AECOM

To: Joseph Abela, Arch. Tech Project Manager

Fady ElMohandes, Ph.D., P.Eng., PMP Structural Department Manager

CC: Douglas McLachlin, P.Eng AECOM Canada Ltd. 250 York Street Suite 410, Citi Plaza London, ON N6A 6K2 Canada

T: 519.673.0510 F: 519.673.5975 aecom.com

Project name: AMZL DYT3 Ottawa

Project ref: 60634622

From: Jack Yu Guo, and Taesang Ahn

Date: September 27, 2022

Technical Memorandum

Subject: 60634622 Supplementary Geotechnical Investigation at DYT3 Ottawa, Ontario

The DYT3 site (the site) is located at 2625 Sheffield Road in Ottawa, Ontario. A supplementary geotechnical field investigation program was carried out at the site between March 14 and March 15, 2022, under the full-time supervision of AECOM staff. A total of four (4) boreholes, two (2) sampled borehoels and two (2) Dynamic Core Penetration Tests (DCPTs), were advanced near the existing structure, and the borehole locations and logs are provided in **Appendix A**. The laboratory test results are provided in **Appendix B**.

Subsurface Conditions at the Borehole Locations

A granular fill layer was encountered in Boreholes BH-S1/MW and BH-S2/MW beneath the asphalt. The thickness of granular fill ranged from 76 to 180 mm. This granular fill extended to 66.92 to 66.72 metres above sea level (mASL).

A layer of sand fill underlain by a layer of granular fill was encountered in Boreholes BH-S1/MW and BH-S2/MW. The thickness of sand fill ranged from 1.2 to 1.3 m. The sand fill was encountered at the elevations ranged from 66.2 to 66.72 mASL and extended to 65.5 mASL. Standard Penetration Testing (SPT) N blow counts ranged from 10 to over 50 blows per 0.3 m of penetration, indicating a compact to very dense soil.

The native silty clay to clayey silt underlain by the layers of fill was encountered in Boreholes BH-S1/MW and BH-S2/MW. The silty clay was encountered at elevation 62.5 mASL and extended to 58.0 to 56.3 mASL. Standard Penetration Testing (SPT) N values ranged from Weight Hammer (WH) to 10 blows per 0.3 m of penetration, indicating a very soft to stiff cohesive soil. The sand seams were present within the clay layer at about 62.3mASL. According to the field vane tests at 7mbgs, the undisturbed and remolded shear strength was 34.1 kPa and 8.5kP, respectively. The sensitivity ratio was about 4. This clay was medium to very sensitive and significant settlement would be expected under loading conditions. The natural water content for the very soft clay (w=about 53.5%) was higher than the liquid limit (LL=40%), indicating a highly flocculent quick clay, i.e., the clay would liquefy when it is remolded.

The native silty clay till was underlain by a layer of native silty clay in Borehole BH-S1/MW. The silty clay till was encountered at the elevation of 58.0 mASL and it extended to 56.0 mASL. Standard Penetration Testing (SPT) N values were over 50 blows per 0.3 m of penetration, indicating a hard cohesive soil.

Bedrock was encountered in Borehole BH-S2/MW below the native silty clay materials and also in DCPT-1 and DCPT-2. The bedrock surface was encountered at elevations ranging from 57.3 to 56.3 mASL. Bedrock coring was carried out in BH-S2/MW. The bedrock is comprised of Carlsbad formation shale, which is highly weathered and in dark grey in colour with horizontal bedding. The vertical and inclined open joints were infilled with clay as were observed in the core samples. The top 2m of the shale bedrock was highly weathered with an RQD of 0% and a fracture index of about 10.

The groundwater level was observed at a depth of 4.27 mbgs at the time of drilling in the open hole. Monitoring wells were installed in Boreholes BH-S1/MW and BH-S2/MW to allow for long-term groundwater monitoring at these two locations.

Foundation Options and Recommendations

According to the historical foundation design of the building, shallow foundations have been used to support the old building. Therefore, it is feasible to use the spread footings and strip footings as the foundation design option.

Shallow Foundations

Typically, shallow foundations are not suitable for heavily to moderately loaded structures based on the compressible soils encountered at the site. Loading of the sensitive clay would cause significant post-construction settlement. Since the existing building is supported by shallow foundations, the soil under the existing building footprint has been consolidated. But additional loading due to an increase in building structural load will still generate some settlement. It is recommended to increase the design settlement criteria to 50mm in the Ottawa region where substantial soft soils are existing. The bearing capacities are evaluated with the detailed foundation location plan.

Based on the above considerations, the recommended option from a geotechnical/foundations perspective is to support the proposed building on spread and strip footings with a foundation depth of 1.5mbgs.

Foundation Design Capacities

Shallow foundations

The bearing capacity at the ultimate limit state (ULS) is estimated based on the two-layer method proposed by Meyerhof and Hanna (1978) and Meyerhof (1974). The bearing capacity at the service limit state (SLS) is estimated via numerical software Settle 3 by Rocscience inc. The footings should be placed at a minimum of 1.5 m below the ground surface.

The soil layers considered in the analysis were divided into five(5) sublayers, as seen in **Table 1**. The consolidation test results are shown in **Appendix B**. The settlement analysis via Settle 3D is shown in **Appendix C**.

Soil Layer	Thickness	Compactness/Consi	Unit	Su	Ф	Е		Consolidation Settlement Parameter			neter	
	(m)	stency	Weight	(kPa	(°)	(MPa	Cc	Cr	ос	Pc	e o	C _v (cm²/s)
			(kN/m³)))			R	(kPa)		
Fill	1.5	Dense to very dense	21	-	-	52.5	-	-	-	-	-	-
Top silty clay with sand	1.5	Stiff to firm	20		-	40.0	-	-	-	-	-	-
Silty Clay	3	Very soft	20	35*	-	-	0.33 9	0.03 3	1	-	1.4	7.45E-4
Silty Clay Bottom	1	Frim to Stiff	20	20		-	0.33 9	0.03 3	-	110	0.55	7.45E-4
Silty Clay/Clayey Silt Till	2	Very stiff to hard	20	-	-	40.0	-	-	-	-	-	-
Engineered Fill	-	100% SPMDD	21	-	36	62.5	-	-	-	-	-	-
*Weighted aver	*Weighted average value											

Table 1 Soil layers for bearing capacity analysis

Based on the subsurface soil conditions described in Table 1, the bearing capacity in terms of the ULS and SLS estimated for the different size of spread footing is shown in Table 2. It should be noted that the footing is generally ULS controlled because the founding soil layer is stiff to firm silty clay underlain by the very soft silty clay. The ULS could be increased by subexcaving the clay and replaced with compacted engineered fill.

Table 2 ULS and	d SLS for Shallow	Foundation	Option
-----------------	-------------------	------------	--------

Footing size	Factored Geotechnical Resistance at ULS (kPa)	Geotechnical Reaction at SLS* (kPa)					
Strip footing 1.5m wide	110	90					
2m x 2m	130	200					
3m x 3m	120	150					
4m x 4m	110	100					
Note: * The SLS is calculated based on the settlement of 50mm at 15-year design life.							

Please note that a smaller capacity (ULS or SLS) should be used for the foundation design.

Subgrade modulus

The vertical modulus of subgrade reaction ($K_{0.3}$) on the engineered fill of 30 MPa/m to 50 MPa/m (for square plate 30 x 30 cm or 30 cm wide strip resting on pre-compressed layers) may be used for the design. It should be noted that reduction of $K_{0.3}$ due to shape and size of foundations (i.e., Ks) should be considered.

Table 3 Subgrade Reaction Moldulus

Cize of eleb	Ks					
Size of Siab	Min. K _{0.3} = 30 Mpa/m	Max. К _{0.3} = 50 Мра/т	Mean K _{0.3} =40 MPa/m			
2m x 2m	10.0	16.5	13.2			
3m x 3m	9.1	15.1	12.1			
4m x 4m	8.7	13.4	11.6			

Seismic Site Classification

Table 4 summarizes the site classification based on the soil properties in the top 20 m of the subsurface. Considering the undrained shear strength and SPT values of the very soft to stiff silty clay to clayey silt encountered, a seismic site classification of the building and proposed canopy area is *Site Class E.*

Table 4 Site Classification for Seismic Site Response (CFEM 2006)

Site Class	Ground Profile Name	Shear Wave Velocity <i>V</i> s (m/s)	Standard Penetration Resistance \overline{N}_{60}	Soil Undrained Shear Strength s_u (kPa)			
Α	Hard Rock	$\bar{V}_{s} > 1500$	$\overline{V_s}$ > 1500 Not Applicable				
В	Rock	$760 < \overline{V_s} \le 1500$	Not Applicable	Not Applicable			
С	Very Dense Soil and Soft Rock	$360 < \overline{V_s} \le 760$	$\overline{N}_{60} > 50$	$s_u > 100$			
D	Stiff Soil	$180 < \overline{V_s} \le 360$	$15 \le \overline{N}_{60} \le 50$	$50 < s_u \le 100$			
E	Soft Soil	$\overline{V_s} \le 180$	$\overline{N}_{60} < 15$	$s_u < 50$			
	Any profile with more than 3m of soil with the following characteristics: Plasticity Index PI > 20; Moisture Content w \ge 40%; and Undrained Shear Strength $s_n < 25$ kPa						
F	Other Soil	Site Specific Evaluatio	n Required				

Spectral accelerations and PGA values given in **Table 5** should be adjusted using Tables 4.2 to 4.9 in CHBDC S6-14. The design PGA and $S_a(T)$, should be selected based on project-specific requirements as described in the minimum performance level in CHBDC S6-14. Seismic earth pressures acting on the structure may be estimated using Mononobe-Okabe or Wood methods depending on the rigidity or tolerable movement of the structures.

2%/50 years (0.000404 per annum) probability								
Sa(0.2)	Sa(0.5)	Sa(1.0)	Sa(2.0)	PGA				
0.465	0.248	0.122	0.058	0.297 g				
	5%/50 years (0.001 per annum)							
Sa(0.2)	Sa(0.5)	Sa(1.0)	Sa(2.0)	PGA				
0.269	0.144	0.072	0.033	0.172 g				
	10%	/50 years (0.001 per ann	hum)					
Sa(0.2)	Sa(0.5)	Sa(1.0)	Sa(2.0)	PGA				
0.169	0.091	0.045	0.021	0.107 g				
40%/50 years (0.001 per annum)								
Sa(0.2)	Sa(0.5)	Sa(1.0)	Sa(2.0)	PGA				
0.057	0.032	0.015	0.006	0.034 a				

Table 5 Spectral Acceleration Sa (T) and PGA (CHBDC S6-14)

Liquefaction Consideration

To delineate liquefaction susceptibility, this memo has adopted the empirical criteria recommended in the Canadian Foundation Engineering Manual:

- $w/w_L \ge 0.85$ and $I_P \le 12$: Susceptible to liquefaction or cyclic mobility;
- $w/w_L \ge 0.80$ and $10 \le I_P \le 12$: Moderately susceptible to liquefaction;
- $w/w_L < 0.85$ and $I_P \ge 12$: No liquefaction or cyclic mobility.

Where w is the in-situ soil water content, w_L is the liquid limit of the soil and I_P is the plasticity index of the soil.

The clay present on site is susceptible to liquefaction as the natural water content is higher than its liquid limit.

Minimum Insulation Calculation

A design methodology for insulated foundations has been presented by Robinsky and Bespflug (1973). Summaries of their design charts for heated and unheated structures are shown in Figure 1 and Figure 2, respectively (CFEM, 2006).

