1215			1516				
Base Capacity (vph)		782			0			249				
Starvation Cap Reductn		0			0			249				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn Reduced v/c Ratio		0.40			0.53			0.66				
		0.40			0.53			0.00				
Intersection Summary												
Cycle Length: 75 Actuated Cycle Length: 75												
Offset: 48 (64%), Reference	ed to phase	2-FRTI	and 6·W/B	T Start o	f Green							
Natural Cycle: 75	eu to priast	L.EDIL à	IIIU O.WB	i, Start C	dieen							
Control Type: Actuated-Co	ordinatod											

Control Type: Actuated-Coordinated


Synchro 11 Report

Page 3

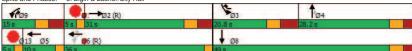
Lanes, Volumes, Timings 2: Metcalfe & Laurier 2027 Future Background AM Peak Hour

Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductin		
Reduced v/c Ratio		
Intersection Summary		

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2027 Future Background AM Peak Hour

	•	\rightarrow	*	1	•	•	1	1	1	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† 1>		7	1	7		44	7	ሻሻ	†	
Traffic Volume (vph)	0	285	57	209	497	538	0	208	59	361	367	170
Future Volume (vph)	0	285	57	209	497	538	0	208	59	361	367	170
Satd. Flow (prot)	0	3043	0	1658	1745	1483	0	3316	1483	3154	2423	0
Flt Permitted				0.532						0.950		
Satd. Flow (perm)	0	3043	0	771	1745	920	0	3316	680	1869	2423	0
Satd. Flow (RTOR)						238			149		95	
Lane Group Flow (vph)	0	342	0	209	497	538	0	208	59	361	537	0
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	56	3		4	9	3	8	
Permitted Phases				6		6			4			
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase												
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		15.0		20.8		28.2	15.0	20.8	49.0	
Total Split (%)		31.0%		15.0%		20.8%		28.2%	15.0%	20.8%	49.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
All-Red Time (s)		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
Lead/Lag				Lead		Lead		Lag	Lead	Lead		
Lead-Lag Optimize?				Yes		Yes		Yes	Yes	Yes		
Recall Mode		C-Max		Max		None		Max	Max	None	Max	
Act Effct Green (s)		29.0		37.0	49.0	41.4		22.0	29.2	13.1	42.8	
Actuated g/C Ratio		0.29		0.37	0.49	0.41		0.22	0.29	0.13	0.43	
v/c Ratio		0.39		0.59	0.58	0.91		0.29	0.16	0.87	0.49	
Control Delay		30.0		27.2	21.6	35.5		33.7	0.9	65.4	18.6	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		30.0		27.2	21.6	35.5		33.7	0.9	65.4	18.6	
LOS		С		C	С	D		C	A	F	В	
Approach Delay		30.0			28.6	_		26.5		_	37.4	
Approach LOS		C			C			C			D	
Queue Length 50th (m)		27.8		25.3	66.1	39.9		17.7	0.0	35.8	31.5	
Queue Length 95th (m)		40.4		41.4	97.3	#89.7		27.8	0.0	#60.1	46.3	
Internal Link Dist (m)		172.2			106.8	1100.11		136.3	0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	52.8	
Turn Bay Length (m)									90.0	85.0		
Base Capacity (vph)		882		356	855	594		729	368	413	1091	
Starvation Cap Reductn		0		0	0	0		0	0	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductn		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.39		0.59	0.58	0.91		0.29	0.16	0.87	0.49	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 64 (64%), Reference	d to phase	2:EBT ar	d 6:WB	TL, Start o	f Green							

Natural Cycle: 100


Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
Total Split (s)	5.0	10.0	36.0	5.0
Total Split (%)	5%	10%	36%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)				
Lead/Lag	Lag	Lag		Lead
•	Ü			
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Storage Cap Reductn Reduced v/c Ratio				

Lanes, Volumes, Timings 3: Elgin & Laurier/City Hall

2027 Future Background AM Peak Hour

Maximum v/c Ratio: 0.91
Intersection Signal Delay: 31.4
Intersection Capacity Utilization 83.8%
ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: Elgin & Laurier/City Hall

Lanes, Volumes, Timings 4: Metcalfe & Gloucester 2027 Future Background

AM Peak Hour

	1	-	*	1	-	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations					†			414				
Traffic Volume (vph)	0	0	0	0	164	74	247	772	0	0	0	
Future Volume (vph)	0	0	0	0	164	74	247	772	0	0	0	
Satd. Flow (prot)	0	0	0	0	2845	0	0	4696	0	0	0	
Flt Permitted								0.988				
Satd. Flow (perm)	0	0	0	0	2845	0	0	4315	0	0	0	
Satd. Flow (RTOR)					29			89				
Lane Group Flow (vph)	0	0	0	0	238	0	0	1019	0	0	0	
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					25.0		50.0	50.0				
Total Split (%)					33.3%		66.7%	66.7%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					19.9			45.0				
Actuated g/C Ratio					0.27			0.60				
v/c Ratio					0.31			0.39				
Control Delay					20.5			7.6				
Queue Delay					0.0			0.0				
Total Delay					20.5			7.6				
LOS					C			Α.				
Approach Delay					20.5			7.6				
Approach LOS					20.5 C			7.0 A				
Queue Length 50th (m)					12.3			22.0				
Queue Length 95th (m)					21.3			29.5				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)		04.5			40.0			00.0			51.7	
Base Capacity (vph)					776			2624				
Starvation Cap Reductn					0			0				
Spillback Cap Reductn					0			105				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.31			0.40				
					0.01			0.40				
Intersection Summary Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 73 (97%), Referenced	I to phase	2:NBTI	Start of G	ireen								
Natural Cycle: 60	to pridate	L.1401L,	Clart of C									
Control Type: Actuated-Coor	dinated											

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2027 Future Background AM Peak Hour

Maximum v/c Ratio: 0.39
Intersection Signal Delay: 10.0
Intersection LOS: B
Intersection Capacity Utilization 43.3%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

						-	- 1				*	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7		† 1>		7	44	
Traffic Volume (vph)	31	7	31	1	0	9	0	274	43	17	328	0
Future Volume (vph)	31	7	31	1	0	9	0	274	43	17	328	0
Satd. Flow (prot)	0	1506	0	1658	0	1483	0	3077	0	1658	3252	0
Flt Permitted		0.978		0.712						0.560		
Satd. Flow (perm)	0	1427	0	1188	0	1294	0	3077	0	855	3252	0
Satd. Flow (RTOR)		31				53		33				
Lane Group Flow (vph)	0	69	0	1	0	9	0	317	0	17	328	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	27.0	27.0		27.0		27.0		58.0		58.0	58.0	
Total Split (%)	30.0%	30.0%		30.0%		30.0%		64.4%		64.4%	64.4%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		25.9		25.9		25.9		52.6		52.6	52.6	
Actuated g/C Ratio		0.29		0.29		0.29		0.58		0.58	0.58	
v/c Ratio		0.16		0.00		0.02		0.17		0.03	0.17	
Control Delay		16.1		23.0		0.1		8.0		8.2	8.9	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.1		23.0		0.1		8.0		8.2	8.9	
LOS		В		С		Α		Α		Α	Α	
Approach Delay		16.1			2.4			8.0			8.9	
Approach LOS		В			Α			Α			Α	
Queue Length 50th (m)		4.8		0.1		0.0		10.9		1.2	12.7	
Queue Length 95th (m)		14.5		1.3		0.0		16.9		3.8	18.8	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		432		341		410		1812		499	1900	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.16		0.00		0.02		0.17		0.03	0.17	

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

2027 Future Background AM Peak Hour

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	3	/
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Background

Synchro 11 Report

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2027 Future Background AM Peak Hour

Maximum v/c Ratio: 0.17 Intersection LOS: A Intersection Signal Delay: 9.1 Intersection Capacity Utilization 66.3% ICU Level of Service C Analysis Period (min) 15

Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Offset: 22 (29%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	•	_
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)	None	None
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Internation Comments		
Intersection Summary		

Lanes, Volumes, Timings 1: O'Connor & Laurier

2027 Future Background PM Peak Hour

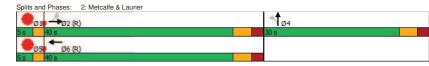
Maximum v/c Ratio: 0.60 Intersection LOS: C Intersection Signal Delay: 21.6 Intersection Capacity Utilization 61.4% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier

2027 Future Background PM Peak Hour

	•	→	*	1	—	*	1	†	1	1	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ર્ન			†			4147>				
Traffic Volume (vph)	10	245	0	0	392	166	33	395	126	0	0	C
Future Volume (vph)	10	245	0	0	392	166	33	395	126	0	0	C
Satd. Flow (prot)	0	1742	0	0	2811	0	0	3749	0	0	0	C
Flt Permitted		0.974						0.997				
Satd. Flow (perm)	0	1691	0	0	2811	0	0	3666	0	0	0	C
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	283	0	0	620	0	0	616	0	0	0	C
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		19.5	19.5				
Total Split (s)	40.0	40.0			40.0		30.0	30.0				
Total Split (%)	53.3%	53.3%			53.3%		40.0%	40.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag							
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)	-	39.3			39.3			24.5				
Actuated g/C Ratio		0.52			0.52			0.33				
v/c Ratio		0.32			0.42			0.51				
Control Delay		6.6			12.0			17.8				
Queue Delay		0.0			0.0			0.3				
Total Delay		6.6			12.0			18.1				
LOS		Α			В			В				
Approach Delay		6.6			12.0			18.1				
Approach LOS		Α			В			В				
Queue Length 50th (m)		8.9			26.2			16.7				
Queue Length 95th (m)		13.5			37.8			21.5				
Internal Link Dist (m)		158.7			172.2			51.7			65.1	
Turn Bay Length (m)		150.7			172.2			01.7			00.1	
Base Capacity (vph)		886			1472			1197				
Starvation Cap Reductn		000			0			175				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.32			0.42			0.60				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 30 (40%), Reference	ed to phase	2:EBTL a	and 6:WB	T, Start o	f Green							
Natural Cycle: 65												
Control Type: Actuated-Cor	ordinated											

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2027 Future Background PM Peak Hour


Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		-
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

2027 Future Background PM Peak Hour

Maximum v/c Ratio: 0.51
Intersection Signal Delay: 13.5 Intersection LOS: B
Intersection Capacity Utilization 48.0% ICU Level of Service A
Analysis Period (min) 15

Lanes, Volumes, Timings

2: Metcalfe & Laurier

	•	→	*	1	-	*	1	†	1	1	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† 1>			1	7		^	7	ሻሻ	† 1>	
Traffic Volume (vph)	0	362	29	117	429	413	0	273	161	382	354	108
Future Volume (vph)	0	362	29	117	429	413	0	273	161	382	354	108
Satd. Flow (prot)	0	3205	0	1642	1745	1483	0	3316	1483	3154	2636	0
Flt Permitted				0.465						0.950		
Satd. Flow (perm)	0	3205	0	696	1745	976	0	3316	680	2237	2636	0
Satd. Flow (RTOR)						214			149		51	
Lane Group Flow (vph)	0	434	0	130	477	459	0	303	179	424	513	0
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	56	3		4	9	3	8	
Permitted Phases				6		6			4			
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase												
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		14.0		21.8		28.2	14.0	21.8	50.0	
Total Split (%)		31.0%		14.0%		21.8%		28.2%	14.0%	21.8%	50.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
All-Red Time (s)		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
Lead/Lag				Lead		Lead		Lag	Lead	Lead		
Lead-Lag Optimize?				Yes		Yes		Yes	Yes	Yes		
Recall Mode		C-Max		None		None		Max	None	None	Max	
Act Effct Green (s)		29.0		35.0	48.0	41.4		22.0	28.2	14.1	43.8	
Actuated g/C Ratio		0.29		0.35	0.48	0.41		0.22	0.28	0.14	0.44	
v/c Ratio		0.47		0.42	0.57	0.77		0.42	0.51	0.95	0.43	
Control Delay		31.2		23.1	22.0	21.4		25.2	8.5	76.6	18.8	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		31.2		23.1	22.0	21.4		25.2	8.5	76.6	18.8	
LOS		С		С	С	С		С	A	Е	В	
Approach Delay		31.2			21.8			19.0			44.9	
Approach LOS		C			C			В			D	
Queue Length 50th (m)		36.3		15.2	63.8	29.7		16.1	1.3	42.6	31.6	
Queue Length 95th (m)		50.7		27.2	94.4	#58.5		23.2	9.0	#71.4	45.1	
Internal Link Dist (m)		172.2		27.2	106.8	#50.5		136.3	5.0	#71.4	52.8	
Turn Bay Length (m)		.,			100.0			100.0	90.0	85.0	02.0	
Base Capacity (vph)		930		309	837	600		729	354	444	1183	
Starvation Cap Reductn		0		0	007	000		0	0	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductn		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.47		0.42	0.57	0.77		0.42	0.51	0.95	0.43	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												

Offset: 52 (52%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 100

Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations	101	200	200	טוט
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
Total Split (s)	5.0	10.0	35.0	5.0
Total Split (%)	5%	10%	35%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag	Lag	Lag		Lead
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)	None	None	U-IVIAX	None
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				

Lanes, Volumes, Timings 3: Elgin & Laurier

2027 Future Background PM Peak Hour

Maximum v/c Ratio: 0.95 Intersection LOS: C Intersection Signal Delay: 30.2 ICU Level of Service D Intersection Capacity Utilization 79.1% Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Elgin & Laurier

