OTTAWA CATHOLIC SCHOOL BOARD

OCSB RIVERSIDE SOUTH ELEMENTARY SCHOOL NOISE IMPACT STUDY

SEPTEMBER 01, 2022

OCSB RIVERSIDE SOUTH ELEMENTARY SCHOOL NOISE IMPACT STUDY

OTTAWA CATHOLIC SCHOOL BOARD

PROJECT NO.: 221-08213-00 DATE: SEPTEMBER 01, 2022

WSP UNIT 2 126 DON HILLOCK DRIVE AURORA, ON, CANADA L4G 0G9

T: +1 905 750-3080 F: +1 905 727-0463 WSP.COM

VERSION HISTORY

VERSION	DATE	TITLE	COMMENTS	PREPARED BY
1.0	September 01, 2022	Noise Impact Study	Issued for Submission	WSP

OCSB RIVERSIDE SOUTH ELEMENTARY SCHOOL Project No. 221-08213-00 OTTAWA CATHOLIC SCHOOL BOARD WSP September 2022 Page i

SIGNATURES

PREPARED BY

Megan Beauchamp, B.Eng., EIT Acoustics, Noise and Vibration Specialist

REVIEWED BY

Carolyn Ropp, B.Sc., Intermediate Acoustics, Noise and Vibration Specialist

LIMITATIONS STATEMENT

WSP Canada Inc. (WSP) prepared this report solely for the use of the intended recipient, OTTAWA CATHOLIC SCHOOL BOARD, in accordance with the professional services agreement between the parties. In the event a contract has not been executed, the parties agree that the WSP General Terms for Consultant shall govern their business relationship which was provided to you prior to the preparation of this report.

The report is intended to be used in its entirety. No excerpts may be taken to be representative of the findings in the assessment.

The conclusions presented in this report are based on work performed by trained, professional and technical staff, in accordance with their reasonable interpretation of current and accepted engineering and scientific practices at the time the work was performed.

The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation, using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by WSP and other engineering/scientific practitioners working under similar conditions, and subject to the same time, financial and physical constraints applicable to this project.

WSP disclaims any obligation to update this report if, after the date of this report, any conditions appear to differ significantly from those presented in this report; however, WSP reserves the right to amend or supplement this report based on additional information, documentation or evidence.

WSP makes no other representations whatsoever concerning the legal significance of its findings.

The intended recipient is solely responsible for the disclosure of any information contained in this report. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report.

WSP has provided services to the intended recipient in accordance with the professional services agreement between the parties and in a manner consistent with that degree of care, skill and diligence normally provided by members of the same profession performing the same or comparable services in respect of projects of a similar nature in similar circumstances. It is understood and agreed by WSP and the recipient of this report that WSP provides no warranty, express or implied, of any kind. Without limiting the generality of the foregoing, it is agreed and understood by WSP and the recipient of this report that WSP makes no representation or warranty whatsoever as to the sufficiency of its scope of work for the purpose sought by the recipient of this report.

In preparing this report, WSP has relied in good faith on information provided by others, as noted in the report. WSP has reasonably assumed that the information provided is correct and WSP is not responsible for the accuracy or completeness of such information.

Benchmark and elevations used in this report are primarily to establish relative elevation differences between the specific testing and/or sampling locations and should not be used for other purposes, such as grading, excavating, construction, planning, development, etc.

The original of this digital file will be kept by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

This limitations statement is considered an integral part of this report.

EXECUTIVE SUMMARY

WSP Canada Inc. was retained by Ottawa Catholic School Board (OCSB) to complete an Environmental Noise Impact Study in support of an application for Site Plan Control Application (SPA) for the proposed OCSB Riverside South Elementary School development to be located at the corner of Brain Good Avenue and Solarium Avenue in Ottawa, Ontario (the Site). The Site consists of a main one-storey building and separate classroom portables, a play structure area, a sports field, and parking lot.

The purpose of the study is to assess the potential noise effects of the environment onto the Site and assess the potential noise impact of the proposed stationary noise sources at the Site on surrounding noise-sensitive areas. This report is based on the Site Plan, prepared by Pye & Richards – Temprano & Young Architects Inc., dated July 4, 2022 ("Issued for Client Review").

The assessment was conducted in accordance with the City of Ottawa and the Ministry of Environment, Parks and Conservation (MECP) noise guidelines.

The significant sources of noise in the vicinity of the proposed development are transportation noise sources, mainly road traffic on Brain Good Avenue and Solarium Avenue, which are classified as urban collector roads. The significant stationary sources of noise at the Site are rooftop HVAC equipment.

Based on the predicted sound levels at the proposed development due to road traffic noise sources, exterior wall, door, and window construction meeting the Ontario Building Code (OBC) minimum requirements will be adequate to meet the indoor sound level limits to comply with the City of Ottawa and the MECP noise guidelines. Stationary sources at the Site are predicted to comply with the City of Ottawa and the MECP noise guidelines without additional noise control measures.

vsp

1	INTRODUCTION1
1.1	The Site and Surrounding Area1
1.2	The Proposed Development1
2	NOISE IMPACT ASSESSMENT
2.1	Noise Sources2
2.2	Noise Guidelines and Assessment Criteria2
2.2.1	Road Sources Assessment Criteria
2.2.2	Stationary Sources Assessment Criteria
2.3	Road Sources4
2.3.1	Road Traffic Data4
2.3.2	Analysis Method
2.3.3	Results
2.3.4	Recommendations
2.3.5	Warning Clauses
2.4	Stationary Sources
2.4.1	Onsite Noise Sources
2.4.2	Receptors7
2.4.3	Results
3	RECOMMENDATIONS AND CONCLUSIONS9
3.1	Conclusions9
3.2	Recommendations9
BIBLIC	DGRAPHY10

OCSB RIVERSIDE SOUTH ELEMENTARY SCHOOL Project No. 221-08213-00 OTTAWA CATHOLIC SCHOOL BOARD

WSP September 2022 Page v

vsp

TABLES

TABLE 2-1	ENCG & NPC-300 ROAD TRAFFIC
	INDOOR SOUND LEVEL CRITERIA
	FOR SCHOOLS3
TABLE 2-2	BUILDING REQUIREMENTS FOR
	INDOOR SPACES3
TABLE 2-3	MECP'S EXCLUSION LIMITS IN DBA
	4
TABLE 2-4	SUMMARY OF ROAD TRAFFIC DATA
	USED IN THE TRANSPORTATION
	NOISE ANALYSIS4
TABLE 2-5	SUMMARY OF PREDICTED FACADE
	SOUND LEVELS DUE TO ROAD
	TRAFFIC5
TABLE 2-6	STATIONARY SOURCE SOUND
	DATA FOR PROPOSED SCHOOL 7
TABLE 2-7	PREDICTED SOUND LEVELS FROM
	ONSITE STATIONARY SOURCES8
TABLE 3-1	SUMMARY OF NOISE CONTROL
	REQUIREMENTS9

APPENDICES

FIGURES

- A DRAWINGS
- **B** TRAFFIC DATA
- C NEF/NEP CONTOUR MAP
- D STAMSON VALIDATION FILES
- E SUPPORTING INFORMATION
- F CADNA OUTPUT

1 INTRODUCTION

WSP Canada Inc. (WSP) was retained by Ottawa Catholic School Board (OCSB) to complete an Environmental Noise Impact Study for the proposed Riverside South Elementary School development to be located at the corner of Brain Good Avenue and Solarium Avenue in Ottawa, Ontario (the Site). This report was prepared in support of the Site Plan Approval application submission.

This assessment investigates both the potential for noise impacts of the environment onto the Site from the nearby transportation sources (i.e., Brain Good Avenue and Solarium Avenue) and proposed stationary sources at the Site onto surrounding noise-sensitive areas.

The purpose of the study is to assess the potential noise effects of the environment onto the Site and proposed stationary sources at the Site onto surrounding noise-sensitive areas. The findings and recommendations needed to comply with the applicable noise guidelines are included herein.

1.1 THE SITE AND SURROUNDING AREA

The Site is bounded by:

- To the east, Brain Good Avenue;
- To the south, Solarium Avenue;
- To the west, residential homes; and,
- To the north, an open space.

The Site is proposed to be surrounded by mostly residential lots. The location of the Site is shown in **Figure 1**. A zoning map showing the land use surrounding the proposed development obtained from the City of Ottawa is provided in **Figure 2**. The Site is zoned "I1E H(15)" Minor Institutional and the immediate surrounding area of the proposed development includes residential, institutional, and open space land uses.

1.2 THE PROPOSED DEVELOPMENT

This report was based on the Site Plan, prepared by Pye & Richards – Temprano & Young Architects Inc., dated July 4, 2022, and included as **Appendix A**. The Site consists of a main one-storey building, north of the main building there are three (3) portable 6-pack classrooms, to the northwest a play structure area, a sports field, and a parking lot directly west.

2 NOISE IMPACT ASSESSMENT

2.1 NOISE SOURCES

The City's *Environmental Noise Control Guidelines* (ENCG) stipulates that a noise study shall be prepared when a new development is proposed within distances as follows:

- 100 metres from the right-of-way of an existing or proposed road; arterial, major collector, light rail transit, bus
 rapid transit or transit priority corridor;
- 250 metres from the right-of-way of an existing or proposed highway;
- 300 metres from the right-of-way of a proposed or existing rail corridor or secondary main railway line;
- 500 metres from the right-of-way of a freeway or 400-series provincial highway or principal main railway line; or
- Defined area from the Noise Exposure Forecast (NEF) noise contour of airport / aircraft noise

SURFACE TRANSPORTATION NOISE SOURCES

The significant sources of noise in the vicinity of the proposed development are transportation noise sources. The road types were identified as collectors using the City's "Official Plan – Schedule E Urban Road Network" as provided in **Appendix B**. The road within 100 metres of the site are Solarium Avenue and Brain Good Avenue. Other roads, light rail transit, bus rapid transit, and transit priority corridor, are over 100 metres away from the Site and are not expected to have a significant impact.

Proposed and existing highways are further than 250 m away from the proposed school. Proposed or existing rail corridor or main railway lines are further than 300 m. Freeway and 400-series or principal railway line are further than 500 m. Therefore, these transportation noise sources are not included or significant to this assessment.

STATIONARY NOISE SOURCES

There are stationary noise sources originating from the proposed school building development which is surrounded by existing and future residential buildings. Therefore, stationary noise has been included in the study to assess the potential noise impacts of the proposed development on the surrounding noise sensitive land uses.

AIRCRAFT SOURCES

The proposed development is located outside the City of Ottawa's International Airport's (Macdonald-Cartier International Airport) Vicinity Development Zone and outside the Airport Operating Influencing Zone (AOIZ). Therefore, aircraft noise has not been considered in the assessment. **Figure 3** shows the Site location in relation to the airport's NEF/NEP contour map. The NEF/NEP contour map is included in **Appendix C**.

2.2 NOISE GUIDELINES AND ASSESSMENT CRITERIA

Noise is recognized as a pollutant in the Environmental Protection Act, as uncontrolled noise can affect human activities. Ontario provincial noise control guidelines require that noise concerns are addressed in the planning of any new development.

In land use planning, although elimination or control of the source of pollution is usually a primary objective, there are general limits as to what is practical and technically possible. The City's ENCG follows the MECP's Publication NPC-300, *Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning* for

acceptable levels of road and air traffic noise impacting noise-sensitive institutional developments and stationary noise on surrounding noise-sensitive residential areas. These limits are discussed in Section "Part C – Land Use Planning" of NPC-300 as well as Section 2 and 4 of the ENCG.

2.2.1 ROAD SOURCES ASSESSMENT CRITERIA

Table 2-1 summarizes sound level limits for road traffic applicable for the proposed institutional development.

 Table 2-1
 ENCG & NPC-300 Road Traffic Indoor Sound Level Criteria for Schools

AREA	TIME PERIOD	LEQ (dBA) ^[1] -ROAD	REFERENCE
Indoor Living/Dining Areas of Schools, Daycares	Daytime (0700 – 2300h)	45	NPC-300 Table C-2 ENCG Table 2.2b

Notes: [1] Daytime: $L_{EQ 16HR}$; Nighttime: $L_{EQ 8-HR}$.

The NPC-300 and ENCG provide sound level limits in terms of energy equivalent (average) sound levels $[L_{EQ}]$ in units of A-weighted decibels (dBA) at a specific noise-sensitive location. Outdoor areas are not considered noise-sensitive for institutional developments. Therefore, only indoor locations are identified and only during the daytime period.

The building envelope, such as walls, windows and doors where applicable, should be designed so that the indoor sound levels comply with the sound level limits summarized in **Table 2-1** above.

BUILDING COMPONENT REQUIREMENTS

To comply with the indoor sound level criteria listed in **Table 2-1**, the ENCG and NPC-300 provides guidelines based on predicted sound level at the façade/plane of window. If the predicted sound level at the plane of window exceeds, additional considerations such as the type of windows, exterior walls, and doors that can provide noise attenuation must be selected. In addition, warning clauses to inform the future occupants are also required.

 Table 2-2 summarizes requirements for type of building façade construction for institutional purpose buildings.

Table 2-2 Building Requirements for Indoor Spaces

AREA	TIME PERIOD	LEQ (DBA) ^[2]	BUILDING COMPONENT REQUIREMENTS
		<u><</u> 55	Building components compliant with Ontario Building Code (OBC)
Plane of Window ^[1]	Daytime (0700 – 2300h)	> 55 and <u><</u> 65	Building components compliant with OBC
		> 65	Building components designed/selected to meet Indoor Requirements

[2] Daytime: L_{EQ 16HR}.

2.2.2 STATIONARY SOURCES ASSESSMENT CRITERIA

For stationary sources, the MECP NPC-300 and ENCG Section 3 provides criteria based on one-hour equivalent sound level. In order to comply with the noise impact from stationary sources, the predicted sound level must comply with the noise guidelines stipulated in NPC-300 and ENCG. Two locations are typically considered: an outdoor location and the plane of window.

OCSB RIVERSIDE SOUTH ELEMENTARY SCHOOL Project No. 221-08213-00 OTTAWA CATHOLIC SCHOOL BOARD WSP September 2022 Page 3 Both guidelines provide sound level limits for noise-sensitive receptors based on the acoustical environment of the area. NPC-300 categorizes the acoustical environment into four classes: Class 1 (urban), Class 2 (semi-urban), Class 3 (rural), or Class 4 (special cases). Based on a review of the area using aerial imagery, the general area is currently under construction and thus, can be considered as Class 1 once fully developed. Given that the school only operates during the daytime, **Table 2-3** summarizes the MECP's daytime sound level limit for a Class 1 Area and was used as the applicable sound level limit for the development.

Table 2-3 MECP's Exclusion Limits in dBA

CLASS 1

PERIOD	PLANE OF WINDOW ¹	OUTDOOR POR ²
Daytime (07:00 – 19:00)	50	50

Notes:

1 Plane of window means a point in space corresponding with the location of the centre of a window of a noise sensitive space

2 PoR means point of reception; representing a point in a receptor location.

2.3 ROAD SOURCES

2.3.1 ROAD TRAFFIC DATA

Road traffic data were obtained from the ENCG **Appendix B** for Brian Good Avenue and Solarium Avenue. The data obtained from the ENCG provides future traffic volume, day/night split, commercial vehicle percentages, and posted speed limits for various roadways based on roadway class and number of lanes. The ENCG data represents the future traffic volume and corresponding to a "mature state of development", in the City's Official Plan.

The traffic and road parameters used for sound level predictions are shown in **Table 2-4**. The surrounding topography is generally flat and assessed as such.

Table 2-4 Summary of Road Traffic Data Used in the Transportation Noise Analysis

ROAD	ROAD CLASSIFICATION	TRAFFIC VOLUMES (AADT)	DAY/NIGHT SPLIT (%)	MEDIUM TRUCKS (%)	HEAVY TRUCKS (%)	POSTED SPEED LIMIT (KPH)
Brian Good Avenue	2-Lane Urban Collector	8,000	92/8	7%	5%	40
Solarium Avenue	2-Lane Urban Collector	8,000	92/8	7%	5%	40

2.3.2 ANALYSIS METHOD

The MECP updated their guidance requiring the use of up-to-date noise prediction methods and software for determining the impacts of noise from roads and railways (Publication NPC-306 "Methods to Determine Sound Levels Due to Road and Rail Traffic" December 2021). The Publication NPC-306 replaces Publication NPC-206 "Sound Levels Due to Road Traffic", dated October 1995, which referenced the use of ORNAMENT calculation procedures. Previous noise prediction methods using STAMSON, and MECP prediction software implementation of ORNAMENT, were based on a 1995 DOS program which is a modification of the U.S. Federal Highway Administration (FHWA) FHWA-RD-77-108 algorithm to simplify calculations with inherent limitations. Based on the MECP's draft guidance, the new methods will lead to more accurate noise predictions, effective control measures and based on current science.

OCSB RIVERSIDE SOUTH ELEMENTARY SCHOOL Project No. 221-08213-00 OTTAWA CATHOLIC SCHOOL BOARD WSP September 2022 Page 4 Although Publication NPC-306 is in circulation for comments as draft, further clarifications from the MECP to Noise Practitioners and Stakeholders suggests that the methods and software will not change. This assessment therefore uses the updated guidance set out in NPC-306 to account for complex features of the development and provide more accurate noise predictions. This is also in line with recent trends in industry best practices.

Road traffic sound levels at the proposed development were predicted using Cadna/A, a commercially available noise propagation modelling software. The following parameters were taken into consideration in the model:

- Road and rail alignments and gradients;
- Traffic volumes and design speeds;
- Commercial vehicle percentages for roads;
- Shielding provided by intervening buildings, barriers and/or topographical features; and
- Special details such as barrier and receptor locations, elevations, and heights.

The software's Building Evaluation feature was used to predict the sound levels on every façade of the proposed school and portables. The software generates an array of receivers along each building facade producing a comprehensive analysis of where the highest sound levels from road noise will be located on the building.

Solarium Avenue and Brain Good Avenue were modelled as road source using the U.S. FHWA Traffic Noise Model (TNM) noise emission and calculation method implemented by Cadna/A. The TNM predictions were validated at the closest east façade of the one-storey building facing Brian Good Avenue and closest south façade facing solarium Avenue and are equivalent to those made using the MECP prediction software STAMSON, which is an implementation of the ORNAMENT calculation methods.

The STAMSON validation files are included in Appendix D.

The analysis method in the NRC document, BPN56 "Controlling Sound Transmissions into Buildings", dated September 1985, were used to estimate the acoustical requirements for the building components.

2.3.3 RESULTS

Based on the road traffic data, sound levels were predicted at the proposed school. The Site's location with respect to these roads is shown in **Figure 4.** The predicted sound levels were used to investigate building construction requirements. The highest sound levels on the façades of proposed development is summarized in **Table 2-5**.

Table 2-5 Summary of Predicted Facade Sound Levels due to Road Traffic

STRUCTURE	LOCATION DESCRIPTION	APPROXIMATE HEIGHT (M)	DAYTIME HIGHEST SOUND LEVEL LEQ (dBA)
Main School Building	Southeast corner, on east façade	2	63
Portables	Northeast corner, on east façade	2	61

2.3.4 RECOMMENDATIONS

As shown in **Table 2-5**, the sound levels at the plane of window are below 65 dBA during the daytime hours. Thus, wall, door and window glazing assemblies meeting the minimum non-acoustical requirements of the Ontario Building Code (OBC) will be sufficient to meet the applicable indoor sound level limits.

2.3.5 WARNING CLAUSES

As per ENCG and NPC-300, inclusion of appropriate warning clauses for ventilation is a requirement for residential dwellings; however, though a school is not considered a dwelling, as per previous comments received from the City for other noise impact studies previously completed for proposed schools within the City, a warning clause Type C for road noise was requested and provided below. The suggested warning clause wording is as follows; it can be modified or amended by the City's planning department, as appropriate:

Type C

"The school has been fitted with a forced air heating system and ducting, etc. and was sized to accommodate central air conditioning. Installation of central air conditioning by the occupant will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the City's and the Ministry of the Environment's noise criteria. "(Note: The location and installation of the outdoor air conditioning device should be done so as to comply with noise criteria of MECP Publication NPC-216, Residential Air Conditioning Devices and thus minimize the noise impacts both on and in the immediate vicinity of the subject property.)"

2.4 STATIONARY SOURCES

Stationary source is defined in MECP publication NPC-300 as source of sound or combination of sources of sound that are included and normally operated within the property lines of a facility. The ENCG states new stationary sources of noise (noise generating) are defined by proximity to existing or approved noise-sensitive developments.

As detailed mechanical design is not available at the time of this report, the noise sources associated with the proposed development were based on a similar sized school. The significant stationary sources of noise are the rooftop HVAC units and a condenser. Insignificant sources or sources with negligible sound level contribution offsite include hot water heaters, small fans, and indoor equipment. No emergency generator is planned at the Site. Bus drop-off location is to be located along Brian Good Avenue and located outside the school's property boundary (offsite noise source). Therefore, noise associated with bus drop-off activities is not included in the assessment.

2.4.1 ONSITE NOISE SOURCES

A total of six (6) rooftop HVAC units (RTUs) and two (2) condensers are planned on the main school building as shown in **Figure 5**. All six RTUs and both condensers were conservatively assumed to operate simultaneously for 60 minutes in a predictable worst-case hour during the day. The school operates only during the daytime between 0700h to 1900h and assessed as such.

Sound power levels for the RTUs were provided by the manufacturer (AAON) for both the exposed condenser section and exhaust fan outlet. The sound power levels for the VRF Condensers were taken from Daikin and Carrier model. The sound level data used in the assessment is summarized in **Table 2-6** and manufacturer's cutsheets are provided in **Appendix E**.

The source locations and receptors placed on the proposed development are provided in Figure 5.

In order to estimate the sound levels from stationary sources to the surrounding residential areas, a predictive analysis was completed using a commercially available software package CADNA/A, a computer implementation of the ISO Standard 9613-2 "Acoustics – Attenuation of Sound During Propagation Outdoors", which takes into account the following:

- Source sound power levels;
- Distance attenuation;
- Source-receptor geometry;
- Ground and air (atmospheric) attenuation; and,

- Temperature and humidity effects on noise propagation.

Key parameters used in the model and sample calculations are located in Appendix F.

Table 2-6 Stationary Source Sound Data for Proposed School

SOURCE ID ¹	BUILDING	DESCRIPTION	OVERALL SOUND POWER	OPERATION (Minutes)
			LEVEL (dBA)	DAY
SS_RTU1c		HVAC 11T Unit Condenser	84	60
SS_RTU1e		HVAC 11T Unit Exhaust Air	85	60
SS_RTU2c		HVAC 6T Unit Condenser	81	60
SS_RTU2e		HVAC 6T Unit Exhaust Air	82	60
SS_RTU3c		HVAC 11T Unit Condenser	84	60
SS_RTU3e		HVAC 11T Unit Exhaust Air	87	60
SS_RTU4c	Proposed 1-Storey Main School	HVAC 11T Unit Condenser	84	60
SS_RTU4e	Building	HVAC 11T Unit Exhaust Air	85	60
SS_RTU5c	Dunning	HVAC 11T Unit Condenser	84	60
SS_RTU5e		HVAC 11T Unit Exhaust Air	85	60
SS_RTU6c		HVAC 11T Unit Condenser	84	60
SS_RTU6e		HVAC 11T Unit Exhaust Air	92	60
SS_CU1Ac		Air Cooled VRF 10T Condenser	85	60
SS_CU1Bc		Air Cooled VRF 10T Condenser	85	60

Notes:

[1] Refer Figure 5 for source locations; locations are referred using these IDs.

2.4.2 RECEPTORS

Residential lots surround the site on east, south, and west sides. Adjacent to the site on the north is open space. Locations of the future residential buildings used in this analysis were based on the Site Plan. To the south the development plans were not available and therefore, lots and dwellings were assumed to have similar setback distance as the adjacent residential lots.

These buildings were analysed as receptors R01 to R09 at the second-floor plane of window (i.e. 4.5 m above ground) and are described in **Table 2-6**. Outdoor points of reception (receptors R01_O to R02_O) were assessed at standing height (i.e. 1.5 m above ground) representing the backyards. **Figure 5** shows the receptors in relation to onsite stationary noise sources.

2.4.3 RESULTS

IMPACTS FROM THE PROPOSED DEVELOPMENT ON THE SURROUNDING ENVIRONMENT

The overall sound levels at receptors of existing and potential surrounding residential homes, generated using assumed predictable worst-case operations of the school, are summarized in **Table 2-7**.

POR ID	POR DESCRIPTION	RECEPTOR HEIGHT (M)	PREDICTED SOUND LEVEL (dBA)	DAYTIME SOUND LEVEL LIMIT (dBA)	COMPLIANCE WITH LIMIT?
R01	2-storey Existing Residential Home to the West (Window)	4.5	40	50	Yes
R02	2-storey Existing Residential Home to the West (Window)	4.5	39	50	Yes
R01_O	2-storey Existing Residential Home to the West (Outdoor)	1.5	40	50	Yes
R02_O	2-storey Existing Residential Home to the West (Outdoor)	1.5	40	50	Yes
R03	2-storey Existing Residential Home to the West (Window)	4.5	44	50	Yes
R04	2-storey Existing Residential Home to the West (Window)	4.5	47	50	Yes
R05	2-storey Potential Residential Home to the South (Window)	4.5	47	50	Yes
R06	2-storey Potential Residential Home to the South (Window)	4.5	47	50	Yes
R07	2-storey Potential Residential Home to the South (Window)	4.5	47	50	Yes
R08	2-storey Potential Residential Home to the South (Window)	4.5	47	50	Yes
R09	2-storey Potential Residential Home to the South (Window)	4.5	44	50	Yes

Table 2-7 Predicted Sound Levels from Onsite Stationary Sources

As shown in **Table 2-7**, the predicted stationary source sound level of the proposed RTUs and condensers meet sound level limit at all receptors.

3 RECOMMENDATIONS AND CONCLUSIONS

3.1 CONCLUSIONS

This report has been prepared to support the Site Plan Approval application. The assessment evaluated the potential for noise impact of transportation sources on the Site, and stationary sources associated with the Site on nearby residential uses and stationary sources associated with the nearby public school on the proposed development.

The predicted sound levels were assessed as per the MECP Publication NPC-300 and ENCG requirements. The assessment demonstrates that the Site will comply with the applicable noise guidelines without additional noise control measures.

3.2 RECOMMENDATIONS

 Table 3-1 summarizes the building recommendations for the school's proposed development.