Figure 1 Design curves for minimum insulation requirments for heated structures (adapted from Robinsky and Bespflug, 1973)

Figure 2 Design curves for minimum insulation requirments for unheated structures (adapted from Robinsky and Bespflug, 1973)

Design freezing Index of Ottawa is around 2350°C. As the footings will be founded on granular materials and all the backfill materials are granular materials, the sandy soil conditions are adopted while using the figures. When the building temperature of 18°C is to be maintained, Insulation should be placed with minimum soil covers of 300 mm and extend at least 1.22 m from the edge of the building. For the heated structures, the minimum installation thickness is about 60 mm according to **Figure 1**.

Closure

We trust that this meets your expectations. If you have any questions or need clarification, please do not hesitate to contact the undersigned.

Julono

Yu Guo, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

0Z

Taesang Ahn, Ph.D., P.Eng. Senior Geotechnical Engineer

Appendix A Borehole Location and Borehole Logs

11/15/AMER/London-CALON1/Legacy/Data/work/London Geotech/Projects/60634622 - AMZL DYT3/400 - Technical/410 - Investigation/411 - Borehole Data/411.1 - Borehole Data/411.1 - Borehole Locations/DYT3 Proposed BH Plan_20210210.dwg

DRAWN BY: JH	SCALE: 1:1500	DRAWING No. 1
CHECKED: TA	DATE: MAR 2022	REVISION 0

PROPOSED BOREHOLE LOCATION PLAN

OLILINI MAML.
AMAZON LOGISTICS

PROJECT NUMBER: 60634622

	NO.	DATE	DESCRIPTION		
			REVISIONS		
0	2022.03.03		BH Plan		
REV.	DATE		DESCRIPTION		СНК
CLIE	NT NAME:		PROJECT LOCATION:		_
AMAZON LOGISTICS 2625 Sheffield Rd, Ottawa ON					

REFERENCE DRAWINGS

This drawing has been prepared for the use of AECOM's client and may not be used, reproduced or relied upon by third parties, except as agreed by AECOM and its client, as required by law or for use by governmental reviewing agencies. AECOM accepts no responsibility, and denies any party that modifies this drawing without AECOM's express written consent.

NOTES:

Geotechnical Borehole - 20 m Depth

DCPT - 20 m Depth

E Geotechnical Borehole - AECOM, 2020 Investigation

AECOM

TERMINOLOGY USED IN BOREHOLE LOGS

- *Topsoil:* Mixture of soil and humus capable of supporting good vegetative growth.
- *Peat:* A mass of organic matter usually fibrous in texture in various stages of decomposition, generally dark brown to black in colour and of spongy consistency.
- *Fill:* The term fill has been used to describe materials which have been placed by non-natural processes. Fills can often be heterogeneous in nature and those relying on this report should expect them to contain deleterious materials. Such materials can include wood, bricks, slag, porcelain, organics, and obstructions such as scrap metal, storage tanks, and abandoned concrete/steel structures.

Due to the uncertainty of the placement method of the material, the boring samples obtained for this report are not expected to represent other materials at any horizontal or vertical distance from where the sample was obtained.

Fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill site. Unless specifically stated, the fill on this site has not been tested for contaminants that can be considered toxic or hazardous. Testing to determine the toxicity of fill materials can be conducted, if requested.

Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Till must be considered heterogeneous in composition and containing pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) and boulders Contractors may therefore (over 200 mm). encounter cobbles and boulders during excavation, even if they are not indicated by the logs. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Due to the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone. Caution is essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure

Desiccated:	having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Stratified:	alternating layers of varying material or color with the layers greater than 6 mm thick.
Laminated:	alternating layers of varying material or color with the layers less than 6 mm thick.
Fissured:	material breaks along plane of fracture.
Varved:	composed of regular alternating layers of silt and clay.
Slickensided:	fracture planes appear polished or glossy, sometimes striated.
Blocky:	cohesive soil that can be broken down into small angular lumps which resist further breakdown.
Lensed:	inclusion of small pockets of different soil, such as small lenses of sand scattered through a mass of clay; not thickness.
Seam:	a thin, confined layer of soil having different particle size, texture, or color from materials above and below.
Homogeneous:	same color and appearance throughout.
Well Graded:	having wide range in grain sized and substantial amounts of all predominantly on grain size.
Uniformly Graded:	predominantly on grain size.
Residual:	completed weathered sedimentary rock mixed with native soils.

AECOM

All soil sample descriptions included in this report generally follow the Canadian Foundations Engineering Manual and the Unified Soil Classification System. These systems follow the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by AECOM follow the same system. Note that, with exception of those samples where a grain size distribution analysis has been completed, all samples have been classified by visual inspection. Visual inspection classification is not sufficient to provide exact gain sizing.

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by in-situ vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis. Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils.

The standard terminology to describe cohesionless soils includes the compactness condition as determined by the Standard Penetration Test 'N' value.

Cohesio	nless Soils		Cohesive Soil	Composition		
Compactness Condition	SPT N-Index (blows per 0.3 m)	Consistency	Undrained Shear Strength (kPa)	Undrained Shear trength (kPa)		Criteria
Very loose	0 – 4	Very soft	< 12	< 2	Trace	1% - 10%
Loose	4 – 10	Soft	12 - 25	2 – 4	Some	10% - 20%
Compact	10 – 30	Firm	25 – 50	4 – 8	Adjective	20% - 35%
Dense	30 – 50	Stiff	50 – 100	8 – 15	And	> 35%
Very Dense	> 50	Very Stiff	100 - 200	15 – 30	Noun	> 35% & largest fraction
		Hard	> 200	> 30		_

Standard Penetration Test (SPT):

The number of blows required to drive a 50 mm (2 in.) open split spoon sampler from a depth of 150 mm (6 in.) to 450 mm (18 in.) in undisturbed soil. Each blow is driven by a 63.6 kg (140 lb.) hammer free falling a distance of 0.76 m (30 in.).

Sample & Soil Abbreviations		Contaminant Abbreviations			Strata/Graphic Plot					
CORE AS	Rock core sample Auger sample	BNAE BTEX	base/neutral/acid extractables benzene, toluene,		Fill		Asphalt		Cobbles	
FV	Field vane	OCP	organochlorine pesticides	2 4 4 4 7 4 4 4 7 4 4 4	Topsoil		Concrete	0.0.0	Sandy Silt	
PP	Pocket penetrometer	MI	metals & inorganics	2 × ×	•			0	1 10	
SG	Specific Gravity	PAH	polycyclic aromatic hydrocarbons		Clay		Silty Clay		Silty Clay Til	
GS	Grab sample	PCB	polychlorinated biphenyls				-	613		
SS	Split spoon sample	PHC	CCME petroleum hydrocarbons (fractions 1 – 4)		Silt		Clayey Silt		Clayey Silt Till	
DCPT	Dynamic cone penetration test	VOC	volatile organic compounds (includes BTEX)				Cille			
GR	Gravel	Plasticity Description	Liquid Limit (w _i)		Sand		Sand	. C	Silty Gravel	
SA	Sand	Low	w _l < 30			0	Sand 8		Clavey	
SI	Silt	Medium	$30 < w_l < 50$		Gravel	0°0°	Gravel		Gravel	
CL	Clay	High	50 < w _i		Clayey Sand		Shale		Limestone	

ΑΞϹΟΜ

Explanatory Sheet To Rock Core Log

Column No.	Descriptio	on	
1.	Elevation a	nd Depth of Geotechnical	Boundary in Borehole
2.	Drilling Met	hod Used	
3.	General De	escription of Geotechnical	I Unit: Quantitative description including rock type (s), percentage of rock
-	types, frequ	ency and sizes of interbed	ds. colour. texture. weathering, strength and general joint spacing
	Hardness	· · , · · · · · · · · · · · · · · · · ·	
	H1	Extremely Hard	Cannot be scratched with a pocket knife or sharp pick. Can only be chipped with repeated heavy hammer blows
	H2	Very Hard	Cannot be scratched with a pocket knife or sharp pick. Breaks with repeated heavy hammer blows
	H3	Hard	Can be scratched with a pocket knife or sharp pick with difficulty (heavy pressure) Breaks with heavy hammer blows
	H4	Moderately Hard	Can be scratched with a pocket knife or sharp pick with light or moderate pressure. Breaks with moderate hammer blows
	H5	Moderately Soft	Can be grooved 1.6 mm (1/16 in) with a pocket knife or sharp pick
	H6	Soft	Can be grooved or gouged easily with a pocket knife or sharp pick with slight pressure, can be scratech with a finger nail. Breaks with light or moderate manual pressure
	H7	Very Soft	Can readily be indented, grooved or gouged with a finger nail, or Carved with pocket knife. Breaks with light manual pressure
	Strength (from ISRM)	Approx UCS
	Svh	Very High Strength	>200 MPa
	Sh	High Strength	50 to 200 MPa
	Sm	Medium Strength	15 to 50 MPa
	SI	Low Strength	4 to 15 MPa
	Svl	Very Low Strength	1 to 4 MPa
4	Geological	Symbol for Rock or Soil M	laterial
5.	Elevation of	f Geotechnical Boundary	
6.	Run Numbe	er: Drill run number	
7.	Penetration	Rate: meters per min	
8.	Colour & Re	eturn Percentage:	
9.	Core Recov	very: Core recovery is the	total length of core pieces, irrespective of their individual lengths, obtained in a
	core run an	d expressed as a percenta	age of the length of that core run.
10.	Rock Quali	ty Designation (RQD): Th	ne total length of those pieces of sound core which are 10 cm (4 inches) or
	greater in le	ength in a core run expres	used as a percentage of the total length of that core run. Sound pieces of rack
	are those p	ieces separated by natura	l breaks and not machine breaks or subsequent artificial breaks.
	0 - 25 perce	ent Very Poor Quality	у
	25 - 40 perc	cent Poor Quality	
	40 - 75 per	cent Fair Quality	
	75 - 90 pero 90 - 100 pe	rcent Good Quality	ty
11.	Fracturing:		
	Fu U	Infractured No	o Fractures
	Fvs Ve	ery Slightly Fractured Cor	re length greater than 0.9 m (3 ft)
	Fsl S	lightly Fractured Co	pre length from 0.3 to 0.9 m (1 to 3 ft)
	Fm M	loderately Fractured Co	ore length from 0.1 to 0.3 m (4 in. to 1 ft)
	Fi In	ntensely Fractured Co	pre lengths from 0.25 to 0.1 m (1 in. to 4 in.)
	Fvi V	ery Intensely Fractured M	ostly chips and fragments
12.	Degreed of	dip of discontinuity measu	ured from the axis of rock core.

AECOM

13.

14.

15.