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

	•	\rightarrow	*	1	-	*	1	†	1	1	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations					† p			414				
Traffic Volume (vph)	0	0	0	0	209	127	114	420	0	0	0	
Future Volume (vph)	0	0	0	0	209	127	114	420	0	0	0	
Satd. Flow (prot)	0	0	0	0	2923	0	0	4712	0	0	0	
Flt Permitted								0.989				
Satd. Flow (perm)	0	0	0	0	2923	0	0	4395	0	0	0	
Satd. Flow (RTOR)					17			92				
Lane Group Flow (vph)	0	0	0	0	373	0	0	594	0	0	0	
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					30.0		45.0	45.0				
Total Split (%)					40.0%		60.0%	60.0%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					24.9			40.0				
Actuated g/C Ratio					0.33			0.53				
v/c Ratio					0.38			0.25				
Control Delay					19.6			8.2				
Queue Delay					0.0			0.0				
Total Delay					19.6			8.2				
LOS					В			Α				
Approach Delay					19.6			8.2				
Approach LOS					В			Α				
Queue Length 50th (m)					19.8			12.7				
Queue Length 95th (m)					30.8			18.4				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)												
Base Capacity (vph)					981			2386				
Starvation Cap Reductn					0			0				
Spillback Cap Reductn					0			0				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.38			0.25				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 67 (89%), Referenced	d to phase	2:NBTL,	Start of G	reen								
Natural Cycle: 60												

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2027 Future Background PM Peak Hour

Maximum v/c Ratio: 0.38
Intersection Signal Delay: 12.6
Intersection LOS: B
Intersection Capacity Utilization 41.9%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2027 Future Background PM Peak Hour

	•	\rightarrow	*	1	←	*	1	1	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		٦		7		† 1>		7	11	
Traffic Volume (vph)	113	1	107	31	0	23	0	320	5	7	452	0
Future Volume (vph)	113	1	107	31	0	23	0	320	5	7	452	0
Satd. Flow (prot)	0	1491	0	1658	0	1483	0	3260	0	1658	3316	0
Flt Permitted		0.975		0.605						0.522		
Satd. Flow (perm)	0	1397	0	983	0	1286	0	3260	0	751	3316	0
Satd. Flow (RTOR)		55				48		2				
Lane Group Flow (vph)	0	246	0	34	0	26	0	362	0	8	502	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	45.0	45.0		45.0		45.0		50.0		50.0	50.0	
Total Split (%)	45.0%	45.0%		45.0%		45.0%		50.0%		50.0%	50.0%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		43.9		43.9		43.9		44.6		44.6	44.6	
Actuated g/C Ratio		0.44		0.44		0.44		0.45		0.45	0.45	
v/c Ratio		0.38		0.08		0.04		0.25		0.02	0.34	
Control Delay		16.5		17.1		2.0		17.7		13.9	18.0	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.5		17.1		2.0		17.7		13.9	18.0	
LOS		В		В		Α		В		В	В	
Approach Delay		16.5			10.6			17.7			18.0	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		23.7		3.7		0.0		22.2		0.6	38.1	
Queue Length 95th (m)		42.7		9.6		2.2		31.8		m1.3	47.2	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		644		431		591		1455		334	1478	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn												
Storage Gap neductii		0		0		0		0		0	0	

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2027 Future Background PM Peak Hour

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
· · · · · · · · · · · · · · · · · · ·		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Background

Synchro 11 Report Page 13

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

2027 Future Background PM Peak Hour

Maximum v/c Ratio: 0.38
Intersection Signal Delay: 17.2
Intersection LOS: B
Intersection Capacity Utilization 66.6%
ICU Level of Service C
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Appendix H

Synchro Intersection Worksheets – 2032 Future Background Conditions

Lanes, Volumes, Timings

1: O'Connor & Laurier

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	1	3
Permitted Phases Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
//c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
nternal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
ntersection Summary		

Lanes, Volumes, Timings 1: O'Connor & Laurier

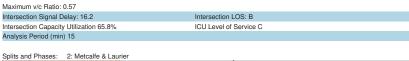
2032 Future Background AM Peak Hour

Maximum v/c Ratio: 0.63 Intersection LOS: B Intersection Signal Delay: 17.9 ICU Level of Service B Intersection Capacity Utilization 61.2% Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier


	•	\rightarrow	7	1	←	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		લી			† \$			4143				
Traffic Volume (vph)	22	288	0	0	391	256	96	704	74	0	0	C
Future Volume (vph)	22	288	0	0	391	256	96	704	74	0	0	C
Satd. Flow (prot)	0	1734	0	0	2511	0	0	4356	0	0	0	C
Flt Permitted		0.938						0.995				
Satd. Flow (perm)	0	1617	0	0	2511	0	0	4161	0	0	0	C
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	310	0	0	647	0	0	874	0	0	0	C
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (%)	49.3%	49.3%			49.3%		44.0%	44.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag							
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)		36.3			36.3			27.5				
Actuated g/C Ratio		0.48			0.48			0.37				
v/c Ratio		0.40			0.53			0.57				
Control Delay		19.1			15.5			15.3				
Queue Delay		0.0			0.0			0.4				
Total Delay		19.1			15.5			15.7				
LOS		В			В			В				
Approach Delay		19.1			15.5			15.7				
Approach LOS		В			В			В				
Queue Length 50th (m)		31.3			31.6			36.9				
Queue Length 95th (m)		56.3			46.1			49.0				
Internal Link Dist (m)		158.7			172.2			51.7			65.1	
Turn Bay Length (m)												
Base Capacity (vph)		782			1215			1525				
Starvation Cap Reductn		0			0			239				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.40			0.53			0.68				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 48 (64%), Reference	ed to phase	2:EBTL a	nd 6:WB	T, Start o	f Green							
Natural Cycle: 75												

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2032 Future Background

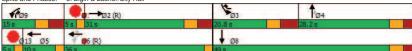
AM Peak Hour

Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2032 Future Background AM Peak Hour

	•	\rightarrow	*	1	-	•	1	1	1	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		† 1>			1	7		^	7	ሻሻ	† p	
Γraffic Volume (vph)	0	285	57	209	497	538	0	213	59	361	376	17
uture Volume (vph)	0	285	57	209	497	538	0	213	59	361	376	17
Satd. Flow (prot)	0	3043	0	1658	1745	1483	0	3316	1483	3154	2434	
Flt Permitted				0.532						0.950		
Satd. Flow (perm)	0	3043	0	771	1745	920	0	3316	680	1878	2434	
Satd. Flow (RTOR)						238			149		91	
Lane Group Flow (vph)	0	342	0	209	497	538	0	213	59	361	546	
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	56	3		4	9	3	8	
Permitted Phases				6		6			4			
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase												
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		15.0		20.8		28.2	15.0	20.8	49.0	
Total Split (%)		31.0%		15.0%		20.8%		28.2%	15.0%	20.8%	49.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
All-Red Time (s)		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
_ost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
Lead/Lag				Lead		Lead		Lag	Lead	Lead	· · · ·	
Lead-Lag Optimize?				Yes		Yes		Yes	Yes	Yes		
Recall Mode		C-Max		Max		None		Max	Max	None	Max	
Act Effct Green (s)		29.0		37.0	49.0	41.4		22.0	29.2	13.1	42.8	
Actuated g/C Ratio		0.29		0.37	0.49	0.41		0.22	0.29	0.13	0.43	
v/c Ratio		0.39		0.59	0.58	0.91		0.29	0.16	0.87	0.50	
Control Delay		30.0		27.2	21.6	35.5		33.8	0.9	65.4	18.9	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		30.0		27.2	21.6	35.5		33.8	0.9	65.4	18.9	
LOS		C		C	C	D		C	A	E	В	
Approach Delay		30.0			28.6			26.7	- /		37.4	
Approach LOS		C			C			C			D D	
Queue Length 50th (m)		27.8		25.3	66.1	39.9		18.2	0.0	35.8	32.5	
Queue Length 95th (m)		40.4		41.4	97.3	#89.7		28.4	0.0	#60.1	47.6	
Internal Link Dist (m)		172.2		41.4	106.8	#05.7		136.3	0.0	#00.1	52.8	
Turn Bay Length (m)		172.2			100.0			100.0	90.0	85.0	32.0	
Base Capacity (vph)		882		356	855	594		729	368	413	1093	
Starvation Cap Reductn		0		0	0	0		0	0	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductin		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.39		0.59	0.58	0.91		0.29	0.16	0.87	0.50	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 64 (64%), Reference	d to phace	2-EBT or	d 6·MD	TI Start o	f Groon							
Natural Cycle: 100	a to pridate	L.LDT at	U. TVD	. L, Olait O	. Grooti							

Natural Cycle: 100


Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
Permitted Phases	'	3	0	10
Detector Phase				
Switch Phase				
	4.0	4.0	F 0	4.0
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
Total Split (s)	5.0	10.0	36.0	5.0
Total Split (%)	5%	10%	36%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag	Lag	Lag		Lead
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Storage Cap Reductn Reduced v/c Ratio				

Lanes, Volumes, Timings 3: Elgin & Laurier/City Hall

2032 Future Background AM Peak Hour

Maximum v/c Ratio: 0.91
Intersection Signal Delay: 31.5
Intersection LOS: C
Intersection Capacity Utilization 83.8%
ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: Elgin & Laurier/City Hall

Lanes, Volumes, Timings 4: Metcalfe & Gloucester 2032 Future Background

AM Peak Hour

	•	→	*	1	←	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations					† 1>			ተተቡ				
Traffic Volume (vph)	0	0	0	0	164	74	247	810	0	0	0	C
Future Volume (vph)	0	0	0	0	164	74	247	810	0	0	0	C
Satd. Flow (prot)	0	0	0	0	2845	0	0	4696	0	0	0	C
Flt Permitted								0.988				
Satd. Flow (perm)	0	0	0	0	2845	0	0	4330	0	0	0	C
Satd. Flow (RTOR)					26			89				
Lane Group Flow (vph)	0	0	0	0	238	0	0	1057	0	0	0	C
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					25.0		50.0	50.0				
Total Split (%)					33.3%		66.7%	66.7%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag					0.1			0.0				
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					19.9		O max	45.0				
Actuated g/C Ratio					0.27			0.60				
v/c Ratio					0.21			0.40				
Control Delay					20.8			7.7				
Queue Delay					0.0			0.0				
Total Delay					20.8			7.7				
LOS					C			Α.,				
Approach Delay					20.8			7.7				
Approach LOS					20.0			Α.				
Queue Length 50th (m)					12.4			23.2				
Queue Length 95th (m)					21.5			30.9				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)		34.3			40.0			33.0			31.7	
Base Capacity (vph)					773			2633				
Starvation Cap Reductn					0			2033				
Spillback Cap Reductn					0			144				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.31			0.42				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 73 (97%), Reference	d to phase	2:NBTL,	Start of G	ireen								
Natural Cycle: 60												
Control Type: Actuated-Con	rdinated											

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2032 Future Background AM Peak Hour

Maximum v/c Ratio: 0.40
Intersection Signal Delay: 10.1
Intersection LOS: B
Intersection Capacity Utilization 44.1%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean

2032 Future Background

AM Peak Hour

	۶	→	*	1	←	*	1	†	~	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		ř		† 1>		7	^	
Traffic Volume (vph)	31	7	31	1	0	9	0	281	43	17	336	0
Future Volume (vph)	31	7	31	1	0	9	0	281	43	17	336	0
Satd. Flow (prot)	0	1506	0	1658	0	1483	0	3079	0	1658	3252	0
Flt Permitted		0.978		0.712						0.556		
Satd. Flow (perm)	0	1427	0	1188	0	1294	0	3079	0	850	3252	0
Satd. Flow (RTOR)		31				53		32				
Lane Group Flow (vph)	0	69	0	1	0	9	0	324	0	17	336	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	27.0	27.0		27.0		27.0		58.0		58.0	58.0	
Total Split (%)	30.0%	30.0%		30.0%		30.0%		64.4%		64.4%	64.4%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		25.9		25.9		25.9		52.6		52.6	52.6	
Actuated g/C Ratio		0.29		0.29		0.29		0.58		0.58	0.58	
v/c Ratio		0.16		0.00		0.02		0.18		0.03	0.18	
Control Delay		16.1		23.0		0.1		8.1		8.2	9.0	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.1		23.0		0.1		8.1		8.2	9.0	
LOS		В		С		Α		Α		Α	Α	
Approach Delay		16.1			2.4			8.1			8.9	
Approach LOS		В			Α			Α			Α	
Queue Length 50th (m)		4.8		0.1		0.0		11.2		1.2	13.1	
Queue Length 95th (m)		14.5		1.3		0.0		17.3		3.8	19.3	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		432		341		410		1812		496	1900	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.16		0.00		0.02		0.18		0.03	0.18	

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Lanes, Volumes, Timings 5: Elgin & Nepean

2032 Future Background AM Peak Hour

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 11 Report

Lanes, Volumes, Timings 5: Elgin & Nepean 2032 Future Background AM Peak Hour

Maximum v/c Ratio: 0.18
Intersection Signal Delay: 9.1
Intersection Capacity Utilization 66.3%
ICU Level of Service C
Analysis Period (min) 15

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
rieduced v/c rialio		
Intersection Summary		

Lanes, Volumes, Timings 1: O'Connor & Laurier

2032 Future Background PM Peak Hour

Maximum v/c Ratio: 0.60 Intersection LOS: C Intersection Signal Delay: 21.6 ICU Level of Service B Intersection Capacity Utilization 61.4% Analysis Period (min) 15 Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier

