SERVICING & STORMWATER MANAGEMENT REPORT FIX AUTO ORLEANS — 1400 & 1410 YOUVILLE DRIVE Project No.: CCO-23-0480 City File No.: D07-12-XX-XXXX Prepared for: BBS Construction (Ontario) LTD. 1805 Woodward Drive Ottawa, ON. K2C 0P9 Prepared by: McIntosh Perry Consulting Engineers Ltd. 115 Walgreen Road Carp, ON K0A 1L0 August 26, 2022 ## TABLE OF CONTENTS | 1.0 | PROJECT DESCRIPTION | 1 | |-----|---|----| | 1.1 | Purpose | 1 | | 1.2 | Ste Description | 2 | | 1.3 | Proposed Development and Statistics | 2 | | 1.4 | Existing Conditions and Infrastructures | 2 | | 1.5 | Approvals | 3 | | 2.0 | BACKROUND STUDIES | 4 | | 2.1 | Applicable Guidelines and Standards | 4 | | 3.0 | PRE-CONSULTATION SUMMARY | 5 | | 4.0 | WATERMAIN | 6 | | 4.1 | Existing Watermain | 6 | | 4.2 | Proposed Watermain | 6 | | 5.0 | SANITARY DESIGN | 8 | | 5.1 | Existing Sanitary Sewer | 8 | | 5.2 | Proposed Sanitary Sewer | 8 | | 6.0 | STORM SEWER DESIGN | 10 | | 6.1 | Existing Storm Sewers | 10 | | 6.2 | Proposed Storm Sewers | 10 | | 7.0 | PROPOSED STORM WATER MANAGEMENT | 11 | | 7.1 | Design Criteria and Methodology | 11 | | 7.2 | Runoff Calculations | 11 | | 7.3 | Pre-Development Drainage | 12 | | 7.4 | Post-Development Drainage | 12 | | 7.5 | Quality Control | 13 | | 8.0 | EPOSION AND SEDIMENT CONTROL | 14 | | 8.1 | Temporary Measures | 14 | | 8.2 | Permanent Measures | 14 | | 9.0 | SUMMARY | 15 | | 10.0 | RECOMMENDATION | 16 | |-------|---------------------------------------|-----| | 11.0 | STATEMENT OF LIMITATIONS. | 17 | | | | | | LIST | OF TABLES | | | Table | 1: Water Demands | . 6 | | Table | 2: Fire Protection Confirmation | . 7 | | Table | 3: Sanitary Design Criteria | . 8 | | Table | 4: Summary of Estimated Sanitary Flow | . 9 | | Table | 5: Pre-Development Runoff Summary | .12 | | Table | 6: Post-Development Runoff Summary | .12 | | | | | ## **APPENDICES** Appendix A: Site Location Plan Appendix B: City of Ottawa Pre-Consultation Notes Appendix C: Watermain Calculations Appendix D: Sanitary Calculations Appendix E: Pre-Development Drainage Plan Appendix F: Post-Development Drainage Plan Appendix G: Stormwater Management Calculations Appendix H: City of Ottawa Design Checklist ## 1.0 PROJECT DESCRIPTION ## 1.1 Purpose McIntosh Perry (MP) has been retained by BBSConstruction (Ontario) LTD. to prepare this Servicing and Stormwater Management Report in support of the Ste Plan Control process for the proposed automobile body shop, located at 1400 & 1410 Youville Drive within the City of Ottawa (City File No. D07-12-XX-XXXX). The main purpose of this report is to present a servicing design for the development in accordance with the recommendations and guidelines provided by the City of Ottawa (City), the Rideau Valley Conservation Authority (RVCA), and the Ministry of the Environment, Conservation and Parks (MECP). This report will address the water, sanitary and storm sewer servicing for the development, ensuring that existing and available services will adequately service the proposed development. This report should be read in conjunction with the following drawings: - CCO-23-0480, C101 Site Grading, Drainage & Sediment and Erosion Control Plan, and - CCO-23-0480, C102 Site Servicing Plan, - COO-23-0480, PRE Pre-Development Drainage Area Plan (Appendix E) - CCO-23-0480, POST Post-Development Drainage Area Plan (Appendix F) ## 1.2 Site Description Figure 1: Site Map The subject property, herein referred to as the site, is located at 1400 & 1410 Youville Drive within the Orleans ward in the Otty of Ottawa. It is described as Parts 1 and 3 on Plan 4R-6509. The land in question covers approximately 0.92 ha and is located north of the Youville Drive and St-Joseph Blvd intersection. The site is zoned for light industrial use (IL2). See Site Location Plan in Appendix A for more details. ## 1.3 Proposed Development and Statistics The proposed development consists of a 2115 m², one storey automobile body shop and service station complete with office space. Parking and drive aisles will be provided throughout the site along with access from Youville Drive. See Appendix B for further details. ## 1.4 Existing Conditions and Infrastructures The existing site is currently developed with a car wash and Jim Keay Ford gravel parking areas. The existing car wash is serviced by a 50 mm diameter water service, a 150 mm diameter sanitary service, and a 250 mm diameter storm service all of which are serviced by the municipal infrastructure within Youville Drive. Sewer and watermain mapping collected from the City of Ottawa indicate that the following services exist across the property frontages within the adjacent municipal rights-of-way(s): #### Youville Drive - o 762 mm diameter concrete backbone watermain, - o 305 mm diameter ductile iron watermain, - o 50 mm concrete sanitary sewer tributary to the Orleans Collector, and a - 675 mm concrete storm sewer tributary to the West Bilberry Creek and ultimately tributary to the Ottawa River approximately 1.7 km downstream. ## 1.5 Approvals The proposed development is subject to the City of Ottawa site plan control approval process. Ste plan control requires the City to review, provided concurrence and approve the engineering design package. Permits to construct can be requested once the City has issued a site plan agreement. An Environmental Compliance Approval (ECA) Amendment through the Ministry of Environment, Conservation and Parks (MECP) may be required due to the light industrial zoning. Requirements to be further discussed with City staff. ## 2.0 BACKROUND STUDIES As-built drawings of existing services, provided by the City of Ottawa Information centre, within the vicinity of the proposed site were reviewed in order to identify infrastructure available to service the proposed development. A topographic survey of the site was completed by Stantec Geomatics Ltd (Contract No. 161614550-111) dated March 29th, 2022. The Ste Plan (A010) was prepared by KWC Architects Inc and dated August 18th, 2022 (Ste Plan). ## 2.1 Applicable Guidelines and Standards #### Oty of Ottawa: - ♦ Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (Ottawa Sewer Guidelines) - Technical Bulletin ISTB-2014-01 City of Ottawa, February 2014. (ISTB-2014-01) - Technical Bulletin PIEDTB-2016-01 City of Ottawa, September 2016. (PIEDTB-2016-01) - Technical Bulletin ISTB-2018-01 City of Ottawa, January 2018. (ISTB-2018-01) - Technical Bulletin ISTB-2018-03 City of Ottawa, March 2018. (ISTB-2018-03) - Technical Bulletin ISTB-2019-01 City of Ottawa, January 2019. (ISTB-2019-01) - Technical Bulletin ISTB-2019-02 City of Ottawa, February 2019. (ISTB-2019-02) - Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Ottawa Water Guidelines) - Technical Bulletin ISD-2010-2 City of Ottawa, December 15, 2010. (ISD-2010-2) - Technical Bulletin ISDTB-2014-02 City of Ottawa, May 2014. (ISDTB-2014-02) - Technical Bulletin ISTB-2018-02 City of Ottawa, March 2018. (ISTB-2018-02) Ministry of Environment, Conservation and Parks: - ◆ Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (MECP Stormwater Design Manual) - ◆ Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MECP Sewer Design Guidelines) #### Other: ♦ Water Supply for Public Fire Protection, Fire Underwriters Survey, 2020. (FUS Guidelines) ## 3.0 PRE-CONSULTATION SUMMARY A pre-consultation meeting was conducted on September 29, 2021, regarding the proposed site. Specific design parameters to be incorporated within this design include the following: - Pre-development and post-development flows shall be calculated using a maximum time of concentration (Tc) of 10 minutes. - Control 5 through 100-year post-development flows to the 5-year flows with a combined C value of 0.50. - Quality control is required to be provided for this site (80% TSS Removal) as per RVCA requirements. The notes from the City of Ottawa can be found in Appendix B. ## 4.0 WATERMAIN ## 4.1 Existing Watermain The site is located within the 1E pressure zone, as per the Water Distribution System Mapping included in Appendix C. There are existing 762 mm diameter C01 and 305 mm diameter DI watermains within Youville Drive. The 305 mm diameter watermain services the existing car wash as well as the fire hydrants along the east side of Youville Drive. There are three municipal hydrants along Youville drive available to service the development. ## 4.2 Proposed Watermain It is proposed to repurpose the existing 50 mm diameter water service currently connected to the existing car wash. The service is complete with a water valve located at the property line and is connected to the existing 305 mm diameter watermain within Youville Drive. The Fire Underwriters Survey 2020 (FUS) method was utilized to determine the required fire flow for the site. The 'C' factor (type of construction) for the FUS calculation was determined to be 0.8 (non-combustible type construction). The total floor area ('A' value) for the FUS calculation was determined to be 2,113.1 m². The results of the calculations yielded a required fire flow of 7,000 L/min. A fire flow of 9,000 L/min was calculated using the Ontario Building Code (OBC) requirements. The detailed calculations for the FUS and OBC can be found in Appendix C. The water demands for the proposed building have been calculated to adhere to the Ottawa Design Guidelines – Water Distribution manual and can be found in Appendix C. The results have been summarized below: | Ste Area | 0.92 ha | |---------------------------------|-----------------| | Industrial - Light | 35,000 L/ha/day | | Average Day Demand (L/s) | 0.37 | | Maximum Daily Demand (L/s) | 0.56 | | Peak Hourly Demand (L/s) | 1.00 | | OBC Fire Flow Requirement (L/s) | 150.00 | | FUS Fire Flow Requirement (L/s) | 116.67 | Table 1: Water Demands Boundary Conditions have been requested from the City however were not available at the
time of submission. Once boundary conditions are provided by the City, the minimum and maximum water pressures will be compared to those proposed to ensure they fall within the required range identified by in the City of Ottawa Water Supply Guidelines and to confirm the system has adequate capacity for the proposed development. To confirm the adequacy of fire flow to protect the proposed development, public fire hydrants within 150 m of the proposed building were analysed per City of Ottawa ISTB 2018-02 Appendix I Table 1. Based on City guidelines (ISTB-2018-02), the existing hydrants can provide adequate fire protection to the proposed development. The results are summarized below. Table 2: Fire Protection Confirmation | Building | Fire How Demand (L/ min.) | Fire Hydrant(s)
within 75m | Fire Hydrant(s)
within 150m | Combined Fire Flow (L/ min.) | |-----------------------------|---------------------------|-------------------------------|--------------------------------|------------------------------| | 1400-1410 Youville
Drive | 7,000 (FUS)
