2458 Cleroux Crescend, Ottawa Assessment of Adequacy of Public Services & Stormwater Management Report

Project # CW-02-21 City Application # Prepared for: Melmar Group 12 Southland Crescent Ottawa, Ontario, K1G 5E4 By:

Arch-Nova Design Inc.

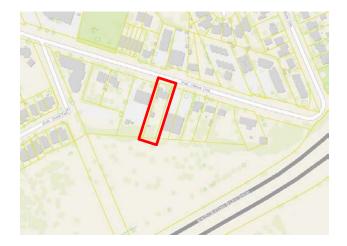
September 2022

Table of Contents

1.	Intro	oduction	.2
		olic Services Capacity	
		Water Supply	
		Sanitary Sewer	
2	.3	Site Stormwater Services	. 8
3.	Cor	nclusion and Recommendation	. 8
3	.1	Water Supply	.9
3	.2	Sanitary Sewer	.9
3	.3	Stormwater	9

Appendix A: Calculations Appendix B: Correspondence

1. Introduction


The subject property is located at 2458 Cleroux Crescent Ottawa. The proposed work comprises of a 3-storey+underground garage apartment building with total of 17 apartments and a garage for 24 vehicles at the parking level (basement). For the purpose of this report the site is considered to run north-south. Cleroux Crescent is extending east-west along the property's north edge.

Currently the property is used as a residential with a single house with backyard and two utility sheds.

Existing services locations are known and they will be disconnected before the demolition and will be recorded in the construction diary. The area is serviced by:

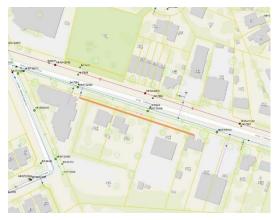
- Sanitary: 250mm Concrete .
- Storm: A 375 mm PVC Storm sewer (2000)
- Water: A 203 mm Ductile Iron.

The sidewalk in front of the property is at elevation between 82.41 and 82.43 m a.s.l.

2458 Cleroux Cres, Ottawa: Location

2. Public Services Capacity

This section of the report will analyze existing municipal services and the potential impact of the proposed building at 2458 Cleroux Cres. on the existing service capacity.


2.1 Water Supply

Existing building is supplied from DI 203 mm pipe and calculated current consumption is **0.20 I/sec** for the peak period.

Nearest fire hydrant is located further east on Cleorux from the property at distance of 38.4 m, which is sufficient for use by the fire department and its vehicles. The hydrant is marked as class AA (visual rectification: blue head) so it should have a capacity of 5,700 l/min (95 l/sec)for distances less than 75.0 m. The second nearest hydrant is located east from the property at 111.9 m distance and also it is marked as Class AA. Based on the Table 1: "Maximum flow to be considered from a given hydrant"¹ its maximum capacity is 3,800 l/min (63.3 l/sec).

2458 Cleroux Cres., Ottawa: Hydrant-1 location and distance

2458 Cleroux Cres., Ottawa: Hydrant-2 location and distance

¹ City of Ottawa Tech Bulletin ISTB-2018-02: Page 42, Table 1.

Design Parameter	Value	
Residential Average Apartment	1.8 P/unit	
Residential Average Daily Demand	280 L/d/P	
Residential Maximum Daily Demand	9.5 x Average Daily *	
Residential Maximum Hourly	1.5 x Maximum Daily *	
Commercial Demand	2.5 L / m2 /d	
Commercial Maximum Daily Demand	1.5 x Average Daily	
Commercial Maximum Hourly	1.8 x Maximum Daily	
Minimum Watermain Size	150mm diameter	
Minimum Depth of Cover	2.4m from top of watermain to finished grade	
During Peak Hourly Demand operating pressure must remain within	275kPa and 552kPa	
During fire flow operating pressure must not drop below	140kPa	
* Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.		

Total available flow from two hydrants is 9,500 l/min (158.3 l/sec).

Table 1: Water Supply Design Criteria

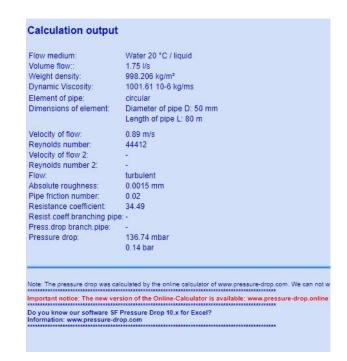
²The following are boundary conditions, HGL, for hydraulic analysis at Cleroux Cres. (zone R4) assumed to connected to the 203 mm watermain on Cleroux Crescent (see attached PDF for location).

Scenario	Der	Demand		
Scenario	L/min	L/s		
Average Daily Demand	7	0.12		
Maximum Daily Demand	70	1.16		
Peak Hour	105	1.75		
Fire Flow Demand #1	13,000	216.67		

Required fire flow is available at residual pressure of 31.3 psi (22.82 Kpa) and with ground elevation of 83.3 m.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	131.0	67.7
Peak Hour	127.0	62.1
Max Day plus Fire 1	105.3	31.3

Ground Elevation = 83.3 m


 $^{^{2}}$ City of Ottawa boundary condition information is based on current operation of the city water distribution system (also see Appendix A for complete correspondence information)

Proposed building height is 12.1 m so the residual pressure at the top of the building will be 10.0 Kpa.

Fire protection from the municipal system using two nearest hydrants will not meet the FUS requirements (10,000 l/min including full sprinkler system) but the OBC requirements will be achieved (6,881 l/sec).

The consumption is expected to be **1.55** I/sec for peak period. Total domestic consumption consists of two components: use/person (280/cap/day) and use for amenities of 2.5 I/m²/day (gym, janitors, garage). In this case the garage is making relatively large portion of total space so use of domestic water for cleaning is not recommended. Other means of cleaning like use of commercial sweeper vehicles are more appropriate. For such a reason the garage flow requirement is shown as zero.

Using Darsy-Weisbach calculation, as shown below, it was determined that 50 mm lateral would provide required flow of 1.55 l/sec at 0.89 m/s velocity and the pressure loss at the building of 0.14 bar. For calculation stimated length of the lateral is 80 m.

2.2 Sanitary Sewer

Sanitary sewer outflow for the current buildings is 0.096 l/sec (wet weather peak flow).

Design Parameter	Value
Residential Average Apartment	1.8 P/unit
Average Daily Demand	280 L/cap/day
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0
Correction Factor (City of Ottawa Tech.Bulletin ISTB-2018-01)	0.8
Commercial Space	28,000 L/ha/day
Infiltration and Inflow Allowance	0.33L/s/ha
Sanitary sewers are to be sized employing the Manning's Equation	Q =(1/n)AR2/3S1/2
Minimum Sewer Size	200mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6m/s
Maximum Full Flowing Velocity3.0m/sExtracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, November 2012 & Infrastructure Technical Bulletins 2018	

Table 2: Wastewater Design Criteria

The estimated outflow for the new building is **0.4753** I/sec (peak flow + wet weather). In addition, for covered garage flow for maintenance and cleaning was calculated as 6 I/parking space/day³ (i.e snow and rain runoff from cars) was used to estimate the sewer outflow for this service.

Existing municipal sewer 250 mm has a capacity of 41.77 l/sec for 0.44% slope and 80% full. For increase of 0.42 l/sec the increase is considered insignificant. The sewer line starts just west from the property.

Inputs:	sanitary sewer
---------	----------------

Pipe Diameter, d _o	250.0000	mm
Manning Roughness, n	0.0120	
Pressure slope (possibly equal to pipe slope), So	0.4400	% slope
Percent of (or ratio to) full depth (100% or 1 if flowing		
full)	80.0000	%

³ Ottawa Sewer Design Guideline 2012, Appendix 4-A.5

Results:		
Flow, Q	41.7706	l/s
Velocity, v	0.9922	m/s
Velocity head, hv	0.0502	m
Flow Area, A	0.0421	m^2
Wetted Perimeter, P	0.5536	m
Hydraulic Radius	0.0760	m
Top Width, T	0.2000	m
Froude Number, F	0.69	
Shear Stress (tractive force), τ	8.6293	N/m^2

The estimate is that just 4-5 properties are connected upstream from 2458 Cleroux and it was assumed that the pipe is full up to 10%. The velocity at this level is still at 0.35 m/sec so observation and seasonal maintenance would be required.

The Manning formula was also used to assess the sewer lateral's size. 200 mm pipe at 1.5% slope. The main criteria was to maintain the velocity at minimum 0.5 m/sec in order to provide the self-cleaning of the lateral. At level of 10% full the flow is 0.9 l/sec at 0.55 m/sec. This is sufficient capacity for the flow and self-cleaning.

Pipe Diameter, d _o	200.0000	mm
Manning Roughness, n	0.0120	
Pressure slope (possibly equal to pipe slope), So	1.5000	% slope
Percent of (or ratio to) full depth (100% or 1 if flowing		
full)	10.0000	%
Results:		
Flow, Q	0.9085	l/s
Velocity, v	0.5557	m/s
Velocity head, hv	0.0157	m
Flow Area, A	0.0016	m^2
Wetted Perimeter, P	0.1287	m
Hydraulic Radius	0.0127	m
Top Width, T	0.1200	m
Froude Number, F	1.52	
Shear Stress (tractive force), τ	2.9418	N/m^2

Inputs: sanitary sewer

Detailed calculation of water and sanitary flow is presented in Appendix A.