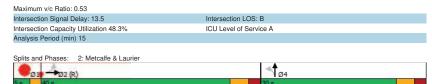
2032 Future Background PM Peak Hour

	•	→	7	1	←	*	1	†	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			† p			414				
Traffic Volume (vph)	10	245	0	0	392	166	33	415	126	0	0	(
Future Volume (vph)	10	245	0	0	392	166	33	415	126	0	0	(
Satd. Flow (prot)	0	1742	0	0	2811	0	0	3782	0	0	0	(
Flt Permitted		0.974						0.997				
Satd. Flow (perm)	0	1691	0	0	2811	0	0	3701	0	0	0	(
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	283	0	0	620	0	0	638	0	0	0	(
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		19.5	19.5				
Total Split (s)	40.0	40.0			40.0		30.0	30.0				
Total Split (%)	53.3%	53.3%			53.3%		40.0%	40.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag							
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)		39.3			39.3		-	24.5				
Actuated g/C Ratio		0.52			0.52			0.33				
v/c Ratio		0.32			0.42			0.53				
Control Delay		6.6			12.0			17.7				
Queue Delay		0.0			0.0			0.3				
Total Delay		6.6			12.0			18.1				
LOS		A			В			В				
Approach Delay		6.6			12.0			18.1				
Approach LOS		A			В			В				
Queue Length 50th (m)		8.9			26.2			16.9				
Queue Length 95th (m)		13.5			37.8			21.6				
Internal Link Dist (m)		158.7			172.2			51.7			65.1	
Turn Bay Length (m)		100.7			172.2			01			00.1	
Base Capacity (vph)		886			1472			1208				
Starvation Cap Reductn		0			0			176				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.32			0.42			0.62				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 30 (40%), Reference	ed to phase	2:EBTL a	ind 6:WB	T, Start o	f Green							
Natural Cycle: 65												

Lanes, Volumes, Timings 2: Metcalfe & Laurier

2032 Future Background

2032 Fuluie	Dackground
	PM Peak Hou


Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2032 Future Background

Synchro 11 Report Page 5

Lanes, Volumes, Timings 2: Metcalfe & Laurier

2032 Future Background PM Peak Hour

Lanes, Volumes, Timings

3: Elgin & Laurier

	•	-	*	1	←	*	4	†	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† p		*	1	7		44	7	1,1	† }	
Traffic Volume (vph)	0	362	29	117	429	413	0	280	161	382	363	108
Future Volume (vph)	0	362	29	117	429	413	0	280	161	382	363	108
Satd. Flow (prot)	0	3205	0	1642	1745	1483	0	3316	1483	3154	2647	0
Flt Permitted				0.465						0.950		
Satd. Flow (perm)	0	3205	0	696	1745	976	0	3316	680	2247	2647	0
Satd. Flow (RTOR)						213			149		50	
Lane Group Flow (vph)	0	434	0	130	477	459	0	311	179	424	523	0
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	56	3		4	9	3	8	
Permitted Phases				6		6			4			
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase												
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		14.0		21.8		28.2	14.0	21.8	50.0	
Total Split (%)		31.0%		14.0%		21.8%		28.2%	14.0%	21.8%	50.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
All-Red Time (s)		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
Lead/Lag				Lead		Lead		Lag	Lead	Lead		
Lead-Lag Optimize?				Yes		Yes		Yes	Yes	Yes		
Recall Mode		C-Max		None		None		Max	None	None	Max	
Act Effct Green (s)		29.0		35.0	48.0	41.4		22.0	28.2	14.1	43.8	
Actuated g/C Ratio		0.29		0.35	0.48	0.41		0.22	0.28	0.14	0.44	
v/c Ratio		0.47		0.42	0.57	0.77		0.43	0.51	0.95	0.44	
Control Delay		31.2		23.1	22.0	21.4		25.1	8.4	76.6	19.0	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		31.2		23.1	22.0	21.4		25.1	8.4	76.6	19.0	
LOS		С		С	С	С		С	Α	Е	В	
Approach Delay		31.2			21.9			19.0			44.8	
Approach LOS		С			С			В			D	
Queue Length 50th (m)		36.3		15.2	63.8	29.9		16.4	1.4	42.6	32.4	
Queue Length 95th (m)		50.7		27.2	94.4	#58.8		23.6	9.1	#71.4	46.2	
Internal Link Dist (m)		172.2			106.8			136.3			52.8	
Turn Bay Length (m)									90.0	85.0		
Base Capacity (vph)		930		309	837	600		729	354	444	1187	
Starvation Cap Reductn		0		0	0	0		0	0	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductn		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.47		0.42	0.57	0.77		0.43	0.51	0.95	0.44	
Intersection Summary												
Cycle Length: 100												
Cyolo Longin. 100												

Actuated Cycle Length: 100

Offset: 52 (52%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 100

Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
Permitted Phases		9	U	10
Detector Phase				
Switch Phase				
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
Total Split (s)	5.0	10.0	35.0	5.0
Total Split (%)	5.0	10.0	35%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
Lost Time Adjust (s) Total Lost Time (s)				
	Lan	1		Land
Lead/Lag	Lag	Lag		Lead
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Lanes, Volumes, Timings 3: Elgin & Laurier

2032 Future Background PM Peak Hour

Maximum v/c Ratio: 0.95 Intersection Signal Delay: 30.1 Intersection LOS: C Intersection Capacity Utilization 79.1% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

	•	→	*	1	←	*	1	†	1	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations					† 1>			414				
Traffic Volume (vph)	0	0	0	0	209	127	114	442	0	0	0	
Future Volume (vph)	0	0	0	0	209	127	114	442	0	0	0	
Satd. Flow (prot)	0	0	0	0	2923	0	0	4716	0	0	0	
Flt Permitted								0.990				
Satd. Flow (perm)	0	0	0	0	2923	0	0	4412	0	0	0	
Satd. Flow (RTOR)					16			92				
Lane Group Flow (vph)	0	0	0	0	373	0	0	618	0	0	0	
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					30.0		45.0	45.0				
Total Split (%)					40.0%		60.0%	60.0%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					24.9		-	40.0				
Actuated g/C Ratio					0.33			0.53				
v/c Ratio					0.38			0.26				
Control Delay					19.7			8.3				
Queue Delay					0.0			0.0				
Total Delay					19.7			8.3				
LOS					В			A				
Approach Delay					19.7			8.3				
Approach LOS					В			Α.				
Queue Length 50th (m)					19.9			13.4				
Queue Length 95th (m)					30.9			19.2				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)		01.0			10.0			00.0			01	
Base Capacity (vph)					981			2396				
Starvation Cap Reductn					0			0				
Spillback Cap Reductn					0			0				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.38			0.26				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 67 (89%), Referenced	d to phase	2:NBTL,	Start of G	ireen								
Natural Cycle: 60												
Control Type: Actuated-Coor	rdinated											

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2032 Future Background PM Peak Hour

Maximum v/c Ratio: 0.38
Intersection Signal Delay: 12.6
Intersection Capacity Utilization 41.9%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2032 Future Background PM Peak Hour

	•	\rightarrow	*	1	-	*	1	1	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7		†		7	44	
Traffic Volume (vph)	113	1	107	31	0	23	0	328	5	7	464	0
Future Volume (vph)	113	1	107	31	0	23	0	328	5	7	464	0
Satd. Flow (prot)	0	1491	0	1658	0	1483	0	3260	0	1658	3316	0
Flt Permitted		0.975		0.605						0.516		
Satd. Flow (perm)	0	1397	0	983	0	1286	0	3260	0	744	3316	0
Satd. Flow (RTOR)		55				48		2				
Lane Group Flow (vph)	0	246	0	34	0	26	0	370	0	8	516	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	45.0	45.0		45.0		45.0		50.0		50.0	50.0	
Total Split (%)	45.0%	45.0%		45.0%		45.0%		50.0%		50.0%	50.0%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		43.9		43.9		43.9		44.6		44.6	44.6	
Actuated g/C Ratio		0.44		0.44		0.44		0.45		0.45	0.45	
v/c Ratio		0.38		0.08		0.04		0.25		0.02	0.35	
Control Delay		16.5		17.1		2.0		17.8		13.9	17.9	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.5		17.1		2.0		17.8		13.9	17.9	
LOS		В		В		Α		В		В	В	
Approach Delay		16.5			10.6			17.8			17.8	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		23.7		3.7		0.0		22.7		0.6	39.5	
Queue Length 95th (m)		42.7		9.6		2.2		32.5		m1.2	48.1	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		644		431		591		1455		331	1478	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.38		0.08		0.04		0.25		0.02	0.35	

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

2032 Future Background PM Peak Hour

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection outlindly		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2032 Future Background

Synchro 11 Report Page 13

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

2032 Future Background PM Peak Hour

Maximum v/c Ratio: 0.38
Intersection Signal Delay: 17.2
Intersection LOS: B
Intersection Capacity Utilization 66.6%
ICU Level of Service C
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

volume for som percentile queue is metered by apstream

Appendix I

Synchro Intersection Worksheets –2027 Future Total Conditions

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Protected Phases Permitted Phases	1	3
Permitted Phases Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

2027 Future Total AM Peak Hour

Maximum v/c Ratio: 0.64
Intersection Signal Delay: 17.9
Intersection LOS: B
Intersection Capacity Utilization 61.6%
ICU Level of Service B
Analysis Period (min) 15

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2027 Future Total AM Peak Hour

	*	-	7	1	—	*	1	†	1	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		ની			†			4147>				
Traffic Volume (vph)	22	293	0	0	401	258	96	671	75	0	0	
Future Volume (vph)	22	293	0	0	401	258	96	671	75	0	0	
Satd. Flow (prot)	0	1736	0	0	2518	0	0	4335	0	0	0	
Flt Permitted		0.937						0.994				
Satd. Flow (perm)	0	1616	0	0	2518	0	0	4133	0	0	0	
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	315	0	0	659	0	0	842	0	0	0	
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (%)	49.3%	49.3%			49.3%		44.0%	44.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag							
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)		36.3			36.3			27.5				
Actuated g/C Ratio		0.48			0.48			0.37				
v/c Ratio		0.40			0.54			0.56				
Control Delay		19.3			15.6			15.2				
Queue Delay		0.0			0.0			0.4				
Total Delay		19.3			15.6			15.6				
LOS		В			В			В				
Approach Delay		19.3			15.6			15.6				
Approach LOS		В			В			В				
Queue Length 50th (m)		32.0			32.4			35.3				
Queue Length 95th (m)		57.1			47.2			47.2				
Internal Link Dist (m)		158.7			93.1			51.7			65.1	
Turn Bay Length (m)												
Base Capacity (vph)		782			1218			1515				
Starvation Cap Reductn		0			0			249				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.40			0.54			0.67				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 48 (64%), Reference	ed to phase	2:EBTL a	ind 6:WB	T, Start o	f Green							

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2027 Future Total AM Peak Hour

Lane Group	Ø1	Ø5
Lane Configurations		23
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type Protected Phases	1	5
	1	5
Permitted Phases Detector Phase		
Switch Phase		4.0
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection Sullillary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Total

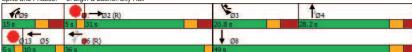
Synchro 11 Report Page 5

Lanes, Volumes, Timings 2: Metcalfe & Laurier

2027 Future Total AM Peak Hour

Maximum v/c Ratio: 0.56
Intersection Signal Delay: 16.3 Intersection LOS: B
Intersection Capacity Utilization 65.4% ICU Level of Service C
Analysis Period (min) 15

Natural Cycle: 100


Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
Total Split (s)	5.0	10.0	36.0	5.0
Total Split (%)	5%	10%	36%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)				
Lead/Lag	Lag	Lag		Lead
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)	140110	140110	Olviax	140110
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
•				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

2027 Future Total AM Peak Hour

Maximum v/c Ratio: 0.91
Intersection Signal Delay: 31.4 Intersection LOS: C
Intersection Capacity Utilization 83.8% ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Elgin & Laurier/City Hall

Lanes, Volumes, Timings 4: Metcalfe & Gloucester 2027 Future Total AM Peak Hour

	۶	→	*	1	←	*	1	1	1	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					† p			441>				
Traffic Volume (vph)	0	0	0	0	164	74	247	773	0	0	0	0
Future Volume (vph)	0	0	0	0	164	74	247	773	0	0	0	0
Satd. Flow (prot)	0	0	0	0	2845	0	0	4696	0	0	0	0
Flt Permitted								0.988				
Satd. Flow (perm)	0	0	0	0	2845	0	0	4316	0	0	0	0
Satd. Flow (RTOR)					28			89				
Lane Group Flow (vph)	0	0	0	0	238	0	0	1020	0	0	0	0
Turn Type		_	•		NA	-	Perm	NA	-	•	_	
Protected Phases					4			2				
Permitted Phases							2	_				
Detector Phase					4		2	2				
Switch Phase								=				
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					25.0		50.0	50.0				
Total Split (%)					33.3%		66.7%	66.7%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0		1.7	0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag					3.1			5.0				
Lead-Lag Optimize? Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					19.9		U-IVIAX	45.0				
Actuated g/C Ratio					0.27			0.60				
v/c Ratio					0.27			0.80				
					20.6			7.6				
Control Delay												
Queue Delay					0.0			0.0				
Total Delay					20.6			7.6				
LOS					С			A				
Approach Delay					20.6			7.6				
Approach LOS					С			Α				
Queue Length 50th (m)					12.3			22.1				
Queue Length 95th (m)					21.4			29.6				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)												
Base Capacity (vph)					775			2625				
Starvation Cap Reductn					0			0				
Spillback Cap Reductn					0			111				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.31			0.41				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 73 (97%), Referenced	to phase	2:NBTL,	Start of G	ireen								
Natural Cycle: 60												
Control Type: Actuated-Coord	dinated											

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Total

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2027 Future Total AM Peak Hour

Maximum v/c Ratio: 0.39
Intersection Signal Delay: 10.0
Intersection LOS: B
Intersection Capacity Utilization 43.3%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2027 Future Total AM Peak Hour