	Tight		No visible :	anaration
	l ignt	_		separation
FVVS	Slightly Ope	n Durun	FW< 0.8 m	m (1/32 in.)
FVVm	Moderately C	Jpen	0.8 mm (1/	32 In.)≤FVV<3.2 mm (1/8 In.)
FVVO	Open	A./: -I -	3.2 mm (1/	8 In.) ≤FW<9.7 mm (3/8 In.)
FWmw	Moderatley V	Vide	9.7 mm(3/8	3 in.) ≤FW<25.4 mm (1 in.)
FVVW	WIDE	ina Thi	FVV225.4 m	1m(1 in.)
Fracture		ung m	No film oor	ting
FFC	Von Thin			(1/32 in)
EEm	Modoratoly 7	Thin	0.8 mm (1/	(1/32) (1.) 32 in (252) (1.)
	Thin		3.2 mm (1/	32 III. = 17 - 5.2 IIIIII (170 III.)
FFL	Modoratoly 7	Thick	0.7 mm(3/8)	$0 1.) \le F < 9.7 1 1 (3/0 1.)$
	Thick	THICK	9.7 mm(3/c	m(1 in)
Poughno	THICK		FF220.4 III	III(1 III.)
Rougnine	SS		Noor porm	al atoms and ridges acour on the freature surface
กรเ ⊳ะ	Stepped			al steps and hoges occur on the fracture surface
Rr Dm	Rougn		Large angu	liar aspeniles can be seen
Rm D-	Moderately F	Rougn	Asperities a	are cleanly visible and fracture surface feels abrasive
RS		gn	Small aspe	inities on the tracture surface are visible and can be fel
RSM	Smooth		No asperiti	es, smooth to the touch
Bedding	Spacing (Sb)			
Bm	Massive		5	Sb > 3 m (10 ft)
Bvt	Very Thickly	Bedde	d C	0.9 m (3 ft) ≤ Sb ≤ 3 m (10 ft)
Bt	Thickly Bedo	led	C).3 m (1 ft) ≤ Sb ≤ 0.9 m (3 ft)
Bm	Moderately E	Bedded	C	0.1 m (4 in.) ≤ Sb ≤ 0.3 m (1 ft)
Bt	Thinly Bedde	ed	2	25 mm (1 in.) ≤ Sb ≤ 0.1 m (4 in.)
Bvt	Very Thinly I	Beddec	1 6	3 mm (1/4 in.) ≤ Sb ≤ 25 mm (1 in.)
BI	Laminated		5	SB ≤ 6 mm (1/4 in.)
Orientatio	on			
Of	Fla	at	= 0 - 20°	
Od	Di	pping	= 20 - 50°	
Ov	Ve	ertical	= 50 - 90°	
Surface \$	Shape			
Planar	Fla	at surfa	ce	
Wavy	Ur	ndulatir	g surface	
Fracture	Туре:			
D	Rodding			
1	Fault			
0 C	i ault Ioint			
5	Foliation			
י כ	Shoar Plana			
M	Mochanical I	Proake		
IVI	WECHANICAN	DIEaks		
Hydraulio	c Conductivity	(cm/se	c)	
Point Loa	ad Index:			
Extremel	y Strona 🛛 >	10		
Very Stro	ong 4-	· 10		
_ ,	ິ	. 4		
Strona	2 •	-		

	PRC) JEC ATIC	T: DYT3 - Ottawa N: 2625 Sheffield Rd		R	EC	0	R	D OF	BO	RE	EHO	DLE	: B	BH-S	61/N	1W					SHEET 1 OF 2
		ordii 'UM:	NATES: N 5028171.5; E 452674.6 Geodetic			STA END	RT D DA	DAT TE:	E: Mar 14, Mar 15, 20	, 2022 022	2											
	AEC CLIE	OM I	PROJECT #: 60634622 Amazon Logistics			BOF	RING	ME	THOD: 20 OR: Canad)0 mm dian E	n O.D Enviro	. Holl	ow Stei ntal Dril	n Auge lina	er	F	ENET AMPI	RATION	I TEST	Г НАМ 2. 64k	MMER, a: DRC	64kg; DROP, 760mm)P. 760mm
ш		8	SOIL PROFILE			SA	MPLI	ES	Dynamic C	one P	enetra	ation		SHE/	AR STR	ENGTI	1 Cu, I	kPa Q-●		., •	.3,	
SCAL		ЛЕТН		LOT		ж		ш	20	40	.011) 60) 8	30	2	20 4	rem \ 10	′⊕ 50	Ū-∆ 80	AD LAE	DITIC 3. TES	ONAL STING	WELL INSTALLATION
HTH		SING N	DESCRIPTION	ATA P	ELEV.	JMBE	ΓΥΡΕ	VALU						WA	TER CO	ONTEN	T PER	RCENT	DIS	RAIN TRIBU	JTION	AND WATER LEVELS
D		BOF		STR/	(m)	N		z	100	200	30	04	00	Wp 1	10 2	0**	30	— WI 40		()		
_	0	_	PAVEMENT		67.00					_	_								GR	SA 3	SI CL	
Ē			FILL: sand and gravel, 76 mm thick,	×	0.00			50/														
F			dense			1	SS ₁	50mr	h													
Ē			gravel, brown, moist, very dense																			
Ē	1					2	SS,	50/						0					18	57 (2	25)	-
F								00111														
-			SILTY CLAY: trace gravel, some sand,	鬫	65.50 1.50																	
Ē			brown to grey, moist to wet, stiff to firm			3	SS	8									0					
E	2																					
F																						
Ē			firm.			4	SS	5										0		2 3	39 59	
-	3																					
F	5																					
Ē						5	SS	4														
Ē																						
È.	4																					_
Ē																						
Ē		Auger																				2022.03.115
F		V Stem	Sand Seam			1	тw											þ				
F	5	. Hollov				1	тw									0						
E		Power m O.D																				
-		200 m				6	SS	5									0)				
F																						
Ē	6																					
-						7	SS	5							þ	+			7	46 3	33 14	
2 -																						
1	7																					
-																						
	8																					
-																						
	9		SILTY CLAY TILL: trace gravel, some		58.00 9.00																	▏ ▋▌
E			Gana, groy, wet, naru	B		8	ss	50/						,								
-							,	'6mn						`	Ĭ							
-	10			B				_														
			CONTINUED NEXT PAGE		T			_			-†		- -				[–			
(_0G		E READ IN CONJUNCTION WITH REPORT)		•												,					
	JEP 1 · 5	ан S Ю	DUALE						A		C	C		1							CH	UGGED: BK
		-																			01	

	PR LO	OJEC ⁻ CATIO	T: DYT3 - Ottawa N: 2625 Sheffield Rd		R	EC	:0	R	0 0	FΒ	OR	EHC	DLE	: B	BH-S	51/N	W			SHEET 2 OF 2
	CO	ORDIN	NATES: N 5028171.5; E 452674.6			STA	RTE		: Mar	14, 20)22									
	AE	COM F	Geodetic PROJECT #: 60634622			BOR	ING	IE: ME	Mar 15 THOD:	o, 2022 200 r	<u>/</u> nm 0.I	D. Hollo	ow Ster	n Auge	er	PI	ENETR		TEST HAMMER,	64kg; DROP, 760mm
	CL	IENT:	Amazon Logistics			CON	ITRA	ACTO	DR: Ca	anadia	n Envir	onmen	tal Drill	ling		S	AMPLE	RHAN	MER, 64kg; DRO	P, 760mm
L	ц	Q	SOIL PROFILE			SA	MPL	ES	Dynam Testing	ic Con (blows	e Penet s/0.3m)	ration		SHE/	AR STR	ENGTH nat V.	Cu, kP	a Q - ●		
	(SS)	ΈTΗ		Ъ.		~			20) 4	0 6	0 8	0	2	20 4	rem V. 0 6	⊕ I 0 8	U-∆ 0	ADDITIONAL LAB. TESTING	WELL INSTALLATION
- H		2 U V	DESCRIPTION	A PI	ELEV.	ABEF	ĥ	ALUE						WA	TER CC		PERC	ENT	& GRAIN SIZE DISTRIBUTION	AND WATER LEVELS
Ľ	ЦĘ С	SORI		IRA	DEPTH (m)	ÑN	F	> Z						Wp	I			w	(%)	
		ш		ω'	. ,				10	0 20	00 30	00 40	00	1	10 2	0 <u>3</u>	0 4	0		
F	10		CONTINUED FROM PREVIOUS PAGE SILTY CLAY TILL: trace gravel, some																GR SA SI CL	
E		rilling	sand, grey, wet, hard																	
F		Iger D																		
ŧ		ver Au																		
F		Pov			56.03	9	ss	50/ 76mm							0					-
F	11		AUGER REFUSAL		10.97															
F			Notes:																	-
E			report and project number as presented																	-
F			above. 2. Interpretation assistance by AECOM is																	-
F	12		required for projects excluding the above mentioned project.																	-
F			 No abnormal odour or staining was observed unless otherwise indicated. 																	-
F			4. The groundwater was observed at the depth of 4.27 mbgs in the open hole																	-
E	depth of 4.27 mbgs in the open hole. 5. The monitoring well was installed upon the completion of drilling.																			
F																				-
F	13																			
F																				-
E																				-
F																				
F	14																			-
F																				-
F																				-
E																				_
F																				-
F	15																			
F																				-
E																				-
F																				-
F	16																			-
F																				-
E																				-
Ē																				-
Ϊ																				2
B.	17																			
ŝ																				-
																				-
2																				-
	18																			-
t L																				-
																				-
A L																				-
Ē	19																			
2																				-
5È																				-
																				-
																				-
5 –	20																			_
	(LO	G TO BF	READ IN CONJUNCTION WITH REPORT)																	
	DE	PTH S	CALE							Λ:				9					LC	DGGED: BK
З Ч	1:	50								-\-		J.V							СН	ECKED: TA

	PRC	JEC ATIC	T: DYT3 - Ottawa NY: 2625 Sheffield Rd		R	EC	:0	RI	d of e	BO	REH	OLE	: E	BH-S	62/N	IW			SHEET 1 OF 3
		ordi 'UM:	NATES: N 5027916.8; E 452712.8 Geodetic			STAI END	RT D DAT	ATE	E: Mar 15, 2 Mar 15, 202	2022 22									
	AEC CLIE	OM ENT:	PROJECT #: 60634622 Amazon Logistics			BOR CON	ing Tra	ME CTO	THOD: 200 OR: Canadi	mm (an En	O.D. Ho vironm	llow Ste ental Dri	m Aug Iling	er	P S	ENETF AMPLE	RATION	I TEST HAMMEF /IMER, 64kg; DR	R, 64kg; DROP, 760mm OP, 760mm
щ		0	SOIL PROFILE			SA	MPLE	s	Dynamic Co Testing (blow	ne Per vs/0.3r	netratior m)		SHE	AR STF	RENGTH nat V	l Cu, kP - +	'a Q - ●		
EPTH SCAL		RING METH	DESCRIPTION	ATA PLOT	ELEV. DEPTH	JUMBER	ТҮРЕ	I VALUE	20	40	60	80 □	WA Wp	20 A	rem \ 40 0 ONTEN	7 ⊕ 50 8 T PERC	U - △ 80 ENT	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION (%)	WELL INSTALLATION AND WATER LEVELS
		BC		STF	(m)	2		2	100 2	200	300	400		10 :	20 :	30 4	10		
F	0		ASPHALT: 100 mm thick		67.00 0.00						_				<u> </u>			GR SA SI CI	·
			FILL: sand and gravel, 180 mm thick, some rock pieces, brown, moist, compact FILL: sand, trace gravel, brown, moist,		0.10 66.72 0.28	1	ss	11					0						
-	1		compact			2	ss	10						C	þ			11 63 (26)	
-	2		SILTY CLAY: trace gravel, some sand, brown to grey, moist to wet, very soft to stiff		65.50 1.50	3	ss	5							0				-
						4	ss	3									с		
-	3		very soft			5	ss v	wн							 		52.86	0 1 9 44 46	
	4	e.																	
	5	. Hollow Stem Aug				6	SS V	WH									59.34 (Þ	
	6	200 mm O.D																	2000 2000 2000 2000 2000 2000 2000 200
						1	тw							c	b	1		0 1 56 43	
	7					\ \	ANE						0	+					
	8		stiff, wet			7	ss	10							0				
	9																		
						2	тw							0					
	10				1	F †	- –	-		+-	-+-	+	1	1		 		t	╶│─────■■─
	LOG DEF 1 : 5	то в тн s 0	E READ IN CONJUNCTION WITH REPORT)	I	I				A		C		1		1		1	، C	LOGGED: BK :HECKED: TA

