

1Door4Care: CHEO Integrated Treatment Centre - Geotechnical Investigation Report (Parking Garage)

Children's Hospital of Eastern Ontario Campus 401 and 407 Smyth Road Ottawa, Ontario

Infrastructure Ontario Project # 182-OCTC

25 October 2022

The Power of Commitment

Executive summary

GHD Limited (GHD) has been retained by Ontario Infrastructure and Lands Corporation ('Infrastructure Ontario') to carry out a preliminary geotechnical investigation at the location of the proposed parking and asphalt paved driveway at the Children's Hospital of Eastern Ontario (CHEO) Campus located at 401 Smyth Road, in Ottawa, Ontario.

It was understood that the preliminary parking structure will either be a 3-storey structure (with 350 vehicles per level), or a 7-storey building (with 150 vehicles per level) with no underground levels. The parking structure was expected to have a total of 1,050 car parking spaces initially. The recently provided parking structure plan now includes an 8-storey building composed of 1,050 parking spaces and no below grade structures.

The objectives of the competed geotechnical investigation consisted of gathering information on the ground geotechnical conditions at the Site in support of the proposed development and to provide professional opinions to assist in the design and construction of the proposed structure.

The original 2021 drilling activities consisted of the advancement of eleven (11) exploratory geotechnical boreholes denoted as BH1-21, BH2-21, MW3-21, BH4-21, MW5-21, MW6-21, BH7-21, MW8-21, as well as B1-21 to B3-21 (advanced within the soil berms located along the southern, eastern, and northern perimeter of the existing parking lot) to depths varying between 1.0 and 10.1 metres below ground surface (mBGS). Four (4) monitoring wells were installed in Boreholes MW3-21, MW5-21, MW6-21, and MW8-21. A supplementary geotechnical investigation in support of the new proposed parking concept was recently completed by advancing twelve (12) boreholes in which (two) monitoring wells were installed. The scope of work also included a geophysical survey within the parking garage footprint.

The general stratigraphy at the Site consists of fill/disturbed native soils underlain by gravelly sand/ silty sand to sand and gravel deposits overlying bedrock. The measured groundwater levels within the installed monitoring wells were found to range from approximately 1.7 to 3.1 mBGS, and the groundwater elevations range from approximately 78.7 to 80.5 mAMSL. For the purpose of preliminary design, spread and strip footings placed on the weathered shale bedrock can be designed for a factored (\emptyset =0.5) geotechnical resistance at Ultimate Limit State (ULS) of 800 kPa, and a geotechnical reaction at Serviceability Limit State (SLS) of 600 kPa.

Based on the results of this investigation, the Site can be classified as Class 'B' (Very Dense Soil and Soft Rock) for seismic load calculations subjected to code requirements.

The design depth of frost penetration in the area is 1.8 m as per the OPSD 3090.101. A permanent soil cover of 1.8 m or its thermal equivalent synthetic insulation is required for frost protection of foundations (foundations in unheated areas). During winter construction, exposed surfaces to support foundations must be protected against freezing by means of loose straw and tarpaulins.

It is expected that seepage rate into the excavation within the native granular deposits and the upper portions of the bedrock will be moderate to high. If the excavation is to be above the groundwater table, moderate to high groundwater ingress can readily be handled by installation of sumps and pumps at strategic locations at the base of excavation. If the excavation is to be extended to a greater depths below local groundwater table, an active pre-construction dewatering system such as well points may be required depending on the depth and size of excavations.

The possible presence of cobbles and boulders at this Site and their impact on the excavation should be expected.

Qualified geotechnical personnel should inspect all stages of the proposed development. Specifically, they should ensure that the materials and conditions comply with this geotechnical investigation report. In addition, qualified geotechnical personnel should provide material testing services prior to and during foundation preparation and construction.

Contents

1.	Introd	luction	1
2.	Field	and Laboratory Work Procedures	2
	2.1	Safety Planning and Utility Clearances	2
	2.2	Borehole Advancement and Field Testing	2
	2.3	Geotechnical Laboratory Testing	5
	2.4	Soil Corrosivity Testing	5
3.	Site G	Beology and Subsurface Conditions	5
	3.1	Regional Geology	5
	3.2	Ground Stratigraphy	6
		3.2.1 Ground Cover – Asphaltic Concrete	6
		3.2.2 Fill / Disturbed Soil	6
		3.2.3 Native Soil	7
		3.2.4 Shale Bedrock	7
	3.3	Geotechnical Laboratory Test Results	8
		3.3.1 Grain Size Distribution	8
		3.3.2 Atterberg Limits	9
		3.3.3 Unconfirmed Compressive Strength of Intact Rock Core3.3.4 Proctor Test	10
	3.4	Groundwater Conditions	10 11
_			
4.	-	eering Discussion and Assessment	11
	4.1	General Geotechnical Evaluation	11
	4.2	Site Preparation and Grading	12
	4.3	Foundations	12
		4.3.1 Conventional Spread/Strip Footings	12
	4.4	Slab-On-Grade	13
	4.5	Lateral Earth Pressures	14
	4.6	Seismic Site Classification	14
	4.7	Geophysical Survey	15
	4.8	Depth of Frost Penetration	15
	4.9	Pavement Design	15
		4.9.1 Pavement Design	15
		4.9.2 Recommended Pavement Structure	16
		4.9.3 Drainage	17
5.		truction Considerations	17
	5.1	Excavation and Temporary Shoring	17
	5.2	Temporary Ground Water Control	18
	5.3	Suitability of On-Site Soils	18
	5.4	Site Servicing	19
	5.5	Soil Corrosivity Potential	19
	GH	D Infrastructure Ontario Project # 182-OCTC 11205379 1Door4Care: CHEO Integrated Treatment Centre	e -

ii

Geotechnical Investigation Report (Parking Garage)

6. Limitations of the Investigation

Figure index

Figure 1	Site Location Map
Figure 2	Investigative Location Plan

Tables

Table 2.1	Summary of Advanced Boreholes in the parking Garage Area	4
Table 3.1	Depth / Elevation of Shale Bedrock Surface	7
Table 3.2	Gradation Analysis of Select Representative Soil Samples	9
Table 3.3	Atterberg Limit Test Results	10
Table 3.4	Unconfined Compressive Strength of Rock Core Samples	10
Table 3-5	Proctor Test Results	11
Table 4.1	Ground Geotechnical Bearing Capacity at the Locations of Boreholes/ Moni	toring Wells13
Table 4.2	Lateral Earth Pressures	14
Table 4.3	Flexible Pavement Design	16
Table 4.4	Rigid Pavement Design	16
Table 5.1	OHSA Excavation Recommendations	17
Table 5.2	Soil Corrosivity Assessment as per the CSA A23.1 Standards	20
Table 5.3	Soil Corrosivity Assessment as per the AWWA Standards	20

Table index

- Table 1 (a) Summary of Groundwater Levels (mBGS)
- Table 1 (b) Summary of Groundwater Elevations (mAMSL)

Appendices

- Appendix A Record of Borehole Logs
- Appendix B Geotechnical Laboratory Test Results
- Appendix C Rock Core Photographs
- Appendix D Soil Corrosivity Testing
- Appendix E Geophysical Survey

iii

1. Introduction

GHD Limited (GHD) has been retained by Ontario Infrastructure and Lands Corporation ('Infrastructure Ontario') to carry out a geotechnical investigation at the location of the proposed parking and asphalt paved driveway at the Children's Hospital of Eastern Ontario (CHEO) Campus located at 401 Smyth Road, in Ottawa, Ontario (hereafter referred to as the 'Site' or 'Property'). A Site Location Map is provided on **Figure 1**.

It was expected that the proposed preliminary parking structure will either include a 3-storey structure (with 350 vehicles per level), or a 7-storey building (with 150 vehicles per level) with no underground levels. The parking structure was estimated to hold a total of 1,050 car parking spaces initially. The updated development concept for the parking structure now includes an 8-storey building composed of 1,050 parking spaces and no below grade structures. The location of the proposed parking structure is shown on **Figure 2**.

GHD has previously completed a geotechnical investigation and geophysical survey as well as a Multi-Channel Analysis of Surface Waves (MASW) for the 1Door4Care Facility and exterior asphalt paved parking areas between November 2019 and October of 2020, January 2021 as well as additional geotechnical work in July 2022. The proposed parking structure will be located in the existing parking lot to the east of the 1Door4Care Facility. Soil berms ranging from 2.5 m to 4.0 m width and approximately 0.6 m height are present along the southern, eastern, and northern perimeter of the existing parking lot.

A preliminary geotechnical investigation was carried out in accordance with GHD's work plan Reference No. 11221279, dated December 15, 2020, in response to a Request for Services issued by IO for the proposed parking structure. The scope of work for the preliminary geotechnical investigation included the advancement of six (6) geotechnical exploratory boreholes within the footprint of the proposed parking structure, two (2) boreholes within the proposed driveway, and three (3) shallow boreholes at or adjacent to the soil berms along the southern, eastern, and northern perimeter of the existing parking lot. In addition, four (4) monitoring wells were installed in four (4) of the drilled boreholes.

The objectives of the preliminary geotechnical investigation consisted of gathering information on the ground geotechnical conditions at the Site in support of the proposed development and to provide professional opinions to assist in the design and construction of the proposed structure.

Additional geotechnical investigation was proposed in order to supplement the limited investigation completed previously. The additional geotechnical investigation was carried out in accordance with GHD's work plan dated June 3, 2022.

The scope of work of the additional geotechnical investigation consisted of the following tasks:

- Advancing twelve (12) geotechnical exploratory boreholes
- Conduct rock coring in select boreholes to define the bedrock quality,
- Installation of monitoring wells in two (2) of the drilled boreholes for groundwater monitoring within the footprint of the proposed structure,
- A geophysical survey in the parking garage footprint to document the subsurface conditions beneath exterior portions of the proposed development area
- Laboratory testing on selected soil and rock core samples to assess the materials geotechnical properties,
- Laboratory chemical analysis on selected soil samples to assess soil potential for sulphate attack on construction concrete (class of exposure) and soil corrosivity on ductile cast iron elements and,
- Provide professional opinions and recommendations regarding the design and construction of proposed building foundations, floor slab, pavements, and to assess the anticipated construction conditions pertaining to excavation, backfilling, and groundwater control.

This report summarizes the activities and findings of the previous and additional geotechnical investigation, together with our recommendations and comments. These recommendations and comments are based on factual information and are intended only for the use of Infrastructure Ontario design engineers and their affiliates.

The anticipated construction conditions pertaining to excavation, temporary groundwater control, and backfilling are discussed also in this report, but only with regards to how these might influence the design. Construction methods described in this report must not be considered as specifications or recommendations to the contractors or as the only suitable methods. The data and their interpretation presented in this report may not be sufficient to assess all of the factors that may have an effect upon the construction. Prospective contractors, therefore, should evaluate the factual information, obtain additional subsurface data as they might deem necessary and select their construction methods, sequencing and equipment based on their own experience on similar projects.

The recommendations and opinions in this report are applicable only to the proposed development as described above and the attached 'Limitations of the Investigation' is an integral part of this report.

2. Field and Laboratory Work Procedures

The field investigation protocols and methodologies undertaken for the present geotechnical investigation are presented below.

2.1 Safety Planning and Utility Clearances

Upon project initiation, a Site-specific Health and Safety Plan (HASP) was prepared for implementation during the field investigation program. The HASP presented the visually observed Site conditions and identified potential physical hazards to field personnel. Required personal protective equipment was also listed in the HASP. The HASP was reviewed by GHD's field personnel prior to undertaking field activities and a copy of the HASP was maintained at the Site for the duration of the investigative work. Health and Safety requirements in the HASP were implemented during the field investigation program.

Prior to initiating the subsurface investigation activities GHD requested public utilities to be marked by utility operators in accordance with the Ontario One Call damage prevention laws. All applicable utility companies (gas, hydro, bell, network cables, pipeline and municipal sewers, etc.) were contacted. Additionally, GHD retained a private utility locating company (MultiView Locates, Inc.) to demarcate the locations of the privately owned utilities within the area of the boreholes.

In addition, GHD carried out a precondition survey to document the current condition of the ground surface, at and in the vicinity of the boreholes and also along the proposed travel pathway of the drilling equipment, in order to establish a baseline condition prior to the fieldwork. The precondition survey consisted of a visual walk-through inspection of the Site and documentation using photographs. The re-inspection of the Site conditions and all required remedial work was carried out upon completion of all fieldwork.

2.2 Borehole Advancement and Field Testing

Drilling activities for the preliminary geotechnical investigation within the parking garage structure were conducted during the period between January 12 and 19, 2021 under the full-time supervision of experienced GHD technical representatives. The drilling activities consisted of the advancement of eleven (11) exploratory geotechnical boreholes (denoted as BH1-21, BH2-21, MW3-21, BH4-21, MW5-21, MW6-21, BH7-21, MW8-21, as well as B1-21 to B3-21 (advanced within the soil berms located along the southern, eastern, and northern perimeter of the existing parking lot), to depths varying between 1.0 m and 10.1 m below ground surface (mBGS). In addition, four (4) monitoring wells were installed in select completed boreholes (MW3-21, MW5-21, MW6-21, and MW8-21).

2

Drilling activities for the additional geotechnical investigation was conducted between July 4 and July 19, 2022, under the full-time supervision of an experienced GHD technical representative. The drilling activities consisted of the advancement of twelve (12) exploratory geotechnical boreholes (denoted as MW9-22 to MW20-22) to approximate depths varying between 1.1 m and 8.0 mBGS. Two (2) of these boreholes were converted into monitoring wells for groundwater monitoring.

The locations of these boreholes and monitoring wells are shown on Figure 2.

The drilling activities were conducted utilizing a track mounted conventional drilling rig CME 55M, supplied and operated by a Ministry of the Environment, Conservation and Parks (MECP) licensed well driller (Aardvark Drilling).

The drilling method for advancing the boreholes at this Site consisted generally of continuous sampling along with using continuous flight hollow stem augers for the boreholes that contained a monitoring well, while solid stem augers were generally used for the other boreholes. All sampling was conducted using a 50 millimeter (mm) outside diameter split spoon sampler in general accordance with the specifications of the Standard Penetration Test Method (ASTM D1586). The relative density or consistency of the subsurface soil layers were measured using the Standard Penetration Test (SPT) method, by counting the number of blows ('N') required to drive a conventional split barrel soil sampler 0.30 m depth.

Six (6) monitoring wells were installed in selected boreholes (MW3-21, MW5-21, MW6-21, MW8-21, MW9-22, and MW20-22) for long term groundwater level monitoring. Each monitoring well was instrumented with a 50 mm diameter Schedule 40 PVC screen, completed with 50 mm diameter PVC riser pipe and J-plug. A silica sand pack was placed in the annular space between the PVC screen pipe and the borehole annulus to approximately 0.5 m above the top of the screen. Where possible, the monitoring was screen wase placed at appropriate depth to target those materials that had higher permeability. A bentonite seal and holeplug was installed in the remaining borehole annulus above the sand pack. A protective steel casing with a concrete collar was placed on top of each monitoring well. The well completion details for each monitoring well are presented on the borehole records provided in **Appendix A**. In accordance with O. Reg. 903, the monitoring wells have been registered with the MECP.

Upon encountering bedrock, rock coring was conducted in MW3-21, MW6-21, MW9-22, BH11-22, BH13-22, and BH18-22. At these locations, the boreholes were advanced by diamond core drilling over a length from approximately 4.7 m and 6.6 m respectively. The coring of the rock was carried out using HQ size core barrel and double tube wireline equipment, allowing recovery of 63 mm diameter rock cores. The GHD technician visually described the rock samples. For the rock cores, the Total Core Recovery (TCR), Solid Core Recovery (SCR), and Rock Quality Designation (RQD) values were recorded in accordance with the conventions used by the International Society for Rock Mechanics (ISRM). Rock core photo records are provided in **Appendix C**.

The supervising technician logged the borings and examined the soil and rock core samples as they were obtained. The soil/rock samples were transported to GHD's geotechnical laboratory where they were further reviewed by senior geotechnical personnel and representing samples were selected for laboratory testing. The detailed results of the examination are recorded on the borehole records presented in **Appendix A**.

Upon completion, boreholes that were not instrumented with monitoring wells were backfilled in accordance with O. Reg. 903. These boreholes have been grouted from the bottom upward with a cement bentonite grout to prevent future local ground settlement at the drilling locations.

At the completion of drilling activities, the plan coordinates and ground elevation at the borehole locations were surveyed by J.D Barnes Limited (Land Information Specialists) using the UTM Coordinate System (UTM18-NAD 83). A summary of the survey information is presented in the table below.