				*			1	9.9	1		*	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		٦		7		† p		7	44	
Traffic Volume (vph)	31	7	31	1	0	9	0	274	43	17	330	0
Future Volume (vph)	31	7	31	1	0	9	0	274	43	17	330	0
Satd. Flow (prot)	0	1506	0	1658	0	1483	0	3077	0	1658	3252	0
Flt Permitted		0.978		0.712						0.560		
Satd. Flow (perm)	0	1427	0	1188	0	1294	0	3077	0	855	3252	0
Satd. Flow (RTOR)		31				53		33				
Lane Group Flow (vph)	0	69	0	1	0	9	0	317	0	17	330	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	27.0	27.0		27.0		27.0		58.0		58.0	58.0	
Total Split (%)	30.0%	30.0%		30.0%		30.0%		64.4%		64.4%	64.4%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		25.9		25.9		25.9		52.6		52.6	52.6	
Actuated g/C Ratio		0.29		0.29		0.29		0.58		0.58	0.58	
v/c Ratio		0.16		0.00		0.02		0.17		0.03	0.17	
Control Delay		16.1		23.0		0.1		8.0		8.2	8.9	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.1		23.0		0.1		8.0		8.2	8.9	
LOS		В		С		Α		Α		Α	Α	
Approach Delay		16.1			2.4			8.0			8.9	
Approach LOS		В			Α			Α			Α	
Queue Length 50th (m)		4.8		0.1		0.0		10.9		1.2	12.8	
Queue Length 95th (m)		14.5		1.3		0.0		16.9		3.8	19.0	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		432		341		410		1812		499	1900	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.16		0.00		0.02		0.17		0.03	0.17	

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

2027 Future Total AM Peak Hour

Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Cost Time (s) Lost Time Adjust (s) Total Lost Time (s) Lost Time (s)		
Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (prot) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time Adjust (s)		
Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time Adjust (s)		
Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (?o) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)	3	7
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)		
Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)	1.0	1.0
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)	5.0	5.0
Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)	5.0	5.0
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)	6%	6%
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s)	2.0	2.0
Lost Time Adjust (s) Total Lost Time (s)	0.0	0.0
Total Lost Time (s)		
	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Total

Synchro 11 Report

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2027 Future Total AM Peak Hour

Maximum v/c Ratio: 0.17 Intersection Signal Delay: 9.1 Intersection LOS: A ICU Level of Service C Analysis Period (min) 15

2027 Future Total AM Peak Hour

ınes, Volumes, Timir Access & Laurier	ngs					2
	Accessors.	_	-	4		

	-	*	*	10.50	7	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			ની	1	
Traffic Volume (vph)	338	6	3	711	13	5
Future Volume (vph)	338	6	3	711	13	5
Satd. Flow (prot)	1742	0	0	1745	1620	0
Flt Permitted					0.965	
Satd. Flow (perm)	1742	0	0	1745	1620	0
Lane Group Flow (vph)	344	0	0	714	18	0
Sign Control	Free			Free	Stop	
Intersection Summary						

IIIICI SCI	JUIOIT C		· y
Control	Tymo	Linnia	nalizad

Control Type: Unsignalized Intersection Capacity Utilization 52.0% Analysis Period (min) 15

ICU Level of Service A

HCM 2010 TWSC 6: Access & Laurier

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			લી	Y	
Traffic Vol, veh/h	338	6	3	711	13	5
Future Vol, veh/h	338	6	3	711	13	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage.	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	338	6	3	711	13	5
	500	0	0		10	9

Major/Minor	Major1	M	ajor2	1	Minor1		
Conflicting Flow All	0	0	344	0	1058	341	
Stage 1	-	-	-	-	341	-	
Stage 2	-	-	-	-	717	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	2
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	-	- 2	.218	-	3.518	3.318	3
Pot Cap-1 Maneuver	-		1215	-	249	701	
Stage 1	-	-	-	-	720	-	
Stage 2	-	-	-	-	484	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-		1215	-	248	701	
Mov Cap-2 Maneuver		-	-	-	248	-	
Stage 1	-	-	-	-	720	-	
Stage 2	-	-	-	-	482	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	17.7
HCM LOS			C

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	302	-	-	1215	-
HCM Lane V/C Ratio	0.06	-	-	0.002	-
HCM Control Delay (s)	17.7	-	-	8	0
HCM Lane LOS	С	-	-	Α	Α
HCM 95th %tile Q(veh)	0.2	-	-	0	-

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)	140116	140116
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Outline of Outline Book and		
Spillback Cap Reductn		
Storage Cap Reductn		

2027 Future Total PM Peak Hour

Maximum v/c Ratio: 0.62
Intersection Signal Delay: 21.9
Intersection LOS: C
Intersection Capacity Utilization 62.0%
ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2027 Future Total PM Peak Hour

	۶	-	7	•	←	•	1	†	1	-	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ર્ન			† p			4143				
Traffic Volume (vph)	10	255	0	0	399	167	33	395	128	0	0	
Future Volume (vph)	10	255	0	0	399	167	33	395	128	0	0	
Satd. Flow (prot)	0	1742	0	0	2815	0	0	3740	0	0	0	
Flt Permitted		0.974						0.997				
Satd. Flow (perm)	0	1692	0	0	2815	0	0	3658	0	0	0	
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	294	0	0	629	0	0	618	0	0	0	
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		19.5	19.5				
Total Split (s)	40.0	40.0			40.0		30.0	30.0				
Total Split (%)	53.3%	53.3%			53.3%		40.0%	40.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag							
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)	O Max	39.3			39.3		Max	24.5				
Actuated g/C Ratio		0.52			0.52			0.33				
v/c Ratio		0.33			0.43			0.52				
Control Delay		6.5			12.1			17.8				
Queue Delay		0.0			0.0			0.3				
Total Delay		6.5			12.1			18.1				
LOS		Α			В			В				
Approach Delay		6.5			12.1			18.1				
Approach LOS		0.5 A			В			В				
Queue Length 50th (m)		8.9			26.7			16.7				
Queue Length 95th (m)		13.4			38.4			21.4				
Internal Link Dist (m)		158.7			97.3			51.7			65.1	
Turn Bay Length (m)		100.7			07.0			01.7			00.1	
Base Capacity (vph)		886			1475			1194				
Starvation Cap Reductn		0			0			174				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.33			0.43			0.61				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 30 (40%), Reference	ed to phase	2:EBTL a	ind 6:WB	T, Start o	f Green							
Natural Cycle: 65	·											
Control Type: Actuated-Coo	ordinated											

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2027 Future Total PM Peak Hour


Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductin		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Total

Synchro 11 Report Page 5

Lanes, Volumes, Timings 2: Metcalfe & Laurier

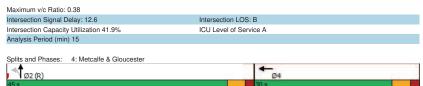
2027 Future Total PM Peak Hour

	*	-	*	1	←	*	1	1	1	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		† 1>		*	1	7		^	7	77	† \$	
Traffic Volume (vph)	0	364	30	117	431	413	0	273	161	382	354	110
Future Volume (vph)	0	364	30	117	431	413	0	273	161	382	354	110
Satd. Flow (prot)	0	3203	0	1642	1745	1483	0	3316	1483	3154	2627	(
Flt Permitted				0.462						0.950		
Satd. Flow (perm)	0	3203	0	692	1745	976	0	3316	680	2237	2627	(
Satd. Flow (RTOR)						214			149		52	
Lane Group Flow (vph)	0	437	0	130	479	459	0	303	179	424	515	(
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	56	3		4	9	3	8	
Permitted Phases				6		6			4			
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase												
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		14.0		21.8		28.2	14.0	21.8	50.0	
Total Split (%)	:	31.0%		14.0%		21.8%		28.2%	14.0%	21.8%	50.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
All-Red Time (s)		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
Lead/Lag				Lead		Lead		Lag	Lead	Lead		
Lead-Lag Optimize?				Yes		Yes		Yes	Yes	Yes		
Recall Mode	(C-Max		None		None		Max	None	None	Max	
Act Effct Green (s)		29.0		35.0	48.0	41.4		22.0	28.2	14.1	43.8	
Actuated g/C Ratio		0.29		0.35	0.48	0.41		0.22	0.28	0.14	0.44	
v/c Ratio		0.47		0.42	0.57	0.77		0.42	0.51	0.95	0.44	
Control Delay		31.2		23.1	22.0	21.4		25.2	8.5	76.6	18.8	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		31.2		23.1	22.0	21.4		25.2	8.5	76.6	18.8	
LOS		C		C	C	С		C	A	F	В	
Approach Delay		31.2			21.9			19.0			44.9	
Approach LOS		C			C			В			D	
Queue Length 50th (m)		36.5		15.2	64.1	29.7		16.1	1.3	42.6	31.7	
Queue Length 95th (m)		51.0		27.2	94.8	#58.5		23.2	9.0	#71.4	45.3	
Internal Link Dist (m)		50.9		21.2	106.8	#50.5		136.3	5.0	#/1.4	52.8	
Turn Bay Length (m)		30.3			100.0			100.0	90.0	85.0	32.0	
Base Capacity (vph)		929		308	837	600		729	354	444	1179	
Starvation Cap Reductn		0		0	037	0		0	0	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductn		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.47		0.42	0.57	0.77		0.42	0.51	0.95	0.44	
		3		0.12	0.07	07		UL	0.01	0.00	U	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100 Offset: 52 (52%) Reference												

Offset: 52 (52%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 100

Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
	1	5	ь	13
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
Total Split (s)	5.0	10.0	35.0	5.0
Total Split (%)	5%	10%	35%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag	Lag	Lag		Lead
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Starvation Cap Reductn Spillback Cap Reductn				
Spillback Cap Reductn				
·				
Spillback Cap Reductn Storage Cap Reductn				


2027 Future Total PM Peak Hour Lanes, Volumes, Timings 4: Metcalfe & Gloucester

€ 09	1	₩ ₀₃	↑ ø4	UTVS
4s	5s 31s	21.8 s	28.2 s	
●ø13 Ø5	₩ 06 (R)	↓ Ø8	111 - 1111	
s 10 s	35 s	50 s		1

	*	\rightarrow	*	1	-	*	1	1	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations					† p			414				
Traffic Volume (vph)	0	0	0	0	209	127	114	422	0	0	0	(
Future Volume (vph)	0	0	0	0	209	127	114	422	0	0	0	(
Satd. Flow (prot)	0	0	0	0	2923	0	0	4712	0	0	0	(
Flt Permitted								0.989				
Satd. Flow (perm)	0	0	0	0	2923	0	0	4396	0	0	0	(
Satd. Flow (RTOR)					17			92				
Lane Group Flow (vph)	0	0	0	0	373	0	0	596	0	0	0	(
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					30.0		45.0	45.0				
Total Split (%)					40.0%		60.0%	60.0%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0		1.7	0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag					0.1			0.0				
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					24.9		O-IVIAX	40.0				
Actuated g/C Ratio					0.33			0.53				
v/c Ratio					0.38			0.25				
Control Delay					19.6			8.2				
Queue Delay					0.0			0.0				
Total Delay					19.6			8.2				
LOS					19.0 B			0.2 A				
Approach Delay					19.6			8.2				
Approach LOS					19.6 B			6.2 A				
Queue Length 50th (m)					19.8			12.7				
					30.8			18.5				
Queue Length 95th (m) Internal Link Dist (m)		34.9			48.3			35.0			51.7	
. ,		34.9			40.3			33.0			31.7	
Turn Bay Length (m)					981			2387				
Base Capacity (vph)					981			2387				
Starvation Cap Reductn								0				
Spillback Cap Reductn					0			-				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.38			0.25				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 67 (89%), Reference	d to phase	2:NBTL,	Start of G	ireen								
Natural Cycle: 60												
Control Type: Actuated-Coo	rdinated											

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2027 Future Total PM Peak Hour

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2027 Future Total PM Peak Hour

	۶	→	*	1	←	*	1	†	~	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7		† 1>		7	^	
Traffic Volume (vph)	113	1	107	31	0	23	0	320	5	7	453	0
Future Volume (vph)	113	1	107	31	0	23	0	320	5	7	453	0
Satd. Flow (prot)	0	1491	0	1658	0	1483	0	3260	0	1658	3316	0
Flt Permitted		0.975		0.605						0.522		
Satd. Flow (perm)	0	1397	0	983	0	1286	0	3260	0	751	3316	0
Satd. Flow (RTOR)		55				48		2				
Lane Group Flow (vph)	0	246	0	34	0	26	0	362	0	8	503	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	45.0	45.0		45.0		45.0		50.0		50.0	50.0	
Total Split (%)	45.0%	45.0%		45.0%		45.0%		50.0%		50.0%	50.0%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		43.9		43.9		43.9		44.6		44.6	44.6	
Actuated g/C Ratio		0.44		0.44		0.44		0.45		0.45	0.45	
v/c Ratio		0.38		0.08		0.04		0.25		0.02	0.34	
Control Delay		16.5		17.1		2.0		17.7		14.1	18.1	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.5		17.1		2.0		17.7		14.1	18.1	
LOS		В		В		Α		В		В	В	
Approach Delay		16.5			10.6			17.7			18.0	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		23.7		3.7		0.0		22.2		0.6	38.2	
Queue Length 95th (m)		42.7		9.6		2.2		31.8		m1.2	47.2	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		644		431		591		1455		334	1478	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.38		0.08		0.04		0.25		0.02	0.34	

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Total

Natural Cycle: 65

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2027 Future Total PM Peak Hour

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		•
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
, , ,		
Total Lost Time (s)	1	Lord
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2027 Future Total

Synchro 11 Report Page 13

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

2027 Future Total PM Peak Hour

Maximum v/c Ratio: 0.38
Intersection Signal Delay: 17.2
Intersection LOS: B
ICU Level of Service C
Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