9,00 (OBC) | 2 | 1 | 15,200 | ## 5.0 SANITARY DESIGN ## 5.1 Existing Sanitary Sewer There is a 450 mm diameter concrete sanitary sewer within Youville Drive. Sanitary flow from the sewer is tributary to the Orleans Collector Sewer per the Otty of Ottawa Trunk Sewer Map figure available in Appendix 'D'. ## 5.2 Proposed Sanitary Sewer It is proposed to repurpose the existing 150 mm diameter sanitary service currently connected to the existing car wash. The existing sanitary service is currently complete with a maintenance which located just inside the property line as per the City of Ottawa – Sewer Design Guidelines, October 2012, Clause 4.4.4.7 and City of Ottawa Sewer-Use By-Law 2003-514 (14). The service connects to the existing 450 mm diameter sanitary sewer within Youville Drive. Refer to drawing C102 for a detailed servicing layout. The proposed development consists of an automobile body shop and service station complete with office space. The peak design flows for the proposed buildings were calculated using criteria from the Ottawa Sewer Guidelines and are summarized in Table 3, below. Based on the unit occupancy statistics provided by the architect, the proposed site development will generate a flow of 1.79 L/s. See Appendix 'D' of this report for more details. Design Parameter Ste Area 0.92 ha Industrial Demand (Light) 35,000 L/gross ha/d Industrial Peaking Factor 6.80 Extraneous How Allowance 0.33 L/s/ha Table 3: Sanitary Design Criteria Table 4 below, summarizes the estimated wastewater flow from the proposed development. Refer to Appendix D for detailed calculations. Table 4: Summary of Estimated Sanitary Flow | Design Parameter | Total How (L/s) | |---|-----------------| | Total Estimated Average Dry Weather
Flow | 0.42 | | Total Estimated Peak Dry Weather Flow | 2.58 | | Total Estimated Peak Wet Weather Flow | 2.84 | The existing 150 mm diameter gravity service will undergo a CCTV inspection prior to construction. It is anticipated that the service has a minimum full flow target velocity (cleansing velocity) of 0.6 m/s and a full flow velocity of not more than 3.0 m/s. The estimated capacity of the service lateral is 15.89 L/s based on an assumed slope of 1.0%. Due to the complexity of the downstream network, the City will need to advise of any downstream constraints. ## 6.0 STORM SEWER DESIGN ## 6.1 Existing Storm Sewers The site is located within the Ottawa River East subwatershed. There is an existing 675 mm diameter concrete storm sewer within Youville Drive that outlets 0.3 Km downstream to Voyageur Oreek. ## 6.2 Proposed Storm Sewers The site is currently serviced by a 250 mm diameter storm sewer network, which outlets to the existing 675 mm diameter storm sewer within Youville Drive. The existing storm outlet will continue to provide servicing to the site. A 250-375 mm storm sewer network is proposed to extend from the existing network in order to support the proposed development. Runoff from the parking lot areas and drive aisles will be collected by existing and proposed catch basins. Based on architectural plans, drainage from the roof of the proposed building will be directed to the proposed sewer network within the parking lot area. Runoff collected from the site will be attenuated via an ICD on the outlet side of EX. CBMH1. Runoff collected by the storm sewer network will be treated by a proposed OGS unit before stormwater is discharged to the existing storm outlet, as per drawing C102. Foundation drainage for the proposed building will be conveyed via a 250 mm diameter storm service downstream of the on-site controls. See COO-23-0480 - POST included in Appendix F of this report for more details. The Stormwater Management design for the subject property will be outlined in Section 7.0 of this report. ## 7.0 PROPOSED STORM WATER MANAGEMENT ## 7.1 Design Criteria and Methodology Stormwater management for the proposed site will be maintained through positive drainage away from the proposed building and parking lot surface attenuation. Drainage from the roof of the building, the parking lot, and a landscaped external drainage area from the adjacent site will be collected by a series of catch basins. The collected parking lot flow will be restricted by a 200 mm diameter orifice before discharging towards a proposed OGS unit and finally an existing storm manhole within the site. How from the existing manhole will continue to convey stormwater to the 675 mm diameter storm sewer within Youville Drive. The quantitative and qualitative properties of the storm runoff for both the pre & post development flows are further detailed below. In summary, the following design criteria have been employed in developing the stormwater management design for the site as directed by the RVCA and City: #### **Quality Control** The site has been designed to achieve an 80% total suspended solids removal (enhanced level) using a proposed oil/grit separator. #### Quantity Control o Post-development flow 5/100-year is be restricted to match the 5-year pre-development flow with a maximum Cvalue of 0.50. #### 7.2 Runoff Calculations Runoff calculations presented in this report are derived using the Rational Method, given as: $$Q = 2.78CIA \text{ (L/s)}$$ Where: C = Runoff coefficient = Rainfall intensity in mm/hr (Oty of Ottawa IDF curves) A = Drainage area in hectares It is recognized that the Pational Method tends to overestimate runoff rates. As a result, the conservative calculation of runoff ensures that any SWM facility sized using this method is expected to function as intended. The following coefficients were used to develop an average Cfor each area: | Roofs/ Concrete/ Asphalt | 0.90 | |--------------------------|------| | Gravel | 0.60 | | Undeveloped and Grass | 0.20 | As per the City of Ottawa - Sewer Design Guidelines, the 5-year balanced 'C' value must be increased by 25% for a 100-year storm event to a maximum of 1.0. As per the pre-consultation meeting with the City of Ottawa the time of concentration (Tc) used for pre-development shall be determined using a calculated Tc of no less than 10 minutes and post-development flows shall be calculated using a Tc of 10 minutes. ## 7.3 Pre-Development Drainage It has been assumed that the site contains no stormwater management controls for flow attenuation. The estimated pre-development peak flows for the 5, and 100-year events are summarized below in Table 5. See CCO-23-0480 - PRE in Appendix E and Appendix G for calculations. | Drainage Area | Area
(ha) | Q
(L/ s) | | | |---------------------------|--------------|-------------|----------|--| | | (Ha) | 5-Year | 100-Year | | | A1 | 0.92 | 188.01 | 376.59 | | | A2
(External Drainage) | 0.005 | 0.31 | 0.66 | | | Total | 0.92 | 188.31 | 377.25 | | Table 5: Pre-Development Runoff Summary ## 7.4 Post-Development Drainage The proposed site drainage limits are demonstrated on the Post-Development Drainage Area Plan. See CCO-23-0480 - POST in Appendix 'F of this report for more details. A summary of the Post-Development Punoff Calculations can be found below. | Drainage
Area | Area (ha) | 5-Year Peak
How (L/s) | 100-Year Peak
Row (L/s) | 100-Year Storage
Requirement
(m³) | 100-Year Storage
Available (m³) | |------------------|-----------|--------------------------|----------------------------|---|------------------------------------| | B1 | 0.83 | 114.18 | 116.59 | 183.2 | 189.9 | | B2 | 0.10 | 5.66 | 12.12 | - | - | | Total | 0.92 | 119.84 | 128.71 | 183.2 | 189.9 | Table 6: Post-Development Runoff Summary Post development drainage will be restricted to a maximum release rate of 128.71 L/s based on a maximum release rate requirement of 133.38 L/s. Runoff within Area B1 will be collected by the proposed catchbasin system and restricted by a 200 mm orifice installed on the outlet side of EX. CBMH1. The flow will be restricted to a maximum release rate of 116.59 L/S with 189.9 m³ of storage to be provided via surface ponding within the parking lot. Runoff within Area B2 will sheet drain without flow attenuation towards the golf course to the west of the site and towards Youville Drive to the east of the site. Gravel drainage within the 1410 Youville Drive parcel of land currently drains towards the golf course. As per drawing C101, the drainage area is proposed to be significantly reduced and will only direct landscaping runoff towards the neighbouring property. As a result, the development proposes to improve the existing condition. ## 7.5 Quality Control Based on coordination with the RVCA an enhanced water quality target (80% TSS removal) is required for the site. This will be achieved by and OGS unit for drainage collected in Area B1. Runoff within Area B2 is proposed to flow off-site without quality treatment. ## 8.0 EROSION AND SEDIMENT CONTROL ## 8.1
Temporary Measures Before construction begins, temporary silt fence, straw bale or rock flow check dams will be installed at all natural runoff outlets from the property. It is crucial that these controls be maintained throughout construction and inspection of sediment and erosion control will be facilitated by the Contractor or Contract Administration staff throughout the construction period. Silt fences will be installed where shown on the final engineering plans, specifically along the downstream property limits. The Contractor, at their discretion or at the instruction of the City, Conservation Authority or the Contract Administrator shall increase the quantity of sediment and erosion controls on-site to ensure that the site is operating as intended and no additional sediment finds its way off site. The rock flow, straw bale & silt fence check dams and barriers shall be inspected weekly and after rainfall events. Care shall be taken to properly remove sediment from the fences and check dams as required. Fibre roll barriers are to be installed at all existing curb inlet catchbasins and filter fabric is to be placed under the grates of all existing catchbasins and manholes along the frontage of the site and any new structures immediately upon installation. The measures for the existing/proposed structures is to be removed only after all areas have been paved. Care shall be taken at the removal stage to ensure that any silt that has accumulated is properly handled and disposed of. Removal of silt fences without prior removal of the sediments shall not be permitted. Although not anticipated, work through winter months shall be closely monitored for erosion along sloped areas. Should erosion be noted, the Contractor shall be alerted and shall take all necessary steps to rectify the situation. Should the Contractor's efforts fail at remediating the eroded areas, the Contractor shall contact the City and/or Conservation Authority to review the site conditions and determine the appropriate course of action. As the ground begins to thaw, the Contractor shall place silt fencing at all required locations as soon as ground conditions warrant. Please see the Ste Grading, Drainage and Sediment & Erosion Control Plan for additional details regarding the temporary measures to be installed and their appropriate OPSD references. #### 8.2 Permanent Measures It is expected that the Contractor will promptly ensure