

Assessment of Adequacy of Public Services Report

CIV-7 Storey Condo Redevelopment 424 Churchill Avenue, Ottawa, ON

Prepared for:

Churchill Properties Inc. 145 Select Avenue Unit 5, Toronto ON M1V 5M8

Attention: Jemmy Taing

LRL File No.: 220224

October 11, 2022

TABLE OF CONTENTS

1	IN	TRODUCTION AND SITE DESCRIPTION	4
2	ΕX	ISTING SITE AND AVAILABLE SERVICES	4
3	CC	NCEPT DEVELOPMENT	5
4	WA	ATER SUPPLY SERVICING	5
	4.1	Residential Water Demands	6
5	SA	NITARY SERVICE	9
6	ST	ORMWATER MANAGEMENT	9
	6.1	Existing Stormwater Infrastructure	9
	6.2	Design Criteria	9
	6.3	Proposed Stormwater Management System	10
7	CC	DNCLUSION	11

APPENDICES

- Appendix A Pre-consultation
- **Appendix B** Site Topographical Survey
- **Appendix C** Concept Plan by Open Plan Architects inc.
- Appendix D Water Demand Calculations
- Appendix E Sanitary Calculations
- Appendix F Stormwater Management Design Calculations
- Appendix G Fire Hydrant Coverage

LIST OF TABLES

TABLE 1 : DEVELOPMENT RESIDENTIAL POPULATION ESTIMATE	6
TABLE 2: INSTITUTIONAL/ COMMERCIAL DEMANDS	7
TABLE 3: SUMMARY OF BOUNDARY CONDITIONS	8
TABLE 4 : FIRE PROTECTION SUMMARY TABLE	8
TABLE 5: POST-DEVELOPMENT ESTIMATED AREAS & RUNOFF COEFFICIENTS	.10
TABLE 6: SUMMARY OF POST-DEVELOPMENT FLOW RATES	.11

LIST OF FIGURES

1 INTRODUCTION AND SITE DESCRIPTION

LRL Associates LTD. was retained by Churchill Properties Inc to prepare a functional serviceability report for a 7-storey condo redevelopment at 424 Churchill Avenue in the City of Ottawa.

The subject site is located South of Danforth Avenue, West of Churchill Avenue North and North of Byron Avenue and has an approximate area of **0.101 ha**. Under the City of Ottawa Zoning bylaw, the property is currently zoned as TM H (24), Traditional Mainstreet Zone. The site is currently occupied by a single-storey commercial building surrounded by surface parking. There is also a retaining wall located on the North of the site along Danforth Avenue. The subject site can be seen below in Figure 1.

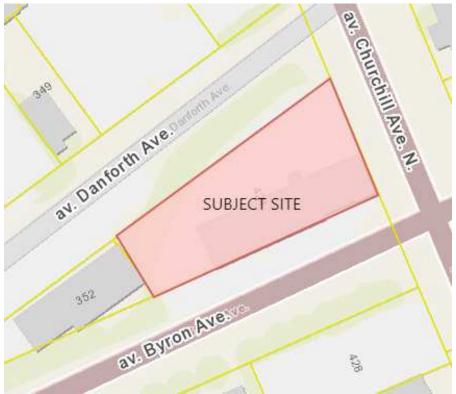


Figure 1: Aerial View of Subject Lands

2 EXISTING SITE AND AVAILABLE SERVICES

The site currently consists of a one-storey commercial building with associated asphalt parking and entrances, located along Byron Avenue and Churchill Avenue. The asphalt surface of the site is generally flat and slopes towards the North and East property lines. At the northwest corner of the site there is a steep slope with tree cover that slopes down to Danforth Avenue. There is a drop of approximately 1m along the East property line along Churchill Ave, from Byron Ave to Danforth Ave. There is also a drop of approximately 6m from the North property line of the site down to Danforth Avenue. To accommodate for this drop there is an existing retaining wall which wraps around the northeast corner, runs primarily along the North property line and cuts into the

treed area located at the Northwest corner of the site. The existing site topographical survey and the location of the existing retaining wall can be found in **Appendix B**.

Sewer and watermain mapping, along with as-built information collected from the City of Ottawa indicate the following existing infrastructure located within the adjacent rights-of-way:

Churchill Avenue N:

- 300mm PVC sanitary sewer (2010)
- 300mm CONC storm sewer (2010)
- 400mm PVC watermain (2010)

Danforth Avenue:

- 225mm CONC sanitary sewer (1940)
- 150mm DI watermain (1984)

3 CONCEPT DEVELOPMENT

The contemplated development is a 7-storey apartment building with 2 levels of underground parking that will be accessed via Danforth Avenue. The development contemplates a total combined floorspace of **7,818 m**², approximately **58** residential units, some amenity space and 3 office spaces. Refer to the Concept Plan prepared by Open Plan Architects included in **Appendix C**.

4 WATER SUPPLY SERVICING

The subject property lies within the City of Ottawa 1W water distribution network pressure zone. There is an existing 406 mm PVC watermain located within Churchill Avenue N and a 152mm DI watermain located in Danforth Avenue. There are currently six (6) existing fire hydrants within proximity to the subject property. Refer to *Appendix D* for the water pressure zone and location of fire hydrants.

According to the City of Ottawa Water Distribution Guidelines (Technical Bulletin ISDTB-2014-02), since the subject site is anticipated to house more than 50 residential units, it is required to be serviced by two water service laterals, separated by an isolation valve, for redundancy and to avoid creation of a vulnerable service area. Hence, the contemplated development is anticipated to be serviced via two (2) 150 mm diameter services connected to the existing 406mm PVC watermain within Churchill Ave N and the 152mm DI watermain located in Danforth Ave. The service laterals are to be looped inside the building in coordination with the mechanical engineer at the detailed design stage.

4.1 Residential Water Demands

The residential water demands, and anticipated population were determined using Appendix 4-A, Table 4.1 and Table 4.2 from the *City of Ottawa Water Distribution Design Guidelines* and Table 3-3 from the *MOE Design Guidelines for Drinking Water Systems*.

The water supply requirements for the residential units, office spaces and amenity space in the proposed development have been calculated using the following formulas:

 $Q = (q \times P \times M)$, for the residential and office spaces and $Q = (q \times A \times M)$, for the amenity space.

Where:

q = average water consumption (L/capita/day) or (L/ha/day)
P = design population (capita)
M = Peak factor
A = area (ha)

Residential

Based on the Concept Site Plan provided by Open Plan Architects Inc., the contemplated development is anticipated to include **58** residential units, with a population of approximately **85.4** people. *Table 1* below summarizes the proposed residential population count as interpreted using Table 4-1 from the *City of Ottawa Water Distribution Design Guideline*.

Table 1:	Development	Residential	Population	Estimate
----------	-------------	-------------	------------	----------

Proposed Unit Type	Persons Per Unit	Number of Units	Total Population
1 Bedroom	1.4	52	72.8
2 Bedroom	2.1	6	12.6
	Total	58	85.4

With reference to *Table 4.1 of the City of Ottawa Water Distribution Design Guidelines*, an average water consumption rate of 280 L/c/d was used. With reference to Table 3-3 of the MOE *Design Guidelines for Drinking Water Systems* a Maximum Daily Demand Factor and Maximum Hour Demand Factor were calculated to be 7.2 and 10.9, respectively. The anticipated residential demands were calculated as follows:

- Average daily domestic water demand is **0.28** L/s,
- Maximum daily demand is **2.00** L/s, and
- Maximum hourly demand is **3.01** L/s.

Commercial/Institutional

Appendix 4-A and Table 4.2 of the City of Ottawa Water Distribution Design Guidelines were used to determine the consumption rates and peak factors of the amenity and office spaces. A water consumption rate of 75L/p/d was used for office employees and a consumption rate of 28,000L/ha/d was used for the amenity space. The Maximum Daily Demand Factor and the Maximum Hourly Demand Factor were 1.5 and 1.8 respectively. *Table 2* below summarizes the proposed institutional/ commercial demands

Property Type	Unit	Rate	Units	Demand (L/d)
Office	75	L/p/d	3 people	225.0
Amenity Space	28,000	L/ha/d	0.0167 ha	467.6

Table 2: Institutional/ Commercial Demands

Using the peak factors, the anticipated institutional and commercial demands were calculated as follows:

- o Average daily domestic water demand is **0.008** L/s,
- o Maximum daily demand is **0.012** L/s, and
- Maximum hourly demand is **0.014** L/s.

Combined

The combined peak factors for the site are anticipated to equal the following:

- o Average daily domestic water demand is 0.28 L/s,
- o Maximum daily demand is 2.01 L/s, and
- Maximum hourly demand is **3.02** L/s.

For greater detail on Water Demand Calculations, please refer to Appendix D.

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand, as indicated in the boundary request correspondence included in *Appendix D*. Table 3 below summarizes boundary conditions for the proposed development.

Design Parameter	Anticipated	Boundary Conditions @ Churchill Ave & Danforth Ave		
	Demand (L/s)	Connection 1* (m H2O / kPa)	Connection 2** (m H2O / kPa)	
Average Daily Demand	0.28	41.21 / 404.13	44.04 / 431.88	
Max Day + Max Fire Flow (per FUS)	2.01 + 216.7	35.61 / 349.22	15.04 / 147.49	
Peak Hour	3.02	35.01 / 343.33	37.84 / 371.08	
*Ground Elevation assumed at 73.69m for Connection 1 @ Churchill Ave ** Ground Elevation assumed at 70.86m for Connection 2 @ Danforth Ave				

Table 3: Summary of Boundary Conditions

As indicated in Table 3, pressures in all scenarios meet the required pressure range stated in the City of Ottawa Design Guidelines – Water Distribution (Section 4.2.2). Refer to **Appendix D** for Boundary Conditions.