Table 3-1 Summary of Building Requirements

BUILDING	BUILDING COMPONENTS (WALLS) STC	BUILDING COMPONENTS (WINDOWS & DOORS) STC	WARNING CLAUSE	NOISE CONTROL MEASURES
1-Storey Main School Building	OBC ¹	OBC ¹	Type C	NA
Portables	OBC ¹	OBC ¹	Туре С	NPC-216 ²

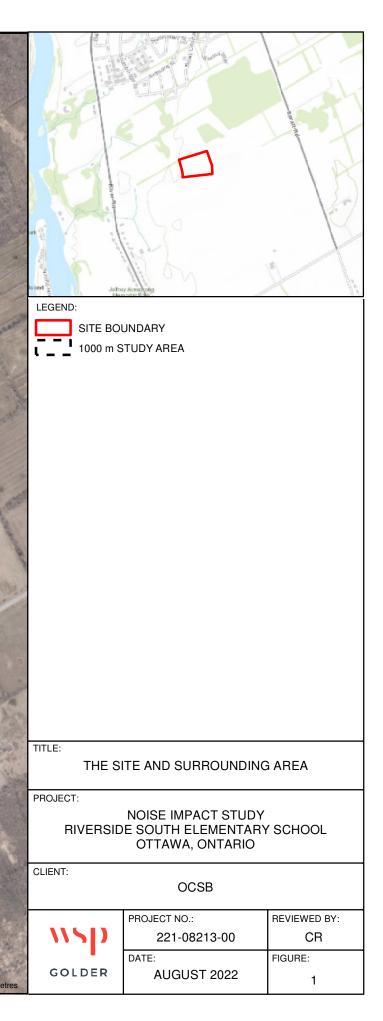
Notes:

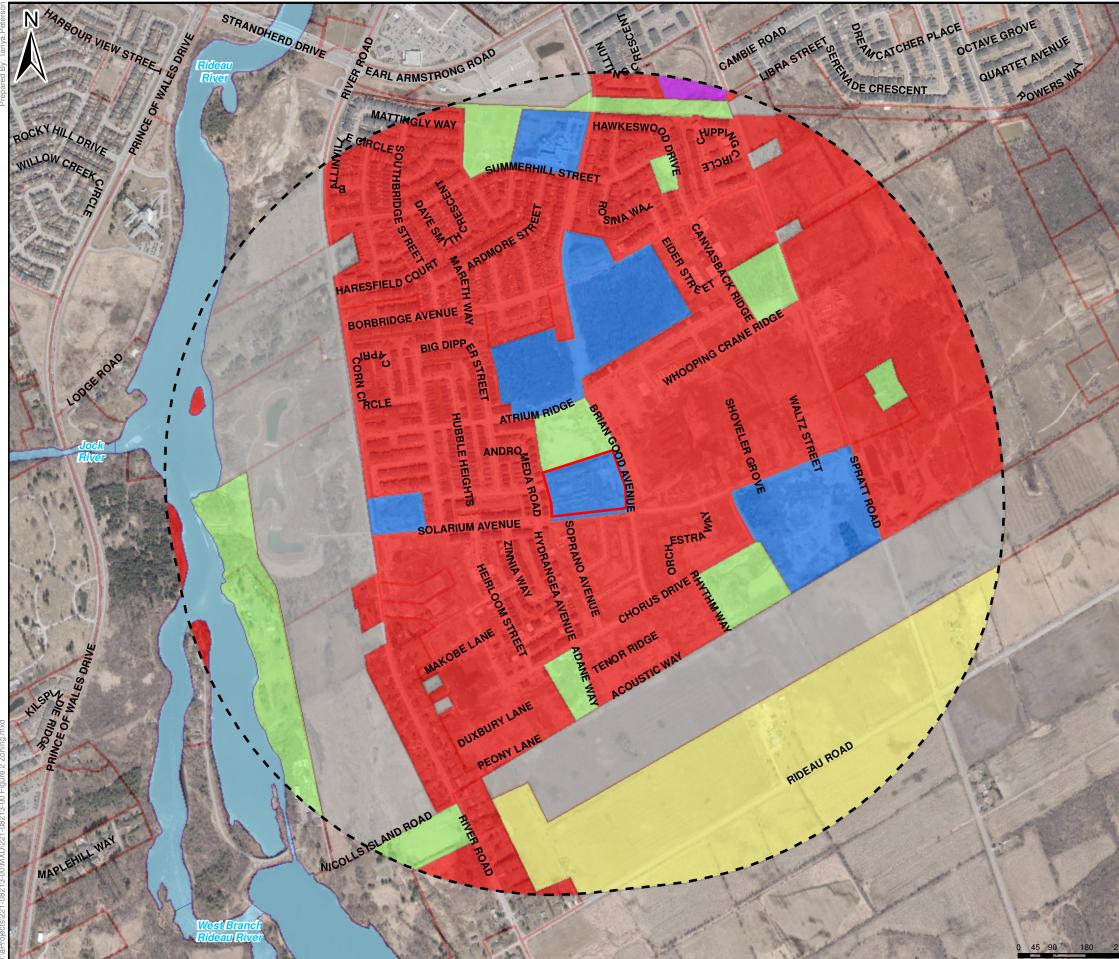
¹ OBC – Meet or exceed the minimum non-acoustical requirement of Ontario Building Code (OBC).

² Where possible, select equipment to comply with noise criteria of MECP Publication NPC-216, Residential Air Conditioning Devices.

Warning clause Type C (as requested by the City based on previous projects).

"This school has been fitted with a forced air heating system and ducting, etc. and was sized to accommodate central air conditioning. Installation of central air conditioning by the occupant will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the City's and the Ministry of the Environment's noise criteria" (Note: The location and installation of the outdoor air conditioning device should be done so as to comply with noise criteria of MECP Publication NPC-216, Residential Air Conditioning Devices and thus minimize the noise impacts both on and in the immediate vicinity of the subject property.)"


BIBLIOGRAPHY


- National Research Council of Canada (1995, September). Building Practice Note (BPN) No. 56: Controlling Sound Transmission into Buildings, Canada
- Ontario Ministry of the Environment and Climate Change (2013). Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning – Publication NPC-300. Ontario, Canada
- Ontario Ministry of the Environment and Climate Change (1996), STAMSON v5.04: Road, Rail and Rapid Transit Noise Prediction Model, Ontario, Canada
- Ontario Ministry of the Environment (1989). Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT), Ontario, Canada
- Ontario Ministry of the Environment and Energy (October 1995). Sound Level Due To Road Traffic Planning Publication NPC-300. Ontario, Canada
- City of Ottawa (2016; January). Environmental Noise Control Guidelines (ENCG), Ontario, Canada

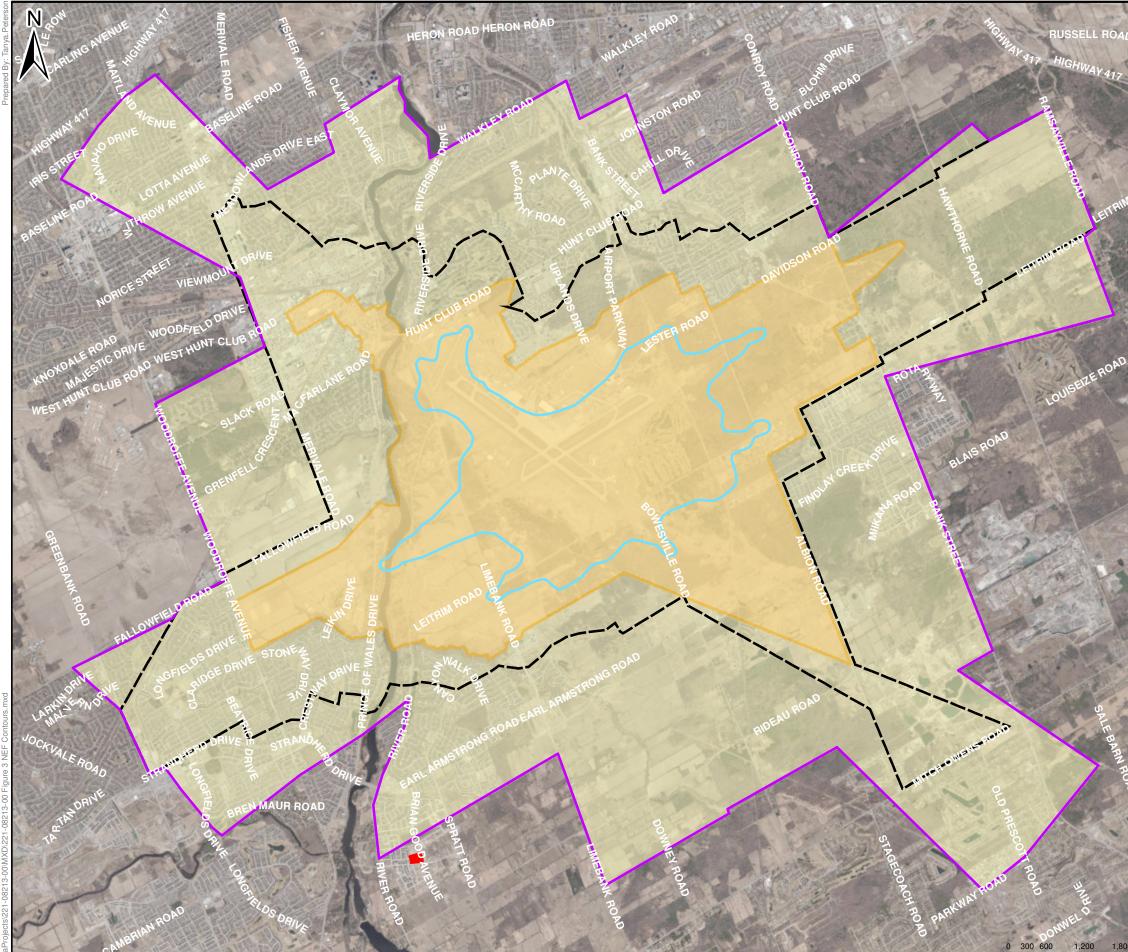
FIGURES

LEGEND:

SITE BOUNDARY 1000 m STUDY AREA WATERBODY AGRICULTURAL DEVELOPMENT RESERVE GENERAL MIXED USE ZONE INSTITUTIONAL OPEN SPACE RESIDENTIAL

TITLE:

ZONING MAP


PROJECT:

NOISE IMPACT STUDY RIVERSIDE SOUTH ELEMENTARY SCHOOL OTTAWA, ONTARIO

CLIENT:

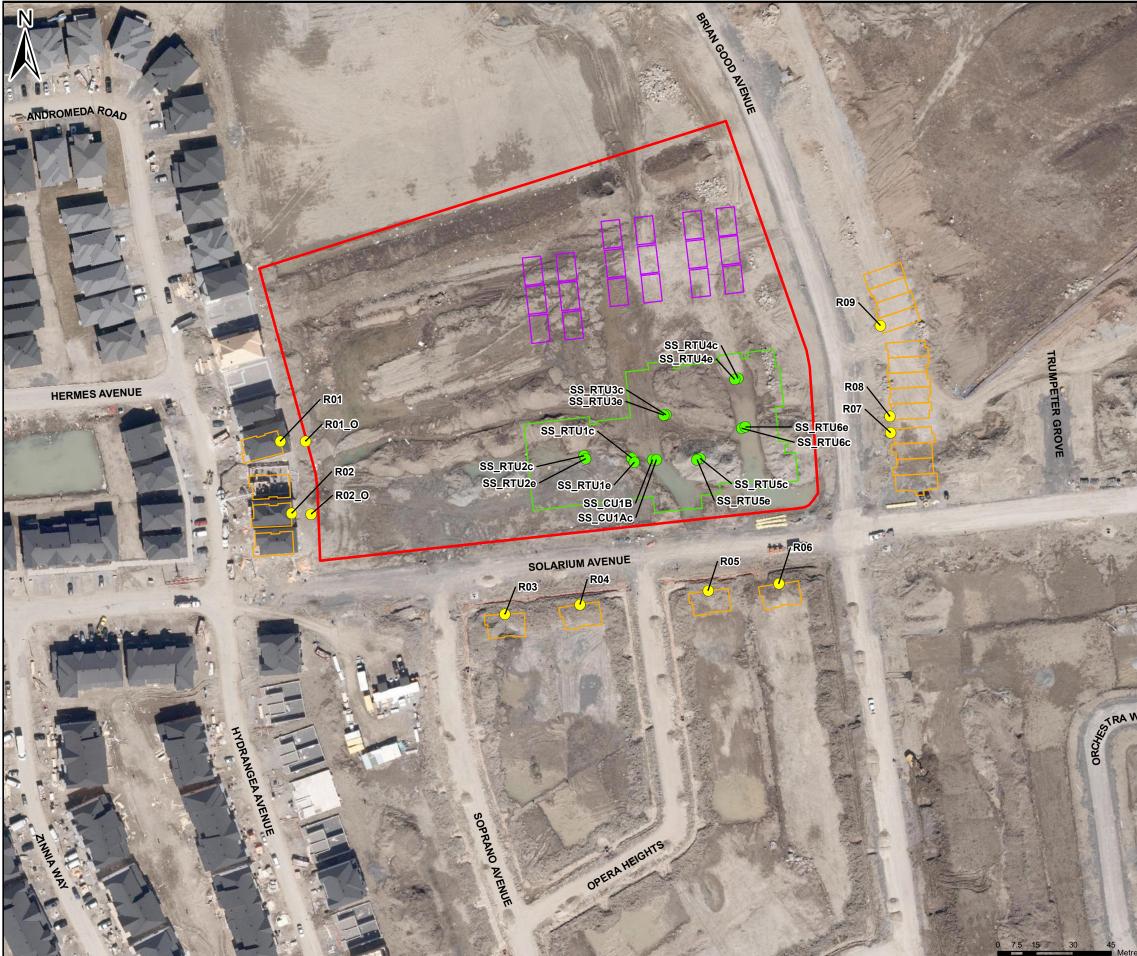
OCSB

8			
10 M		PROJECT NO .:	REVIEWED BY:
ない	\\S D	221-08213-00	CR
	•	DATE:	FIGURE:
and and	GOLDER	AUGUST 2022	2

	LEGEND:				
10	SITE BC	UNDARY			
- N	AIRPOR	T VICINITY DEVELOPMENT Z	ONE		
	25 LINE	(COMPOSITE OF 25 NEF/NEF	?)		
1100	35 LINE	NOISE EXPOSURE PROTECT	TION (NEP 2023)		
	AIRPOR	T ZONING REGULATIONS			
NORTH		T OPERATING INFLUENCING	ZONE		
2					
0					
v					
111					
Same and					
20					
1					
1000					
and a second					
1					
1000					
- Aller					
ALC: N					
-					
2					
all					
Y					
-					
-					
-					
A B B					
	TITLE:				
3	SITE LOCATION IN RELATION TO THE				
	AIRPORTS NEF/NEP CONTOUR MAP				
	PROJECT:				
-	NOISE IMPACT STUDY				
1	RIVERSI	RIVERSIDE SOUTH ELEMENTARY SCHOOL OTTAWA, ONTARIO			
1	· · · · · · · · · · · · · · · · · · ·				
17	CLIENT:				
1000	OCSB				
2	PROJECT NO.: REVIEWED BY:				
10	\\S D	221-08213-00	CR		
ALC: NO		DATE:	FIGURE:		
1 and	GOLDER	AUGUST 2022	3		

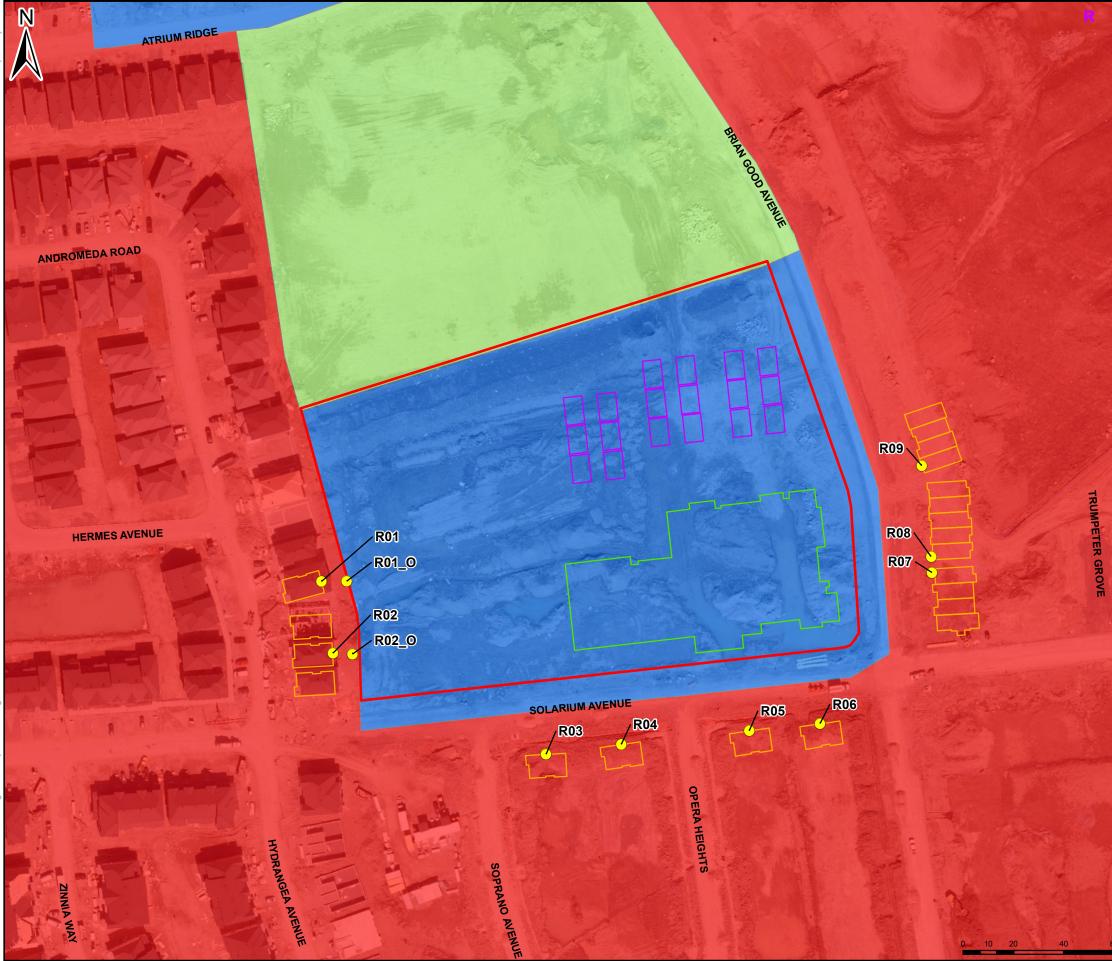
10

ETER GROU


IAN GOOD AVENUE

444.

OPERA HEIGHTS


	LEGEND:		
F.	SITE BO		
all a	BUILDIN		
	PORTAB		
		LES	
B			
The second			
P.			
C			
Carlo and			
(A)			
A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.			
A LA			
24			
-			
30			
The second			
A.M.			
120			
1			
A.			
NA.			
32			
2.0			
E.			
1 State			
Con la	TITLE:	SITE PLAN SHOWING	
A State		ON LOCATIONS & ROAD	
「	,	SPORTATION NOISE IMP	PACTS)
11	PROJECT:		
No. M	RIVERSIC	NOISE IMPACT STUDY E SOUTH ELEMENTARY	SCHOOL
		OTTAWA, ONTARIO	
1.4	CLIENT:		
1	CLIENT.	OCSB	
2 M			
1		PROJECT NO.:	REVIEWED BY:
The second	NSD	221-08213-00	CR
and	•	DATE:	FIGURE:
es	GOLDER	AUGUST 2022	4

D:\2022\221-08213-00\MXD\221-08213-00 Figure 5 SNI - Offsite.mxd

	LEGEND:			
	RECEPT	ORS		
	SOURCE	LOCATION		
	SITE BOI	JNDARY		
Ser.	BUILDING	G		
No. A.	RESIDEN	ITIAL HOMES		
	PORTABI	ES		
The second second				
100				
1				
1				
a sml				
1				
A.				
P.S.				
1000				
and the				
ALL IN				
-				
Set 12				
and a				
200				
hin .				
A State				
YAW				
WAY	TITLE: SITE PLAN SHOWING ONSITE STATIONARY SOURCES & RECEPTOR LOCATIONS			
and the	(STATIONARY SOURCES & RECEPTOR LOCATIONS (STATIONARY NOISE IMPACTS OFFSITE)			
(EA)	PROJECT:			
		NOISE IMPACT STUDY		
E.F.	RIVERSID	E SOUTH ELEMENTARY OTTAWA, ONTARIO	SCHOOL	
14 C				
the	CLIENT:	OCSB		
to		UUSD		
1		PROJECT NO.:	REVIEWED BY:	
in the	NSD	221-08213-00	CR	
2.6		DATE:	FIGURE:	
res	GOLDER	AUGUST 2022	5	

LEGEND: \bigcirc RECEPTORS SITE BOUNDARY BUILDING PORTABLES INSTITUTIONAL OPEN SPACE RESIDENTIAL RESIDENTIAL HOMES TITLE: RECEPTOR LOCATIONS ON ZONING MAP PROJECT: NOISE IMPACT STUDY RIVERSIDE SOUTH ELEMENTARY SCHOOL OTTAWA, ONTARIO CLIENT: OCSB PROJECT NO .: REVIEWED BY: **** 221-08213-00 CR DATE: FIGURE:

AUGUST 2022


6

HESTRA MA

GOLDER

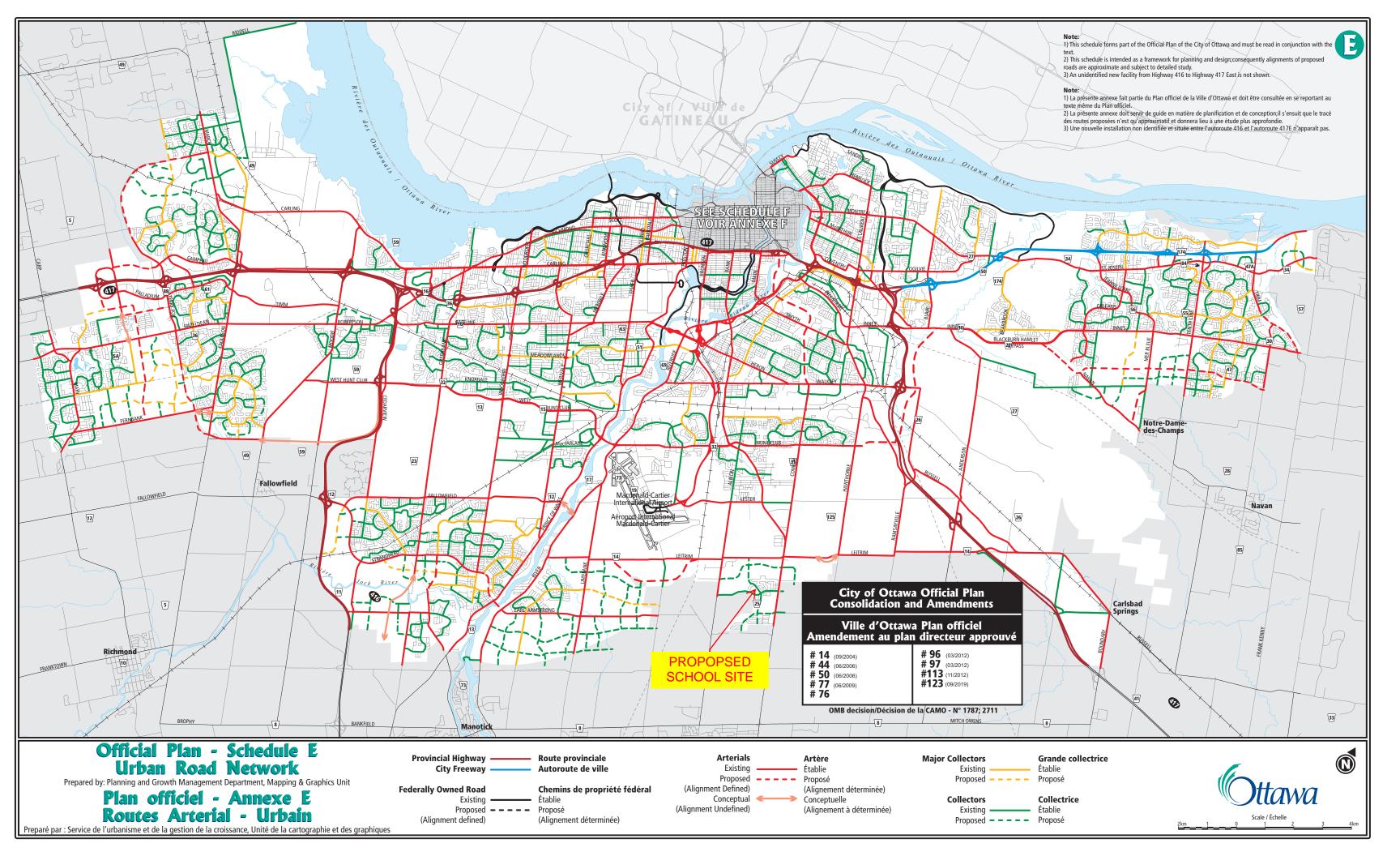
A DRAWINGS

ZONING REQUIREMENTS Municipality	City o
Municipanty	City 0
Legal Description	
xxxxx	
Survey Information Survey Information Prepared By:	Annis
	xxx
Common Address	0
Corner of Brian Good Ave & Solarium Ave Project Information	Ottav
Lot Size	
Gross Building Floor Area	4,630
Zoning	I1A/R
Minimum Lot Width	
Minimum Lot Area	
Minimum Front Yard Setback Minimum Rear Yard Setback	
Minimum Interior Side Yard Setback	
Minimum Corner Side Yard Setback	
Maximum Building Height	
Required Parking (Schedule 1A - Area C) Rate = 1.5 per classroom (includes 16	
classrooms + 6 kindergartens)	
Childcare 1/50sm	
	Ch
Furture Parking (12 future portables)	1.5 27 a
	tot
HC Parking Requirements	Bas
Required Bicycle Parking (1/100sm Gross	1/:
Floor Area Required Loading Zones	=47
1 per 1000-9999 sm of gross floor area	3.5
	1000
	As pe
Minimium Width of Landscaped Area	Ab
(Landscape Buffer)	Abu
	ins
	Ot
Landscaped Provisions for Parking Lots	l width
	ā
	min
	prope
]
	min oth
	Refus
	n
	with
	Mini
	area