2027 Future Total PM Peak Hour

	\rightarrow	*	1	—	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑			↑	1	
Traffic Volume (vph)	451	12	4	482	9	3
Future Volume (vph)	451	12	4	482	9	3
Satd. Flow (prot)	1740	0	0	1745	1628	0
Flt Permitted					0.963	
Satd. Flow (perm)	1740	0	0	1745	1628	0
Lane Group Flow (vph)	514	0	0	540	13	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalize	ed					
Intersection Capacity Utili	zation 40.1%			IC	U Level o	of Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>			1	M	
Traffic Vol, veh/h	451	12	4	482	9	3
Future Vol, veh/h	451	12	4	482	9	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	501	13	4	536	10	3
	-			-		
	Major1		Major2		Minor1	
Conflicting Flow All	0	0	514	0	1052	508
Stage 1	-	-	-	-	508	-
Stage 2	-	-	-	-	544	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1052	-	251	565
Stage 1	-	-	-	-	604	-
Stage 2	_	_	_	_	582	
Platoon blocked, %	-	_			002	
Mov Cap-1 Maneuver	-		1052		250	565
Mov Cap-1 Maneuver	-		1032		250	303
			-	-	604	-
Stage 1	-	-				
Stage 2	-	-	-	-	579	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		18	
HCM LOS					С	
Minor Lane/Major Mvn	nt l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		290	-	-	1052	-
HCM Lane V/C Ratio		0.046	-	-	0.004	-
HCM Control Delay (s))	18	-	-	8.4	-
HCM Lane LOS		С	-	-	Α	-
HCM 95th %tile Q(veh)	0.1	-	-	0	-
	/					

Appendix J

Synchro Intersection Worksheets – 2032 Future Total Conditions

Lane Group

Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Internation Comme		
Intersection Summary		

Lanes, Volumes, Timings 1: O'Connor & Laurier

2032 Future Total AM Peak Hour

Maximum v/c Ratio: 0.64 Intersection LOS: B Intersection Signal Delay: 17.9 ICU Level of Service B Intersection Capacity Utilization 61.6% Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier

2032 Future Total AM Peak Hour

	•	→	*	1	←	*	1	†	1	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્લ			†			4143				
Traffic Volume (vph)	22	293	0	0	401	258	96	704	75	0	0	0
Future Volume (vph)	22	293	0	0	401	258	96	704	75	0	0	0
Satd. Flow (prot)	0	1736	0	0	2518	0	0	4353	0	0	0	0
Flt Permitted		0.937						0.995				
Satd. Flow (perm)	0	1616	0	0	2518	0	0	4157	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	315	0	0	659	0	0	875	0	0	0	0
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (s)	37.0	37.0			37.0		33.0	33.0				
Total Split (%)	49.3%	49.3%			49.3%		44.0%	44.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag							
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)	O Max	36.3			36.3		max	27.5				
Actuated g/C Ratio		0.48			0.48			0.37				
v/c Ratio		0.40			0.54			0.57				
Control Delay		19.3			15.6			15.3				
Queue Delay		0.0			0.0			0.4				
Total Delay		19.3			15.6			15.7				
LOS		В			В			В				
Approach Delay		19.3			15.6			15.7				
Approach LOS		19.5 B			13.0 B			13.7 B				
Queue Length 50th (m)		32.0			32.4			36.9				
Queue Length 95th (m)		57.1			47.2			49.0				
Internal Link Dist (m)		158.7			93.1			51.7			65.1	
Turn Bay Length (m)		130.7			33.1			31.7			05.1	
Base Capacity (vph)		782			1218			1524				
Starvation Cap Reductn		0			0			237				
· · · · · · · · · · · · · · · · · · ·		0			0			0				
Spillback Cap Reductn Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.40			0.54			0.68				
Reduced V/C Hallo		0.40			0.54			0.08				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 48 (64%), Reference	ed to phase	2:EBTL a	and 6:WB	T, Start o	f Green							
Natural Cycle: 75												
Control Type: Actuated-Cod	ordinated											

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2032 Future Total AM Peak Hour

Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2032 Future Total AM Peak Hour

Maximum v/c Ratio: 0.57

Intersection Signal Delay: 16.3

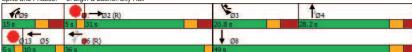
Intersection Capacity Utilization 66.1%

Analysis Period (min) 15

Intersection LOS: B

ICU Level of Service C

EBL 0	EBT	EBR	WBL	WBT							
0	4.6			VVDI	WBR	NBL	NBT	NBR	SBL	SBT	SBI
0	↑ ↑		7	^	7		^	7	ሻሻ	† 1>	
	288	59	209	498	538	0	213	59	361	376	17
0	288	59	209	498	538	0	213	59	361	376	17
0		0				0	3316	1483			
0	3037	0	765	1745	920	0	3316	680	1878	2431	
					238			149		92	
0	347	0	209	498	538	0	213	59	361	547	
	NA		custom	NA	custom		NA	pm+ov	Prot	NA	
	2		9	56	3		4	9	3	8	
			6		6			4			
	2		9	56	3		4	9	3	8	
	5.0		5.0		10.0		10.0	5.0	10.0	10.0	
	30.0		12.0		20.7		28.2	12.0	20.7	28.2	
	31.0		15.0		20.8		28.2	15.0	20.8	49.0	
	31.0%		15.0%		20.8%		28.2%	15.0%	20.8%	49.0%	
			7.0		7.7						
			Lead		Lead						
			Yes		Yes			Yes	Yes		
(C-Max		Max		None		Max	Max	None	Max	
	29.0		37.0	49.0	41.4		22.0	29.2	13.1	42.8	
	0.29		0.37	0.49	0.41		0.22	0.29	0.13	0.43	
	0.39		0.59	0.58	0.91		0.29	0.16	0.87	0.50	
	30.1		27.3	21.7	35.5		33.8	0.9	65.4	18.9	
			0.0		0.0			0.0			
	30.1		27.3	21.7	35.5		33.8	0.9	65.4	18.9	
	С		С	С	D		С	Α	Е	В	
	30.1			28.6			26.7			37.4	
	С			С			С			D	
	28.2		25.3	66.2	39.9		18.2	0.0	35.8	32.6	
	41.0		41.4	97.5	#89.7		28.4	0.0	#60.1	47.6	
								90.0	85.0		
	880		354	855	594		729	368		1093	
	0		0	0	0		0	0	0	0	
	0		0	0	0		0	0	0	0	
	0		0	0	0		0	0	0	0	
	0.39		0.59	0.58	0.91		0.29	0.16	0.87	0.50	
to phase 2	:EBT an	d 6:WB	TL. Start o	f Green							
	0	0 3037 0 347 NA 2 2 5.0 30.0 31.0% 3.3 3.7 0.0 7.0 C-Max 29.0 0.29 0.39 30.1 0.0 30.1 C 30.1 C 28.2 41.0 55.2 880 0 0 0 0 0.39	0 3037 0 0 347 0 NA 2 2 2 5.0 30.0 31.0 31.0% 3.3 3.7 0.0 7.0 C-Max 29.0 0.29 0.39 30.1 0.0 30.1 C 30.1 C 28.2 41.0 55.2 880 0 0 0 0 0 0.39	0.527 0 3037 0 765 0 347 0 209 NA custom 2 9 6 2 9 5.0 5.0 30.0 12.0 31.0 15.0% 3.3 3.3 3.7 3.7 0.0 0.0 7.0 7.0 Lead Yes C-Max Max 29.0 37.0 0.29 0.37 0.29 0.37 0.29 0.37 0.39 0.59 30.1 27.3 C C C 30.1 C C C	0.527 0 3037 0 765 1745 0 347 0 209 498 NA custom NA 2 9 56 6 2 9 56 5.0 5.0 30.0 12.0 31.0 15.0 31.0% 15.0% 33.3 3.3 3.7 3.7 0.0 0.0 7.0 Lead Yes C-Max Max 29.0 37.0 49.0 0.29 0.37 0.49 0.39 0.59 0.58 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 27.3 21.7 0.0 0.0 0.0 30.1 28.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.527 0 3037 0 765 1745 920 238 0 347 0 209 498 538 NA custom NA custom 2 9 56 3 6 6 6 6 6 2 9 56 3 5.0 5.0 10.0 30.0 12.0 20.7 31.0 15.0 20.8 31.0% 20.8% 33.3 3.7 4.4 4.0 0.0 0.0 0.0 0.0 0.0 7.0 7.7 Lead Lead Lead	0.527 0 3037	0.527 0 3037 0 765 1745 920 0 3316 238 0 347 0 209 498 538 0 213 NA custom NA custom NA 2 9 56 3 4 5.0 5.0 10.0 10.0 30.0 12.0 20.7 28.2 31.0 15.0 20.8 28.2 31.0% 15.0% 20.8% 28.2% 3.3 3.3 3.3 3.3 3.7 3.7 4.4 2.9 0.0 0.0 0.0 0.0 7.0 7.7 6.2 Lead Lead Lag Yes Yes Yes C-Max Max None Max 29.0 37.0 49.0 41.4 22.0 0.29 0.37 0.49 0.41 0.22 0.39 0.59 0.58 0.91 0.29 <	0.527 0 3037 0 765 1745 920 0 3316 680 238 149 0 347 0 209 498 538 0 213 59 NA custom NA custom NA pm+ov 2 9 56 3 4 9 6 6 6 4 2 30.0 12.0 20.7 28.2 12.0 31.0% 15.0 20.8 28.2 15.0% 31.0% 15.0% 20.8% 28.2% 15.0% 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.7 3.7 4.4 2.9 3.7 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.7 6.2 7.0 Lead Lead Lead Lag Lag C-Max Max None Max Max 29.0 3.7 4.9 41.4 <td>0 3037 0 765 1745 920 0 3316 680 1878 0 347 0 209 498 538 0 213 59 361 NA custom NA custom NA pm+ov Prot 2 9 56 3 4 9 3 6 6 6 4 4 2 29 56 3 4 9 3 5.0 5.0 10.0 10.0 5.0 10.0 30.0 12.0 20.7 28.2 12.0 20.7 31.0% 15.0% 20.8% 28.2% 15.0% 20.8% 3.3</td> <td> 0.3037</td>	0 3037 0 765 1745 920 0 3316 680 1878 0 347 0 209 498 538 0 213 59 361 NA custom NA custom NA pm+ov Prot 2 9 56 3 4 9 3 6 6 6 4 4 2 29 56 3 4 9 3 5.0 5.0 10.0 10.0 5.0 10.0 30.0 12.0 20.7 28.2 12.0 20.7 31.0% 15.0% 20.8% 28.2% 15.0% 20.8% 3.3	0.3037


Natural Cycle: 100

Lead-Lag Optimize? Yes Yes	
Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (prom) Satd. Flow (prom) Satd. Flow (prom) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Butter Phase Switch Phase Minimum Initial (s) Source Side Side Side Side Side Side Side Sid	
Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Suitch Phase Minimum Initial (s) 1.0 1.0 5.0 Minimum Split (s) 5.0 10.0 36.0 Total Split (s) 5.0 10.0 36.0 Total Split (%) 5% 10% 36% Yellow Time (s) 2.0 2.0 2.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Minimum Minim	
Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (perm) Turn Type Perceted Phases Detector Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 1.0 5.0 Minimum Spit (s) 5.0 7.0 25.0 Total Spit (s) 5.0 10.0 36.0 Total Spit (s) 5.0 10.0 5.0 All-Red Time (s) 0.0 0.0 0.0 Lost Time (s) 0.0 0.0 0.0 Lest Time (s) Total Lost Time (s) Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max I Act Effct Green (s) Act Lated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m)	
Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Solution (s) Total Split (s) Total Delay Lead'Lag Lag Lag Lag Lag Lead'Lag Optimize? Yes Yes Recall Mode None None C-Max I Act Effot Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LoS Queue Length 95th (m) Internal Link Dist (m)	
Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Total Split (%) Sound Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/C Ratio Control Delay Queue Delay Total Delay Approach LOS Queue Length 95th (m) Unimum Volet (vph) Lane Group Flow (vph) Sound Time (s) Lead-Lag Optimize (vph) Actuated g/C Ratio V/C Ratio Control Delay Queue Length 95th (m) Unimum Vippe V (vph) Very Very Very Very Very Very Very Very	
Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Sound Time (s) Lead/Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag	
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Whinimum Initial (s) Minimum Split (s) Total Split (s)	
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 1.0 5.0 Minimum Spit (s) 5.0 7.0 25.0 Total Spit (s) 5.0 10.0 36.0 Total Spit (%) 5% 10% 36% Yellow Time (s) 2.0 2.0 2.0 2.0 All-Red Time (s) 1.0 1.0 1.0 36% Yellow Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0	
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 1.0 5.0 Minimum Split (s) 5.0 7.0 25.0 Total Split (s) 5.0 10.0 36.0 Total Split (%) 5% 10% 36% Yellow Time (s) 2.0 2.0 2.0 All-Red Time (s) 0.0 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max I Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Visit (s) 1.0 1.0 5.0 0.0 0.0 0.0 J. 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	13
Detector Phase Switch Phase Switch Phase Minimum Initial (s) 1.0 1.0 5.0 Minimum Spit (s) 5.0 7.0 25.0 Total Split (s) 5.0 10.0 36.0 Total Split (s) 5.0 10.0 0.0 0.0 Total Split (s) 5.0 10.0 10.0 10.0 Total Lost Time (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	10
Switch Phase Minimum Initial (s) 1.0 1.0 5.0 Minimum Split (s) 5.0 7.0 25.0 Total Split (s) 5.0 10.0 36.0 Total Split (s) 5.0 10.0 0.0 0.0 Lost Time (s) 0.0 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lag Lag Lead-Lag Optimize? Recall Mode None None C-Max I Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Delay Approach LoS Queue Length 95th (m) Internal Link Dist (m) Internal Link Dist (m)	
Minimum Initial (s) 1.0 1.0 5.0 Minimum Split (s) 5.0 7.0 25.0 Minimum Split (s) 5.0 10.0 36.0 Total Split (%) 5% 10% 36% Yellow Time (s) 2.0 2.0 2.0 All-Red Time (s) 0.0 0.0 0.0 Lead/Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag	
Minimum Split (s) 5.0 7.0 25.0 Total Split (s) 5.0 10.0 36.0 Total Split (s) 5.0 10.0 36.0 Total Split (s) 5.0 10.0 36.0 Total Split (s) 2.0 2.0 2.0 2.0 All-Red Time (s) 0.0 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max I Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) I 5.0 10.0 36.0 Jes 10.0 25.0 10.0 36.0 Jes 20.0 25.0 10.0 36.0 Je	4.0
Total Split (s) 5.0 10.0 36.0 Total Split (%) 5% 10% 36% Yellow Time (s) 2.0 2.0 2.0 All-Red Time (s) 0.0 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lag Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max I Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m)	1.0
Total Split (%)	5.0
Yellow Time (s) 2.0 2.0 2.0 All-Red Time (s) 0.0 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lag Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max I Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach LoS Queue Length 95th (m) Internal Link Dist (m) Internal Link Dist (m)	5.0
All-Red Time (s) 0.0 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m)	5%
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag	2.0
Total Lost Time (s) Lead/Lag	0.0
Lead-Lag Lag Lag Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max I Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Lead-Lag Optimize? Yes Yes Recall Mode None None C-Max I Act Effct Green (s) Act Lated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LoS Approach Delay Approach LOS Queue Length 56th (m) Queue Length 95th (m) Internal Link Dist (m)	
Recall Mode None None C-Max I Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (m) Queue Length 95th (m) Internal Link Dist (m)	Lead
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	Yes
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	None
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)	
Queue Length 95th (m) Internal Link Dist (m)	
Internal Link Dist (m)	
. ,	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	