The estimated fire flow for the proposed buildings was calculated in accordance with *ISTB-2018-02*. The following parameters were assumed by the architect:

- Type of construction Non-combustible construction
- Occupancy type Limited Combustible
- Sprinkler Protection –Fully Automatic Sprinkler System

The maximum estimated fire flow demand was calculated to be **13,000 L/min**, see **Appendix D** for details.

There are at least ten (10) existing fire hydrants in proximity to the contemplated buildings that are available to provide the maximum required fire flow demands of **13,000 L/min**. Refer to **Appendix D** for fire hydrant locations. Table 4 below summarizes the aggregate fire flow of the contributing hydrants which are in proximity to the proposed development based on Table 18.5.4.3 of *ISTB-2018-02*.

	Max. Fire	Fire	Fire	Fire	Available
	Flow Demand	Hydrants(s)	Hydrant(s)	Hydrant(s)	Combined Fire
	(L/min)	within 75m	within 150m	within 300m	Flow (L/min)
Contemplated Development	13,000	2	4	4	(2 x 5678) + (4 x 3785) + (4 x 2839) = 37,852

The total available fire flow from contributing hydrants is equal to **37,852 L/min** which is sufficient to provide adequate fire flow for the proposed development. A certified fire protection system

specialist will need to be employed to design the building's fire suppression system and confirm the actual fire flow demand.

The anticipated water supply design conforms to all relevant City Guidelines and Policies.

5 SANITARY SERVICE

There is an existing 300mm PVC Sanitary sewer located in Churchill Ave N and a 225mm CONC Sanitary Sewer located in Danforth Ave. It is anticipated that the contemplated development will be connected to the existing 300mm PVC sanitary sewer located within Churchill Ave N, to be connected to the proposed building.

The anticipated post development total flow was calculated to be is **1.04 L/s** as a result of proposed residential population and a small portion of infiltration. Refer to **Appendix E** for further information on the calculated sanitary flows.

Based on as-built information received from the City of Ottawa, the existing 300mm sanitary sewer located in Churchill Ave N is assumed to be sloped at 5.4% with an existing maximum capacity of **224.7 L/s**. The anticipated wet wastewater flows from the contemplated development represent approximately 0.46% of the maximum existing sewer capacity.

Sanitary capacity would need to be reviewed with the City of Ottawa during the detailed design stage to ensure the existing city sanitary sewer has adequate capacity for the proposed sanitary flows.

6 STORMWATER MANAGEMENT

6.1 Existing Stormwater Infrastructure

The subject property lies within the Ottawa River West sub-watershed. There is an existing 300mm CONC storm sewer located in Churchill Ave N. In pre-development conditions, the stormwater runoff from the subject site would generally flow uncontrolled overland towards the North and East property lines. Refer to *Appendix F* for the topographical survey showing existing contours.

6.2 Design Criteria

The stormwater management criteria for this development are based on pre-consultation with City of Ottawa officials, the City of Ottawa Sewer Design Guidelines including City of Ottawa Stormwater Management Design Guidelines, 2012 (City standards), as well as the Ministry of the Environment's Stormwater Planning and Design Manual, 2003 (SWMPD Manual).

The stormwater management will need to meet the following stormwater design criteria;

- Meet an allowable release rate based on the pre-development Rational Method Coefficient or a maximum of 0.50, employing the City of Ottawa IDF parameters for a 2-year storm with a calculated time of concentration equal to or greater than 10 minutes; and
- > Attenuate all storms up to and including the City of Ottawa 100-year storm event on site.
- Water quality treatment will not be required on this site as the water being collected and conveyed to the storm system is rooftop water.

6.3 Proposed Stormwater Management System

The contemplated development is anticipated to outlet to the 300mm CONC storm sewer located within Churchill Ave N. It is anticipated that roof drains on building rooftops will be utilised to collect and direct runoff to the building's mechanical system in the underground garage. A storm service will be located along the East side of the building to discharge storm flows to the existing 300mm CONC storm sewer in Churchill Ave N.

As per the pre-application consultation meeting with the City of Ottawa, it was recommended that it would be acceptable to control only the roof portion of the building up to the 100-year storm event, to a 2-year pre-development level and that the remainder of the site could be left uncontrolled as long as the uncontrolled portion is directed towards the right of way. Based on these stormwater objectives for the subject site, it was determined that the allowable release rate for the contemplated development is **10.81 L/s** for all storms up to and including the 100-year storms. To meet the stormwater objectives, the contemplated development will use roof top flow attenuation.

Table 5 below summarizes assumed post-development drainage areas based on the *Concept Plan*. Calculations can be seen in *Appendix F*.

WATERSHED	C = 0.90 Building Area/ Asphalt & Concrete(m ²)	Total Area (ha)	Weighted Runoff Coefficient (C)	
WS-01(ROOF)	116.29	0.012	0.90	
WS-02 (ROOF)	141.44	0.014	0.90	
WS-03 (ROOF)	248.09	0.025	0.90	
WS-04 (ROOF)	62.07	0.006	0.90	
WS-05 (ROOF)	130.54	0.013	0.90	
WS-06(UN-CONTROLLED)	313.97	0.031	0.90	
TOTAL	1012.4	0.101	0.38	

Table 5: Post-Development Estimated Areas & Runoff C	Coefficients
--	--------------

Table 6, below, summarizes post-development flow rates. As per the City pre-application consultation meeting, it was recommended that it would be acceptable to control only the roof portion of the building up to the 100-year storm event, to a 2-year pre-development level and that the remainder of the site could be left uncontrolled as long as the uncontrolled portion is directed towards the right of way. The uncontrolled area will be directed towards the right of way.

CATCHMENT AREAS	DRAINAGE AREAS (ha)	100-YEAR RELEASE RATE (L/s)	100-YEAR REQUIRED STORAGE (m ³)	TOTAL AVAILABLE STORAGE (m ³)
WS-01(ROOF)	0.012	1.26	3.15	6.03
WS-02 (ROOF)	0.014	1.26	3.46	4.55
WS-03 (ROOF)	0.025	1.26	6.63	12.25
WS-04 (ROOF)	0.006	1.26	3.15	3.16
WS-05 (ROOF)	0.013	1.26	3.15	6.64
TOTAL CONTROLLED	0.070	6.30	19.53	32.63
WS-06 (UNCONTROLLED)	0.031	15.59	0	0
TOTAL UNCONTROLLED	0.031	15.59	0.00	0.00
TOTAL	0.101	21.89	19.53	32.63

Table 6: Summary of Post-Development Flow Rates

It is anticipated that approximately **19.53** m^3 of storage will be required on site to attenuate flow to the established release rate of **10.81** L/s in the 100-year storm; storage calculations can be found in **Appendix F**. It is anticipated that the required storage will be achieved through roof top flow attenuation. Based on preliminary calculations there will be approximately **32.63m**³ of available roof top storage.

7 CONCLUSION

This evaluation is limited to assessing the serviceability of the site described within this document to support an Official Plan Amendment and Zoning By-law Amendment.

Based on the *Concept Site Plan* provided by Open Plan Architects, included to **Appendix C**, the following conclusions, in relation to the serviceability of the site, can be made:

- Water:
 - The contemplated development will be serviced via two (2) 150mm diameter services connected to the existing 406mm PVC watermain within Churchill Ave N and the 152mm DI watermain located in Danforth Ave.
 - Domestic demands from the proposed concept subdivision are expected to be in the range of 0.28 L/s for the Average daily demand, 2.01 L/s for the maximum daily and 3.02 L/s for maximum hourly.
 - The maximum required fire flow was calculated at **13,000 L/min** using the FUS method.
 - There are at least six (6) existing fire hydrants available to service the proposed development. They will provide a combined fire flow of **37,852 L/min** to the site.
- Sanitary:
 - The post development total sanitary effluent was calculated to be is **1.04 L/s** considering proposed residential & commercial population and a small portion of infiltration.
 - The contemplated development will be serviced via a 150mm diameter service that will connect the building flows to the existing 300mm PVC sanitary sewer located within Churchill Ave N.
 - The proposed sanitary discharge represents 0.46% of the maximum capacity of the existing receiving sewer leg.

• Stormwater:

- Site stormwater runoff will need to be controlled to a pre-development release rate of 10.81 L/s and accommodate 19.53 m³ of stormwater storage during the 100-year storm event.
- $\circ~$ The subject site is anticipated to outlet to the 300mm CONC storm sewer located within Churchill Ave N.

Shall the concept plan change in relation to the number of units, building footprint, or impervious area of the site, the conclusions above would no longer be appropriate. During the detailed design stage of this development, the storm, sanitary and water servicing details will be further defined and confirmed.

Prepared by:

LRL Associates Ltd.

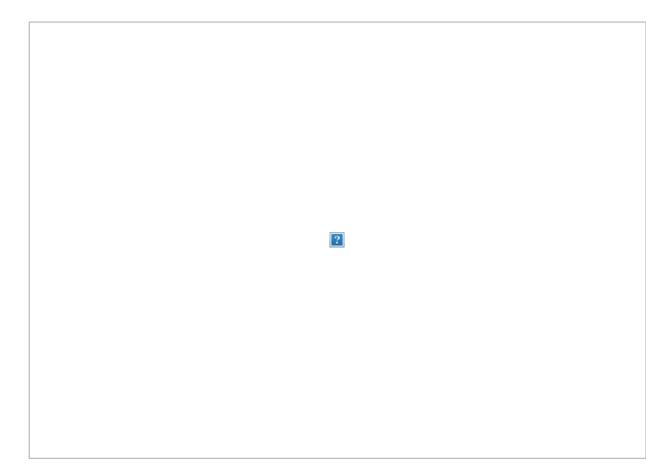
Mohan Basnet, P.Eng. Civil Engineer

Tamara Harb, EIT, CPESC-IT

APPENDIX A

Pre-consultation

From:	Bakhit, Reza
То:	Gauthier, Steve
Subject:	PC2022-0016 Pre-application Consultation Meeting 424 Churchill Avenue N
Date:	Tuesday, March 8, 2022 4:48:37 PM
Attachments:	oledata.mso
	image021.png
	image001.emz
	image003.png


Hi Steve

Please forward the below information to the applicant regarding a development proposal at **424 Churchill Avenue N, Ottawa for the 9 story apartment building.** Note that the information is considered **preliminary** and the assigned Development Review Project Manager may modify and/or add additional requirements and conditions upon review of an application if deemed necessary.