ZONING INFORMATION

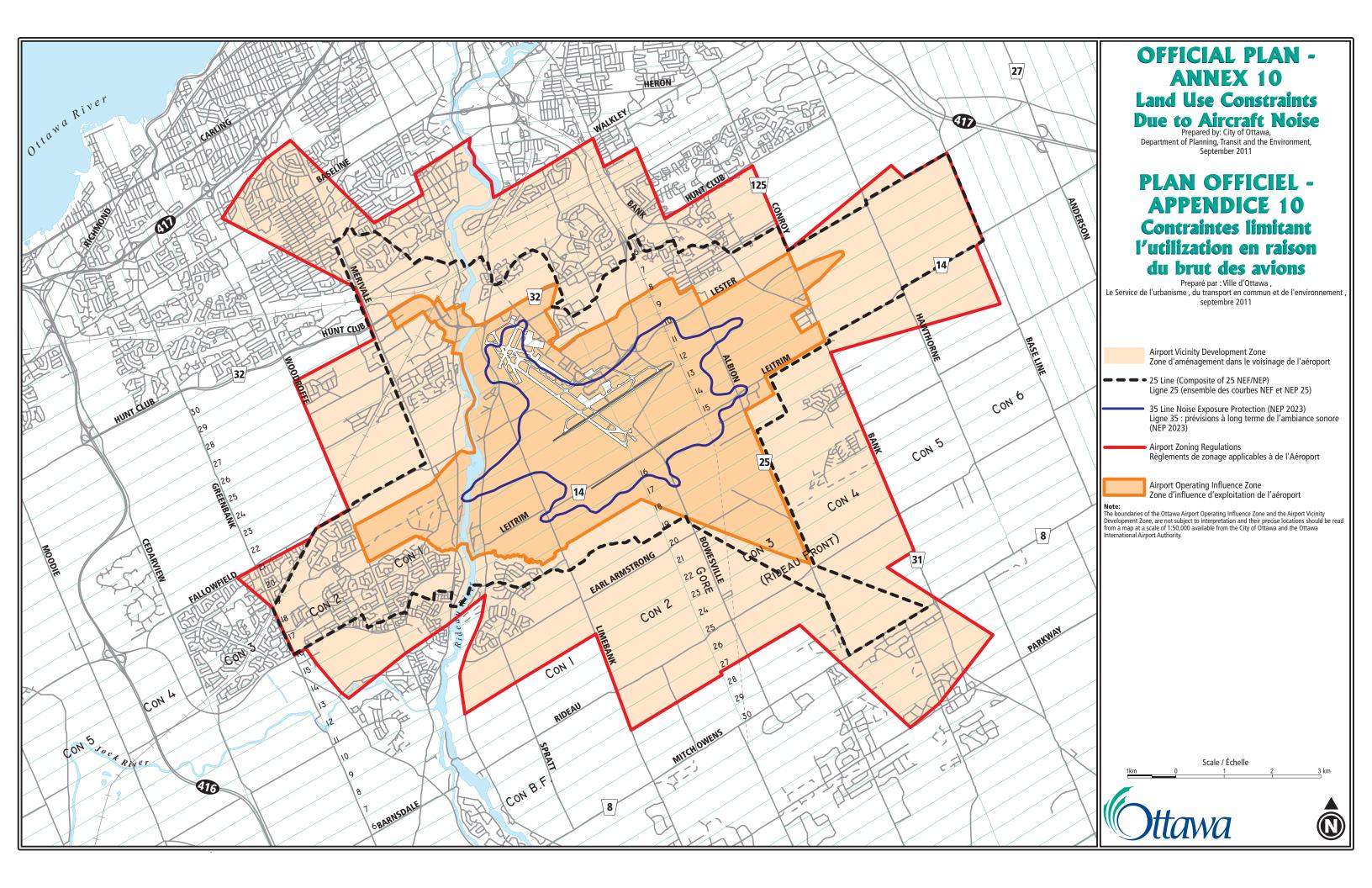
of Ottawa				
			OTTAW	
	City of Ottawa		CATHOL SCHOOL BOA	
s O'Sullivan Volleb	pekk Ltd			
wa,	Ontario			
27,434sm				
Osm				
R4Z	Institutional 1			
Bylaw Provisions	Proposed	Compliance		
15m	xm	Complies		
400 sm	xsm	Complies		
7.5m 7.5m		Complies Complies		
7.5m 4.5m		Complies Complies		
15.0m	7.65m	Complies		
1.5 x 22 classrooms = 33 Spaces	Proposed	Complies		
+ 275sm nildcare/50sm = 6 Spaces				
39 Total spaces required		.		
5 x 18 portables= additional Spaces stal (27 + 39) = 66 Spaces	total (59 + 28) = 87	Complies		
sed on 50 parking spaces provided		Complies		
/100sm X4,647sm		Complies		
<pre>required f spaces required l Loading Zone =</pre>	1	Complies		
5m(W) X 7m (L) x 4.2m (H)				
er zoning Section 113 (4) & (5)				
outting A Street =	4.0m	Complies		
3.0m utting residential,				
stitutional = 3.0m				
ther Cases - None Landscape buffer		Complies	3 ISSUED FOR CLIENT REVIEW 2 ISSUED FOR CLIENT REVIEW	4/JUL/2022 23/JUN/2022
h: 3m abbuting a street, 1.5m not			1 ISSUED FOR CLIENT REVIEW REV REVISION DESCRIPTION	31/MAY/2022 DATE
abbuting a street			THIS DRAWING IS THE EXCLUSIVE PROPERTY OF PYE & RICH	
Refuse collection areas must be			ARCHITECTS INC. COPYRIGHT RESERVED	ANDS - TEMI NANG & TOUNG
nimum 9.0m from erty line abutting			CONTRACTOR TO VERIFY ALL DIMENSIONS AND NOTIFY THE ERRORS AND/ OR POSSIBLE TRADE INTERFERENCE/CONFLIC	
a street			COMMENCEMENT OF THE WORK. DO NOT SCALE DRAWING	
Refuse collection areas must be			SEAL PROJEC	CT NORTH
nimum 3.0m from				
her property lines se collection area				
must be screened h minimum 2.0m				801
height screen				
imum landscaped	Parking Lot Area		Not for construction unless SEALED and SIGNED	
ea of parking lot = 15%				
1070	Parking =478sm		PR PYE & RICH	HARDS - D & YOUNG
	= >15%			
			I	
			- 824 Meath St. Suite 200	613.724.77 00
			Ottawa, ON K1Z 6E8 PROJECT	info@prty.ca
			OCSB RIVERSIDE SOUTH ELEN	IENTARY SCHOOL
			CORNER OF BRIAN GOOD AVE & SOLARIUM AVE DRAWING	OTTAWA, ONTARIO
	ITEXT MAP		SITE PLAN - OPTION A	
			ZONING MATRIX	
			PROJECT NO. 22022 DRAWIN SCALE - AS NOTED	
			DRAWN - I.R. CHECKED - I.R. PLOT DATE - 06/07/2022 PLOTTE	100-A
			•	

APPENDIX B TRAFFIC DATA


Appendix B: Table of Traffic and Road Parameters To Be Used For Sound Level Predictions

Row Width (m)	Implied Roadway Class	AADT Vehicles/Day	Posted Speed Km/Hr	Day/Night Split %	Medium Trucks %	Heavy Trucks % ¹
NA ²	Freeway, Queensway, Highway	18,333 per lane	100	92/8	7	5
37.5-44.5	6-Lane Urban Arterial-Divided (6 UAD)	50,000	50-80	92/8	7	5
34-37.5	4-Lane Urban Arterial-Divided (4-UAD)	35,000	50-80	92/8	7	5
23-34	4-Lane Urban Arterial-Undivided (4-UAU)	30,000	50-80	92/8	7	5
23-34	4-Lane Major Collector (4-UMCU)	24,000	40-60	92/8	7	5
30-35.5	2-Lane Rural Arterial (2-RAU)	15,000	50 - 80	92/8	7	5
20-30	2-Lane Urban Arterial (2-UAU)	15,000	50-80	92/8	7	5
20-30	2-Lane Major Collector (2-UMCU)	12,000	40-60	92/8	7	5
30-35.5	2-Lane Outer Rural Arterial (near the extremities of the City) (2-RAU)	10,000	50-80	92/8	7	5
20-30	2-Lane Urban Collector (2-UCU)	8,000	40-50	92/8	7	5

¹ The MOE Vehicle Classification definitions should be used to estimate automobiles, medium trucks and heavy trucks.


 $^{2}\,$ The number of lanes is determined by the future mature state of the roadway.

Environmental Noise Control Guidelines Part 4: Technical Requirements For Environmental Noise Control Studies And Implementation

C NEF/NEP CONTOUR MAP

D STAMSON VALIDATION FILES

STAMSON 5.0 NORMAL REPORT Date: 09-08-2022 12:27:50 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: V1.te Time Period: 16 hours Description: V1 Validation Road data, segment # 1: Solarium Car traffic volume : 6477 veh/TimePeriod * Medium truck volume : 515 veh/TimePeriod * Heavy truck volume : 368 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 1: Solarium _____ Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 Surface : 2 (Reflective ground surface) Receiver source distance : 17.50 m Receiver height : 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 2: Brian Good _____ Car traffic volume : 6477 veh/TimePeriod * Medium truck volume : 515 veh/TimePeriod * Heavy truck volume : 368 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 2: Brian Good _____ Angle1 Angle2 : 0.00 deg 27.00 deg Wood depth : 0 (No woods.) No of house rows : 0 Surface : 2 (Reflective ground surface) Receiver source distance : 68.00 m Receiver height : 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 3: Brian Good 2 _____ Car traffic volume : 6477 veh/TimePeriod * Medium truck volume : 515 veh/TimePeriod * Heavy truck volume : 368 veh/ TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete)

Data for Segment # 3: Brian Good 2 _____ Angle1 Angle2 : 27.00 deg 70.00 deg Wood depth : 0 (No woods.) No of house rows : 1 House density : 45 % Surface : 1 (Absorptive ground surface) Receiver source distance : 68.00 m Receiver height : 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Solarium _____ Source height = 1.50 mROAD (0.00 + 63.29 + 0.00) = 63.29 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------_____ Segment Leq : 63.29 dBA Results segment # 2: Brian Good _____ Source height = 1.50 mROAD (0.00 + 49.15 + 0.00) = 49.15 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------------ 0 27 0.00 63.96 0.00 -6.56 -8.24 0.00 0.00 0.00 49.15 ------_____ Segment Leq : 49.15 dBA Results segment # 3: Brian Good 2 _____ Source height = 1.50 mROAD (0.00 + 43.17 + 0.00) = 43.17 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----------- 27 70 0.66 63.96 0.00 -10.90 -7.50 0.00 -2.39 0.00 43.17 -----Segment Leq : 43.17 dBA

Total Leq All Segments: 63.49 dBA

TOTAL Leq FROM ALL SOURCES: 63.49

STAMSON 5.0 NORMAL REPORT Date: 15-08-2022 09:39:45 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: v2.te Time Period: 16 hours Description: V2 Validation Road data, segment # 1: Brian Good -----Car traffic volume : 6477 veh/TimePeriod * Medium truck volume : 515 veh/TimePeriod * Heavy truck volume : 368 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 1: Brian Good _____ Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 Surface : 1 (Absorptive ground surface) Receiver source distance : 22.00 m Receiver height : 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 2: Solarium 1 _____ Car traffic volume : 1600 veh/TimePeriod Medium truck volume : 320 veh/TimePeriod Heavy truck volume : 160 veh/TimePeriod Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) Data for Segment # 2: Solarium 1 _____ Angle1 Angle2 : -20.00 deg -10.00 deg Wood depth : 0 (No woods.) No of house rows : 0 Surface : 1 (Absorptive ground surface) Receiver source distance : 61.00 m Receiver height : 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 3: Solarium 2 _____ Car traffic volume : 6477 veh/TimePeriod * Medium truck volume : 515 veh/TimePeriod * Heavy truck volume : 368 veh/ TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete)

Data for Segment # 3: Solarium 2 _____ Angle1 Angle2 : -60.00 deg -30.00 deg Wood depth : 0 (No woods.) No of house rows : 1 House density : 45 % Surface : 2 (Reflective ground surface) Receiver source distance : 61.00 m Receiver height : 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Brian Good _____ Source height = 1.50 mROAD (0.00 + 59.74 + 0.00) = 59.74 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------_____ Segment Leq : 59.74 dBA Results segment # 2: Solarium 1 _____ Source height = 1.67 mROAD (0.00 + 37.67 + 0.00) = 37.67 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------10 0.66 60.41 0.00 -10.08 -12.66 0.00 0.00 0.00 37.67 -----_____ Segment Leq : 37.67 dBA Results segment # 3: Solarium 2 _____ Source height = 1.50 mROAD (0.00 + 47.68 + 0.00) = 47.68 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------30 0.00 63.96 0.00 -6.09 -7.78 0.00 -2.40 0.00 47.68 ------Segment Leq : 47.68 dBA Total Leq All Segments: 60.03 dBA

TOTAL Leq FROM ALL SOURCES: 60.03

E SUPPORTING INFORMATION

AAON Standard Condenser Fan Radiated Sound Levels

Updated 10/26/2018

																			vel in a Field			t (ft) 5
								Soun	d Pow	er Le	vel					_			sure l			
		Fans	Dia F	RPM	63	125	250	500	1000	2000	4000	8000	LwA	63	125	250	500	1000	2000	4000	8000	dBA
	Inlet				79	74	72	70	66	62	59	59	72	68	62	60	58	54	51	48	47	60
RQ 2 & 3 Ton	Outlet	1	30	850	81	77	71	71	67	62	59	58	73	69	66	59	59	55	51	48	46	61
	Total				83	79	74	73	69	65	62	61	75	72	. 67	63	62	58	54	51	50	63
	Inlet				85	79	77	75	71	68	65	64	77	73	67	66	63	59	56	53	52	65
RQ 4-6 Ton & RN 6 & 7 Ton	Outlet	1	30 1	1085	86	83	76	76	72	68	65	63	78	75	5 71	64	65	60	56	53	52	66
	Total				89	84	80	79	75	71	68	67	80	77	73	68	67	63	59	56	55	69
	Inlet				92	86	85	82	78	75	72	71	84	80	75	73	70	66	63	60	60	73
RN 8 & 10 Ton	Outlet	1	30 1	1085	94	90	83	83	79	75	72	71	85	82	78	71	72	68	63	60	59	73
	Total				96	91	87	86	82	78	75	74	88	84	80	75	74	70	66	63	62	76
	Inlet				88	82	80	78	74	71	68	67	80	76	70	69	66	62	59	56	55	68
RN 09 & 11 Ton	Outlet	2	30 1	1085	89	86	79	79	75	71	68	66	81	78	74	67	68	63	59	56	55	69
	Total				92	87	83	82	78	74	71	70	83	80	76	71	70	66	62	59	58	72
	Inlet				95	89	88	85	81	78	75	74	87	83	78	76	73	69	66	63	63	76
RN 13-20 Ton	Outlet	2	30 1	1085	97	93	86	86	82	78	75	74	88	85	81	74	75	71	66	63	62	76
	Total				99	94	90	89	85	81	78	77	91	87	83	78	77	73	69	66	65	79
	Inlet				97	91	89	87	83	80	77	76	89	85	79	78	75	71	68	65	64	77
RN 25 & 30 Ton	Outlet	3	30 1	1085	98	95	88	88	84	80	77	75	90	87	83	76	76	72	68	65	64	78
	Total				101	96	92	91	86	83	80	79	92	89	85	80	79	75	71	68	67	81
	Inlet				98	92	91	88	84	81	78	77	90	86	6 81	79	76	72	69	66	66	79
RN 26,31 & 40 Ton	Outlet	4	30 1	1085	100	96	89	89	85	81	78	77	91	88	84	77	78	74	69	66	65	79
	Total				102	98	93	92	88	84	81	80	94	90	86	81	80	76	72	69	68	82
	Inlet				100	94	92	90	86	83	80	79	92	88	82	81	78	74	71	68	67	80
RN 50,60 & 70 Ton	Outlet	6	30 1	1085	101	98	91	91	87	83	80	78	93	90	86	79	79	75	71	68	67	81
	Total				104	99	95	94	89	86	83	82	95	92	88	83	82	78	74	71	70	84
RN E 55,65 & 75 Ton	Inlet				92	86	87	87	86	85	85	78	92	80	74	75	75	74	73	73	66	80
LN & LZ 45-60 Ton	Outlet	4	30 1	1170	92	86	87	87	86	85	85	78	92	80	74	75	75	74	73	73	66	80
RZ 45-75	Total				95	89	90	90	89	88	88	81	95	83	77	78	78	77	76	76	69	83
RN E 90-140 Ton	Inlet				95	89	90	90	89	88	88	81	95	83	77	78	78	77	76	76	69	83
LN & LZ 75-140 Ton	Outlet	8	30 1	1170	95	89	90	90	89	88	88	81	95	83	77	78	78	77	76	76	69	83
RZ 90-140	Total				98	92	93	93	92	91	91	84	98	86	80	81	81	80	79	79	72	86
	Inlet				97	91	92	92	91	90	90	83	97	85	79	80	80	79	78	78	71	85
RZ 145-180	Outlet	12	30 1	1170	97	91	92	92	91	90	90	83	97	85	79	80	80	79	78	78	71	85
	Total				100	94	95	95	94	93	93	86	100	88	82	83	83	82	81	81	74	88
	Inlet				98	92	93	93	92	91	91	84	98	86	80	81	81	80	79	79	72	86
RZ 200-240	Outlet	16	30 1	1170	98	92	93	93	92	91	91	84	98	86	80	81	81	80	79	79	72	86
	Total				101	95	96	96	95	94	94	87	101	89	83	84	84	83	82	82	75	89

Tested in Accordance with AMCA 300 - Updated 6-15-15

15.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name:	CEPEO Kanata				
Job Tag:	RTU-1 Daycare				
Rep Firm: Date:	07-07-2022				

OPERATING CONDITIONS:

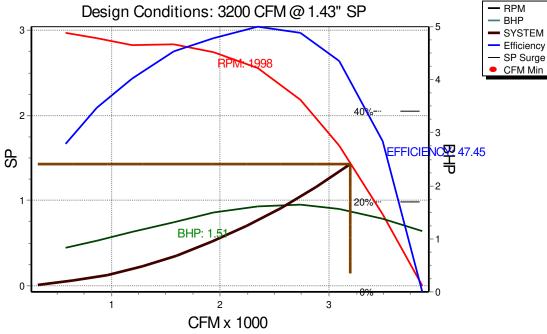
Air Flow:	3,200 CFM
Static Pressure:	0.98 in. Wg.
Relief Dampers DP:	0.44 in. Wg.
TSP:	1.42 in. Wg.
Site Altitude:	
one Annuae.	0.00 Ft

FAN PERFORMANCE:

RPM:	1998
BHP:	1.51
Efficiency:	47.4%
In/Out Velocity:	1624/1260 FPM
Plenum Out Velocity:	53 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	15.0 in. x 1
CFM:	3200
Tip Speed:	7,846 FPM
Inertia:	3 WR2


MOTOR SELECTION:

Rated HP / Bypass:	2 / No
Frame Size:	145T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.865
Endosure Type:	ODP
Enclosure Type:	ODP
Max Inertial Load:	27 WR ²

FAN SOUND POWER (Inlet/Outlet):

			`		,					
Octave Band:				(Re 10^-12 watts)						
1	2	3	4	5	6	7	8			
85	86	86	86	80	76	74	70			
85	86	86	86	80	76	74	70			
SOUND	POWER	R A-Weid	hted:	87 / 87 dB						

Exhaust Fan Model: RM150 @ 1998 RPM and 100% Width

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

In/Out Velocity:

Plenum Out Velocity:

OPERATING CONDITIONS:

Job Name:	CEPEO Kanata	Max RPM:
Job Tag:	RTU-2 Kindergarten	Diameter
Rep Firm:	Classrooms	CFM:
Date:		Tip Speed:
	07-07-2022	Inertia:

2,200 : x Qty: 22.0 in. x 1 ÷ 6100

WHEEL SPECIFICATION:

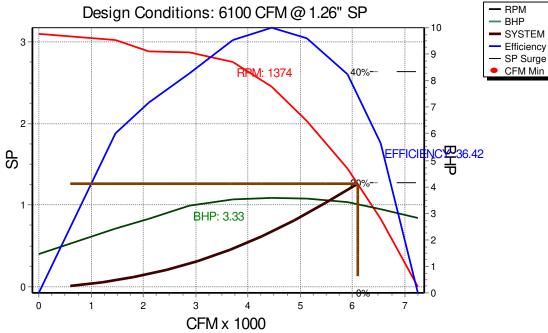
7,914 FPM 5 WR²

78

73

65

MOTOR SELECTION:


Air Flow:	6,100 CFM	Rated H	P / Bypa	ass:		5/No					
Static Pressure:	0.83 in. Wg.	Frame Size:				184T					
Relief Dampers DP:	0.43 in. Wg.	Nominal RPM:				1760					
	-	VAC/PH/HZ:			575/3/60						
TSP:	1.26 in. Wg.	Efficiency				Premium / 0.895					
Site Altitude:	0.00 Ft	Enclosure Type:			ODP						
TSP @Sea Level:	1.26 in. Wg.	Max Inertial Load:				52 WR ²					
FAN PERFORMANCE:		FAN SC	DUND	POWE	R (Inle	et/Outle	et):				
RPM:	1374	Octave	Band:			(Re 1	0^-12 w	atts)			
BHP:	3.33	1	2	3	4	5	6	7	8		
Efficiency:	36.4%	89	88	90	85	79	78	73	65		

79 89 88 90 85 SOUND POWER A-Weighted: 90 / 90 dB

Exhaust Fan Model: RM220A @ 1374 RPM and 100% Width

1865/2054 FPM

102 FPM

18.5" STAR Plenum

2,200

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Plenum Out Velocity:

OPERATING CONDITIONS:

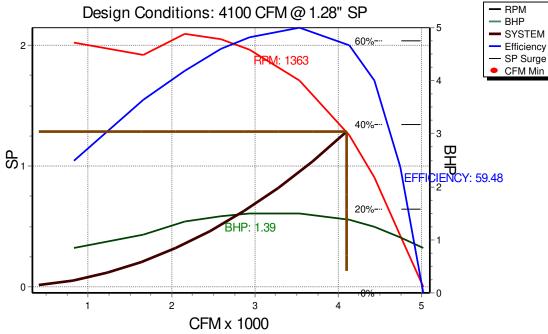
Job Name: Job Tag: Rep Firm: Date:	CEPEO Kanata RTU-3 Library and Multipurpose
	07-07-2022

Max RPM: Diameter x Qty: CFM: Tip Speed:

Inertia:

18.5 in. x 1 4100 6,601 FPM 3 WR²

MOTOR SELECTION:


WHEEL SPECIFICATION:

Air Flow:	4,100 CFM	Rated HP / Bypass:			2/No						
Static Pressure:	1.02 in. Wg.	Frame Size:				145T					
Relief Dampers DP:	0.26 in. Wg.	Nominal RPM:			1760						
		VAC/PH	I/HZ:			575/3/60					
TSP:	1.28 in. Wg.	Efficiency				Premi	Premium / 0.865				
Site Altitude:	0.00 Ft	Enclosure Type:			ODP						
TSP @Sea Level:	1.28 in. Wg.	Max Inertial Load:				27 WR ²					
FAN PERFORMANCE:		FAN SC	DUND	POWE	R (Inle	et/Outle	et):				
RPM:	1363	Octave	Band:			(Re 1	10^-12 w	atts)			
BHP:	1.39	1	2	3	4	5	6	7	8		
Efficiency:	59.5%	84	84	83	81	75	72	69	64		
In/Out Velocity:	2081/1614 FPM	84	84	83	81	75	72	69	64		

84 84 83 81 75 SOUND POWER A-Weighted: 85 / 85 dB

Exhaust Fan Model: RM185 @ 1363 RPM and 100% Width

68 FPM

18.5" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name: Job Tag:	CEPEO Kanata RTU-4 Admin
Rep Firm: Date:	07-07-2022
Dutc.	07 07 2022

OPERATING CONDITIONS:

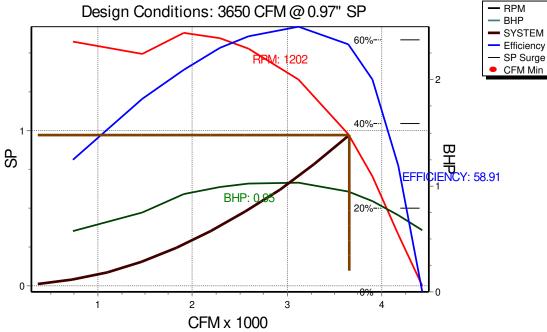
Air Flow:	3,650 CFM
Static Pressure:	0.74 in. Wg.
Relief Dampers DP:	0.23 in. Wg.
TSP:	0.97 in. Wg.
Site Altitude:	0.00 Ft
TSP @Sea Level:	0.97 in. Wg.

FAN PERFORMANCE:

RPM:	1202
BHP:	0.95
Efficiency:	58.9%
In/Out Velocity:	1853/1437 FPM
Plenum Out Velocity:	61 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	18.5 in. x 1
CFM:	3650
Tip Speed:	5,822 FPM
Inertia:	3 WR2


MOTOR SELECTION:

Rated HP / Bypass:	2 / No
Frame Size:	145T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.865
Enclosure Type:	ODP
Enclosure Type: Max Inertial Load:	

FAN SOUND POWER (Inlet/Outlet):

					,		
Octave E	Band:			(Re 1	0^-12 w	atts)	
1	2	3	4	5	6	7	8
80	81	81	76	72	69	65	60
80	81	81	76	72	69	65	60
SOUND POWER A-Weighted: 81 / 81 dB							

Exhaust Fan Model: RM185 @ 1202 RPM and 100% Width

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name:	CEPEO Kanata		
Job Tag:	RTU-5 Gym		
Rep Firm: Date:	07-07-2022		

OPERATING CONDITIONS:

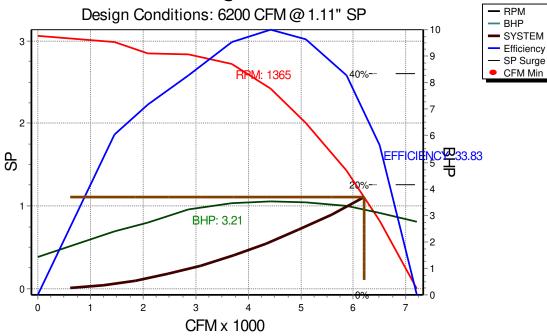
Air Flow:	6,200 CFM
Static Pressure:	0.67 in. Wg.
Relief Dampers DP:	0.44 in. Wg.
TSP:	1.11 in. Wg.
Site Altitude:	0.00 Ft
TSP @Sea Level:	1.11 in. Wg.