3

	Location – UTM-17 NAD83 Coordinate System		Ground	Total Borehole	Length of	Monitoring
Borehole Identification	Northing	Easting	Elevation (mAMSL)	Depth, including rock coring (mBGS)	Rock Coring (m)	Well Installation Tip Depth (m)
BH1-21	5027575.0	449073.3	81.4	3.2	-	-
BH2-21	5027616.8	449071.4	81.4	2.8	-	-
MW3-21	5027638.1	449119.4	81.4	10.1	5.5	4.6
BH4-21	5027621.2	449159.8	82.2	2.8	-	-
MW5-21	5027589.4	449128.8	81.8	1.8	-	1.8
MW6-21	5027605.4	449245.0	82.2	10.1	6.5	7.5
BH7-21	5027618.0	449176.6	82.2	2.5	-	-
MW8-21	5027648.0	449211.8	82.2	2.2	-	2.1
B1-21	5027580.7	449219.2	82.3	1.0	-	-
B2-21	5027629.4	449254.4	82.2	1.5	-	-
B3-21	5027652.0	449199.1	82.3	1.4	-	-
MW9-22	5027588.5	449191.1	82.0	7.9	-5.3	5.8
BH10-22	5027596.9	449167.5	82.1	1.2	-	-
BH11-22	5027638.0	449184.6	82.1	8.0	5.5	-
BH12-22	5027590.3	449214.3	82.1	1.8	-	-
BH13-22	5027615.5	449212.0	82.1	6.6	4.7	-
BH14-22	5027618.1	449237.3	82.2	1.2	-	-
BH15-22	5027642.6	449234.7	82.2	1.1	-	-
BH16-22	5027594.4	449262.3	82.1	1.2	-	-
BH17-22	5027619.3	449258.6	82.1	1.1	-	-
BH18-22	5027645.0	449256.7	82.1	7.1	5.7	-
BH19-22	5027589.0	449046.7	81.1	1.4	-	-
MW20-22	5027656.1	449095.7	81.2	1.6	-	1.6

Table 2.1 Summary of Advanced Boreholes in the parking Garage Area

It is noted that even though the ground surface elevations are accurate to 20±mm, these elevations should not be used for construction purposes.

All soil cuttings and purge water generated as part of the field activities have been containerized in 200 litre steel drums and stored on Site for staging prior to disposal at a MECP approved facility.

2.3 Geotechnical Laboratory Testing

All geotechnical laboratory testing was completed in accordance with the latest editions of the ASTM standards. Geotechnical laboratory testing consisted of moisture content tests on all recovered soil samples, as well as grain size distribution analysis (sieve and hydrometer) on twenty-one (21) select soil samples. As the obtained soil samples were generally coarse-grained, Atterberg Limit testing was conducted on four (4) single soil samples that exhibited plasticity to assess soil plasticity properties.

Laboratory uniaxial compressive strength (UCS) test were carried out on eleven (11) select rock core samples.

Unit weight tests were not carried out on soil samples due to the disturbed nature of the cohesionless samples. Intact soil samples were not available for testing.

The soil testing program and classification conformed to the latest edition of the following standards:

ASTM D6913 Standard Test Method for Particle Size Distribution (Gradation) of Soils using Sieve Analysis

MTO LS-702 Standard Test Method for Particle Size Analysis of Soils (Hydrometer Analysis)

ASTM D4318 Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils

ASTM D2487 Standard Practice for Classification of Soils for engineering purposes (Unified

Soil Classification System-USCS)

The collected soil samples were classified/described in general accordance with the Unified Soil Classification System (USCS).

Geotechnical laboratory test results are discussed in **Section 3.3**. The results of moisture content determination tests, grain size analyses and Atterberg Limits are provided on the borehole records in **Appendix A**. The laboratory data sheets associate with the gradation analyses and the plasticity chart are provided in **Appendix B**.

2.4 Soil Corrosivity Testing

Corrosivity testing was conducted on eight (8) selected samples extracted from the drilled boreholes in accordance with ASTM and CSA Standards to assess the corrosion potential against ductile iron pipes and sulphate attack on concrete. The certificates of analysis associated with the corrosivity test results are provided in **Appendix D** and results are discussed in **Section 5.5**.

3. Site Geology and Subsurface Conditions

3.1 Regional Geology

The geological mapping of the area indicate that the subject Site is situated in an area of glaciofluvial deposits consisting of gravel, sand, silt, and clay followed by shale bedrock.

Based on the Quaternary Geology of Ontario map¹, the site is situated in an area of fluvial deposits consisting of gravel, sand, silt, and clay deposited on modern flood plains. The Bedrock Geology of Ontario map², indicates the Site is underlain by the upper Ordovician aged shale of the Georgian Bay Formation and Billings and Carlsbad Formations. The Georgian Bay Formation consists of interbedded grey to dark grey shale and fossiliferous calcareous siltstone to limestone. In eastern Ontario the Billings Formation and consists of dark blue-grey to brown to black shale with thin

5

¹ Ministry of Northern Development and Mines – Quaternary Geology of Ontario – Southern Sheet – Map 2556.

² Ministry of Northern Development and Mines – Bedrock Geology of Ontario – Southern Sheet – Map 2544

interbeds of limestone or calcareous siltstone. Review of the bedrock topography map and MECP well records for the Site, indicate that the bedrock surface is near the ground surface at an elevation of approximately 80 mAMSL.

3.2 Ground Stratigraphy

It should be noted that the subsurface conditions are confirmed at the borehole locations only and may vary at other locations. The boundaries shown on the borehole records represent an inferred transition between the various strata, rather than a precise plane of geological change. Additionally, actual contacts between deposits will typically be gradational as a result of neutral geologic processes. Variation in the deposit boundaries from those described in the borehole records is to be anticipated. Details of the subsurface conditions are provided on the borehole records presented in **Appendix A**.

The soil conditions observed in the boreholes advanced for this geotechnical investigation are generally consistent with the described geology of the region as presented in **Section 3.1** of this report. The general stratigraphy at the Site consists of fill/disturbed native soils underlain by gravelly sand/silty sand to sand and gravel deposits followed by bedrock. A brief description of each soil stratum encountered during the previous investigation is summarized below:

3.2.1 Ground Cover – Asphaltic Concrete

The boreholes were generally drilled on the asphaltic concrete paved areas and as such all of the drilled boreholes with the exception of Borehole B1-21 to B3-21, BH4-21, BH6-21, BH7-21, MW9-22 to BH12-22, BH14-22 to BH18-22 encountered an asphaltic concrete with a thickness that ranged between 50 mm and 175 mm.

The asphaltic concrete pavement has a base layer of gravel to sand and gravel with thickness values that ranged between 125 and 785 mm. The SPT'N' values within the pavement base and subbase materials (first split spoon sampling) ranged between 9 and 72 indicating a loose to very dense relative densities.

Gradation analysis conducted on select samples of the pavement base and subbase materials indicted that the samples contained 42 to 61 percent gravel, 33 to 50 percent sand, 4 to 13 percent silt, and 2 to 3 percent clay size particles. The fine content of the tested samples ranged between 6 and 16 percent.

3.2.2 Fill / Disturbed Soil

Earth fill / disturbed native soil was encountered in all boreholes at the ground surface or below the asphaltic pavement and extended to depths varying between 0.3 m and 1.1 mBGS. The fill composition is in general heterogeneous, consisting of gravelly sand/gravel/sandy gravel/silty sand to sand and gravel. Asphalt fragments were observed within the fill layer.

SPT 'N' values obtained within the earth fill layer varied between 5 and 72 blows per 0.30 m of penetration, indicating a variable degree of compaction. The elevated blow counts are likely due the presence of gravel and cobbles within the fill layer or the result of ground freezing conditions.

Water content measurements obtained from extracted fill samples indicated that the soil samples moisture content varied between 2 and 19 percent by weight. The low moisture content is likely due to the presence of gravel and cobble fragments within the tested fill samples and the high moisture content is likely due to the presence of clay and/or ice lenses within the tested soils.

Gradation analysis was completed on select samples of the earth fill indicted that the samples contained 15 to 73 percent gravel, 14 to 61 percent sand, 5 to 20 percent silt, and 1 to 8 percent clay size particles while the fine content of the tested samples ranged between 6 and 28 percent. The results are presented in the borehole records and are tabulated in Section 3.3.1. The gradation analysis curve is presented in **Appendix B**.

It is possible that the thickness and quality of the fill (presence of deleterious materials) can vary between borehole locations.

3.2.3 Native Soil

A granular deposit composed of gravelly sand/sand/silty sand/sand and gravel/sand and silt was encountered beneath the fill layer in all boreholes with the exception of Borehole BH1-21 to MW5-21, BH7-21 to MW8-21, and BH15-22 in which no native soil was encountered. The granular deposit extends to depths of approximately of 0.6 m to 1.2 m BGS and at inferred bedrock surface. The granular deposit soil was found to contain some silt and trace clay.

SPT 'N' values obtained within this deposit varied between 13 blows per 0.3 m of penetration and greater than 50 blows per 0.075 m of penetration (refusal), indicating a loose to very dense relative density, but generally compact to dense condition. The elevated blow counts/refusal is generally occurring near the bedrock surface. The moisture content value varies from 3 percent to 13 percent was obtained within the granular soils deposit while the sample.

Gradation analysis was completed on select samples of the granular deposit indicted that the samples contained 31 to 46 percent gravel, 39 to 46 percent sand, 9 to 16 percent silt, and 4 to 7 percent clay size particles while the fine content of the tested samples ranged between 6 and 28 percent. Atterberg limits tests performed on the soil sample obtained from B3-21 at 0.8 m to 1.1 mBGS indicated the sample had a liquid limit of 32 percent, a plastic limit of 18 percent and a plasticity index of 14 percent while the moisture content of the tested soil was 13 percent by weight.. The results for completed tests are presented in the borehole records and are tabulated in Section 3.3.2. The plasticity chart is provided in **Appendix B**.

3.2.4 Shale Bedrock

Bedrock was encountered/inferred in all drilled boreholes at depths ranging between 0.4 and 1.2 mBGS. The upper part of the bedrock is highly to completely weathered and locally transformed to residual soil. The boreholes within the completely weathered zones were advanced by auguring and SPT sampling for variable thicknesses, before reaching auger refusal.

The shale bedrock was cored in six boreholes, MW3-21, MW6-21, MW9-22, BH11-22, BH13-22 and BH18-22 to assess the bedrock quality. From the recovered rock cores, the bedrock was visually identified as the Georgian Bay Formation. The shale was generally observed to be dark grey in color, thinly laminated, highly to completely weathered at its surface and became gradually moderately weathered to fresh with depth. This formation consists generally of a dark grey weak to moderately strong shale interbedded with light grey color strong to very strong limestone and siltstone layer.

Due to the method of investigation and the presence of completely weathered shale at the bedrock surface, the top of the bedrock profile cannot be accurately determined. However, the estimated depths to the completely weathered shale bedrock surface from augering and coring is listed in the following table:

Borehole Identification Number	Estimated Depth/Elevations of Shale Bedrock Surface (mBGS / mAMSL)
BH1-21	0.9 / 80.5
BH2-21	1.1 / 80.2
MW3-21	0.6 / 80.7
BH4-21	0.8 / 81.4
MW5-21	0.4 / 81.4
MW6-21	1.2 / 80.9
BH7-21	0.8 / 81.4
MW8-21	0.9 / 81.3
B1-21	1.0 / 81.0
B2-21	0.9 / 80.5

Table 3.1 Depth / Elevation of Shale Bedrock Surface

Borehole Identification Number	Estimated Depth/Elevations of Shale Bedrock Surface (mBGS / mAMSL)
B3-21	1.2 / 80.9
MW9-22	0.8 / 81.2
BH10-22	0.7 / 81.5
BH11-22	0.9 / 81.3
BH12-22	0.7 / 81.4
BH13-22	1.0 / 81.2
BH14-22	0.7 / 81.5
BH15-22	0.6 / 81.5
BH16-22	0.9 / 81.2
BH17-22	1.1 / 81.0
BH18-22	1.4 / 80.7
BH19-22	0.9 / 80.2
MW20-22	1.0 / 80.2
Notes:	
mBGS: metres Below Ground Surface mAMSL metres Above Mean Sea Level	

The Total Core Recovery (TCR) achieved with the HQ size core bit ranged from approximately 58 to 100%. The Rock Quality Designation (RQD) ranged between 0 to 100% with the lower values of RQD observed near the surface of the rock and the percentages generally increased with depth. The RQD values are a general indicator of rock mass quality; however, in horizontally laminated sedimentary rock formation such as the Georgian Bay Formation, and as a result of the fissile nature of the bedrock, the RQD values may likely underestimate the quality of the rock.

Photographs of the Rock Core samples are presented in Appendix C.

Eleven (11) rock core samples were submitted to the GHD geotechnical laboratory for Uniaxial Compressive Strength (UCS) testing. The obtained UCS values ranged between 80.7 and 107.6 MPa. Based on the results of the unconfined compressive strength test and in accordance with ISRM (International Society of Rock Mechanics) guidelines the tested rock core samples are classified as strong to very strong rock. However, it is believed that the samples have been selected mostly from the limestone and siltstone portion of the rock cores that has less fractures. The results of UCS testing are tabulated in Section 3.3.4 and are also presented in **Appendix B**.

. One (1) core sample from Borehole MW9 was submitted for free swelling test(FST) testing. FST testing are currently in process; upon completion, results will be provided in an addendum.

3.3 Geotechnical Laboratory Test Results

3.3.1 Grain Size Distribution

Grain size analyses consisting of sieve and hydrometer testing were carried out on twenty-one (21) select soil samples extracted from the boreholes or shallow test pits. These consisted of seventeen soil samples from the borehole split spoon (SS) samples and four (4) grab samples (GS) obtained from the near-surface soils of select boreholes. The obtained results are reported in the borehole records and are tabulated in the following table.

The obtained values have been shown on the log of the drilled boreholes and the gradation analysis curves are presented in **Appendix B**.

Borehole Identification	Sample Number	Depth (mBGS)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Fines Silt & Clay (%)
BH1-21	GS1	0.1-0.3	48	41	8	3	11
BH2-21	GS1	0.1-0.3	42	50	6	2	8
BH2-21	SS1	0.5-0.8	15	61	18	6	24
BH4-21	SS1	0.2-0.5	46	41	10	3	13
MW5-21	GS1	0.1-0.3	43	41	13	3	16
MW5-21	SS1	0.5-0.8	23	49	20	8	28
MW6-21	SS2	0.8-1.1	32	45	16	7	23
MW8-21	GS1	0.0-0.3	61	33	4	2	6
B1-21	SS2	0.7–1.0	39	39	15	7	22
B3-21	SS2	0.7-1.0	19	50	17	14	31
BH10-22	SS1	0.0-0.6	43	43	11	3	14
BH11-22	SS1	0.0-0.6	52	37	8	3	11
BH12-22	SS1	0.0-0.7	66	14	-	-	20
BH14-22	SS1	0.0-0.6	66	22	-	-	12
BH15-22	SS1	0.0-0.6	40	47	10	3	13
BH16-22	SS1	0.0-0.7	44	45	9	2	11
BH17-22	SS1	0.0-0.7	52	39	7	2	9
BH18-22	SS1	0.0-0.6	73	21	5	1	6
BH19-22	SS2	0.7-0.9	31	46	16	7	23
MW20-22	SS1	0.2-0.8	36	44	16	4	20
MW20-22	SS2	0.8-1.0	46	41	9	4	13

 Table 3.2
 Gradation Analysis of Select Representative Soil Samples

3.3.2 Atterberg Limits

Atterberg limits test was conducted on four select samples. The obtained results are reported in the associated borehole records and are tabulated in the table to follow.

Table 3.3 Atterberg Limit Test Results

Borehole Identification Number	Depth (mBGS)	-		PL (%)	PI (%)	Soil Description and Classification	
BH3-21 SS2	0.8-1.1	13	32	18	14	Low Plasticity Inorganic Clay	
BH13-22 SS2	0.6-1.2	-	-	-	-	Non-Plastic	
BH19-22 SS2	0.8-1.4	-	-	-	-	Non-Plastic	
MW20-22 SS2	0.6-1.2	-	-	-	-	Non-Plastic	
Notes:W:Natural water conterLL:Liquid limitPL:Plastic limitPI:Plasticity index	t in percent						

The test results are presented in the plasticity chart in Appendix B.

3.3.3 Unconfirmed Compressive Strength of Intact Rock Core

Laboratory uniaxial compressive strength (UCS) test was carried out on eleven (11) selected rock samples extracted from the cores. The results of these tests are summarized below and are also presented in **Appendix B**.