General:

- It is the sole responsibility of the consultant to investigate the location of existing underground utilities in the proposed servicing area and submit a request for locates to avoid conflict(s). The location of existing utilities and services shall be documented on an Existing Conditions Plan.
- Any easements on the subject site shall be identified and respected by any development proposal and shall adhere to the conditions identified in the easement agreement. A legal survey plan shall be provided and all easements shall be shown on the engineering plans.
- A deep excavation and dewatering operations have the potential to cause damages to the neighboring adjacent buildings/ City infrastructure. Document that construction activities (excavation, dewatering, vibrations associated with construction, etc.) will not have an impact on any adjacent buildings and infrastructure.
- A Record of Site Condition (RSC) in accordance with O.Reg. 153/04 will be required to be filed and acknowledged by the Ministry prior to issuance of a building permit due to a change to a more sensitive property use.
- 0. Reference documents for information purposes :
 - Ottawa Sewer Design Guidelines (October 2012)
 - Technical Bulletin PIEDTB-2016-01
 - Technical Bulletins ISTB-2018-01, ISTB-2018-02 and ISTB-2018-03.
 - Ottawa Design Guidelines Water Distribution (2010)
 - Technical Bulletin ISTB-2021-03
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - City of Ottawa Environmental Noise Control Guidelines (January 2016)
 - City of Ottawa Accessibility Design Standards (2012) (City recommends development be in accordance with these standards on private property)
 - Ottawa Standard Tender Documents (latest version)
 - Ontario Provincial Standards for Roads & Public Works (2013)
 - Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-424 x.44455).

Please note that this is the applicant responsibility to refer to the latest applicable guidelines while preparing reports and studies.

Disclaimer:

The City of Ottawa does not guarantee the accuracy or completeness of the data and information contained on the above image(s) and does not assume any responsibility or liability with respect to any damage or loss arising from the use or interpretation of the image(s) provided. This image is for schematic purposes only.

Stormwater Management Criteria and Information:

- Water Quantity Control: In the absence of area specific SWM criteria please control postdevelopment runoff from the subject site, up to and including the 100-year storm event, to a 2-year pre-development level. The pre-development runoff coefficient will need to be determined as per existing conditions but in no case more than 0.5. [If 0.5 applies it needs to be clearly demonstrated in the report that the pre-development runoff coefficient is greater than 0.5]. The time of concentration (T_c) used to determine the pre-development condition should be calculated. *Tc should not be less than 10 min. since IDF curves become unrealistic at less than 10 min; T_c of 10 minutes shall be used for all post-development calculations].*
- Any storm events greater than the established 2-year allowable release rate, up to and including the 100-year storm event, shall be detained on-site. The SWM measures required to avoid impact on downstream sewer system will be subject to review.
- Please note that foundation drainage is to be independently connected to sewer main unless being pumped with appropriate back up power, sufficient sized pump and back flow prevention. It is recommended that the foundation drainage system be drained by a sump pump connection to the storm sewer to minimize risk of basement flooding as it will provide the best protection from the uncontrolled sewer system compared to relying on the backwater valve.

Water Quality Control: Please consult with the local conservation authority (RVCA) regarding water quality criteria prior to submission of a Site Plan Control Proposal application to establish any water quality control restrictions, criteria and measures for the site. Correspondence and clearance shall be provided in the Appendix of the report.

- Please note that as per *Technical Bulletin PIEDTB-2016-01 section 8.3.11.1 (p.12 of 14)* there shall be no surface ponding on private parking areas during the 5-year storm rainfall event.
- If Underground Storage proposed: Please note that the Modified Rational Method for storage computation in the Sewer Design Guidelines was originally intended to be used for above ground storage (i.e. parking lot) where the change in head over the orifice varied from 1.5 m to 1.2 m (assuming a 1.2 m deep CB and a max ponding depth of 0.3 m). This change in head was small and hence the release rate fluctuated little, therefore there was no need to use an average release rate.

When underground storage is used, the release rate fluctuates from a maximum peak flow based on maximum head down to a release rate of zero. This difference is large and has a significant impact on storage requirements. We therefore require that an average release rate equal to 50% of the peak allowable rate shall be applied to estimate the required volume. Alternatively, the consultant may choose to use a submersible pump in the design to ensure a constant release rate.

In the event that there is a disagreement from the designer regarding the required storage, The City will require that the designer demonstrate their rationale utilizing dynamic modelling, that will then be reviewed by City modellers in the Water Resources Group.

Please provide information on UG storage pipe. Provide required cover over pipe and details, chart of storage values, capacity etc. How will this pipe be cleaned of sediment and debris?

Provide information on type of underground storage system including product name and model, number of chambers, chamber configuration, confirm invert of chamber system, top of chamber system, required cover over system and details, interior bottom slope (for self-cleansing), chart of storage values, length, width and height, capacity, entry ports (maintenance) etc.

Provide a cross section of underground chamber system showing invert and obvert/top, major and minor HWLs, top of ground, system volume provided during major and minor events. UG storage to provide actual 2- and 100-year event storage requirements.

In regard to all proposed UG storage, ground water levels (and in particular HGW levels) will need to be reviewed to ensure that the proposed system does not become surcharged and thereby ineffective.

Modeling can be provided to ensure capacity for both storm and sanitary sewers for the proposed development by City's Water Distribution Dept. – Modeling Group, through PM and upon request.

- Please note that the minimum orifice dia. for a plug style ICD is 83mm and the minimum flow rate from a vortex ICD is 6 L/s in order to reduce the likelihood of plugging.
- Post-development site grading shall match existing property line grades in order to minimize disruption to the adjacent residential properties. A topographical plan of survey shall be provided as part of the submission and a note provided on the plans.
- Please provide a Pre-Development Drainage Area Plan to define the pre-development drainage areas/patterns. Existing drainage patterns shall be maintained and discussed as part of the proposed SWM solution.
- If rooftop control and storage is proposed as part of the SWM solutions sufficient details (Cl. 8.3.8.4) shall be discussed and document in the report and on the plans. Roof drains are to be connected downstream of any incorporated ICDs within the SWM system and not to the

foundation drain system. Provide a **Roof Drain Plan** as part of the submission.

- Considering the size of the site, it would be acceptable to control the roof portion only (100-year storm event, to a 2-year pre-development level) and leave the remainder of the site uncontrol as long as the uncontrolled portion is directed towards the right of way. This approach should be discussed in the SWM report. Also, the grading plan should clearly demonstrate that the runoff from the uncontrolled portion of the site will be directed towards the ROW
- If Window wells are proposed, they are to be indirectly connected to the footing drains. A
 detail of window well with indirect connection is required, as is a note at window well location
 speaking to indirect connection.
- There must be at least 15cm of vertical clearance between the spill elevation and the ground elevation at the building envelope that is in proximity of the flow route or ponding area. The exception in this case would be at reverse sloped loading dock locations. At these locations, a minimum of 15cm of vertical clearance must be provided below loading dock openings. Ensure to provide discussion in report and ensure grading plan matches if applicable.

Storm Sewer:

• A 300mm dia. CONC storm sewer (2010) is available within Churchill Avenue N.

Sanitary Sewer Maclaren St:

- A 250 mm dia. PVC Sanitary sewer (2010) is available within Churchill Avenue N.
- A 225 mm dia. CONC Sanitary sewer (1940) is available within Danforth Avenue.
- Please provide the new Sanitary sewer discharge and we confirm if sanitary sewer main has the capacity. An analysis and demonstration that there is sufficient/adequate residual capacity to accommodate any increase in wastewater flows in the receiving and downstream wastewater system is required to be provided. Needs to be demonstrated that there is adequate capacity to support any increase in wastewater flow.
- Please apply the wastewater design flow parameters in Technical Bulletin PIEDTB-2018-01.
- Sanitary sewer monitoring maintenance hole is required to be installed at the property line (on the private side of the property) as per City of Ottawa Sewer-Use By-Law 2003-514 (14) *Monitoring Devices*.
- A backwater valve is required on the sanitary service for protection.

Water :

- A 406 mm dia. PVC watermain (2010) is available within Churchill Avenue N.
- A 152 mm dia. DI watermain (1984) is available within Danforth Avenue.
- Existing residential service to be blanked at the main.
- Water Supply Redundancy: Residential buildings with a basic day demand greater than 50m³/day (0.57 L/s) are required to be connected to a minimum of two water services separated by an isolation valve to avoid a vulnerable service area as per the Ottawa Design Guidelines Water Distribution, WDG001, July 2010 Clause 4.3.1 Configuration.
- Please review Technical Bulletin ISTB-2018-0, maximum fire flow hydrant capacity is provided in Section 3 Table 1 of Appendix I. A hydrant coverage figure shall be provided and demonstrate there is adequate fire protection for the proposal. Two or more public hydrants are anticipated to be required to handle fire flow.
- Boundary conditions are required to confirm that the require fire flows can be achieved as well as availability of the domestic water pressure on the City street in front of the development. Use Table 3-3 of the MOE Design Guidelines for Drinking-Water System to determine Maximum Day and Maximum Hour peaking factors for 0 to 500 persons and use Table 4.2 of

the Ottawa Design Guidelines, Water Distribution for 501 to 3,000 persons. Please provide the following information to the City of Ottawa via email to request water distribution network boundary conditions for the subject site. Please note that once this information has been provided to the City of Ottawa it takes approximately 5-10 business days to receive boundary conditions.