2.3 Site Stormwater Services

Current building and the rest of surface of the lot at 2458 Cleroux Crescent represent a typical urban site. All stormwater runoff is under uncontrolled condition for the entire site. For the purpose of protecting the municipal sewer system the City of Ottawa requires that the predevelopment 5-year runoff coefficient should be in range up to C=0.5 so the newly developed site must store certain amount of water. Real composite C factor is calculated as 0.36.

The proposed new building and area of the lot will increase the runoff from 0.36 to 0.75 combined which is more than 25% increase as recommended by City of Ottawa sewer Design Guideline and this will require the stormwater retention on site in order to match the predevelopment runoff condition.

Proposed stormwater retention will prevent increase of stormwater inflow into the system. The stormwater storage is proposed on the new building's flat roof. Total storage required for the 100 year event is 18.81 m³.

The building terraces around the main level will have the runoff as uncontrolled, however the vegetation on terraces will provide an effect of evapotranspiration lowering even further the uncontrolled runoff. In addition current backyard runoff is toward a ravine at rear. The proposed terrace and grading will direct water toward ravine too. In comparison to the predevelopment runoff of 11.93 l/s (5 year) the postdevelopment flow will be 7.8 l/sec. This will prevent erosion around the new foundation. The roof drains will be connected through inside of the building to the lateral. The roof drains will provide maximum of 2.53 l/sec and will be a single point for controlled outflow. The storm lateral 200 mm provides this flow at 16.5% full.

Pipe Diameter, d₀	200.0000	mm
Manning Roughness, n	0.0120	
Pressure slope (possibly equal to pipe slope), So	1.5000	% slope
Percent of (or ratio to) full depth (100% or 1 if flowing		
full)	16.5000	%

Inputs: storm lateral

Results:		
Flow, Q	2.5740	l/s
Velocity, v	0.7588	m/s
Velocity head, hv	0.0294	m
Flow Area, A	0.0034	m^2
Wetted Perimeter, P	0.1673	m
Hydraulic Radius	0.0203	m
Top Width, T	0.1485	m
Froude Number, F	1.60	
Shear Stress (tractive force), τ	4.8540	N/m^2

Detailed calculation is provided in Appendix A.

3. Conclusion and Recommendation

3.1 Water Supply

...

The consumption is expected to be **1.55** I/sec for peak period. Total domestic consumption consists of two components: use/person (280/cap/day) and use for amenities of 2.5 I/m²/day (gym, janitors, garage). In this case the garage is making relatively large portion of total space so use of domestic water for cleaning is not recommended. Other means of cleaning like use of commercial sweeper vehicles are more appropriate. For such a reason the garage flow requirement is shown as zero.

Fire protection from the municipal system using two nearest hydrants will not meet the FUS requirements (10,000 l/min including full sprinkler system) but the OBC requirements will be achieved (6,881 l/sec).

3.2 Sanitary Sewer

The estimated outflow for the new building is **0.4753** I/sec (peak flow + wet weather). In addition, for covered garage flow for maintenance and cleaning was calculated as 6 I/parking space/day⁴ (i.e snow and rain runoff from cars) was used to estimate the sewer outflow for this service.

⁴ Ottawa Sewer Design Guideline 2012, Appendix 4-A.5

Existing municipal sewer 250 mm has a capacity of 41.77 l/sec for 0.44% slope and 80% full. For increase of 0.42 l/sec the increase is considered insignificant. The sewer line starts just west from the property.

3.3 Stormwater

The proposed new building and area of the lot will increase the runoff from 0.36 to 0.75 combined which is more than 25% increase as recommended by City of Ottawa sewer Design Guideline and this will require the stormwater retention on site in order to match the predevelopment runoff condition.

Proposed stormwater retention will prevent increase of stormwater inflow into the system. The stormwater storage is proposed on the new building's flat roof. Total storage required for the 100 year event is 18.81 m³.

Prepared by: Zoran Mrdja, P.Eng.

September 2022

Authorized by Professional Engineers of Ontario to provide professional services to public Appendix A: Calculations

Water Supply Design Criteria

Design Parameter	Value	
Residential Average Apartment	1.8 P/unit	
Residential Average Daily Demand	350 L/d/P	
Residential Maximum Daily Demand	9.5 x Average Daily *	
Residential Maximum Hourly	1.5 x Maximum Daily *	
Commercial Demand	2.5 L / m2 /d	
Commercial Maximum Daily Demand	1.5 x Average Daily	
Commercial Maximum Hourly	1.8 x Maximum Daily	
Minimum Watermain Size	150mm diameter	
Minimum Depth of Cover	2.4m from top of watermain to finished grade	
must remain within	275kPa and 552kPa (40-80 psi; 28-56m)	
During fire flow operating pressure must not drop below	140kPa (20 psi; 14 m)	
* Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.		

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4	1	3.4
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4	0	0
1 Bedroom	1.4	0	0
2 Bedroom	2.1	0	0
3 Bedroom	3.1		0
4 Bedroom	4.2	0	0

	Рор	Avg. [Daily	Max Day		Peak Hour	
		m³/d	L/sec	m³/d	L/sec	m³/d	L/sec
Total Domestic Demand	3.4	1.19	0.01	11.31	0.13	16.96	0.20

Institutional / Commercial / Industrial Demand

			Avg. [Daily	Max Day		Peak Hour		
Property Type	Unit	Rate	Units	m³/d	L/sec	m³/d	L/sec	m ³ /d	L/sec
Commercial floor space	2.5	L/m²/d	0	0.00	0.00	0.00	0.00	0.00	0.00
Office	75.0	L/9.3m ² /d	0.0	0.00	0.000	0.00	0.0000	0.00	0.0000
Restaurant*	125.0	L/seat/d							
Industrial -Light	35,000.0	L/gross ha/d							
Industrial -Heavy	55,000.0	L/gross ha/d							
Total I/C/I Demand			0.00	0.00	0.00	0.00	0.00	0.00	

	Total Demand	1.19	0.01	11.31	0.13	16.96	0.20
* Estimated number of seats at 1seat per 9.3m ²							

Water Demand and Boundary Conditions

Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/sec)	Boundary Condition ² (kPa)				
Average Daily Demand	0.01					
Max Day + Fire Flow	3,000.13					
Peak Hour	0.20					
¹⁾ Water demand calculation per Water Supply Guidelines. See Appendix B for detailed calculations.						
²⁾ Boundary conditions supplied by the City of Ottawa. See Appendix B for correspondence with the City.						

Wastewater Design Criteria

Design Parameter	Value
Residential Average Apartment	1.8 P/unit
Average Daily Demand	350 L/cap/day
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0
Correction Factor (City of Ottawa Tech.Bulletin ISTB-2018-0	0.8
Commercial Space	28,000 L/ha/day
Infiltration and Inflow Allowance	0.28L/s/ha
Sanitary sewers are to be sized employing the Manning's	O_{1} (1/-) $A_{1}D^{2/3}O^{1/2}$
Equation	$Q = (1/n)AR^{2/3}S^{1/2}$
Minimum Sewer Size	200mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6m/s
Maximum Full Flowing Velocity	3.0m/s
Extracted from Sections 4 and 6 of the City of Ottaw	a Sewer Design Guidelines, November 2012.

Sanitary Sewer Post Development Outflow

Site Area			0.138 ha			
Extraneous Flow Allowances						
	flow	0.04558 L/s				
Domestic Contributions						
Unit Type	Unit Rate	Units	Рор			
Single Family	3.4	1	3.4			
Semi-detached and duplex	2.7		0			
Duplex	2.3		0			
Townhouse	2.7		0			
Apartment						
Bachelor	1.4		0			
1 Bedroom	1.4	0	0			
2 Bedroom	2.1	0	0			
3 Bedroom	3.1	0	0			
4 Bedroom	4.2	0	0			
	3.4					
	0.01 L/s					
	3.8					
	Peak Do	mestic Flow	0.05 L/s			

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate No. of Units		Avg Wastewater			
			(L/s)			
Commercial	28,000 L/gross ha/d	0	0.0000			
Office	75 L/9.3m2/d	0	0.0000			
Institutional	28,000 L/gross ha/d	0	0.00			
Industrial - Light	35,000 L/gross ha/d	0	0.00			
Industrial - Heavy	55,000 L/gross ha/d	0	0.00			
	0.0000					
	0.0000					
	0.0000					
	Peak I/C/I Flow					

Total Estimated Average Dry Weather Flow Rate	0.0138
Total Estimated Peak Dry Weather Flow Rate	0.0530
Total Estimated Peak Wet Weather Flow Rate	0.0986

Ottawa TechBulletin ISTB-2018-01 Section 4.4.1 Page 4.5 **Use Apendix 4B diagram

Fire Flow Calculation Ontario Building Code 2006 (Appendix A)

Project: 2458 Cleroux Crescent, Ottawa Current ARCH-NOVA DESIGN NC. Architecture Engineering Consulting

Date: July 14, 2022 Data input by: Zoran Mrdja, P.Eng.