		T: DYT3 - Ottawa	R	EC	OR	DO	FB	OR	EHC	DLE	: Bł	H-S	2/M	W			SHEET 2 OF 3
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	COORDI	NATES: N 5027916.8; E 452712.8		STAR	DAT	E: Ma	r 15, 20	22									
CLEAR Annual Lapids COMBACTURE Condex Endowmented Dating SMARE BLANKER, Bug CREAR, BU	AECOM I	Geodetic PROJECT #: 60634622		END L BORIN	IG ME	Mar 1 THOD:	5, 2022 200 n	: nm O.E	D. Hollo	ow Ster	n Auger		PE	NETR/	ATION	TEST HAMMER,	64kg; DROP, 760mm
Note: Sold PROFILE	CLIENT:	Amazon Logistics		CONTI	RACT	OR: C	anadiar	n Envir	onmen	tal Drill	ing SHEAF		SA		R HAN	MER, 64kg; DRO	P, 760mm
Bigging Bigging	ALE S) THOD	SOIL PROFILE	⊢ I	SAMF	PLES	Testin	ig (blows	/0.3m)	auon		UNEA	CONC	nat V. rem V.	-+C	à-● }-△	ADDITIONAL	
Bit	H SC ME		O LELEV.	ER 1	, IJ	2	0 40	0 6	0 8	0	20	4() <u>8(</u>)	LAB. TESTING & GRAIN SIZE	WELL INSTALLATION AND WATER LEVELS
U E (m) C <thc< th=""> C</thc<>	I (ME (ME ME ME	DESCRIPTION	DEPTH		I VAL						Wo H	ERCO		PERCE	WI	DISTRIBUTION (%)	
0 COMPLET PROFERENCE 0.04 BAL 50 CL 1 Status Experimentaria 0.04 BAL 50 CL 1 Status Experimentaria 0.01 CL 1 The dopper transmitted participant and	BC		(m)	2		10	20 20	0 30	00 40	00	10	20	0 3) 40)		
	- 10	CONTINUED FROM PREVIOUS PAGE														GR SA SI CL	
1 0.07 99.33 1 99.42 99.73 1 99.84 10.07 1 99.84 10.07 1 99.84 10.07 1 99.84 10.07 1 99.84 10.07 1 99.84 10.07 1 99.84 10.07 1 99.84 10.07 1 10.07 10.08 1 10.07 10.08 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1 10.07 10.07 1		brown to grey, moist to wet, very soft to															
1 SMAE BERGONC 10.8 1 State STROME 10.8 1 State STROME <th>- </th> <th>Sun</th> <th></th>	-	Sun															
1 Rode to RECORD CP CRULEOL: 1 Below Synthing		SHALE BEDROCK:	56.33 10.67														
1 Highly weathing and taking a weathing weathing weathing a weathing weathing a weathing a weathing a w	- 11	Refer to RECORD OF DRILLHOLE:															- -
10 Linking, day, infining, day, day, day, day, day, day, day, day		Highly weathered, grey, horizontal bedding, vertical and inclined open															
1 1		joints, clay infiling BUN 1 10.67-10.98 TCR=100%															
13 3 Side 37/S, ROD-00%, Field 0 13 Image: Side 32 Side	- ing	SCR=42%, RQD=0%, FI=9 BUN 2, 10,98-12,50,TCR=93%															-
12 SCR=130, ROD-F00, FP0 13 END OF EDREHOLE Notes: 12.80 2 Important as updated above a preside database and base and ba	- <u>S</u> S	SCR=27%, RQD=0%, FI=10 BUN 3, 12 50-12 80 TCR=100%															
13 END OF BOREHOLE Units 12.80 14 Status 12.80 15 Therprefixed register 12.80 16 Therprefixed register 12.80 17 Therprefixed register 12.80 18 Therprefixed register 12.80 19 Therprefixed register 12.80 10 Therprefixed register 12.80 10 Therprefixed register 12.80 11 Therprefixed register 12.80 11 Therprefixed register 12.80 12 Therprefixed register 12.80 14 Therprefixed register 12.80 15 Therprefixed register 12.80 16 Therprefixed register 12.80 17 Therprefixed register 12.80 18 Therprefixed register 12.80 19 </th <th>- 12</th> <th>SCR=13%, RQD=0%, FI=9</th> <th>_</th> <th></th> <th>-</th>	- 12	SCR=13%, RQD=0%, FI=9	_														-
13 Image: Subject to the subject report to the subject report to the subject report to the second areas adding the above as researed at the subject report to the second areas adding the above and the subject report to the second areas adding the above and the subject report to the second areas adding the above and the subject report to the second areas adding the above at the subject report to the second areas adding the above at the subject report to the second areas adding the above at the subject report to the second areas adding the above at the subject report to the second areas adding the above at the subject report to the second areas adding the subject report to the second areas adding to the second adding to the seco																	-
10 END OF BOREHOLE 12.80 11 Note: 12.80 12 Note: 12.80 14 Hittpretation assistance by AECOM is required to replete doubding was observed unless otherwise indicated. 14 A bathormal doub or share years 15 The granutation assoluted at the double dou																	
13 Notes: 14 Notes: 15 17 16 18 17 19 18 19 19 10 10 10	E H-L	END OF BOREHOLE	54.20 12.80		_												
report and project number as presented above. 1 report and project number as presented above. 2. Interpretation assistance by AECOM is reported at above 3. No abnomal oddur or staining was observed unless otherwise indicated. 4. The groundwater was observed at the escarbard metaboxer is and above is The 14.27 mbgs in block is The	- 13	Notes: 1. This log is to be read with the subject															-
2. Interpretation assistance by AECOM is renetioned project. 4. No aboremic dour or staining west ob No aboremic dour or	-	report and project number as presented															
Image: state of the state o		2. Interpretation assistance by AECOM is required for projects excluding the above															
14 doesn't unless otherwise indicated doeph of 4.27 mbgs in the open hole. The groundwater was observed at the doeph of 4.27 mbgs in the open hole. The monitoring was used was installed upon the completion of drilling.	-	mentioned project.															:
Total	- 14	observed unless otherwise indicated.															_
The inclusion of drilling. The inclusion of drilling	-	depth of 4.27 mbgs in the open hole.															
	-	upon the completion of drilling.															
	-																
	- 15																
	- 15																-
	-																
	-																
	-																
	- 16																-
	_																
	-																
	- 17																
																	-
																	:
	- 18																-
	-																:
																	:
	- 19																-
	-																-
	-																
	20																-
	DEPTHS	SCALE					Λ:									L	DGGED: BK
1:50 ACUM CHECKED	1 : 50						A		J.U							СН	ECKED: TA

PR LO		T: DYT3 - Ottawa DN: 2625 Sheffield Rd		R	EC	0	R) (0	F [DF	RI	LLH	ю	LE	≣:		B	BH-S2/MW	1							SHEET 3 OF 3
DA AE	ORDI TUM: COM	NATES: N 5027916.8; E 452712.8 Geodetic PROJECT #: 60634622			STA ENC DRIL	RT L DA	DATE TE: G ME	: Ma Ma ETH	/lar r 15 OD	15, , 20	202 22	2															
CL	IENT:	Amazon Logistics	<u> </u>	<u> </u>	CON	ITR/		DR: FR/F	Ca X-F	nad	ian Turr	En FF-	FAULT	enta	l Dri s	illing M-SM	g 400 ⁻	тн	FL-FLEXURED	NCL BC-			N: -	-90° F		_	AZIMUTH:
DEPTH SCALE METRES	DRILLING RECORI	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE (m/min)	FLUSH COLOUR	CL-C SH-S VN-V F TOT COR	CLEA SHEA VEIN RECO FAL E %		RY OLID RE % 3 9 8	J-, P- S-	JOINT POLISHI SLICKEI R.Q.D. %		R S ED P ACT. DEX ₹0.3	-ROI T-ST L-PL DII COF	JGH EPP ANAI D Pw.r.t REAX	PED IR DISC	UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	MB- B-B					4 POINT LOAD		WELL INSTALLATION AND WATER LEVELS
		ASPHALT		56.33						Π						Π		Π		Τ							
- - - 11		Highly weathered, grey, horizontal bedding, open joints, clay infillng SHALE		10.67 56.02 10.98	1																					36	3.2
		45° inclinded joints and vertical joints			2																					ţ	1.3
- 12 				54.50 12.50 54.20	3																						
- 13 - 13 		END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is		12.80																							
- - - - - - - -		required for projects excluding the above mentioned project. 3. No abnormal odour or staining was observed unless otherwise indicated. 4. The groundwater was observed at the depth of 4.27 mbgs in the open hole. 5. The monitoring well was installed upon the completion of drilling.																									
- - - - - - - - -																											
- - - - - - - - - - -																											
																											-
	:PTH \$ 50	SCALE	1	1	1		1	11		4			C)		1	11			1	1	1			С		IGGED: BK ECKED: TA

PF LC	RO OC	JEC [.] ATIO	Γ: DYT3 - Ottawa N: 2625 Sheffield Rd		R	EC	OR	DO	FE	BOR	EHO	DLE	: D	OCP.	T-1				SHEET 1 OF 1
C(D/	OC ATI	ordin UM:	IATES: N 5028091.4; E 452590.1 Geodetic			STAR END I	T DAT DATE:	E: Ma Mar 1	r 14, 2 4, 202	022 2									
AE Cl	EC LIE	OM F	PROJECT #: 60634622 Amazon Logistics			BORII CONT	NG ME RACT	THOD	: 50.8 Canadia	8 mm di an Envi	iameter ronmer	CPT tal Dril	lling		P S	ENETF AMPLE	RATION ER HAN	I TEST HAMMER, MMER, 64kg; DRO	64kg; DROP, 760mm P, 760mm
Ш		ДОГ	SOIL PROFILE			SAM	PLES	Dynar Testir	mic Cor ng (blow	ne Pene /s/0.3m)	tration		SHE	AR STR	RENGTH nat V.	l Cu, kF	°a Q-●		
H SCA		3 ME TI		PLOT	ELEV.	H L	u II	2	20	40	60 8 1	80 I	2	20 4	10 6	⊕ 30 8		ADDITIONAL LAB. TESTING & GRAIN SIZE	WELL INSTALLATION AND WATER LEVELS
DEPT (ME		ORING	DESCRIPTION	IRATA	DEPTH (m)	NUME	N AF						Wp			PERC		DISTRIBUTION (%)	
	-	ш	PAVEMENT	S	67.00		+	1	00 2	200 3	00 4	00	1	10 2	20 3	80 4	10	GR SA SI CL	
			ASPHALT: 50 mm thick				_			_									
							+				<u> </u>								
- 1 -	1						_			-			150						
							+												
- 2 - 2	2							1											-
Ē							+	┤╏											
- 3	3							1											
-							+												-
- 4	1	<u>B</u>						1 🛉											
Ē	on Toot	ON LEST					_												2022.03.14
	Conctrati	enetrat						1 🛉	Í										
5 E E		8 mm d				\vdash	+	┤╻											
-	imoni	50						1 🛉											-
E 6	3						+												-
Ē								1											
- 7	7						_	┤┛											_
Ē								1 🛉											-
- 8	3					\vdash	+												-
							1												
- 9	9					\vdash	-					1	215						-
	\mathbb{F}		END OF BOREHOLE		9.75		+												
22-1-	1		Notes: 1. This log is to be read with the subject report and project number as presented																
S.GD1			above. 2. Interpretation assistance by AECOM is																-
SIW-11	1		mentioned projects excluding the above mentioned project. 3. No abnormal odour or staining was																
			observed unless otherwise indicated. 4. The groundwater was observed at the depth of 4.27 mbgs in the open bole																
9 L 12	2		ако асрат от 4.27 mbgs in the open noie.																-
22_04																			-
27 V V V V V	3																		-
																			-
ELXI 14	1																		-
1622 -																			-
15 15 15	5																		-
- - -																			
Ma (LC Mo Di	DG EP	TH S	: READ IN CONJUNCTION WITH REPORT)						Δ	=/	~~		4					L	DGGED: BK
Ú Je Veľo Veľo Veľo Veľo Veľo Veľo Veľo Veľ	: 7	5																СН	ECKED: TA