- 0. Type of Development and Units
- 1. Site Address
- 2. A plan showing the proposed water service connection location.
- 3. Average Daily Demand (L/s)
- 4. Maximum Daily Demand (L/s)
- 5. Peak Hour Demand (L/s)
- 6. Fire Flow (L/min)

[Fire flow demand requirements shall be based on **Fire Underwriters Survey (FUS)** Water Supply for Public Fire Protection 1999]

[Fire flow demand requirements shall be based on ISTB-2021-03]

<u>Note: The OBC method can be used if the fire demand for the private property is less than 9,000</u> <u>L/min. If the OBC fire demand reaches 9000 L/min, then the FUS method is to be used</u>. Exposure separation distances shall be defined on a figure to support the FUS calculation and required fore flow (RFF).

7. Hydrant capacity shall be assessed to demonstrate the RFF can be

achieved. Please identify which hydrants are being considered to meet the RFF on a fire hydrant coverage plan as part of the boundary conditions request.

Snow Storage:

0. Any portion of the subject property which is intended to be used for permanent or temporary snow storage shall be as shown on the approved site plan and grading plan. Snow storage shall not interfere with approved grading and drainage patters or servicing. Snow storage areas shall be setback from the property lines, foundations, fencing or landscaping a minimum of 1.5m. Snow storage areas shall not occupy driveways, aisles, required parking spaces or any portion of a road allowance. If snow is to be removed from the site please indicate this on the plan(s).

Gas pressure regulating station

A gas pressure regulating station may be required depending on HVAC needs (typically for 12+ units). Be sure to include this on the Grading, Site Servicing, SWM and Landscape plans. This is to ensure that there are no barriers for overland flow routes (SWM) or conflicts with any proposed grading or landscape features with installed structures and has nothing to do with supply and demand of any product.

Regarding Quantity Estimates:

Please note that external Garbage and/or bicycle storage structures are to be added to QE under Landscaping as it is subject to securities. In addition, sump pumps for Sanitary and Storm laterals and/or cisterns are to be added to QE under Hard items as it is subject to securities, even though it is internal and is spoken to under SWM and Site Servicing Report and Plan.

CCTV sewer inspection

CCTV sewer inspection required for pre and post construction conditions to ensure no damage to City Assets surrounding site.

Pre-Construction Survey

Pre-Construction (Piling/Hoe Ramming or close proximity to City Assets) and/or Pre-Blasting (if applicable) Survey required for any buildings/dwellings in proximity of 75m of site and circulation of notice of vibration/noise to residents within 150 m of site. Conditions for Pre-Construction/ Pre-Blast Survey & Use of Explosives will be applied to agreements. Refer to City's Standard S.P. No. F-1201 entitled Use of Explosives, as amended.

Road Reinstatement

Where servicing involves three or more service trenches, either a full road width or full lane width 40 mm asphalt overlay will be required, as per amended Road Activity By-Law 2003-445 and City Standard Detail Drawing R10. The amount of overlay will depend on condition of roadway and width of roadway(s).

Required Engineering Plans and Studies:

PLANS:

- Existing Conditions and Removals Plan
- Site Servicing Plan
- Grade Control and Drainage Plan
- Erosion and Sediment Control Plan
- Roof Drainage Plan (When rooftop storage is proposed)
- Topographical survey

REPORTS:

- Site Servicing and Stormwater Management Report (is required per section 4.7.1, policy 6 and section 4.7.1, policy 23 of the OP
- Geotechnical Study/Investigation (including sensitive marine clays and unstable slopes) is required per section 10.1.4 of OP
- Noise Control Study required as per section 10.2.1
- Phase I ESA 4) A Phase 1 and, where required, a Phase 2 ESA are required per section 10.1.6 OP
- Phase II ESA (Depending on recommendations of Phase I ESA). It appears the site is contaminated.
- RSC (Record of the site Conditions)
- Site lighting certificate
- Wind analysis
- Shadow Study

Please refer to the **City of Ottawa Guide to Preparing Studies and Plans [Engineering]:** Specific information has been incorporated into both the <u>Guide to Preparing Studies and Plans</u> for a site plan. The guide outlines the requirement for a statement to be provided on the plan about where the property boundaries have been derived from.

Added to the general information for servicing and grading plans is a note that an **O.L.S**. should be engaged when reporting on or relating information to property boundaries or existing conditions. The importance of engaging an O.L.S. for development projects is emphasized.

Phase One Environmental Site Assessment:

A Phase I ESA is required to be completed in accordance with Ontario Regulation 153/04 in

support of this development proposal to determine the potential for site contamination. Depending on the Phase I recommendations a Phase II ESA may be required.

- The Phase I ESA shall provide all the required Environmental Source Information as required by O. Reg. 153/04. ERIS records are available to public at a reasonable cost and need to be included in the ESA report to comply with O.Reg. 153/04 and the Official Plan. The City will not be in a position to approve the Phase I ESA without the inclusion of the ERIS reports.
- Official Plan Section 4.8.4:

https://ottawa.ca/en/city-hall/planning-and-development/official-plan-and-master-plans/officialplan/volume-1-official-plan/section-4-review-development-applications#4-8-protection-health-andsafety

RSC (Record of the site Conditions)

 A RSC is required when changing the land use (zoning) of a property to a more sensitive land use.

Submitting a record of site condition | Ontario.ca

Geotechnical Investigation:

- A Geotechnical Study/Investigation shall be prepared in support of this development proposal.
- Reducing the groundwater level in this area can lead to potential damages to surrounding structures due to excessive differential settlements of the ground. The impact of groundwater lowering on adjacent properties needs to be discussed and investigated to ensure there will be no short term and long term damages associated with lowering the groundwater in this area.
- Geotechnical Study shall be consistent with the Geotechnical Investigation and Reporting Guidelines for Development Applications.

https://documents.ottawa.ca/sites/documents/files/geotech_report_en.pdf

Noise Study:

- A Transportation Noise Assessment is required as the subject development is located within 100m proximity of an Arterial Road
- A Stationary Noise Assessment is required in order to assess the noise impact of the proposed sources of stationary noise (mechanical HVAC system/equipment) of the development onto the surrounding residential area to ensure the noise levels do not exceed allowable limits specified in the City Environmental Noise Control Guidelines.

https://documents.ottawa.ca/sites/default/files/documents/enviro_noise_guide_en.pdf

Wind analysis:

0. A wind analysis must be prepared, signed and stamped by an engineer who specializes in pedestrian level wind evaluation. Where a wind analysis is prepared by a company which do not have extensive experience in pedestrian level wind evaluation, an independent peer review may be required at the expense of the proponent.

Terms of Reference: Wind Analysis (ottawa.ca)

Shadow Study

When greater than 9 storey in height, a Shadow Study required for all buildings/dwellings.

Exterior Site Lighting:

 Any proposed light fixtures (both pole-mounted and wall mounted) must be part of the approved Site Plan. All external light fixtures must meet the criteria for Full Cut-off Classification as recognized by the Illuminating Engineering Society of North America (IESNA or IES), and must result in minimal light spillage onto adjacent properties (as a guideline, 0.5 fc is normally the maximum allowable spillage). In order to satisfy these criteria, the please provide the City with a **Certification (Statement) Letter** from an acceptable professional engineer stating that the design is compliant.

Fourth (4th) Review Charge:

Please be advised that additional charges for each review, after the 3rd review, will be applicable to each file. There will be no exceptions.

Construction approach – Please contact the Right-of-Ways Permit Office <u>TMconstruction@ottawa.ca</u> early in the Site Plan process to determine the ability to construct site and copy File Lead <u>Steve.Gauthier@ottawa.ca</u> on this request.

Please note that these comments are considered <u>preliminary based on the information available</u> to date and therefore maybe amended as additional details become available and presented to the City. It is the responsibility of the applicant to <u>verify the above information</u>. The applicant may contact me for follow-up questions related to engineering/infrastructure prior to submission of an application if necessary.

If you have any questions or require any clarification, please let me know.