Type of Construction	Building Clasification	Water Supply Coefficient (K)	
Non-combustable construction, or a heavy timber conforming to article 3.1.4.6	A-2; B1-; B-2; B-3 C; D	16	
Building Height (incl.Basement)	6.00	Total Building Volume (V)(m3)	
Building Width	16.60	816.72	
Building Length	8.20		
Side	Exposure Distance (m)	Spatial Coefficient	Total Spatial Coefficient S _{tot} *
North	34.00	0	
East	27.00	0	1.4
South	100.00	0	1.4
West	10.00	0.4	
Tota	al Volume of Water Required Q**	18,294.53	
Minimu	m Required Fire Flow (L/min) ***	609.82	

Note:

* S_{tot} = 1+(S_{side1} + S_{side2} + S_{side3} + S_{side4})

** V=KVS_{tot}

*** Flow=Q/30 (min) for min. duration of 30 min

Summary:

2. Nearest fire hydrant distance 38.4m;

FUS Fire Flow Calculations

Project: 2458 Cleroux Cres.

Calculations Based on 1999 Publication "Water Supply for Public

Fire Protection " by Fire Underwriters' Survey (FUS)

Fire Flow Calculation #: 1

Date: 2022-07-14

Building Type/Description/Name: Apartment building

Data input by: Zoran Mrdja, P.Eng.

adle A	: Fire Underwriters	Survey Determin		<u> </u>				
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
				Framing Mate	erial	•		
		Coefficient related to type of	Wood Frame	1.50				
1	Choose Frame Used for Construction of	construction (C)	Ordinary construction	1.00				
1	Unit		Non-combustible construction	0.80	Ordinary Construction			
			Fire resistive construction (< 2 hrs)	0.70				
			Fire resistive construction (> 2 hrs)	0.60		1.00		
	Observe Trans of			Floor Space A	rea			
2	Choose Type of Housing (if TH, Enter		Single Family	1				
2	Number of Units Per TH Block)		Townhouse - indicate # of units	1	Other (Comm, ind)	1	Units	
	TH BIOCK)	Type of Housing	Other (Comm, Ind, etc.)	1				
2.2	# of Storeys	Number of Floors/ S	toreys in the Unit (do not include basemen	t):	1	1	Storeys	
		Enter Ground Floor	Area (A) of One Unit Only :		366			
	Enter Ground Floor		Square Feet (ft2)	0.093		400	Area in Square	
3 Area of One Unit	hit Measurement Units	Square Metres (m2)	130	Square Metres (m2)	130	Meters (m2)		
			Hectares (ha)	10000				
4	Obtain Required Fire Flow without Reductions	Required Fire F	low(without reductions or increas	es per FUS) (F = 22	20 * C * √A) Round to ı	nearest 10	00L/min	2,50
5	Apply Factors Affecting Burning	Reductions/Incr	eases Due to Factors Affecting Bi	urning				
		Occupancy content	Non-combustible	-0.25				
	Choose	hazard reduction or surcharge	Limited combustible	-0.15				
5.1	Combustibility of		Combustible	0.00	Limited combustible		N/A	
	Building Contents		Free burning	0.15				
			Rapid burning	0.25		0.15		-37
	Choose Reduction Sprink		-4	0.20		-0.15		
		Sprinkler reduction	Complete Automatic Sprinkler	-0.3				
5.2	Due to Presence of	Sprinkler reduction		ł – – ł	None	0.00	N/A	
5.2		Sprinkler reduction	Complete Automatic Sprinkler Protection	-0.3	None 0.05		N/A	
-	Due to Presence of Sprinklers Choose Separation	Sprinkler reduction	Complete Automatic Sprinkler Protection None	-0.3		0.00	N/A	
5.2	Due to Presence of Sprinklers Choose Separation Distance Between		Complete Automatic Sprinkler Protection None North Side East Side	-0.3 0 30.1-45 m 20.1-30 m	0.05		N/A m	
-	Due to Presence of Sprinklers Choose Separation	Sprinkler reduction Exposure Distance Between Units	Complete Automatic Sprinkler Protection None North Side	-0.3 0 30.1-45 m	0.05	0.00		1.0
-	Due to Presence of Sprinklers Choose Separation Distance Between	Exposure Distance Between Units	Complete Automatic Sprinkler Protection None North Side East Side South Side West Side	-0.3 0 30.1-45 m 20.1-30 m 30.1-45 m 3.1-10 m	0.05 0.10 0.05 0.20	0.00		
5.3	Due to Presence of Sprinklers Choose Separation Distance Between Units Obtain Required	Exposure Distance Between Units Total Required	Complete Automatic Sprinkler Protection None North Side East Side South Side	-0.3 0 30.1-45 m 20.1-30 m 30.1-45 m 3.1-10 m	0.05 0.10 0.05 0.20	0.00		3,00
-	Due to Presence of Sprinklers Choose Separation Distance Between Units	Exposure Distance Between Units Total Required Total Required	Complete Automatic Sprinkler Protection None North Side East Side South Side West Side Fire Flow, rounded to nearest 100	-0.3 0 30.1-45 m 20.1-30 m 30.1-45 m 3.1-10 m	0.05 0.10 0.05 0.20	0.00		1,00 3,000 50 2.00

Note: The most current FUS document should be referenced before design to ensure that the above figures are consistent with the intent of the Guideline

Drop down menu - choose option, or enter value. No Information, No input required.

Legend

Note:

The most current FUS document should be referenced before design to ensure that the above figures are consistent with the intent of the Guideline. Nearest fire hydrant distance 38.4m;

2458 Cleroux Cres, Ottawa New

Water Supply Design Criteria

Design Parameter	Value			
Residential Average Apartment	1.8 P/unit			
Residential Average Daily Demand	350 L/d/P			
Residential Maximum Daily Demand	9.5 x Average Daily *			
Residential Maximum Hourly	1.5 x Maximum Daily *			
Commercial Demand	2.5 L / m2 /d			
Commercial Maximum Daily Demand	1.5 x Average Daily			
Commercial Maximum Hourly	1.8 x Maximum Daily			
Minimum Watermain Size	150mm diameter			
Minimum Depth of Cover	2.4m from top of watermain to finished grade			
must remain within	275kPa and 552kPa (40-80 psi; 28-56m)			
During fire flow operating pressure must not drop below	140kPa (20 psi; 14 m)			
* Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.				

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4	0	0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4	0	0
1 Bedroom	1.4	3	4
2 Bedroom	2.1	14	29
3 Bedroom	3.1		0
4 Bedroom	4.2	0	0

	Рор	Avg. [Avg. Daily		Max Day		Hour
		m³/d	L/sec	m³/d	L/sec	m³/d	L/sec
Total Domestic Demand	34	9.41	0.11	89.38	1.03	134.06	1.55

Institutional / Commercial / Industrial Demand

	Avg. [Daily	Max	Day	Peak	Hour			
Property Type	Unit	Rate	Units	m³/d	L/sec	m³/d	L/sec	m ³ /d	L/sec
Garage	2.5	L/m²/d	0	0.00	0.00	0.00	0.00	0.00	0.00
Office	75.0	L/9.3m ² /d	0.0	0.00	0.000	0.00	0.0000	0.00	0.0000
Restaurant*	125.0	L/seat/d							
Industrial -Light	35,000.0	L/gross ha/d							
Industrial -Heavy	55,000.0	L/gross ha/d							
Total I/C/I Demand			0.00	0.00	0.00	0.00	0.00	0.00	

	Total Demand	9.41	0.11	89.38	1.03	134.06	1.552
* Estimated number of seats at 1seat per 9.3m ²							

2458 Cleroux Cres, Ottawa New

Water Demand and Boundary Conditions

Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/sec)	Boundary Condition ² (kPa)					
Average Daily Demand	0.11						
Max Day + Fire Flow	167.70						
Peak Hour	1.55						
¹⁾ Water demand calculation per Water Supply Guidelines. See Appendix B for detailed calculations.							
	²⁾ Boundary conditions supplied by the City of Ottawa. See Appendix B for correspondence with the City.						

Wastewater Design Criteria

Design Parameter	Value
Residential Average Apartment	1.8 P/unit
Average Daily Demand	280 L/cap/day
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0
Correction Factor (City of Ottawa Tech.Bulletin ISTB-2018-0	0.8
Commercial Space	28,000 L/ha/day
Infiltration and Inflow Allowance	0.28L/s/ha
Sanitary sewers are to be sized employing the Manning's	$Q = (1/n)AR^{2/3}S^{1/2}$
Equation	Q = (1/n)AR S
Minimum Sewer Size	200mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6m/s
Maximum Full Flowing Velocity	3.0m/s
Extracted from Sections 4 and 6 of the City of Ottaw	va Sewer Design Guidelines, November 2012.