that all disturbed areas receive topsoil and seed/sod and that grass be established as soon as possible. Any areas of excess fill shall be removed or levelled as soon as possible and must be located a sufficient distance from any watercourse to ensure that no sediment is washed out into the watercourse. As the vegetation growth within the site provides a key component to the control of sediment for the site, it must be properly maintained once established. Once the construction is complete, it will be up to the landowner to maintain the vegetation and ensure that the vegetation is not overgrown or impeded by foreign objects. ## 9.0 SUMMARY - A new automobile body shop, service station, and office is proposed at 1400 & 1410 Youville Drive. - It is proposed to repurpose the existing 50 mm diameter water service to service the proposed building. - It is proposed to repurpose the existing 150 mm diameter sanitary service to service to the proposed building. - The proposed storm sewer system, ranging in diameter from 250 mm to 375 mm, along with the existing storm network will service the site. The storm service will discharge stormwater into the 675 mm sewer within Youville drive via the existing sewer network. - Storage for the 5- through 100-year storm events will be provided within the parking lot areas above the proposed storm structures via surface storage. - Quality Control will be provided via an OGS unit. ## 10.0 RECOMMENDATION Based on the information presented in this report, we recommend that City of Ottawa approve this Servicing and Stormwater Management Report in support of the proposed automobile body shop 1400 & 1410 Youville Drive This report is respectfully being submitted for approval. Regards, McIntosh Perry Consulting Engineers Ltd. Alison Gosling, P.Eng. Project Engineer, Land Development T: 613.714.4629 E: a.gosling@mcintoshperry.com Rym Poli Ryan R. Robineau, E.I.T. Gvil Engineering Technologist, Land Development T: 613.714.6611 E: r.robineau@mcintoshperry.com u:\ottawa\01 project - proposals\2023 jobs\cco\cco-23-0480 bbs_jim keay ford_1410 youville drive\03 - servicing\report\co-23-0480_servicing report 2.docx ## 11.0 STATEMENT OF LIMITATIONS This report was produced for the exclusive use of BBS Construction LTD. The purpose of the report is to assess the existing stormwater management system and provide recommendations and designs for the post-construction scenario that are in compliance with the guidelines and standards from the Ministry of the Environment, Conservation and Parks, City of Ottawa and local approval agencies. McIntosh Perry reviewed the site information and background documents listed in Section 2.0 of this report. While the previous data was reviewed by McIntosh Perry and site visits were performed, no field verification/measures of any information were conducted. Any use of this review by a third party, or any reliance on decisions made based on it, without a reliance report is the responsibility of such third parties. McIntosh Perry accepts no responsibility for damages, if any, suffered by any third party as a result of decisions or actions made based on this review. The findings, conclusions and/or recommendations of this report are only valid as of the date of this report. No assurance is made regarding any changes in conditions subsequent to this date. If additional information is discovered or becomes available at a future date, McIntosh Perry should be requested to re-evaluate the conclusions presented in this report, and provide amendments, if required. ## APPENDIX A KEY PLAN # APPENDIX B BACKGROUND DOCUMENTS # Pre- Application Consultation 1410 (1438) Youville Drive (PC2021-0330) – City of Ottawa Internal Department Comments ### **Transportation:** - Follow Transportation Impact Assessment Guidelines - Submit a Screening form to start, a full Transportation Impact Assessment if any of the triggers on the screening form are satisfied. The Screening Form can be sent directly to Josiane.Gervais@ottawa.ca - Start this process asap. The application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable). - Request base mapping asap if RMA is required. Contact Engineering Services (https://ottawa.ca/en/city-hall/planning-and-development/engineering-services) - Clear throat requirement on a collector is 8m. - Ensure site access meets the City's Private Approach Bylaw. - Ensure drive aisle meets the City's Part 4 Parking, Queuing and Loading Provisions (Sections 100 to 114) Bylaw, i.e. minimum 6.7m width. - The site falls just outside of the 600m radius from the existing Jeanne d'Arc transit station (and future Jeanne d'Arc LRT station). - Include a new bus pad, as per City Standards. - On site plan: - Show all details of the roads abutting the site up to and including the opposite curb; include such items as pavement markings, accesses and/or sidewalks. - Turning movement diagrams required for all accesses showing the largest vehicle to access/egress the site. - Turning movement diagrams required for internal movements (loading areas, garbage). - Show all curb radii measurements; ensure that all curb radii are reduced as much as possible and meet TAC Figure 8.5.1. - Show dimensions for site elements (i.e. lane/aisle widths, access width and throat length, parking stalls, sidewalks, pedestrian pathways, etc.) - As the proposed site is for general public use, AODA legislation applies. Consider using the City's Accessibility Design Standards. - o Access aisles are required next to the accessible parking spaces. - Ensure all crosswalks located internally on the site provide a TWSI at the depressed curb, per requirements of the Integrated Accessibility Standards Regulation under the AODA. ## **Environmental:** ## **Tree Conservation Report Requirements:** If there are trees within the area impacted, contact Mark Richardson <u>mark.richardson@ottawa.ca</u> for information on the City's TCR requirements #### **Urban Design:** - A Design Brief is required as part of the submission. The Terms of Reference is attached for convenience. - With respect to the proposed design: - Please consult OC-Transpo to explore opportunities to improve the bus stop. Considerations should be given to improvements such as a concrete pad for people to stand, a seat for people to sit, or a glass bus shelter. - Please provide a pedestrian walkway from the building main entrance to the bus stop. - Provide large canopy trees along the front to the extent possible. Given the location of the hydro lines, such trees will likely have to set back from the property line substantially and be located approximately at where the parking spaces are. Considerations should be given to relocate and reduce some front yard parking to create room for tree planting. (see attached diagram) - Provide a landscape buffer at the back of the site, approximately minimum 3m to allow for some landscaping. (also see attached diagram) - The preliminary design shows a 7.5m area on the north side of the site for landscaping. Would it be beneficial to flip the site design so that the landscape area can be located on the sunny side of the site? ## **Policy Planning:** - The existing Official Plan designation is *General Urban Area*, which allows flexibility to permit the proposed use. - The proposed New Official Plan designation is
Neighbourhood, which allows flexibility to permit the proposed use. - Advancing present and new Official Plans, the preliminary directions for the present Jeanne D'Arc Station Area study, part of the broader Orleans Corridor Secondary Plan study, envisions this south-west quadrant (south and west of Highway 174 and Jeannne D'Arc Boulevard, to St. Joseph Blvd.) as transitioning away from the largely light-industrial land use character to a character that is more transit-supportive based on primarily residential and commercial uses. - While the envisioned vision will take many years to achieve, with the directions of the existing and future Official Plans in mind, the present proposal should advance site planning and design measures that will support and advance the transition to a more urban structure with more urban elements. A future application here should implement, for example, urban elements such as: - Building that is close to the street, with frontage that relates to people on the sidewalk, e.g. entrance that faces the street vs. a side parking lot - Items that support comfortable and inviting active transportation (walking or cycling), e.g. inclusion of medium to large street trees; support for transit infrastructure - Site planning and design should anticipate the implementation of a municipal sidewalk in the future within the City right-of-way. - Minimum and/or reduce large areas of asphalt (e.g. to transition from auto-oriented visual character of area to active transportation character; to reduce heat island effect; increase tree canopy) - Refer to DRS Urban Design recommendations and for future ideas on how to best address these items. ## Planning: - Official Plan: The City's Official Plan (OP), Schedule B, designates the subject site "General Urban Area" for the entire depth of the property. General Urban Area designation permits many types and densities of housing, as well as employment, retail uses, service, industrial, cultural, leisure, greenspace, entertainment, and institutional uses. The General Urban Area permits uses that may generate traffic, noise or other impacts that have the potential to create conflicts with the surrounding residential community. More information can be found at: Section 3 Designations and Land Use | City of Ottawa. - Zoning By-law 2008-250: The site is zoned Light Industrial Zone (IL2 H(14)). It is understood that the lands will be rezoned. The details of the proposed zoning can be discussed. #### Comments: - It is recommended to relocate the proposed building closer to Youville Drive and remove front yard parking to create an enhanced street presence. - o Consider increasing the landscape buffer along the rear yard property line. - Consider moving the location of the proposed loading zone further back from its current proposed location to reduce its visibility from the street. - It is encouraged to not have any vehicles displayed for sale at the front of the property. - Given the existing auto dominated nature of the Youville Drive Business Park, the proposed automotive related land use does not pose as a concern at this time. - There are no concerns of the proposed zoning change currently. #### **Engineering:** Please find attached the engineering comments for the proposed development. #### **Application Type and Fees:** • The Application Fees (2021 Rates) for the applications are as follows: | Application Type | Planning/
Legal Fee | Initial Engineering Design Review & Inspection Fee | Conservation
Authority
Fee
(Initial) | Total | |--|------------------------|--|---|-----------| | Zoning By-law
Amendment (Major) | 21,722.94 | n/a | 390 | 22,112.94 | | Site Plan Control
Approval
(New – Complex) | 48,298.80 | \$10,000 (incl.