Borehole Identification	Sample Depth (Mbgs)	Rock Density Kg/m³	UCS (Mpa)
MW3-21 RC1	4.88 – 5.03	2,646	80.8
MW3-21 RC2	6.40 – 6.55	2,653	107.6
MW3-21 RC3	7.92 – 8.07	2,700	83.4
MW3-21 RC5	9.63 – 9.75	2,596	80.7
MW6-21 RC2	4.75 – 4.88	2,620	94.5
MW6-21 RC4	6.65 – 6.81	2,645	100.0
MW6-21 RC5	7.98 – 8.10	2,678	102.2
MW9-22 RC1	3.20 - 3.31	2,673	71.0
MW9-22 RC2	4.04 - 4.14	2,667	56.1
BH13-22 RC3	3.61 – 3.71	2,652	35.9
MW23-22 RC2	6.93 – 7.03	2696	46.8
Note: Mpa: Megapascal			

Table 3.4 Unconfined Compressive Strength of Rock Core Samples

Based on the results of the unconfined compressive strength test and in accordance with ISRM (International Society of Rock Mechanics) guidelines the tested rock core samples are classified as medium strong to very strong rock.

3.3.4 Proctor Test

Three (3) laboratory Standard Proctor compaction tests were conducted on bulk samples of the auger cuttings extracted from the surficial fill at the Site to determine the maximum dry density and optimum moisture content of the fill. The purpose of the testing was to assess the compactability during construction. The results are summarized below and are also provided in Appendix B.

Table 3-5 Proctor Test Results

Borehole Identification Number	Depth (mBGS)	Maximum Dry Density (kg/m³)	Optimum Moisture Content (%)
BH11-22	0.0-0.6	2,254	6.4
BH18-22	0.0-0.6	2,265	6.2
MW9-22	0.0-0.3	2,297	6.7

The tested samples maximum dry density ranged between 2,254 and 2,297 kg/m³ and the optimum moisture contents varied between 6.2 and 6.7 percent by weight. The measured in-situ moisture content of the tested samples varied between 2 and 6 percent indicating the fill material are generally within +/- 3 percent of the laboratory optimum for compaction.

3.4 Groundwater Conditions

As part of this geotechnical investigation, six (6) monitoring wells were installed in completed boreholes MW3-21, MW5-21, MW6-21, MW8-21, MW9-22, and MW20-22. The well completion details for each monitoring well is shown on the borehole records provided in **Appendix A**.

Groundwater levels were collected on January 28, 2021, February 2, 2021, February 10, 2021, April 23, 2021, and August 24, 2021, from the Site monitoring wells. Groundwater levels measured in the monitoring wells expressed in metres below ground surface (mBGS) are presented in **Table 1a**, and levels expressed in metres above mean sea level (mAMSL) are presented in **Table 1b**. Based on the groundwater level monitoring to date, the overburden (fill and native soils) are unsaturated, and the water table is encountered in the weathered bedrock. Seasonal monitoring is needed to verify the high-water table.

Based on the January 28, 2021 to August 24, 2021 monitoring events, the groundwater levels in the monitoring wells ranged from approximately 1.7 to 3.1 mBGS, and the groundwater elevations range from approximately 78.7 to 80.5 mAMSL.

In the long term, seasonal fluctuations of the groundwater level should be expected. Perched water table condition could develop in the fill after heavy precipitation and/or during spring thaw.

4. Engineering Discussion and Assessment

Recommendations provided below are based on boreholes advanced and geophysical tests completed during the previous investigation.

4.1 General Geotechnical Evaluation

It was expected that the proposed preliminary parking structure will either include a 3-storey structure (with 350 vehicles per level), or a 7-storey building (with 150 vehicles per level) with no underground levels. The parking structure was estimated to hold a total of 1,050 car parking spaces initially. The recently provided parking structure concept now includes an 8-storey building composed of 1,050 parking spaces and no below grade structures. Further details of the proposed development activities at the Site are unknown to GHD and specific information on the design founding depth and footing loading conditions were not available at the time of preparation of this report.

Based on the borehole data, the founding subgrade for the building will generally consist of dense gravely or sandy soils or completely to highly weathered shale bedrock. The proposed building can be supported on conventional spread and strip footings placed on the native granular soil or weathered shale bedrock.

4.2 Site Preparation and Grading

The ground cover and fill/disturbed materials at this Site extended to depths varying between approximately 0.3 and 1.1 mBGS. The fill/disturbed materials have variable shear strength and compressibility parameters and was observed to contain intermixed asphalt fragments.

The ground cover and any earth fill materials found to contain significant amounts of deleterious materials should be removed prior to site grading activities. The subgrade exposed after the removal of the unsuitable fill material will consist of native soils or bedrock. The subgrade soils should be visually inspected, compacted, and proof rolled using heavy equipment. Any soft, or unacceptable areas should be sub-excavated, removed as directed by the Geotechnical Engineer and replaced with clean suitable granular soil placed in thin layers (150 mm thick or less) and compacted to a minimum of 98 percent Standard Proctor Maximum Dry Density (SPMDD).

The clean earth fill/disturbed soils and native soils encountered at the Site may be suitable for reuse as backfill to raise site grades (where required) or to be used as backfill against foundations or as trench backfill during installation of buried services, provided the material is free of deleterious materials and is within the optimum moisture content. The fill soils are generally near their optimum water content for compaction. If the fill and native soils are to be reused as structural fill, it should be anticipated that reworking of the soils will be required to facilitate compaction through drying or slight wetting and use of vibratory roller compactors.

Installation of engineered fill, where required, must be continuously monitored on a full-time basis by qualified geotechnical personnel.

4.3 Foundations

Foundations for the proposed building at the Site will consist of conventional spread or strip footings founded on native soils or weathered shale bedrock.

The common practice for the Serviceability Limit State (SLS) design of most structure and building foundations is to limit the total and differential foundation settlements to 25 mm and 15 mm, respectively. Other serviceability criteria for the proposed building may be determined by the structural engineer considering tolerable settlement that would not restrict the use or operation of the facilities.

The foundation design options are presented in more detail below:

4.3.1 Conventional Spread/Strip Footings

The proposed structure will be 8-storey building with no underground levels. This would result in the proposed foundation subgrade being placed at a minimum depth of 1 m to 2 m below existing grade. Based on the borehole data, the founding subgrade for the building at this depth will generally consist of the residual soil or completely to highly weathered shale bedrock. It is recommended that the building foundations be extended to the shale bedrock in order to avoid supporting the building foundations on two different types of materials with different compressibility and deformation properties, which could consequently result in excessive differential settlements.

For the purpose of preliminary design, spread and strip footings placed on the weathered shale bedrock can be designed for a factored (\emptyset =0.5) geotechnical resistance at Ultimate Limit State (ULS) of 800 kPa, and a geotechnical reaction at Serviceability Limit State (SLS) of 600 kPa. The recommended bearing capacity is for footing dimension of less than 3.0 m and subject to an engineering inspection and approval by qualified geotechnical engineer for all bearing surfaces. If larger footing dimensions are required, the geotechnical engineer should be consulted.

The minimum depths at which these bearing pressures are available at the borehole locations are also shown in the table below.

Table 4.1 Ground Geotechnical Bearing Capacity at the Locations of Boreholes/ Monitoring Wells

Borehole Identification Number	Minimum Founding Depth (mBGS) / Maximum Elevation (mAMSL)
MW3-21	0.6 / 80.7
BH4-21	0.9 / 81.3
MW5-21	0.9 / 80.9
MW6-21	1.2 / 80.9
BH7-21	0.8 / 81.4
MW8-21	1.0 / 81.2
BH11-22	1.3 / 80.8
BH12-22	0.9 / 81.2
BH14-22	0.9 / 81.3
BH16-22	1.2 / 80.9
MW20-22	1.1 / 80.1

Footings subject to frost action should have a minimum soil cover of at least 1.8 m according to Ontario Provincial Standard Drawing (OPSD) 3090.101 Frost Penetration Depths for Southern Ontario, or equivalent insulation.

During construction, the foundation subgrade should be protected from inclement weather, excessive drying, and ingress of free water.

The contractor should be prepared to deal with cobbles and boulders that may exist within the overburden or excavation of the upper part of the bedrock during construction.

It is recommended that following completion of excavation and proof rolling, a mud mat of lean mix concrete (Min. 1 MPa) is placed to prepare a levelled working area and protect the subgrade from any mechanical disturbance.

4.4 Slab-On-Grade

The lowermost floor slab of the proposed parking structure is to be constructed as a concrete slab-on-grade established on a properly prepared subgrade. A qualified geotechnical engineer should review the condition of the subgrade beneath the proposed slab at the time of construction.

Prior to floor slab construction, all loose fill should be removed from the floor slab area. The native compact to very dense granular deposits encountered near the ground surface at the borehole locations, or engineered fill, used to raise Site grades, are suitable to support the slab-on-grade construction.

Following completion of excavation, the subgrade should be proof rolled under the supervision of the Geotechnical Engineer. Any localized weak areas that are revealed should be sub-excavated and replaced with granular fill. the materials should be placed in thin lifts (150 mm maximum) and compacted to a minimum of 98% of the material's SPMDD.

The slab foundation should incorporate a granular base layer consisting of at least 200 mm of Granular 'A' material as per Ontario Provincial Standard Specifications (OPSS).PROV 1010, compacted to at least 98% of the material's Standard Proctor maximum dry density (SPMDD) to act as a capillary break. The granular base should be placed on competent undisturbed subgrade cleared of all deleterious material (i.e., disturbed soil, organic material, debris) and free water.

A moisture barrier such as polyethylene sheeting could be placed beneath the floor slab to inhibit moisture migration. The placement of a polyethylene vapour barrier on top of the Granular 'A' to provide a capillary break is at the discretion of the structural engineer and architect, as this may not be a requirement for a car parking structure but may have implications on slab curing and certain floor finishes are more sensitive to moisture diffusion through the slab than others. The vapour barrier, if installed, may be covered with a minimum of 50 mm of uniform sand to promote more uniform curing of the concrete along the base of the slab and to protect the vapour barrier against construction traffic.

To minimize localized cracking due to potential differential settlement, all floor slabs should be adequately reinforced. The potential for cracking can be further reduced by using a liberal jointing pattern and structural separations at walls and columns.

Where, lightly loaded concrete masonry (CMU) block walls are to be constructed inside the building, these walls should not be structurally related to the slab-on-grade and could be installed on separate interior strip footings with attention to the comments/recommendations provided in Section 4.3.1 (Conventional Spread/Strip Footings). Supporting such CMU block walls on the slab-on-grade (thickened locally under the CMU block wall) is not recommended as settlement of such structures differ from the settlement of the slab-on-grade.

For the structural design of the concrete slab-on-grade, a combined modulus of subgrade / granular base reaction coefficient (k) of 40 MPa/m can be used.

4.5 Lateral Earth Pressures

Structures subject to unbalanced earth pressures such as shoring systems, retaining walls and other similar structures should be designed to resist the lateral earth pressures. If required and depending on the type of shoring used during construction, the temporary shoring system for excavation support can be designed for the lateral earth pressures given in Sections 26.8, 26.9, and 26.10 of the Canadian Foundation Engineering Manual (CFEM) - 4th Edition. Surcharge loads and hydrostatic pressures should be considered as appropriate. The following table summarizes the recommended soil parameters to be used for lateral earth pressure calculations at this Site:

Soil Type	Bulk Unit Weight Effecti Interna		Coefficient of Lateral Earth Pressure		
	γ (kN/m³)	φ'	Ka	K₀	Kp
Fill / disturbed soil	19	25°	0.40	0.58	2.46
Silty Sand	20	30°	0.33	0.50	3.00
Gravelly Sand	20	32	0.31	0.47	3.25
Bedrock	26	N/A	N/A	N/A	N/A

Table 4.2 Lateral Earth Pressures

It is to be noted that large deformation will be required prior to the full mobilization of passive earth pressure and mobilization of full active or passive resistance requires a measurable and significant movement of soil retaining structure or its rotation. Therefore, unless the structural element can tolerate these deflections, the at-rest earth pressure should be used in design. Where movement sensitive services exist close to the shoring, the lateral pressure should be computed using the coefficient of earth pressure at rest, K₀.

4.6 Seismic Site Classification

The latest Ontario Building Code (OBC) requires the assignment of a Seismic Site Class for calculations of earthquake design forces and the structural design based on a two percent probability of exceedance in 50 years. According to the latest OBC, the Seismic Site Class is a function of soil profile and is based on the average properties of the subsoil strata to a depth of 30 m below the ground surface. The OBC provides the following three methods to obtain the average properties for the top 30 m of the subsoil strata:

- Average shear wave velocity.
- Average Standard Penetration Test (SPT) values (uncorrected for overburden).
- Average undrained shear strength.

Based on the results of this investigation, the Site can be classified as Class 'B' (Very Dense Soil and Soft Rock) for seismic load calculations subjected to code requirements.

4.7 Geophysical Survey

A geophysical survey was undertaken on July 4th, 2022 and completed August 2nd, 2022. The survey was conducted within the footprint area of the proposed parking garage and the eastern portion of the land currently occupied by an existing parking lot. The findings of the geophysical survey are:

- Fourteen (14) TDEM linear anomalies were detected and were only detected by the TDEM Equipment.
- Four (4) GPR linear anomalies were detected and were only detected by the GPR Equipment.
- Seven (7) linear anomalies were detected by both the TDEM and GPR Equipment.
- Two (2) TDEM zones of elevated Channel 3 data were detected but not detected by the GPR equipment.

The geophysical survey reports are provided in Appendix E.

4.8 Depth of Frost Penetration

The design depth of frost penetration in the area is 1.8 m as per the OPSD 3090.101. A permanent soil cover of 1.8 m or its thermal equivalent synthetic insulation is required for frost protection of foundations (foundations in unheated areas). During winter construction, exposed surfaces to support foundations must be protected against freezing by means of loose straw and tarpaulins.

The depth of frost penetration is also defined as the zone of active weathering where sizeable variations in the moisture content accompany the yearly temperature fluctuations. Therefore, the foundation grades should be established at or below this depth. For the light poles and other light structures that are to be installed on a single footing, if some frost heave (25 mm to 50 mm) cannot be tolerated, the foundation elements should also be provided with the above noted minimum depth of soil cover or equivalent exterior-grade insulation.

4.9 Pavement Design

Boreholes BH1-21, BH2-21, BH19-22, and MW20-22 have been drilled within the asphaltic pavement areas outside of the footprint of the proposed structure and provide the geotechnical data on the existing pavement structure at the Site.

The following pavement design recommendations are provided for the entrance/exit driveway for the proposed parking garage.

4.9.1 Pavement Design

Earth fill consisting primarily of gravelly sand to sandy gravel was encountered immediately beneath the asphaltic concrete ground cover in both drilled boreholes. The gravelly sand to sandy gravel extended to depths of 0.7 to 1.1 mBGS and were underlain by granular materials that were inferred to be the residual soil remaining from the highly weathered bedrock. The gravelly sand to sandy gravel is suitable to support for the entrance/exit driveway pavements for the proposed parking garage provided that proper compaction is applied during construction. The excavated earth fill materials can be reused as engineered fill provided it is free of any deleterious materials.

It is recommended that any subgrade comprising of existing fill be inspected for obvious soft/loose areas and presence of deleterious materials. Should such areas be found, GHD can provide appropriate advice for replacement of the material and addressing local weak areas at that time.

Engineered fill to raise the grade can consist of select excavated fill provided the soil is free of any deleterious materials. The fill should be placed in large areas where it can be compacted by a heavy roller. Any fill placed to increase or level the grade must be compacted to a minimum 98 percent of its SPMDD in lifts not exceeding 150 mm.

In-situ density testing to monitor the effectiveness of the compaction equipment in achieving the required densities is also recommended.

The most severe loading conditions on pavement areas and the subgrade may occur during construction. Consequently, special provisions such as end dumping and forward spreading of sub-base fills, restricted construction lanes, and half-loads during paving may be required, especially if construction is carried out during inclement weather conditions.

4.9.2 Recommended Pavement Structure

The flexible pavement design presented in the table below is recommended for the design of the entrance/exit driveway to the proposed parking garage, should a flexible pavement structure design be preferred.

Table 4.3	Flexible Pavement Design

Pavement Layer	Compaction Requirements	Heavy Duty Pavement Design (Parking Garage Driveway)
Surface Course Asphaltic Concrete HL3 (OPSS 1150)	91% to 96.5% Maximum Relative Density (OPSS 310)	40 mm
Base Course Asphaltic Concrete HL8 (OPSS 1150)	92% to 97.5% Maximum Relative Density (OPSS 310)	80 mm
Base Course: Granular 'A' or 19mm Crusher Run (OPSS1010)	100% Standard Proctor Maximum Dry Density	150 mm
Sub-base Course: Granular B or 50mm Crusher Run (OPSS1010)	98% Standard Proctor Maximum Dry Density	350 mm

It is recommended that a tack coat be applied on the asphalt base course to ensure proper bonding of the asphalt surface and base courses.