PF LC	RO. DC/		Г: DYT3 - Ottawa N: 2625 Sheffield Rd		R	EC	OR	DC)F E	BOR	EHC	DLE	: D	CP.	T-2				SHEET 1 OF 1
CC DA	OC ATL	RDIN JM:	IATES: N 5028025.2; E 452766.4 Geodetic			STAR [®] END D	DAT	E: Ma Mar	ar 14, 2 14, 202	2022 22									
AE CL		DM F NT:	PROJECT #: 60634622 Amazon Logistics			BORIN CONT	IG ME RACT	THOD): 50.8 Canadi	3 mm di an Envi	ameter ronmen	CPT Ital Dril	ling		P S	ENETF AMPLE	RATION ER HAN	TEST HAMMER, MER, 64kg; DRO	64kg; DROP, 760mm P, 760mm
ш		дон	SOIL PROFILE			SAM	PLES	Dyna Testi	imic Co ng (blov	ne Pene vs/0.3m)	tration		SHEA	AR STR	ENGTH nat V.	l Cu, kF	Pa Q-●		
H SCA TRES)		3 ME TH		PLOT	ELEV.	Ш. Ц	, H		20	40 6	60 8	0	2	0 4	rem v 10 6	⊕ 30 8		LAB. TESTING & GRAIN SIZE	WELL INSTALLATION AND WATER LEVELS
DEPT (ME		SORING	DESCRIPTION	IRATA	DEPTH (m)		N VAL						Wp			PERC		DISTRIBUTION (%)	
		ш	PAVEMENT	Ś	67.50		+	1	100 2	200 3	00 40	00	1	0 2	20 3	80 4	40	GR SA SI CL	
- 0			ASPHALT: 40 mm thick																
-							+			-		>							
- 1 -								1,											-
-							+	Ī											
2																			
-							_		N.										-
- 3								1 '											
Ē																			-
-							+		Į										
— 4 E								1											
	Testinc	от ,					-		7										<u>∑</u> 2022.03.14
5 5	etration	neter CF							⊨										_
Ē	ne Pen	nm dian					+		Ĺ										-
- 6	amic Co	50.8 r																	
	Dvn	`					+	-	Í										
- 7							+												
-							+												
- 8																			
Ē							-												
- 9 -								1											_
-							+						117						
10-10												1	200						
10 1 12 1 12						\vdash	+	-											-
19. SSI 11	F	-	END OF BOREHOLE Notes:		10.67			1											
SAL-M			1. This log is to be read with the subject report and project number as presented above																-
GPJ C			2. Interpretation assistance by AECOM is required for projects excluding the above																
12 12			mentioned project. 3. No abnormal odour or staining was																
111			4. The groundwater was observed at the depth of 4.57 mbgs in the open hole.																
			-																
Ш Ш																			
4622																			-
б909 15 15																			
H 001		0.00																	
E DE	EP	U BE	READ IN CONJUNCTION WITH REPORT)						Δ	=/			4					L	OGGED: BK
Ú J J J J J J J J J J J J J J J J J J J	: 75																	СН	ECKED: TA

Appendix B Laboratory Results

MOISTURE CONTENT DETERMINATION

			CLIENT	AECOM				DATE	March 28, 2022
		PROJEC	T NUMBER	60634622				TESTED BY	SAM/DHARMIK
		PROJ	IECT NAME	DYT3				REVIEWED BY	Ramana M
			LOCATION	2625 Sheffield Ro	d, Ottawa, ON				
					Observations			Formula	
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100
	SS1		114	13.40	71.64	66.49	5.15	53.09	9.70
	SS2		174	13.66	83.21	78.18	5.03	64.52	7.80
	SS3		87	13.68	64.32	52.02	12.30	38.34	32.08
S1MW	SS4		148	13.47	58.60	46.23	12.37	32.76	37.76
Shiw	SS6		111	13.58	83.02	64.70	18.32	51.12	35.84
	SS7		105	13.85	95.34	87.63	7.71	73.78	10.45
	SS8		63	13.49	81.09	74.80	6.29	61.31	10.26
	SS9		132	13.72	69.74	62.13	7.61	48.41	15.72
	SS1		82	13.47	72.24	70.18	2.06	56.71	3.63
	SS2		161	13.48	86.74	75.35	11.39	61.87	18.41
	SS3		173	13.45	82.40	69.36	13.04	55.91	23.32
S2MW	SS4		165	13.71	64.42	47.84	16.58	34.13	48.58
	SS5		134	13.69	74.97	53.78	21.19	40.09	52.86
	SS6		181	13.60	91.34	62.39	28.95	48.79	59.34
	SS8		144	13.66	102.50	84.24	18.26	70.58	25.87
S1MW	TW1-1(TOP)	78'	56	13.56	39.96	32.26	7.70	18.70	41.18
	TW1-2	78'	106	13.51	75.01	70.41	4.60	56.90	8.08
S2MW	TW2(TOP)		116	13.74	111.35	95.93	15.42	82.19	18.76
	SS9		168	13.62	94.40	86.68	7.72	73.06	10.57
								Total Samples	19

Total Samples 19

		AECON		ADA L	TD.	AEU	.U/VF	
		DETERMIN	ATION OF	LIQUID	LIMIT			
Client	AECOM	Project Number	<mark>60634662</mark>		Date	April 3, 2022		
Project Name	Sheffield Rd				Tested By	lan P		
Location	Ottawa				Reviewed By	Ramana M		
Borehole Number	S1/MW	Sample Id	SS7	Depth (feet)	20-22	Lab Number	202204003S	
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		134	175	146	149	136	
Weight of	Empty Container (g) W ₁		13.69	13.68	13.77	13.64	13.83	
Weight of Cor	ntainer + Wet Soil (g) W ₂		19.70	21.64	21.68	20.73	22.64	
Weight of Co	ntainer + Dry Soil(g) W ₃		17.81	19.21	19.21	18.60	20.04	
	Weight of Water (g) W_w	$W_w = W_2 - W_3$	1.89	2.43	2.47	2.13	2.60	
\$	/eight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	4.12	5.53	5.44	4.96	6.21	
	Water Content (%)	w = (W _w / W _s) * 100	45.87	43.94	45.40	42.94	41.87	
	Number of Blows		10	21	14	34	50	
Liqui	id Limit (%) From Graph				43.	.7		

						A Er		
		AECO	<u>M CAN</u>	ADA L	TD.	AEC		
		DETERMIN	ATION OF	PLASTIC				
Client	AECOM	Project Number	60634662		Date	April 3, 2022		
Project Name	Sheffield Rd				Tested By	lan P		
Location	Ottawa				Reviewed By	Ramana M		
Borehole Number	S1/MW	Sample Id	SS7	Depth (feet)	20-22	Lab Number	202204003S	
Desc	ription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		156	132	64			
Weight of E	Empty Container (g) W ₁		13.41	13.70	13.48			
Weight of Cont	ainer + Wet Soil (g) W ₂		14.34	14.98	14.63			
Weight of Con	tainer + Dry Soil(g) W ₃		14.14	14.70	14.38			
,	Weight of Water (g) W_w	$W_w = W_2 - W_3$	0.20	0.28	0.25			
w	eight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	0.73	1.00	0.90			
	Plastic Limit (%)	w = (W _w / W _s) * 100	27.40	28.00	27.78			
Avera	ige Plastic Limit (%) w _P				27	.73		

Result Summary							
Liquid Limit (%)	44						
Plastic Limit (%)	28						
Plasticity Index (%)	16						
Sample status	Plastic						

		AECON	I CAN	ADA L	TD.	AEC	.UM	
		DETERMIN	ATION OF	LIQUID	LIMIT		1	
Client	AECOM	Project Number	<mark>60634662</mark>		Date	April 3, 2022		
Project Name	Sheffield Rd				Tested By			
Location	Ottawa			Reviewed By	Ramana M			
Borehole Number	S2/MW	Sample Id	SS5	Depth (feet)	10-12	Lab Number	202204005S	
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		283	229	33	223		
Weight of	Empty Container (g) W ₁		12.40	12.40	12.00	12.50		
Weight of Cor	ntainer + Wet Soil (g) W ₂		20.40	22.00	22.50	22.90		
Weight of Co	ntainer + Dry Soil(g) W ₃		18.10	19.30	19.51	19.92		
	Weight of Water (g) W_w	$W_w = W_2 - W_3$	2.30	2.70	2.99	2.98		
v	Veight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	5.70	6.90	7.51	7.42		
	Water Content (%)	w = (W _w / W _s) * 100	40.35	39.13	39.81	40.16		
	Number of Blows		13	35	26	21		
Liqui	id Limit (%) From Graph				39.	.7		

						A Er			
		AECO	<u>M CAN</u>	ADA L	TD.	AEC			
		DETERMIN	ATION OF	PLASTIC					
Client	AECOM	Project Number	60634662		Date	April 3, 2022			
Project Name	Sheffield Rd			Tested By	0				
Location	Ottawa				Reviewed By	Ramana M			
Borehole Number	S2/MW	Sample Id	SS5	Depth (feet)	10-12	Lab Number	202204005S		
Desc	ription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		196	255	22				
Weight of E	Empty Container (g) W ₁		12.4	12.50	12.00				
Weight of Cont	ainer + Wet Soil (g) W ₂		19.6	19.30	20.30				
Weight of Con	tainer + Dry Soil(g) W ₃		18.3	18.00	19.00				
,	Weight of Water (g) W_w	$W_w = W_2 - W_3$	1.30	1.30	1.30				
w	eight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	5.90	5.50	7.00				
	Plastic Limit (%)	w = (W _w / W _s) * 100	22.03	23.64	18.57				
Avera	ige Plastic Limit (%) w _P				21	.41			

Result Summary							
Liquid Limit (%)	40						
Plastic Limit (%)	21						
Plasticity Index (%)	19						
Sample status	Plastic						

							MO'		
		AECON		ADA L	TD.	AE			
		DETERMIN	ATION OF		LIMIT	I	1		
Client	AECOM	Project Number	<mark>60634662</mark>		Date	April 3, 2022			
Project Name	Sheffield Rd	•			Tested By				
Location	Ottawa				Reviewed By	Ramana M			
Borehole Number	S2/MW	Sample Id	TW1/SS1	Depth (feet)		Lab Number	202204006S		
Des	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		284	278	40	251			
Weight of	Empty Container (g) W ₁		12.41	12.40	12.00	12.40			
Weight of Cor	ntainer + Wet Soil (g) W ₂		22.80	23.10	23.90	23.80			
Weight of Co	ntainer + Dry Soil(g) W ₃		20.60	20.70	20.90	20.66			
	Weight of Water (g) W_w	$W_w = W_2 - W_3$	2.20	2.40	3.00	3.14			
v	/eight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	8.19	8.30	8.90	8.26			
Water Content (%)		w = (W _w / W _s) * 100	26.86	28.92	33.71	38.01			
	Number of Blows		35	25	17	13			
Liqui	id Limit (%) From Graph				29	.9			

						A Er			
		AECO	<u>M CAN</u>	ADA L	TD.	AEC			
		DETERMIN	ATION OF	PLASTIC					
Client	AECOM	Project Number	60634662		Date	April 3, 2022			
Project Name	Sheffield Rd			Tested By	0				
Location	Ottawa		Reviewed By	Ramana M					
Borehole Number	S2/MW	Sample Id	TW1/SS1	Depth (feet)	0	Lab Number	202204006S		
Desc	ription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	
	Container Number		214	18	293				
Weight of E	Empty Container (g) W ₁		12.4	11.90	12.40				
Weight of Cont	ainer + Wet Soil (g) W ₂		20.4	18.90	20.00				
Weight of Con	tainer + Dry Soil(g) W ₃		19.12	17.78	18.79				
,	Weight of Water (g) W_w	$W_w = W_2 - W_3$	1.28	1.12	1.21				
w	eight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	6.72	5.88	6.39				
Plastic Limit (%)		w = (W _w / W _s) * 100	19.05	19.05	18.94				
Avera	ige Plastic Limit (%) w _P				19	.01			