HST)
services
>\$300,000 | 1,040 | 59,338.80 | ## **Submission Requirements:** Documents required in support of this application are highlighted in the attached Study and Plan Identification List ## **Links to Design Guidelines And Relevant Policy:** As part of Planning staff's review, we will evaluate your proposal against the relevant Official Plan policies and applicable Council-approved design guidelines. I have provided links to some of the more critical ones for your information. - City Official Plan: https://ottawa.ca/en/planning-development-and-construction/official-plan-and-master-plans/official-plan - Guidelines: For the following design guidelines, reference the following link: https://ottawa.ca/en/planning-development-and-construction/community-design/design-and-planning-guidelines/completed-guidelines Please refer to the links to <u>Guide to preparing studies and plans</u> and <u>fees</u> for further information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>. These pre-application consultation comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another preconsultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined. LEGAL DESCRIPTION: Lot Area: PARCELS WW-8 AND WW-11 ON SEC 4M-152 PART OF BLOCK WW ON REGISTERED PLAN 4M-152 PARTS 1 AND 3 ON PLAN 4R-6509, FORMER CITY OF GLOUCESTER, NOW IN CITY OF OTTAWA AS PREPARED BY STANTEC GEOMATICS LTD., 29 MARCH 2022 ## **Project Zoning Review/Statistics** City of Ottawa Municipal Address: 1400-1410 Youville Drive Registered Owner: Jim Keay Zoning By-law: IL2 H(14) - Light Industrial Automobile Body Shop & Automobile Service Station 9,188 sq.m. (98,894 sq.ft. (2.27 acres)) | Building Areas | | | | |-----------------------------------|--------------------|--------|--| | | Gross (out-to-out) | | | | | Sq.m. | Sq.ft | | | Proposed Development | | | | | Ground Floor, Offices | 291 | 3,130 | | | Ground Floor, Body & Service Shop | 1,596 | 17,177 | | | Ground Floor, Parts | 228 | 2,457 | | | Total | 2,115 | 22,764 | | | Development Standards | | | |----------------------------------|-------------|------------| | | Required | Provided | | Minimum Lot Area | 2,000 sq.m. | 9,188 sq.m | | Minimum Lot Width | No min. | 91.3m | | Minimum Required Yard | | | | Front Yard (min.) | 7.5m | 7.5m | | Interior Side Yard (min.) | 7.5m | 20.39m | | Rear Yard (min.) | 7.5m | 38.28m | | Maximum Building Height | 14m | <14m | | Maximum Lot Coverage | 65% | 22% | | Maximum Floor Space Index | 2 | ±0.2 | | Minimum Width of Landscaped Area | | | | Abutting a street | 3m | 6.95m | | All other cases | No min. | 1.5m | | Existi | ng Parking | | | | |--|--|-----------|-----|--| | Parkir | g Spaces (Minimum 2.6m x 5.2m) | | | | | | Offices | Required: | 7 | Area C of Schedule 1A | | | (2.4 spaces / 100 sq.m.) | Provided: | 30 | | | | Body Shop & Service Station (3 spaces per Service Bay @ 13 Service Bays) | Required: | 39 | | | | | Provided: | 108 | | | | Accessible Parking | Required: | 2 | | | | Section 111 of By-law 2017-301 | Provided: | 2 | 1x Type A & 1x Type B | | Loadii | ng Spaces | Required: | 1 | | | (3.5m | x 9m) | Provided: | 1 | | | Bicycl | e Parking | Required: | 2 | 1x for Offices; 1x for Body Shop/Service Station | | (Offices: 1 space / 250 sq.m.; All other: 1 space / 1,500 sq.m.) | | Provided: | 4 | 3x for Offices; 1x for Body Shop/Service Station | # FIRE ROUTE SIGNAGE: FIRE ROUTE TO BE IDENTIFIED BY VERTICALLY MOUNTED SIGNS PROHIBITING PARKING, AND SHALL: 2.5cm RED ANNULAR BAND 2cm RED INTERDICTORY STROKE BLACK "P" BLACK LEGEND, ARROWS AND BORDER A. BE NOT LESS THAN 45cm IN HEIGHT AND NOT LESS THAN 30cm IN WIDTH; B. BEAR THE MARKINGS AND MESSAGE THAT THE AREA IS A FIRE ROUTE WHERE PARKING IS PROHIBITED AND INCLUDE DOUBLE ARROWS, EXCEPT AT THE ENDS OF THE FIRE ROUTE WHERE A SINGLE ARROW SHALL BE INCLUDED; C. INCLUDE, IN BLACK LETTERS OF A MINIMUM HEIGHT OF 3cm, THE ENGLISH LANGUAGE MESSAGE "FIRE ROUTE" AND THE FRENCH LANGUAGE MESSAGE "ROUTE DES POMPIER" OR "ROUTE D'INCENDIE", BELOW THE ENGLISH MESSAGE, D. HAVE THE DESIGN AND DIMENSIONS DESCRIBED IN THE FOLLOWING FIGURE: FIRE ROUTE SIGNS SHALL BE LOCATED NO MORE THAN 25m APART UNLESS OTHERWISE SPECIFICALLY APPROVED BECAUSE OF UNUSUAL SITE CONDITIONS OR THE FIRE ROUTE CONFIGURATION, AND THE LOWER EDGE OF EACH SIGN SHALL BE BETWEEN 2m AND 2.5m ABOVE THE GROUND. | | Existing Buildings | |-----------|--| | | Existing buildings | | | Proposed Buildings | | | Property Lines | | | Setback Lines | | | Landscape Buffer | | | Overhead Wires | | | Fence | | | Sanitary Line - refer to Civil | | | — Stormwater Line - refer to Civil | | | Vehicle Transport Truck Pathing/Route | | | Waste Management Truck Pathing/Route | | | Proposed Concrete Curb | | | Depressed Concrete Curb | | 43435 | Proposed Concrete Sidewalk | | | Proposed Landscape Area | | Ġ. | Barrier Free Parking Space | | _ | Principal Entrance Door | | \bigvee | Exterior Door
("O/H" indicates Overhead Door) | Waste Bins, by Owner Issued for Coordination Issued for Site Plan Control 18 August 2022 It is the responsibility of the appropriate contractor to check and verify all dimensions
on site and report all errors and / or omissions to the Architect. All contractors must comply with all pertinent codes and by-laws. Do not scale drawings. This drawing may not be used for construction until signed by KWC Architects Inc. and shall not be used without the Architect's consent. 383 Parkdale Avenue, Suite 201 Ottawa, Ontario, Canada, K1Y 4R4 KWC ARCHITECTS INC. **Phone:** 613 238-2217 613 238-6595 **E-Mail:** kwc@kwc-arch.com **BUILDING A REPUTATION ON EXCELLENCE** BBS CONTRUCTION (ONTARIO) LTD. 1805 WOODWARD DRIVE, OTTAWA, ON. K2C 0P9 CANADA TEL: (613) 226-8830 FAX: (613) 226-7709 www.bbsconstruction.ca JIM KEAY 'FIX AUTO' ORLEANS - AUTOMOBILE BODY SHOP SITE PLAN As indicated 2022 JULY 1 REVISIONS No. DATE DESCRIPTION 0 12 August 2022 Issued for Coordination 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 1 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control No. DATE DESCRIPTION 2 18 August 2022 Issued for Site Plan Control 2 18 August 2022 Issued All contractors must comply with all pertinent codes and by-laws. Do not scale drawings. This drawing may not be used for construction until signed by KWC Architects Inc. and shall not be used without the Architect's consent. **383 Parkdale Avenue, Suite 201** Ottawa, Ontario, Canada, K1Y 4R4 architect's seal KWC ARCHITECTS INC. Phone: 613 238-2217 Fax: 613 238-6595 E-Mail: kwc@kwc-arch.com **BUILDING A REPUTATION ON EXCELLENCE** BBS CONTRUCTION (ONTARIO) LTD. 1805 WOODWARD DRIVE, OTTAWA, ON. K2C 0P9 CANADA TEL: (613) 226-8830 FAX: (613) 226-7709 www.bbsconstruction.ca JIM KEAY 'FIX AUTO' ORLEANS - AUTOMOBILE BODY SHOP **BUILDING ELEVATIONS, PERSPECTIVE VIEW** 2022 JULY 1 project no. 225 scale 1:12 A030 ## **Alison Gosling** From: Jamie Batchelor < jamie.batchelor@rvca.ca> **Sent:** August 15, 2022 11:23 AM To: Ryan Robineau Cc: Alison Gosling Subject: RE: 1410 Youville Drive RVCA Requirement #### Good Morning Ryan, The water quality target would be enhanced (80% TSS removal). Given the erosive nature of Voyageur Creek, the stormwater from the site should demonstrate how the hydrology of the site is being maintained through the a water budget/balance. I will inquire further with our technical staff in this regard. Jamie Batchelor, MCIP, RPP Planner, ext. 1191 Jamie.batchelor@rvca.ca 3889 Rideau Valley Drive PO Box 599, Manotick ON K4M 1A5 T 613-692-3571 | 1-800-267-3504 F 613-692-0831 | www.rvca.ca This message may contain information that is privileged or confidential and is intended to be for the use of the individual(s) or entity n may contain confidential or personal information which may be subject to the provisions of the Municipal *Freedom of Information & I* you are not the intended recipient of this e-mail, any use, review, revision, retransmission, distribution, dissemination, copying, printing taking of any action in reliance upon this e-mail, is strictly prohibited. If you have received this e-mail in error, please contact the send and any copy of the e-mail and any printout thereof, immediately. Your cooperation is appreciated. From: Ryan Robineau <r.robineau@mcintoshperry.com> Sent: Monday, August 15, 2022 10:43 AM To: Jamie Batchelor < jamie.batchelor@rvca.ca> Cc: Alison Gosling < a.gosling@mcintoshperry.com> Subject: 1410 Youville Drive RVCA Requirement Good morning Jamie, We wanted to touch base with you regarding a proposed development at 1410 Youville Drive. The development involves the construction of a 1-storey automobile body shop and service station with surface parking. Drainage will be collected and conveyed to the 675mm dia storm sewer within Youville Drive. As shown by the attached figure, water travels approximately 0.30km to the Bilberry Creek (Outlet ID #09116). It is anticipated that drainage will be collected by catch basins. We would like to know what SWM requirements the RVCA would have for the site. Please let me know if you have any questions. APPENDIX C WATERWAIN CALCULATIONS # McINTOSH PERRY ## 000-22-0480 - Youville Drive - Water Demands Commercial m2 Industrial - Light 9188 m2 Industrial - Heavy m2 #### AVERAGE DAILY DEM AND | DEMAND TYPE | AMOUNT | UNITS | | |-------------------------------|------------------------|------------------|-----| | Residential | 280 | L/c/d | | | Industrial - Light | 35,000 | L/gross ha/d | | | Industrial - Heavy | 55,000 | L/gross ha/d | | | Shopping Centres | 2,500 | L/ (1000m² /d | | | Hospital | 900 | L/ (bed/day) | | | Schools | 70 | L/(Student/d) | | | Trailer Park with no Hook-Ups | 340 | L/(space/d) | | | Trailer Park with Hook-Ups | 800 | L/(space/d) | | | Campgrounds | 225 | L/(campsite/d) | | | Mobile Home Parks | 1,000 | L/(Space/d) | | | Motels | 150 | L/ (bed-space/d) | | | Hotels | 225 | L/ (bed-space/d) | | | Tourist Commercial | 28,000 | L/gross ha/d | | | Other Commercial | 28,000 | L/ gross ha/d | | | | Residential | 0.00 | L/s | | AVERAGE DAILY DEMAND | Commercial/Industrial/ | | | | | Institutional | 0.37 | L/s | # McINTOSH PERRY ## MAXIMUM DAILY DEMAND | DEM AND TYPE | Į. | AMOUNT | UNITS | |----------------------|------------------------|------------|----------------| | Residential | 9.5 | x avg. day | L/c/d | | Industrial | 1.5 | x avg. day | L/ gross ha/ d | | Commercial | 1.5 | x avg. day | L/gross ha/d | | Institutional | 1.5 | x avg. day | L/ gross ha/ d | | | Residential | 0.00 | L/s | | MAXIMUM DAILY DEMAND | Commercial/Industrial/ | | | | | Institutional | 0.56 | L/s | #### MAXIMUM HOUR DEMAND | DEM AND TYPE | AMOUNT | | UNITS | |---------------------|------------------------|------------|----------------| | Residential | 14.3 | x avg. day | L/c/d | | Industrial | 1.8 | x max. day | L/gross ha/d | | Commercial | 1.8 | x max. day | L/gross ha/d | | Institutional | 1.8 | x max. day | L/ gross ha/ d | | MAXIMUM HOUR DEMAND | Residential | 0.00 | L/s | | | Commercial/Industrial/ | | | | | Institutional | 1.00 | L/s | WATER DEMAND DESIGN FLOWS PER UNIT COUNT CITY OF OTTAWA - WATER DISTRIBUTION GUIDELINES, JULY 2010 | AVERAGE DAILY DEMAND | 0.37 | L/s | |----------------------|------|-----| | MAXIMUM DAILY DEMAND | 0.56 | L∕s | | MAXIMUM HOUR DEMAND | 1.00 | L∕s | #### 000-22-0480 - Youville Drive - OBC Fire Calculations Project: Youville Drive Project No.: OCC-22-0480 Designed By: PRR Checked By: AJG Date: August 15, 2022 #### Ontario 2006 Building Code Compendium (Div. B - Part 3) Water Supply for Fire-Fighting - Store/Office & Warhouse Building Building is classified as Group: F2 up to 2 Storeys (from table 3.2.2.55) Building is of noncombustible construction with fire separations and fire-resistance ratings provided in accordance with subsections 3.2.2., including loadbearing walls, columns and arches From Div. B A-3.2.5.7. of the Ontario Building Code - 3. Building On-Ste Water Supply: (a) $Q = K \times V \times Stot$ #### where: Q = minimum supply of water in litres K = water supply coefficient from Table 1 V = total building volume in cubic metres Stot = total of spatial coefficient values from the property line exposures on all sides as obtained from the formula: Stot = 1.0 + [Sside1 + Sside2 + Sside3 + ..etc.] | | K | 17 | (from Table 1 pg A-31) (Worst case occupancy {E/F2} 'K' value used) | | | | From Figure | |--|------|------------|---|--------|-------|-----|-------------| | | V | 15,527 | (Total building volume in m ³ .) | | | | 1 (A-32) | | | Stot | 1.2 | (From figure 1 pg A-32) | Snorth | 20.39 | m | 0.0 | | | Q = | 316,759.39 | L | Seast | 7.5 | m | 0.2 | | | | | | Seouth | 22.34 | m | 0.0 | | From Table 2: Required Minimum Water Supply How Rate (L/s) | | | Swest | 38.28 | m | 0.0 | | * approximate distances 9000 L/min if Q > 270,000 L 2378 gpm #### 000-22-0480 - Youville Drive - Fire Underwriters Survey Project: Youville Drive Project No.: CCO-22-0480 Designed By: RPR Checked By: AJG Date: August 15, 2022 #### From the Fire Underwriters Survey (2020) From Part II – Guide for Determination of Required Fire Flow Copyright I.S.O.: City of Ottawa Technical Bulletin ISTB-2018-02 Applied Where Applicable #### A. BASE REQUIREMENT (Rounded to the nearest 1000 L/ min) $F = 220 \times C \times VA$ Where: F =
Required fire flow in liters per minute C = Coefficient related to the type of construction. A = The total floor area in square meters (including all storey's, but excluding basements at least 50 percent below grade) in the building being considered. Construction Type Non-Combustible Construction C 0.8 A 2,113.1 m² Total Floor Area (per the 2020 FUS Page 20 - Total Effective Area) 2,113.1 m² * Unprotected Vertical Openings % Increase' Calculated Fire Flow 8,090.5 L/ min 8,000.0 L/ min 8,000.0 L/ min B. REDUCTION FOR OCCUPANCY TYPE (No Rounding) From Page 24 of the Fire Underwriters Survey: age 24 of the Fire Underwriters Survey: Limited Combustible -15% Fire Flow 6,800.0 L/ min C. REDUCTION FOR SPRINKLER TYPE (No Rounding) Non-Sprinklered 0% | R: | eduction | | 0.0 L/ min | | | | | |------------|--------------------------------|--------------------------------------|-------------------------------------|---|-------------------------|----|--| | D. INCR | EASE FOR EXPOSURE (No Rounding | | | | | | | | | Separation Distance (m) | Cons.of Exposed Wall | Length Exposed
Adjacent Wall (m) | 0 | Length-Height
Factor | | | | Exposure 1 | 20.1 to 30 | Ordinary - Mass Timber (Unprotected) | 93 | 2 | 186.0 | 5% | | | Exposure 2 | Over 30 m | Ordinary - Mass Timber (Unprotected) | 20 | 1 | 20.0 | 0% | | | Exposure 3 | 20.1 to 30 | Ordinary - Mass Timber (Unprotected) | 50 | 1 | 50.0 | 2% | | | Exposure 4 | Over 30 m | Ordinary - Mass Timber (Unprotected) | 20 | 1 | 20.0 | 0% | | Increase* 476.0 L/min E Total Fire Flow (Rounded to the Nearest 1000 L/min) ^{*} In accordance with Part II, Section 4, the Increase for separation distance is not to exceed 75% ^{**} In accordance with Section 4 the Fire flow is not to exceed 45,000 L/min or be less than 2,000 L/min ## 1400-1410 Youville Drive Hydrant Coverage Figure Municipal Hydrants within 75m: 2 Municipal Hydrants within 150m: 1 APPENDIX D SANITARY CALCULATIONS ### 000-23-0480 - 1410 Youville Drive - Sanitary Demands Project: 1410 Youville Drive Project No.: COO-23-0480 Designed By: RPR Checked By: AJG Date: August 26, 2022 Ste Area 0.92 Gross ha #### DESIGN PARAMETERS Institutional/Commercial Peaking Factor 1.5 Industrial Peaking Factor 6.8 Pesidential Peaking Factor 3.80 * Using Harmon Formula = $1+(14/(4+P^{0.5}))^{*}0.8$ where P = population in thousands, Harmon's Correction Factor = 0.8 Mannings coefficient (n) 0.013 Demand (per capita) 280 L/day Infiltration allowance 0.33 L/s/Ha #### EXTRANEOUS FLOW ALLOWANCES | Infiltration / Inflow | How (L/s) | |-----------------------|-----------| | Dry | 0.05 | | Wet | 0.26 | | Total | 0.30 | #### AVERAGE DAILY DEM AND | DBM AND TYPE | AMOUNT | UNITS | POPULATION / AREA | How (L/s) | |----------------------------|--------|------------------------|-------------------|-----------| | Residential | 280 | L/c/d | 0 | 0.00 | | Industrial - Light** | 35,000 | L/ gross ha/d | 0.92 | 0.37 | | Industrial - Heavy** | 55,000 | L/ gross ha/ d | | 0 | | Commercial / Amenity | 2,800 | L/ (1000m² /d) | 0.00 | 0.00 | | Hospital | 900 | L/ (bed/day) | | 0 | | Schools | 70 | L/(Student/d) | | 0 | | Trailer Parks no Hook-Ups | 340 | L/(space/d) | | 0 | | Trailer Park with Hook-Ups | 800 | L/(space/d) | | 0 | | Campgrounds | 225 | L/(campsite/d) | | 0 | | Mobile Home Parks | 1,000 | L/(Space/d) | | 0 | | Motels | 150 | L/(bed-space/d) | | 0 | | Hotels | 225 | L/(bed-space/d) | | 0 | | Office | 75 | L/7.0m ² /d | | 0 | | Tourist Commercial | 28,000 | L/ gross ha/d | | 0 | | Other Commercial | 28,000 | L/ gross ha/ d | | 0 | | AVERAGE RESIDENTIAL FLOW | 0.00 | L/s | |-------------------------------------|------|-----| | PEAK RESIDENTIAL FLOW | 0.00 | L/s | | | | | | AVERAGE ICI FLOW | 0.00 | L/s | | PEAK INSTITUTIONAL/ COMMERCIAL FLOW | 0.00 | L/s | | PEAK INDUSTRIAL FLOW | 2.53 | L/s | | TOTAL PEAK ICI FLOW | 2.53 | L/s | #### TOTAL SANITARY DEMAND | TOTAL ESTIMATED AVERAGE DRY WEATHER FLOW | 0.42 | L/s | |--|------|-----| | TOTAL ESTIMATED PEAK DRY WEATHER FLOW | 2.58 | L/s | | TOTAL ESTIMATED PEAK WET WEATHER FLOW | 2.84 | L/s | ^{**} PEAK INDUSTRIAL FLOW PER CITY OF OTTAWA SEWER DESIGN GUIDELINES APPENDIX 4B ## APPENDIX E PRE-DEVELOPMENT DRAINAGE PLAN ## APPENDIX F POST-DEVELOPMENT DRAINAGE PLAN APPENDIX G STORWWATER MANAGEMENT CALCULATIONS #### CO-22-0480 - Youville Drive - SWM Calculations 1 of 4 | Tc