2032 Future Total AM Peak Hour

Maximum v/c Ratio: 0.91
Intersection Signal Delay: 31.5
Intersection LOS: C
Intersection Capacity Utilization 83.8%
ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: Elgin & Laurier/City Hall

Lanes, Volumes, Timings 4: Metcalfe & Gloucester 2032 Future Total AM Peak Hour

	•	→	*	1	—	*	1	†	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations					† 1>			ተተቡ				
Traffic Volume (vph)	0	0	0	0	164	74	247	811	0	0	0	
Future Volume (vph)	0	0	0	0	164	74	247	811	0	0	0	
Satd. Flow (prot)	0	0	0	0	2845	0	0	4696	0	0	0	
Flt Permitted								0.988				
Satd. Flow (perm)	0	0	0	0	2845	0	0	4330	0	0	0	
Satd. Flow (RTOR)					26			89				
Lane Group Flow (vph)	0	0	0	0	238	0	0	1058	0	0	0	
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					25.0		50.0	50.0				
Total Split (%)					33.3%		66.7%	66.7%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					19.9			45.0				
Actuated g/C Ratio					0.27			0.60				
v/c Ratio					0.31			0.40				
Control Delay					20.8			7.7				
Queue Delay					0.0			0.0				
Total Delay					20.8			7.7				
LOS					С			Α				
Approach Delay					20.8			7.7				
Approach LOS					С			Α				
Queue Length 50th (m)					12.4			23.2				
Queue Length 95th (m)					21.5			30.9				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)												
Base Capacity (vph)					773			2633				
Starvation Cap Reductn					0			0				
Spillback Cap Reductn					0			146				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.31			0.43				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 73 (97%), Reference	d to phase	2:NBTL,	Start of G	ireen								
Natural Cycle: 60												
Control Type: Actuated-Con	rdinated											

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2032 Future Total AM Peak Hour

Maximum v/c Ratio: 0.40 Intersection Signal Delay: 10.1 Intersection LOS: B
Intersection Capacity Utilization 44.1% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2032 Future Total AM Peak Hour

	•	\rightarrow	*	1	←	*	1	1	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		٦		7		† p		7	44	
Traffic Volume (vph)	31	7	31	1	0	9	0	281	43	17	338	0
Future Volume (vph)	31	7	31	1	0	9	0	281	43	17	338	0
Satd. Flow (prot)	0	1506	0	1658	0	1483	0	3079	0	1658	3252	0
Flt Permitted		0.978		0.712						0.556		
Satd. Flow (perm)	0	1427	0	1188	0	1294	0	3079	0	850	3252	0
Satd. Flow (RTOR)		31				53		32				
Lane Group Flow (vph)	0	69	0	1	0	9	0	324	0	17	338	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	27.0	27.0		27.0		27.0		58.0		58.0	58.0	
Total Split (%)	30.0%	30.0%		30.0%		30.0%		64.4%		64.4%	64.4%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		25.9		25.9		25.9		52.6		52.6	52.6	
Actuated g/C Ratio		0.29		0.29		0.29		0.58		0.58	0.58	
v/c Ratio		0.16		0.00		0.02		0.18		0.03	0.18	
Control Delay		16.1		23.0		0.1		8.1		8.2	9.0	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.1		23.0		0.1		8.1		8.2	9.0	
LOS		В		С		Α		Α		Α	Α	
Approach Delay		16.1			2.4			8.1			8.9	
Approach LOS		В			Α			Α			Α	
Queue Length 50th (m)		4.8		0.1		0.0		11.2		1.2	13.1	
Queue Length 95th (m)		14.5		1.3		0.0		17.3		3.8	19.4	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		432		341		410		1812		496	1900	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Storage Cap Reductn		0		0		0		0		0	0	
Reduced v/c Ratio		0.16		0.00		0.02		0.18		0.03	0.18	

Intersection Summa

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2032 Future Total AM Peak Hour

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2032 Future Total

Synchro 11 Report

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2032 Future Total AM Peak Hour

Maximum v/c Ratio: 0.18
Intersection Signal Delay: 9.1
Intersection Capacity Utilization 66.3%
ICU Level of Service C
Analysis Period (min) 15

2032 Future Total AM Peak Hour

	-	*	1	—	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7-			લ	1	
Traffic Volume (vph)	338	6	3	711	13	5
Future Volume (vph)	338	6	3	711	13	5
Satd. Flow (prot)	1742	0	0	1745	1620	0
Flt Permitted					0.965	
Satd. Flow (perm)	1742	0	0	1745	1620	0
Lane Group Flow (vph)	344	0	0	714	18	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized	ı					
Intersection Capacity Utiliz	ation 52.0%			IC	U Level o	of Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7>	LUIT	WDL	ની	Y	NOIT
Traffic Vol, veh/h	338	6	3	711	13	5
Future Vol, veh/h	338	6	3	711	13	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	. 100	None	-	None	Stop -	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,				0	0	
Grade, %	0	-	-	0	0	
Peak Hour Factor	100	100	100	100	100	100
	2	2	2	2	2	2
Heavy Vehicles, %	338	6	3	711	13	5
Mvmt Flow	338	Ь	3	711	13	5
Major/Minor N	/lajor1	- 1	Major2	- 1	Minor1	
Conflicting Flow All	0	0	344	0	1058	341
Stage 1	-	-	-	-	341	-
Stage 2	-	-	-	-	717	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1215	-	249	701
Stage 1	-	-	-		720	-
Stage 2	_				484	
Platoon blocked, %					.04	
Mov Cap-1 Maneuver	_	_	1215	-	248	701
Mov Cap-1 Maneuver	-		1210		248	701
Stage 1		-			720	
_	-		-	-	482	-
Stage 2	-	-	-	-	462	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		17.7	
HCM LOS					С	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		302	-	-	1215	-
HCM Lane V/C Ratio		0.06	-	-	0.002	-
HCM Control Delay (s)		17.7	-	-	8	0
HCM Lane LOS		С	-	-	Α	Α
HCM 0Eth 9/tile O(yeh)		0.0			0	

Capacity (veh/h) 302 1215 -
Capacity (veh/h) 302 1215 -
HCM Lane V/C Ratio 0.06 0.002 -
HCM Control Delay (s) 17.7 8 0
HCM Lane LOS C A A
HCM 95th %tile Q(veh) 0.2 0 -

Lane Group

Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lag	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)	140116	140116
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Lanes, Volumes, Timings 1: O'Connor & Laurier

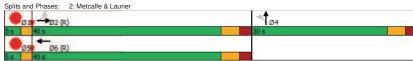
2032 Future Total PM Peak Hour

Splits and Phases: 1: O'Connor & Laurier

Lanes, Volumes, Timings 2: Metcalfe & Laurier

2032 Future Total PM Peak Hour

	*	→	*	1	←	*	4	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			†			4147>				
Traffic Volume (vph)	10	255	0	0	399	167	33	415	128	0	0	0
Future Volume (vph)	10	255	0	0	399	167	33	415	128	0	0	C
Satd. Flow (prot)	0	1742	0	0	2815	0	0	3773	0	0	0	C
Flt Permitted		0.974						0.997				
Satd. Flow (perm)	0	1692	0	0	2815	0	0	3693	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	294	0	0	629	0	0	640	0	0	0	0
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		2			6			4				
Permitted Phases	2						4					
Detector Phase	2	2			6		4	4				
Switch Phase												
Minimum Initial (s)	10.0	10.0			10.0		10.0	10.0				
Minimum Split (s)	37.0	37.0			37.0		19.5	19.5				
Total Split (s)	40.0	40.0			40.0		30.0	30.0				
Total Split (%)	53.3%	53.3%			53.3%		40.0%	40.0%				
Yellow Time (s)	3.3	3.3			3.3		3.3	3.3				
All-Red Time (s)	2.4	2.4			2.4		2.2	2.2				
Lost Time Adjust (s)		0.0			0.0			0.0				
Total Lost Time (s)		5.7			5.7			5.5				
Lead/Lag	Lag	Lag			Lag							
Lead-Lag Optimize?	Yes	Yes			Yes							
Recall Mode	C-Max	C-Max			C-Max		Max	Max				
Act Effct Green (s)	•	39.3			39.3			24.5				
Actuated g/C Ratio		0.52			0.52			0.33				
v/c Ratio		0.33			0.43			0.53				
Control Delay		6.5			12.1			17.8				
Queue Delay		0.0			0.0			0.3				
Total Delay		6.5			12.1			18.1				
LOS		Α			В			В				
Approach Delay		6.5			12.1			18.1				
Approach LOS		Α			В			В				
Queue Length 50th (m)		8.9			26.7			17.0				
Queue Length 95th (m)		13.4			38.4			21.7				
Internal Link Dist (m)		158.7			97.3			51.7			65.1	
Turn Bay Length (m)		100.7			07.0			01.7			00.1	
Base Capacity (vph)		886			1475			1206				
Starvation Cap Reductn		0			0			174				
Spillback Cap Reductn		0			0			0				
Storage Cap Reductn		0			0			0				
Reduced v/c Ratio		0.33			0.43			0.62				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 30 (40%), Reference	ed to phase	2:EBTL a	ind 6:WB	T, Start o	f Green							
Natural Cycle: 65												
Control Type: Actuated-Con	ordinated											


Lanes, Volumes, Timings 2: Metcalfe & Laurier 2032 Future Total PM Peak Hour

Lane Group	Ø1	Ø5
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	5
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	7%	7%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductin		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2032 Future Total

Lanes, Volumes, Timings 2: Metcalfe & Laurier 2032 Future Total PM Peak Hour

	•	-	*	1	•	*	1	1	1	1	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		† 1>		7	^	7		^	7	ሻሻ	† \$	
Traffic Volume (vph)	0	364	30	117	431	413	0	280	161	382	363	11
Future Volume (vph)	0	364	30	117	431	413	0	280	161	382	363	11
Satd. Flow (prot)	0	3203	0	1642	1745	1483	0	3316	1483	3154	2639	
Flt Permitted				0.462						0.950		
Satd. Flow (perm)	0	3203	0	692	1745	976	0	3316	680	2247	2639	
Satd. Flow (RTOR)						213			149		51	
Lane Group Flow (vph)	0	437	0	130	479	459	0	311	179	424	525	
Turn Type		NA		custom	NA	custom		NA	pm+ov	Prot	NA	
Protected Phases		2		9	56	3		4	9	3	8	
Permitted Phases				6		6			4			
Detector Phase		2		9	56	3		4	9	3	8	
Switch Phase												
Minimum Initial (s)		5.0		5.0		10.0		10.0	5.0	10.0	10.0	
Minimum Split (s)		30.0		12.0		20.7		28.2	12.0	20.7	28.2	
Total Split (s)		31.0		14.0		21.8		28.2	14.0	21.8	50.0	
Total Split (%)	.9	1.0%		14.0%		21.8%		28.2%	14.0%	21.8%	50.0%	
Yellow Time (s)		3.3		3.3		3.3		3.3	3.3	3.3	3.3	
All-Red Time (s)		3.7		3.7		4.4		2.9	3.7	4.4	2.9	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0		7.7		6.2	7.0	7.7	6.2	
Lead/Lag				Lead		Lead		Lag	Lead	Lead		
Lead-Lag Optimize?				Yes		Yes		Yes	Yes	Yes		
Recall Mode	C	-Max		None		None		Max	None	None	Max	
Act Effct Green (s)	_	29.0		35.0	48.0	41.4		22.0	28.2	14.1	43.8	
Actuated g/C Ratio		0.29		0.35	0.48	0.41		0.22	0.28	0.14	0.44	
v/c Ratio		0.47		0.42	0.57	0.77		0.43	0.51	0.95	0.44	
Control Delay		31.2		23.1	22.0	21.4		25.1	8.4	76.6	19.0	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		31.2		23.1	22.0	21.4		25.1	8.4	76.6	19.0	
LOS		C		C	C	C		C	A	F	В	
Approach Delay		31.2			21.9			19.0			44.7	
Approach LOS		C			C			В			D	
Queue Length 50th (m)		36.5		15.2	64.1	29.9		16.4	1.4	42.6	32.5	
Queue Length 95th (m)		51.0		27.2	94.8	#58.8		23.6	9.1	#71.4	46.4	
Internal Link Dist (m)		50.9		21.2	106.8	#50.0		136.3	3.1	#71.4	52.8	
Turn Bay Length (m)		50.5			100.0			100.0	90.0	85.0	52.0	
Base Capacity (vph)		929		308	837	600		729	354	444	1184	
Starvation Cap Reductn		929		0	037	000		729	354	0	0	
Spillback Cap Reductn		0		0	0	0		0	0	0	0	
Storage Cap Reductri		0		0	0	0		0	0	0	0	
Reduced v/c Ratio		0.47		0.42	0.57	0.77		0.43	0.51	0.95	0.44	
		3.47		0.72	0.07	0.11		0.70	0.01	0.00	0.77	
Intersection Summary Cycle Length: 100												
Cycle Length: 100 Actuated Cycle Length: 100												
Actuated Cycle Length: 100 Offset: 52 (52%), Reference		CDT .	4 C-MD	El Ctart								