Regards,

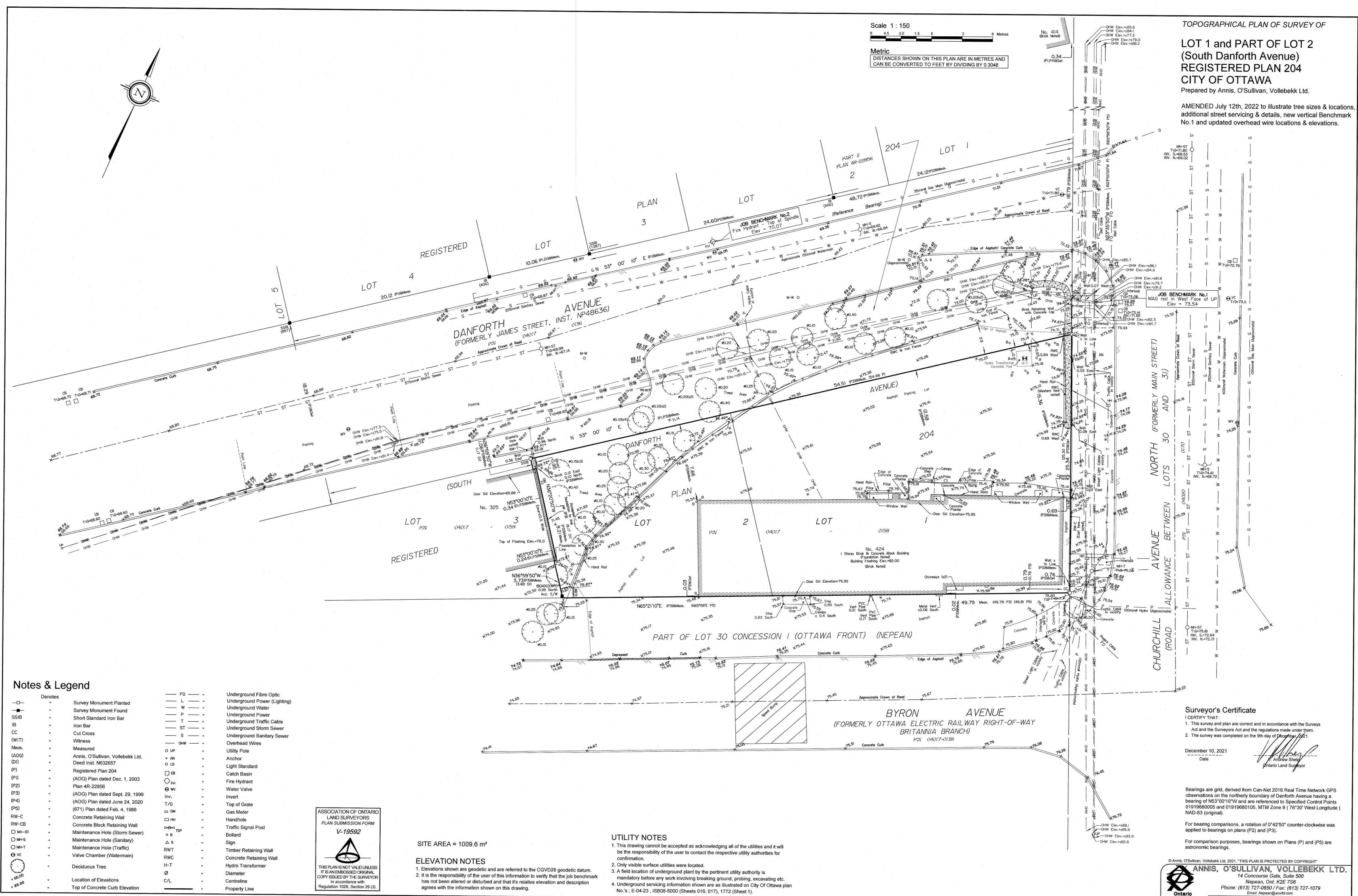
Reza Bakhit, P.Eng, C.E.T

Project Manager

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique

Development Review - Centeral Branch

City of Ottawa | Ville d'Ottawa


110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2400 ext./poste 19346, reza.bakhit@ottawa.ca

Please note: Given the current pandemic, I will be working from home until further notice; reaching me by email is the easiest. I will be checking my voicemail, just not as frequently as I normally would be.

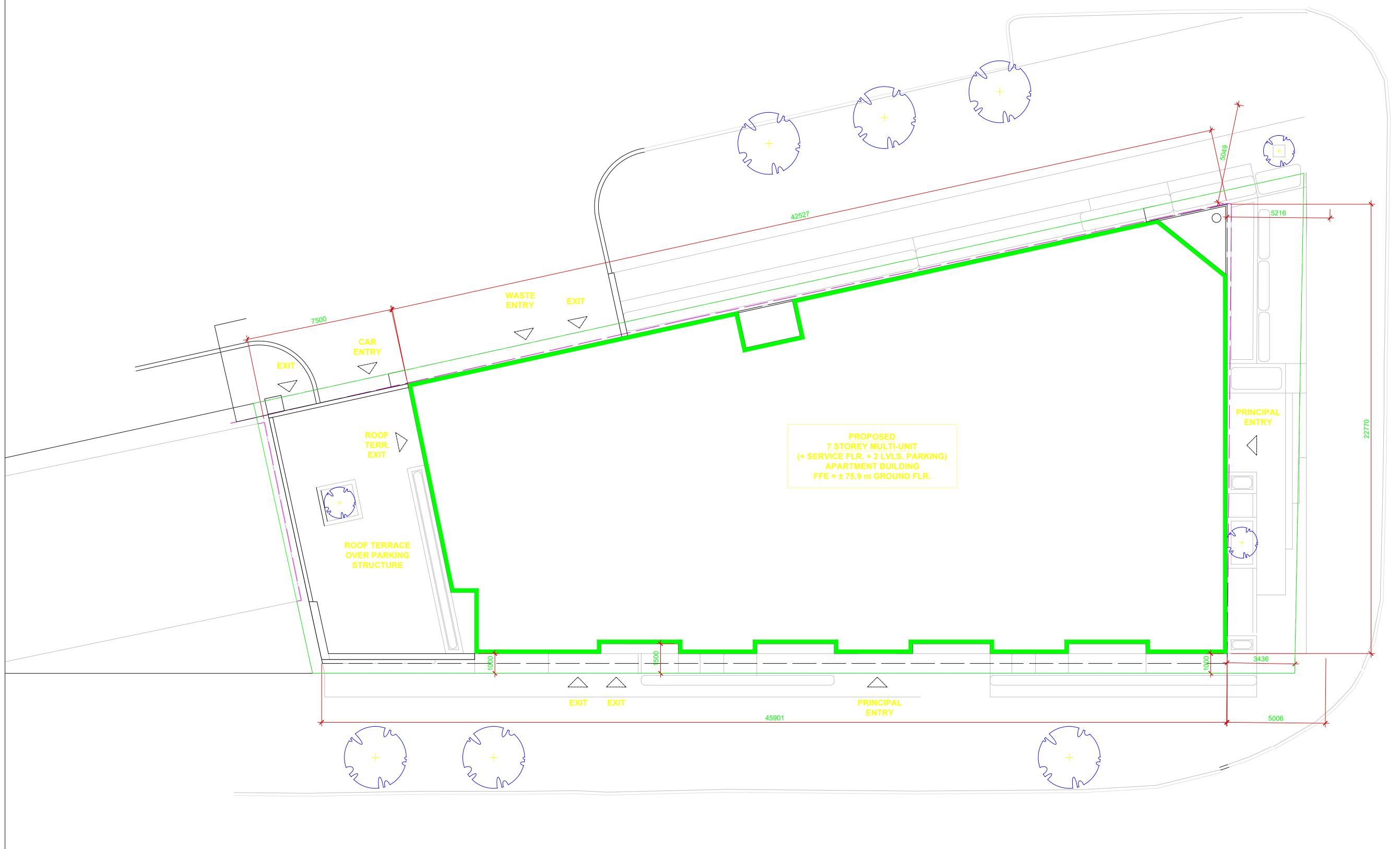
APPENDIX B

Site Topographical Survey

	Denotes		—— F0 —	n	Underground F
	n	Survey Monument Planted	— L —	— · · · ·	Underground F
· · · · ·	н	Survey Monument Found	— w —	<u> </u>	Underground V
SSIB		Short Standard Iron Bar	—— P —		Underground F
IB		Iron Bar	— T —		Underground T
CC	u	Cut Cross	ST	- "	Underground S
(WIT)		Witness	S	- "	Underground S
Meas.		Measured	OHW	- "	Overhead Wire
 (AOG)	U.		O UP	0	Utility Pole
(DI)	u	Annis, O'Sullivan, Vollebekk Ltd. Deed Inst. N632657	• AN	н 2	Anchor
(D)			O LS	н	Light Standard
		Registered Plan 204	СВ		Catch Basin
(PI)		(AOG) Plan dated Dec. 1, 2003	OFH	a	Fire Hydrant
(P2)	н	Plan 4R-22856	€9 WV	u .	Water Valve
(P3)	н	(AOG) Plan dated Sept. 29, 1999	Inv.		Invert
(P4)	U.	(AOG) Plan dated June 24, 2020	T/G		Top of Grate
(P5)	y	(671) Plan dated Feb. 4, 1986	GM	u	Gas Meter
RW-C	Ü.	Concrete Retaining Wall	— — нн		Handhole
RW-CB		Concrete Block Retaining Wall			
O MH-ST		Maintenance Hole (Storm Sewer)	► TSP		Traffic Signal P
O MH-S	ü	Maintenance Hole (Sanitary)	оB	u.	Bollard
Омн-т		Maintenance Hole (Traffic)	Δs		Sign
⊖ vc			RWT	н	Timber Retainir
		Valve Chamber (Watermain)	RWC		Concrete Retai
$\left\{\cdot\right\}$	н	Deciduous Tree	H-T	н	Hydro Transfor
X.			Ø		Diameter
+ 65.00	н	Location of Elevations	C/L	н	Centreline
+ 6 ^{5.00}		Top of Concrete Curb Elevation	-	n	Property Line

- No.'s ; E-04-23 , ISB08-5000 (Sheets 016, 017), 1772 (Sheet 1).

Land Surveyors Job No. 22329-21 (Amend) GSI Properties Pt. Lts 1,2 Pl.204 T F2 ns


APPENDIX C

Concept Plan by Open Plan Architechts

424 Churchill Avenue North, Ottawa				
Zoning Data:	Mechanism	Required	Proposed	Notes
Zone: TM H(24)	frontage (min.):	-	-	-
	lot area (min.):	-	-	-
Adjacent zones:				
north: TBC	setbacks (min.):			
south: TBC	front yard (min.):	-	-	-
east: TBC	corner side yard (min.):	-	-	-
west: TBC	interior side yard (min.):	-	-	-
	rear yard (min.):		-	-
Frontage: 25.34 (Churchill Ave. N.)				
° ()	lot coverage (min.):		-	-
Proposed building area: TBC	landscaped area (min.):	-	-	-
	building height (max.):	24 m	26.5 m	-
Proposed use: Apartment Dwelling, Mid-Rise	density (max.):	-	-	-

Proposed number of units: 48

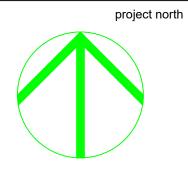
Proposed car parking: 36

CLIENT / OWNER : GSI SLOUGH STREET PROPERTIES INC. 5-145 SELECT AVE., TORONTO, ON, M1V 5M8 416-292-9920

<u>CONSULTING PLANNER :</u> FOTENN 396 COOPER STREET, SUITE 300 OTTAWA, ON K2P 2H7 613-730-5709

01	ISSUED FOR PRE-CONSULTATION W/ COUNCILLOR	25 JUL. 2022	
rev. / issue	description	date MM/DD/YY	
THE ARCHITECT WAIVES ANY AND ALL RESPONSIBILITY AND LIABILITY FOR PROBLEMS WHICH ARISE FROM FAILURE TO FOLLOW THESE PLANS, SPECIFICATIONS, AND THE DESIGN INTENT THEY CONVEY, OR FOR PROBLEMS WHICH ARISE FROM OTHERS' FAILURE TO OBTAIN AND/OR FOLLOW THE ARCHITECT'S GUIDANCE WITH RESPECT TO			

ANY ERRORS, OMISSIONS, INCONSISTENCIES, AMBIGUITIES OR CONFLICTS WHICH ARE ALLEGED.