(min) | | nsity
n/hr) | | |-------------|--------|----------------|------------------| | (111111) | 5-Year | 100-Year | | | 10 | 104.2 | 178.6 | PRE-DEVELOPM ENT | | 10 | 104.2 | 178.6 | POST-DEVELOPMENT | | G-Values | | | | | |------------|------|--|--|--| | Impervious | 0.90 | | | | | Gravel | 0.60 | | | | | Pervious | 0.20 | | | | #### Pre-Development Runoff Coefficient | Drainage
Area | Impervious
Area (m²) | Gravel
(m²) | Pervious Area
(m²) | Average C
(5-year) | Average C
(100-year) | |------------------|-------------------------|----------------|-----------------------|-----------------------|-------------------------| | A1 | 4,214 | 4,258 | 716 | 0.71 | 0.83 | | A2 | 0 | 0 | 54 | 0.20 | 0.25 | #### Pre-Development Runoff Calculations | Drainage | Area | С | С | Tc | Q(| L/s) | | |----------|-------|--------|----------|-------|--------|----------|--------| | Area | (ha) | 5-Year | 100-Year | (min) | 5-Year | 100-Year | | | A1 | 0.92 | 0.71 | 0.83 | 10 | 188.01 | 376.59 | 1 | | A2 | 0.005 | 0.20 | 0.25 | 10 | 0.31 | 0.66 | * Exte | | Total | 0.92 | | • | | 188.31 | 377.25 | | External drainage #### Post-Development Runoff Coefficient | Drainage
Area | Impervious
Area (m²) | Gravel
(m²) | Pervious Area
(m²) | Average C
(5-year) | Average C
(100-year) | |------------------|-------------------------|----------------|-----------------------|-----------------------|-------------------------| | B1 | 7,990 | 0 | 275 | 0.88 | 0.98 | | B2 | 0 | 0 | 977 | 0.20 | 0.25 | #### Post-Development Runoff Calculations | Drainage | Area | С | С | Tc | Q(| | | | |----------|------|--------|----------|-------|--------|----------|--------------|--| | Area | (ha) | 5-Year | 100-Year | (min) | 5-Year | 100-Year | | | | B1 | 0.83 | 0.88 | 0.98 | 10 | 209.89 | 400.04 | Restricted | | | B2 | 0.10 | 0.20 | 0.25 | 10 | 5.66 | 12.12 | Unrestricted | | | Total | 0.92 | | | | 215.55 | 412.16 | | | #### Required Restricted Flow | Drainage | Area | С | Tc | Q (L/s) | | |----------|-------|--------|-------|---------|------------------| | Area | (ha) | 5-Year | (min) | 5-Year | | | A1 | 0.92 | 0.50 | 10 | 133.07 | | | A2 | 0.005 | 0.20 | 10 | 0.31 | * External Drair | | Total | | | | 133.38 | | *External Drainage area added to target flow rate #### Post-Development Restricted Runoff Calculations | Drainage
Area | Unrestricted Flow
(L/S) | | | Restricted Flow
(∐/S) | | Storage Required (m ³) | | Storage Provided (m³) | | |------------------|----------------------------|----------|--------|--------------------------|--------|------------------------------------|--------|-----------------------|--| | Alea | 5-year | 100-Year | 5-Year | 100-Year | 5-Year | 100-Year | 5-Year | 100-Year | | | B1 | 209.89 | 400.04 | 114.18 | 116.59 | 57.4 | 183.2 | 61.0 | 189.9 | | | B2 | 5.66 | 12.12 | 5.66 | 12.12 | - | - | - | - | | | Total | 215.55 | 412.16 | 119.84 | 128.71 | | | | | | #### CO-22-0480 - Youville Drive - SWM Calculations Storage Requirements for Area B1 2 of 4 #### 5-Year Storm Event | Tc
(min) | l
(mm/hr) | Runoff
(L/s)
B1 | Allowable
Outflow
(L/s) | Runoff to
be Stored
(L/s) | Storage
Required
(m ³) | |-------------|--------------|-----------------------|-------------------------------|---------------------------------|--| | 0 | 230.5 | 464.33 | 114.18 | 350.15 | 0.00 | | 5 | 141.2 | 284.44 | 114.18 | 170.26 | 51.08 | | 10 | 104.2 | 209.90 | 114.18 | 95.72 | 57.43 | | 15 | 83.6 | 168.41 | 114.18 | 54.23 | 48.80 | | 20 | 70.3 | 141.62 | 114.18 | 27.44 | 32.92 | Maximum Storage Required 5-year = 57 #### 100-Year Storm Event | Tc
(min) | l
(mm/hr) | Runoff
(L/s)
B1 | Allowable
Outflow
(L/s) | Runoff to
be Stored
(L/s) | Storage
Required
(m ³) | |-------------|--------------|-----------------------|-------------------------------|---------------------------------|--| | 0 | 398.6 | 893.02 | 116.59 | 776.43 | 0.00 | | 5 | 242.7 | 543.74 | 116.59 | 427.15 | 128.15 | | 10 | 178.6 | 400.13 | 116.59 | 283.54 | 170.13 | | 15 | 142.9 | 320.15 | 116.59 | 203.56 | 183.21 | | 20 | 120.0 | 268.85 | 116.59 | 152.26 | 182.71 | | 25 | 103.8 | 232.55 | 116.59 | 115.96 | 173.94 | | 30 | 91.9 | 205.89 | 116.59 | 89.30 | 160.74 | | 35 | 82.6 | 185.06 | 116.59 | 68.47 | 143.78 | | 40 | 75.1 | 168.25 | 116.59 | 51.66 | 123.99 | | 45 | 69.1 | 154.81 | 116.59 | 38.22 | 103.20 | Maximum Storage Required 100-year = 183 m³ #### 5-Year Storm Event Storage Summary | | | Wate | er ⊟ev. (m) = | 58 | .89 | | |-----------|-------|------------|---------------|----------|-------|--------| | Location | T/G | INV. (out) | Depth (m) | Head (m) | Volum | e (m³) | | EX. CBMH1 | 58.80 | 56.92 | 0.09 | 1.87 | 61 | .0 | Storage Available (m³) = 61.0 Storage Required (m³) = 57.4 #### 100-Year Storm Event Storage Summary | | | Wate | er ⊟ev. (m) = | 58 | .97 | | |----------|-------|------------|---------------|----------|----------|-------------------| | Location | T/G | INV. (out) | Depth (m) | Head (m) | Volume (| (m ³) | | CBX | 58.80 | 56.92 | 0.17 | 1.95 | 189.9 |) | Sorage Available (m³) = 189.9 Sorage Required (m³) = 183.2 ^{*} Available Storage calculated from AutoCAD #### CO-22-0480 - Youville Drive - SWM Calculations For Orifice Flow, C= 0.60 3 of 4 For Weir Flow, C= 1.84 | | Orifice 1 | Orifice 2 | Weir 1 | Weir 2 | |-----------------------------|-----------|-----------|--------|--------| | invert elevation | 56.92 | Х | Х | Х | | center of crest elevation | 57.02 | X | | X
 | orifice width / weir length | 200 mm | X | X | X | | weir height | | | | X | | orifice area (m²) | 0.031 | X | Х | X | Bevation Discharge Table - Storm Routing | Factor F | | Bevation discharge Table - Storm Houting | | | | | | | | | |--|----------|--|----------------------|------|-----------------------|------|---------|------|------------|--------| | Hm O m'/s Hm O m'/s Hm O m'/s Hm O m'/s | ⊟evation | | | | | | | | | Total | | 16.93 | | H[m] | Q[m ³ /s] | H[m] | Q [m ³ /s] | H[m] | Q[m³/s] | H[m] | $Q[m^3/s]$ | | | 16.94 | 56.92 | Х | Х | Х | Х | Х | | Х | Х | | | 16.95 | 56.93 | Х | Х | Х | Х | Х | Х | X | Х | | | 16.96 | 56.94 | Х | | Х | Х | Х | Х | Х | Х | 0.00 | | 16.97 | 56.95 | X | X | Х | Х | Х | Х | Х | Х | 0.00 | | 16.98 | 56.96 | Х | Х | X | х | Х | Х | Х | Х | 0.00 | | X | 56.97 | X | X | Х | Х | Х | Х | Х | Х | 0.00 | | 88.64 1.62 0.11 x <td< td=""><td>56.98</td><td>Х</td><td>Х</td><td>X</td><td>х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>0.00</td></td<> | 56.98 | Х | Х | X | х | Х | Х | Х | Х | 0.00 | | 88.65 1.63 0.11 x x x x x x x 106.60 88.66 1.64 0.11 x </td <td>56.99</td> <td></td> <td></td> <td>X</td> <td>X</td> <td>X</td> <td>х</td> <td>X</td> <td>Х</td> <td>0.00</td> | 56.99 | | | X | X | X | х | X | Х | 0.00 | | 88.66 1.64 0.11 x x x x x x x 106.92 88.67 1.65 0.11 x </td <td>58.64</td> <td>1.62</td> <td>0.11</td> <td>х</td> <td>х</td> <td>х</td> <td>Х</td> <td>х</td> <td>Х</td> <td>106.27</td> | 58.64 | 1.62 | 0.11 | х | х | х | Х | х | Х | 106.27 | | 88.67 1.65 0.11 x <th< td=""><td>58.65</td><td>1.63</td><td>0.11</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>106.60</td></th<> | 58.65 | 1.63 | 0.11 | Х | Х | Х | Х | Х | Х | 106.60 | | 88.68 1.66 0.11 x x x x x x 107.57 88.69 1.67 0.11 x <td< td=""><td>58.66</td><td>1.64</td><td>0.11</td><td>Х</td><td>х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>106.92</td></td<> | 58.66 | 1.64 | 0.11 | Х | х | Х | Х | Х | Х | 106.92 | | 1.67 | 58.67 | 