Result Summary							
Liquid Limit (%)	30						
Plastic Limit (%)	19						
Plasticity Index (%)	11						
Sample status	Plastic						

Client	AECOM	Borehole No	S1/MW	Lab No	202204001S
Project Number	60634622	Sample ID	Date	April 1, 2022	
Project Name		Sheffield Rd	Depth (Feet)	2.5-5	
Location		Ottawa		Tested by	SAM
Soil Classification		Silty Sand, some gravel (SM)		Reviewed by	Ramana M
Total Sample Mass (A) g	134.8	% Coarse Aggregate (D)	17.7	% Fine Aggregate (E)	82.3

		COARSE A	GGREGATE		
Sieve (mm)	Individual Mass Poteined (a)	Cumulting Mass Retained (a) [V]	Coarse Aggega	te Portion Only	% Peoping (Total Comple
Sieve (min)	individual Mass Retained (g)	Cumultive Mass Retained (g) [X]	% Retained	% Passing	% Passing (Total Sample
106				100.0	100.0
75.0				100.0	100.0
63.0				100.0	100.0
53.0				100.0	100.0
37.5				100.0	100.0
26.5				100.0	100.0
22.4				100.0	100.0
19.0				100.0	100.0
16.0				100.0	100.0
13.2	3.8	3.8	15.7	84.3	97.2
9.5	8.7	12.4	52.0	48.0	90.8
6.7	7.1	19.5	81.6	18.4	85.5
4.75	4.4	23.9	100.0		82.3
Pan	109.9	Pan + [B]	Mass Passing 4.7	5 mm (g) [C = A-B]	110.9

FINE AGGREGATE							
Sample Mass before washing (g) [F]	washing (g) [F] Mass passing 75 µm sieve by washing 32.77 (g)						
Sample Mass after washing (g)	77.13	Mass passing 75 µm sieve by sieving (g)	0.65		Coarse Aggregate Portion: % Retained =(X/B) * 100 % Passing = ((B-X) /B) * 100		

Sioura (mm)	Commutations Manage Databased (a) (V)	Fine Aggregat	e Portion Only	% Dessing (Tetal Comple	Fine Aggregate Portion:	
Sieve (min)	Cumultive Mass Retained (g) [1]	% Retained	% Passing	% Passing (Total Sample	% Passing = ((F-Y) /F) * 100	
4.75			100.0	82.27	Total Mass Calculations	
2.36	13.7	12.5	87.5	72.01	% Retained on Coarse Aggregate Sieves = (X/A) * 100	
1.18	33.33	30.3	69.7	57.32	% Retained on Fine Aggregate	
0.600	50.56	46.0	54.0	44.42	Sieves = (Y/F) * E + % Ret. 4.75 % Passing Coarse Aggregate	
0.425	57.17	52.0	48.0	39.47	Sieves = ((A -X)/A)) * 100	
0.300	63.19	57.5	42.5	34.97	% Passing on Fine Aggregate Sieves = ((F - Y)/F) * E	
0.150	71.02	64.6	35.4	29.11		
0.075	76.48	69.6	30.4	25.02		
Pan	0.65	Total Mass passing 75 μm sieve (α)	33.42			

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario		Client		AECOM		Date	April 1, 2022		Project Number		60634622				
		Borehole No /	Sample Id	S1/MW	SS2		Depth (feet)	2.	5-5	Lab No		202204001S			
Pro		Project Name		Sheffield Rd					Project Location		Ottawa				
Soil Classification			tion			Silty Sand, so	me gravel (SM)			Figure No:					
Gravel(%)	18	Sand(%)	57	Fines(%)	25	D ₆₀ (mm)	1.395	D ₃₀ (mm)	0.173	D ₁₀ (mm)	N/A	Cu	N/A	C _c	N/A

	150014	Danish I. N	00404	Lah Na	0000040040			
Client	AECOM	Borenole No	52/MW	Lab No	2022040045			
Project Number	60634622	Sample ID	SS2	Date	April 1, 2022			
Project Name		Sheffield Rd		Depth (Feet)	2.5-5			
Location		Ottawa		Tested by	SAM			
Soil Classification		Silty Sand, trace gravel (SM)	Reviewed by					
Total Sample Mass (A) g	475.5	% Coarse Aggregate (D)	10.9	% Fine Aggregate (E)	89.1			
		COARSE A	GGREGATE					
Siovo (mm)	Individual Mana Datainad (a)	Completing Mana Datained (a) (V)	Coarse Aggega	te Portion Only	% Dessing (Tatal Comple			
Sleve (mm)	Individual Mass Retained (g)	Cumultive mass Retained (g) [X]	% Retained	% Passing	% Passing (Total Sample			
106				100.0				
75.0				100.0	100.0			
63.0				100.0	100.0			
53.0				100.0	100.0			
37.5				100.0	100.0			
26.5				100.0	100.0			
22.4				100.0	100.0			
19.0				100.0	100.0			
16.0	5.9	5.9	11.3	88.7	98.8			
13.2	9.1	14.9	28.8	71.2	96.9			
9.5	12.4	27.4	52.9	47.1	94.2			
6.7	10.0	37.4	72.1	27.9	92.1			
4.75	14.4	51.8	100.0	89.1				
Pan	423.1	Pan + [B]	Mass Passing 4.7	423.72				

FINE AGGREGATE											
Sample Mass before washing (g) [F]	ashing (g) [F] 210.5 Mass passing 75 µm sieve by washing 53 (g)										
Sample Mass after washing (g)	nple Mass after washing (g) 157.5 Mass passing 75 μm sieve by sieving (g) 8.8										
					,,						

1	Sious (mm)	Ourselfing Mana Datained (a) D(1	Fine Aggregate	e Portion Only	% Dessing (Tatal Comple	Fine Aggregate Portion: % Retained =(Y/E) * 100				
	Sleve (IIIII)	Cumultive Mass Retained (g) [1]	% Retained	% Passing	% Passing (Total Sample	% Passing = ((F-Y) /F) * 100				
	4.75			100.0	89.11	Total Mass Calculations				
	2.36	8.09	3.8	96.2	85.69	% Retained on Coarse Aggregat Sieves = (X/A) * 100				
	1.18	16.08	7.6	92.4	82.30	% Retained on Fine Aggregate				
	0.600	23.7	11.3	88.7	79.08	Sieves = (Y/F) * E + % Het. 4.75 % Passing Coarse Aggregate				
	0.425	30.03	14.3	85.7	76.40	Sieves = ((A -X)/A)) * 100				
	0.300	42.42	20.2	79.8	71.15	% Passing on Fine Aggregate Sieves = ((F - Y)/F) * E				
	0.150	105.36	50.1	49.9	44.51					
	0.075	148.7	70.6	29.4	26.16					
	Pan	8.8	Total Mass passing 75 μm sieve (α)	61.8						

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

AECO	AECOM CANADA LTD.		Client		AECOM			Date	te April 1, 2022		Project Numbe	r	60634622			
83 Galaxy Blvd, Unit 6 Toronto, Ontario		Borehole No /	Sample Id	S2/MW	SS2		Depth (feet)	2.	5-5	Lab No		202204004S				
		Project Name		Sheffield Rd						Project Location	on	Ottawa				
				tion			Silty Sand, tra	ace gravel (SM)			Figure No:					
Gravel(%) 11		Sand(%)	63	Fines(%)	26	D ₆₀ (mm)	0.237	D ₃₀ (mm)	0.091	D ₁₀ (mm)	N/A	λ C _U		C _c	N/A	

AECOM

Hydrometer Analysis S1/MW 202204002S Borehole No Tested b IP/SAM/DHARMIK Soil Hydrometer Used DYT3 Sample lo SS4 Reviewed b Ramana M 993585 151 H SN# 60634622 Depth (feet) Date Project Number 115105 OTTAWA Soil Classification Lean Clay, trace sand (CL) Soil Information Hvdrometer Detail Calculation of Dry Soil Mass (LL Volume of Bulb (V_B) 61.1 Oven Dried Mass (Wo) 30.48 (PI) Length of Bulb (L₂) 14.44 Air Dried Mass (Wa) 30.55 2.70 Specific Gravity of Soil (Gs) Length from '1.0' reading to top of Bulb (Ls) 10.17 Hygroscopic Corr Factor (F) 0.998 Specific Gravity of Water (Gw) Air Dried Mass in Analysis Scale Dimension (hs) 0.27 cm/Div (Ma) 50 0.989 So Correction Factor Cross-sectional Area of Cylinder (A) 28.3535 cm² Oven Dried Mass in Analysis (Mo) 49.9 (a) 197.8 Total Mass of sample Meniscus Correction (Hm) 0.0005 % Passing 2.0 mm Sieve (P10) 99.8 Divisions 9.50 Soil Particles Greater Than This Are Excluded From Graph Sample Represented (W) 50.0 Percent In Suspension (P) as per Section 14.3 of ASTM D 422 Cieve Analysis of Datained on 0.0 mm Cieve (M0) P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H) Where R = Corrected Hydrometer Reading = Hs - Hc Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422 Diameter of Soil Particles (D) as per Section 15 of ASTM D 422 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

	Sieve Allalysis Ul ne		
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	0.0	197.8	100.0
2.0	0.4	197.4	99.8

Lah No

Location

Liquid Limit

Plasticity Index

Project Name

Sieve Analysis of Hydrometer Material (M7)													
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing										
2.00	0.0	49.9	99.8										
0.850	0.1	49.8	99.7										
0.425	0.2	49.7	99.4										
0.25	0.4	49.5	99.1										
0.106	0.7	49.2	98.4										
0.075	0.8	49.0	98.1										
Pass 0.075	0.0												

Where $\eta{=}$ Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B/A]] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

Data	Time	Elaspsed Time	He in Divisions	He in Divisions	Tomp To in C	R-Ho Ho	B in %	Linom	n in Boico	v	Dinmm
Date	rine	(initiates)		HC III DIVISIOIIS	Temp To III C	n=ns-nc	F III /8		ITTE	ĸ	
1-Jan-00	10:34:00 AM	1.0	1.0335	0.0030	26.1	1.0305	96.9	7.36	8.75559	0.0125568	0.0341
	10:35:00 AM	2.0	1.0330	0.0030	26.1	1.0300	1.0300 95.3		8.75559	0.0125568	0.0243
	10:38:00 AM	5.0	1.0320	0.0030	26.1	1.0290	92.2	7.76	8.75559	0.0125568	0.0156
	10:48:00 AM	15.0	1.0310	0.0030	26.0	1.0280	89.0	8.03	8.77493	0.01257066	0.0092
	11:03:00 AM	30.0	1.0300	0.0030	25.9	1.0270	85.8	8.30	8.79435	0.01258456	0.0066
	11:33:00 AM		1.0280	0.0030	25.8	1.0250	79.4	8.84	8.81384	0.0125985	0.0048
	2:43:00 PM		1.0235	0.0030	25.4	1.0205	65.1	10.06	8.89259	0.01265465	0.0025
2-Jan-00	10:33:00 AM		1.0185	0.0030	20.8	1.0155	49.3	11.41	9.89606	0.01334957	0.0012

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
1.21	-0.522902	5.1503494
1.35	-0.522902	5.1503494
1.62	-0.522902	5.1503494
1.89	-0.520695	5.1617255
2.16	-0.518485	5.1731466
2.70	-0.516271	5.1846127
3.91	-0.507377	5.2309329
5.27	-0.400459	5.821213