2458 Cleroux Cres, Ottawa

New

Sanitary Sewer Post Development Outflow

Site Area			0.138 ha			
Extraneous Flow Allowances						
li li	nfiltration / In	flow	0.04558 L/s			
Domestic Contributions						
Unit Type	Unit Rate	Units	Рор			
Single Family	3.4	0	0			
Semi-detached and duplex	2.7		0			
Duplex	2.3		0			
Townhouse	2.7		0			
Apartment						
Bachelor	1.4		0			
1 Bedroom	1.4	3	4.2			
2 Bedroom	2.1	14	29.4			
3 Bedroom	3.1	0	0			
4 Bedroom	4.2	0	0			
	33.6					
	0.11 L/s					
	Peaking Factor					
	Peak Do	mestic Flow	0.43 L/s			

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate No. of Units		Avg Wastewater
			(L/s)
Commercial	28,000 L/gross ha/d	0	0.0000
Office	75 L/9.3m2/d	0	0.0000
Parking (Covered)*	6 l/park.space/c	I 12	0.0008
Institutional	28,000 L/gross ha/d	0	0.00
Industrial - Light	35,000 L/gross ha/d	0	0.00
Industrial - Heavy	55,000 L/gross ha/d	0	0.00
	Ave	erage I/C/I Flow	0.0008
	0.0000		
	0.0000		
		Peak I/C/I Flow	0.0000

Total Estimated Average Dry Weather Flow Rate	0.1097
Total Estimated Peak Dry Weather Flow Rate	0.4297
Total Estimated Peak Wet Weather Flow Rate	0.4753

* Ottawa Sewer Design Guidelines 2012, Appendix 4-A.5

Ottawa TechBulletin ISTB-2018-01 Section 4.4.1 Page 4.5

**Use Apendix 4B diagram

2458 Cleroux Cres, Ottawa New

ARCH-NOVA DESIGN INC.

Architecture Engineering Consulting

Fire Flow Calculation Ontario Building Code 2006 (Appendix A)

Project: 2458 Cleroux Cres., Ottawa

Date: July 14, 2022 Data input by: Zoran Mrdja, P.Eng.

Type of Construction	Building Clasification	Water Supply Coefficient (K)	
Non-combustable construction, or a heavy timber conforming to article 3.1.4.6	A-2; B1-; B-2; B-3 C; D	16	
Duilding Unight (incl Decement)	12.10	Total Building Volume (V)(m3)	
Building Height (incl.Basement) Building Width	12.10 11.70	9,216.21	
Building Length	65.10		
Side	Exposure Distance (m)	Spatial Coefficient	Total Spatial Coefficient S _{tot} *
North	34.00	0	
East	27.00	0	1.4
South	100.00	0	1.4
West	10.00	0.4	
Tot	al Volume of Water Required Q**	206,443.04	
101			
	m Required Fire Flow (L/min) ***	6,881.43	

Note:

* S_{tot} = 1+(S_{side1} + S_{side2} + S_{side3} + S_{side4})

** V=KVS_{tot}

*** Flow=Q/30 (min) for min. duration of 30 min

Summary:

2. Nearest fire hydrant distance 38.4m;

2458 Cleroux Cres, Ottawa New

FUS Fire Flow Calculations

Project: 2458 Cleroux Cres., Ottawa

Calculations Based on 1999 Publication "Water Supply for Public

Fire Protection " by Fire Underwriters' Survey (FUS)

Fire Flow Calculation #: 1

Date: 2022-07-14

Building Type/Description/Name: Apartment building

Data input by: Zoran Mrdja, P.Eng.

	: Fire Underwriters	,		ong method					
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)	
				Framing Mate	erial				
	Choose Frame Lload to type	Coefficient related	Wood Frame	1.50					
		construction (C)	Ordinary construction	1.00					
			Non-combustible construction	0.80	Ordinary Construction				
			Fire resistive construction (< 2 hrs)	0.70					
			Fire resistive construction (> 2 hrs)	0.60		1.00			
	o			Floor Space A	rea				
	Choose Type of Housing (if TH, Enter		Single Family	1					
2	Number of Units Per		Townhouse - indicate # of units	1	Other (Comm, ind)	1	Units		
	TH Block)	Type of Housing	Other (Comm, Ind, etc.)	1					
2.2	# of Storeys		Storeys in the Unit (do not include basem	ient):	3	3	Storeys		
		Enter Ground Floor	Area (A) of One Unit Only :		762				
	Enter Ground Floor		Square Feet (ft2)	0.093	228		Area in		
3	Area of One Unit	hit Measurement Units	Square Metres (m2)	762		2286	Square Meters (m ₂)		
			Units	Hectares (ha)	10000				
4	Obtain Required Fire Flow without Reductions		low(without reductions or incre		20 * C * √A) Round to ı	nearest 10	000L/min	10,519	
5	Apply Factors Affecting Burning	Reductions/Inci	reases Due to Factors Affecting	Burning					
		Occupancy content	Non-combustible	-0.25					
	Chaosa	Occupancy content hazard reduction or surcharge	Non-combustible Limited combustible	-0.25 -0.15					
5.1	Choose Combustibility of	hazard reduction or			Limited combustible		N/A		
5.1		hazard reduction or	Limited combustible	-0.15	Limited combustible		N/A		
5.1	Combustibility of	hazard reduction or	Limited combustible Combustible	-0.15	Limited combustible	-0.15	N/A	-1,578	
	Combustibility of Building Contents Choose Reduction	hazard reduction or	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler	-0.15 0.00 0.15					
5.1	Combustibility of Building Contents	hazard reduction or surcharge	Limited combustible Combustible Free burning Rapid burning	-0.15 0.00 0.15 0.25	Limited combustible None	-0.15 -0.30	N/A N/A	-1,576 -3,156	
	Combustibility of Building Contents Choose Reduction Due to Presence of	hazard reduction or surcharge	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection	-0.15 0.00 0.15 0.25 -0.3					
5.2	Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation	hazard reduction or surcharge	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None	-0.15 0.00 0.15 0.25 -0.3 0	None	-0.30	N/A		
	Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between	hazard reduction or surcharge Sprinkler reduction	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side	-0.15 0.00 0.15 0.25 -0.3 0 30.1-45 m	None 0.05				
5.2	Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation	hazard reduction or surcharge	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side East Side	-0.15 0.00 0.15 0.25 -0.3 0 30.1-45 m 20.1-30 m	None 0.05 0.10	-0.30	N/A	-3,156	
5.2	Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between	hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side East Side South Side	-0.15 0.00 0.15 0.25 -0.3 0 30.1-45 m 20.1-30 m 30.1-45 m 30.1-45 m 3.1-10 m	None 0.05 0.10 0.05 0.20	-0.30	N/A	-3,156	
5.2	Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between Units Obtain Required	hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units Total Required	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side East Side South Side West Side	-0.15 0.00 0.15 0.25 -0.3 0 30.1-45 m 20.1-30 m 30.1-45 m 30.1-45 m 3.1-10 m	None 0.05 0.10 0.05 0.20	-0.30	N/A	-3,156	
5.2	Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between Units	hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units Total Required Total Required	Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side East Side South Side West Side Fire Flow, rounded to nearest 1	-0.15 0.00 0.15 0.25 -0.3 0 30.1-45 m 20.1-30 m 30.1-45 m 30.1-45 m 3.1-10 m	None 0.05 0.10 0.05 0.20	-0.30	N/A	-3,156 4,207 10,000	

Note: The most current FUS document should be referenced before design to ensure that the above figures are consistent with the intent of the Guideline

Legend
Drop down menu - choose option, or enter value.
No Information, No input required.

Note:

The most current FUS document should be referenced before design to ensure that the above figures are consistent with the intent of the Guideline. Nearest fire hydrant distance 38.4m;

2458 Cleroux Cres, Ottawa

Inputs: storm lateral

Pipe Diameter, d _o	200.0000	mm
Manning Roughness, n	0.0120	
Pressure slope (possibly equal to pipe slope), So	1.5000	% slope
Percent of (or ratio to) full depth (100% or 1 if flowing full)	16.5000	%

Flow, Q	2.5740	l/s
Velocity, v	0.7588	m/s
Velocity head, hv	0.0294	m
Flow Area, A	0.0034	m^2
Wetted Perimeter, P	0.1673	m
Hydraulic Radius	0.0203	m
Top Width, T	0.1485	m
Froude Number, F	1.60	
Shear Stress (tractive force), τ	4.8540	N/m^2

2458 Cleroux Cres, Ottawa

Inputs:

Pipe Diameter, d _o	250.0000	mm
Manning Roughness, n	0.0120	
Pressure slope (possibly equal to pipe slope), So	0.4400	% slope
Percent of (or ratio to) full depth (100% or 1 if flowing full)	10.0000	%

Flow, Q	0.8922	l/s
Velocity, v	0.3492	m/s
Velocity head, hv	0.0062	m
Flow Area, A	0.0026	m^2
Wetted Perimeter, P	0.1609	m
Hydraulic Radius	0.0159	m
Top Width, T	0.1500	m
Froude Number, F	0.85	
Shear Stress (tractive force), τ	1.0787	N/m^2

2458 Cleroux Cres, Ottawa

Inputs:

Pipe Diameter, d _o	250.0000	mm
Manning Roughness, n	0.0120	
Pressure slope (possibly equal to pipe slope), So	0.4400	% slope
Percent of (or ratio to) full depth (100% or 1 if flowing full)	80.0000	%

Flow, Q	41.7706	l/s
Velocity, v	0.9922	m/s
Velocity head, hv	0.0502	m
Flow Area, A	0.0421	m^2
Wetted Perimeter, P	0.5536	m
Hydraulic Radius	0.0760	m
Top Width, T	0.2000	m
Froude Number, F	0.69	
Shear Stress (tractive force), τ	8.6293	N/m^2