The following table summarizes the rigid pavement structures recommended for the design of the entrance/exit driveway to the proposed parking garage, should a rigid pavement structure design be preferred.

Table 4.4 Rigid Pavement Design

Pavement Layer	Compaction Requirements	Rigid Pavement Design
Jointed Plan Concrete Pavement	N/A	200 mm
Base Course: Granular 'A' or 19mm Crusher Run (OPSS1010)	100% Standard Proctor Maximum Dry Density	150 mm
Sub-base Course: Granular B or 50mm Crusher Run (OPSS1010)	98% Standard Proctor Maximum Dry Density	250 mm

The pavement design considers that construction will be carried out during dry months, at the appropriate abovefreezing temperatures, and that the subgrade is stable under construction equipment loadings. If construction is carried out during wet weather, additional thickness of granular materials, geo-grid reinforcement or a combination of the two may be required. The requirement for additional granular materials and/or utilization of geo-grids is best determined during construction under the direction of the geotechnical engineer of record.

4.9.3 Drainage

Grading adjacent to pavement areas should be designed so that water is not allowed to pond adjacent to the outside edges of the pavement. Also, the pavement subgrade should be free of depressions and sloped (preferably at a minimum grade of two percent) to provide effective drainage toward the edge of pavement or toward catch-basins if they are utilized. A subdrain should be placed in the up-gradient direction of all catch basins to allow for any water ponded on the subgrade surface to drain. The subdrain should be a 150 mm diameter perforated pipe, 3 m long, placed in a 0.3 m by 0.3 m trench notched into the subgrade, and backfilled with granular materials.

Good drainage in this area will ensure long term performance of flexible pavements.

5. Construction Considerations

5.1 Excavation and Temporary Shoring

The Occupational Health and Safety Act (OHSA) regulations require that if workmen must enter an unsupported excavation deeper than 1.2 m, the excavation must be suitably sloped and/or braced in accordance with the OHSA requirements. OHSA specifies maximum slope of the excavations for four broad soil types as summarized in the following table:

Soil Type	Base of Slope	Maximum Slope Inclination
1	Within 1.2 m of bottom	1 horizontal to 1 vertical
2	Within 1.2 m of bottom of trench	1 horizontal to 1 vertical
3	From bottom of excavation	1 horizontal to 1 vertical
4	From bottom of excavation	3 horizontal to 1 vertical

Table 5.1 OHSA Excavation Recommendations

Trench and foundation excavations should be carried out in strict conformance to the current Occupational Health and Safety Act (OHSA). For the purpose of interpreting the act, the fill and native soils within the Site above the groundwater table can be classified as Type 3 soils. If affected by groundwater seepage, the fill and native soils can be considered as Type 4 soils. The highest number soil type identified in an excavation must govern the excavation slopes from top to bottom of the excavation.

If the above recommended excavation side slopes cannot be maintained due to lack of space or any other reason, the excavation side walls must be supported by an engineered shoring system. The shoring system should be designed in accordance with Canadian Engineering Foundation Manual (4th Edition) and the OHSA Regulations for Construction Projects.

If a shoring system is selected to support the excavation walls, it is recommended that the expertise of an experienced shoring contractor be retained during selection of a shoring approach. It is also recommended that the shoring system required to stabilize the excavation sidewalls during construction be developed by the general and shoring contractors. Further recommendations for shoring may be required depending on the type of shoring system selected for this project.

It is anticipated that shallow foundation and utility excavations within the overburden can be made with conventional equipment. Cobbles and boulders should be expected within the overburden, and the contract should allow for the removal of construction cobbles and boulders.

If the excavation extends to the underlying shale bedrock, and where required, the bedrock may be removed with a larger excavator equipped with a 'V' shaped bucket equipped with a ripper and/or hoe ram. Excavation into the upper

bedrock should be carried out with consideration of the side slopes as provided in the above-noted table, while where moderately weathered or sound bedrock is encountered, excavations can be carried out at or near vertical faces.

The bedrock exposed in the excavation may degrade as it is exposed or if it becomes wet. As such, the bedrock may ravel over time if it is not protected. It recommended that exposed bedrock be protected (i.e. applying shotcrete) from weathering or deterioration if the excavation is to be left open for a long period of time. The selection of the excavation equipment to be used into the bedrock is the contractor's responsibility.

Blasting may not be permitted by the municipality and rock excavation may be carried out using mechanical equipment as stated above. However, blasting may be carried out in compliance with existing provincial environmental guideline limits with respect to ground and air vibration. The blasting operations should be carried out by an experienced contractor and ensuring that the ground and air vibration levels produced during blasting operations are within the recommended provincial guideline limits. The selection and implementation of this excavation option (blasting) is the contractor's responsibility. Vibration monitoring of the adjacent utilities and structures is recommended during excavation if a blasting option is selected.

5.2 Temporary Ground Water Control

Based on the January 28, 2021 to August 24, 2021 monitoring events, the groundwater levels in the installed monitoring wells ranged from approximately 1.7 to 3.1 mBGS, and the groundwater elevations range from approximately 78.7 to 80.5 mAMSL.

The amount of seepage into excavations will depend on the depth of excavation relative to the groundwater level at the time of construction and the hydraulic conductivity of the excavated materials. It is expected that seepage rate into the excavation within the native granular deposits and the upper parts of the weathered bedrock will be moderate to high. If the excavation is to be above the groundwater table, moderate to high groundwater ingress can readily be handled by installation of sumps and pumps at strategic locations at the base of excavation. If the excavation is to be extended to a greater depths below local groundwater table, an active pre-construction dewatering system such as well points may be required depending on the depth and size of excavations.

It is noted that groundwater seepage into the excavation may be most pronounced near the interface between the overburden and the bedrock and through the upper fractured zones of the bedrock. Vertical excavations through the bedrock may require some protection (i.e., shotcrete) for safety and stability of the walls that may also greatly reduce the rates of water seepage into the excavations. Please refer to the Hydrogeological Assessment Report prepared by GHD for this Site, which is provided under a separate cover.

For deep excavations, where required, it is recommended that the groundwater level be maintained at least 0.5 m below the base of excavation to provide dry and stable/safe condition. A dewatering specialist should be consulted to determine the most appropriate measures to be undertaken to sufficiently lower the groundwater table below the lowest excavation depth. The possibility of settlement from the dewatering should be part of the methodology considerations.

5.3 Suitability of On-Site Soils

The ground cover and any earth fill materials found to contain significant amounts of deleterious materials should be removed and should not be used as backfill in settlement sensitive areas.

The earth fill/disturbed soils and native soils encountered at the Site may be suitable for reuse as backfill to raise site grades (where required) or to be used as backfill against foundations or as trench backfill during installation of buried services, provided the material is free of organic material or other deleterious materials and is within the optimum moisture content.

It should be anticipated that reworking of the soils will be necessary to facilitate compaction through drying, wetting, and use of vibratory roller compactors. Control of moisture content during placement and compaction will also be essential for maintaining adequate compaction. If any materials are found to be wet, they may be left aside to dry, or

mixed with drier material that is to be used as backfill. All backfill materials should be placed in thin layers (150 mm thick or less) and compacted by a heavy smooth type roller to 98 percent SPMDD.

It is believed that the moderately weathered bedrock generated at the Site may not be reused as a backfill, because of the difficulties associated with breaking the intact rock fragments down, moisture conditioning, and compaction.

All backfill operations and materials should be inspected and tested by qualified geotechnical personnel to confirm that proper material is utilized, and that adequate compaction is attained.

5.4 Site Servicing

The native soils encountered at the Site are considered suitable to support the proposed Site services. Consideration could also be given to installing Site services within the existing fill, subject to an engineering inspection and approval by qualified geotechnical engineer for all bearing surfaces. The suitability of the subgrade to provide adequate support for buried services must be verified and confirmed on site by qualified geotechnical personnel experienced in such works.

The subgrade soils used to support the service pipes, should be visually inspected. Wet, loose, or otherwise unsuitable fills should be sub-excavated and replaced with bedding materials or clean fills compacted to minimum of 95% SPMDD.

The bedding for trenched (open cut) services should consist of well graded materials meeting City of Ottawa specifications. The bedding should have a minimum thickness of 150 mm below the pipe and 300 mm above and adjacent to the pipe and should comply with the City of Ottawa Standards. The bedding and cover materials should be compacted to a minimum of 95 percent SPMDD to provide support and protection to the service pipes.

Where wet conditions are encountered, the use of 'clear stone' bedding (such as 19 mm clear stone, OPSS.PROV 1004 - Aggregates) may be considered, only in conjunction with a suitable geotextile filter. Without proper filtering, there may be entry of fines from the existing fill or native soils and trench backfill into the bedding. This loss of fine soil particles could result in loss of support to the pipes and possible surface settlements.

5.5 Soil Corrosivity Potential

Corrosivity testing was conducted on eight (8) select samples from the previous investigation extracted from boreholes BH4-21, MW7-21, BH7-21, MW8-21, BH11-22, BH16-22, BH17-22, and MW09-22 in accordance with ASTM and CSA Standards. The results were compared with CSA A23.1 Standards to determine the potential of sulphate attack on concrete and with the American Water Works Association (AWWA) C105 to assess soil corrosivity potential of ductile iron pipes and fittings. Corrosivity testing as described by the American Water Works Association (AWWA) includes soil resistivity, pH, sulphide indication, redox potential, and moisture content. Points are assigned to the sample based on the results of the test. A soil that has a total point score of 10 or more is considered to be potentially corrosive to ductile iron pipe. The potential for sulphate attack on concrete (class of exposure) is determined using Table 3 provided in CSA A23.1. All samples were placed into laboratory-supplied containers, labeled and submitted under chain-of-custody protocol to AGAT and ALS. Analytical results received from the laboratory are provided in **Appendix D**.

The following table summarizes the laboratory test results for the eight (8) soil samples collected from the boreholes to assess soil potential for sulphate attack on concrete structures:

Table 5.2 Soil Corrosivity Assessment as per the CSA A23.1 Standards

Borehole No.	Sample Depth (m)	Sulphate (%)	Class of Exposure (Ref. Table 3 of CSA A23.1)	Potential for Sulphate Attack (Ref. Table 3 of CSA A23.1)
BH4-21 SS2	0.7-1.0	0.0439	Below S-3	Negligible
MW6-21 SS2	0.7-1.0	0.0395	Below S-3	Negligible
BH7-21 SS2	0.7-1.0	0.0006	Below S-3	Negligible
MW8-21 SS2	1.1-1.3	0.0195	Below S-3	Negligible
BH11-22 SS2	0.6 – 0.9	0.0219	Below S-3	Negligible
BH16-22 SS2	0.6 – 1.2	0.0116	Below S-3	Negligible
BH17-22 SS2	0.7 – 1.1	0.0094	Below S-3	Negligible
MW09-22 SS2	0.3 – 0.9	0.65	S-2	Severe

The results of sulphate ion content analysis indicate that the tested soil samples contain low levels of sulphate ion which are below the class of exposure levels outlined in CSA A23.1 with the exception of MW09-22 in which the collected sample had a class exposure of S-2 resulting in a severe potential for surface attack. Additionally, the results of the corrosivity testing at the 1D4C site indicate that the majority of the tested soil/rock samples contain low levels of sulphate ion, which are below the class of exposure levels outlined in CSA A23.1 with the exception of one sample from the weathered shale bedrock. Based on the results from both sites, special cement mixtures such as moderate sulphate-resistant cement (MS) or high-sulphate cement (HS) will likely be required to provide protection against sulphate attack.

In regard to soil corrosivity potential against ductile iron pipes and fittings, it is noted that sulfide analysis presented in AWWA is a qualitative test where a positive, trace, or negative determination is based on the presence of bubbles as a result of a chemical reaction. Such testing has not been conducted as AGAT defines sulfides concentration that is unrelated to the scale provided by AWWA. As a result, it was assumed that the result was positive and a maximum score of 3.5 was selected (most conservative assumption). Also, for moisture content determination, the value obtained from the conducted laboratory tests were used for this analysis and soil poor drainage condition has been considered to obtain more conservative values. The table below summarizes the ANSI/AWWA rating of the tested soil/rock samples on their potential for corrosion towards buried ductile cast iron pipes/fittings. A score of ten (10) points or more indicates the soil is corrosive to ductile iron pipes and protection will be needed.

				Parameters				
Borehole No.	Sample depth (m)	Resistivity (ohm/cm)	рН	Redox Potential (mV)	Moisture	Sulfides	Total Points	Corrosivity Potential
BH4-21 SS2	0.7-1.0	826/10	6.35/0	435/0	Wet/2	Positive/3.5	15.5	Yes
MW6-21 SS2	0.7-1.0	1070/10	7.4/0	393/0	Wet/2	Positive/3.5	15.5	Yes
BH7-21 SS2	0.7-1.0	6130/0	7.23/0	420/0	Wet/2	Positive/3.5	5.5	No
MW8-21 SS2	1.1-1.3	714/10	7.95/0	378/0	Wet/2	Positive/3.5	15.5	Yes
BH11-22 SS2	0.6 – 0.9	390/10	7.28/0	393/0	Wet/2	Positive/3.5	15.5	Yes

Table 5.3	Soil Corrosivity	/ Assessment as per th	e AWWA Standards

				Parameters				
Borehole No.	Sample depth (m)	Resistivity (ohm/cm)	рН	Redox Potential (mV)	Moisture	Sulfides	Total Points	Corrosivity Potential
BH16-22 SS2	0.6 – 1.2	2320/2	7.9/0	354/0	Wet/2	Positive/3.5	7.5	No
BH17-22 SS2	0.7 – 1.1	1610/8	7.5/0	350/0	Wet/2	Positive/3.5	13.5	Yes
MW09-22 SS2	0.3 – 0.9	180/10	6.8/0	371/0	Wet/2	Positive/3.5	15.5	Yes

Based on the results obtained for the samples submitted, the total points ranged between 5.5 and 15.5 and the results indicate that special provisions, such as polyethylene sheeting, will be required for corrosion protection of any metallic pipe components at this Site.

6. Limitations of the Investigation

This report is intended solely for Ontario Infrastructure and Lands Corporation and their designer and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevation and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of geotechnical engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

By issuing this report, GHD is the geotechnical engineer of record. It is recommended that GHD be retained during construction of all foundations and during earthwork operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the test locations only. The subsurface conditions confirmed at the test locations may vary at other locations. The subsurface conditions can also be significantly modified by the construction activities on site (e.g., excavation, dewatering and drainage, blasting, pile driving, etc.). These conditions can also be modified by exposure of soils or bedrock to humidity, dry periods or frost. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction which could not be detected or anticipated at the time of our investigation. Should any conditions at the site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD is completed.