1.65 | 0.11 | Х | Х | Х | Х | Х | Х | 107.25 | | 88.70 1.68 0.11 x x x x x x 108.22 88.71 1.69 0.11 x x x x x x x x 108.68 88.72 1.70 0.11 x x x x x x x 108.86 88.73 1.71 0.11 x x x x x x x 109.98 88.74 1.72 0.11 x x x x x x x 109.50 88.75 1.73 0.11 x x x x x x x x 109.82 88.76 1.74 0.11 x <td>58.68</td> <td>1.66</td> <td>0.11</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>107.57</td> | 58.68 | 1.66 | 0.11 | Х | Х | Х | Х | Х | Х | 107.57 | | 88.71 1.69 0.11 x x x x x x 108.54 88.72 1.70 0.11 x <td< td=""><td>58.69</td><td>1.67</td><td>0.11</td><td>х</td><td>х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>107.90</td></td<> | 58.69 | 1.67 | 0.11 | х | х | Х | Х | Х | Х | 107.90 | | 88.72 1.70 0.11 x x x x x x 108.86 88.73 1.71 0.11 x x x x x x x 109.18 88.74 1.72 0.11 x x x x x x x x 109.50 88.75 1.73 0.11 x x x x x x x x 109.52 88.76 1.74 0.11 x x x x x x x x 110.45 88.77 1.75 0.11 x x x x x x x 110.45 88.79 1.77 0.11 x <td>58.70</td> <td>1.68</td> <td>0.11</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>Х</td> <td>108.22</td> | 58.70 | 1.68 | 0.11 | х | х | х | х | х | Х | 108.22 | | 88.73 1.71 0.11 x x x x x x 109.18 88.74 1.72 0.11 x x x x x x x x 109.50 88.75 1.73 0.11 x x x x x x x x 109.50 88.76 1.74 0.11 x x x x x x x x 110.14 88.77 1.75 0.11 x | 58.71 | 1.69 | 0.11 | х | Х | Х | Х | х | Х | 108.54 | | 88.74 1.72 0.11 x x x x x x 109.50 88.75 1.73 0.11 x </td <td>58.72</td> <td>1.70</td> <td>0.11</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>Х</td> <td>108.86</td> | 58.72 | 1.70 | 0.11 | х | х | х | х | х | Х | 108.86 | | 88.75 1.73 0.11 x x x x x x x 109.82 100.14 109.82 109.82 100.42 109.82 100.42 109.82 100.42 109.82 100.42 109.82 100.42 109.82 100.42 109.82 100.42 109.82 100.42 109.82 100.42 109.82 100.42 <td< td=""><td>58.73</td><td>1.71</td><td>0.11</td><td>х</td><td>х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>109.18</td></td<> | 58.73 | 1.71 | 0.11 | х | х | Х | Х | Х | Х | 109.18 | | 68.76 1.74 0.11 x x x x x x x 110.14 18.77 1.75 0.11 x </td <td>58.74</td> <td>1.72</td> <td>0.11</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>Х</td> <td>109.50</td> | 58.74 | 1.72 | 0.11 | х | х | х | х | х | Х | 109.50 | | 88.77 1.75 0.11 x x x x x x x 110.45 88.78 1.76 0.11 x </td <td>58.75</td> <td>1.73</td> <td>0.11</td> <td>х</td> <td>х</td> <td>х</td> <td>Х</td> <td>х</td> <td>Х</td> <td>109.82</td> | 58.75 | 1.73 | 0.11 | х | х | х | Х | х | Х | 109.82 | | 68.78 1.76 0.11 x <td< td=""><td>58.76</td><td>1.74</td><td>0.11</td><td>х</td><td>х</td><td>х</td><td>Х</td><td>х</td><td>Х</td><td>110.14</td></td<> | 58.76 | 1.74 | 0.11 | х | х | х | Х | х | Х | 110.14 | | 68.78 1.76 0.11 x <td< td=""><td>58.77</td><td>1.75</td><td>0.11</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>110.45</td></td<> | 58.77 | 1.75 | 0.11 | х | х | х | х | х | х | 110.45 | | 68.79 1.77 0.11 x x x x x x x 111.08 x | 58.78 | 1.76 | 0.11 | х | х | х | Х | х | Х | | | 88.81 1.79 0.11 x x x x x x x 111.71 88.82 1.80
0.11 x x x x x x x x 112.02 88.83 1.81 0.11 x x x x x x x x x x 112.33 88.84 1.82 0.11 x x x x x x x x x 112.64 88.85 1.83 0.11 x x x x x x x x 112.95 88.86 1.84 0.11 x <td< td=""><td>58.79</td><td>1.77</td><td>0.11</td><td>х</td><td>х</td><td>х</td><td>Х</td><td>х</td><td>Х</td><td>111.08</td></td<> | 58.79 | 1.77 | 0.11 | х | х | х | Х | х | Х | 111.08 | | 88.81 1.79 0.11 x x x x x x x 111.71 88.82 1.80 0.11 x x x x x x x x 112.02 88.83 1.81 0.11 x x x x x x x x x x 112.33 88.84 1.82 0.11 x x x x x x x x x 112.64 88.85 1.83 0.11 x x x x x x x x 112.95 88.86 1.84 0.11 x <td< td=""><td>58.80</td><td>1.78</td><td>0.11</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>111.39</td></td<> | 58.80 | 1.78 | 0.11 | х | х | х | х | х | х | 111.39 | | 68.82 1.80 0.11 x x x x x x x 112.02 x | 58.81 | | 0.11 | х | х | х | Х | х | Х | 111.71 | | 68.84 1.82 0.11 x x x x x x x 112.64 68.85 1.83 0.11 x </td <td>58.82</td> <td>1.80</td> <td>0.11</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td>112.02</td> | 58.82 | 1.80 | 0.11 | х | х | х | х | х | х | 112.02 | | 68.84 1.82 0.11 x x x x x x x 112.64 68.85 1.83 0.11 x </td <td>58.83</td> <td>1.81</td> <td>0.11</td> <td>х</td> <td>х</td> <td>х</td> <td>Х</td> <td>х</td> <td>Х</td> <td>112.33</td> | 58.83 | 1.81 | 0.11 | х | х | х | Х | х | Х | 112.33 | | 88.86 1.84 0.11 x <th< td=""><td>58.84</td><td>1.82</td><td>0.11</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td></td></th<> | 58.84 | 1.82 | 0.11 | х | х | х | х | х | х | | | 88.87 1.85 0.11 x x x x x x x x 113.56 113.66 113.87 113.87 113.87 113.87 113.87 114.18 114. | 58.85 | 1.83 | 0.11 | х | х | х | х | х | х | 112.95 | | 88.88 1.86 0.11 x x x x x x x x 113.87 88.89 1.87 0.11 x x x x x x x x 114.18 88.90 1.88 0.11 x x x x x x x x 114.48 88.91 1.89 0.11 x x x x x x x x 114.78 88.92 1.90 0.12 x x x x x x x x 115.09 88.93 1.91 0.12 x x x x x x x x x 115.39 88.94 1.92 0.12 x x x x x x x x x x 115.69 88.95 1.93 0.12 x | 58.86 | 1.84 | 0.11 | х | х | х | Х | х | Х | 113.26 | | 88.89 1.87 0.11 x <th< td=""><td>58.87</td><td>1.85</td><td>0.11</td><td>х</td><td>х</td><td>х</td><td>Х</td><td>х</td><td>Х</td><td>113.56</td></th<> | 58.87 | 1.85 | 0.11 | х | х | х | Х | х | Х | 113.56 | | 88.90 1.88 0.11 x x x x x x x 114.48 88.91 1.89 0.11 x x x x x x x x 114.78 88.92 1.90 0.12 x x x x x x x x 115.09 88.93 1.91 0.12 x x x x x x x x 115.39 88.94 1.92 0.12 x x x x x x x x 115.69 88.95 1.93 0.12 x x x x x x x x x x 115.99 88.96 1.94 0.12 x | 58.88 | 1.86 | 0.11 | х | х | х | х | Х | Х | 113.87 | | 68.91 1.89 0.11 x x x x x x 114.78 68.92 1.90 0.12 x x x x x x x 115.09 68.93 1.91 0.12 x x x x x x x x 115.39 68.94 1.92 0.12 x x x x x x x x 115.69 68.95 1.93 0.12 x x x x x x x x 115.99 68.96 1.94 0.12 x | 58.89 | 1.87 | 0.11 | х | х | х | х | х | х | 114.18 | | 88.92 1.90 0.12 x x x x x x 115.09 88.93 1.91 0.12 x x x x x x x 115.39 88.94 1.92 0.12 x x x x x x x 115.69 88.95 1.93 0.12 x x x x x x x 115.99 88.96 1.94 0.12 x x x x x x x x 116.29 | 58.90 | 1.88 | 0.11 | х | х | х | х | х | х | 114.48 | | 88.92 1.90 0.12 x x x x x x 115.09 88.93 1.91 0.12 x x x x x x x 115.39 88.94 1.92 0.12 x x x x x x x 115.69 88.95 1.93 0.12 x x x x x x x 115.99 88.96 1.94 0.12 x x x x x x x x 116.29 | 58.91 | | | | | | | | | | | 58.93 1.91 0.12 x x x x x x 115.39 58.94 1.92 0.12 x x x x x x x 115.69 58.95 1.93 0.12 x x x x x x x 115.99 58.96 1.94 0.12 x x x x x x x 116.29 | 58.92 | | 0.12 | | | | 1 | | 1 | 1 | | 68.94 1.92 0.12 x x x x x x 115.69 68.95 1.93 0.12 x x x x x x x 115.99 68.96 1.94 0.12 x x x x x x x 116.29 | 58.93 | | | | | | | | | | | 58.95 1.93 0.12 x x x x x x 115.99 58.96 1.94 0.12 x x x x x x x 116.29 | 58.94 | | | | | | 1 | | | 1 | | i8.96 1.94 0.12 x x x x x x 116.29 | 58.95 | | | | | | | | | 1 | | | 58.96 | | | | | | 1 | | 1 | | | | 58.97 | 1.95 | 0.12 | X | X | X | X | X | X | 116.59 | Notes: 1. For Orifice Flow, User is to Input an Bevation Higher than Crown of Orifice. - 2. Orifice Equation: Q = cA(2gh)^{1/2} - 3. Weir Equation: $Q = OLH^{3/2}$ - ${\bf 4.\ These\ Computations\ Do\ Not\ Account\ for\ Submergence\ Effects\ Within\ the\ Pond\ Riser.}$ - 5. H for orifice equations is depth of water above the centroide of the orifice. - 6. H for weir equations is depth of water above the weir crest. #### CO-22-0480 - Youville Drive - SWM Calculations 4 of 4 #### Time of Concentration Pre-Development | Drainage Area | Sheet Flow | Sope of | Tc (min) | Tc (min) | |---------------|--------------|----------|----------|------------| | ID | Distance (m) | Land (%) | (5-Year) | (100-Year) | | A1 | 51 | 1.54 | 8 | 6 | Therefore, a Tc of 10 can be used $Tc = (3.26(1.1-c)L^0.5/S^0.33)$ c = Balanced Runoff Coefficient L = Length of drainage area S = Average slope of watershed APPENDIX H CITY OF OTTAWA DESIGN CHECKLIST ### **Oty of Ottawa** ### 4. Development Servicing Study Checklist The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff. The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary. #### 4.1 General Content | Oriteria | Location (if applicable) | |---|---------------------------------| | ☐ Executive Summary (for larger reports only). | N/ A | | ☐ Date and revision number of the report. | On Cover | | Location map and plan showing municipal address, boundary, and layout of proposed development. | Appendix A | | ☐ Plan showing the site and location of all existing services. | Ste Servicing Plan (C102) | | Development statistics, land use, density, adherence to zoning