2458 Cleroux Cres, Ottawa

Inputs:

Pipe Diameter, d _o	375.0000	mm
Manning Roughness, n	0.0120	
Pressure slope (possibly equal to pipe slope), So	0.2700	% slope
Percent of (or ratio to) full depth (100% or 1 if flowing full)	10.0000	%

Flow, Q	2.0606	l/s
Velocity, v	0.3585	m/s
Velocity head, hv	0.0066	m
Flow Area, A	0.0057	m^2
Wetted Perimeter, P	0.2413	m
Hydraulic Radius	0.0238	m
Top Width, T	0.2250	m
Froude Number, F	0.72	
Shear Stress (tractive force), τ	0.9929	N/m^2

Project Number: CW-02-21					8 Cleroux Cres. Ottawa Architecture Engineering	
E-DEVELOPMEN		NTROLLED	<u>)</u>			Cornadiung
			The pre-deve	elopment t	ime of concentra	ation is 10 minutes
		where:	c = 9	998.071 / ((Tc + 6.053) ^{0.814}	I ₁₀₀ = 1735.688 / (Tc + 6.014) ^{0.820}
			I ₅ =		mm/hr	l ₁₀₀ = 178.6 mm/hr
Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)	
Vegetation area	A1	0.0360	25.8%	0.25	0.009	
Green space	A2	0.0640	45.9%	0.25	0.016	
Shed	A3	0.0035	2.5%	0.90	0.003	$Q_{5pre} = (2.78)^{*}(C)^{*}(I_{5})^{*}(A)$
Shed2	A4	0.0008	0.6%	0.90	0.001	Q _{5pre} = 2.78 x 0.36 × 104.2 x 0.1395
House	A5	0.0142	10.2%	0.90	0.013	Q _{5pre} = 14.55 L/s
Porch	A6	0.0030	2.2%	0.75	0.002	
Green space	A7	0.0010	0.7%	0.25	0.000	
Green space	A8	0.0110	7.9%	0.25	0.003	
Driveway	A9	0.0040	2.9%	0.80	0.003	Q _{100pre} = (2.78)*(C)*(I ₁₀₀)*(A)
Wood ramp	A10	0.0020	1.4%	0.40	0.001	Q _{100pre} = 2.78 x 0.36 x 178.6 x 0.139
						Q _{100pre} = 24.93 L/s
TOTAL		0.13950	100.0%		0.051	
Weighted C =					0.36	0.36 Actual C factor

POST-DEVELOPMENT (UNCONTROLLED RUNOFF)

The post-development time of concentration is

where:

 $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_5 = 104.2 \text{ mm/hr}$

Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)
Landscape 1	A2	0.067300	100.0%	0.40	0.027
Landscape 2	A3	0.000000	0.0%	0.70	0.000
TOTAL		0.0673	100.0%		0.027
Weighted C =					0.40

10 minutes

 $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 \text{ mm/hr}$

$Q_{5post} = (2.7)$	78)*(C)*(I ₅)∗(A	N)			
Q _{5post} =	2.78 x	0.40	х	104.2	x 0.0673
Q _{5post} =	7.80 L/s				
$Q_{100post} = (2.7)$	78)*(C)*(I ₁₀₀)∗	(A)			

Q _{100post} =	2.78 x	0.40	х	178.6	x 0.0673
Q _{100post} =	13.37 L/s				

Actual C factor

Project Number: CW-02-21

2458 Cleroux Cres. Ottawa

PRE-DEVELOPMENT (CONTROLLED)

The pre-development time of concentration is

10 minutes

where:

 $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_5 = 104.2 \text{ mm/hr}$

Surface Type	ID	Area (ha) Percent o total Area		С	A X C (ha)	
		0.00000	0.0%	0.95	0.000	
		0.00000	0.0%	0.95	0.000	
		0.00000	0.0%	0.70	0.000	
TOTAL		0.0000	0.0%		0.000	
Weighted C =					0.00	

POST-DEVELOPMENT (CONTROLLED RUNOFF)

The post-development time of concentration is

where:

 $I_5 = 998.071 / (Tc + 6.053)^{0.814}$

l₅ = 104.2 mm/hr

Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)
Building	A1	0.04950	0.0%	0.95	0.047
TOTAL		0.04950	0.0%		0.047
Weighted C =					1.00

I ₁₀₀ =	1735.688 /	(Tc + 6.014) ^{0.820}
$I_{100} =$	178.6	mm/hr

10 minutes

 $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 \text{ mm/hr}$

$Q_{5post} = \ (2.78)^*(C)^*(I_5)_*(A)$

Q _{5post} =	2.78 x	1.00	х	104.2	x 0.0495
Q _{5post} =	14.34 L/s				

$Q_{100post} = (2.78)^*(C)^*(I_{100})_*(A)$

Q _{100post} =	2.78 x	1.00	х	178.6	x 0.0495
Q _{100post} =	24.58 L/s				

ALLOWABLE RUNOFF

Predevelopm	nent Runo	ff:
Uncontrolled	d Runoff	
5-year	10.33	l/sec
100-year	17.70	l/sec
Controlled R	lunoff:	
5-year	14.34	l/sec
100-year	24.58	l/sec

ARCH-NOVA DESIGN INC.	
Architecture	
Engineering	
Consulting	

Postdevelop	ment Run	off:
Uncontrolled	Runoff	
5-year 100-year	7.80	l/sec
	13.37	l/sec
Controlled R	unoff:	
5-year	14.34	l/sec
100-year	24.58	l/sec

Controlled allowable runoff

5 year 2.53 l/sec

Project :	0450 01	x Cres. Ottav		torm)		_	Otorug	e Volume	0 (100 100		
						_	T	10			
	Tc =		(mins)				Tc =		(mins)		
	$C_{AVG} =$	1.00	(dimmensionle	ess)			$C_{AVG} =$		(dimmensionle	ss)	
	Area =	0.0495	(hectares)				Area =		(hectares)		
_	Storm =	5	(year)			_	Storm =		(year)		
	elease Rate =		(L/sec)				elease Rate =	-	(L/sec)		
Ti	me Interval =	10	(mins)			Ti	me Interval =	10	(mins)		
	Rainfall						Rainfall				
Duration	Intensity	Peak Flow	Release Rate	Storage Rate	Storage	Duration	Intensity	Peak Flow	Release Rate	Storage Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
1	204	2.8	2.53			1	351	4.8	2.53		
11	99	13.6	2.53	11.12	7.34	11	170	23.4	2.53	20.85	13.76
21	68	9.4	2.53	6.85	8.63	21	116	16.0	2.53	13.48	16.98
31	53	7.3	2.53	4.73	8.80	31	90	12.4	2.53	9.83	18.29
41	43	6.0	2.53	3.45	8.48	41	74	10.2	2.53	7.63	18.77
51	37	5.1	2.53	2.58	7.89	51	63	8.7	2.53	6.15	18.81
61	33	4.5	2.53	1.95	7.14	61	55	7.6	2.53	5.07	18.55
71	29	4.0	2.53	1.47	6.27	71	49	6.8	2.53	4.25	18.11
81	26	3.6	2.53	1.09	5.31	81	45	6.1	2.53	3.60	17.52
91	24	3.3	2.53	0.79	4.29	91	41	5.6	2.53	3.08	16.82
101	22	3.1	2.53	0.53	3.22	101	38	5.2	2.53	2.65	16.04
111	21	2.8	2.53	0.32	2.11	111	35	4.8	2.53	2.28	15.20
121	19	2.7	2.53	0.13	0.97	121	33	4.5	2.53	1.97	14.30
131	18	2.5	2.53	-0.03	-0.20	131	31	4.2	2.53	1.70	13.35
141	17	2.4	2.53	-0.17	-1.40	141	29	4.0	2.53	1.46	12.36
151	16	2.2	2.53	-0.29	-2.61	151	27	3.8	2.53	1.25	11.34
161	15	2.1	2.53	-0.40	-3.85	161	26	3.6	2.53	1.06	10.29
171	15	2.0	2.53	-0.50	-5.10	171	25	3.4	2.53	0.90	9.21
181	14	1.9	2.53	-0.59	-6.36	181	24	3.3	2.53	0.75	8.11
191	14	1.9	2.53	-0.67	-7.63	191	23	3.1	2.53	0.61	6.99
201	13	1.8	2.53	-0.74	-8.92	201	22	3.0	2.53	0.48	5.85
211	13	1.7	2.53	-0.81	-10.22	211	21	2.9	2.53	0.37	4.69
221	12	1.7	2.53	-0.87	-11.52	221	20	2.8	2.53	0.27	3.52
231	12	1.6	2.53	-0.93	-12.84	231	20	2.7	2.53	0.17	2.33
241	11	1.5	2.53	-0.98	-14.16	241	19	2.6	2.53	0.08	1.13
251	11	1.5	2.53	-1.03	-15.49	251	18	2.5	2.53	-0.01	-0.08
261	11	1.5	2.53	-1.07	-16.82	261	18	2.4	2.53	-0.08	-1.30
271	10	1.4	2.53	-1.12	-18.17	271	17	2.4	2.53	-0.16	-2.53