All of Which is Respectfully Submitted,

GHD

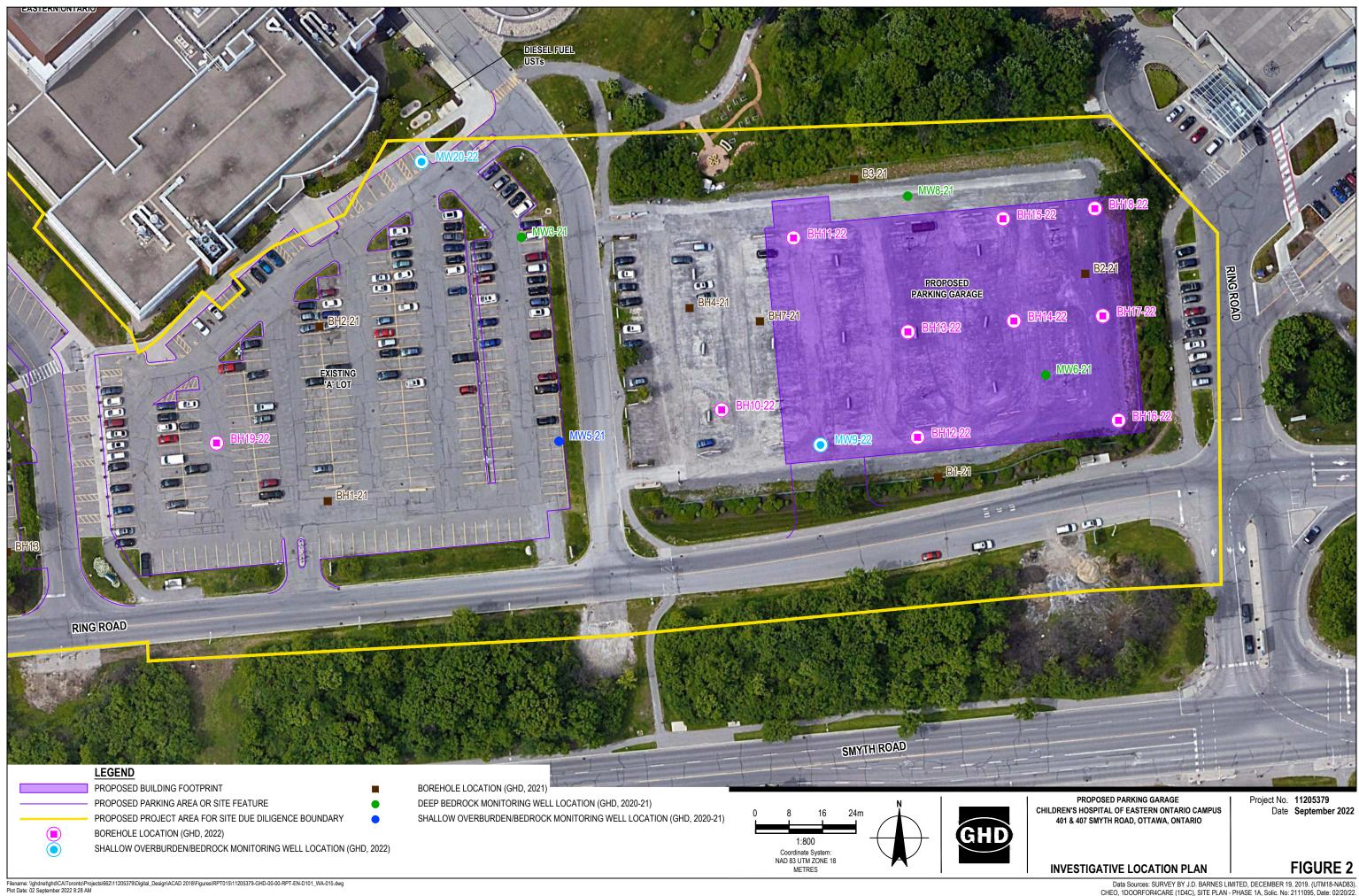

Brice Zanne, M.Eng., EIT Geotechnical Engineer

Lewis Wong, M.Sc., P.Eng. Senior Pavement Engineer

Nikol Kochmanová, PH.D., P. Eng., PMP Senior Geotechnical Engineer

Figures

Source: MNRF NRVIS, 2018. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2019


CHILDREN'S HOSPITAL OF EASTERN ONTARIO CAMPUS 401 & 407 SMYTH ROAD, OTTAWA, ONTARIO PROPOSED 1DOOR4CARE FACILITY

11205379-15 Sept 2, 2022

SITE LOCATION MAP

FIGURE 1

Data Sources: SURVEY BY J.D. BARNES LIMITED, DECEMBER 19, 2019. (UTM18-NAD83). CHEO, 1DOORFOR4CARE (1D4C), SITE PLAN - PHASE 1A, Solic. No: 2111095, Date: 02/20/22. Image ©2022 Google (Imagery Date 6/8/2018).

Tables

Table 1a

Summary of Groundwater Levels (mBGS) Preliminary Geotechnical Investigation Proposed Parking Structure Children's Hospital of Eastern Ontario Campus 401 Smyth Road, Ottawa, Ontario

	MW3-21	MW5-21	MW6-21	MW8-21
Top of Riser (mAMSL)	81.227	81.737	82.072	82.095
Ground Surface (mAMSL)	81.369	81.825	82.17	82.2
28-Jan-21	2.69	-	2.97	2.03
2-Feb-21	2.69	-	2.98	2.03
10-Feb-21	2.49	-	3.09	2.09
23-Apr-21	2.62	-	2.96	1.67
24-Aug-21	2.69	1.79	3.09	1.71

Notes:

-	Dry
mBGS	metres below ground surface
mAMSL	metres above mean sea level

MANUE Metres above mean sea i

Page 2 of 2

Table 1b

Summary of Groundwater Elevation (mAMSL) Preliminary Geotechnical Investigation Proposed Parking Structure Children's Hospital of Eastern Ontario Campus 401 Smyth Road, Ottawa, Ontario

	MW3-21	MW5-21	MW6-21	MW8-21
Top of Riser (mAMSL)	81.227	81.737	82.072	82.095
Ground Surface (mAMSL)	81.369	81.825	82.17	82.2
28-Jan-21	78.68	-	79.20	80.18
2-Feb-21	78.68	-	79.19	80.18
10-Feb-21	78.88	-	79.08	80.11
23-Apr-21	78.75	-	79.21	80.53
24-Aug-21	78.68	80.04	79.08	80.50

Notes:

-	Dry
mBGS	metres below ground surface

mAMSL metres above mean sea level

Appendices

Appendix A Record of Boreholes

Notes on Borehole and Test Pit Reports

Soil description :

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

Clay	< 0.002 mm	(Unified system)	Terminology			
Silt	0.002 to 0.075 mm					
			"trac		1-10% 10-20%	
Sand	0.075 to 4.75 mm	fine 0.075 to 4.25 mm medium 0.425 to 2.0 mm	"son	ctive (silty, sand		
			adje "and		y) 20-35% 35-50%	
Gravel	4.75 to 75 mm	coarse 2.0 to 4.75 mm fine 4.75 to 19 mm	and	I	33-30%	
		coarse 19 to 75 mm				
Cobbles Boulders	75 to 300 mm >300 mm					
Relative density of granular soils		Standard penetration index "N" value		stency of sive soils	Undraine strengt	
		(BLOWS/ft - 300 mm)			(P.S.F)	(kPa)
			Ve	ry soft	<250	<12
V	ery loose	0-4	Soft		250-500 12	12-25
	Loose	4-10	F	Firm		25-50
C	Compact	10-30		Stiff		50-100
	Dense	30-50	Ve	ry stiff	2000-4000	100-200
Ve	ery dense	>50	Hard		>4000 >20	
	Rock quality	designation]	STRATIGRAPI	HIC LEGEND	
"RQI	 D" (%) Value	Quality				II II
	<25	Very poor		00	20	
	25-50	Poor			Cobbles& boulders	
	50-75	Fair	Sand	Glaver	Copplead Doulders	Bedrock
75-90		Good		77777	$\nabla \nabla$	XXXXXXX
					$\sim \sim$	
	>90	Excellent				
	>90	Excellent	Silt	Clay	Organic soil	Fill
S: Split spoon SE, GSE, AGE ecovery	ber pple recovered is shown o E: Environmental samplin	on the log by the abbreviation listed he ST: S ng PS: P	reafter. The numbering of samples is helby tube iston sample (Osterberg)	sequential for each A R G	n type of sample. G: Auger C: Rock core S: Grab sample	Fill
pe and Numl he type of sam S: Split spoon SE, GSE, AGE ecovery he recovery, sl	ber pple recovered is shown o E: Environmental samplin	on the log by the abbreviation listed he ST: S	reafter. The numbering of samples is helby tube iston sample (Osterberg)	sequential for each A R G	n type of sample. G: Auger C: Rock core S: Grab sample	Fill
rpe and Numl be type of sam S: Split spoon SE, GSE, AGE ecovery be recovery, sl QD	ber Iple recovered is shown o E: Environmental samplin hown as a percentage, is	on the log by the abbreviation listed he ST: S ng PS: P	reafter. The numbering of samples is helby tube iston sample (Osterberg) ned to the distance the sampler was di	sequential for each A R G riven/pushed into t	n type of sample. G: Auger C: Rock core S: Grab sample he soil	
ype and Numl he type of sam S: Split spoon SE, GSE, AGE ecovery he recovery, sl QD he "Rock Qual	ber Iple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD	on the log by the abbreviation listed he ST: S ng PS: P s the ratio of length of the sample obtai	reafter. The numbering of samples is helby tube iston sample (Osterberg) ned to the distance the sampler was di	sequential for each A R G riven/pushed into t	n type of sample. G: Auger C: Rock core S: Grab sample he soil	
rpe and Numl ne type of sam S: Split spoon SE, GSE, AGE ecovery ne recovery, sl QD ne "Rock Qual e run. I-SITU TEST	ber Iple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD	on the log by the abbreviation listed he ST: S ng PS: P s the ratio of length of the sample obtai	reafter. The numbering of samples is helby tube iston sample (Osterberg) ned to the distance the sampler was di	sequential for each A R G riven/pushed into t agments of 4 inche	n type of sample. G: Auger C: Rock core S: Grab sample he soil	ne total lengt
rpe and Numl ne type of sam S: Split spoon SE, GSE, AGE ecovery ne recovery, sl QD ne "Rock Qual e run. I-SITU TEST	ber ple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index	on the log by the abbreviation listed he ST: S ng PS: P s the ratio of length of the sample obtai	reafter. The numbering of samples is helby tube iston sample (Osterberg) ned to the distance the sampler was du he ratio of the total length of all core fra	sequential for each A R G riven/pushed into t agments of 4 inche	n type of sample. G: Auger C: Rock core S: Grab sample he soil s (10 cm) or more to th	ne total leng
rpe and Numl he type of sam S: Split spoon SE, GSE, AGE ecovery he recovery, sl QD he "Rock Qual e run. I-SITU TEST Standard per	ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index enetration	on the log by the abbreviation listed he ST: S ng PS: P s the ratio of length of the sample obtai	reafter. The numbering of samples is helby tube iston sample (Osterberg) ned to the distance the sampler was du he ratio of the total length of all core fra N _c : Dynamic cone penetration ind Cu: Undrained shear strength	sequential for each A R G riven/pushed into t agments of 4 inche	n type of sample. G: Auger C: Rock core S: Grab sample he soil s (10 cm) or more to th k: Permeab	ne total leng
Pe and Numl he type of sam S: Split spoon SE, GSE, AGE ecovery he recovery, sl QD he "Rock Qual e run. I-SITU TEST Standard per Refusal to pe ABORATOR	ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: hetration index enetration RY TESTS:	on the log by the abbreviation listed he ST: S ng PS: P s the ratio of length of the sample obtai o" value, expressed as percentage, is th	reafter. The numbering of samples is helby tube iston sample (Osterberg) ned to the distance the sampler was du he ratio of the total length of all core fra N _c : Dynamic cone penetration ind Cu: Undrained shear strength Pr: Pressure meter	sequential for each A R G riven/pushed into t agments of 4 inche lex	n type of sample. G: Auger C: Rock core S: Grab sample he soil s (10 cm) or more to th k: Permeab ABS: Absorption (F	ne total lengt ility Packer test) O.V.: Organ
ype and Numl be type of sam S: Split spoon SE, GSE, AGE ecovery he recovery, sl QD he "Rock Qual e run. I-SITU TEST Standard per Refusal to pe	ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: hetration index enetration RY TESTS:	on the log by the abbreviation listed he ST: S ng PS: P s the ratio of length of the sample obtai	reafter. The numbering of samples is helby tube iston sample (Osterberg) ned to the distance the sampler was du he ratio of the total length of all core fra N _c : Dynamic cone penetration ind Cu: Undrained shear strength	sequential for each A R G riven/pushed into t agments of 4 inche	n type of sample. G: Auger C: Rock core S: Grab sample he soil s (10 cm) or more to th k: Permeab ABS: Absorption (F	ne total lengt

Explanation of Terms Used in the Bedrock Core Log

Strength (ISRM)

Terms	Grade	Description	Unconfii Compressive St (MPa)	
Extremely Weak Rock	RQ	Indented by thumbnail	0.25-1.0	36-145
Very Weak	R1	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife.	1.0-5.0	145-725
Weak Rock	R2	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer.	5.0-25	725-3625
Medium Strong	R3	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer.	25-50	3625-7250
Strong Rock	R4	Specimen requires more than one blow of geological hammer to fracture it.	50-100	7250-14500
Very strong Rock	R5	Specimen requires many blows of geological hammer to fracture it.	100-250	14500-36250
Extremely Strong Rock	R6	Specimen can only be chipped with geological hammer.	>250	>36250

Bedding (Geological Society Eng. Group Working Party, 1970, Q.J. of Eng. Geol. Vol 3)

Term	Bed Thickness	
Very thickly bedded	>2 m	>6.5 ft.
Thickly bedded	600 mm-2 m	2.00-6.50 ft.
Medium bedded	200 mm-600 mm	0.65-2.00 ft.
Thinly bedded	60 mm-200 mm	0.20-0.65 ft.
Very thinly bedded	20 mm-60 mm	0.06-0.20 ft.
Laminated	6 mm-20 mm	0.02-0.06 ft.
Thinly laminated	<6 mm	<0.02 ft.

TCR (Total Core Recovery)

Sum of lengths of rock core recovered from a core run, divided by the length of the core rum and expressed as a percentage

SCR (Solid Core Recover)

Sum length of solid full diameter drill core recovered expressed as a percentage of the total length of the core run.

Explanation of Terms Used in the Bedrock Core Log

Weathering (ISRM)

Terms	Grade	Description
Fresh	W1	No visible sign of rock material weathering.
Slightly	W2	Discolouration indicates weathering of rock weathered material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker than in its fresh condition.
Moderately	W3	Less than half of the rock material is weathered decomposed and/or disintegrated a soil. Fresh or discoloured rock is present either as a corestone.
Highly Weathered	W4	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
Completely Weathered	W5	All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact.
Residual Soil	W6	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has been significantly transported.

ROD (Rock Quality Designation, after Deere, 1968)

Sum of lengths of pieces of rock core measured along centerline of core equal to or greater than 100 mm from a core run, divided by the length of the core run, divided by the length of the core run and expressed as a percentage. Core fractured by drilling is considered intact. RQD normally quoted for N-Size core.

RQD (%)	Rock Quality
90-100	Excellent
75-90	Good
50-75	Fair
25-50	Poor
0-25	Very Poor

(FI) Fracture Index

Expressed as the number of discontinuities per 300 mm (1 ft.) Excluded drill-induced fractures and fragmented zones. Reported as ">>25" if frequency exceeds 25 fractures/0.3 m.

Broken Zone

Zone where core diameter core of very low RQD which may include some drill-induced fractures.

Fragmented Zone

Zone where core is less than full diameter and RQD = 0.

Discontinuity Spacing (ISRM)

Term	Average Spacir	ng
Extremely widely spaced	>6 m	>20.00 ft.
Very widely spaced	2 m-6 m	6.50-20.00 ft.
Widely spaced	600 mm-2 m	2.00-6.50 ft.
Moderately spaced	200 mm-600 mm	0.65-2.00 ft.
Closely spaced	60 mm-200 mm	0.20-0.65 ft.
Very closely spaced	20 mm-60 mm	0.06-0.20 ft.
Extremely closely spaced	<20 mm	>0.06 ft.
Note: Excludes drill-induced fractu	res and fragmented rock.	

Discontinuity Orientation

Discontinuity, fracture, and bedding plane orientations are cited as the acute angle measured with respect to the core axis. Fractures perpendicular to the core axis are at 90 degrees and those parallel to the core axis are at 0 degrees.