and official plan, and reference to applicable subwatershed and
watershed plans that provide context to which individual | 1.1 Purpose 1.2 Ste Description | | developments must adhere. | 6.0 Stormwater Management | | Summary of pre-consultation meetings with City and other approval agencies. | Appendix B | | ☐ Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, | 1.1 Purpose | | Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and | 1.2 Ste Description | | develop a defendable design criteria. | 6.0 Stormwater Management | | ☐ Statement of objectives and servicing criteria. | 3.0 Pre-Consultation Summary | | ☐ Identification of existing and proposed infrastructure available in the immediate area. | N/A | |---|---| | ☐ Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available). | Ste Grading Plan (C101)
| | Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths. | Ste Grading Plan (C101) | | ☐ Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts. | N/A | | Proposed phasing of the development, if applicable. | N/ A | | Reference to geotechnical studies and recommendations concerning servicing. | Section 2.0 Background Studies,
Standards and References | | All preliminary and formal site plan submissions should have the following information: Metric scale North arrow (including construction North) Key plan Name and contact information of applicant and property owner Property limits including bearings and dimensions Existing and proposed structures and parking areas Easements, road widening and rights-of-way Adjacent street names | Ste Grading Plan (C101) | ### 4.2 Development Servicing Report: Water | Oriteria | Location (if applicable) | |--|--------------------------| | ☐ Confirm consistency with Master Servicing Study, if available | N/A | | Availability of public infrastructure to service proposed development | N/A | | ☐ Identification of system constraints | N/A | | ☐ Identify boundary conditions | Appendix C | | ☐ Confirmation of adequate domestic supply and pressure | N/ A | | Confirmation of adequate fire flow protection and confirmation
that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout
the development. | Appendix C | | Provide a check of high pressures. If pressure is found to be
high, an assessment is required to confirm the application of
pressure reducing valves. | N/A | | Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design | N/A | | Address reliability requirements such as appropriate location of shut-off valves | N/ A | | ☐ Check on the necessity of a pressure zone boundary modification. | N/ A | | Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range | Appendix C, Section 4.2 | | Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions. | Ste Servicing Plan (C101) | |--|---------------------------| | Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation. | N/A | | Confirmation that water demands are calculated based on the
City of Ottawa Design Guidelines. | Appendix C | | Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference. | N/A | ### 4.3 Development Servicing Report: Wastewater | Oriteria | Location (if applicable) | |---|--| | Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). | N/A | | Confirm consistency with Master Servicing Study and/or justifications for deviations. | N/A | | Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. | N/A | | Description of existing sanitary sewer available for discharge of wastewater from proposed development. | Section 5.2 Proposed Sanitary
Sewer | | ☐ Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Peference can be made to previously completed Master Servicing Study if applicable) | Section 5.3 Proposed Sanitary Design | |--|--| | ☐ Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. | N/A | | Description of proposed sewer network including sewers,
pumping stations, and forcemains. | Section 5.2 Proposed Sanitary
Sewer | | Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality). | N/ A | | Pumping stations: impacts of proposed development on
existing pumping stations or requirements for new pumping
station to service development. | N/A | | ☐ Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity. | N/A | | Identification and implementation of the emergency overflow
from sanitary pumping stations in relation to the hydraulic
grade line to protect against basement flooding. | N/A | | Special considerations such as contamination, corrosive
environment etc. | N/A | ### 4.4 Development Servicing Report: Stormwater Checklist | Oriteria | Location (if applicable) | |--|--| | Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) | Section 6.0 Stormwater Sewer Design & Section 7.0 Proposed Stormwater Management | | Analysis of available capacity in existing public infrastructure. | N/A | | A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. | Pre & Post-Development Plans | | Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5-year event (dependent on the receiving sewer design) to 100-year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. | Section 6.0 Stormwater Sewer Design & Section 7.0 Proposed Stormwater Management | | ☐ Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements. | Section 6.0 Stormwater Sewer Design & Section 7.0 Proposed Stormwater Management | | Description of the stormwater management concept with facility locations and descriptions with references and supporting information. | Section 6.0 Stormwater Sewer Design & Section 7.0 Proposed Stormwater Management | | Set-back from private sewage disposal systems. | N/A | | ☐ Watercourse and hazard lands set backs. | N/A | | Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed. | N/A | | Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists. | N/A | | Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5-year return period) and major events (1:100-year return period). | Appendix G | | ☐ Identification of watercourses within the
proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals. | Ste Grading Plan | |--|--| | ☐ Calculate pre-and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions. | Section 7.0 Proposed Stormwater
Management Appendix G | | Any proposed diversion of drainage catchment areas from one outlet to another. | Section 6.0 Stormwater Sewer Design & Section 7.0 Proposed Stormwater Management | | Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. | Section 6.0 Stormwater Sewer Design & Section 7.0 Proposed Stormwater Management | | If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event. | N/A | | ☐ Identification of potential impacts to receiving watercourses | N/A | | Identification of municipal drains and related approval
requirements. | N/ A | | Descriptions of how the conveyance and storage capacity will be achieved for the development. | Section 6.0 Stormwater Sewer Design & Section 7.0 Proposed Stormwater Management | | 100-year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading. | Ste Grading Plan (C101) | | ☐ Inclusion of hydraulic analysis including hydraulic grade line elevations. | N/A | | Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors. | Section 8.0 Sediment & Erosion
Control | |---|---| | Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions. | N/A | | ☐ Identification of fill constraints related to floodplain and geotechnical investigation. | N/A | ### 4.5 Approval and Permit Requirements: Checklist The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following: | Oriteria Criteria Cri | Location (if applicable) | |--|--------------------------| | Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act. | N/ A | | Application for Certificate of Approval (CofA) under the Ontario Water Resources Act. | N/A | | ☐ Changes to Municipal Drains. | N/A | | Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.) | N/A | ### 4.6 Conclusion Checklist | Oriteria Criteria Cri | Location (if applicable) | |--|------------------------------| | ☐ Clearly stated conclusions and recommendations | Section 9.0 Summary | | | Section 10.0 Recommendations | | Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency. | All are stamped | | All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario | All are stamped |