Natural Cycle: 100

Control Type: Actuated-Coordinated

Lane Group	Ø1	Ø5	Ø6	Ø13
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Satd. Flow (RTOR)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	1	5	6	13
Permitted Phases		- 0	- 3	.5
Detector Phase				
Switch Phase				
Minimum Initial (s)	1.0	1.0	5.0	1.0
Minimum Split (s)	5.0	7.0	25.0	5.0
	5.0	10.0	35.0	5.0
Total Split (s)				
Total Split (%)	5%	10%	35%	5%
Yellow Time (s)	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0	0.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag	Lag	Lag		Lead
Lead-Lag Optimize?	Yes	Yes		Yes
Recall Mode	None	None	C-Max	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (m)				
Queue Length 95th (m)				
Internal Link Dist (m)				
Turn Bay Length (m)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary			_	_

2032 Future Total

PM Peak Hour

Maximum v/c Ratio: 0.95 Intersection LOS: C Intersection Signal Delay: 30.2 ICU Level of Service D Intersection Capacity Utilization 79.1% Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Elgin & Laurier

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2032 Future Total PM Peak Hour

	۶	→	*	1	←	*	1	1	1	1		1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					† 1>			441>				
Traffic Volume (vph)	0	0	0	0	209	127	114	444	0	0	0	0
Future Volume (vph)	0	0	0	0	209	127	114	444	0	0	0	0
Satd. Flow (prot)	0	0	0	0	2923	0	0	4716	0	0	0	0
Flt Permitted								0.990				
Satd. Flow (perm)	0	0	0	0	2923	0	0	4413	0	0	0	0
Satd. Flow (RTOR)					16			92				
Lane Group Flow (vph)	0	0	0	0	373	0	0	620	0	0	0	0
Turn Type					NA		Perm	NA				
Protected Phases					4			2				
Permitted Phases							2					
Detector Phase					4		2	2				
Switch Phase												
Minimum Initial (s)					10.0		10.0	10.0				
Minimum Split (s)					23.1		35.0	35.0				
Total Split (s)					30.0		45.0	45.0				
Total Split (%)					40.0%		60.0%	60.0%				
Yellow Time (s)					3.3		3.3	3.3				
All-Red Time (s)					1.8		1.7	1.7				
Lost Time Adjust (s)					0.0			0.0				
Total Lost Time (s)					5.1			5.0				
Lead/Lag					0.1			0.0				
Lead-Lag Optimize?												
Recall Mode					Max		C-Max	C-Max				
Act Effct Green (s)					24.9		O Max	40.0				
Actuated g/C Ratio					0.33			0.53				
v/c Ratio					0.38			0.26				
Control Delay					19.7			8.3				
Queue Delay					0.0			0.0				
Total Delay					19.7			8.3				
LOS					В			Α				
Approach Delay					19.7			8.3				
Approach LOS					13.7 B			0.5 A				
Queue Length 50th (m)					19.9			13.4				
Queue Length 95th (m)					30.9			19.4				
Internal Link Dist (m)		34.9			48.3			35.0			51.7	
Turn Bay Length (m)		34.3			40.5			33.0			31.7	
Base Capacity (vph)					981			2396				
Starvation Cap Reductn					0			2390				
Spillback Cap Reductn					0			0				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.38			0.26				
					0.38			0.20				
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 75												
Offset: 67 (89%), Reference	d to phase	2:NBTL,	Start of G	ireen								
Natural Cycle: 60												
Control Type: Actuated-Cool	rdinated											

Page 9

Lanes, Volumes, Timings 4: Metcalfe & Gloucester

2032 Future Total PM Peak Hour

Maximum v/c Ratio: 0.38
Intersection Signal Delay: 12.6
Intersection Capacity Utilization 41.9%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 4: Metcalfe & Gloucester

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2032 Future Total PM Peak Hour

	•	\rightarrow	*	1	-	*	1	1	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7		† 1>		7	44	
Traffic Volume (vph)	113	1	107	31	0	23	0	328	5	7	465	0
Future Volume (vph)	113	1	107	31	0	23	0	328	5	7	465	0
Satd. Flow (prot)	0	1491	0	1658	0	1483	0	3260	0	1658	3316	0
Flt Permitted		0.975		0.605						0.516		
Satd. Flow (perm)	0	1397	0	983	0	1286	0	3260	0	744	3316	0
Satd. Flow (RTOR)		55				48		2				
Lane Group Flow (vph)	0	246	0	34	0	26	0	370	0	8	517	0
Turn Type	Perm	NA		Perm		Perm		NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8				6		
Detector Phase	4	4		8		8		2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0		10.0		10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		25.1		25.1		31.4		31.4	31.4	
Total Split (s)	45.0	45.0		45.0		45.0		50.0		50.0	50.0	
Total Split (%)	45.0%	45.0%		45.0%		45.0%		50.0%		50.0%	50.0%	
Yellow Time (s)	3.3	3.3		3.3		3.3		3.3		3.3	3.3	
All-Red Time (s)	2.8	2.8		2.8		2.8		2.1		2.1	2.1	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0		0.0	0.0	
Total Lost Time (s)		6.1		6.1		6.1		5.4		5.4	5.4	
Lead/Lag	Lag	Lag		Lag		Lag						
Lead-Lag Optimize?	Yes	Yes		Yes		Yes						
Recall Mode	Max	Max		Max		Max		C-Max		C-Max	C-Max	
Act Effct Green (s)		43.9		43.9		43.9		44.6		44.6	44.6	
Actuated g/C Ratio		0.44		0.44		0.44		0.45		0.45	0.45	
v/c Ratio		0.38		0.08		0.04		0.25		0.02	0.35	
Control Delay		16.5		17.1		2.0		17.8		13.6	17.9	
Queue Delay		0.0		0.0		0.0		0.0		0.0	0.0	
Total Delay		16.5		17.1		2.0		17.8		13.6	17.9	
LOS		В		В		Α		В		В	В	
Approach Delay		16.5			10.6			17.8			17.9	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		23.7		3.7		0.0		22.7		0.6	39.5	
Queue Length 95th (m)		42.7		9.6		2.2		32.5		m1.2	48.3	
Internal Link Dist (m)		54.5			21.0			120.5			136.3	
Turn Bay Length (m)										20.0		
Base Capacity (vph)		644		431		591		1455		331	1478	
Starvation Cap Reductn		0		0		0		0		0	0	
Spillback Cap Reductn		0		0		0		0		0	0	
Ctarana Can Badicata												
Storage Cap Reductn		0		0		0		0		0	0	

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

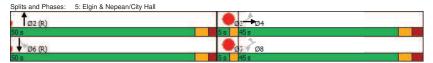
Natural Cycle: 65

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall 2032 Future Total PM Peak Hour

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		•
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
	5.0	5.0
Total Split (s)		
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
ricadoca v/c riado		
Intersection Summary		

Scenario 1 150 Laurier Avenue West 11:59 pm 07/06/2022 2032 Future Total


Synchro 11 Report Page 13

Lanes, Volumes, Timings 5: Elgin & Nepean/City Hall

2032 Future Total PM Peak Hour

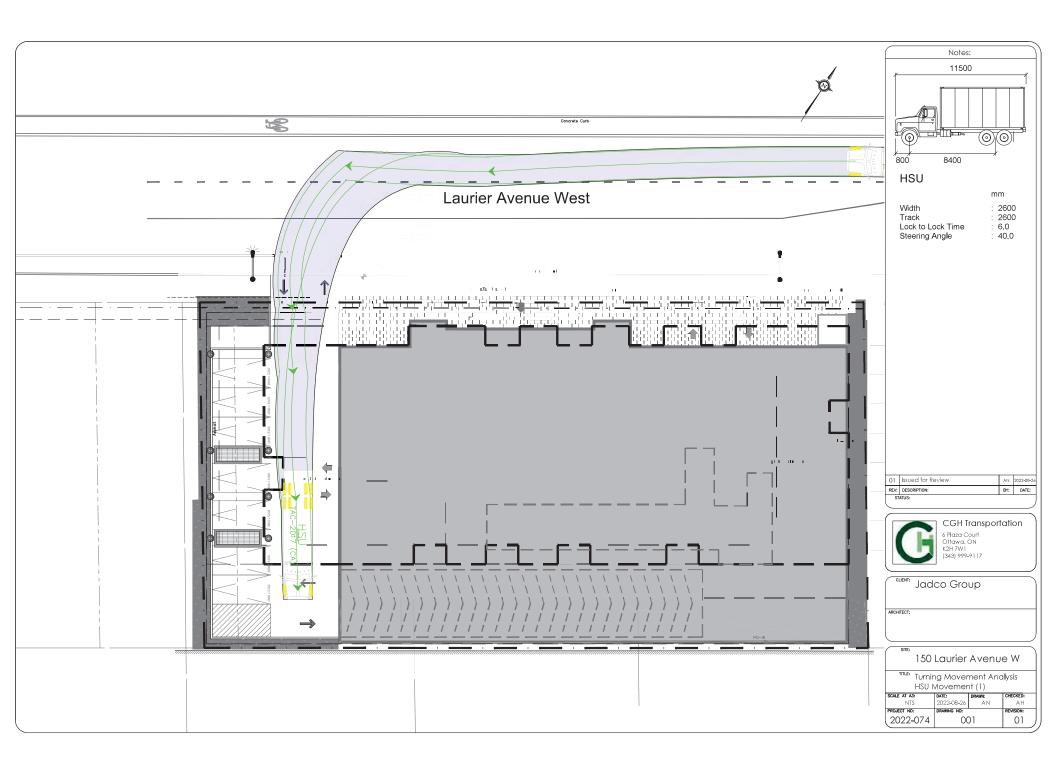
Maximum v/c Ratio: 0.38
Intersection Signal Delay: 17.2
Intersection LOS: B
Intersection Capacity Utilization 66.6%
Analysis Period (min) 15
Intersection LOS: B

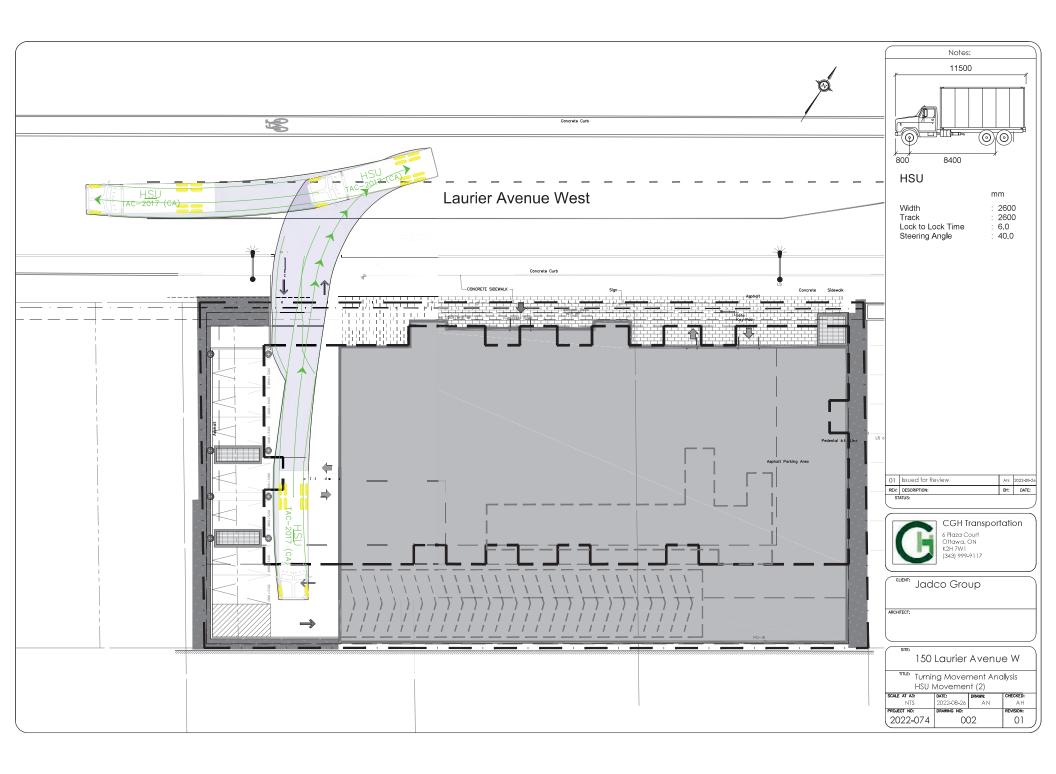
m Volume for 95th percentile queue is metered by upstream signal.