	REFEREN	ICE No.	:	11205379-90								ENCI	LOSU	RE N	lo.: _			
					BOREHOLE No.:			BH1-	21		B	ΩR	EH		FF	5 F F	SOI	RT
		G	iHD		ELEVATION:		81.	39 m					Page:					
	CLIENT:		Infra	astructure Ontario (I.0	O.)						LEC	GEN	5					
	PROJECT		Chil	iminary Geotechnica dren's Hospital of Ea	I Investigation - Propose Istern Ontario Campus -	ed 40	Parking)1 Smyt	<u>Struc</u> h Roa	<u>ture</u> d,		\bowtie		- SF		SPO(Y TU			
21				awa, Ontario Schaller	CHECKED BY:		S Sha	handi	an		$\overline{\mathbf{I}}$	RC	- R0	ОСК	COR	E		
: 2/26				uary 15, 2021							Ţ		- vv.	AIE	R LEV	/EL		
LL Date	NORTHIN			7575.049	EASTING:		449073											
G WITH GRAPH+WE	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Sen:	ar test sitivity Water Atterb "N" Val ws / 12	(S) conte erg lin ue	ent (% nits (%	, 🗆	Field Lab	
	Feet Metres	81.39			D SURFACE			%			Ν	10 :	20 30	40 50	0 60 7	0 80	90	
u: so	0.13	81.26	$\times\!\!\times$	- ASPHALT : 125 mi FILL :	m	×	GS1		4			0				\square	\square	
GLB Repo	$2 - \frac{1}{2}$ $3 - \frac{1}{2} 0.91$	80.48		SAND and GRAVE moist, loose to very	EL, trace clay, brown, y dense d : 41%, Clay : 3%, Silt _	X	SS1	25	5	10-5-4-6	9							
ECH_V02.	3 <u>-</u> 1.0 4 <u>-</u>	00.40		: 8%	d : 39%, Clay : 7%, Silt	X	SS2	88	10	12-30-50/ 100mm	50+	0			,			
GHD_GEOT				BEDROCK (inferre greyish brown, ver	ed), shale fragments, y dense	X	SS3	100	4	50/ 100mm	50+			•	·		-	
y File: GF	7					Х	SS4	100	4	50/ 75mm	50+	0		•				
J LIDRAL	9 – 10 – 3.0					Х	SS5	100	4	50/ 75mm	50+	0		•				
- 90.GP	10 <u>-</u> 3.20 11 <u>-</u>	78.19		auger refusal														
205379	12 -			END OF BOREHOL	<u>.E :</u>													
5379/11	13 — 4.0 14 —			- End of Borehole a - Borehole was bac	ckfilled with bentonite													
53\1120	15			holeplug and seale - bgs donates 'belo														
\11205	16 <u>-</u> 5.0																	
\1120-	17 — 18 —													+		\vdash		
NK/11	- <u>-</u> 19															\square	-	
E\8-CH/	20 - 6.0															\square	_	
TABAS	21 <u></u> 22 <u></u>															\square	_	
-OG DA	23 - 7.0															\square	_	
GACYI	24 —															\square	_	
NEL/LE	25 26 8.0															\square	_	
11 BRL	27																	
UGA - 1	28															\square		
SSISSA	29 — — 9.0 30 —																	
:\CA\MI	31 -																	
File: N	32 —																+	

_	REFEREN	ICE No.	:	11205379-90								ENCLOS	JRE No	o.:	2	
			\frown		BOREHOLE No.:	_		BH2-	21		B	OREH	IOI F	= RF	PO	RT
		9	iHD		ELEVATION:		81.	36 m			-					
	CLIENT:		Infra	astructure Ontario (I.	O.)						LEC	<u>GEND</u>				
	PROJECT		Chil	iminary Geotechnica dren's Hospital of Ea wa, Ontario	l Investigation - Propos stern Ontario Campus	ed - 40	Parking 1 Smyt	<u>Struc</u> h Roa	ture d,		\square	ST - S	PLIT S HELBY OCK C	' TUBE		
12/97	DESCRIBE	ED BY:	<u>K.</u> S	schaller	CHECKED BY:		S. Sha	hangia	an		⊥⊔ Ţ		ATER		-	
ate: 2/	DATE (ST/	ART):	Jan	uary 18, 2021	DATE (FINISH)	:	Januar	y 18, :	2021							
	NORTHIN	G:	502	7616.781	EASTING:		44907	1.365								
	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Shear tes Sensitivity O Wate W _p W ₁ Atter • "N" V (blows / 1	/ (S) ´ er conten berg limi alue	ıt (%) ts (%)	∆ Field □ Lab	
	eet Metres	81.36		GROUN	D SURFACE			%			N	10 20 30	40 50	60 70 8	80 90	
	0.10	81.26	\bigotimes	∽_ASPHALT : 100 m FILL :	m/	×	GS1		4			0				
odex 2 2 3	- <u>-</u> 0.61			SAND and GRAVE T moist, compact \Gravel : 42%, Sand	L, trace silt, brown, d : 50%, Clay : 2%, Silt	\mathbb{N}	SS1	71	19	9-7-3-4	10					İ
	1.0 1.14 	80.22		SAND, some silt, ti dark brown, moist,	race clay and gravel, very dense	-	SS2	87	7	10-22-42/ 100mm	50+					í
			իկկկկ	: 18% BEDROCK (inferre	d : 61%, Clay : 6%, Silt ed), shale fragments,	×	SS3	83	4	50/ 125mm	50+	0	•			
8 7				grey, moist, very de	ense	×	SS4	100	4	50/ 75mm	50+	0	+			, [
-1	2.77 <u>-</u> 2.77	78.59		\auger refusal	/	-	SS5	100	9	50/ 25mm	50+	0	•			ł
5) 0.0 1			END OF BOREHOL	<u>.E :</u>											1
n N	2			NOTE : - End of Borehole a	at 2 77 m bos											
20	3 - 4.0			- Borehole was bac holeplug and seale	ckfilled with bentonite											
N	4			- bgs donates 'belo	w ground surface'											
11/290711/-	s <u>+</u>															
	7 <u>-</u> 5.0															
	-1															
19 20																
IABASE (8-0																
	-C															I
																í
24 24 24 24																í
																ł
27																ł
- 28																l
2 4	- 9.0															
ANCAMISSISC 3(3) 3) 3)	+												+	+		
	2 - 1															

REFERENCE No.: 11205379-90								ENCLOSU	RE No	.:	3	\$
	BOREHOLE No.:		I	MW3	-21		B	OREH		R	FP()RT
GHD	ELEVATION:		81.	37 m			-		_1_			
CLIENT: Infrastructure Ontario (I.	O.)						LEC	GEND				
PROJECT: Preliminary Geotechnica Children's Hospital of Ea							\boxtimes		PLIT SF	200	1	
Children's Hospital of Ea LOCATION: <u>Ottawa, Ontario</u>	stern Ontario Campus -	40	1 Smytł	n Roa	d,			ST - SI	HELBY		E	
DESCRIBED BY: <u>K. Schaller</u>	CHECKED BY:		S. Sha	hangia	an		⊥⊔ Ţ		ATER		Ľ	
DATE (START):January 14, 2021	DATE (FINISH):		Januar	y 15, 2	2021							
NORTHING: 5027638.113	EASTING:		449119	.449								
Handrich Constraints (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		υ	and	ery/ (%)	art e	Blows per	ue/ (%)	Shear test Sensitivity	(Cu) (S)	(0/.)	∆ Fie □ Lat	
Multication Depth Multication Depth	IPTION OF D BEDROCK	State	Type and Number	ecove TCR(loistu Conte	Blows per 15 cm/ RQD(%)	l' Val SCR(erg limit	s (%)		
			μz		20			(010005712	in30 c	,		
ASPHALT 175 m	D SURFACE			%			N	10 20 30	40 50 6	50 70	80 90	
1 - 0.10 81.07 GRAVEL : 125 mn		М	SS1	100	8	17-22-50/ 150mm	72			0.3	1 m_	
	D, some gravel, trace		SS2	100	9	42-50/	50+	0				
damp/moist, very d	lense					75mm						
I _ T _ I _ arev wet verv der	30		SS3 SS4	100 100	4	50/ 125mm	50+ 50+			Bento	onite	
	d : 50%, Clay : 14%,		SS5	100	4	50/ 100mm	50+		\square		+-	
		×	SS6	100	4	50/ 100mm	50+	0	•		++-	
						50/ 75mm					0/202 [.]	_ 1
		×	SS7	83	4	50/ 150mm	50+	0	++	_2.74 #2 S	4 m_ Sand	
		×	SS8		17							
		Д	SS8A	100	11	50/ 50mm	50+	0 I	•		+	
		×	SS9	100	5	50/	50+	0	++	-Sci	reen	
						50mm					++	
15 – 4.57 76.80 auger refusal	ر ۲. laminated, interbeds	¥	SS10 RC1	100 100	4	50/ 50mm	50+	0	•	18	7 m= Sand	
of limestone/siltsto 17	ne (hard layers),					100				4.8	8 m-	
18 - moderately strong,											+	
			RC2	100		78						
											++	
$ \begin{bmatrix} 22 \\ - \\ 23 \\ - \\ 23 \\ - \\ 7.0 \end{bmatrix} $												
			RC3	98		85					+	
									Bento	onite :	Seal	
											++	
											\ddagger	
			RC4	100		93					\pm	
			NC4	100		30						
									+	+	++	
			RC5	83		61			+	\square	++	
						i						

	REFEREN	ICE No.		11205379-90								EN	CLOS	SUR	E No).: _		3	
		6			BOREHOLE No.	:		MW3	-21		B	OF	RE	НС)LE	ER	EP	OF	RT
					ELEVATION:		81.	<u>37 m</u>									_2		
	CLIENT:		Infra	astructure Ontario (I.	0.)						LEC	GEN	ID.						
	PROJECT		Chil	iminary Geotechnica dren's Hospital of Ea wa, Ontario	al Investigation - Propos astern Ontario Campus	ed - 40	Parking)1 Smyt	<u>Struc</u> h Roa	ture d,			ST	-	SHE	LIT S	' TUI	ЗE		
26/21	DESCRIBE	ED BY:	<u>K.</u> S	Schaller	CHECKED BY:		S. Sha	hangi	an		∏ ₹	RC			CK C				
ate: 2//	DATE (ST	ART):	Jan	uary 14, 2021	DATE (FINISH)	: _	Januar	y 15,	2021										
ELL	NORTHIN	G:	502	7638.113	EASTING:		449119	9.449											
OG WITH GRAPH+W	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Se O W _p V	ear te nsitiv Wa Na Na Na Na Na Na	ity (S ter c erber Value	Cu) S) onter rg limi e n30	it (%) ts (% cm)		ield .ab	
	Feet Metres			GROUN	D SURFACE			%			Ν	10	20 3	30 4	0 50		0 80 9		
ภี มี	33 - 10.06	71.31	×////		E.											10.	06 m		
Repo	34			END OF BOREHO															
CGLB.	35			NOTE : - End of Borehole									_	$\left \right $		+	_		
H_V02	36 <u>11.0</u> 37 <u>37</u>			 Borehole was dry Rock coring from 	4.57 m bgs														
OIEC	38 -			- 50 mm diameter installed at 7.47 m	bas														
D_GE	30			- Groundwater fou January 28, 2021	nd at 2.69 m bgs on								_			+			
E G H	40			- Groundwater four February 10, 2021	nd at 2.49 m bgs on														
ry File	41 —			- bgs donates 'belo	ow ground surface'														
Libra	42 —																		
GPJ	43 - 13.0																		
9 - 90.	44 —																		
20537	45 —																		
379\11	46																		
1205	47 –																		
053\11	48 —																		
\112	4915.0																		
1120-	50 —																		
1	51 —												_			+	_		
HAR/1	52 <u>-</u> 																		
E\8-C	53																		
ABAS	54 —																		
G DAT	55 – 56 ––17.0																		
:Y/LOC													_						
EGAC	57																		
NEL	58											\vdash	+	$\left \right $		+	_	\vdash	
1 BRU	59 — 18.0 60 —											\square				\square			
A - 11	61																		
SAUG	62 1											$\left - \right $	+	$\left \right $		+		\square	
SSIS	62 <u>-</u> 19.0 63 -																		
\CA\M	64 —											\vdash	_	$\left \right $	+	+	_	\square	
: : :	65											\square							
Ξļ																			

	REFEREN	ICE No.	:	11205379-90								EN	CLOS	SURI	E No).: _		4	
		6			BOREHOLE No.:			BH4-	21		В	OF	REF	10)LE	ER	REP	OF	۲۲
		9			ELEVATION:		82.	<u>23 m</u>				-					1		
ľ	CLIENT:		Infra	astructure Ontario (I.0	D.)						LEC	GEN	ND						
	PROJECT	:	Prel	liminary Geotechnica	I Investigation - Propos stern Ontario Campus ·	ed	Parking	Struc	ture		\boxtimes	ss		SPL	IT S	POC	N		
	LOCATION	N:	Otta	awa, Ontario	stern Ontario Campus -	- 40	n Smyl	n Roa	α,						ELBY CK C				
12/92/	DESCRIBE	ED BY:	<u>K.</u> S	Schaller	CHECKED BY:		S. Sha	hangia	an		Ţ				TER				
Jate: 2	DATE (ST/	ART):	Jan	uary 18, 2021	DATE (FINISH)	-	Januar	y 18, :	2021										
	NORTHIN	G:	502	7621.207	EASTING:		449159	9.803											
	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Se O W _p V	near te ensitivi Wa Ma Atte Ma N" N"	ty (S ter co rberç Value) onten g limi			⁻ ield ₋ab	
	Feet Metres	82.23			D SURFACE			%			N	10	20 3	60 40) 50	60 7	0 80 9	0	
Keport: V	2			brown, moist to we	L, trace clay and silt, t, dense d : 41%, Clay : 3%, Silt		SS1	75		15-27-21-10	48				•				
	3 <u>-</u> 0.76 3 <u>-</u> 1.0 4 <u>-</u>	81.47		∖: 10%	d), shale fragments,		SS2	91	7	6-19-34-50/ 50mm	53	0							
EULECT	5 -					Д	SS3	90	8	21-50/ 100mm	50+	0			+				
GHD_G	6					X	SS4	100	4	50/ 75mm	50+	0			•				
brary File:	8					X	SS5	100	5	50/ 75mm	50+	0			•				
L L	9 <u>2.77</u> 10 <u>3.0</u>	79.46		\auger refusal	/												_		
9 - <u>9</u> 0.G	11 -			END OF BOREHOL	<u>.E :</u>														
205379	12 -			NOTE : - End of Borehole a	at 2.77 m bgs														
3/9/11	13 - 4.0			- Borehole was bac holeplug and seale	ckfilled with bentonite												_		
GUZTT/	14			- bgs donates 'belo	w ground surface'														
12053	15 — 16 —																		
L/07	10 <u>-</u> 5.0 17 -																		
LL/	18 -																		
-11/JA	$19 - \frac{1}{10} - \frac{1}{10} = 6.0$																		
H)-8/-	20																		
ABASE	21 <u>-</u> 22 <u>-</u>																		
I A I DA I	23 - 7.0																		
ACY/LC	24 —																		
L/LE G	25																		
SKUNE	26 _ 8.0														+	+	+	\square	
- 111 E	27											Ħ			+		+	\square	
AUGA	28 — — 29 —											Ħ					+		
22122	30 - 9.0											⊢					\pm		
CANN	31 —											⊢							
FIIE: N:	32 —																		

	REFERENCI	E No.	:	11205379-90								ENC	LOSI	JRE	No.:			5	
					BOREHOLE No.:	_		MW5	-21		B	OR	FΗ		F	RI	EP	OR	т
		C	iHD		ELEVATION:												_1		
	CLIENT:		Infra	astructure Ontario (I.	0.)						LEC	GEN	<u>D</u>						
	PROJECT: LOCATION:		Preli Chile	iminary Geotechnica dren's Hospital of Ea wa, Ontario	al Investigation - Propos astern Ontario Campus	ed - 4(<u>Parking</u>)1 Smyt	<u>Struc</u> h Roa	ture d,		\boxtimes	SS ST		PLIT					
121				ichaller	CHECKED BY:		S Sha	hangi	an		∏ ¥	RC		ROCK VATE			:1		
e: 2/26				uary 15, 2021							Ŧ		·	.,					
LL Dat	NORTHING:	:	5027	7589.381	EASTING:		449128	3.777											
יט אווא פגא <i>ר</i> ו+WE	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Sen	ar tes sitivity Wate Atter "N" V ws / 1	y (S) er con berg l alue	tent (imits		∆ Fi □ La		
	Feet Metres 8	31.83			D SURFACE			%			Ν	10	20 30) 40 5	50 60) 70	80 90)	
S ::	1 - 0.30 8	81.73 81.53		¬ASPHALT : 100 m ¬ SAND and GRAVE	/	×	GS1		7			-0-				0.3	1 m-	_	
GLB Repo	2 - 0.40 8	81.43		clay, brown, moist, Gravel : 43%, San	dense d : 41%, Clay : 3%, Silt	1	SS1	100	8	8-18-20-35	38	9					pņite	_	
H_V02.G	³ <u>-</u> 1.0 4 <u>-</u>			: 13% FILL : GRAVELLY SAND	, some silt, trace clay,	×	SS2	100	3	50/ 125mm	50+					 - 1.0 4_ 2	5 m ⁻	_	
0_GEOTEC	5	80.00		: 20%	d : 49%, Clay : 8%, Silt	×	SS3	100	5	50/ 100mm	50+	0		-		- I	reen 3 m ⁻	_	
FIIE: GHD	7			BEDROCK (inferre grey, damp, very d	ed), shale fragments, ense														
LIDIALY	8 — <u> </u>			END OF BOREHO	<u>LE :</u>														
90.GPJ				NOTE : - End of Borehole : - Borehole was dry	upon completion														
1205379 -	12 — +			- Borehole was dry	stalled at 1.837 m bgs on January 28, 2021 on February 10, 2021														
205379/1	13 <u>4</u> .0 14 <u>4</u> .0			- bgs donates beit	ow ground surface														
-\112053\11																			
	16 — — 5.0 17 —															_			
11120	18 															-			
	19 <u>-</u> 20 <u>-</u> 6.0													_		-		\exists	
3ASE/8-	21																		
LOG DATABASE/8	22															_		\neg	
:Y/LOG	23 <u>-</u> 7.0 24 <u>-</u>													_		_		\neg	
\LEGAC	25 -															+		-	
BRUNELILE	26 8.0													-		_		\exists	
- 111 B	27 — - 28 —													-		+		4	
SAUGA	29 —															+		\exists	
N:\CA\MISSISS	30 - 9.0															+		\exists	
	31															+		\dashv	
FIIe:	32 —																		