IT IS THE RESPONSIBILITY OF THE APPROPRIATE CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON SITE AND PROMPTLY REPORT ALL ERRORS AND/OR OMISSIONS TO THE CONSULTANT BEFORE WORK COMMENCES.

ALL WORK IS TO FOLLOW THE OBC 2012 AND ANY OTHER APPLICABLE CODES AND REGULATIONS.

DO NOT SCALE DRAWINGS.

THESE DRAWINGS ARE NOT TO BE USED FOR CONSTRUCTION UNLESS A BUILDING PERMIT IN RESPECT OF THIS PROJECT HAS BEEN GRANTED BY AUTHORITIES AND THEY ARE ISSUED FOR CONSTRUCTION. COPYRIGHT RESERVED.

professional stamp

Kristopher D. Benes, OAA, MRAIC, LEED AP

2305 HILLARY AVE. | OTTAWA | ON | K1H 7J2 613.883.5090 | info@openplan.ca

project

424 CHURCHILL AVE N., CONDOMINIUM

drawing

CONCEPT SITE PLAN

drawn		date	
	KDB		2022-JUL-25
approved	KDD	revision	\bigwedge
	KDB		
project no.		scale	
	2109		1 : 100
drawing no.			

APPENDIX D

Water Demand Calculations and Figures

Water Supply Calculations

LRL File No. 220224 2022-09-07 Prepared by Tamara Harb

Water Demand based on the City of Ottawa Design Guidelines-Water Distribution, 2010

Date

Domestic Demand				
Unit Type	Persons Per Unit	Number of Units	Population	
1 Bedroom Apartment	1.4	52	72.8	
2 Bedroom Apartment	2.1	6	12.6	
	Total	58	85.4	

*Based on a daily demand of 280L/day per person as identified by Appendix 4-A of the Sewer design guidelines.

Average Water Consumption Rate	280 L/	_/c/d
Average Day Demand	23,912 L/	L/d 0.28 L/s
Maximum Day Factor	7.2	Table (3-3) MOE Peaking Factors
Maximum Daily Demand	172,910 L/	L/d 2.00 L/s
Peak Hour Factor	10.9	Table (3-3) MOE Peaking Factors
Maximum Hour Demand	260,015 L/	L/d 3.01 L/s

Institutional / Commercial / Industrial Demand			
Property Type	Unit Rate	Units	Demand (L/d)
Office	75 L/p/d	3 people	225.0
Amenities	28000 L/ha/d	0.0167 ha	467.6

Average Day Demand	693	L/d	0.008	L/s
Maximum Day Factor	1.5	(Design G	uidelines-Water Dist	ribution Table 4.2)
Maximum Daily Demand	1,039	L/d	0.012	L/s
Peak Hour Factor	1.8	(Design G	uidelines-Water Dist	ribution Table 4.2)
Maximum Hour Demand	1,870	L/d	0.022	L/s
TOTAL DEMAND				

Average Day Demand	24,605 L/d	0.28	L/s	
Maximum Daily Demand	173,949 L/d	2.01	L/s	
Maximum Hour Demand	261,885 L/d	3.03	L/s	

Water Service Pipe Sizing

Q = VA

Where: V = velocity A = area of pipe Q = flow rate

Assuming a maximum velocity of 1.8m/s, the diameter of pipe is calculated as:

Minimum pipe diameter (d) =	(4Q/πV) ^{1/2}	
=	0.046	m
=	46	mm
Proposed pipe diameter (d) =	150	mm
= =	6	Inches

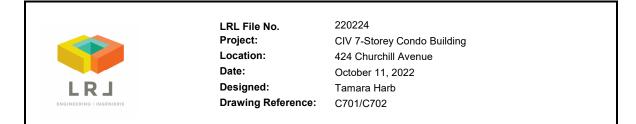
Fire Flow Calculations

LRL File No.	220224
Date	September 8, 2022
Method	Fire Underwriters Survey (FUS)
Prepared by	Tamara Harb

Step	Task	Term	Options	Multiplier	Choose:	Value	Unit	Fire Flow
			Structural Framing Material					
			Wood Frame	1.5				
	Choose frame used for	Coofficient C	Ordinary Construction	1.0				
1	building	related to the type of construction	Non-combustible construction	0.8	Non-combustible construction	0.8		
			Fire resistive construction <2 hrs	0.7				
			Fire resistive construction >2 hrs	0.6				
			Floor Space Area (A)					
2			Total area			6,961	m ²	
3	Obtain fire flow before reductions	Required fire flow (rounded to nearest 1,000 L/min)	Fire I	Flow = 220 x C	x A ^{0.5}		L/min	15,000
			Reductions or surcharge due to factors aff	fecting burning]			
			Non-combustible	-25%				
	Choose combustibility	Occupancy bazard reduction or	Decupancy hazard reduction or Limited combustible -15%					
4	of contents	surcharge	Combustible	0%	Limited combustible	-15%	L/min	12,750
			Free burning	15%				
			Rapid burning	25%				
			Full automatic sprinklers	-30%	True	-30%		
5	Choose reduction for sprinklers	Sprinkler reduction	Water supply is standard for both the system and fire department hose lines	-10%	True	-10%	L/min	7,650
			Fully supervised system	-10%	False	0%		
			North side	>30m	0%			
6	Choose separation	Exposure distance between units	West side	0 to 3m	25%		L/min	13,388
			East side	20.1 to 30m	10%		L/11111	13,300
			South side	20.1 to 30m	10%	45%		
			Net required fire flow					
	Obtain fire flow,			Minimum	required fire flow rate (rounded to n	,		13,000
7	duration, and volume				Minimum required		L/s	216.7
					Required duration	on of fire flow	hr	2.75

APPENDIX E

Sanitary Flow Calculations



		LRL File No Project: Location: Date:		220224 CIV 7 Store 424 Church September	ill Avenue	•	ent			Light Indu Heavy Ind Maximum	ustrial Flow dustrial Flow n Resident	w = 35000 ow = 5500 tial Peak f	low = 2800) L/ha/day)0 L/ha/da Factor = 4 eak Facto	00 L/ha y .0	-	sign Para	Average Daily Flov Industrial	w for Plac Peak Fac	•	oloyment = er Append	= 75L/p/day dix 4-B = 7			Minin		ity = 0.60 n n = 0.013
LOC	CATION			RESIDENT	IAL AREA		JLATION		COMME	ERCIAL	IN	IDUSTRI	AL	0	FICE	C+I+I	INF	FILTRATI	ON	TOTAL			F	PIPE		
STREET FF	ROM	то	AREA (Ha)	POP.	CUMM AREA (Ha)	ULATIVE POP.	PEAK FACT.	PEAK FLOW (l/s)	AREA (Ha)	ACCU. AREA (Ha)	AREA (Ha)	ACCU. AREA (Ha)	PEAK FACT.	POP	ACCU. POP	PEAK FLOW (l/s)	TOTAL AREA (Ha)	ACCU. AREA (Ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	LENGT H (m)	DIA. (mm)	SLOPE (%)	MATERIAL	CAP. (FULL) (I/s)	VEL. (FULL) (m/s)
Churchill E Ave	Bldg	PROP SAN MH01	0.101	85.4	0.101	85.4	3.6	1.00	0.017	0.017	0.00	0.00	7.0	3.0	3.0	0.01	0.101	0.101	0.03	1.04	13.1	150	2.00%	PVC	21.54	1.22
NOTES Existin	ing inverts	and slopes a	re estima	ted. They are	e to be cor	nfirmed on-si	ite.]		Desigr Check Dwg. I	ТН	•	File Ref.:		·	•		torey Cor LOC	OJECT: ndo Rede CATION: rchil Aver	evelopment		Shee

APPENDIX F

Stormwater Management Calculations

LRL Associates Ltd. Storm Watershed Summary

Pre-Development Catchments

WATERSHED	C = 0.2	C=0.7	C = 0.90	Total Area (m ²)	Total Area (ha)	Combined C
EWS-01	119.4	0.0	893.0	1012.4	0.101	0.82
TOTAL	119.4	0.0	893.0	1012.4	0.101	0.82

Post-Development Catchments

WATERSHED	C = 0.20	C = 0.70	C = 0.90	Total Area (m ²)	Total Area (ha)	Combined C
WS-01(ROOF)	0.00	0.00	116.29	116.29	0.012	0.90
WS-02 (ROOF)	0.00	0.00	141.44	141.44	0.014	0.90
WS-03 (ROOF)	0.00	0.00	248.09	248.09	0.025	0.90
WS-04 (ROOF)	0.00	0.00	62.07	62.07	0.006	0.90
WS-05 (ROOF)	0.00	0.00	130.54	130.54	0.013	0.90
WS-06(UN-CONTROLLED)	0.00	0.00	313.97	313.97	0.031	0.90
TOTAL	0.0	0.0	1012.4	1012.4	0.101	0.90

Runoff Equation

 LRL File No.
 22022.