2) Rainfall Intensity, I = 998.071 / (Tc + 6.053)^0.814 (5 year, City of Ottawa)

3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc)

4) Peak Flow = 2.78 x C x I x A (Duration > Tc)

5) Storage = Duration x Storage Rate

2) Rainfall Intensity, I = 1735.688 / (Tc + 6.014)^0.820 (100 year, City of Ottawa) 3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc)

4) Peak Flow = 2.78 x C x I x A (Duration > Tc)

5) Storage = Duration x Storage Rate

ARCH-NOVA	
Architecture Engineering Consulting	

ect: 2458 Cleroux Cres. Ottawa

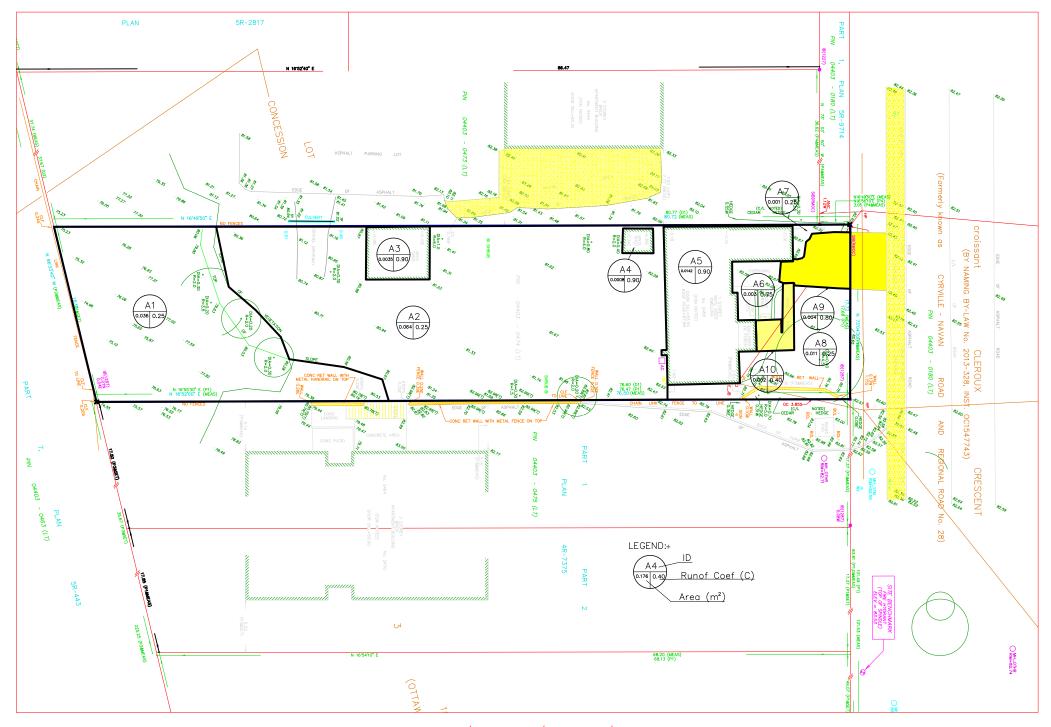
Storage Requirements

5-year 8.80 m³ 100-year 18.81 m³

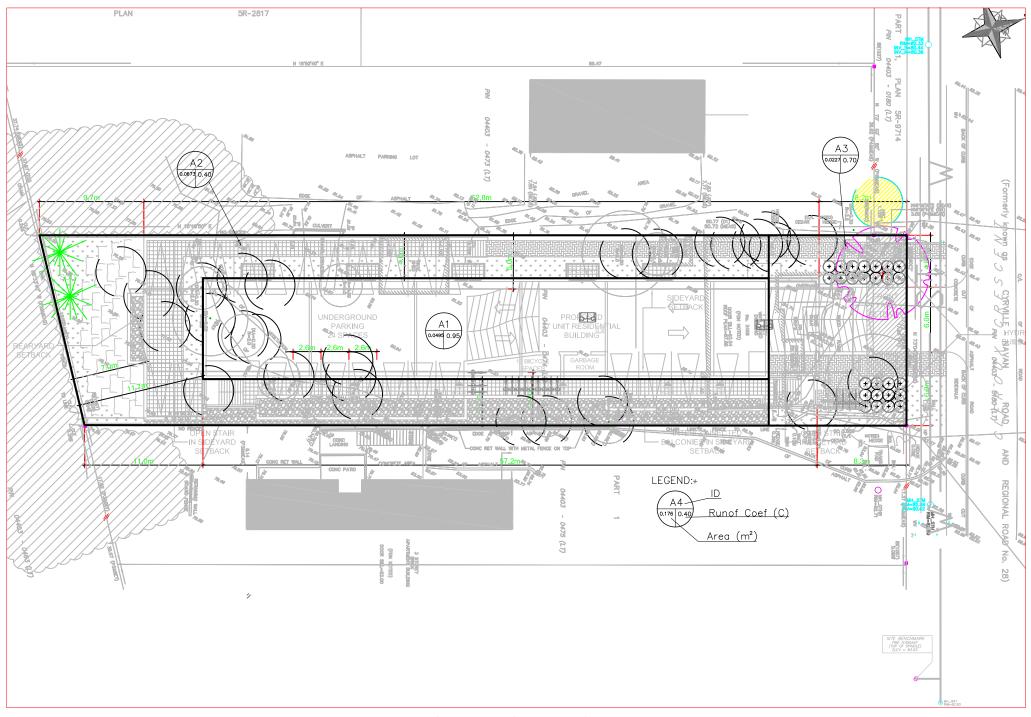
	100-year	18.81	111					
Surface Type	ID	Area (ha)	Percent of total Area	Storado	Required Storage 100 year	Max Allowed Drain Outflow I/s	Max Allowed Drain Outflow GPM	
Roof	A1	0.02286	49.9%	4.39	9.39	1.26	20.01	Legend:
Roof	A2	0.02292	50.1%	4.40	9.42	1.27	20.07	data for 2-year event
TOTAL		0.0458	100.0%	8.80	18.81	2.53	40.07	data for 100-year event

Stage-Storage

Roof A1	(Drain 1)		Roof A2 (Drain 2)	
Depth	Area	Volume	Depth	Area	Volume
m	m²	m ³	m	m²	m ³
0.020	75.00	0.50	0.020	75.00	0.50
0.040	110.00	1.47	0.040	110.00	1.47
0.075	175.50	4.39	0.075	176.00	4.40
0.124	227.40	9.40	0.124	228	9.42


Notes:

Roof drains with controlled flow to be specified by manufacturer using the allowable flow rates presented in this chart