	REFEREN	ICE No	:	11205379-90								ENCLOSURE No.:	6
					BOREHOLE No.:			MW6	-21		В	OREHOLE REPO	ORT
		9	äHD		ELEVATION:		82.	17 m			5	Page: <u>1</u> of <u>2</u>	
Ī	CLIENT:		Infra	astructure Ontario (I.0	D.)						LE	GEND	
	PROJECT LOCATION		Chil	liminary Geotechnica dren's Hospital of Ea awa, Ontario	l Investigation - Propos stern Ontario Campus	ed - 40	Parking)1 Smyt	<u>Struc</u> h Roa	ture d,		\square	SS - SPLIT SPOON ST - SHELBY TUBE	
12/97	DESCRIB	ED BY:	<u>K.</u> S	Schaller	CHECKED BY:		S. Sha	hangi	an		LL ▼	RC - ROCK CORE - WATER LEVEL	
ate: 2/2	DATE (ST	ART):	Jan	uary 12, 2021	DATE (FINISH)	: _	Januar	y 13,	2021				
	NORTHIN	G:	502	7605.404	EASTING:		449244	1.983					
WHH GKAPH+W	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) △ Fir Sensitivity (S) □ La ○ Water content (%) Image: Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)	
	Feet Metres	82.17			D SURFACE			%			N	10 20 30 40 50 60 70 80 90	K
Keport: S	1 - 0.35 2 - 0.61			GRAVEL : 350 mm FILL : SILTY SAND, trace		\mathbb{N}	SS1	87	14	10-30-18-8	48	○ ● 0.31 m-	
	3 - 1.0 4 - 1.22			\organics, grey/brov NATIVE : ML-GRAVELLY SA	vn, moist, dense	X	SS2	100	10	4-11-27-45	38		
GEOLECH	5	00.33		brown, moist, dens		X	SS3	100	9	35-20-50/ 75mm	100		
e: GHD	6 <u>-</u> 7 <u>-</u> 2.0			BEDROCK (inferre grey, moist, very de	d), shale fragments, ense	×	SS4	100	4	50/ 75mm	50+	Bentonite	
LIDRARY FI	8 - <u> </u> 9 - <u> </u>					×	SS5	100	3	50/ 100mm	50+		
- 90.GPJ	$10 \xrightarrow{+}{-} 3.0$					X	SS6 SS7	100 100	4	50/ 100mm	50+ 50+		⊻
12053/9-	12 <u>-</u> 3.51	78.66		of limestone/siltsto	K, laminated, interbeds ne (hard layers),		RC1	58		50/ 50mm 50		3.66 m ⁻	
112053/9/	13 4.0 			highly weathered to moderately strong,			RC2	93		24		#2 Sand	
V-12053V	15 – 16 – – 5.0												
	17 <u>-</u> 18 <u>-</u>						5.00						
HAR/11	$19 - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} - 6.0$						RC3	95		54		Screen_	
ABASE (8-C	21												
	$22 - \frac{1}{2}$ 23 - 7.0						RC4	97		55			
GACYL	24 —						1104	51				7.47 m	
	25 <u></u> 26 <u></u> 8.0					H						+Sand 	
- 111 Bh	27 – 28 –												
SAUGA	29 —						RC5	100		52		Bentonite Seal	
	30 <u>+</u> 9.0												
FIIE: N:/C/	31 — <u> </u>						RC6	100		71			

	REFERENCE No.	.:11205379-90								ENC	LOS	URE	No.:		6	
			BOREHOLE No.:	_		MW6	21		B	OR	REF	10	LE	RE	PO	RT
		AHD	ELEVATION:		82.	17 m			-				2			
	CLIENT:	Infrastructure Ontario (I	.0.)						LEC	GEN	D					
		Preliminary Geotechnic Children's Hospital of E Ottawa, Ontario	al Investigation - Propos astern Ontario Campus -	ed • 40	Parking 1 Smyt	Struc n Roa	ture d,		\boxtimes	ST	- 5	SHEI	T SP(_BY T	UBE		
6/21		K. Schaller	CHECKED BY:	_	S. Sha	hangia	an		∏ ¥	RC			K CO ER LI		_	
tte: 2/2	DATE (START):	January 12, 2021	DATE (FINISH):	_	Januar	y 13, 2	2021		-							
ELL Da	NORTHING:	5027605.404	EASTING:		449244	1.983										
JG WITH GRAPH+W	Depth Elevation (m) BGS		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Ser	"N" \	ty (S) er co rberg /alue	ı) ntent (limits -30 cm	%) (%)	∆ Field □ Lab	1
	Feet Metres 82.17	GROUN	ID SURFACE			%			Ν	10	20 3	0 40	50 60			
KUNEL/LEGACY/LOG DATABASE/8-CHAR/11/1120/112053/9/112053/9/112053/9/112053/9/12053/9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	END OF BOREHO NOTE : - End of Borehole - Borehole was dr - Rock coring fron - Monitoring well i - Groundwater fou January 28, 2021 - Groundwater fou February 10, 2027	PLE : at 10.06 m bgs y upon completion n 3.51 m bgs nstalled at 7.47 m bgs ind at 2.97 m bgs on ind at 3.09 m bgs on													
ICAMISSISSAUGA - 1111	$\begin{array}{c} 60 \\ -1 \\ 61 \\ -1 \\ 62 \\ -1 \\ -19.0 \\ 63 \\ -1 \\ 64 \\ -1 \\ 65 \\ -1 \end{array}$															-
Ľ		I I			l											

	REFEREN	ICE No.	:	11205379-90								ENC	LOS	URE	No.:		7	
					BOREHOLE No.	:		BH7-	21		B	OF	2FF	IO	F	RF	=PC	RT
		0	iHD		ELEVATION:		82	.22 m			-		Page					
	CLIENT:		Infra	astructure Ontario (I.	0.)						LEC	GEN	D					
	PROJECT		Chil	iminary Geotechnica dren's Hospital of Ea wa, Ontario	I Investigation - Propos stern Ontario Campus	ed - 40	Parking)1 Smyt	<u>Struc</u> h Roa	ture d,			ST	- 5	SPLIT	BY 1	UBE		
1.7/07	DESCRIBE	ED BY:	<u>K.</u> S	challer	CHECKED BY:		S. Sha	hangia	an		∐L ▼	RC		ROCH VATE			L	
ate: 2/.	DATE (ST	ART):	Janu	uary 19, 2021	DATE (FINISH)): _	Januar	y 19, :	2021									
	NORTHIN	G:	502	7618.043	EASTING:		449176	6.612										
טט אווח פּאַאַאדיאניבע	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Sei	ear tes nsitivit Wate Atter "N" V ows / 1	y (S) er cor berg ′alue	itent (limits	%) (%)	∆ Fiel □ Lab	
	Feet Metres	82.22			D SURFACE			%			N	10	20 30	0 40	50 60	70 8	30 90	-
UCE REPORT: 20				FILL : SILTY SAND and (moist, very dense	GRAVEL, brown,	X	SS1	54	6	28-35-17-10	52	0			•			-
	² - 0.76 3 - 1.0	81.46		BEDROCK (inferre grey, moist, very de	ed), shale fragments, ense	- X	SS2	100	7	15-40-50/ 125mm	50+	0						-
GEU ECH	4 — - 5 — - -					X	SS3	100	4	45-50/ 75mm	50+				•			-
FIIE: GHU	6 2.0 7					×	SS4	100	4	50/ 125mm	50+	0			•			-
LIDIALY FI	8 2.52 9	79.70		\auger refusal	/		SS5	100	3	50/ 75mm	50+	0			•			-
כרט	10 3.0			END OF BOREHO	<u>LE :</u>													-
0379 - 9U.	11 — 12 —			NOTE : - End of Borehole :	at 2.52 m bgs ckfilled with bentonite											+		-
12011120	13 - 4.0			- boleniole was bac holeplug and seale - bgs donates 'belo	ed with cold patch													-
N	14 															_		-
-\1\\$GUZLL\	16 -																	-
07LL	10 5.0 17															_	+	-
	18																	-
	19 <u>-</u> 20 <u>-</u> 6.0															-	+	1
40E/8-(21 —														\square	-	+	-
UA I ABASE	22																	-
Y LUG	23 <u>-</u> 7.0 24 <u>-</u>															-	++	-
LEGAC	24 25																++	-
111 BRUNEL/LEGAC	26 - 8.0																	-
11.1 8	27 —											Ħ				+	++	4
- ADUA	28 — - 29 — -																\ddagger	-
3	30 - 9.0																\ddagger	1
N:/CA/MISS	31 –											\vdash					++	1
FIIE: N	32 —																	1

,	REFERENC	E No.	:	11205379-90								ENCLOS	URE I	No.: _		8	
					BOREHOLE No.:			MW8	-21		В	ORE	IOL	EF	REP	ORT	
		6	iHD		ELEVATION:		82	.20 m			-				f <u>1</u>		
	CLIENT:		Infra	astructure Ontario (I.0	O.)						LEC	GEND					
	PROJECT: LOCATION:		Preli Chile Otta	iminary Geotechnica dren's Hospital of Ea wa, Ontario	l Investigation - Propos stern Ontario Campus -	ed - 40	<u>Parking</u>)1 Smyt	<u>Struc</u> h Roa	ture d,		\boxtimes		SPLIT SHELE				
127				challer	CHECKED BY:		S. Sha	hangi	an		∏ ¥		ROCK NATE				
e: 2/2				uary 18, 2021							÷						
LL Dat	NORTHING:	:	5027	7647.908	EASTING:		44921	1.832									-
G WITH GRAPH+WE	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Shear te Sensitivit O Wat Market W _p W ₁ Atte	ty (S) er cont rberg li /alue	ent (%) mits (%	△ F □ L))		
	Feet Metres 8			GROUNI	D SURFACE			%			N	10 20 3	0 40 5	0 60 7	0 80 9	0	
DI SC		82.15	\bigotimes	∖ASPHALT : 50 mm FILL :	ı/	×	GS1		5			0		0	.31 m		XXX
GLB Kepo	2 <u>-</u> 2 <u>-</u> 3 <u>-</u> 0,86 8	81.34		SANDY GRAVEL, Gravel : 61%, Sand _: 6%	brown, moist, loose d : 33%, Clay : 2%, Silt	X	SS1	100	7	3-4-2-3	6				ntonite		
ECH_VUZ.	3 <u>-</u> 1.0 4 <u>-</u>			BEDROCK (inferre reddish brown/grey	ed), shale fragments, /, wet, very dense	X	SS2	100	18	23-50/ 150mm	50+	0			.22 m Sand		
GHU_GEOI						×	SS3	100	8	50/ 100mm	50+				creen		
у гие: Gr	7 2.0 7 2.22 7 8 7	79.98		\auger refusal	/	×	SS4	100	4	50/ 75mm	50+	0		2.	.14 m .22 m	म् म	
LIDIAL	9			END OF BOREHOL	<u>.E :</u>											_	
379/11205379 - 90.GPJ	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			- Groundwater four January 28, 2021	at 2.22 m bgs upon completion stalled at 2.14 m bgs nd at 2.03 m bgs on nd at 2.09 m bgs on												
CU2112033\11203	14			February 10, 2021 - bgs donates 'belo	w ground surface'												
0ZTT/	17 — 18 — 18 —																
CHAR/11-	19 <u>-</u> 20 <u>-</u> 6.0															_	
NBASE/8-	21																
16 DA 17	22 <u>-</u> 23 <u>-</u> 7.0															_	
JACY LL	24 — 															_	
NEL/LE(25 																
11 BRU	²⁶ – 8.0 27 –																
1 - ASU																	
SSISSA	29 <u>-</u> <u>+</u> 9.0 30 <u>-</u>																
INCANNI-	31																
FIIE: N	32 —																

_	REFEREN	ICE No.	:	11205379-90								EN	CLOS	SURE	No.	:	9	
					BOREHOLE No.:	_		B1-2	21		B	OF	REF	-10	IF	RF	PC	RT
		0	iHD		Elevation:		82.	29 m			2	0.	Page					
	CLIENT:		Infra	astructure Ontario (I.	0.)						<u>LE</u>	GEN	<u>ID</u>					
	PROJECT		Prel Chile Otta	iminary Geotechnica dren's Hospital of Ea wa, Ontario	al Investigation - Propos astern Ontario Campus	ed - 40	Parking 1 Smytl	<u>Struc</u> h Roa	ture d,			ST	- 5	SPLI [:] SHEI ROC	BY	TUBE		
17/97	DESCRIBE	ED BY:	<u>K.</u> S	schaller	CHECKED BY:		S. Sha	hangia	an		⊥⊥ Ţ	RC		WAT			L	
ate: 2//	DATE (ST	ART):	Janu	uary 18, 2021	DATE (FINISH)	: _	Januar	y 18, :	2021									
	NORTHIN	G:	502	7580.742	EASTING:		449219	9.213										
	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Se O W _p	near te ensitivi Wat Man Atte "N" N	ity (S) ter co erberg Value	ntent limits	(%) 5 (%)	∆ Fiel □ Lab	
	eet Metres	82.29			D SURFACE			%			Ν	10	203	80 40	50 6	0 70	80 90	_
Dort: v		81.83		FILL : SILTY SAND and (_brown, moist, loos NATIVE :		\mathbb{A}	SS1	62	2	7-3-2-3	5							-
	3	81.38 81.25		SAND and GRAVE clay, brown, moist, Gravel : 39%, San	EL, some silt, trace very dense d : 39%, Clay : 7%, Silt	X	SS2	89	10	9-24-50/ 125mm	50+				•			-
	3 - [EDROCK, shale red/grey, moist, ve auger refusal	fragments, brownish ry dense													-
	7 <u>-</u> 2.0			END OF BOREHO														-
	9 0 3.0			NOTE : - End of Borehole : - Borehole was dry	at 1.04 m bgs													-
9.08 - 80.6	1 - +			- bgs donates 'belo	ow ground surface'													-
1211/9/120	$2 - \frac{1}{4}$ $3 - \frac{1}{4}$ 4.0																	-
211/-590																		-
	7 — 5.0 7 —																	
	- 60																	_
242E/8-CH																		_
	-1																	-
AS a	- <u> </u>											\square		\square	\square]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+ 0.0											Ħ	+			-		1
2	7																	
	9											\square						
N:/CA/MISSISS	-											F						
	1 — <u> </u>																	
]

	REFEREN	ICE No.	·	11205379-90								ENC	LOSU	IRE N	lo.:		10	
					BOREHOLE No.:	_		B2-2	21		В	OR	FH	OI	FF	REP	OF	۲۲
		6	ind		ELEVATION:		82.	18 m			-					of <u>1</u>		
	CLIENT:		Infra	structure Ontario (I.	0.)						LE	GENI	<u>)</u>					
	PROJECT		Chile	iminary Geotechnica dren's Hospital of Ea wa, Ontario	I Investigation - Propos Istern Ontario Campus -	ed - 40	Parking)1 Smyt	Struc n Roa	ture d,			ST	- SI	PLIT HELE	Υ ΤΙ	JBE		
26/21	DESCRIB	ED BY:	<u>K.</u> S	challer	CHECKED BY:		S. Sha	hangia	an			RC		OCK ATE				
Date: 2	DATE (ST	ART):	Janu	uary 18, 2021	DATE (FINISH):	-	Januar	y 18, :	2021									
VELL	NORTHIN	G:	5027	7629.392	EASTING:		449254	.399	1	1	1	1						
JG WITH GRAPH+V	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Sen	ar test sitivity Water Atterb "N" Va ws / 12	(S) r conte perg lin	nits (9) 6)	Field ∟ab	
	Feet Metres	82.18			D SURFACE			%			N	10	20 30	40 50	0 60	70 80 9	0	
Report: S(FILL : SILTY SAND and (moist, dense	GRAVEL, brown,		SS1	71	4	13-17-24-9	41	0		•				
_V02.GLB	3	81.27		BEDROCK, shale	fragments, grey, very	\mathbb{N}	SS2	100	10	4-10-28-34	38	0						
SEOTECH	4 <u>-</u> 5 <u>-</u> 1.52	80.66				X	SS3		9	22-50/ 150mm	50+							
S GHD G	6 2.0 7			END OF BOREHOU														
ibrary File:	8 - <u>-</u> 9 - <u>-</u>			 End of Borehole a Borehole was dry bgs donates 'below 	upon completion													
J.GPJ L																		
05379 - 9(11 — 12 —																	
5379\112	13 <u>+</u> 4.0																	
53\1120	14 — 15 — 																	
20\1120	16 — — 5.0 17 —																	
1112																		
3-CHAR/1	$19 - \frac{1}{20} - \frac{1}{20} - 6.0$																	
I ABASE \{	21 <u>-</u> 22 -																	
LOG DA	23 - 7.0																	
LEGACY	24 — 25 —																	
BRUNEL	26 8.0																	
3A - 111 E	27 — 28 —																	
SISSAUG	$29 - \frac{1}{4} - 9.0$																	
:\CA\MIS	30																	
File: N:	32 —																	