FAN PERFORMANCE:

RPM:	1365
BHP:	3.21
Efficiency:	33.8%
In/Out Velocity:	1896/2088 FPM
Plenum Out Velocity:	103 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	22.0 in. x 1
CFM:	6200
Tip Speed:	7,862 FPM
Inertia:	5 WR2


MOTOR SELECTION:

Rated HP / Bypass:	5 / No
Frame Size:	184T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.895
Efficiency	Premium / 0.895
Enclosure Type:	ODP
Max Inertial Load:	52 WR²

FAN SOUND POWER (Inlet/Outlet):

			``		,		
Octave I	Band:			(Re 1	0^-12 w	atts)	
1	2	3	4	5	6	7	8
89	88	90	85	79	78	73	65
89	88	90	85	79	78	73	65
SOUND	POWER	R A-Weid	nhted: 9	0 / 90 dB			

Exhaust Fan Model: RM220A @ 1365 RPM and 100% Width

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name: Job Tag:	CEPEO Kanata RTU-6 Ground East
Rep Firm: Date:	07-07-2022

OPERATING CONDITIONS:

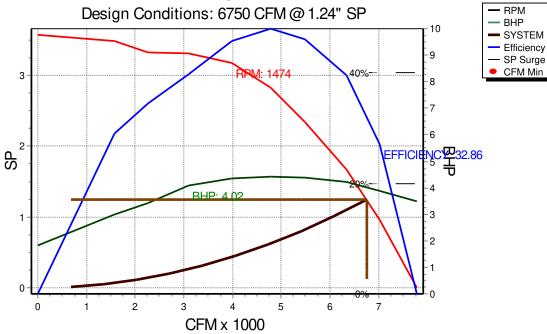
Air Flow:	6,750 CFM
Static Pressure:	0.74 in. Wg.
Relief Dampers DP:	0.50 in. Wg.
TSP:	1.24 in. Wg.
TSP: Site Altitude:	1.24 in. Wg. 0.00 Ft

FAN PERFORMANCE:

RPM:	1474
BHP:	4.02
Efficiency:	32.9%
In/Out Velocity:	2064/2273 FPM
Plenum Out Velocity:	112 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	22.0 in. x 1
CFM:	6750
Tip Speed:	8,490 FPM
Inertia:	5 WR2


MOTOR SELECTION:

Rated HP / Bypass:	5 / No
Frame Size:	184T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.895
Efficiency	Premium / 0.895
Enclosure Type:	ODP
Max Inertial Load:	52 WR²

FAN SOUND POWER (Inlet/Outlet):

			•		,		
Octave E	Band:			(Re 1	0^-12 w	atts)	
1	2	3	4	5	6	7	8
91	89	92	88	80	80	75	67
91	89	92	88	80	80	75	67
SOUND	POWE	R A-Weid	nhted: 9	2 / 92 dB			

Exhaust Fan Model: RM220A @ 1474 RPM and 100% Width

18.5" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name:	CEPEO Kanata
Job Tag:	RTU-7 Second Floor Zone 1
Rep Firm: Date:	07-07-2022

OPERATING CONDITIONS:

Air Flow:	4,400 CFM
Static Pressure:	0.64 in. Wg.
Relief Dampers DP:	0.35 in. Wg.
TSP:	0.99 in. Wg.
Site Altitude:	0.00 Ft
TSP @Sea Level:	0.99 in. Wg.

FAN PERFORMANCE:

RPM:	1373
BHP:	1.30
Efficiency:	52.7%
In/Out Velocity:	2234/1732 FPM
Plenum Out Velocity:	73 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	18.5 in. x 1
CFM:	4400
Tip Speed:	6,650 FPM
Inertia:	3 WR2

MOTOR SELECTION:

Rated HP / Bypass:	2 / No
Frame Size:	145T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.865
Efficiency	Premium / 0.865
Enclosure Type:	ODP
Max Inertial Load:	27 WR2

FAN SOUND POWER (Inlet/Outlet):

			``		,		
Octave E	Band:			(Re 1	0^-12 w	atts)	
1	2	3	4	5	6	7	8
84	84	85	81	76	73	70	65
84	84	85	81	76	73	70	65
SOUND	POWE	R A-Weic	hted: 8	5 / 85 dB			

Exhaust Fan Model: RM185 @ 1373 RPM and 100% Width

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name:	CEPEO Kanata		
Job Tag:	RTU-8 Second Floor Zone 2		
Rep Firm: Date:	07-07-2022		

OPERATING CONDITIONS:

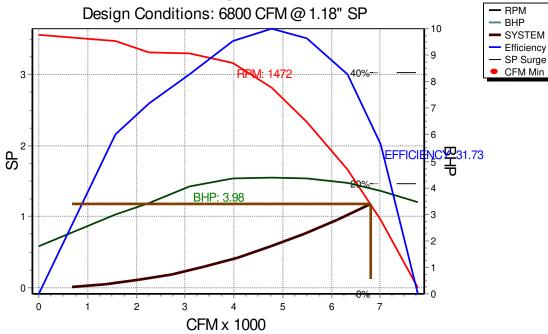
Air Flow:	6,800 CFM
Static Pressure:	0.67 in. Wg.
Relief Dampers DP:	0.51 in. Wg.
TSP:	1.18 in. Wg.
Site Altitude:	0.00 Ft
TSP @Sea Level:	1.18 in. Wg.

FAN PERFORMANCE:

RPM:	1472
BHP:	3.98
Efficiency:	31.7%
In/Out Velocity:	2080/2290 FPM
Plenum Out Velocity:	113 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	22.0 in. x 1
CFM:	6800
Tip Speed:	8,478 FPM
Inertia:	5 WR2

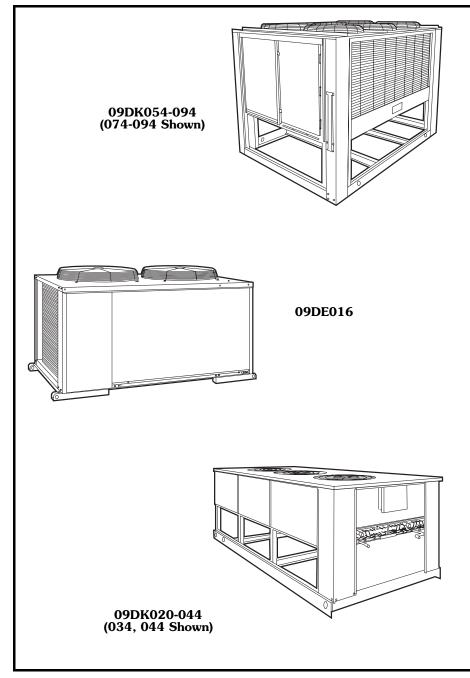

MOTOR SELECTION:

Rated HP / Bypass:	5/No
Frame Size:	184T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.895
Enclosure Type:	ODP
Max Inertial Load:	52 WR²

FAN SOUND POWER (Inlet/Outlet):

			`		,		
Octave E	Band:			(Re 1	0^-12 w	atts)	
1	2	3	4	5	6	7	8
91	89	92	88	80	80	75	67
91	89	92	88	80	80	75	67
SOUND	POWER	R A-Weig	hted: 9	2 / 92 dB			

Exhaust Fan Model: RM220A @ 1472 RPM and 100% Width



Product Data

09DE,DK Air-Cooled Condensers

15 to 90 Nominal Tons

Air-Cooled Condenser Units for Remote System Application

- 11 popular sizes
- performance proven in every building application
- efficient direct-drive fans
- unit casings meet the ASTM B117 500-hour salt spray test requirements
- small footprints allow for installations in tight spaces

Features/Benefits

A family of ruggedly built condensers ideal for clinics, motels, schools, apartments, office buildings, and factories.

Greater system economy

Subcooling offers more cooling capacity. A specially designed liquid refrigerant circuit provides subcooling for increased capacity without additional power consumption. Subcooling liquid refrigerant also expands condenser applications by permitting condenser installation below the evaporator without subjecting the refrigerant to flashing before the expansion valve.

All units are UL (Underwriters' Laboratories) and UL, Canada approved.

Quieter, more efficient operation

Improved fan design — direct drive fans move air efficiently, yet quietly, at low power input. Bell-mouthed fan openings offer increased airflow, improved fan efficiency, and quiet operation.

Multi-circuit, multi-refrigerant capability

Choose the multi-circuit 09DE or 09DK and realize separate cooling system economy on each circuit. Save space and satisfy installation needs without the expense of smaller condensers with single circuitry. Models can be used with Refrigerants 12, 22, 500, 502 or 134a to meet individual system capacity requirements. A different refrigerant can be used with each cooling circuit.

Individual unit qualities

09DE016 condenser with 15-ton capacity uses a wraparound coil design (with integral subcooling) that may be used as single system or split into 2 systems. Unit with vertical air discharge contains a control box, 2 direct-drive fans, motors, and motor mounts. The U-shaped coil has a large face area to maximize heat transfer.

09DK020-044 condensers are available in 17.5-, 20-, 25-, 30-, 40-ton sizes. Models 09DK020, 024, and 028 have 2 direct drive fans, 2 motors and motor mounts. Models 09DK034 and 044 have 3 direct drive fans, 3 motors and motor mounts. Fan motors are 3-phase, TEAO (Totally Enclosed, Air Over). All units are equipped with a junction box and 2 condenser coils with integral subcooling circuits. Each circuit may be used as a separate condenser for a single system.

09DK054-094 condensers are available in 50-, 60-, 70-, 80-, and 90-ton sizes. Models 09DK054 and 064 have 4 direct-drive fans, 4 motors and motor mounts. Models 09DK074-094 have 6 direct-drive fans, 6 motors and motor mounts. All fan motors are 3-phase and are protected against single phasing conditions. Fans 1 and 2 use open drip-proof motors that are compatible with the Motormaster[®] V accessory. On 208-230/460 volt units, the remaining fan motors are totally enclosed. All 380/415 v and 575 v units have open drip-proof fan motors. All fan motors have permanently lubricated sealed bearings. Fans 3 and 4 on 09DK054 and 064 and fans 3, 4, 5, and 6 on 09DK074-094 models are controlled separately for efficient unit control.

These units are equipped with a hinged access door, which allows for easy entrance into the control box. Four condenser coils with integral subcooling circuits are available to create a variety of capacity split combinations. A tubing package is supplied with the unit for 100%, 50/50%, and 67/33% (09DK044-084 only) coil circuiting applications to facilitate field installations and maximize unit flexibility.

Coil split versatility

Model 09DE and 09DK coils can be split into 2 or more condensing circuits. Each circuit may handle a separate cooling system, using a different refrigerant if desired. Each circuit has a refrigerant subcooling circuit. Depending on condenser size, one to 6 condenser coil circuiting applications can be used as shown below. This saves space and provides installation flexibility.

		CIRCUIT NUMBER				
CON	DENSER	1	2	3		
		Percent	t Condenser Capa	city		
09DE	016	100	—	—		
09DE	016	50	50	—		
	020,024	100	—	—		
09DK		50	50	—		
		67	33	—		
		100	—	—		
09DK	028,034	50	50	—		
USDK	028,034	40	40	20		
		60	40	—		

			CIRCUIT N	UMBER	
C	ONDENSER	1	2	3	4
		Per	cent Conden	ser Capacity	1
		100	—	—	—
		73	27	—	—
	044	67	33	—	—
	044	60	40	—	—
		53	47	—	—
		40	34	13	13
09DK		100	_	_	_
	054,	50	50	—	—
	064, 074,	67	33	—	—
	084	33	33	33	
		33	33	17	17
	094	100	_	_	_
	034	50	50	—	—
					l

Factory-supplied circuiting.

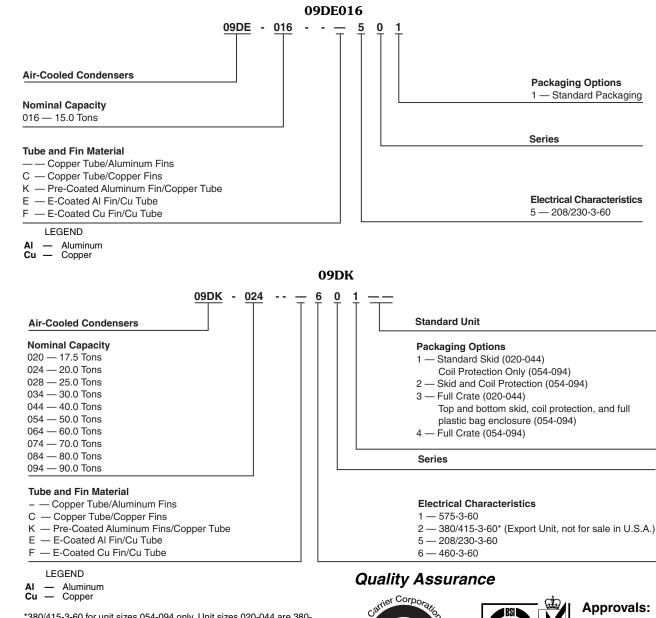

Circuiting by field piping modifications. NOTE: Split percentages shown are approximate. Actual split capacities may vary slightly from those shown.

Table of contents

P	age
Features/Benefits	1.2
Model Number Nomenclature	. 3
Physical Data	
Options and Accessories	
Base Unit Dimensions	
Selection Procedure	
Performance Data	
Electrical Data	22
Typical Wiring Schematic	-25
Typical Piping	
Application Data	
Guide Specifications	
•	

Model number nomenclature

*380/415-3-60 for unit sizes 054-094 only. Unit sizes 020-044 are 380-3-60.

Certificate No FM 21837

001:2000

Approvals: ISO 9001 EN 9000:2000

Physical data

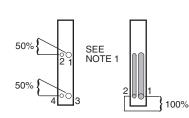
CONDENSER	09DE			09DK		
	016	020	024	028	034	044
RATING (Tons)*	18.4	21.9	25.9	33.3	48.0	56.2
NET WEIGHT (Ib)†	465	762	762	944	1438	1589
FAN Quantity Prop. Diam (in.) Rpm Total Airflow (cfm) Motor Hp (per fan)	2 24 1075 9600 1/2	2 30 1140 10,600 ³ / ₄	2 30 1140 13,500 ^{3/4}	2 30 1140 15,700 1	3 30 1140 21,100 1	3 30 1140 23,700 1
COILS Arrangement RowsFins/in. Total Face Area (sq ft)	Vertical 315.6 29.2	317 23.5	317 23.5	Horizontal 219 39.2	217 58.4	317 58.4

CONDENSER		09DK						
CONDENSER	054	064	074	084	094			
RATING (Tons)*	65.8	78.6	95.4	103.5	116.3			
NET WEIGHT (Ib)†	1645	1771	2106	2310	2714			
FAN Quantity Prop. Diam (in.) Rpm Total Airflow (cfm) Motor Hp (per fan)	4 30 1140 35,000 1	4 30 1140 35,000 1	6 30 1140 52,000 1	6 30 1140 51,000 1	6 30 1140 57,000 1			
COILS Arrangement RowsFins/in. Total Face Area (sq ft)	217 80.5	317 80.5	Vertical/Horizontal 217 116.7	317 116.7	317 128.3			

*Nominal heat rejection based on optimum refrigerant charge of R-22 with 15 F subcooling at 30 F temperature difference. †Without refrigerant. Weights include copper tubes/aluminum fins.

UNIT		OCTAVE BAND CENTER FREQUENCY, Hz								
UNIT	63	125	250	500	1000	2000	4000	8000	dBa	
09DE016	NA	89	86	84	82	76	71	64	86.3	
09DK020	92	89	89	88	87	82	78	71	90.1	
09DK024	94	91	91	90	88	83	81	74	92.5	
09DK028	91	91	90	88	86	82	79	74	90.8	
09DK034	92	92	90	88	87	83	80	75	91.5	
09DK044	93	93	91	89	88	83	81	76	92.3	
09DK054	101	90	94	92	90	88	85	78	95.5	
09DK064	101	90	94	92	90	88	85	78	95.5	
09DK074	102	96	98	97	93	91	87	80	98.8	
09DK084	102	96	98	97	93	91	87	80	98.8	
09DK094	102	96	98	97	93	91	87	80	98.8	

ESTIMATED RADIATED SOUND POWER LEVEL, dB

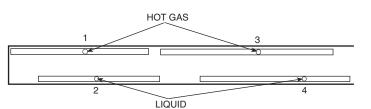

ESTIMATED RADIATED SOUND POWER LEVEL, dB – 09DK054-094 CONDENSERS WITH ACCESSORY SOUND POWER REDUCTION KIT

UNIT	OCTAVE BAND CENTER FREQUENCY, Hz								
UNIT	63	125	250	500	1000	2000	4000	8000	dBa
09DK054	96	89	90	89	87	84	80	73	91.7
09DK064	96	89	90	89	87	94	80	73	91.7
09DK074	101	96	94	94	90	87	82	73	95.6
09DK084	101	96	94	94	90	87	82	73	95.6
09DK094	101	96	94	94	90	87	82	73	95.6

NOTE: Estimated sound power levels, dB re 1 Picowatt.

NOTE: Estimated sound power levels, dB re 1 Picowatt.

09DE AND 09DK020-034 COIL CONNECTIONS

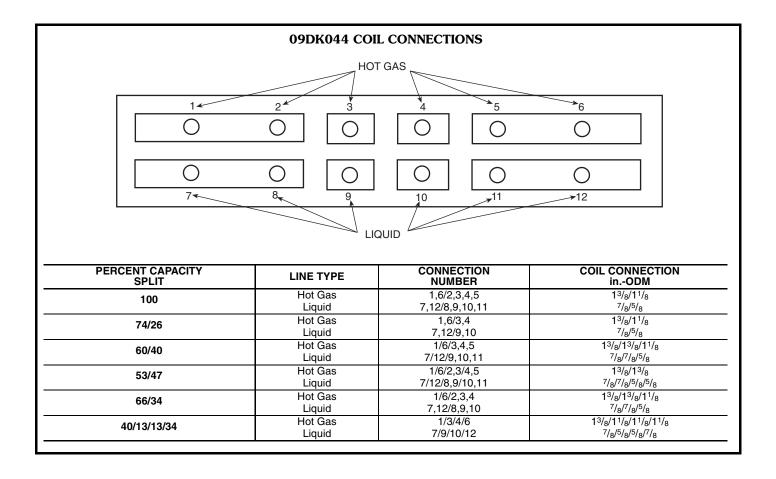


09DE 50% AND 100% SPLIT

CONDENSER	COIL CONNECTION						
09DE	Туре	No.	Size (in.)				
016	Hot Gas	1, 3	⁷ / ₈ ODF				
50% SPLIT	Liquid	2, 4	⁵ / ₈ ODF				
016	Hot Gas	1	1 ¹ / ₈ ODF				
100% SPLIT	Liquid	2	⁵ / ₈ ODF				

09DK 50/50% COIL SPLIT

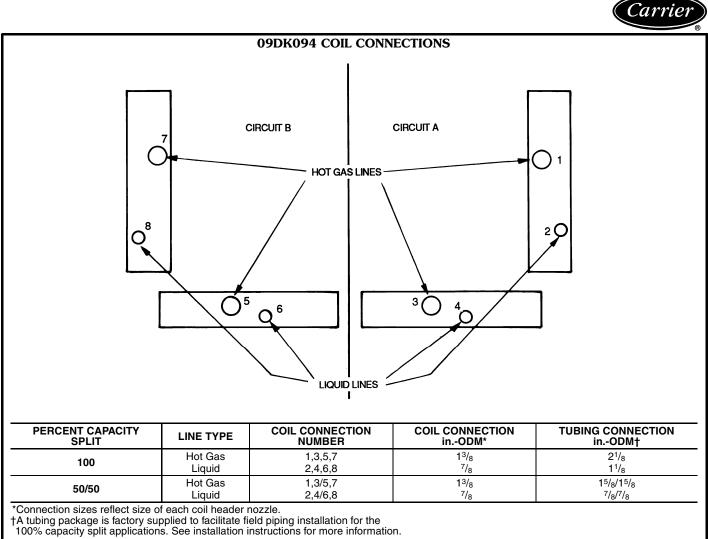
CONDENSER	COIL CONNECTION					
09DK	Туре	No.	Size (in.)			
020,024,	Hot Gas	1, 3	1 ¹ / ₈ ID			
028,034	Liquid	2, 4	⁵ / ₈ ID			


09DK 67/33% COIL SPLIT

Carrier

CONDENSER	COIL CONNECTION						
09DK	Туре	No.	Size (in.)				
020.024	Hot Gas	1 3	1 ¹ / ₈ ODM 1 ¹ / ₈ ODF*				
020,024	Liquid	2 4	^{1/} 2 ODF ⁷ / ₈ ODF				
*Street elbow installed.	is factory	sup	plied, field				

NOTES:


- 1. Shaded manifolds may be field removed for 50/50 split.
- 2.
- All 50/50 splits may be field manifolded into a single 100% circuit. Units may be manifolded to obtain desired coil circuiting. З.
- Other circuiting arrangements are available for 09DK units. See 4.
- the applicable Installation and Service Instructions for details.

Carrier

	09	DK054-084 COIL C	CONNECTIONS	
		P HOT GAS LIN	03 04 02	
		LEFT SIDE COILS F 09DK054.(RIGHT SIDE COILS	
PERCENT CAPACITY		CONNECTION	COIL CONNECTION*	TUBING CONNECTION
SPLIT	LINE TYPE	NUMBER	inODM	inODM†
100	Hot Gas Liquid	1,3,5,7 2,4,6,8	1 ^{1/} 8 ^{7/} 8	1 ⁵ / ₈ 1 ⁷ / ₈
50/50	Hot Gas	1,3/5,7	1 ¹ /8	1 ³ / ₈ 1 ³ / ₈
50/50	Liquid	2,4/6,8	7/ ₈	7/8 7/8
CC/04	Hot Gas Liquid	1,3,5/7 2,4,6/8	1 ¹ /8 ⁷ /8	1 ³ / ₈ 1 ¹ / ₈ 7/ ₈ 7/ ₈
66/34		2,7,0/0		/8 /8
	Hot Gas	1/7/3,5	1 ¹ /8	—
34/34/32	Hot Gas Liquid	1/7/3,5 2/8/4,6	1 ¹ / ₈ 7/ ₈	
	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field	2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the	7/ ₈ 11/ ₈ 7/ ₈ 2100%, 50/50%, and	
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup 33% capacity split application PERCENT CAPACITY	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir	2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the nstructions for more inform 09DK07 CONNECTION	7/8 11/8 7/8 e 100%, 50/50%, and mation. 4 COIL CONNECTION*	TUBING CONNECTION
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir	2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the nstructions for more inform 09DK07 CONNECTION NUMBER	7/8 11/8 7/8 e 100%, 50/50%, and mation. 4 COIL CONNECTION* inODM	inODM†
34/34/32 34/34/16/16 ponnection sizes reflect size of tubing package is factory sup /33% capacity split application	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir	2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the nstructions for more inform 09DK07 CONNECTION	$\frac{\frac{7/_8}{11/_8}}{\frac{7/_8}{7/_8}}$ e 100%, 50/50%, and mation. 4 COIL CONNECTION* inODM $\frac{13/_8}{7/_8}$	
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir LINE TYPE Hot Gas Liquid Hot Gas	2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the nstructions for more inform O9DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, \text{ and mation.}}{100\%, 50/50\%, \text{ and mation.}}$ $\frac{4}{100\%}$ $\frac{13/_8}{7/_8}$ $13/_8$	inODM† 2 ¹ / ₈ 1 ¹ / ₈ 1 ⁵ / ₈ 1 ⁵ / ₈
34/34/32 34/34/16/16 innection sizes reflect size of ubing package is factory sup 33% capacity split application PERCENT CAPACITY SPLIT 100 50/50	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir LINE TYPE Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 5 piping installation for the structions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4/6,8	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, \text{ and mation.}}{4}$ $\frac{\text{COIL CONNECTION*}{\text{inODM}}$ $\frac{1^{3}/_8}{7/_8}$ $\frac{1^{3}/_8}{7/_8}$	inODM† 2 ¹ / ₈ 1 ¹ / ₈ 1 ⁵ / ₈ 7/ ₈ 1 ⁵ / ₈ 7/ ₈
34/34/32 34/34/16/16 onnection sizes reflect size of ubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir LINE TYPE Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the hstructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4/6,8 1,3,5/7 2,4/6,8	$\frac{\frac{7/_8}{11/_8}}{\frac{7/_8}{7/_8}}$ = 100%, 50/50%, and mation. 4 COIL CONNECTION* inODM 13/_8 7/_8 7/_8 13/_8 7/_8 7/_8 13/_8 7/_8	inODM† 2 ¹ / ₈ 1 ¹ / ₈ 1 ⁵ / ₈ 1 ⁵ / ₈
34/34/32 34/34/16/16 innection sizes reflect size of ubing package is factory sup 33% capacity split application PERCENT CAPACITY SPLIT 100 50/50	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir LINE TYPE Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas	2/8/4,6 1/7/3/5 2/8/4/6 zzle. I piping installation for the nstructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6/8 1,3,5/7 2,4,6/8 1/7/3,5	$\frac{\frac{7/_8}{11/_8}}{\frac{7/_8}{7/_8}}$ = 100%, 50/50%, and mation. 4 COIL CONNECTION* inODM 13/_8 7/_8 13/_8 7/_8 13/_8 7/_8 13/_8 7/_8 13/_8 7/_8 13/_8 7/_8 13/_8 7/_8	inODM† 2 ¹ / ₈ 1 ¹ / ₈ 1 ⁵ / ₈ 7/ ₈ 1 ⁵ / ₈ 1 ⁵ / ₈ 1 ³ / ₈
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the nstructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4/6,8 1,3/5,7 2,4/6,8 1/7/3,5 2/8/4,6 1/7/3/5	$\frac{\frac{7/_{8}}{11/_{8}}}{\frac{11/_{8}}{7/_{8}}}$ $\frac{100\%, 50/50\%, \text{ and mation.}}{4}$ $\frac{\text{COIL CONNECTION*}{\text{inODM}}}{\frac{13/_{8}}{7/_{8}}}$ $\frac{13/_{8}}{7/_{8}}$ $\frac{13/_{8}}{7/_{8}}$ $\frac{13/_{8}}{7/_{8}}$ $\frac{13/_{8}}{7/_{8}}$ $\frac{13/_{8}}{7/_{8}}$ $\frac{13/_{8}}{7/_{8}}$ $\frac{13/_{8}}{7/_{8}}$	inODM† 2 ¹ / ₈ 1 ¹ / ₈ 1 ⁵ / ₈ 7/ ₈ 1 ⁵ / ₈ 1 ⁵ / ₈ 1 ³ / ₈
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/36	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the instructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4/6,8 1,3/5,7 2,4/6,8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, \text{ and mation.}}{4}$ $\frac{100\%, 50/50\%, \text{ and mation.}}{13/_8}$ $\frac{13/_8}{7/_8}$	inODM† 2 ¹ / ₈ 1 ¹ / ₈ 1 ⁵ / ₈ 7/ ₈ 1 ⁵ / ₈ 1 ⁵ / ₈ 1 ³ / ₈
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/18/18 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the structions for more inform O9DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4/6,8 1,3/5,7 2,4/6,8 1,3,5/7 2,4/6,8 1,3,5/7 2,4/6,8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the structions for more inform O9DK08	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, \text{ and mation.}}{4}$ $\frac{\text{COIL CONNECTION*}{\text{inODM}}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{100\%, 50/50\%, \text{ and mation.}}{4}$ $\frac{11}{100\%}$	inODM† 21/8 11/8 15/8 7/8 7/8 15/8 15/8 13/8 11/8 7/8
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/18/18 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. a piping installation for the structions for more inform O9DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4/6 zzle. a piping installation for the structions for more inform O9DK08	$\frac{7/_8}{11/_8} \\ \frac{11/_8}{7/_8} \\ \neq 100\%, 50/50\%, and mation. \\ 4 \\ \hline \frac{COIL CONNECTION^*}{inODM} \\ \frac{13/_8}{7/_8} \\ \frac{7/_8}{13/_8} \\ \frac{7/_8}{7/_8} \\ \frac{100\%, 50/50\%, and}{7/_8} \\ \frac{100\%, 50\%, 50\%, and}{7/_8} \\ \frac{100\%, 50\%, 50\%, and}{7/_8} \\$	inODM† 21/8 11/8 15/8 7/8 7/8 15/8 15/8 13/8 15/8 13/8 11/8 7/8
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/18/18 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir LINE TYPE Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the astructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3,5,7 2,4,6,8 1,3,5,7 2,4,6,8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the astructions for more inform 09DK08 CONNECTION NUMBER 1,3,5,7 2,4,6,8	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, and mation.$ $\frac{4}{\frac{COIL CONNECTION^*}{inODM}}$ $\frac{13/_8}{7/_8}$ $\frac{7/_8}{13/_8}$ $\frac{7/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{7/_8}{13/_8}$ $\frac{7/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$	inODM† 21/8 11/8 15/8 7/8 7/8 7/8 7/8 7/8 7/8 15/8 13/8 11/8 7/8
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/18/18 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir LINE TYPE Hot Gas Liquid Hot Gas	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the hstructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6/8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the hstructions for more inform 09DK08 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6,8 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/3/5,7 2/8/6 1/8/6 1/3/5,7 2/8/6 1/3/5,7 1/8/6 1/8/6	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, and mation.$ 4 $\frac{100\%, 50/50\%, and \frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/18/18 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir LINE TYPE Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the astructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3,5,7 2,4,6,8 1,3,5,7 2,4,6,8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4/6 zzle. d piping installation for the astructions for more inform 09DK08 CONNECTION NUMBER 1,3,5,7 2,4,6,8	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, and mation.$ $\frac{4}{\frac{COIL CONNECTION^*}{inODM}}$ $\frac{13/_8}{7/_8}$ $\frac{7/_8}{13/_8}$ $\frac{7/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{7/_8}{13/_8}$ $\frac{7/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$ $\frac{13/_8}{7/_8}$	inODM† 21/8 11/8 15/8 7/8 7/8 7/8 7/8 7/8 7/8 15/8 13/8 11/8 7/8
34/34/32 34/34/16/16 prinection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 68/32 32/32/36 32/32/18/18 prinection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the hstructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6/8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3,5 2/8/4,6 1/3,5,7 2/4,6,8 1,3,5,7 2,4,6,8 1,3,5,7 2	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, and mation.$ 4 $\frac{13/_8}{7/_8}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/18/18 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the hstructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the hstructions for more inform 09DK08 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,3,5/7 2,4,6,8 1,7/3,5	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, and mation.$ 4 $\frac{13/_8}{7/_8}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
34/34/32 34/34/16/16 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 68/32 32/32/18/18 onnection sizes reflect size of tubing package is factory sup /33% capacity split application PERCENT CAPACITY SPLIT 100 50/50 67/33	Hot Gas Liquid Hot Gas Liquid each coil header noz plied to facilitate field ns. See installation ir Hot Gas Liquid Hot Gas Liquid	2/8/4,6 1/7/3/5 2/8/4/6 zzle. 1 piping installation for the hstructions for more inform 09DK07 CONNECTION NUMBER 1,3,5,7 2,4,6,8 1,3/5,7 2,4,6,8 1,3/5,7 2,4,6/8 1/7/3,5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3/5 2/8/4,6 1/7/3,5 2/8/4,6 1/3,5,7 2/4,6,8 1,3,5,7 2,4,6,8 1,3,5,7 2	$\frac{7/_8}{11/_8}$ $\frac{11/_8}{7/_8}$ $\frac{11/_8}{7/_8}$ $\frac{100\%, 50/50\%, and mation.$ 4 $\frac{13/_8}{7/_8}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