Mass Retained on Seive # 10	40.5
Mass Passed Seive # 10	157.3
Jar Number	

ata	Can Id	53
opic D	Empty Can Weight (g)	13.43
grosco	Can+ Air Dried Soil (g)	43.98
н _{уі}	Can + Oven Dried Soil (g)	43.91

ΑΞϹΟΜ

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

	Client	AECOM	Date	Date January 0, 1900			mber		6063	34622		Gravel (%)	0	
	Sample ID	S1/MW	SS4	Depti	n (feet)	0	Project Na	me		D	YT3		Sand (%)	2
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6	Lab Sample No:		20	02204002S			Project Lo	cation		отт	AWA		Silt (%)	39
Toronio, Ontario	Soil Classification		Lean Clay, trace sand (CL)								Clay (%)	59		
	Figure No.				D10	N/A D30		N/A	D60	0.002	Cu	N/A	Cc	N/A

AECOM

Hvdrometer Analysis

													-			
Lab No		20220	04003S		Borehole No		S1/MW		Tested by	IP/SAM	1/DHARI	МІК	▼	Soil Hydro		neter Used
Project Name		D	үтз		Sample Id		SS7		Reviewed by	Ramana M			151 H ON#	993585	•	
Project Number	60634622				Depth (feet)			Date	12	-Apr-22			151 H 5N#	115105	0	
Location		ΓAWA		Soil Classification			Silty Sand, some o	clay, trace gravel (SM)								
	Soil Information			Hydrom	eter Deta	ails	_	Calo	culation of Dry S	Soil M <u>as</u>	s					
Liquid Limit		(LL)		Volun	ie of Bulb	(V _B)	63.1	cm ³	Oven Dried Mass	(W)	(o)	28.88	g			
Plasticity Index		(PI)		Lengt	h of Bulb	(L ₂)	14.15	cm	Air Dried Mass	(V)	/a)	29.07	g			
Specific Gravity of	Soil	(Gs)	2.70	Lengt	h from '1.0' reading to top of Bulb	(Ls)	10.5	cm	Hygroscopic Corr Fac	ctor (F)	0.993				
Specific Gravity of	Water	(Gw)	1	Scale	Dimension	(hs)	0.27	cm/Div	Air Dried Mass in Ana	ilysis (M	a)	50	g			
Sg Correction Fact	tor	(α)	0.989	Cross	-sectional Area of Cylinder	(A)	28.1351	cm ²	Oven Dried Mass in A	nalysis (M	lo)	49.7	g			
Total Mass of sample 511.9 g			g Menis	cus Correction	(Hm)	0.0005	Divisions	% Passing 2.0 mm Si	ieve (P	10)	84.6					
Soil Particles Greater Than This Are Excluded From Graph 9.50 mm			mm					Sample Represented	(V)	1)	58.7	g				

Sieve Analysis of Retained on 2.0 mm Sieve (M2)					
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing		
75.0					
63.0					
53.0					
37.5					
26.5					
19.0					
13.2					
9.5					
4.75	36.8	475.2	92.8		
2.0	79.0	432.9	84.6		

Sieve Analysis of Hydrometer Material (M7)							
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing				
2.00	0.0	49.7	84.6				
0.850	5.3	44.4	75.5				
0.425	9.7	40.0	68.1				
0.25	13.4	36.3	61.8				
0.106	19.6	30.1	51.3				
0.075	22.0	27.7	47.1				
Pass 0.075	1.2						

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

 $\mathsf{P} = [\ (100000/W)\ ^{\star}\ (\mathsf{Gs}/(\mathsf{Gs}\ \mathsf{-Gw}))]\ ^{\star}\ (\mathsf{R}\ \mathsf{-Gw})\ in\ percent \ \ (for\ Soil\ Hydrometer\ 151\ \mathsf{H})$

Where R = Corrected Hydrometer Reading = Hs - Hc

 $\label{eq:HS} \begin{array}{l} \mbox{Hs} = \mbox{Actual Hydrometer Reading} \\ \mbox{Hc} = \mbox{Composite Correction to be determined as per Section 7 of ASTM D 422} \end{array}$

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30^*\eta)/(980^*(Gs-Gw)]^* (L/T)\} \text{ in mm}$

Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

		Elaspsed Time									
Date	Time	(minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
13-Apr-22	10:44:00 AM	1.0	1.0175	0.0030	25.7	1.0145	39.2	11.49	8.83341	0.01261248	0.0427
	10:45:00 AM	2.0	1.0160	0.0030	25.7	1.0130	35.1	11.89	8.83341	0.01261248	0.0308
	10:48:00 AM	5.0	1.0145	0.0030	25.7	1.0115	31.1	12.30	8.83341	0.01261248	0.0198
	10:58:00 AM	15.0	1.0130	0.0030	25.6	1.0100	27.0	12.70	8.85306	0.0126265	0.0116
	11:13:00 AM	30.0	1.0120	0.0030	25.7	1.0090	24.3	12.97	8.83341	0.01261248	0.0083
	11:43:00 AM	60.0	1.0110	0.0030	25.6	1.0080	21.6	13.24	8.85306	0.0126265	0.0059
	2:53:00 PM	250.0	1.0085	0.0030	25.8	1.0055	14.9	13.92	8.81384	0.0125985	0.0030
14-Apr-22	10:43:00 AM	1440.0	1.0080	0.0030	20.7	1.0050	13.5	14.05	9.92007	0.01336576	0.0013

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
5.53	-0.514053	5.1961241
5.94	-0.514053	5.1961241
6.35	-0.514053	5.1961241
6.75	-0.511832	5.2076811
7.02	-0.514053	5.1961241
7.29	-0.511832	5.2076811
7 97	-0 516271	5 1846127
8.10	-0.398036	5.8353345

Mass Retained on Seive # 10	185.3
Mass Passed Seive # 10	326.6
Jar Number	

ata	Can Id	55
opic D	Empty Can Weight (g)	13.33
grosco	Can+ Air Dried Soil (g)	42.40
н _{уі}	Can + Oven Dried Soil (g)	42.21

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

	Client	AECOM		Date April 12, 2022		Project Number		60634622			Gravel (%)	7		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario Soil C	Sample ID	S1/MW	SS7	Depti	h (feet)	0	Project Name		DYT3			Sand (%)	46	
	Lab Sample No:	202204003S					Project Lo	Location OTTAWA				Silt (%)	33	
	Soil Classification		Silty Sand, some clay, trace gravel (SM)						Clay (%)	14				
	Figure No.				D10	N/A	D30	0.018	D60	0.226	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis

% Passing

98.4

97.6

97.0

96.1

93.6

90.0

Lab No	202204005S
Project Name	DYT3
Project Number	60634622
Location	OTTAWA

Soil	Information		_	
Liquid Limit	(LL)			Volume of Bulb
Plasticity Index	(PI)			Length of Bulb
Specific Gravity of Soil	(Gs)	2.70		Length from '1.0' reading to
Specific Gravity of Water	(Gw)	1		Scale Dimension
Sg Correction Factor	(α)	0.989		Cross-sectional Area of Cy
Total Mass of sample		297.4	q	Meniscus Correction
Soil Particles Greater Than This Are Exc	luded From Graph	9.50	mm	

Mass Passing (g)

295.4

292.6

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Cummulative Mass

Retained (g)

2.1

4.8

Sieve Size (mm)

75.0

63.0

53.0

37.5

26.5

19.0

13.2

9.5 4.75

2.0

Depth (feet)		10-12	!
Soil Classification			Lean Clay
Hvdrom	neter Detai	ls	
	(V _B)	61.1	cm ³
	(L ₂)	14.44	cm
ding to top of Bulb	(Ls)	10.17	cm
	(hs)	0.27	cm/Div
of Cylinder	(A)	28.3535	cm ²
	(Hm)	0.0005	Divisions

Borehole No Sample lo

Sieve Analysis of Hydrometer Material (M7)

Mass Passing

(g)

49.3

48.9

48.6

48.1

46.9

45.1

Comulative Mass

Retained (g)

0.0

0.4

0.7

1.2

2.4

4.2

1.4

Sieve Size

(mm)

2.00

0.850

0.425

0.25

0.106

0.075

Pass 0.075

% Passing

99.3

98.4

-						
S2MW	Tested by	IP/SAM/DHARMIK	▼		Soil Hydron	neter Used
SS5	Reviewed by	Ramana M		151 H SN#	993585	0
10-12	Date	01-Apr-22		13111314#	115105	۲
Lean Clay, traace sa	and, trace gravel (CL))				

Calculation of Dry Soil Mass								
Oven Dried Mass	(Wo)	22.18						
Air Dried Mass	(Wa)	22.5						
Hygroscopic Corr Factor	(F)	0.986						
Air Dried Mass in Analysis	(Ma)	50						
Oven Dried Mass in Analysis	(Mo)	49.3						
% Passing 2.0 mm Sieve	(P10)	98.4						
Sample Represented	(W)	50.1						

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

 $D = SQRT \text{ of } \{[(30*\eta)/(980*(Gs-Gw)] * (L/T)\} \text{ in mm}$

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5⁺[L₂ V_B/A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
2-Apr-22	10:55:00 AM	1.0	1.0290	0.0030	26.1	1.0260	82.4	8.57	8.75559	0.0125568	0.0368
	10:56:00 AM	2.0	1.0280	0.0030	26.1	1.0250	79.3	8.84	8.75559	0.0125568	0.0264
	10:59:00 AM	5.0	1.0265	0.0030	26.1	1.0235	74.5	9.25	8.75559	0.0125568	0.0171
	11:09:00 AM	15.0	1.0250	0.0030	26.0	1.0220	69.8	9.65	8.77493	0.01257066	0.0101
	11:24:00 AM	30.0	1.0240	0.0030	25.9	1.0210	66.6	9.92	8.79435	0.01258456	0.0072
	11:54:00 AM	60.0	1.0230	0.0030	25.8	1.0200	63.4	10.19	8.81384	0.0125985	0.0052
	3:04:00 PM	250.0	1.0190	0.0030	25.7	1.0160	50.7	11.27	8.83341	0.01261248	0.0027
3-Apr-22	10:54:00 AM	1440.0	1.0160	0.0030	20.6	1.0130	41.2	12.08	9.94418	0.01338199	0.0012

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.43	-0.522902	5.1503494
2.70	-0.522902	5.1503494
3.11	-0.522902	5.1503494
3.51	-0.520695	5,1617255
3.78	-0.518485	5.1731466
4.05	-0.516271	5,1846127
5.13	-0.514053	5,1961241
5.94	-0.395608	5.8495155

Mass Retained on Seive # 10	76.3
Mass Passed Seive # 10	221.1
Jar Number	

ata	Can Id	146
pic D	Empty Can Weight (g)	13.80
grosco	Can+ Air Dried Soil (g)	36.30
н	Can + Oven Dried Soil (g)	35.98

UNIFIED SOIL CLASSIFICATION SYSTEM

	Client	AECOM	Date April 1, 2022			Project Nu	mber	60634622				Gravel (%)	1	
	Sample ID	S2MW	SS5	Depth	(feet)	10-12	Project Name		DYT3			Sand (%)	9	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto Ontario	Lab Sample No:	202204005S Project Lo					cation	OTTAWA				Silt (%)	44	
Toronio, Ontano	Soil Classification				Lean	Clay, traace s	and, trace g	ravel (CL)					Clay (%)	46
	Figure No.			C	D10	N/A	D30	N/A	D60	0.005	Cu	N/A	Cc	N/A