ct Number: CW	/-02-21				2458 C	Cleroux Cres. Ottawa		Architecture Engineering Consulting	
DEVELOPMEN	NT Uncon	rolled to rea	<u>ır</u>						
			The pre-dev	elooment t	ime of concentration	n is 10 minutes			
			ine pre deri	5.00					
		where:	le = 5	998.071 / ((Tc + 6.053) ^{0.814}	I ₁₀₀ = 1735.688	/ (Tc + 6.0	14) ^{0.820}	
			I ₅ =		mm/hr		6 mm/hr	/	
		A ::== (l==)	Percent of		AXC				
urface Type	ID	Area (ha)	total Area	С	(ha)				
getation area ireen space	A1 A2	0.0360	32.3%	0.25	0.009				
Shed	A2 A3	0.0640	57.5% 3.1%	0.25	0.016 0.003	$Q_{5pre} = (2.78)^*(C)$)*(I₅)∗(A)		
Shed2	A4	0.0008	0.7%	0.90	0.001	$Q_{5pre} = 2.75$		2 x 104.2	x 0.1114
House	A5	0.0071	6.4%	0.90	0.006	$Q_{5pre} = 10.33$			
						opic			
			├ ───┼			Q _{100pre} = (2.78)*(C))*(I).(Δ)		
								2 x 178.6	v 0.1114
		-				$Q_{100pre} = 17.7$			X 0.1114
			<u>├</u> ├				0 10		
			1						
Maximum C=0.5 fo			100.0%	*	0.035	0.32 Actual C factor			
eighted C = Maximum C=0.5 fo s 1/2 of the roof dr	rains to the re	nent (City of Otta ear yard trolled to fro	awa) <u>nt</u>	*	0.32				
/eighted C = Maximum C=0.5 fo 's 1/2 of the roof dr	rains to the re	nent (City of Otta ear yard trolled to fro	awa) <u>nt</u>	* elopment ti					
TOTAL Veighted C = Maximum C=0.5 fo 's 1/2 of the roof dr -DEVELOPME	rains to the re	nent (City of Otta ear yard trolled to fro	awa) <u>nt</u> ⁻ he post-deve	·	0.32 0	n is 10 minutes	/ (Tc + 6.0	14) 0.820	
Veighted C = Maximum C=0.5 fo I/2 of the roof dr	rains to the re	nent (City of Otta ear yard trolled to fro T	awa) <u>nt</u> The post-deve I ₅ = S	998.071 / (0.32 0.32 0.32 0.314	n is 10 minutes I ₁₀₀ = 1735.688		14) ^{0.820}	
/eighted C = Maximum C=0.5 fo 's 1/2 of the roof dr	rains to the re	nent (City of Otta ear yard trolled to fro T	awa) <u>nt</u> ⁻ he post-deve	998.071 / (0.32 0	n is 10 minutes I ₁₀₀ = 1735.688	/ (Tc + 6.0 6 mm/hr	14) ^{0.820}	
leighted C = Maximum C=0.5 fo s 1/2 of the roof dr	rains to the re	nent (City of Otta ear yard trolled to fro T	awa) The post-deve I ₅ = S I ₅ =	998.071 / (0.32 (ime of concentration (Tc + 6.053) ^{0.814} mm/hr	n is 10 minutes I ₁₀₀ = 1735.688		14) ^{0.820}	
eighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPME	rains to the re	nent (City of Otta ear yard trolled to fro T	awa) The post-devenues $I_5 = \frac{5}{I_5} = \frac{1}{5}$	998.071 / (0.32 0 ime of concentration (Tc + 6.053) ^{0.814} mm/hr	n is 10 minutes I ₁₀₀ = 1735.688		14) ^{0.820}	
eighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPME	NT Uncont	nent (City of Otta ear yard trolled to fro T where:	awa) The post-deve I ₅ = S I ₅ =	998.071 / (104.2	0.32 (ime of concentration (Tc + 6.053) ^{0.814} mm/hr	n is 10 minutes I ₁₀₀ = 1735.688		14) ^{0.820}	
eighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPMEN	NT Uncont	nent (City of Otta ear yard trolled to fro T where: Area (ha)	awa) The post-devenues $I_5 = S$ $I_5 = S$ $I_5 = S$ Percent of total Area	998.071 / (104.2 C	0.32 (ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha)	n is 10 minutes I ₁₀₀ = 1735.688 I ₁₀₀ = 178.	6 mm/hr	14) ^{0.820}	
eighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch ireen space	ID A5 A6 A7	Area (ha) 0.0071 0.0010	awa) nt The post-development of total Area 6.4% 0.9%	998.071 / (104.2 C 0.90 0.75 0.25	0.32 0 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 178.$ $Q_{5post} = (2.78)^{*}(C)$	6 mm/hr)*(I ₅).(A)		
eighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch Porch ireen space ireen space	ID A5 A6 A7 A8	Area (ha) 0.0071 0.0010 0.0110	awa) nt The post-development $I_5 = S$ $I_5 = S$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.25	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 178.$ $Q_{5post} = (2.78)^{*}(C)$ $Q_{5post} = 2.76$	6 mm/hr)*(I ₅).(A) 8 x 0.5	14) ^{0.820} 0 × 104.2	x 0.0281
eighted C = Aaximum C=0.5 fo s 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch reen space reen space Driveway	ID A5 A6 A7 A8 A9	Area (ha) 0.0071 0.0010 0.0010 0.0040	awa) <u>nt</u> The post-development $I_5 = S^{-1}$ $I_5 = S^{-$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.80	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 178.$ $Q_{5post} = (2.78)^{*}(C)$ $Q_{5post} = 2.76$	6 mm/hr)*(I ₅).(A)		x 0.0281
eighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch ireen space ireen space Driveway	ID A5 A6 A7 A8	Area (ha) 0.0071 0.0010 0.0110	awa) nt The post-development $I_5 = S$ $I_5 = S$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.25	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 178.$ $Q_{5post} = (2.78)^{*}(C)$ $Q_{5post} = 2.76$	6 mm/hr)*(I ₅).(A) 8 x 0.5		x 0.0281
teighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch Areen space Areen space Driveway	ID A5 A6 A7 A8 A9	Area (ha) 0.0071 0.0010 0.0010 0.0040	awa) <u>nt</u> The post-development $I_5 = S^{-1}$ $I_5 = S^{-$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.80	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 178.$ $Q_{5post} = 178.$ $Q_{5post} = 2.76$ $Q_{5post} = 2.76$ $Q_{5post} = 4.0$	6 mm/hr)*(I ₅)-(A) 8 x 0.5 7 L/s		x 0.0281
leighted C = Maximum C=0.5 fo is 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch Porch areen space Green space Driveway	ID A5 A6 A7 A8 A9	Area (ha) 0.0071 0.0010 0.0010 0.0040	awa) <u>nt</u> The post-development $I_5 = S^{-1}$ $I_5 = S^{-$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.80	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 178.1$ $Q_{5post} = (2.78)^{*}(C)$ $Q_{5post} = 2.72$ $Q_{5post} = 4.0$ $Q_{100post} = (2.78)^{*}(C)$	6 mm/hr)*(I ₅)-(A) 8 x 0.5 7 L/s)*(I ₁₀₀)-(A)	0 × 104.2	
leighted C = Maximum C=0.5 fo is 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch Porch Areen space Green space	ID A5 A6 A7 A8 A9	Area (ha) 0.0071 0.0010 0.0010 0.0040	awa) <u>nt</u> The post-development $I_5 = S^{-1}$ $I_5 = S^{-$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.80	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 1735.688$ $I_{100} = 178.125$ $Q_{5post} = (2.78)^*(C)$ $Q_{5post} = 2.72$ $Q_{5post} = 4.025$ $Q_{100post} = (2.78)^*(C)$ $Q_{100post} = 2.72$	6 mm/hr)*(I ₅).(A) 8 x 0.5 7 L/s)*(I ₁₀₀).(A) 8 x 0.5		
teighted C = Maximum C=0.5 fo s 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch Areen space Areen space Driveway	ID A5 A6 A7 A8 A9	Area (ha) 0.0071 0.0010 0.0010 0.0040	awa) <u>nt</u> The post-development $I_5 = S^{-1}$ $I_5 = S^{-$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.80	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 1735.688$ $I_{100} = 178.$ $Q_{5post} = (2.78)^*(C)$ $Q_{5post} = 2.77$ $Q_{5post} = 4.0$ $Q_{100post} = (2.78)^*(C)$ $Q_{100post} = 2.77$	6 mm/hr)*(I ₅)-(A) 8 x 0.5 7 L/s)*(I ₁₀₀)-(A)	0 × 104.2	
leighted C = Maximum C=0.5 fo is 1/2 of the roof dr DEVELOPMEN DEVELOPMEN House* Porch Porch areen space Green space Driveway	ID A5 A6 A7 A8 A9	Area (ha) 0.0071 0.0010 0.0010 0.0040	awa) <u>nt</u> The post-development $I_5 = S^{-1}$ $I_5 = S^{-$	998.071 / (104.2 C 0.90 0.75 0.25 0.25 0.80	0.32 ime of concentration (Tc + 6.053) ^{0.814} mm/hr A X C (ha) 0.006 0.002 0.000 0.003 0.003	n is 10 minutes $I_{100} = 1735.688$ $I_{100} = 1735.688$ $I_{100} = 178.125$ $Q_{5post} = (2.78)^*(C)$ $Q_{5post} = 2.72$ $Q_{5post} = 4.025$ $Q_{100post} = (2.78)^*(C)$ $Q_{100post} = 2.72$	6 mm/hr)*(I ₅).(A) 8 x 0.5 7 L/s)*(I ₁₀₀).(A) 8 x 0.5	0 × 104.2	