*Connection sizes reflect size of each coil header nozzle. †A tubing package is factory supplied to facilitate field piping installation for the 100%, 50/50%, and 67/33% capacity split applications. See installation instructions for more information.

Physical data (cont)

Carrier

					WEIG	GHT DISTI	RIBUTION	l (Lb)					
		COIL TOP VIEW 09DE01						CONTR BOX END		(FM 3) (FM 4)	FM 1 FM 2)) B	
¢	CONTROL BOX END	B FM I O9DK024	FM 2					CONT		FM 5	FM (I	C M 1	
CONTROL BOX END BOX END A O9DK034,044 C CONTROL BOX END A O9DK074-094 BOX END A O9DK074-094										EIGHTS			
UNIT	COIL TYPE		A	TING CO B	C	D	UNIT 09DK	COIL TYPE		A	B	C	D
09DE		(lb)		-	•			Cu/Al	(lb) 1695	452	425	396	422
	Cu/Al	465	122	120	111	112	054	Cu/Cu	1983	524	423	468	494
016	Cu/Cu	605	159	156	144	146		Cu/Al	1845	489	462	434	459
09DK	1						064	Cu/Cu	2278	598	571	542	568
020,	Cu/Al	797	186	186	212	212	074	Cu/Al	2200	618	526	486	571
024	Cu/Cu	921	215	215	245	245	0/4	Cu/Cu	2617	722	630	589	675
028	Cu/Al	983	299	229	262	262	084	Cu/Al	2421	673	581	541	626
	Cu/Cu	1137	268	268	300	300		Cu/Cu	3099	843	751	709	796
034	Cu/Al	1495	349	349	399	399	094	Cu/Al	2850	769	676	658	747
	Cu/Cu	1700	396	396	454	454		Cu/Cu	3560	960	845	821	934
044	Cu/Al Cu/Cu	1676 1984	391 462	391 462	447 529	447 529							
Al — /	GEND Aluminum	1001	1.02										

REFRIGERANT CIRCUIT DATA

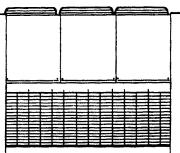
CONDENSER	09DE							09DK						
CONDENSER	016		020,024				028					034		
COIL No. of Circuits* Cap. (%/ckt)	2 50	2 50	1 67	1 33	2 50	1 60	1 40	2 40	1 20	2 50	1 60	1 40	2 40	1 20
REFRIGERANT Min Chg (lb/ckt) Opt Chg (lb/ckt) Vol (cu ft/ckt)	4.75 6.00 0.39	10.59 12.46 0.30	14.12 16.61 0.40	7.06 8.31 0.20	11.77 13.84 0.33	14.12 16.61 0.40	9.41 11.08 0.26	9.41 11.08 0.26	4.71 5.54 0.14	17.53 20.63 0.49	21.04 24.76 0.59	14.03 16.50 0.39	14.03 16.50 0.39	7.01 8.25 0.20
STORAGE CAP. (lb/ckt)† R-12 R-22 R-500 R-502 R-134a	24.3 22.1 21.4 22.5 24.3	19.2 17.5 16.5 18.3 19.2	25.7 23.3 22.1 24.5 25.7	12.7 11.7 10.9 12.1 12.7	21.1 19.3 18.2 20.2 21.1	25.3 23.2 21.8 24.2 25.3	16.9 15.4 14.5 16.1 16.9	16.9 15.4 14.5 16.1 16.9	8.4 7.7 7.3 8.1 8.4	31.3 28.7 26.9 29.9 31.3	37.6 34.4 32.3 35.9 37.6	25.0 23.0 21.5 23.9 25.0	25.0 23.0 21.5 23.9 25.0	12.5 11.5 10.8 12.0 12.5

CONDENSER						09DK					
CONDENSER	044										
COIL											
No. of Circuits*	1	1	2	1	1	1	1	1	1	1	1
Cap. (%/ckt)	40	34	13	73	27	67	33	60	40	53	47
REFRIGERANT											
Min Chg (lb/ckt)	21.04	17.36	6.84	38.40	14.20	35.07	17.53	31.56	21.04	27.88	24.72
Opt Chg (lb/ckt)	24.75	20.62	8.25	45.17	16.71	41.25	20.62	37.13	24.75	32.80	29.08
Vol (cu ft/ckt)	0.60	0.52	0.19	1.09	0.40	1.0	0.49	0.89	0.60	0.79	0.70
STORAGE CAP.											
(lb/ckt)†											
Ř-12	38.1	32.4	12.4	69.6	25.7	64.0	31.3	57.2	38.1	50.5	44.8
R-22	34.8	29.6	11.3	63.6	23.5	58.1	29.0	52.3	34.8	46.2	40.9
R-500	32.8	27.8	10.6	59.8	22.1	54.6	27.3	49.1	32.8	43.4	38.4
R-502	36.4	31.0	11.8	66.5	24.6	51.0	30.1	54.7	36.4	48.3	42.8
R-134a	38.1	32.4	12.4	69.6	25.7	64.0	31.3	57.2	38.1	50.5	44.8

CONDENSER		09DK									
CONDENSER		0	54			0	64				
COIL No. of Circuits* Cap. (%/ckt)	2 50	1 66	1 34	2 16	2 50	1 66	2 34	2 16			
REFRIGERANT Min Chg (lb/ckt) Opt Chg (lb/ckt) Vol (cu ft/ckt)	24.0 28.0 0.68	32.0 37.0 0.89	16.0 19.0 0.46	8.0 9.0 0.21	36.0 43.0 1.01	48.0 56.0 1.32	25.0 29.0 0.69	11.0 13.0 0.32			
STORAGE CAP. (lb/ckt)† R-12 R-22 R-500 R-502 R-134a	43.0 40.0 37.0 41.0 43.0	57.0 52.0 49.0 55.0 57.0	30.0 27.0 26.0 28.0 30.0	14 12 12 13 14	64.0 59.0 55.0 61.0 64.0	85.0 78.0 73.0 81.0 85.0	44.0 40.0 38.0 42.0 44.0	20.0 19.0 17.0 19.0 20.0			

CONDENSER					09DK				
CONDENSEN	074					084			
COIL No. of Circuits* Cap. (%/ckt)	2 50	1 68	2 32	2 18	2 50	1 67	2 33	2 17	2 50
REFRIGERANT Min Chg (lb/ckt) Opt Chg (lb/ckt) Vol (cu ft/ckt)	35.0 41.0 0.97	48.0 56.0 1.32	22.0 26.0 0.62	12.0 15.0 0.35	52.0 62.0 1.46	70.0 82.0 1.95	35.0 41.0 0.97	17.0 21.0 0.49	57.8 68.0 1.64
STORAGE CAP. (lb/ckt)† R-12 R-22 R-500 R-502 R-134a	63.0 57.0 54.0 60.0 63.0	85.0 78.0 74.0 82.0 85.0	40.0 37.0 35.0 39.0 40.0	22.0 21.0 19.0 21.0 22.0	95.0 87.0 82.0 91.0 95.0	127.0 116.0 109.0 121.0 127.0	63.0 58.0 55.0 61.0 63.0	32.0 29.0 27.0 30.0 32.0	104.7 95.7 90.0 100.1 104.7

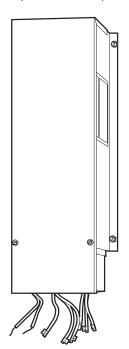
*See pages 4-7 for circuiting arrangements. †Storage capacity calculated for 80% liquid and 20% vapor at 90 F.


Options and accessories

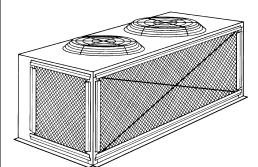
OPTION/ACCESSORY	FOR USE WITH	OPTION	ACCESSORY
EnviroShield [™] Condenser Coil	09DE,09DK	Х	
Motormaster® I Head Pressure Control	09DE016 09DK020-044		Х
Coil Grille	09DE016		Х
Fan Cycling Control	09DE016 09DK020-044		х
Fan Sound Reduction Kit	09DK054-094		Х
Security Grille Package	09DK054-094		Х
Control Transformer	09DK054-094		Х
Condenser Coil Hail Guard	09DK054-094		Х
Motormaster V Head Pressure Control	09DK054-094		Х

SECURITY GRILLE (09DK054-094: 09DK074,084 SHOWN)

SIDE VIEW

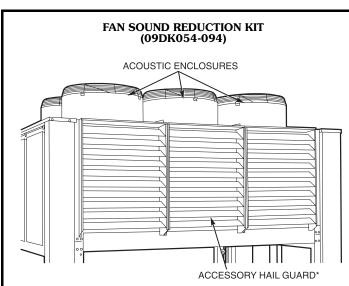


The security grilles protect the condenser coils from debris or vandalism after the unit has been installed. Upper condenser coil grilles are available to protect vertical coils. Lower end and side grilles are available to protect the area beneath the coils.


This exclusive solid-state device automatically modulates fan speed from full to zero rpm to maintain proper condensing temperature at low ambient temperature conditions to -20 F.

MOTORMASTER V HEAD PRESSURE CONTROL (09DK054-094)

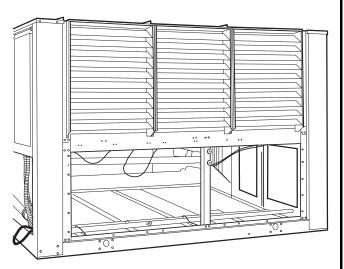
The Motormaster V head pressure control is used to permit low ambient operation down to -20 F by modulating the fan speed on each of the primary fans (1 and 2). The standard factoryinstalled motors are compatible with the Motormaster V control.


COIL GRILLE (09DE016)

Protects coil from external damage and prevents leaves and other debris from entering fins (available for field installation on 09DE016 only).

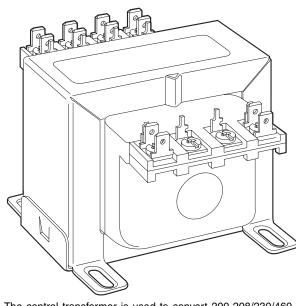
FAN CYCLING CONTROL

During intermediate seasons, proper condensing temperature is controlled by fan control packages which permit shutoff of one or 2 condenser fans. These packages are also required when using the Motormaster head pressure control (09DE016, 09DK020-044 units).



*Hail guard not required.

The fan sound reduction kit consists of a specially designed system of fans and acoustic enclosures for reducing sound levels without compromising unit performance. A fan motor change is not required and the fan system is compatible with Motormaster[®] V device. Two kits are required for the 09DK054,064 units and three kits are required for the 09DK074-094 units.

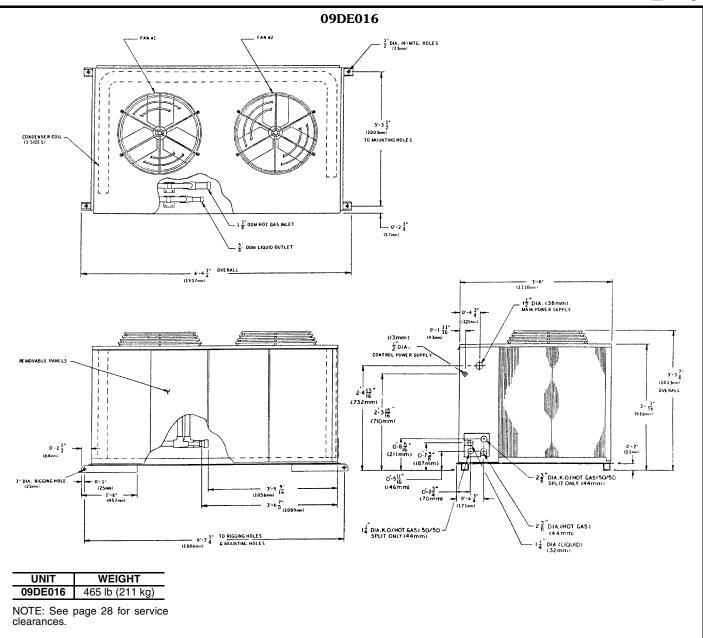

CONDENSER COIL HAIL GUARD (09DK054-094)

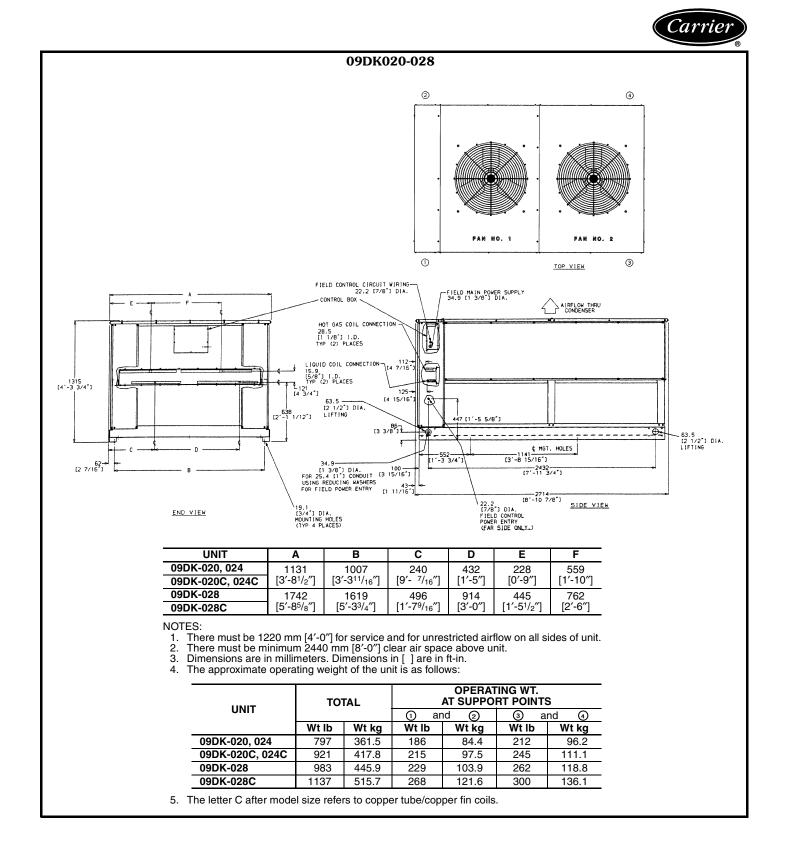
Carrier

This accessory protects the coils against damage from hail and other flying debris. Two packages are required for 09DK054 and 064 and three packages required for 09DK074-094.

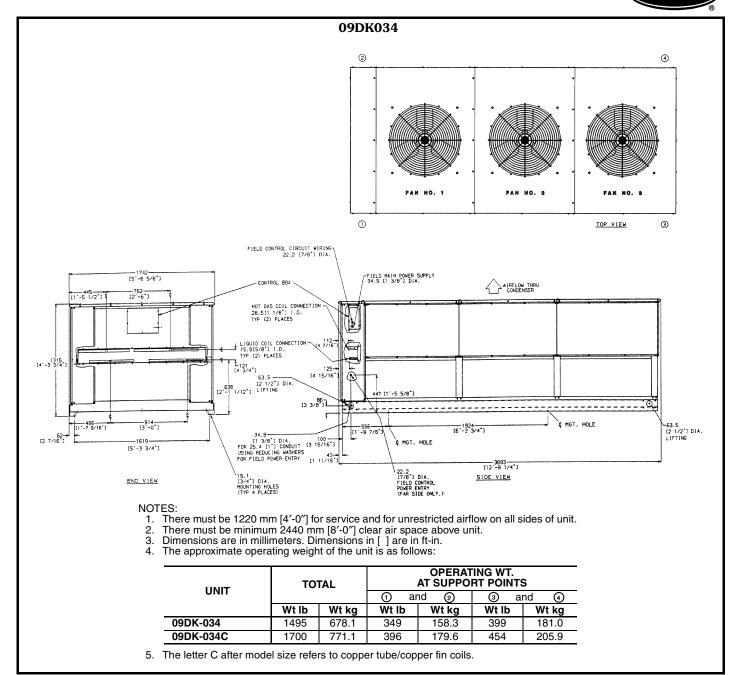
CONTROL TRANSFORMER (09DK054-094)

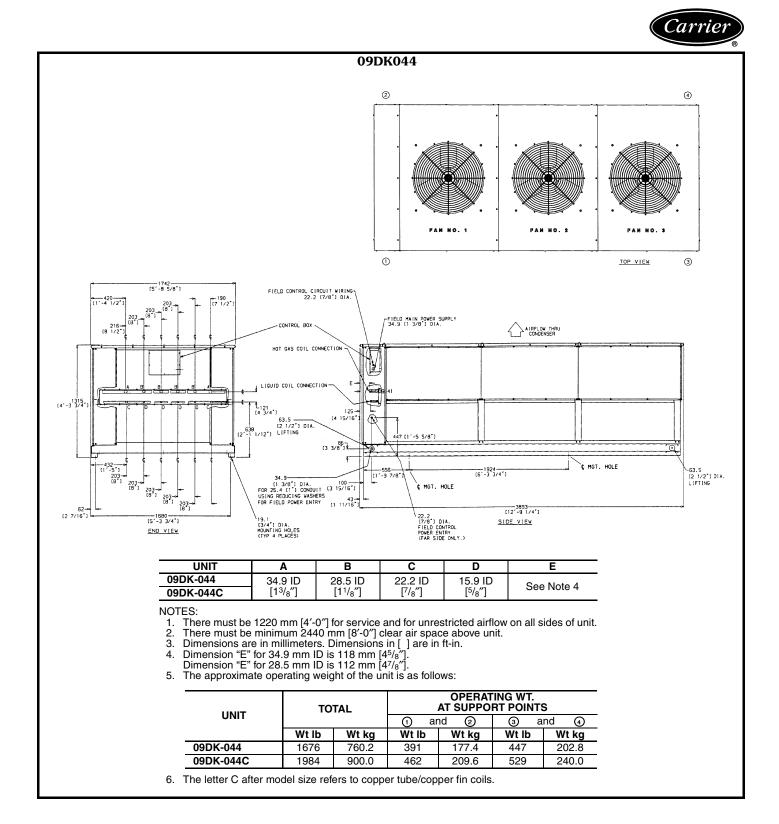
Enviro-Shield[™] condenser options — Several options are available to match coil protection to site conditions for optimum durability. See table below and refer to the Application Data for selection guidance. Consult your Carrier representative for further information.


CONDENSER COIL OPTIONS

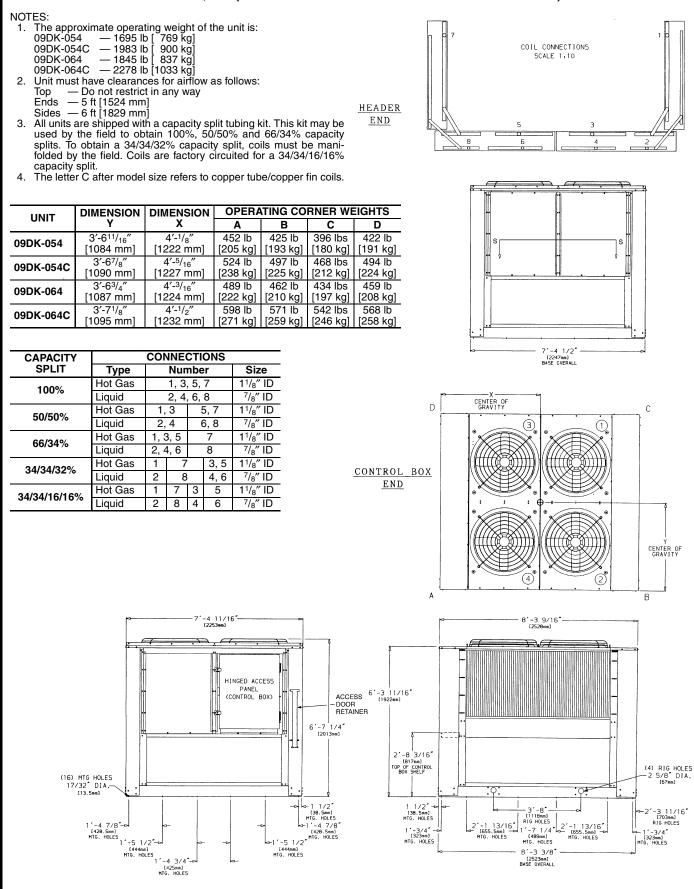

COPPER-TUBE COILS	1		ENVIE	ONMENT		
WITH ENVIRO-SHIELD OPTION*	Standard	Mild Coastal	Moderate Coastal	Severe Coastal	Industrial	Combined Industrial/ Coastal
AI Fins (Standard Coils)	Х					
Cu Fins			Х			
Al Fins, E-Coated					Х	
Cu Fins, E-Coated				Х		Х
Al Fins, Pre-coated		Х				
Al — Aluminum Cu — Copper E-Coated — Epoxy Co Enviro-Shield — Family of	ating Applie Coil Protect	tion Option	e Coil Asse ns Stock Materi			

The control transformer is used to convert 200-208/230/460 v to 115 v for use on 115-v control systems, utilizing power from the main unit power connection.