 Project:
 CIV 7

 Location:
 424 CI

 Date:
 Octobe

 Designed:
 Tamar

 Drawing Ref.:
 C601

220224 CIV 7-Storey Condo Building 424 Churchilli Ave October 11, 2022 Tamara Harb C601

Stormwater Management Design Sheet

 $\begin{array}{l} \textbf{Q} = \textbf{2.78CIA} (\textbf{L/s}) \\ \textbf{C} = \textbf{Runoff coefficient} \\ \textbf{I} = \textbf{Rainfall intensity (mm/hr)} \\ \textbf{A} = \textbf{Area} (ha) \\ \textbf{T}_{c} = \textbf{Time of concentration (min)} \end{array} \\ \end{array}$

Pre-development Stormwater Management - 2 Year Storm

 2 year storm
 12 = 732.95 / (Td + 6.199)^{0.81}
 a = 732.951
 b = 0.810
 C = 6.199

 C =
 0.50
 max of 0.5 as per City of Ottawa
 mm/hr

 I =
 76.8
 mm/hr

 Total Area =
 0.010
 ha

Allowable Release Rate= 10.81 L/s

Post-development Stormv	vater Management					
					∑R _{2&5}	∑R ₁₀₀
	Total Site Area =	0.070	ha	∑R=		
	WS-01(ROOF)	0.012	ha	R=	0.90	1.00
	WS-02 (ROOF)	0.014	ha	R=	0.90	1.00
Controlled	WS-03 (ROOF)	0.025	ha	R=	0.90	1.00
Controlled	WS-04 (ROOF)	0.006	ha	R=	0.90	1.00
	WS-05 (ROOF)	0.013	ha	R=	0.90	1.00
	Total Controlled	0.070	ha	∑R=	0.90	1.00
Un-controlled	WS-06 (UNCONTROLLED)	0.031	ha	R=	0.90	1.00
on-controlled	Total Un-Controlled =	0.031	ha	∑R=	0.90	1.00

		Po	st-development Stormwa	ater Management (Uncon	trolled Catchment WS-06)		
100 Year Storm Event:	I ₁₀₀ = 1735.688 / (To	1 + 6.014) ^{0.820}		a =	1735.688	b = 0.820	C = 6.014
	Intensity	Uncontrolled	Controlled Release Rate]		
Time (min)	(mm/hr)	Runoff (L/s)	Constant (L/s)	Total Release Rate (L/s)			
10	178.6	15.59	0.00	15.59]		

 LRL File No.
 220224

 Project:
 CIV 7-Storey Condo Building

 Location:
 424 Churchill Ave

 Date:
 October 11, 2022

 Designed:
 Tamara Harb

 Drawing Ref.:
 C601

Stormwater Management Design Sheet

			Post-development	t Stormwater Managemer	<u>it (WS-01 ROOF)</u>			
r Storm Event:								
I ₁	₀₀ = 1735.688 / (To	I + 6.014) ^{0.820}		a =	1735.688	b =	0.820	C = 6.014
			Storage Required	1	ſ			
Time (min)	Intensity (mm/hr)	Controlled Runoff (L/s)	Storage Volume (m ³)	Controlled Release Rate Constant (L/s)	Uncontrolled Runoff (L/s)	Total Release Rate (L/s)]	
10	178.6	5.77	2.71	1.26	0.00	1.26	-	
15	142.9	4.62	3.02	1.26	0.00	1.26		
20	120.0	3.88	3.14	1.26	0.00	1.26	-	
25 30	103.8 91.9	3.36 2.97	<u>3.15</u> 3.08	1.26 1.26	0.00	1.26	-	
35	82.6	2.97	2.96	1.26	0.00	1.26	-	
40	75.1	2.43	2.81	1.26	0.00	1.26	-	
45	69.1	2.23	2.63	1.26	0.00	1.26		
50	64.0	2.07	2.42	1.26	0.00	1.26	-	
60 70	55.9 49.8	1.81 1.61	1.97 1.47	1.26	0.00	1.26	-	
80	45.0	1.45	0.93	1.26	0.00	1.20	-	
90	41.1	1.33	0.37	1.26	0.00	1.26		
100	37.9	1.23	0.00	1.26	0.00	1.26		
110	35.2	1.14	0.00	1.26	0.00	1.26	-	
120	32.9	1.06	0.00	1.26	0.00	1.26	ļ	
		Summary of Roof	Storage					
Maximum	Required Roof Sto	orage (100 Year) =	3.15	m ³				
		Proposed Head =	150	mm	*An Emergency over	flow scupper is prov	ided above this height.	
		ontrol Flow/Drain =	0.63	L/s				
		r of Roof Drains = from Roof Drain =	2	1.6				
		ble Roof Surface =	1.26 116.28	L/s m ²				
			WATTS adjustable roof dra					
		orage Required = le Roof Storage =	3.15 6.03	m ³				
	,			m ³ t Stormwater Managemer	refer to LRL Plan C6 nt (WS-02 ROOF)	01		
r Storm Event:				t Stormwater Managemer	nt (WS-02 ROOF)		0.820	C = 6.014
	₁₀ = 1735.688 / (Tc		Post-development	t Stormwater Managemer a =			0.820	C = 6.014
I ₁	₁₀ = 1735.688 / (To	I + 6.014) ^{0.820}	Post-development	t Stormwater Managemer a = Controlled Release Rate	tt (WS-02 ROOF) 1735.688 Uncontrolled	b = Total Release	0.820	C = 6.014
I ₁ Time (min)	₁₀ = 1735.688 / (To Intensity (mm/hr)	I + 6.014) ^{0.820} Controlled Runoff (L/s)	Post-development Storage Required Storage Volume (m ³)	t Stormwater Managemer a = Controlled Release Rate Constant (L/s)	t (WS-02 ROOF) 1735.688 Uncontrolled Runoff (L/s)	b = Total Release Rate (L/s)	0.820	C = 6.014
I ₁ Time (min) 10	₁₀ = 1735.688 / (To Intensity (mm/hr) 178.6	L + 6.014) ^{0.820} Controlled Runoff (L/s) 7.02	Post-development Storage Required Storage Volume (m ³) 3.46	a = Controlled Release Rate Constant (L/s) 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20	₁₀ = 1735.688 / (To Intensity (mm/hr)	I + 6.014) ^{0.820} Controlled Runoff (L/s)	Post-development Storage Required Storage Volume (m ³)	t Stormwater Managemer a = Controlled Release Rate Constant (L/s)	t (WS-02 ROOF) 1735.688 Uncontrolled Runoff (L/s)	b = Total Release Rate (L/s)	0.820	C = 6.014
Time (min) 10 15 20 25	Intensity (mm/hr) 1785.688 / (To 1785.688 / (To 120.0 103.8	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36	Post-development Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35	0 = 1735.688 / (To intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96	stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30	Intensity (mm/hr) 1785.688 / (To 1785.688 / (To 1786.68 120.0 103.8 91.9 82.6 75.1	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40	0 = 1735.688 / (To intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96	stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60	Intensity (mm/hr) 1735.688 / (To 1786.68 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 30 35 40 45 50 60 70	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80	Intensity (mm/hr) 1735.688 / (To 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93	stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90	Intensity (mm/hr) 1735.688 / (To 1786.681 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 330 36 40 45 50 60 70 80 90 100	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 25	Intensity (mm/hr) 1785.688 / (To 1785.688 / (To 120.0 103.8	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36	Post-development Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26	0.820	C = 6.0
Time (min) 10 15 20 30 35 40 45 50 60 70	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90	Intensity (mm/hr) 1735.688 / (To 1786.681 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 230 30 35 40 45 50 60 70 80 90 100	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9 35.2	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00	2 Stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 330 36 40 45 50 60 70 80 90 100	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00	a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9 35.2	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00	2 Stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 1785.688 / (To (mm/hr) 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 65.9 49.8 49.8 45.0 41.1 37.9 35.2 32.9	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14 1.06 Summary of Roof	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 0.00 0.00 0.00	2 Stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 1785.688 / (To (mm/hr) 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 65.9 49.8 49.8 45.0 41.1 37.9 35.2 32.9	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 1.81 1.61 1.45 1.33 1.23 1.14 1.06 Summary of Roof prage (100 Year) =	Storage Required Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 0.00 0.00 3.00	stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26		C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 1735.688 / (To 1705.688 / (To 1700 1700 120.0 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9 32.9 Required Roof Sto	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.45 1.33 1.23 1.14 1.06 Summary of Roof prage (100 Year) = Proposed Head =	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.83 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 1.97 1.47 0.93 0.37 0.00 0.00 0.00 1.90	8 Stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26	0.820	C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 1735.688 / (Tc 103.8 91.9 82.6 75.1 69.1 64.0 64.0 64.0 45.0 45.0 41.1 37.9 35.2 32.9 Required Roof Stc	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14 1.06 Summary of Roof Vrage (100 Year) = Proposed Head = Proposed Head =	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26		C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 69.1 49.8 445.0 41.1 37.9 35.2 32.9 Required Roof Stc Ca Number	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14 1.06 Summary of Roof prage (100 Year) = Proposed Head = proposed Head = r of Roof Drains =	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	* Stormwater Managemen a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26		C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9 35.2 32.9 Required Roof Stc CC Number Total Flow	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14 1.06 Summary of Roof vrage (100 Year) = Proposed Head = phrol Flow/Drain s from Roof Drain s from Roof Drain s	Storage Required Storage Volume (m³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.83 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00	a = Controlled Release Rate Constant (L/s) 1.26 1.	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26		C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 1735.688 / (Tc 1785.688 / (Tc 1786.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9 35.2 32.9 Required Roof Stc Cc Numbe Total Flow Availat	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14 1.06 Summary of Roof Prage (100 Year) = Proposed Head = Introl Flow/Drain = tr of Roof Drains = from Roof Durain = le Roof Surface =	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	* Stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26		C = 6.014
Time (min) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120	Intensity (mm/hr) 142.9 120.0 103.8 91.9 82.6 75.1 69.1 64.0 55.9 49.8 45.0 41.1 37.9 35.2 32.9 Required Roof Stc CCC Numbe Total Flow Availat R	Controlled Runoff (L/s) 7.02 4.62 3.88 3.36 2.97 2.67 2.43 2.23 2.07 1.81 1.61 1.45 1.33 1.23 1.14 1.06 Summary of Roof Prage (100 Year) = Proposed Head = Introl Flow/Drain = tr of Roof Drains = from Roof Durain = le Roof Surface =	Storage Required Storage Volume (m ³) 3.46 3.02 3.14 3.15 3.08 2.96 2.81 2.63 2.42 1.97 1.47 0.93 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00	* Stormwater Managemer a = Controlled Release Rate Constant (L/s) 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b = Total Release Rate (L/s) 1.26		C = 6.014