	V-02-21				Ľ	2430 010101	ux Cres. Ottav	wa		neering ulting	
DEVELOPME	NT (uncloi	ntrolled rune	off to the from	<u>nt)</u>							
			The pre-deve	elopment t	ime of conce	entration is	10 m	ninutes			
		where:	$I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_5 = 104.2 \text{ mm/hr}$			J.814	$I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 \text{ mm/hr}$				
Surface Type	ID	Area (ha)	Percent of	С	AXC						
		. ,	total Area		(ha)						
egetation area Green space	A1 A2	0.0000	0.0%	0.25	0.000						
Shed	A2 A3	0.0000	0.0%	0.25	0.000		$Q_{\text{Enco}} = 0$	2.78)*(C)*(I₅)∗(A)		
Shed2	A4	0.0000	0.0%	0.90	0.000			2.78 x		x 104	2 x 0 028
House*	A5	0.0071	25.3%	0.90	0.006		Q _{5pro} =	4.07 L/s	5.50	104	A 0.020
Porch	A6	0.0030	10.7%	0.75	0.002		opre				
Green space	A7	0.0010	3.6%	0.25	0.000						
Green space	A8	0.0110	39.1%	0.25	0.003		-				
Driveway	A9	0.0040	14.2%	0.80	0.003			2.78)*(C)*(I ₁₀₀)			
Wood ramp	A10	0.0020	7.1%	0.40	0.001		Q _{100pre} =		0.50	x 178	.6 x 0.028
							Q _{100pre} =	6.98 L/s			
TOTAL											
			100								
TOTAL Weighted C = : Maximum C=0.5 use 1/2 of the roof	drains to the	e rear yard		ont)	0.016	0.56	Actual C fact	or			
Weighted C = : Maximum C=0.5	drains to the	pment (City of e rear yard ontrolled run	Ottawa) hoff to the fro					or			
Weighted C = : Maximum C=0.5 use 1/2 of the roof	drains to the	pment (City of e rear yard ontrolled run	Ottawa) hoff to the fro		0.50						
Weighted C = : Maximum C=0.5 use 1/2 of the roof	drains to the	pment (City of e rear yard ontrolled rur	Ottawa) hoff to the fro	elopment t	0.50	entration is	10 m		+ 6.014) ^{0.820}	
Weighted C = : Maximum C=0.5 use 1/2 of the roof	drains to the	pment (City of e rear yard ontrolled rur	Ottawa) hoff to the fro	elopment t 998.071 /	0.50	entration is	10 m	ninutes 735.688 / (Tc) ^{0.820}	
Weighted C = : Maximum C=0.5 use 1/2 of the roof	drains to the	pment (City of e rear yard ontrolled rur	Ottawa) hoff to the fro The post-deve I ₅ = S	elopment t 998.071 /	0.50 ime of concer (Tc + 6.053) ⁰	entration is	10 m I ₁₀₀ = 1	ninutes 735.688 / (Tc) ^{0.820}	
Weighted C = : Maximum C=0.5 use 1/2 of the roof : T-DEVELOPM	drains to the	pment (City of e rear yard ontrolled rur	Ottawa) noff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$	elopment t 998.071 /	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C	entration is	10 m I ₁₀₀ = 1	ninutes 735.688 / (Tc) ^{0.820}	
Veighted C = Maximum C=0.5 Ise 1/2 of the roof T-DEVELOPM Surface Type	ENT (unco	pment (City of e rear yard ontrolled rur where: Area (ha)	Ottawa) toff to the fro The post-dever $I_5 = S$ $I_5 = S$ Percent of total Area	elopment t 998.071 / / 104.2 C	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C (ha)	entration is	10 m I ₁₀₀ = 1	ninutes 735.688 / (Tc) ^{U.82U}	
Weighted C = : Maximum C=0.5 use 1/2 of the roof	drains to the	pment (City of e rear yard ontrolled rur where:	Ottawa) noff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$	elopment t 998.071 / 1 104.2	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C	entration is	10 m I ₁₀₀ = 1 I ₁₀₀ =	ninutes 735.688 / (Tc 178.6 mm	ı/hr) ^{0.820}	
Weighted C = : Maximum C=0.5 ise 1/2 of the roof ST-DEVELOPM Surface Type Landscape 1	ID	pment (City of e rear yard ontrolled rur where: Area (ha)	Ottawa) coff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$ Percent of total Area 0.0%	elopment t 998.071 / / 104.2 C 0.70	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C (ha) 0.000	entration is	10 m I ₁₀₀ = 1 I ₁₀₀ =	ninutes 735.688 / (Tc 178.6 mm 2.78)*(C)*(I ₅).(ı/hr A)		
Weighted C = : Maximum C=0.5 ise 1/2 of the roof ST-DEVELOPM Surface Type Landscape 1	ID	pment (City of e rear yard ontrolled rur where: Area (ha)	Ottawa) coff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$ Percent of total Area 0.0%	elopment t 998.071 / / 104.2 C 0.70	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C (ha) 0.000	entration is	10 m I ₁₀₀ = 1 I ₁₀₀ =	ninutes 735.688 / (Tc 178.6 mm 2.78)*(C)*(I ₅).(2.78 x	ı/hr A)		2 x 0.022
Weighted C = : Maximum C=0.5 ise 1/2 of the roof ST-DEVELOPM Surface Type Landscape 1	ID	pment (City of e rear yard ontrolled rur where: Area (ha)	Ottawa) coff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$ Percent of total Area 0.0%	elopment t 998.071 / / 104.2 C 0.70	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C (ha) 0.000	entration is	10 m $I_{100} = 1$ $I_{100} =$ $Q_{5post} = (2)$ $Q_{5post} =$ $Q_{5post} =$	ninutes 735.688 / (Tc 178.6 mm 2.78)*(C)*(I ₅).(2.78 x 4.60 L/s	/hr A) 0.70		2 x 0.022
Weighted C = : Maximum C=0.5 ise 1/2 of the roof ST-DEVELOPM Surface Type Landscape 1	ID	pment (City of e rear yard ontrolled rur where: Area (ha)	Ottawa) coff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$ Percent of total Area 0.0%	elopment t 998.071 / / 104.2 C 0.70	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C (ha) 0.000	entration is	$10 m$ $I_{100} = 1$ $I_{100} =$ $Q_{5post} = (2)$ $Q_{5post} =$ $Q_{5post} =$ $Q_{100post} = (2)$ $Q_{100post} = (2)$	ninutes 735.688 / (Tc 178.6 mm 2.78)*(C)*(I ₅).(2.78 x 4.60 L/s 2.78)*(C)*(I ₁₀₀) 2.78 x	/hr A) 0.70	× 104	2 x 0.022
Weighted C = : Maximum C=0.5 ise 1/2 of the roof ST-DEVELOPM Surface Type Landscape 1	ID	pment (City of e rear yard ontrolled rur where: Area (ha)	Ottawa) coff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$ Percent of total Area 0.0%	elopment t 998.071 / / 104.2 C 0.70	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C (ha) 0.000	entration is	10 m $I_{100} = 1$ $I_{100} =$ $Q_{5post} = (2$ $Q_{5post} =$ $Q_{5post} =$ $Q_{5post} =$	ninutes 735.688 / (Tc 178.6 mm 2.78)*(C)*(I ₅).(2.78 x 4.60 L/s 2.78)*(C)*(I ₁₀₀)	/hr A) 0.70	× 104	
Veighted C = Maximum C=0.5 se 1/2 of the roof T-DEVELOPM Surface Type Landscape 1	ID	pment (City of e rear yard ontrolled rur where: Area (ha)	Ottawa) coff to the frc The post-dever $I_5 = S$ $I_5 = S$ $I_5 = S$ Percent of total Area 0.0%	elopment t 998.071 / / 104.2 C 0.70	0.50 ime of concer (Tc + 6.053) ⁰ mm/hr A X C (ha) 0.000	entration is	$10 m$ $I_{100} = 1$ $I_{100} =$ $Q_{5post} = (2)$ $Q_{5post} =$ $Q_{5post} =$ $Q_{100post} = (2)$ $Q_{100post} =$ $Q_{100post} =$	ninutes 735.688 / (Tc 178.6 mm 2.78)*(C)*(I ₅).(2.78 x 4.60 L/s 2.78)*(C)*(I ₁₀₀) 2.78 x	/hr A) 0.70	× 104	

2458 CLEROUX CRES SWM PREDEVELOPMENT ARCH-NOVA Design Inc.

45 Banner Road NEPEAN ON K2H 8X5 613-702-3403 contact@archnova.ca

2458 CLEROUX CRES SWM POSTDEVELOPMENT ARCH-NOVA Design Inc.

45 Banner Road NEPEAN ON K2H 8X5 613-702-3403 contact@archnova.ca Appendix B: Correspondence

zoran@archnova.ca

From:	Rasool, Rubina <rubina.rasool@ottawa.ca></rubina.rasool@ottawa.ca>
Sent:	August 20, 2021 3:36 PM
То:	zoran@archnova.ca
Subject:	RE: 2458 Cleroux Cres: Boundary Codnitions
Attachments:	2458 Cleroux Cres_20August2021.docx

Good afternoon,

Please find attached the water boundary conditions for the proposed development.

Have a good weekend.

Rubina

Rubina Rasool, E.I.T. Project Manager Planning, Infrastructure and Economic Development Department - Services de la planification, de l'infrastructure et du développement économique Development Review – East Branch City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West Ottawa, ON | 110, avenue Laurier Ouest. Ottawa (Ontario) K1P 1J1 <u>rubina.rasool@ottawa.ca</u>

From: zoran@archnova.ca <zoran@archnova.ca> Sent: August 03, 2021 7:41 PM To: Rasool, Rubina <Rubina.Rasool@ottawa.ca> Subject: 2458 Cleroux Cres: Boundary Codnitions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Could you please provide the boundary conditions for the location of 2458 Cleroux Cres., Ottawa? Following are the initial information:

- 1. Type of development: 3storey+covered garage, 20 units building.
- 2. Fire flow required: 217 l/sec (FUS); 163.98 (OBC); nearest hydrant distance 38.4 m
- 3. Average Daily Demand: 0.12 l/sec
- 4. Maximum Hourly Demand: 1.75 l/Sec
- 5. Maximum Daily Demand: 1.16 l/sec

Attached are calculation sheets, image of nearest hydrant distance (from GeoOttawa) and the site plan of proposed development. Regards,

Zoran Mrdja, P.Eng., FEC

ı.

ı

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Boundary Conditions 2458 Cleroux Crescent

Provided Information

Seenerie	Demand				
Scenario	L/min	L/s			
Average Daily Demand	7	0.12			
Maximum Daily Demand	70	1.16			
Peak Hour	105	1.75			
Fire Flow Demand #1	13,000	216.67			

Location

Results

Connection 1 – Cleroux Cres.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	131.0	67.7
Peak Hour	127.0	62.1
Max Day plus Fire 1	105.3	31.3

Ground Elevation = 83.3 m

<u>Notes</u>

1. A second connection to the watermain is recommended to decrease vulnerability of the water system in case of breaks.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.