Base unit dimensions

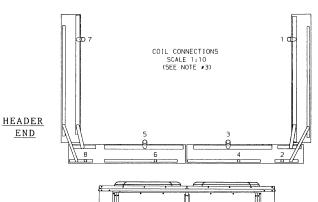


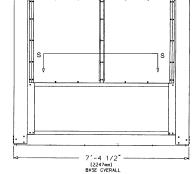
Base unit dimensions (cont)

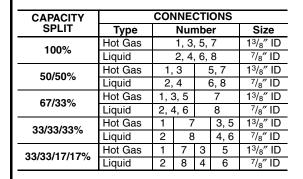

Carrie

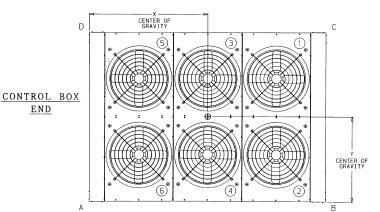
Base unit dimensions (cont)

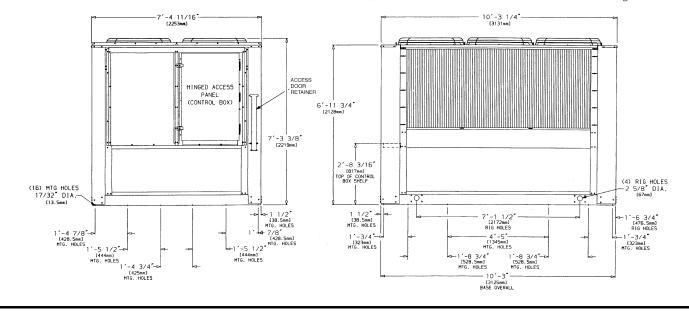
09DK054,064 (SEE PAGE 19 FOR POWER WIRING ACCESS HOLES)

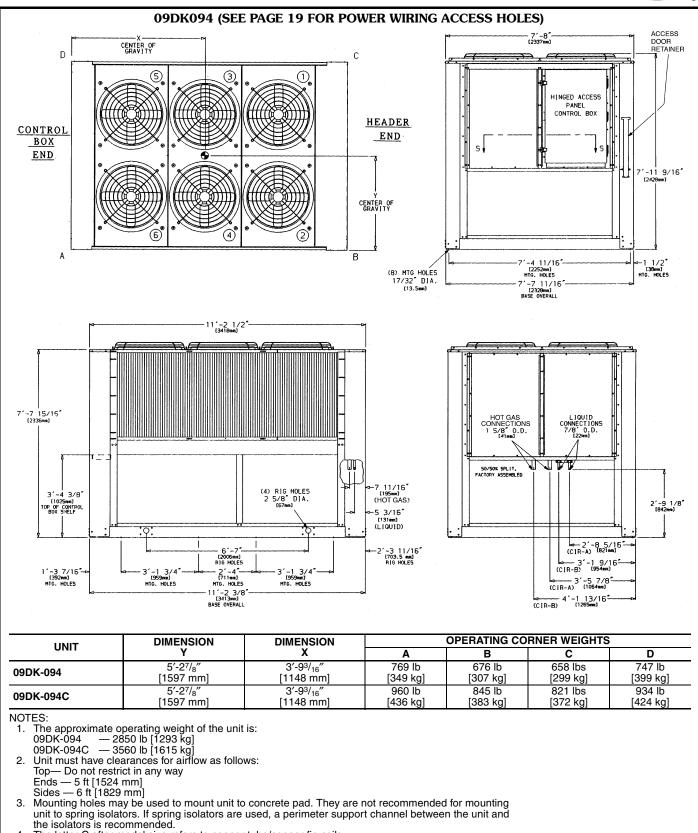



09DK074,084 (SEE PAGE 19 FOR POWER WIRING ACCESS HOLES)

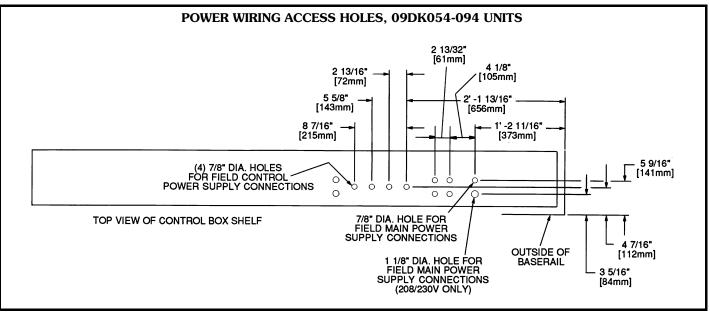

NOTES:


- NOTES:
 The approximate operating weight of the unit is: 09DK-074 2200 lb [998 kg] 09DK-074C 2617 lb [1187 kg] 09DK-084C 2421 lb [1098 kg] 09DK-084C 3099 lb [1406 kg]
 Unit must have clearances for airflow as follows: Top Do not restrict in any way Ends 5 ft [1524 mm] Sides 6 ft [1829 mm]
 All units are shipped with a capacity split tubing k
- All units are shipped with a capacity split tubing kit. This kit may be used by the field to obtain 100%, 50/50% and 66/33% capacity splits. To obtain a 33/33/33% capacity split, coils must be mani-folded by the field. Coils are factory circuited for a 33/33/17/17% capacity split.
- 4. The letter C after model size refers to copper tube/copper fin coils.


UNIT	DIMENSION	DIMENSION	OPERATING CORNER WEIGHTS						
UNIT	Y X		Α	В	С	D			
09DK-074	3′-6 ¹ /2″	4′- 8 ^{11/} 16″	618 lb	526 lb	486 lbs	571 lb			
	[1080 mm]	[1440 mm]	[280 kg]	[239 kg]	[220 kg]	[259 kg]			
09DK-074C	3′-6 ¹³ / ₁₆ ″	4′- 9 ³ / ₈ ″	722 lb	630 lb	589 lbs	675 lb			
	[1087 mm]	[1458 mm]	[328 kg]	[286 kg]	[267 kg]	[306 kg]			
09DK-084	3′-6 ⁵ / ₈ ″	4′- 9 ¹ / ₈ ″	673 lb	581 lb	541 lbs	626 lb			
	[1082 mm]	[1450 mm]	[305 kg]	[264 kg]	[245 kg]	[284 kg]			
09DK-084C	3′-7″	4′-10 ¹ / ₈ ″	843 lb	751 lb	709 lbs	796 lb			
	[1092 mm]	[1476 mm]	[382 kg]	[341 kg]	[322 kg]	[361 kg]			



END


Base unit dimensions (cont)

Carrie

4. The letter C after model size refers to copper tube/copper fin coils.

Selection procedure (with example)

- I Select minimum or maximum charge ratings. List the refrigerant, total heat rejection (THR), suction and discharge temperatures as determined from compressor data.
- II Determine condensing temperature (saturated discharge temperature minus discharge line loss).
- III Determine temperature difference (condensing temperature minus entering-air temperature).
- IV Enter Condenser Ratings table (minimum or maximum charge as determined in Step 1) at selected refrigerant and established temperature difference (TD).

Read across to total heat rejection equal to or greater than required. Interpolate if necessary. Read unit size.

EXAMPLE: (Maximum Charge)

Given:

R-22, Maximum Charge	
THR (including subcooling).	29.4 Tons
Saturated Discharge Temperature.	123.8 F
Saturated Suction Temperature	40 F
Entering-Air Temperature	95 F
Discharge Line Loss	2 F

Cond Temp = 123.8 F - 2 F = 121.8 F

TD = 121.8 F - 95 F = 26.8 F

Interpolate in Condenser Ratings table (maximum charge) and obtain capacity of 09DK028 as 29.8 tons and 09DK024 as 23.1 tons. Select the 09DK028.

EXAMPLE: (Minimum Charge)

Given:

R-22, Minin	num Charge	
THR		15.6 Tons
Saturated D	ischarge Temperature	122 F
Saturated Su	uction Temperature	
Entering-Air	Temperature	
Discharge L	ine Loss	2F

Cond Temp = 122 F - 2 F = 120 F

TD = 120 F - 95 F = 25 F

Enter Condenser Ratings table (minimum charge) and select 09DE016 with 15.9 tons THR.

Performance data

Condenser ratings

MINIMUM REFRIGERANT CHARGE (5 F Subcooling)

		TOTAL HEAT REJECTION (Tons)											
REFRIG	TD*	09DE	09DK										
		016	020	024	028	034	044	054	064	074	084	094	
12 and 500	10 15 20 25 30 35 40	5.9 8.8 11.7 14.7 17.6 20.5 23.5	7.1 10.6 14.3 17.7 21.3 24.9 28.2	8.4 12.6 16.7 20.9 25.2 29.3 33.4	10.8 16.2 21.5 27.0 32.3 37.8 43.1	13.9 20.9 27.8 34.9 41.7 48.8 55.7	17.3 26.0 34.9 43.3 52.0 60.7 69.4	21.6 32.1 42.6 52.9 63.3 74.1 84.5	24.5 38.2 50.6 63.1 75.6 88.2 100.5	31.1 46.4 61.6 76.6 91.7 106.9 122.2	33.7 50.2 66.6 83.0 99.4 116.0 132.4	37.4 56.1 74.7 93.2 111.8 130.6 149.1	
22 and 502	10 15 20 25 30 35 40	6.4 9.6 12.7 15.9 19.1 22.3 25.5	7.5 11.3 15.4 19.2 23.0 26.9 30.5	9.0 13.5 18.1 22.6 27.2 31.6 36.1	11.7 17.5 23.2 29.2 35.0 40.8 46.6	15.1 22.6 30.0 37.6 45.1 52.6 60.2	19.8 29.7 39.2 49.0 59.0 68.9 78.7	23.5 34.9 46.4 57.7 69.1 80.7 92.2	26.6 41.5 55.1 68.8 82.5 96.1 109.7	33.8 50.5 67.0 83.6 100.1 116.5 133.3	36.7 54.6 72.5 90.5 108.5 126.4 144.5	40.7 61.0 81.3 101.7 122.0 142.3 162.7	

	TD*	TOTAL HEAT REJECTION (Tons)											
REFRIG													
		020	024	028	034	044	054	064	074	084	094		
134a	10 15 20 25 30 35 40	7.3 11.0 14.9 18.6 22.3 26.1 29.6	8.7 13.1 17.6 21.9 26.4 30.7 35.0	11.4 17.0 22.5 28.3 34.0 39.6 45.2	14.7 22.0 29.1 36.5 43.8 51.0 58.4	19.2 28.8 38.0 47.6 57.3 66.9 76.4	22.8 33.9 45.0 56.0 67.1 78.3 89.5	25.8 40.3 53.5 66.8 80.1 93.3 106.5	32.8 49.0 65.0 81.1 97.2 113.1 129.4	35.6 53.0 70.4 87.8 105.3 122.7 140.3	39.5 59.2 78.9 98.7 118.4 138.2 157.9		

MAXIMUM REFRIGERANT CHARGE (15 F Subcooling)

		TOTAL HEAT REJECTION (Tons)												
REFRIG	TD*	09DE	09DE 09DK											
		016	020	024	028	034	044	054	064	074	084	094		
12 and 500	20 25 30 35 40	11.2 14.1 16.9 19.7 22.5	13.6 16.9 20.3 23.7 26.9	15.9 19.9 24.0 27.9 31.8	20.5 25.7 30.8 36.0 41.1	26.5 33.2 39.7 46.5 53.1	34.5 43.2 52.0 60.7 69.4	40.5 50.6 60.9 70.8 80.8	48.7 60.6 72.7 84.7 96.7	59.1 73.6 88.3 103.0 117.3	64.3 80.0 95.8 111.7 127.6	71.8 89.7 107.6 125.7 143.5		
22 and 502	20 25 30 35 40	12.3 15.3 18.4 21.5 24.6	14.7 18.3 21.9 25.6 29.1	17.2 21.5 25.9 30.1 34.4	22.1 27.8 33.3 38.9 44.4	28.6 35.8 43.0 50.1 57.3	37.3 46.7 56.2 65.6 75.0	43.8 54.7 65.8 76.4 87.3	52.6 65.5 78.6 91.4 104.5	63.8 79.5 95.4 111.2 126.8	69.4 86.5 103.5 120.6 137.9	77.5 96.9 116.3 135.7 155.1		

					T	OTAL HEA	T REJECTIO	ON (Tons)							
REFRIG	TD*		09DK												
		020	024	028	034	044	054	064	074	084	094				
134a	20 25 30 35 40	14.3 17.8 21.3 25.0 28.4	16.8 20.9 25.2 29.2 33.4	21.5 27.0 32.3 37.7 43.1	27.9 34.7 41.8 48.6 55.6	36.4 45.3 54.6 63.6 72.8	42.7 53.3 64.1 74.5 85.1	51.3 63.8 76.6 89.1 101.8	62.2 77.5 93.0 108.4 123.6	67.6 84.3 100.9 117.5 134.4	75.6 94.5 113.3 132.2 151.1				

*TD (Temperature Difference) = Saturated Condensing Temperature (entering) — Entering-Air Temperature.

NOTES:

- Minimum charge gives higher heat rejection, since entire surface of condenser and subcooling circuit is used for condensing only. Minimum charge ratings, however, do not represent greatest potential system capacity. They are comparable to competitive ratings without subcooling.
- 2. Use maximum charge when compressor, condenser, and evaporator are selected as a package and the components balanced to secure maximum benefits of 15 F subcooling (for example, in selecting 09DK condensers with Carrier compressor rated at 15 F

subcooling). Maximum charge activates the subcooling circuit, resulting in higher system capacity at slightly higher head pressure and corresponding condensing temperature. Liquid refrigerant leaves the system subcooled to a stable condition to allow greater length of refrigerant run or lift. See Application Data section, page 27, for available liquid lift information. Condenser subcooling = Saturated condensing temperature of refrigerant — Actual temperature of refrigerant leaving the coil.

З.

Electrical data

		l	JNIT					FAN M	OTORS	
M	odel	Volts	Phase	kW	MCA	MOCP	Total Fans	Phase	Нр	FLA (ea)
09DE	016	208-230		1.41	10.4	15	2	4	1/	4.3
USDE	010	460*		1.41	5.2	15	2	1	1/ ₂	2.3
		208/230			14.8	25				6.6
	020	460		1.92	7.4	15	2		3/4	3.3
	020	575		1.92	7.6	15	2		9/4	3.4
		380			8.8	15				3.9
		208/230 14.8 25		6.6						
	024	460		2.26	7.4	15	2		3/.	3.3
	024	575		2.20	7.6	15	2		3/4	3.4
		380			8.8	15				3.9
		208/230	- 3		14.8	25		3	1	6.6
	028	460		2.98	7.4	15	2			3.3
	020	575			7.6	15				3.4
		380			8.8	15				3.9
		208/230		3.86	21.4	30	3		1	6.6
09DK	034	460			10.7	15				3.3
USDR	034	575			11.0	15				3.4
		380			12.7	20				3.9
		208/230			21.4	30			1	6.6
	044	460		4.53	10.7	15	3			3.3
	044	575		4.00	11.0	15	0		'	3.4
		380			12.7	20				3.9
		208/230			25.8	30				(1,2) 5.5 (3,4) 6.6
	054,064	460		6.20	12.9	15	4		1	(1,2) 2.8 (3,4) 3.3
	004,004	575]	0.20	14.5	15	-		'	(1-4) 3.4
		380/415			13.7	15				(1,2) 3.0 (3,4) 3.4
		208/230			39.0	45				(1,2) 5.5 (3-6) 6.6
	074-094	460		9.30	19.5	20	6		1	(1,2) 2.8 (3-6) 3.3
	074-034	575		3.50	21.3	25	0		· ·	(1-6) 3.4
		380/415			20.5	25				(1,2) 3.0 (3-6) 3.4

LEGEND

 FLA
 —
 Full Load Amps

 kW
 —
 Total Fan Motor Power Input

 MCA
 —
 Minimum Circuit Amps, Complies with NEC, Article 430-24

 MOCP
 —
 Maximum Overcurrent Protection (Amps)

 NEC
 —
 National Electrical Code

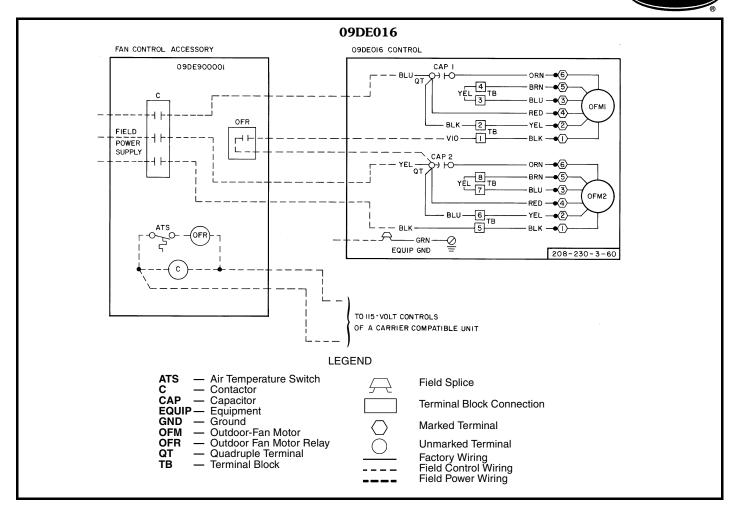
 UL
 —
 Underwriters' Laboratories

*The 09DE016 unit is factory wired for 208-230 volts. It may be readily field converted to 460 volts.

NOTES:

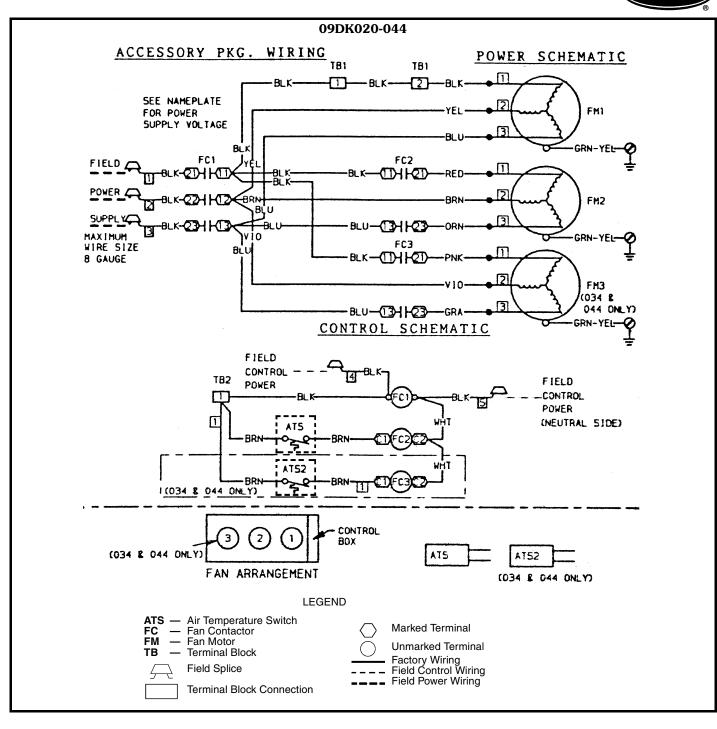
Maximum allowable phase imbalance: 1.

Voltage = 2%; Amps =10% 2. Units are UL and UL, Canada approved for 208/230, 460 and 575 v.

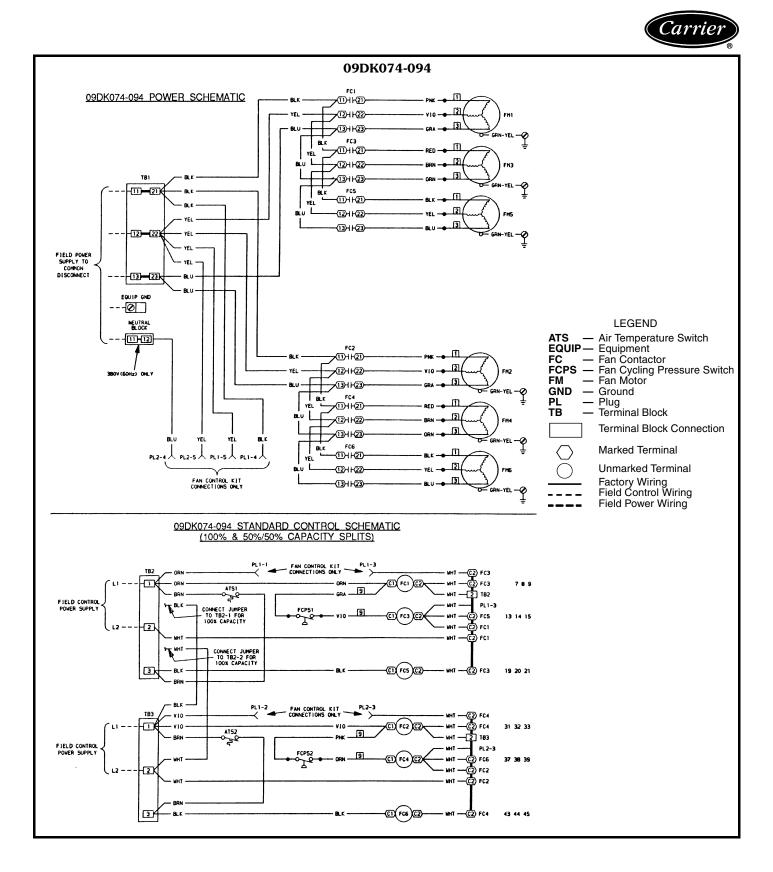

MAIN POWER VOLTAGE	CONTROL VOLTAGE	OVERCURRENT PROTECTION AMPS					
V-Ph-Hz	V-Ph-Hz	020-044	054-094				
208/230-3-60	115-1-60	7	10				
460-3-60	115-1-60	7	10				
575-3-60	115-1-60	7	10				
380-3-60	230-1-60	7	10				

CONTROL CIRCUIT DATA (09DK020-094)

NOTES: 1. 10 va is required for the 09DK020-044 control circuit, and 100 va is required for the 09DK054-094 control circuit. 2. Control circuits for the 09DE are not factory supplied. Fan contactors for these units are field supplied.



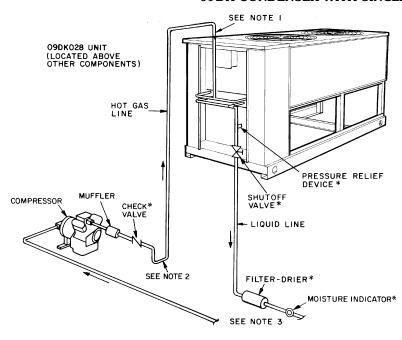
Typical wiring schematic



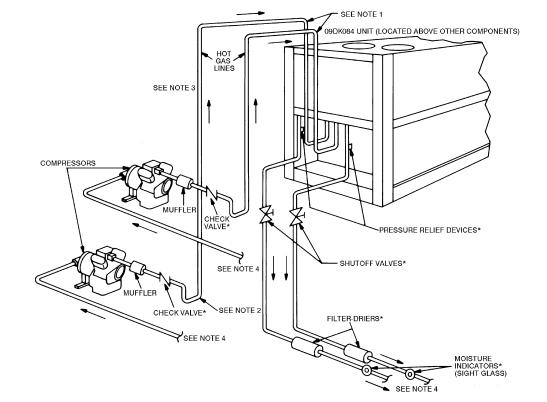
Carrier

Typical wiring schematic (cont)

Carrie



Typical piping


09DK CONDENSER WITH SINGLE COMPRESSOR

*Field supplied.

- NOTES:
- Hot gas lines should rise above refrigerant level in condenser circuit. Double riser may be required; check compressor minimum capacity.
- required; check compressor minimum capacity.
 Trap should be installed on hot gas lines to prevent condenser oil and refrigerant vapor migration from accumulating on compressor heads during off cycle.
- Refer to Carrier System Design Manual, part 3, or the Carrier E20-II[®] Software Refrigerant Piping program, for proper piping sizes and design.
- Pitch all horizontal lines downward in the direction of refrigerant flow.
- For piping lengths greater than 50 ft, provide support to liquid and gas lines near the connections to the coil.
- Single-phase motors (09DE016) require one field-supplied contactor to start all fans. Fieldsupplied contactors are not required when accessory fan cycling control package is furnished.
- 7. Wiring and piping shown are general points-ofconnection guides only and do not include details required for specific installations.
- 8. All wiring must comply with applicable national and local codes.
- All piping must follow standard refrigerant piping practices.
- For pressure relief requirements, see latest revision of ASHRAE (American Society of Heating, Refrigeration, and Air Conditioning Engineers) Standard 15, Safety Code for Mechanical Refrigeration.
- 11. All 09DK units have factory-installed contactors.

Application data

Unit performance with ductwork

Ductwork added to equipment installed indoors results in added external static pressure, which affects fan performance and condenser capacity. The table below lists performance comparisons for operating with free air discharge and various external static pressures.

PERFORMANCE COMPARISONS — FREE AIR DISCHARGE VS STATIC PRESSURES

EXTERNAL STATIC (in. wg)	% CFM DECREASE	% THR DECREASE	APPROX % SYSTEM DECREASE
0.1	8.5	5.2	2.6
0.2	14.2	8.9	4.9
0.3	19.8	12.2	6.1
0.4	24.9	16.1	8.1
0.5	29.9	19.1	9.6

THR — Total Heat Rejection

Liquid lift

The amount of liquid lift available before refrigerant flashing occurs depends on the amount of liquid subcooling in the system.

All 09DE and 09DK condensers have positive subcooling when applied with an optimum charge. With subcooling, it is possible to overcome an appreciable friction drop and/or static head (due to the elevation of the liquid metering device above the condenser).

When 09DE and 09DK condensers are applied with a minimum charge, minimal subcooling in the condenser is realized; therefore, if subcooling is required it must be obtained by external means such as a liquid suction interchanger.

The average amount of liquid lift available from the 09DE and 09DK condensers is shown in the accompanying table.