AECOM

Hvdrometer Analysis

Lab No		202204006S			Borehole No		S2MW		Tested by	1	IP/SAM/DHARMIK		Soil Hydrometer Used		meter Used
Project Name	DYT3			Sample Id		TW1 SS1		Reviewed by	1	Ramana M		151 H ON#	993585	0	
Project Number	60634622			Depth (feet)				Date		01-Apr-22		151 11 514#	115105	•	
Location		отт	TAWA		Soil Classification		Lean Clay, trace sand (CL)								
	Soil Information				Hydrom	eter Detai	ils		Ca	alculation	of Dry Soil Mass				
Liquid Limit		(LL)		Volume of E	ulb	(V _B)	61.1	cm ³	Oven Dried Mass		(Wo)	18.58 g			
Plasticity Index		(PI)		Length of B	dlu	(L ₂)	14.44	cm	Air Dried Mass		(Wa)	18.7 g			
Specific Gravity of S	Soil	(Gs)	2.70	Length from	'1.0' reading to top of Bulb	(Ls)	10.17	cm	Hygroscopic Corr F	actor	(F)	0.994			
Specific Gravity of V	Water	(Gw)	1	Scale Dimer	nsion	(hs)	0.27	cm/Div	Air Dried Mass in Ar	nalysis	(Ma)	50 g			
Sg Correction Factor	or	(α)	0.989	Cross-section	nal Area of Cylinder	(A)	28.3535	cm ²	Oven Dried Mass in	Analysis	(Mo)	49.7 g			
Total Mass of samp	ble		297.2	g Meniscus C	prrection	(Hm)	0.0005	Divisions	% Passing 2.0 mm	Sieve	(P10)	100.0			
Soil Particles Greate	er Than This Are Excluded From Gr	aph	9.50	mm					Sample Represente	ed	(W)	49.7 g			
s	Sieve Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) Discrete Analysis of Hydrometer M														

Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	0.0	297.2	100.0
2.0	0.0	297.2	100.0

	Sieve Analysis of Hydrometer Material (M7)									
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing							
2.00	0.0	49.7	100.0							
0.850	0.1	49.6	99.9							
0.425	0.1	49.6	99.8							
0.25	0.1	49.5	99.7							
0.106	0.2	49.5	99.6							
0.075	0.3	49.4	99.5							
Pass 0.075	0.0									

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

 $\label{eq:HS} \begin{array}{l} \mbox{Hs} = \mbox{Actual Hydrometer Reading} \\ \mbox{Hc} = \mbox{Composite Correction to be determined as per Section 7 of ASTM D 422} \end{array}$

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[($30^*\eta$)/($980^*(Gs-Gw$)] * (L/T)} in mm

Where $\eta =$ Viscosity of suspending Medium (Water) in poises $L = Effective Depth = L1 + 0.5 '[L_2 - V_g.(A)]$ in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm T = Time in minutes

		Elaspsed Time									
Date	Time	(minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
2-Apr-22	11:30:00 AM	1.0	1.0330	0.0030	21.9	1.0300	95.9	7.49	9.63853	0.01317473	0.0361
	11:31:00 AM	2.0	1.0325	0.0030	21.9	1.0295	94.3	7.63	9.63853	0.01317473	0.0257
	11:34:00 AM	5.0	1.0320	0.0030	21.9	1.0290	92.7	7.76	9.63853	0.01317473	0.0164
	11:44:00 AM	15.0	1.0305	0.0030	21.9	1.0275	87.9	8.17	9.63853	0.01317473	0.0097
	11:59:00 AM	30.0	1.0290	0.0030	21.8	1.0260	83.1	8.57	9.66145	0.01319039	0.0071
	12:29:00 PM	60.0	1.0250	0.0030	21.8	1.0220	70.3	9.65	9.66145	0.01319039	0.0053
	3:39:00 PM	250.0	1.0190	0.0030	21.7	1.0160	51.2	11.27	9.68448	0.01320609	0.0028
3-Apr-22	11:29:00 AM	1440.0	1.0140	0.0030	20.1	1.0110	35.2	12.62	10.06625	0.01346388	0.0013

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
1.35	-0.426827	5.6697227
1.49	-0.426827	5.6697227
1.62	-0.426827	5.6697227
2.03	-0.426827	5.6697227
2.43	-0.424451	5.6832087
3.51	-0.424451	5.6832087
5.13	-0.422071	5.696751
6.48	-0.383407	5.9213247

Mass Retained on Seive # 10	0
Mass Passed Seive # 10	297.2
Jar Number	

ata	Can Id	100
opic D	Empty Can Weight (g)	13.60
grosco	Can+ Air Dried Soil (g)	32.30
н _{уі}	Can + Oven Dried Soil (g)	32.18

ΑΞϹΟΜ

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

	Client	AECO	M	Date April 1, 2022		Project Nu	mber	60634622			Gravel (%)	0	
	Sample ID	S2MW	TW1 SS1	Dept	h (feet)	0	Project Na	me		D	YT3		Sand (%)
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6	Lab Sample No:	2022040065					Project Lo	cation	ΟΤΤΑΨΑ			Silt (%)	56
Toronto, Untario	Soil Classification	Lean Clay, trace sand (CL)						Clay (%)	43				
	Figure No.				D10	N/A	D30	N/A	D60	0.004	Cu	N/A	Cc

DETERMINATION OF UNIT WEIGHT - ASTM D7263											
Project Number 606346		634622	2	Date Tested		29-Mar-22					
Р	Project Name DYT3		ОҮТЗ	Location		262	5 Sheffield Rd, Ottawa	I, ON	Checked by Ramana M		ana M
	Water Content										
	Lab Number 20220		04007S								
Test Info		Borehole Name		S1	-MW						
		Sample ID		TW1							
		Depth		78'(Bottom 20cm)							
		Trial		Α	В	Α	В	Α	В	Α	В
		Tare ID		190	192						
		Tare Wt		13.50	13.60						
Mass in		Tare + Wet Soil		51.40	45.60						
Grams		Tare + Dry Soil	1	43.90	39.19						
		Water	Mw	7.50	6.41						
		Dry Soil	M _d	30.40	25.59						
	Water Content % w			24.67	25.05						
		Average %		24	4.86						
					V	Veight- Volume Re	elations				
Temp of water (C)				20	20						
Density of Water		T	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		Wet Soil	M	147.32	169.82						
Mass in		Soil + Wax in Air		162.27	179.80						
Grams	Wax	1		14.95	9.98						
	Wet	Wet Soil + Wax in water		73.79	85.63						
	Dry Soil ^A		M _d	118.17	135.80						
Spec	cific Gravity of	Soil (assumed)	G_S	2.72	2.72						
	Wet Soil + Wa	IX ^B		88.48	94.17						
Volume in	Wax		1	16.46	10.99						
00	Wet Soil		V	72.02	83.18						
	Dry Soil = M _d	G _s	$V_{\rm S}$	43.52	50.02						
	Wet Unit Weig	$ht = (M_t/V)x9.81$	Ym	20.07	20.03						
KN/cum	Average	e Wet Unit Weight		20	0.05						
	Dry Unit Weig	$ht = (M_d/V) \times 9.81$	Y _{ri}	16.10	16.02						
	Average	e Dry Unit Weight		16	5.06						
Void Ratio =	(V-V _S)/V _S		e	0.65	0.66						
Porosity % =	= [(V-V _S)/V]x100)	n	39.56	39.87						
Degree of Saturation = [V _w /(V-V _s)] x100		s	100.00	100.00							

Client	AECOM	Project Number	Project Number 60634622				4-Apr-22			
Project Name	DYT3			Done By	lan P					
Location	Ottawa			Reviewed By	Ramana M					
Borehole Number	S2/MW TW1	Sample Id	Depth (feet)		Lab#	Lab# 202204006S				
Descri	ption	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
Weight of Empty	Density Bottle (g) W ₁		89.32	87.44	89.18					
Weight of Density Bottle + Dry Soil (g) W ₂			109.43	109.54	109.92					
Weight of Dry Soil W _s (g)		$W_0 = W_2 \text{-} W_1$	20.11	22.1	20.74					
Weight of Density Bottle + Water (g) W4			338.35	337.11	338.42					
Weight of Dens	ity Bottle + Soil + Water (g) W ₃		351.24	351.28	351.72					
Weight of Water Displaced (g) W_4		$W_5 = \{(W_0 + W_4) - W_3\}$	7.22	7.93	7.44					
Specific Gravity	of Soil Solids	$\mathbf{G}_{\mathrm{s}}=\left(\mathbf{W}_{0}\right)/(\mathbf{W}_{5})$	2.785	2.787	2.788					
Average Specifi	c Gravity at room temperature (G _T)		2.787							

Description	Formula	Data
Room Temperature T ^o C		21.5
Standard Temperature for Reporting Specific Gravity		20
Relative Density of Water at Room Temperature γ_{T}		0.997913
Relative Density of Water at Standard Temperature γ_{20}		0.998234
Corrected Specific Gravity (G ₂₀)	$G_{20} = G_T * (\gamma_T / \gamma_{20})$	2.786

0.999677931

k

One-Dimension Consolidation Test as per ASTM D2435-11

Lab Number	202204006S			Date of Testing	30-Mar-22			
Project Num	60634622	Client	AECOM	Tested by	Ian / Dharmik/ Sam			
Project Nam	DYT3 Ottawa			Reviewed by	Ramana M			
Project Locat	2625 Sheffield Road, Ottawa, Ontario							
Sample Id	BHS2/MW TW 1 (SS7)			Depth (feet)	20-22			

CONSOLIDATION TEST SUMMARY

Initial Height of Specimen H_0 (mm)			1.91	Height of Sol	ids H _s (cm)	0.896
Load Increment	Axial Stress σ _a (lb/ft ²))	Axial Stress σ_a (kPa)	Corrected Deformation ΔH (cm)	Specimen Height H (cm)	Axial Strain ε _a (%)	Void Ratio e
1	1 Seating Load			1.9100	0	1.13
2	125	11.97	0.2870	1.6230	15.0272251	0.81
3	250	23.94	0.2997	1.6103	15.6921466	0.80
4	500	47.88	0.3200	1.5900	16.7560209	0.78
5	1000	95.76	0.3556	1.5544	18.617801	0.74
6	2000	191.52	0.4216	1.4884	22.0753927	0.66
7	4000	383.04	0.5334	1.3766	27.9267016	0.54
8	8000	766.08	0.6096	1.3004	31.9162304	0.45
9	16000	1532.16	0.6731	1.2369	35.2408377	0.38
10	32000	3064.32	0.7341	1.1759	38.4324607	0.31
11	8000	766.08	-0.7163	1.1937	-37.5015707	0.33
12	2000	191.52	-0.6960	1.2140	-36.4376963	0.36
13	500	47.88	-0.6706	1.2394	-35.1078534	0.38
14	125	11.97	-0.6528	1.2572	-34.1769634	0.40

Void Ratio e	Axial Stress σ _a (kPa)	Log of Axial Stress σ _a (kPa)
1.13	0	#NUM!
0.81	11.97	1.078094
0.80	23.94	1.379124
0.78	47.88	1.680154
0.74	95.76	1.981184
0.66	191.52	2.282214
0.54	383.04	2.583244
0.45	766.08	2.884274
0.38	1532.16	3.185304
0.31	3064.32	3.486334
0.33	766.08	2.884274
0.36	191.52	2.282214
0.38	47.88	1.680154
0.40	11.97	1.078094

0.90	Τ_
0.80	-
0.70	-
0.60	-
0.50	-
0.40	-
0.30	-
0.20	
0.10	-
0.00	
	1

ΑΞΟΟΜ

Grain Size Analysis Results							
Gravel %	Sand %	Silt %	Clay %	Soil Type			
0	1	56	43	Lean Clay			
Att	erberg's Lin	nits	Other Results				
LL %	PL %	PI %	SG	***Υ kN/m ³	*** $\Upsilon_{d} \text{ kN/m}^{3}$		
30 19 11		2.787	1.947 1.486				
N	lote: ** Ass	umed Value	es	*** Before Test	ing		

Determination of Pre-Consolidation Pressure from e-logo Curve

*** Before Testing

Appendix C Settlement Analysis

AECOM