Post-development Stormwater Management (WS-03 ROOF)

LRL File No. 22022 Project: CIV 7 Location: 424 C Date: Octob Designed: Tama Drawing Ref.: C601

220224 CIV 7-Storey Condo Building 424 Churchill Ave October 11, 2022 Tamara Harb C601

	₁₀₀ = 1735.688 / (To	d + 6.014) ^{0.820}		a =	1735.688	b =	0.820	C = 6.014
			Storage Require	d				
Time (min)	Intensity (mm/hr)	Controlled Runoff (L/s)	Storage Volume (m ³)	Controlled Release Rate Constant (L/s)	Uncontrolled Runoff (L/s)	Total Release Rate (L/s)		
10	178.6	12.32	6.63	1.26	0.00	1.26		
15	142.9	4.62	3.02	1.26	0.00	1.26		
20	120.0	3.88	3.14	1.26	0.00	1.26		
25	103.8	3.36	3.15	1.26	0.00	1.26		
30	91.9	2.97	3.08	1.26	0.00	1.26		
35	82.6	2.67	2.96	1.26	0.00	1.26		
40	75.1	2.43	2.81	1.26	0.00	1.26		
45	69.1	2.23	2.63	1.26	0.00	1.26		
50	64.0	2.07	2.42	1.26	0.00	1.26		
60	55.9	1.81	1.97	1.26	0.00	1.26		
70	49.8	1.61	1.47	1.26	0.00	1.26		
80	45.0	1.45	0.93	1.26	0.00	1.26		
90	41.1	1.33	0.37	1.26	0.00	1.26		
100	37.9	1.23	0.00	1.26	0.00	1.26		
110	35.2	1.14	0.00	1.26	0.00	1.26		
120	32.9	1.06	0.00	1.26	0.00	1.26		
	n Required Roof Sto	Summary of Roo orage (100 Year) = Proposed Head = ontrol Flow/Drain = ar of Roof Drains =	6.63 150 0.63 2	m³ mm L/s L/s	*An Emergency ove	rflow scupper is provi	ded above this height	
Maximun	Total Flow	from Roof Drain =	1.26					
Maximun	Total Flow Availat F	ble Roof Surface =	248 WATTS adjustable roof dra	m ²				

I ₁	₀₀ = 1735.688 / (To	d + 6.014) ^{0.820}		a =	1735.688	b = 0.	820	C = 6.014
			Storage Require	d	T			
	Intensity	Controlled	• •	Controlled Release Rate	Uncontrolled	Total Release		
Time (min)	(mm/hr)	Runoff (L/s)	Storage Volume (m ³)	Constant (L/s)	Runoff (L/s)	Rate (L/s)		
10	178.6	3.08	1.09	1.26	0.00	1.26		
15	142.9	4.62	3.02	1.26	0.00	1.26		
20	120.0	3.88	3.14	1.26	0.00	1.26		
25	103.8	3.36	3.15	1.26	0.00	1.26		
30	91.9	2.97	3.08	1.26	0.00	1.26		
35	82.6	2.67	2.96	1.26	0.00	1.26		
40	75.1	2.43	2.81	1.26	0.00	1.26		
45	69.1	2.23	2.63	1.26	0.00	1.26		
50	64.0	2.07	2.42	1.26	0.00	1.26		
60	55.9	1.81	1.97	1.26	0.00	1.26		
70	49.8	1.61	1.47	1.26	0.00	1.26		
80	45.0	1.45	0.93	1.26	0.00	1.26		
90	41.1	1.33	0.37	1.26	0.00	1.26		
100	37.9	1.23	0.00	1.26	0.00	1.26		
110	35.2	1.14	0.00	1.26	0.00	1.26		
120	32.9	1.06	0.00	1.26	0.00	1.26		
		Summary of Roo						
Maximum	Required Roof Sto	orage (100 Year) =		m ³				
		Proposed Head =		mm	*An Emergency over	flow scupper is provide	d above this height.	
Control Flow/Drain = 0.63				L/s				
		er of Roof Drains =						
		from Roof Drain =	1.26	L/s				
		ble Roof Surface =	62.07	m ²				
	Availat	ble Roof Surface = Roof Drain Model =	62.07 WATTS adjustable roof dra	m² ain w/ weir opening-closed				
	Availal F		WATTS adjustable roof dra					

Post-development Stormwater Management (WS-05 ROOF)

LRL File No. 2202 Project: CIV Location: 424 (Date: Octo Designed: Tam: Drawing Ref.: C601

220224 CIV 7-Storey Condo Building 424 Churchill Ave October 11, 2022 Tamara Harb C601

I ₁	₀₀ = 1735.688 / (To	I + 6.014) ^{0.820}		a =	1735.688	b =	0.820	C = 6.014
			Storage Require	d				
Time (min)	Intensity (mm/hr)	Controlled Runoff (L/s)	Storage Volume (m ³)	Controlled Release Rate Constant (L/s)	Uncontrolled Runoff (L/s)	Total Release Rate (L/s)		
10	178.6	6.48	3.13	1.26	0.00	1.26		
15	142.9	4.62	3.02	1.20	0.00	1.20		
20	120.0	3.88	3.14	1.20	0.00	1.20		
25	103.8	3.36	3.15	1.26	0.00	1.26		
30	91.9	2.97	3.08	1.26	0.00	1.26		
35	82.6	2.67	2.96	1.26	0.00	1.26		
40	75.1	2.43	2.81	1.26	0.00	1.26		
45	69.1	2.23	2.63	1.26	0.00	1.26		
50	64.0	2.07	2.42	1.26	0.00	1.26		
60	55.9	1.81	1.97	1.26	0.00	1.26		
70	49.8	1.61	1.47	1.26	0.00	1.26		
80	45.0	1.45	0.93	1.26	0.00	1.26		
90	41.1	1.33	0.37	1.26	0.00	1.26		
100	37.9	1.23	0.00	1.26	0.00	1.26		
110	35.2	1.14	0.00	1.26	0.00	1.26		
120	32.9	1.06	0.00	1.26	0.00	1.26		
		Summary of Roof	Storage					
Maximum	Required Roof Sto	orage (100 Year) =	3.15	m ³				
		Proposed Head =	150	mm	*An Emergency ove	rflow scupper is provid	ded above this heigl	nt.
	Co	ontrol Flow/Drain =	0.63	L/s				
	Numbe	er of Roof Drains =	2					
	Total Flow	from Roof Drain =	1.26	L/s				
	Availat	le Roof Surface =	131	m ²				
	F	oof Drain Model =	WATTS adjustable roof dra	in w/ weir opening-closed				
	Total St	orage Required =	3.15	m ³				
	Total St	orage Required =	3.15	m ³				

SUN	IMARY OF RI	ELEASE RATES	AND STORAGE VOLUME	ES
CATCHMENT AREAS	DRAINAGE AREAS (ha)	100-YEAR RELEASE RATE	100-YEAR REQUIRED STORAGE (m3)	TOTAL AVAILABLE STORAGE (m3)
WS-01(ROOF)	0.012	1.26	3.15	6.03
WS-02 (ROOF)	0.014	1.26	3.46	4.55
WS-03 (ROOF)	0.025	1.26	6.63	12.25
WS-04 (ROOF)	0.006	1.26	3.15	3.16
WS-05 (ROOF)	0.013	1.26	3.15	6.64
TOTAL CONTROLLED	0.070	6.30	19.53	32.63
WS-06 (UNCONTROLLED)	0.031	15.59	0	0
TOTAL UNCONTROLLED	0.031	15.59	0.00	0.00
TOTAL	0.101	21.89	19.53	32.63

LRL Associates Ltd. Storm Design Sheet

LRL File No.220224Project:CIV 7-Storey Condo BuildingLocation:424 Churchill AvenueDate:October 11, 2022Designed:Tamara HarbDrawing Reference:C.401

	Storm Design P	rameters
Rational Method Q = 2.78CIA		Ottawa Macdonald-Cartier International Airport IDF curve
		equation (10 year event, intensity in mm/hr)
Q = Peak flow in litres per second (L/s)	Runoff Coefficient (C)	l100 = 1735.688 / (Td + 6.014)0.820
A = Drainage area in hectares (ha)	Grass 0.2	Min. velocity = 0.80 m/s
C = Runoff coefficient	Gravel 0.7	Manning's "n" = 0.013
I = Rainfall intensity (mm/hr)	Asphalt / rooftop 0.9	

LO	AREA (ha)			FLOW						STORM SEWER									
WATERSHED / STREET	From MH	To MH	C = 0.20	C = 0.70	C = 0.90	Indiv. 2.78AC	Accum. 2.78AC	Time of Conc. (min.)	Rainfall Intensity (mm/hr)	Peak Flow Q (L/s)	Controlled Flow Q (L/s)	Pipe Diameter (mm)	Туре	Slope (%)	Length (m)	Capacity Full (L/s)	Eull	Time of Flow (min.)	Ratio (Q/Q _{FULL})
WS-01 to WS-05	Building	PROP STM MH01	0.000	0.000	0.070	0.175	0.175	10.00	178.6	31.28	6.30	250	PVC	2.00%	11.6	84.1	1.71	0.11	0.37

APPENDIX G

Fire Hydrant Locations