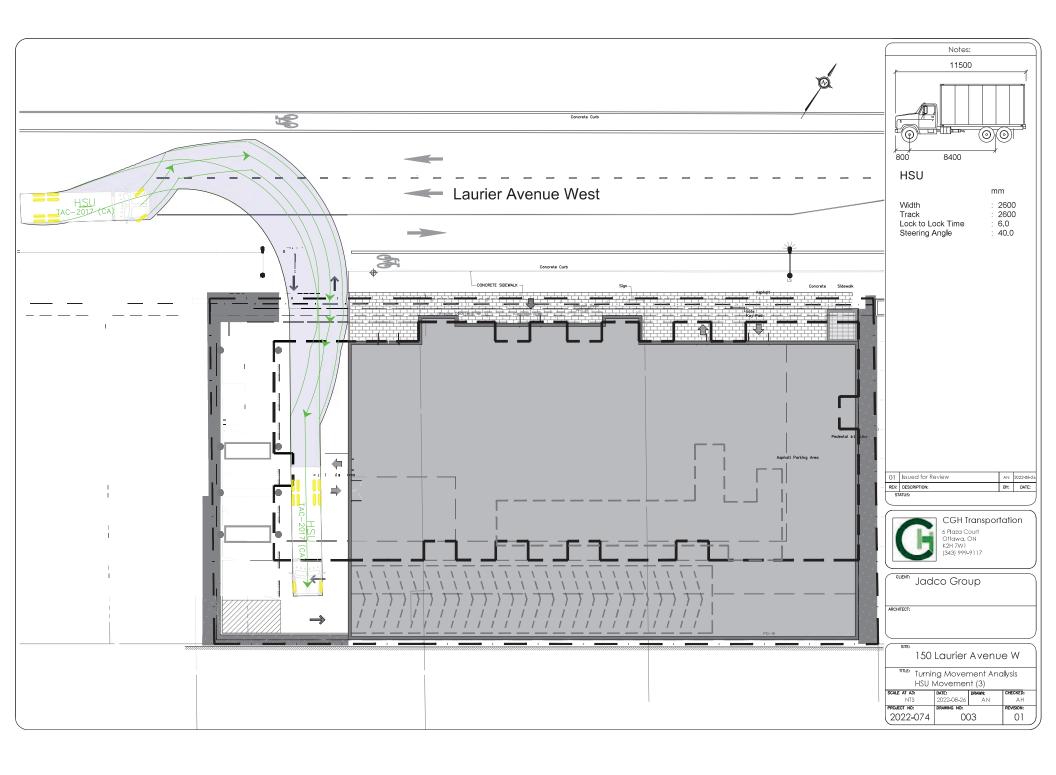
2032 Future Total

HCM 2010 TWSC

6: Access & Laurier


	-	*	1	4	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑			↑	1	
Traffic Volume (vph)	451	12	4	482	9	3
Future Volume (vph)	451	12	4	482	9	3
Satd. Flow (prot)	1740	0	0	1745	1628	0
Flt Permitted					0.963	
Satd. Flow (perm)	1740	0	0	1745	1628	0
Lane Group Flow (vph)	514	0	0	540	13	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalize	d					
Intersection Capacity Utilia	zation 40.1%			IC	U Level o	of Service A
Analysis Period (min) 15						


Interportion						
Intersection	0.3					
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL		NBL	NBR
Lane Configurations	^			↑	A	
Traffic Vol, veh/h	451	12	4	482	9	3
Future Vol, veh/h	451	12	4	482	9	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	501	13	4	536	10	3
Majas/Misas	laiaut.		M=:==0		Minaud	
	lajor1		Major2		Minor1	
Conflicting Flow All	0	0	514	0	1052	508
Stage 1					508	
Stage 2	-	-	-	-	544	-
Critical Hdwy	-	-	4.12	-	0.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1052	-	251	565
Stage 1	-	-	-	-	604	-
Stage 2	-	-	-	-	582	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1052	-	250	565
Mov Cap-2 Maneuver	-	-	-	-	250	-
Stage 1	-	-	-	-	604	-
Stage 2	-	-	-	-	579	-
Ü						
A Is			WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		18	
HCM LOS					С	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		290	-	-	1052	-
HCM Lane V/C Ratio		0.046			0.004	_
HCM Control Delay (s)		18	-	-	8.4	_
HCM Lane LOS		С		-	A	-
HCM 95th %tile Q(veh)		0.1			0	
TIGINI 33tiT /otile Q(VeII)		0.1			U	


Appendix K

Turning Templates

Appendix L

MMLOS Analysis

Multi-Modal Level of Service - Intersections Form

Consultant	CGH Transportation Inc.	Project	2022-074
Scenario	Existing/Future	Date	8/29/2022
Comments			

	INTERSECTIONS		ırier Avenue Wes	st at O'Connor S	street	La	urier Avenue We	st at Metcalfe St	reet	L	aurier Avenue W	lest at Elgin Str	et	0	Sloucester Stree	t at Metcalfe Stre	et		Nepean Street	at Elgin Street	
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes	4	4	4	4	4	3	4	4	8	8	5	4	3	3	3	3	6	5	3	0 - 2
	Median	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m
	Conflicting Left Turns	No left turn / Prohib.	Protected/ Permissive	Permissive	No left turn / Prohib.	Permissive	No left turn / Prohib.	No left turn / Prohib.	Permissive	No left turn / Prohib.	Protected/ Permissive	Protected	No left turn / Prohib.	Permissive	No left turn / Prohib.	No left turn / Prohib.	Permissive	Permissive	Permissive	No left turn / Prohib.	Permissive
	Conflicting Right Turns	No right turn	Permissive or yield control	No right turn	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control	No right turn	Protected/ Permissive	Permissive or yield control	Protected/ Permissive	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control	No right turn	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn
	Right Turns on Red (RToR) ?	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR allowed	RTOR prohibited	RTOR allowed	RTOR allowed	RTOR allowed	RTOR prohibited	RTOR allowed	RTOR prohibited	RTOR allowed	RTOR allowed	RTOR allowed	RTOR prohibited
	Ped Signal Leading Interval?	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	No	No	No	No	No	No	Yes	Yes
rian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel
est	Corner Radius	3-5m	5-10m	5-10m	3-5m	3-5m	3-5m	3-5m	3-5m	5-10m	10-15m	10-15m	5-10m	3-5m	3-5m	3-5m	3-5m	3-5m	3-5m	5-10m	3-5m
9	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Textured/coloured pavement	Textured/coloured pavement	Textured/coloured pavement	Textured/coloured pavement	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Textured/coloured payement	Textured/coloured pavement	Textured/coloured pavement	Textured/coloured pavement
	PETSI Score	73	59	64	68	58	88	68	65	0	-6	50	67	72	88	80	80	25	42	84	100
	Ped. Exposure to Traffic LoS	С	D	С	С	D	В	С	С	F	F	D	С	С	В	В	В	F	Е	В	A
	Cycle Length	75		75	75		75	75	75	100	100	100	100		75	75		90	90	90	90
	Effective Walk Time	15		30	19		14	29	29	36	15	21	35		34	13		36	36	7	7
	Average Pedestrian Delay	24		14	21		25	14	14	20	36	31	21		11	26		16	16	38	38
	Pedestrian Delay LoS	С		В	С		С	В	В	С	D	D	С		В	С		В	В	D	D
		С	D	С	С	D	С	С	С	F	F	D	С	С	В	С	В	F	E	D	D
	Level of Service			D				D				F				C				F	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Curb Bike Lane, Cycletrack or MUP		Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP		Mixed Traffic	Mixed Traffic			Mixed Traffic	Mixed Traffic	Mixed Traffic			
	Right Turn Lane Configuration	Not Applicable	Not Applicable	Not Applicable	Not Applicable			Not Applicable	Not Applicable		> 50 m	Not Applicable	Not Applicable								
	Right Turning Speed	Not Applicable	Not Applicable	Not Applicable	Not Applicable			Not Applicable	Not Applicable		≤ 25 km/h	Not Applicable	Not Applicable								
	Cyclist relative to RT motorists	Not Applicable	Not Applicable	Not Applicable	Not Applicable		#N/A	Not Applicable	Not Applicable	#N/A	F	Not Applicable	Not Applicable	-	#N/A	#N/A		-	#N/A	#N/A	#N/A
ξ	Separated or Mixed Traffic	Separated	Separated	Separated	Separated		Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated		Mixed Traffic	Mixed Traffic			Mixed Traffic	Mixed Traffic	Mixed Traffic
Bicycl	Left Turn Approach	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box		≥ 2 lanes crossed		2-stage, LT box	≥ 2 lanes crossed			2-stage, LT box		≥ 2 Janes crossed			≥ 2 lanes crossed		One lane crossed	No lane crossed
	Operating Speed	> 50 to < 60 km/h		> 50 to < 60 km/h		> 50 to < 60 km/h	> 50 to < 60 km/h			> 40 to ≤ 50 km/h		> 50 to < 60 km/h			> 50 to < 60 km/h		> 50 to < 60 km/h	> 50 to < 60 km/h			
	Left Turning Cyclist	А	A	Α	A		F		Α	F		-	Α	-	F		-	F	-	E	С
		Α	Α	Α	Α	-	#N/A	-	Α	#N/A	-	-	Α	-	#N/A	#N/A	-	-	#N/A	#N/A	#N/A
	Level of Service			A				F				F				F				F	
=	Average Signal Delay									≤ 20 sec	≤ 40 sec							≤ 20 sec			
SI SI	Level of October	-	-	-	-	-	-	-	-	С	E	-	-	-	-	-	-	С		-	-
Ę	Level of Service			-				-				E				-				C	
	Effective Corner Radius	< 10 m			< 10 m		< 10 m	< 10 m		10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m								
¥	Number of Receiving Lanes on Departure from Intersection	≥ 2			≥ 2		1	≥ 2		1	≥2	≥ 2	≥ 2								
ž		D	-		D	-	F	D		E	В	В	В	-		-		-	-	-	
	Level of Service			D				F			ı	E				-				-	
೭	Volume to Capacity Ratio		0.61	- 0.70			0.0	0.60			0.81	- 0.90			0.0	- 0.60			0.0	0.60	
Aut	Level of Service			В				A				D				Α				4	

Multi-Modal Level of Service - Segments Form

Consultant	CGH Transportation Inc.	Project	2022-074
Scenario	Existing/Future	Date	8/29/2022
Comments			

SEGMENTS			Laurier	Section	Section	Section
SEGWIEN 15			1	2	3	4
	Sidewalk Width Boulevard Width		≥ 2 m 0.5 - 2 m			
	Avg Daily Curb Lane Traffic Volume		> 3000			
Pedestrian	Operating Speed On-Street Parking		> 50 to 60 km/h no			
est	Exposure to Traffic PLoS	-	D	-	-	-
) Pe	Effective Sidewalk Width					
ď	Pedestrian Volume					
	Crowding PLoS		-	-	-	-
	Level of Service		-	-	-	-
	Type of Cycling Facility		Physically Separated			
	Number of Travel Lanes					
	Operating Speed					
	# of Lanes & Operating Speed LoS		-	-	-	-
Bicycle	Bike Lane (+ Parking Lane) Width					
ર્જે	Bike Lane Width LoS	Α	-	-	-	-
Θ	Bike Lane Blockages					
	Blockage LoS		-	-	-	-
	Median Refuge Width (no median = < 1.8 m)					
	No. of Lanes at Unsignalized Crossing					
	Sidestreet Operating Speed Unsignalized Crossing - Lowest LoS		A			
	Unsignalized Crossing - Lowest Los		*	•	-	-
	Level of Service		Α	-	-	-
Ħ	Facility Type					
Transit	Friction or Ratio Transit:Posted Speed	_				
Ę	Level of Service		-	-	-	-
	Truck Lane Width		≤ 3.5 m			
Ş	Travel Lanes per Direction	С	1			
Truck	Level of Service	J	С	-	-	-

Appendix M

TDM Checklist

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC *	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	\square
	2.2	Bicycle skills training	
		Commuter travel	
BETTER ★	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

		TDM	measures: Non-residential developments	Check if proposed & add descriptions
		3.	TRANSIT	
		3.1	Transit information	
BASIC		3.1.1	Display relevant transit schedules and route maps at entrances	\triangle
BASIC		3.1.2	Provide online links to OC Transpo and STO information	
BETTER	₹	3.1.3	Provide real-time arrival information display at entrances	
		3.2	Transit fare incentives	
			Commuter travel	
BETTER	₹	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER	₹ *	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
			Visitor travel	
BETTER	₹	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
		3.3	Enhanced public transit service	
			Commuter travel	
BETTER	2	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
			Visitor travel	
BETTER	₹	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
		3.4	Private transit service	
			Commuter travel	
BETTER	₹	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
			Visitor travel	
BETTER	₹	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

City of Ottawa

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC	★ 4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC	★ 6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	

6.1.3 Charge for short-term parking (hourly)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC *	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	∀
		Visitor travel	
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC ★	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER ★	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC *	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands	

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	∀
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	\square
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER *	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC	5.1.1	Unbundle parking cost from purchase price (condominium)	□ ✓
BASIC *	5.1.2	Unbundle parking cost from monthly rent (multi-family)	\checkmark

Version 1.0 (30 June 2017)

TDM	measures: Residential developments	Check if proposed & add descriptions
6. TDM MARKETING & COMMUNICATIONS		
6.1	Multimodal travel information	
BASIC ★ 6.1.1	Provide a multimodal travel option information package to new residents	abla
6.2	Personalized trip planning	
BETTER ★ 6.2.1	Offer personalized trip planning to new residents	

TDM-Supportive Development Design and Infrastructure Checklist: Non-Residential Developments (office, institutional, retail or industrial)

Legend

The Official Plan or Zoning By-law provides related guidance that must be followed

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	abla
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	♥
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	♥′
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	✓
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	✓

	ΓDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	Ø
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	√
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	Ø
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	☑
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

	TDM-supportive design & infrastructure measures: Non-residential developments		Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	☑
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	☑∕
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM-Supportive Development Design and Infrastructure Checklist: Residential Developments (multi-family or condominium)

Legend		
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed	
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users	
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance	

	TDM-supportive design & infrastructure measures: Residential developments		Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	abla
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	∇
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	abla
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	Ø
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	▽

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	☑
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	Ø
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious).	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILITY	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	♥′
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	Ø
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	♥
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	⊄
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multifamily residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-supportive design & infrastructure measures: Residential developments		Check if completed & add descriptions, explanations or plan/drawing references	
	4.	RIDESHARING		
	4.1	Pick-up & drop-off facilities		
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones		
	5.	CARSHARING & BIKESHARING		
	5.1	Carshare parking spaces		
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)		
	5.2	Bikeshare station location		
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection		
	6.	PARKING		
	6.1	Number of parking spaces		
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	Ø	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking		
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)		
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)		
	6.2	Separate long-term & short-term parking areas		
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)		