				• •			
REF	RIGERANT	R-	-22	R-{	502	R-1	34a
	Unit		Tem	perature I	Difference	(F)†	
	Unit	20	30	20	30	20	30
09DE	016	75	71	75	70	—	—
	020,024 028 034 044	77 78 80 75	67 68 70 65	77 78 80 75	61 62 64 60	_	_
09DK	054 064 074 084 094	60 41 44 51 41	50 31 34 41 31	60 41 44 51 41	44 25 28 35 25	29 20 18 22 18	26 6 7 10 1

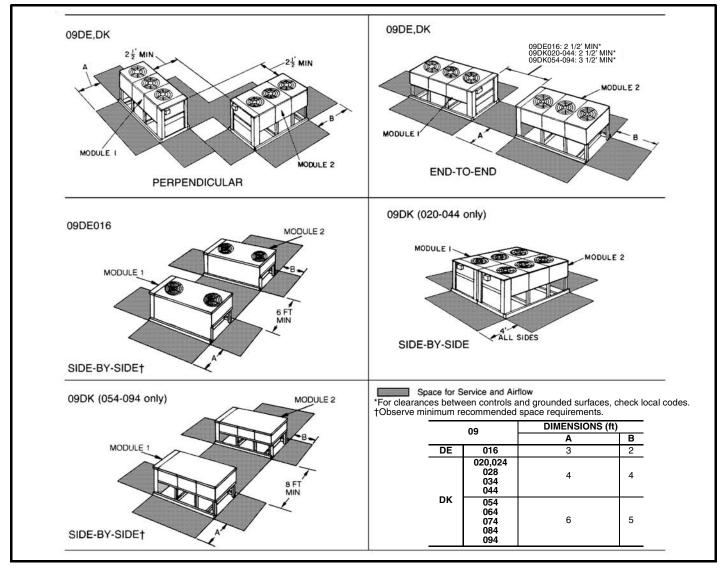
AVAILABLE LIQUID LIFT (ft)*

*Allows 7 psi drop for liquid line accessories and 2° F liquid line loss with maximum charge.

†Saturated Condensing Temperature (entering) – Entering Air Temperature (dry bulb) °F.

NOTES:

1. Data based on 15 F subcooling, and unit circuiting of 100% for the 09DE units, and 50/50% or 53/47% for the 09DK units.


Available subcooling is greatly reduced when R-12 or R-500 is used in these units. It is recommended that the evaporator is at the same level as the condenser, or lower.

3. Subcooling = Saturated condensing temperature of refrigerant — Actual temperature of refrigerant leaving the coil.

Application data (cont)

Multiple condenser arrangements

Head pressure control

General — Efficient operation of the evaporator thermostatic expansion valves requires a 90 F minimum saturated condensing temperature when compressors are operating at 100% capacity, 80 F for 75% compressor capacity, and 70 F for 50 and 25% compressor capacity.

A drop in entering outdoor-air temperature results in a lower saturated condensing temperature. When the outdoorair temperature drops below the minimum temperatures listed in the Minimum Outdoor-Air Operating Temperature table on page 30, head pressure control is required.

Head pressure controls — Head pressure on the 09DE016 and 09DK020-094 units may be controlled by fan cycling supplemented by Motormaster[®] control. Fan cycling control is available as an accessory on the 09DE and 09DK020-044 units. Motormaster I is also available on these units with fan cycling.

On 09DK054-094 condensers, fan cycling controls are standard (norminal 67/33%, 33/33/33%, 33/33/17/17%). Head pressure can also be controlled by fan cycling controls supplemented by the accessory Motormaster V solid-state head pressure controller. See accessory installation instructions for more information.

Fan cycling — The fan cycling control, used primarily during intermediate seasons, cycles one fan on the 09DE016 unit, one fan on 09DK020-028 units, 2 fans on 09DK034-064 units, and 4 fans on 09DK074-094 units.

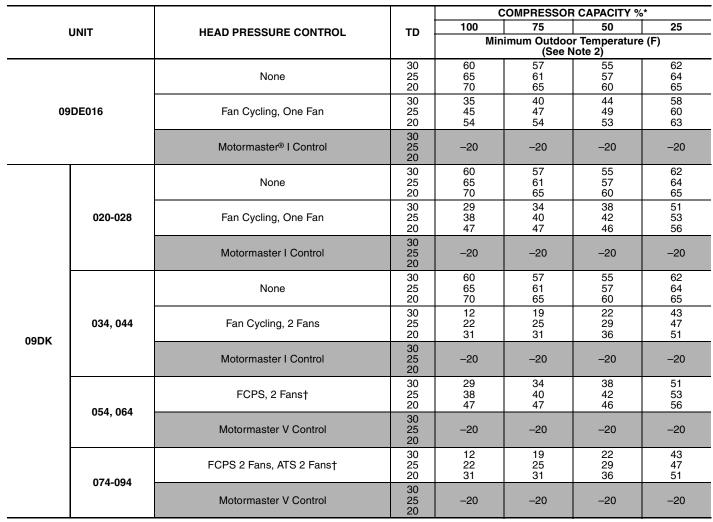
Motormaster I head pressure control (09DE, 09DK020-044) — When outdoor temperatures are low enough to cause low condensing pressures, the Motormaster control modulates the motor speed of one condenser fan from full to zero rpm to maintain a constant saturated condensing temperature for full year-round head pressure control. The Motormaster I control can be used only with suitable motors. It may be used as the sole control on single-fan units but must be used in conjunction with fan cycling control on multiple-fan units. If condensers 09DK020-044 are applied to separate refrigeration cycles,

special problems arise when controlling head pressure from a single control point. For such applications, more positive system control can be ensured by using individual condensers and head pressure controls.

Motormaster V head pressure control — Available for 09DK054-094 units only, this head pressure control maintains the proper condensing temperature at low ambient temperature conditions to -20 F and is compatible with the standard factory-installed 3-phase motors (in positions 1 and 2).

Process applications

Process applications are defined as heat rejection loads that are not related to or significantly affected by outside ambient conditions. Process applications tend to have constant heat rejection requirements throughout the year. Consequently, these applications may require switching the set points on standard accessory fan cycle controls. Consult Application Engineering for assistance in designing and selecting process systems.


E-coated aluminum-fin and copper fin coils

E-coated aluminum-fin coils have a flexible and durable epoxy coating uniformly applied to all coil surfaces. Unlike brittle phenolic dip and bake coatings, E-coat provides superior protection with unmatched flexibility, edge coverage, metal adhesion, thermal performance, and most importantly, corrosion resistance.

E-coated coils provide this protection since all coil surfaces are completely encapsulated from environmental contamination. This coating is especially suitable in industrial environments.

E-coated copper-fin coils have the same flexible and durable epoxy coating as E-coated aluminum-fin coils. However, this option combines the natural salt and environmental resistance of all-copper construction with high levels of corrosion protection. This coating is recommended for harsh combinations of coastal and industrial environments.

Application data (cont)

MINIMUM OUTDOOR-AIR OPERATING TEMPERATURE

LEGEND

Intermediate Season

Winter Season

TD

ATS — Air Temperature Switch

FCPS— Fan Cycling Pressure Switch

Temperature Difference
 Seturated Condensing Temperature

Saturated Condensing Temperature (Entering)
 Entering-Air Temperature

*Interpolation permitted.

†Additional FCPSs are needed for nominal 67/33, 33/33/33, and 33/33/17/17% capacity split applications.

arrie

NOTES: 1 Fans

- 1. Fans on the 09DK054-094 units are controlled by an ATS or FCPS.
- Minimum outdoor temperatures are determined for indoor and outdoor unit combinations of the same capacity. However, for 09DK020 (17¹/₂ ton) outdoor unit, the minimum outdoor temperatures shown are determined for combination with a 15-ton indoor unit.

Guide specifications — 09DE and 09DK020-044

Air-Cooled Condensing Units

HVAC Guide Specifications

Size Range: **15 to 40 Tons, Nominal** Carrier Model Numbers: **09DE, 09DK**

Part 1 — General

1.01 SYSTEM DESCRIPTION

Outdoor mounted, air-cooled condenser. Air shall discharge vertically.

1.02 QUALITY ASSURANCE

Unit shall be rated using refrigerants 12, 22, 134a, 500, 502. Ratings shall be listed at minimum (5° F subcooling) and maximum (15° F subcooling) refrigerant charge.

Units shall be UL approved and coils shall be leak tested at 420 psig (480 psig on 09DK) air pressure.

1.03 DELIVERY, STORAGE, AND HANDLING

Unit shall be stored and handled per manufacturer's instructions.

Part 2 — Products

- 2.01 EQUIPMENT
 - A. General:

Outdoor mounted, packaged, air-cooled remote condenser. Unit shall be complete with cooling coils, fans, fan motors, and electrical controls.

B. Cabinet:

Cabinet shall be of welded steel frame construction with removable electrical control cover. Hinged panel allows access to electrical control box on 09DK units. Panels shall be of zinc-coated bonderized steel finished with baked enamel. Unit casing shall be capable of withstanding ASTM Standard B117 500-hour salt spray test.

C. Fan(s):

Fan(s) shall be of the propeller type, direct driven by weatherproof motors, and dynamically balanced. Fan(s) shall be arranged for vertical discharge with horizontal suction.

D. Coils:

Coils shall use copper tubes, aluminum plate fins (or optional copper tubes, copper fins) and galvanized steel tube sheets. Fins shall be bonded to tubes by mechanical expansion. Hot gas and liquid connections shall be made from the same end.

All coils shall be shipped with no refrigerant holding charge (dry air only).

09DE016 — each coil shall be capable of field connection for splits of 100% or 50/50%.

09DK — each coil shall be capable of field connection for splits of 100%, 50/50%, 67/33%, (020 and 024 size); 100%, 60/40%, 50/50%, 40/40/20% (028 and 034 sizes); and

100%, 73/27%, 67/33%, 60/40%, 53/47%, 40/34/13/13% (044 size).

E. Motors:

Motors shall be weatherproof and inherently protected to operate at the specified electrical characteristics. The 09DE fan motors are single phase. 09DK fan motors shall be 3-phase, TEAO (Totally Enclosed, Air Over).

F. Operating Characteristics:

Unit shall be capable of rejecting the required heat at the required cfm and be capable of operating at moderate ambient temperatures as standard, and down to -20 F with the head pressure controller.

G. Electrical Characteristics:

Unit shall be capable of operating on three-phase. Electrical characteristics shall be specified on the equipment schedule.

H. Special Features:

Certain standard features are replaced with features designated by * are specified. See your local Carrier Sales Office for amending specifications.

* 1. Fan Cycling Control:

Cycles one or two fans to maintain head pressure.

* 2. Head Pressure Controller:

Modulates the speed of one fan in response to low outdoor temperature and provides operation down to -20 F when used with accessory fan cycling control.

- 3. Condenser Coil Options:
 - a. Pre-Coated Aluminum-Fin Coils:

Shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.

b. Copper-Fin Coils:

Shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. All copper construction shall provide protection in moderate coastal applications.

A polymer strip shall prevent the coil assembly from contacting the sheet metal coil pan to minimize the potential for galvanic corrosion between the coil and the pan. All copper construction shall provide protection in moderate coastal environments.

Guide specifications — 09DE and 09DK020-044 (cont)

- c. E-Coated Aluminum-Fin Coils:
 - Shall be constructed of aluminum fins mechanically bonded to copper tubes. Coating process shall have a flexible epoxy polymer coating uniformly applied to all coil surfaced without material bridging between the fins. The coating process shall ensure complete coil encapsulation. Color shall be high-gloss black with gloss at 60° of 65%to 90% per ASTM D523-89. Uniform dry film thickness shall be 0.8 mil to 1.2 mil on all surfaces, including the fin edges. Superior hardness characteristics shall meet those requirements of 2H, per ASTM D3363-92A. Cross-hatch adhesion shall meet the requirements of 4B-5B, per ASTM D3359-93. Impact resistance shall be up to 160 in./lb, per ASTM D2794-93. Humidity resistance shall be up to a minimum of 1000 hours per ASTM D2247-92. Water immersion resistance shall be up to a minimum of 250 hours per ASTM D870-92. Durability shall be confirmed through testing to no less than 1000 hours of salt spray per ASTM B117-90.
- d. E-Coated Copper Fin Coils:

Shall be copper fins mechanically bonded to copper tubes with copper tube sheets. Coating process shall have a flexible epoxy polymer coating uniformly applied to all coil surfaces without a material bridging between the fins. The coating process shall ensure complete coil encapsulation. Shall be highgloss black with gloss at 60° of 65% to 90% per ASTM D523-89. Uniform dry film thickness shall be 0.8 mil to 1.2 mil on all surfaces, including the fin edges. Superior hardness characteristics shall meet those requirements of 2H, per ASTM D3363-92A. Cross-hatch adhesion shall meet the requirements of 4B-5B, per ASTM D3359-93. Impact resistance shall be up to 160 in./lb, per ASTM D2794-93. Humidity resistance shall be up to a minimum of 1000 hours per ASTM D2247-92. Water immersion resistance shall be up to a minimum of 250 hours per ASTM D870-92. Durability shall be confirmed through testing to no less than 1000 hours of salt spray per ASTM B117-90.

4. Coil Grille (09DE only):

Protects condenser coil from damage. Shall be constructed from expanded aluminum (not intended as hail guard).

Guide specifications — 09DK054-094

Air-Cooled Condensing Units

HVAC Guide Specifications

Size Range: 50 to 90 Tons, Nominal

Carrier Model Number: **09DK**

Part 1 — General

1.01 SYSTEM DESCRIPTION

Outdoor mounted, split system air-cooled condenser, utilizing electromechanical fan cycling controls. Air shall enter horizontally and vertically and discharge vertically.

1.02 QUALITY ASSURANCE

- A. Unit shall be rated using refrigerants 12, 22, 134a, 500, and 502. Ratings shall be at minimum (5° F subcooling) and maximum (15° F subcooling) refrigerant charge.
- B. Unit construction shall be designed to conform to ASHRAE 15 latest revision safety standard and NEC.
- C. Units shall be UL and UL, Canada approved (208/230, 460, 575 v).
- D. Unit shall be manufactured according to ISO 9001:2000 manufacturing quality standard.
- E. Unit operation shall be tested at the factory.
- 1.03 DELIVERY, STORAGE, AND HANDLING

Unit shall be stored and handled according to manufacturer's instructions.

Part 2 — Products

- 2.01 EQUIPMENT
 - A. General:

Outdoor mounted, packaged, air-cooled remote condenser unit shall be complete with coils, fans, fan motors, and electrical controls.

- B. Unit Cabinet:
 - 1. Frame shall be heavy-gage galvanized steel members.
 - 2. Galvanized steel casing, zinc phosphated, with an electrostatically applied baked enamel finish.
 - 3. Unit casing shall be capable of withstanding ASTM Standard B117 500-hour salt spray test.
 - 4. Control box shall be equipped with a hinged access door.

C. Fans:

Condenser fans shall be direct-driven propeller type discharging air vertically upward and shall be equipped with the following features:

- 1. Permanently lubricated bearings.
- 2. PVC coated steel wire safety guards.
- 3. Inherent corrosion-resistant shafts.
- 4. Statically and dynamically balanced propeller fans.

- D. Coils:
 - 1. Coil shall be air-cooled with integral subcooler, constructed of aluminum fins mechanically bonded to seamless copper tubes which are then cleaned, dehydrated, and sealed. Copper tube/fin combination available as an option.
 - 2. Coils shall be leak tested at 280 psig (1931 kPa) and pressure tested at 450 psig minimum (3103 kPa).
 - 3. Hot gas and liquid connections shall be made from the same end.
 - Coil shall be capable of field connection for nominal splits of 100%, 50/50%, 67/33%, 33/33/33%, and 33/33/17/17% (50 to 80 ton units) or 100%, 50/50% (90 ton units).
 - 5. All coils shall be shipped with dry air holding charge, not refrigerant.
- E. Refrigeration Components:

A tubing package for headering shall be provided for 100%, 50/50%, and nominal 67/33% capacity split applications. The package shall include hot gas and liquid line piping $^{1}/_{4}$ -in. male flare fittings, valve cores, fan cycle pressure switches, and the necessary hardware for installation.

F. Motors:

Condenser-fan motors shall be 3-phase and shall be protected against single-phasing conditions. All motors shall have permanently lubricated sealed bearings. Fans 1 and 2 shall use open drip-proof motors that are compatible with the head pressure controller accessory. The remaining fan motors shall be totally enclosed fan-cooled (208-230/460-v units). All motors on 380-v and 575-v units shall be open drip-proof.

G. Operating Characteristics:

Unit shall be capable of rejecting the required heat at the required cfm and be capable of operating down to moderate ambient temperatures with standard factory-supplied fan cycling. Operation to -20 F shall be possible with the head pressure control accessory.

- H. Electrical Characteristics:
 - 1. A dual power supply of the correct voltage is required for each series unit; a 3-phase power circuit voltage and a single-phase control circuit voltage. The number of control circuits will depend on the capacity split application utilized. Power supplies for all units shall enter the control box through factory-punched entrance holes in the control box shelf. Terminal blocks shall be supplied for field wiring connections.
 - 2. The units shall utilize electromechanical fan cycling head pressure controls to control each fan separately.

Guide specifications — 09DK054-094 (cont)

I. Special Features:

Certain standard features are replaced when features designated by * are specified. See your local Carrier Sales Office for amending specifications.

- 1. Condenser Coil Options:
 - a. Pre-Coated Aluminum-Fin Coils:

Shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.

b. Copper-Fin Coils:

Shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. All copper construction shall provide protection in moderate coastal applications.

A polymer strip shall prevent the coil assembly from contacting the sheet metal coil pan to minimize the potential for galvanic corrosion between the coil and the pan. All copper construction shall provide protection in moderate coastal environments.

c. E-Coated Aluminum-Fin Coils:

Shall be constructed of aluminum fins mechanically bonded to copper tubes. Coating process shall have a flexible epoxy polymer coating uniformly applied to all coil surfaced without material bridging between the fins. The coating process shall ensure complete coil encapsulation. Color shall be high-gloss black with gloss at 60° of 65% to 90% per ASTM D523-89. Uniform dry film thickness shall be 0.8 mil to 1.2 mil on all surfaces, including the fin edges. Superior hardness characteristics shall meet those requirements of 2H, per ASTM D3363-92A. Cross-hatch adhesion shall meet the requirements of 4B-5B, per ASTM D3359-93. Impact resistance shall be up to 160 in./lb, per ASTM D2794-93. Humidity resistance shall be up to a minimum of 1000 hours per ASTM D2247-92. Water immersion resistance shall be up to a minimum of 250 hours per ASTM D870-92. Durability shall be confirmed through testing to no less than 1000 hours of salt spray per ASTM B117-90.

d. E-Coated Copper Fin Coils:

Shall be copper fins mechanically bonded to copper tubes with copper tube sheets. Coating process shall have a flexible epoxy polymer coating uniformly applied to all coil surfaces without a material bridging between the fins. The coating process shall ensure complete coil encapsulation. Shall be highgloss black with gloss at 60° of 65% to 90% per ASTM D523-89. Uniform dry film thickness shall be 0.8 mil to 1.2 mil on all surfaces, including the fin edges. Superior hardness characteristics shall meet those requirements of 2H, per ASTM D3363-92A. Cross-hatch adhesion shall meet the requirements of 4B-5B, per ASTM D3359-93. Impact resistance shall be up to 160 in./lb, per ASTM D2794-93. Humidity resistance shall be up to a minimum of 1000 hours per ASTM D2247-92. Water immersion resistance shall be up to a minimum of 250 hours per ASTM D870-92. Durability shall be confirmed through testing to no less than 1000 hours of salt spray per ASTM B117-90.

2. Fan Sound Reduction Kit:

Fan sound reduction kits reduce system noise without compromising performance.

3. Security Grilles:

The PVC-coated grilles protect the condenser coil from damage due to debris and vandalism.

4. Control Transformer:

The transformer is used to convert 200/230/460 v to 115 v for use on 115 v control systems, utilizing power from the condenser main unit power connection.

5. Head Pressure Controller:

This accessory allows the unit to operate at low ambient conditions to -20 F.

6. Hail Guard:

Louver-type sheet metal hail guard design prevents damage to condenser coil due to hail and other flying debris.

Carrier Corporation • Syracuse, New York 13221 1203

Book 2 Tab 4a

10-02

CADNA OUTPUT

Receivers

Name	Μ.	ID	Leve	el Lr	Limit.	Value		Land	d Use	Height		C	oordinates	
			Day	Night	Day	Night	t Type Auto Noise Type				Х	Y	Z	
			(dBA)	(dBA)	(dBA)	(dBA)				(m)		(m)	(m)	(m)
R01		R01	39.6	-80.2	0.0	0.0				4.50	r	445585.62	5011951.14	95.50
R02		R02	39.3	-80.2	0.0	0.0				4.50	r	445590.16	5011922.62	95.53
R03		R03	43.6	-80.2	0.0	0.0				4.50	r	445674.80	5011882.53	96.13
R04		R04	46.7	-80.2	0.0	0.0				4.50	r	445704.59	5011886.45	96.31
R05		R05	46.7	-80.2	0.0	0.0				4.50	r	445755.43	5011891.85	96.62
R06		R06	46.7	-80.2	0.0	0.0				4.50	r	445783.52	5011894.66	96.81
R07		R07	47.2	-80.2	0.0	0.0				4.50	r	445827.90	5011954.64	97.54
R08		R08	47.3	-80.2	0.0	0.0				4.50	r	445827.63	5011961.04	97.63
R09		R09	44.4	-80.2	0.0	0.0				4.50	r	445823.88	5011997.13	98.12
R02_0		R02_0	40.0	-80.2	0.0	0.0				1.50	r	445597.88	5011922.32	92.59
R01 O		R01_0	39.3	-80.2	0.0	0.0				1.50	r	445595.63	5011951.20	92.52

Point Sources

Name	Μ.	. ID	R	esult. PW	L		Lw / Li			Correctior	1 I	Sound	d Reduction	Attenuation	Op	erating Ti	me	K0	Freq.	Direct.	Height	Coordinates		
			Day	Evening	Night	Туре	Value	norm.	Day	Evening	Night	R	Area		Day	Special	Night					X	Y	Z
			(dBA)	(dBA)	(dBA)			dB(A)	dB(A)	dB(A)	dB(A)		(m²)		(min)	(min)	(min)	(dB)	(Hz)		(m)	(m)	(m)	(m)
RTU6 11T Condenser (2 fan)		SS_RTU6c	83.8	83.8			COND_RTU_RN011		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g	445768.78	5011956.41	101.00
RTU5 11T Condenser (2 fan)		SS_RTU5c	83.8	83.8	83.8	Lw	COND_RTU_RN011		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g	445752.22	5011944.48	101.00
RTU4 11T Condenser (2 fan)		SS_RTU4c	83.8	83.8	83.8	Lw	COND_RTU_RN011		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g		5011976.19	
RTU3 11T Condenser (2 fan)		SS_RTU3c	83.8	83.8	83.8	Lw	COND_RTU_RN011		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g	445738.70	5011961.68	101.00
RTU2 6T Condenser (1 fan)		SS_RTU2c	80.8	80.8	80.8	Lw	COND_RTU_RN006		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g	445706.25	5011945.51	101.00
RTU1 11T Condenser (2 fan)		SS_RTU1c	83.8	83.8	83.8	Lw	COND_RTU_RN011		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g	445725.18	5011944.54	101.00
Air Cooled VRF Condenser 2		SS_CU1B	84.5	84.5	84.5	Lw	COND_VRF	84.5	0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g	445733.32	5011943.95	101.59
Air Cooled VRF Condenser 1		SS_CU1Ac	84.5	84.5	84.5	Lw	COND_VRF	84.5	0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.10 g	445734.90	5011943.99	101.59
RTU6 11T Exhaust Fan		SS_RTU6e	91.6	91.6	91.6	Lw	EF_RTU_6		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.60 g	445770.19	5011956.83	100.40
RTU5 11T Exhaust Fan		SS_RTU5e	85.4	85.4	85.4	Lw	EF_RTU_REST		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.60 g	445750.96	5011943.92	100.40
RTU4 11T Exhaust Fan		SS_RTU4e	85.4	85.4	85.4	Lw	EF_RTU_REST		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.60 g	445765.97	5011975.78	100.40
RTU3 11T Exhaust Fan		SS_RTU3e	87.4	87.4	87.4	Lw	EF_RTU_3		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.60 g	445737.78	5011961.53	100.40
RTU1 11T Exhaust Fan		SS_RTU1e	85.4	85.4	85.4	Lw	EF_RTU_REST		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.60 g	445726.20	5011942.92	100.40
RTU2 6T Exhaust Fan		SS_RTU2e	82.4	82.4	82.4	Lw	EF_RTU_2		0.0	0.0	0.0				60.00	0.00	0.00	0.0		(none)	0.60 g	445706.82	5011944.35	100.40

Receiver Name: R08 ID: R08 X: 445827.63 m Y: 5011961.04 m

Z: 97.63 m

									J6 11T E									-														
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime		Di			-		Ahous			RL	Lr												
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	<u> </u>	(dB)	· /	(dB)	· /	· /	(dB)	(dB)	(dB)	(dB)	dB(A												
21		5011956.83		0		A	91.6	0.0	0.0			46.2		-3.0		0.0	4.8	0.0	0.0													
33	445770.19	5011956.83	100.40	1	D	A	91.6	0.0	0.0	0.0	0.0	46.4	0.3	-3.0	0.0	0.0	4.8	0.0	7.2	35												
									J4 11T E																							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw		Optime					-		Ahous				Lr												
	(m)	(m)	(m)			· ·	dB(A)	dB	dB	<u> </u>	· /	(/	(dB)	· /	· /		(dB)	(dB)	(dB)	· ·												
43	445765.97	5011975.78	100.40	0	D	A	85.4	0.0	0.0	0.0	0.0	47.0	0.4	-3.0	0.0	0.0	10.4	0.0	0.0	30												
—			1						11T Con		· ` '																					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw		Optime		Di			-		Ahous			RL	Lr												
	(m)	(m)	(m)			• •	dB(A)	dB	dB	<u>, ,</u>	(dB)	. ,	(dB)	· /	· /	(dB)	(dB)	(dB)	(dB)	``												
47	445768.78	5011956.41	101.00	0	D	A	83.8	0.0	0.0	0.0	0.0	46.4	0.4	-3.0	0.0	0.0	0.0	0.0	0.0	39												
			D : ()		100	0040								T110																		
—			1						J3 11T E									^	.													
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime							Ahous				Lr												
	(m)	(m)	(m)		_		dB(A)	dB	dB	· /	· /	(dB)	、 、	· /	· ·	(dB)	(dB)	(dB)	(dB)													
70	445737.78	5011961.53	100.40	0	D	A	87.4	0.0	0.0	0.0	0.0	50.1	0.5	-3.0	0.0	0.0	15.5	0.0	0.0	24												
											(0.1		D																			
	×								11T Con							A I.	A I.	O														
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw		Optime					•		Ahous				Lr												
	(m)	(m)	(m)		_	· /	dB(A)	dB	dB	<u>`</u>	· /	· /	(dB)	· /	· /	(dB)	(dB)	(dB)	(dB)	`												
81	445767.27	5011976.19	101.00	0	D	A	83.8	0.0	0.0	0.0	0.0	46.9	0.4	-3.0	0.0	0.0	0.0	0.0	0.0	39												
			Delinet		100	0040	N1							T115	. !!																	
<u> </u>									J5 11T E				_					a ,														
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw		Optime					-		Ahous				Lr												
	(m)	(m)	(m)		_	• •	dB(A)	dB	dB	• •	(dB)	· · /	(dB)	<u>,</u> ,	. ,	, ,	(dB)	(dB)	(dB)	,												
93	445750.96	5011943.92	100.40	0	D	A	85.4	0.0	0.0	0.0	0.0	48.9	0.4	-3.0	0.0	0.0	13.0	0.0	0.0	26												
Point Source, ISO 9613, Name: "RTU5 11T Condenser (2 fan)", ID: "SS RTU5c"																																
NI	Х										· · ·	,		_		Abaua	A la a u	Creat	RL	1												
Nr.		Y (mr.)	Z	Rell.	DEN	Freq.		l/a	Optime					-		Ahous																
102	(m)	(m)	(m)		<u> </u>		dB(A)	dB	dB	• •	(dB)	. ,	(dB)	· ·	· ·	(dB)	(dB)	(dB)	(dB)													
103	445752.22	5011944.48	101.00	0	D	A	83.8	0.0	0.0	0.0	0.0	48.8	0.5	-3.0	0.0	0.0	4.8	0.0	0.0	32.												
			Doint C	Curoc		0612	Namo:	ייסדו	11 11T C	vhou	ot Ear	יחו "י	"00 E	T114	o"																	
Nir	Х	Y	Z		<i>'</i>	Freq.	Lw					,				About		Point Source, ISO 9613, Name: "RTU1 11T Exhaust Fan", ID: "SS_RTU1e"														
Nr.			(m)	Rell.	DEIN												Ahor	Creat	DI	١r												
100	(m)	(m)	(m)						Optime					-				Cmet		Lr												
106	445726.20	F044040 00			<u> </u>	(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A												
		5011942.92		0	D				dB	(dB)	(dB)		(dB)	-	(dB)	(dB)			(dB)													
			100.40			(Hz) A	dB(A) 85.4	dB 0.0	dB 0.0	(dB) 0.0	(dB) 0.0	(dB) 51.3	(dB) 0.6	(dB) -3.0	(dB) 0.0	(dB)	(dB)	(dB)	(dB)	dB(A												
Nr	Y	F	100.40 Point Sou	irce, I	SO 96	(Hz) A 513, Na	dB(A) 85.4 ame: "A	dB 0.0 ir Coo	dB 0.0 pled VRF	(dB) 0.0 ⁻ Con	(dB) 0.0 dense	(dB) 51.3 er 1'', I	(dB) 0.6 D: "SS	(dB) -3.0 6_CU	(dB) 0.0 1Ac"	(dB) 0.0	(dB) 15.5	(dB) 0.0	(dB) 0.0	dB(/ 21												
Nr.	X (m)	F	100.40 Point Sou Z	irce, I	SO 96	(Hz) A 513, Na Freq.	dB(A) 85.4 ame: "A Lw	dB 0.0 ir Coo I/a	dB 0.0 Died VRF Optime	(dB) 0.0 Con K0	(dB) 0.0 dense Di	(dB) 51.3 er 1", I Adiv	(dB) 0.6 D: "SS Aatm	(dB) -3.0 6_CU Agr	(dB) 0.0 1Ac" Afol	(dB) 0.0 Ahous	(dB) 15.5 Abar	(dB) 0.0 Cmet	(dB) 0.0 RL	dB(A 21 Lr												
	(m)	F Y (m)	100.40 Point Sou Z (m)	ırce, Is Refl.	SO 96 DEN	(Hz) A 513, Na Freq. (Hz)	dB(A) 85.4 ame: "A Lw dB(A)	dB 0.0 ir Coo I/a dB	dB 0.0 Died VRF Optime dB	(dB) 0.0 Con K0 (dB)	(dB) 0.0 dense Di (dB)	(dB) 51.3 er 1", I Adiv (dB)	(dB) 0.6 D: "SS Aatm (dB)	(dB) -3.0 6_CU Agr (dB)	(dB) 0.0 1Ac" Afol (dB)	(dB) 0.0 Ahous (dB)	(dB) 15.5 Abar (dB)	(dB) 0.0 Cmet (dB)	(dB) 0.0 RL (dB)	dB(A 21 Lr dB(A												
Nr.	(m)	F	100.40 Point Sou Z (m)	irce, I	SO 96 DEN	(Hz) A 513, Na Freq.	dB(A) 85.4 ame: "A Lw	dB 0.0 ir Coo I/a	dB 0.0 Died VRF Optime	(dB) 0.0 Con K0 (dB)	(dB) 0.0 dense Di (dB)	(dB) 51.3 er 1", I Adiv (dB)	(dB) 0.6 D: "SS Aatm (dB)	(dB) -3.0 6_CU Agr	(dB) 0.0 1Ac" Afol (dB)	(dB) 0.0 Ahous	(dB) 15.5 Abar	(dB) 0.0 Cmet	(dB) 0.0 RL (dB)	dB(A 21												
	(m)	F Y (m) 5011943.99	100.40 Point Sou Z (m) 101.59	ırce, IS Refl. 0	SO 96 DEN D	(Hz) A 513, Na Freq. (Hz) A	dB(A) 85.4 ame: "A Lw dB(A) 84.5	dB 0.0 ir Coo I/a dB 0.0	dB 0.0 Died VRF Optime dB 0.0	(dB) 0.0 Con K0 (dB) 0.0	(dB) 0.0 dense Di (dB) 0.0	(dB) 51.3 er 1", I Adiv (dB) 50.5	(dB) 0.6 D: "SS Aatm (dB) 0.6	(dB) -3.0 5_CU Agr (dB) -3.0	(dB) 0.0 1Ac" Afol (dB) 0.0	(dB) 0.0 Ahous (dB)	(dB) 15.5 Abar (dB)	(dB) 0.0 Cmet (dB)	(dB) 0.0 RL (dB)	dB(A 21 Lr dB(A												
111	(m) 445734.90	F Y (m) 5011943.99	100.40 Point Sou Z (m) 101.59 Point So	Irce, IS Refl. 0 urce, I	SO 96 DEN D SO 90	(Hz) A 513, Na Freq. (Hz) A 613, N	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "A	dB 0.0 ir Coo I/a dB 0.0 Air Co	dB 0.0 Oled VRF Optime dB 0.0 oled VRI	(dB) 0.0 Con K0 (dB) 0.0 = Cor	(dB) 0.0 dense Di (dB) 0.0	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2",	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS	(dB) -3.0 5_CU Agr (dB) -3.0 5_CL	(dB) 0.0 1Ac" Afol (dB) 0.0	(dB) 0.0 Ahous (dB) 0.0	(dB) 15.5 Abar (dB) 4.8	(dB) 0.0 Cmet (dB) 0.0	(dB) 0.0 RL (dB) 0.0	dB(/ 21. Lr dB(/ 31.												
	(m) 445734.90 X	F Y (m) 5011943.99	100.40 Point Sou (m) 101.59 Point Sou Z	Irce, IS Refl. 0 urce, I	SO 96 DEN D SO 90	(Hz) A 513, Na Freq. (Hz) A 613, N Freq.	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "/ Lw	dB 0.0 ir Coo I/a dB 0.0 Air Co I/a	dB 0.0 Optime dB 0.0 oled VRI Optime	(dB) 0.0 Con K0 (dB) 0.0 = Cor K0	(dB) 0.0 dense Di (dB) 0.0 ndens Di	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm	(dB) -3.0 6_CU Agr (dB) -3.0 5_CL Agr	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol	(dB) 0.0 Ahous (dB) 0.0 Ahous	(dB) 15.5 Abar (dB) 4.8 Abar	(dB) 0.0 Cmet (dB) 0.0 Cmet	(dB) 0.0 RL (dB) 0.0 RL	dB(# 21. Lr dB(# 31.												
111 Nr.	(m) 445734.90 X (m)	F Y (m) 5011943.99 V (m)	100.40 Point Sou (m) 101.59 Point Sou Z (m)	urce, IS Refl. 0 urce, I Refl.	SO 96 DEN D SO 90 DEN	(Hz) A 13, Na Freq. (Hz) A 613, N Freq. (Hz)	dB(A) 85.4 Lw dB(A) 84.5 ame: "/ Lw dB(A)	dB 0.0 ir Coo I/a dB 0.0 Air Co I/a dB	dB 0.0 Optime dB 0.0 oled VRI Optime dB	(dB) 0.0 Con K0 (dB) 0.0 = Cor K0 (dB)	(dB) 0.0 dense Di (dB) 0.0 ndens Di (dB)	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv (dB)	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "S Aatm (dB)	(dB) -3.0 5_CU Agr (dB) -3.0 5_CL Agr (dB)	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB)	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB)	(dB) 15.5 Abar (dB) 4.8 Abar (dB)	(dB) 0.0 Cmet (dB) 0.0 Cmet (dB)	(dB) 0.0 RL (dB) 0.0 RL (dB)	dB(# 21. dB(# 31. dB(#												
111	(m) 445734.90 X	F Y (m) 5011943.99 V (m)	100.40 Point Sou (m) 101.59 Point Sou Z (m)	Irce, IS Refl. 0 urce, I	SO 96 DEN D SO 90 DEN	(Hz) A 513, Na Freq. (Hz) A 613, N Freq.	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "/ Lw	dB 0.0 ir Coo I/a dB 0.0 Air Co I/a	dB 0.0 Optime dB 0.0 oled VRI Optime dB	(dB) 0.0 Con K0 (dB) 0.0 = Cor K0 (dB)	(dB) 0.0 dense Di (dB) 0.0 ndens Di	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv (dB)	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "S Aatm (dB)	(dB) -3.0 6_CU Agr (dB) -3.0 5_CL Agr	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB)	(dB) 0.0 Ahous (dB) 0.0 Ahous	(dB) 15.5 Abar (dB) 4.8 Abar	(dB) 0.0 Cmet (dB) 0.0 Cmet	(dB) 0.0 RL (dB) 0.0 RL (dB)	dB(# 21. Lr dB(# 31.												
111 Nr.	(m) 445734.90 X (m)	F Y (m) 5011943.99 V (m) 5011943.95	100.40 Point Sou (m) 101.59 Point Sou Z (m) 101.59	urce, IS Refl. 0 urce, I Refl. 0	SO 96 DEN D SO 90 DEN D	(Hz) A 513, Na Freq. (Hz) A 613, N Freq. (Hz) A	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "A kw dB(A) 84.5	dB 0.0 ir Coo I/a dB 0.0 Air Co I/a dB 0.0	dB 0.0 Optime dB 0.0 oled VRI Optime dB 0.0	(dB) 0.0 Con K0 (dB) 0.0 = Cor K0 (dB) 0.0	(dB) 0.0 dense (dB) 0.0 ndens Di (dB) 0.0	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv (dB) 50.6	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) 0.6	(dB) -3.0 Agr (dB) -3.0 S_CL Agr (dB) -3.0	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB)	(dB) 15.5 Abar (dB) 4.8 Abar (dB)	(dB) 0.0 Cmet (dB) 0.0 Cmet (dB)	(dB) 0.0 RL (dB) 0.0 RL (dB)	dB(# 21. dB(# 31. dB(#												
111 Nr. 116	(m) 445734.90 X (m) 445733.32	F Y (m) 5011943.99 Y (m) 5011943.95	100.40 Point Sou (m) 101.59 Point So Z (m) 101.59 Point Sou	urce, IS Refl. 0 urce, I Refl. 0 urce, IS	SO 96 DEN D SO 90 DEN D SO 96	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 613, N	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "A Lw dB(A) 84.5 ame: "R	dB 0.0 I/a dB 0.0 Air Co I/a dB 0.0	dB 0.0 Optime dB 0.0 oled VRI Optime dB 0.0	(dB) 0.0 Con K0 (dB) 0.0 = Cor K0 (dB) 0.0	(dB) 0.0 dense Di (dB) 0.0 ndens Di (dB) 0.0 er (2 f	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv (dB) 50.6 50.6	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) 0.6 D: "SS	(dB) -3.0 Agr (dB) -3.0 S_CL Agr (dB) -3.0 -3.0	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0 J3c"	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0	(dB) 15.5 Abar (dB) 4.8 Abar (dB) 4.8	(dB) 0.0 Cmet (dB) 0.0 Cmet (dB) 0.0	(dB) 0.0 RL (dB) 0.0 RL (dB) 0.0	dB(/ 21. dB(/ 31. Lr dB(/ 31.												
111 Nr.	(m) 445734.90 X (m) 445733.32 X	F Y (m) 5011943.99 Y (m) 5011943.95 F Y	100.40 Point Sou (m) 101.59 Point Soi Z (m) 101.59 Point Sou Z	urce, IS Refl. 0 urce, I Refl. 0 urce, IS	SO 96 DEN D SO 90 DEN D SO 96	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 513, N 613, N Freq. A 513, N	dB(A) 85.4 Ame: "A Lw dB(A) 84.5 Ame: "A Lw dB(A) 84.5 Ame: "R Lw	dB 0.0 ir Coo I/a dB 0.0 I/a dB 0.0	dB 0.0 Optime dB 0.0 oled VRI Optime dB 0.0 11T Con Optime	(dB) 0.0 Con K0 (dB) 0.0 = Cor K0 (dB) 0.0 dens K0	(dB) 0.0 dense (dB) 0.0 ndens Di (dB) 0.0 er (2 f Di	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv (dB) 50.6 50.6	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) 0.6 D: "SS Aatm	(dB) -3.0 6_CU Agr (dB) -3.0 5_CL Agr (dB) -3.0 5_RT Agr	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0 J3c" Afol	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0	(dB) 15.5 Abar (dB) 4.8 Abar (dB) 4.8 Abar	(dB) 0.0 (dB) 0.0 Cmet (dB) 0.0 Cmet	(dB) 0.0 RL (dB) 0.0 RL (dB) 0.0	dB(/ 21 dB(/ 31 Lr dB(/ 31												
111 Nr. 116 Nr.	(m) 445734.90 X (m) 445733.32 X (m)	F Y (m) 5011943.99 V (m) 5011943.95 F Y (m)	100.40 Point Sou (m) 101.59 Point Sou Z (m) 101.59 Point Sou Z (m)	Irce, IS Refl. 0 urce, I Refl. 0 Irce, IS Refl.	SO 96 DEN D SO 90 DEN D SO 96 DEN	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 513, N 613, N Freq. (Hz) (Hz)	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "R Lw dB(A) 84.5	dB 0.0 ir Coo I/a dB 0.0 I/a dB 0.0 CTU3 I/a dB	dB 0.0 Optime dB 0.0 Optime dB 0.0 11T Con Optime dB	(dB) 0.0 F Con (dB) 0.0 F Cor K0 (dB) 0.0 dense K0 (dB)	(dB) 0.0 dense Di (dB) 0.0 dens Di (dB) 0.0 er (2 f Di (dB)	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv (dB) 50.6 fan)", I Adiv (dB)	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) D: "SS Aatm (dB)	(dB) -3.0 Agr (dB) -3.0 S_CU (dB) -3.0 S_CL Agr (dB) -3.0 S_RT Agr (dB)	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0 JJ3c" Afol (dB)	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0 Ahous (dB)	(dB) 15.5 Abar (dB) 4.8 Abar (dB) Abar (dB)	(dB) 0.0 (dB) 0.0 Cmet (dB) 0.0 Cmet (dB)	(dB) 0.0 RL (dB) 0.0 RL (dB) 0.0 RL (dB)	dB(/ 21 Lr dB(/ 31 Lr dB(/ 31												
111 Nr. 116	(m) 445734.90 X (m) 445733.32 X	F Y (m) 5011943.99 Y (m) 5011943.95 F Y (m)	100.40 Point Sou (m) 101.59 Point Sou Z (m) 101.59 Point Sou Z (m)	urce, IS Refl. 0 urce, I Refl. 0 urce, IS	SO 96 DEN D SO 90 DEN D SO 96 DEN	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 513, N 613, N Freq. A 513, N	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "R Lw dB(A)	dB 0.0 ir Coo I/a dB 0.0 I/a dB 0.0	dB 0.0 Optime dB 0.0 Optime dB 0.0 11T Con Optime dB	(dB) 0.0 F Con (dB) 0.0 F Cor K0 (dB) 0.0 dense K0 (dB)	(dB) 0.0 dense Di (dB) 0.0 dens Di (dB) 0.0 er (2 f Di (dB)	(dB) 51.3 er 1", I Adiv (dB) 50.5 er 2", Adiv (dB) 50.6 50.6	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) D: "SS Aatm (dB)	(dB) -3.0 6_CU Agr (dB) -3.0 5_CL Agr (dB) -3.0 5_RT Agr	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0 J3c" Afol (dB)	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0	(dB) 15.5 Abar (dB) 4.8 Abar (dB) 4.8 Abar	(dB) 0.0 (dB) 0.0 Cmet (dB) 0.0 Cmet	(dB) 0.0 RL (dB) 0.0 RL (dB) 0.0 RL (dB)	dB(/ 21 Lr dB(/ 31 Lr dB(/ 31												
111 Nr. 116 Nr.	(m) 445734.90 X (m) 445733.32 X (m)	F Y (m) 5011943.99 Y (m) 5011943.95 F Y (m) 5011961.68	100.40 Point Sou (m) 101.59 Point Sou Z (m) 101.59 Point Sou Z (m) 101.00	urce, IS Refl. 0 urce, I Refl. 0 urce, IS Refl. 0	SO 96 DEN D SO 90 DEN D SO 96 DEN D	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 613, Na Freq. (Hz) A A A	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "R Lw dB(A) 83.8	dB 0.0 ir Coo l/a dB 0.0 l/a dB 0.0 cTU3 l/a dB 0.0	dB 0.0 Optime dB 0.0 oled VRI Optime dB 0.0 11T Con Optime dB 0.0	(dB) 0.0 Con (dB) 0.0 Cor K0 (dB) 0.0 dense K0 (dB) 0.0	(dB) 0.0 denss (dB) 0.0 ndens Di (dB) 0.0 er (2 f Di (dB) 0.0	(dB) 51.3 er 1", 1 Adiv (dB) 50.5 er 2", Adiv (dB) 50.6 an)", 1 Adiv (dB) 50.0	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) 0.6 D: "SS Aatm (dB) 0.6	(dB) -3.0 Agr (dB) -3.0 S_CU Agr (dB) -3.0 S_RT (dB) -3.0 -3.0 -3.0	(dB) 0.0 1Ac" Afol (dB) 0.0 1B" Afol (dB) 0.0 J3c" Afol (dB) 0.0	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0 Ahous (dB)	(dB) 15.5 Abar (dB) 4.8 Abar (dB) Abar (dB)	(dB) 0.0 (dB) 0.0 Cmet (dB) 0.0 Cmet (dB)	(dB) 0.0 RL (dB) 0.0 RL (dB) 0.0 RL (dB)	dB(/ 21. dB(/ 31. dB(/ 31.												
111 Nr. 116 Nr. 126	(m) 445734.90 X (m) 445733.32 X (m) 445738.70	F Y (m) 5011943.99 Y (m) 5011943.95 F Y (m) 5011961.68	100.40 Point Sou Z (m) 101.59 Point Sou Z (m) 101.00 Point Sou	urce, IS Refl. 0 urce, I Refl. 0 urce, IS Refl. 0	SO 96 DEN D SO 96 DEN D SO 96 DEN D SO 96	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 613, Na Freq. (Hz) A 613, Na 613, Na	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "R Lw dB(A) 83.8 ame: "R	dB 0.0 ir Coo l/a dB 0.0 ir Coo l/a dB 0.0 cTU3 l/a dB 0.0	dB 0.0 Optime dB 0.0 oled VRI Optime dB 0.0 11T Con 0ptime dB 0.0	(dB) (dB) (dB) 0.0 Cor K0 (dB) 0.0 (dB) 0.0 (dB) 0.0 dense K0 (dB) 0.0 dense K0 (dB) 0.0 dense K0 (dB) 0.0 (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	(dB) 0.0 denss (dB) 0.0 ndens Di (dB) 0.0 er (2 f (dB) 0.0 er (2 f	(dB) 51.3 er 1", 1 Adiv (dB) 50.5 er 2", Adiv (dB) 50.6 an)", 1 Adiv (dB) 50.0	(dB) 0.6 D: "SS Aatm (dB) 0.6 D: "SS Aatm (dB) 0.6 D: "SS Aatm (dB) 0.6	(dB) -3.0 S_CU (dB) -3.0 S_CL (dB) -3.0 S_CL (dB) -3.0 S_RT (dB) -3.0 S_RT (dB) -3.0	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0 J3c" Afol (dB) 0.0 J3c" J3c"	(dB) 0.0 (dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0	(dB) 15.5 Abar (dB) 4.8 Abar (dB) 4.8 Abar (dB) 4.8	(dB) 0.0 Cmet (dB) 0.0 Cmet (dB) 0.0 Cmet (dB) 0.0	(dB) 0.0 (dB) 0.0 (dB) 0.0 RL (dB) 0.0	dB(// 21) dB(/ 31) Lr dB(/ 31) dB(/ 31)												
111 Nr. 116 Nr.	(m) 445734.90 X (m) 445733.32 X (m) 445738.70 X	F Y (m) 5011943.99 Y (m) 5011943.95 F Y (m) 5011961.68 F Y	100.40 Point Sou Z (m) 101.59 Point Sou Z (m) 101.00 Point Sou Z	urce, IS Refl. 0 urce, I Refl. 0 urce, IS Refl. 0	SO 96 DEN D SO 96 DEN D SO 96 DEN D SO 96	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 613, Na Freq. (Hz) A 613, Na Freq. (Hz) A 613, Na Freq. (Hz)	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "A Lw dB(A) 84.5 ame: "A Lw dB(A) 84.5 ame: "R Lw dB(A) 84.5 ame: "R Lw dB(A) 83.8 ame: "R Lw	dB 0.0 1/a dB 0.0 1/a dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	dB 0.0 Deled VRF 0ptime dB 0.0 Optime dB 0.0 11T Con Optime dB 0.0	(dB) (dB) (dB) 0.0 = Cor K0 (dB) 0.0 (dB) 0.0 dense K0 (dB) 0.0 dense K0 (dB) 0.0	(dB) 0.0 dense (dB) 0.0 dens Di (dB) 0.0 er (2 f Di (dB) 0.0 er (2 f Di (dB) 0.0	(dB) 51.3 er 1", 1 Adiv (dB) 50.5 er 2", 1 Adiv (dB) 50.6 an)", 1 Adiv (dB) 50.0 an)", 1 Adiv	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) 0.6 D: "SS Aatm (dB) 0.6 D: "SS Aatm	(dB) -3.0 S_CU (dB) -3.0 S_CL (dB) -3.0 S_CL (dB) -3.0 S_RT (dB) -3.0 S_RT (dB) -3.0 S_RT Agr	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0 J3c" Afol (dB) 0.0 J3c" Afol (dB) 0.0	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0	(dB) 15.5 Abar (dB) 4.8 Abar (dB) 4.8 Abar (dB) 4.8 Abar	(dB) 0.0 Cmet (dB) 0.0 Cmet (dB) 0.0 Cmet	(dB) 0.0 (dB) 0.0 (dB) 0.0 (dB) 0.0 (dB) 0.0 RL (dB) 0.0	dB(/ 21) dB(/ 31) Lr dB(/ 31) dB(/ 31)												
111 Nr. 116 Nr. 126	(m) 445734.90 X (m) 445733.32 X (m) 445738.70 X (m)	F Y (m) 5011943.99 Y (m) 5011943.95 F Y (m) 5011961.68	100.40 Point Sou Z (m) 101.59 Point Sou Z (m) 101.59 Point Sou Z (m) 101.59 Point Sou Z (m) 101.00 Point Sou Z (m) 101.00 Point Sou Z (m)	urce, IS Refl. 0 urce, I Refl. 0 urce, IS Refl. 0	SO 96 DEN D SO 96 DEN D SO 96 DEN D SO 96 DEN	(Hz) A Freq. (Hz) A 613, N Freq. (Hz) A 613, Na Freq. (Hz) A 613, Na Freq. (Hz) A 613, Na Freq. (Hz)	dB(A) 85.4 ame: "A Lw dB(A) 84.5 ame: "R Lw dB(A) 83.8 ame: "R	dB 0.0 ir Coo l/a dB 0.0 ir Coo l/a dB 0.0 cTU3 l/a dB 0.0	dB 0.0 Optime dB 0.0 oled VRI Optime dB 0.0 11T Con 0ptime dB 0.0	(dB) (dB) (dB) 0.0 = Cor K0 (dB) 0.0 (dB) 0.0 dense K0 (dB) 0.0 (dB) (dB) 0.0 (dB)	(dB) 0.0 denss Di (dB) 0.0 dens Di (dB) 0.0 er (2 f Di (dB) 0.0 er (2 f Di (dB) 0.0	(dB) 51.3 er 1", 1 Adiv (dB) 50.5 er 2", Adiv (dB) 50.6 an)", 1 Adiv (dB) 50.0	(dB) 0.6 D: "SS Aatm (dB) 0.6 ID: "SS Aatm (dB) 0.6 D: "SS Aatm (dB) 0.6 D: "SS Aatm (dB)	(dB) -3.0 S_CU (dB) -3.0 S_CL (dB) -3.0 S_CL (dB) -3.0 S_RT (dB) -3.0 S_RT (dB) -3.0 S_RT Agr	(dB) 0.0 1Ac" Afol (dB) 0.0 11B" Afol (dB) 0.0 J3c" Afol (dB) 0.0 J1c" Afol (dB)	(dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0 Ahous (dB) 0.0 Ahous	(dB) 15.5 Abar (dB) 4.8 Abar (dB) 4.8 Abar (dB) 4.8	(dB) 0.0 Cmet (dB) 0.0 Cmet (dB) 0.0 Cmet (dB) 0.0	(dB) 0.0 (dB) 0.0 (dB) 0.0 (dB) 0.0 (dB) 0.0	dB(/ 21) dB(/ 31) Lr dB(/ 31) dB(/ 31)												

	Point Source, ISO 9613, Name: "RTU2 6T Exhaust Fan", ID: "SS_RTU2e"																			
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(/						
141	445706.82	5011944.35	100.40	0	D	A	82.4	0.0	0.0	0.0	0.0	52.7	0.7	-3.0	0.0	0.0	15.8	0.0	0.0	16.

	Point Source, ISO 9613, Name: "RTU2 6T Condenser (1 fan)", ID: "SS_RTU2c"																			
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(/						
149	445706.25	5011945.51	101.00	0	D	A	80.8	0.0	0.0	0.0	0.0	52.8	0.7	-3.0	0.0	0.0	4.9	0.0	0.0	25.