_	REFEREN	ICE No.	:	11205379-90								ENC	LOS	URE	E No.	:		
		6			BOREHOLE No.:	_		B3-2	21		B	OF	REF	10	LE	RE	EPO	RT
		9	HU		ELEVATION:		82.	.27 m								of		
	CLIENT:		Infra	astructure Ontario (I.	0.)						<u>LEC</u>	GEN	D					
	PROJECT		Prel Chil Otta	iminary Geotechnica dren's Hospital of Ea wa, Ontario	al Investigation - Propos astern Ontario Campus -	ed - 40	Parking)1 Smyt	<u>Struc</u> h Roa	ture d,			ST	- 3	SHEI	LBY			
26/21	DESCRIB	ED BY:	K. S	challer	CHECKED BY:						∏ Ţ				K CC ER L	JRE EVE	L	
ate: 2/	DATE (ST	ART):			DATE (FINISH):	:												
	NORTHIN	G:	502	7652.016	EASTING:		449199	9.133			-	-						
G WITH GRAPH+W	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Se O Wp, W	ear te nsitivi Wat Atte "N" \ ows /	ty (S) er co rberg /alue	ntent limits	(%) \$ (%)	∆ Fielo □ Lab	
	eet Metres	82.27		GROUN	D SURFACE			%			Ν	10	20 3	0 40	50 6	0 70 8	80 90	
ĕ	0 1 1 2 -+ 0.61	81 66		FILL : SILTY SAND with moist, loose trace to some clay	gravel, greyish brown,		SS1	62	15	6-6-2-2	8	•	0					-
<u> </u>	3 <u>-</u> 1.0	01.00			I, silt and clay, reddish	M	SS2	100	13	4-5-9-25	14							-
DIECH_V	4 1.22 1.37 5	81.05 80.90			ed), shale fragments, y dense	×	SS3	100	7	50/ 150mm	50+	0		\rightarrow	•		++	-
SHD_GE	$6 - \frac{1}{2} - 2.0$			END OF BOREHO														
ie	7			NOTE : - End of Borehole :	at 1.37 m bgs													
Library	9 -			- Borehole was dry - bgs donates 'belo	upon completion													-
5	10 3.0 11																++	+
6/	12																	1
37	13 - 4.0																	-
112	14 																	
7	16 <u>-</u> 5.0																	-
-	17 18																++	-
AR/11	19 +																	
^b	20 <u>-</u> 0.0 21 - -																	
M	22 -																	
3	$23 - \frac{1}{2} 7.0$																	-
Š.	24 — 25 —																	
3	20 - 26 - 8.0																	-
3	27																	-
U U	28 — — — 29 — _																	+
ñ	30 - 9.0																\downarrow	4
2	31 - +																	+
File:	32 — 1 — 1																	-

	REFEREN	CE No.	:	11205379								ENCLOS	JRE N	0.:	9
					BOREHOLE No.:	_		MW9	-22		B	OREH	OLI	E REP	ORT
					ELEVATION:		82	.0 m						of <u>1</u>	
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: P	reli	minary	Geote	chnica	al Investigat	ion	LEGE	<u>1D</u>		
2	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							🖂 ss	- S	PLIT SPO	ON
: 1/9/2	DRILLING	RIG:	Trac	k Drill Rig	DRILLING MET	НО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	⊠ ST ∎ RC		HELBY TU	
L Date	DESCRIBE	ED BY:	<u>D.</u> A	sh	CHECKED BY:		A. Kha	ndeka	r			Ť.		VATER LE	
H+WEL	DATE (ST	ART):	19 J	uly 2022	DATE (FINISH):	_	19 July	2022							
GRAPI-	NORTHIN	G:	5027	7588.5 m	EASTING:		44919 [,]	l.1 m		[1				
Library File: 11205379 GHD_GEOTECH_V05 GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	Depth	Elevation (m)	Stratigraphy	DESCF SOIL AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear tes Sensitivit O Wate W _p W ₁ Atter • "N" V (blows / 1	/ (S) ´ er contei berg lim alue	□ L nt (%) hits (%)	Field Lab
120537	Feet Metres	82.0			D SURFACE				%			10 20 30	40 50	60 70 80 9	
port: 1		81.8		FILL : GM-SAND and GF moist, compact	RAVEL, grey/brown,		SS1	62	6	9-8-10-4	18	0	++	0.2 m	
SLB Re	2 0.8	81.2		NATIVE : ∖SM-SILTY SAND ;	,	\mathbb{H}									
_V05.0	$\begin{array}{c} 3 \\ 4 \end{array} + 1.0 \\ 4 \end{array}$			grey/brown, moist	compact to dense	\wedge	SS2	83	3	2-11-27-50	38	0		bentonite	
OTECH	5 -			brown	, would of ou, light										
HD_GE	6 + 20														
379 GH	7 - 2.0													2.1 m	
11205	8 2.6	79.4		SHALE-BEDROC	K, highly to moderately										
y File:	9 <u>-</u> 10 <u>-</u> 3.0				ately bedded, weak to		RC1	90		13					
Librar					, g j										
I.GPJ	12 -														
ADDITION.GPJ	13 - 4.0						RC2	100		40					
	14													screen	
GARA	15 — 16 —														
RING	10 <u>-</u> 5.0 17 -														
9 - PAI	18 —														
120537	19 -						RC3	97		65				5.8 m	
8ASE/1	20 6.0													sand	
DATAE	21													6.4 m	
1/LOG	22 <u>-</u> 23 <u>-</u> 7.0														
9\TECH	24 —						RC4	93		67			ber	ntonite seal	
120537	25														
\662\1	26 - 7.9 - 8.0	74.2		END OF BOREHO	I E ·									7.9 m	
JECTS	27			NOTE :											
O/PRO	28 —			- End of Borehole - Rock coring from											
RONT	29 <u>-</u> 9.0 30 <u>-</u> 9.0				nstalled at 5.79 m bgs										
\CA\TC	31 -			-9- 401.400 501	3								$+ \mp$		$\left\{ - \right\}$
File: N:\CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE	32 —														\square
- 1						-				I	·				<u> </u>

	REFEREN	CE No.	:	11205379								ENC	LOS	URE	No.:		10	
					BOREHOLE No.	: _		BH10	-22		B	OF	?FF	IOI	FF	REI	POF	RT
					ELEVATION:		82	.1 m			5				C			
	CLIENT:	Infrast	tructur	e Ontario (I.O.)	PROJECT: F	Preli	minary	Geote	chnica	al Investigat	ion	LI	EGEI	ND				
~	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							\boxtimes] ss	-	SPLI	r spo	NOC	
1/9/2	DRILLING	RIG:	Trac	k Drill Rig	DRILLING MET	ГНС	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers		ST		SHEL ROCI			
Date:	DESCRIBE	ED BY:	<u>D.</u> A	sh	CHECKED BY:		A. Kha	ndeka	ar			LL L] RC				EVEL	
+WELL	DATE (STA	ART):	12 J	uly 2022	DATE (FINISH)): _	12 July	/ 2022	2									
GRAPH	NORTHING	G:	502	7596.9 m	EASTING:		44916	7.5 m		1								
ADDITION.GPJ LIbrary File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Ser	Nsitivit Wate Atter	er cont berg li alue	ent (% mits (%) %)	. Field] Lab	
20537	Feet Metres	82.1			D SURFACE				%			10	20 30	0 40 5	0 60	70 80	90	
Ë 1			\bigotimes	FILL : GM-SAND and GF		$\left \right $												
SLB Repo	1 -			trace clay, brown, Gravel : 43%, San Clay : 3%	moist, compact d : 43%, Silt : 11%,	X	SS1	83	3	16-13-12-4	25	0	•					
CH_V05.0	- 0.5 2 - 0.6	81.5		NATIVE														
GEOTEC	- 0.7	81.4		SM-SILTY SAND a clay, very dense	and GRAVEL, trace	/\/	SS2	87	6	7-38-50/ 75mm	88/ 75mm	0						
9 GHD	3 1.0			SHALE-BEDROCH	K, weathered, light												+	
120537	4 - 1.2	80.9		Borehole terminate	ed due to spoon and	_												
y File: 、	- 5 1.5			auger refusal END OF BOREHO														
Librar				NOTE :													+	
N.GPJ	6 —			- End of Borehole - Borehole was dry	upon completion													
ADDITIC	2.0 7			- bgs donates 'belo	ow ground surface													
ARAGE	-																	
KING G	8 2.5																	
79 - PAF	9 —																	
\112053																		
TABASE																		
OG DA	11 —																	
TECH	- 3.5 12 -																	
205379\	-																	
S\662\11	13 - 4.0												+	_			+	
ROJECT	 14												+	_		$\left \right $	+	
NTO/PF	45															$\left \right $	+	
ALTORC													+			$\left \right $	+	
File: N:\CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE	16 —																+	
- 1	1 1					1	1	1	1	1	1				i I	1 1	- I - I	

_	REFEREN	CE No	.:	11205379								ENCLOSURE No.: 11
					BOREHOLE No.:	_	E	3H11	-22		B	OREHOLE REPORT
		ì			ELEVATION:		82	.1 m				Page: <u>1</u> of <u>1</u>
	CLIENT:	Infras	tructur	re Ontario (I.O.)	PROJECT: _P	reli	minary (Geote	chnica	al Investigat	ion	LEGEND
3	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							SS - SPLIT SPOON
19/1	DRILLING	RIG:	Trac	ck Drill Rig	DRILLING MET	но	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	ST - SHELBY TUBE
	DESCRIBE	ED BY:	<u>D.</u> A	Ash	CHECKED BY:		A. Kha	ndeka	ır			▼ - WATER LEVEL
	DATE (STA	ART):	18 J	July 2022	DATE (FINISH)	-	18 July	2022				
L L L L L L L L L L L L L L L L L L L	NORTHING	G:	502	7638.0 m	EASTING:		449184	l.6 m		I		
	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
	Feet Metres	82.1			D SURFACE				%			10 20 30 40 50 60 70 80 90
	$\begin{array}{c} 1 \\ 1 \\ 2 \\ - \\ 2 \end{array} \begin{array}{c} - \\ 0.6 \end{array}$	81.5		trace clay, brown,	GRAVEL, trace silt, moist, compact d : 37%, Silt : 8%, Clay <i> </i>	X	SS1	67	2	19-17-11-3	28	
GLD .GLD	3 _ 0.9	81.3		<u>: 3%</u> NATIVE :		łX	SS2	62	9	3-6-11-14	17	
	4			SM-ML-SAND and grey/brown, moist,			SS3	100		50/ 75mm	50+	
ח_ פבט ב	6 <u>-</u> 7 <u>-</u> 2.0			SHALE-BEDROCI brown		M	SS4	100		50/ 50mm	50+	• • • • • • • • • • • • • • • • • • •
	8 <u>-</u> 2.5 9 <u>-</u> 10 <u>-</u> 3.0 11 <u>-</u>	79.6			K, moderately bedded, ered, medium strong,		RC1	78		36		
	12 – 13 – 4.0 13 – 4.0 14 – 15 – 15 – 1						RC2	100		60		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						RC3	100		50		
	$\begin{array}{c} 22 & -1 \\ 23 & -1 \\ 24 & -1 \\ 25 & -1 \\ 26 & -1 \\ 26 & -1 \\ 8 \\ 0 \end{array}$	74.2					RC4	100		55		
N./OA/I UNO/NI O/F NOULO I O/00/11 1-0000	27			END OF BOREHO NOTE : - End of Borehole - Borehole was dry - bgs donates 'belo	at 7.98 m bgs vupon completion							

	REFEREN	ICE No.	:	11205379								ENCI	_050	IRE N	0.: _		12
					BOREHOLE No.	:	E	3H12	-22		В	OR	EΗ	OL	ER	REP	ORT
					ELEVATION:		82	.1 m			_						
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: F	reli	minary (Geote	chnica	al Investigati	ion	LE	GEN	D			
	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							\boxtimes	SS	- S	PLIT	SPOO	ON
1/9/2	DRILLING	RIG:	Trac	k Drill Rig	DRILLING MET	ΉО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers		ST			BY TU	
Date:	DESCRIBE	ED BY:	D. A	sh	CHECKED BY:		A. Kha	ndeka	ır			⊔⊔ ▼	RC			CORI	
-WELL	DATE (ST	ART):	12 J	uly 2022	DATE (FINISH)	: _	12 July	2022									
RAPH	NORTHIN	G:	502	7590.3 m	EASTING:		449214	.3 m									
ADDITION.GPJ LIDEARY FILE: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sen	Atterb "N" Va	(S) r conte perg lim	nits`(%	△ F □ L)	
20537	Feet Metres	82.1			D SURFACE				%			10	20 30	40 50	60 7	0 80 9	0
ort: 1					ne sand and silt, trace	\mathbb{N}											
B Rep	1 —				d : 14%, Clay & Silt :	IX	SS1	46	3	13-25-5-5	30	0					
'05.GL	- 0.5			20%		$ \rangle$								N			
ECH_	2 0.7	81.4	XX	NATIVE :											\mathbf{X}		
GEOTI				SM-ML-SAND and brown, moist, very		IV	SS2	100	5	15-39-40-50/	79	0		++	+		
GHD	3			,,,						75mm							
05379	- 1.1 4	81.0		SHALE-BEDROCH	K, weathered, light		SS3	100		50/	50/						
e: 112	·			brown						0mm	0mm						
ary Fil	5 1.5																
Lib	-																
N.GPJ	6 - 1.8	80.2			ed due to spoon and	-											
DITIO	2.0			auger refusal													
	7 —			END OF BOREHO	<u>LE :</u>												
GARA	8			NOTE : - End of Borehole													_
KING	- 2.5			 Borehole was dry bgs donates 'below 	/ upon completion ow ground surface'												
9 - PAI	9 —																
20537	-																
ASE/1	10 - 3.0																
DATAB	+																
LOG	11																
TECH	- 3.5 12 -																
05379\	-																
62\112	13 - 4.0																
CTS/6	- 4.0																
PROJE	14 —																
NTO/F	- 4.5											\vdash		++			_
ITORC	15 —													++			_
File: N:\CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE	16													++			_
File	16 —																

_	REFEREN	ICE No.	:	11205379								EN	CLOS	SUR		D.: _		13	
					BOREHOLE No.:	_	E	3H13	-22		B	OF	RE	HC)LE	ER	EP	ORT	
			<u>a</u> HL		ELEVATION:		82	.2 m				•.					_1_		
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: P	reli	minary (Geote	chnica	al Investigat	ion	L	EGE	END					
2	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario								s 🛛		- SI	PLIT	SPOC	ON	
: 1/9/2	DRILLING	RIG:	Trac	k Drill Rig	DRILLING METI	ю	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	E] s ⁻ R				Y TU CORI		
Date	DESCRIB	ED BY:	L. M	cCann/S. Wallis	CHECKED BY:		A. Kha	ndeka	ır				Ţ	-			R LEV		
+WEL	DATE (ST	ART):	4 Ju	ly 2022	DATE (FINISH):	_	4 July 2	2022											
GRAPH	NORTHIN	G:	5027	7615.5 m	EASTING:		449212	2.0 m											
Library File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)		ear te nsitiv Wa Atte "N" ows /	rity (S ater c erber Value	s) onter g limi	nt (%) its (%) cm)	∆ F □ Li		
F 1	eet Metres	82.2			D SURFACE				%			10	20	30 40	0 50	60 70	80 90	0	
11 11	0 0.1 1	82.1	\bigotimes	∼ASPHALT : 75 mn FILL :	ו	M	SS1	100		10-13-10-5	23		•	$\left \right $	_				
Repo	· 2 /			GW-GM-SANDY (brown/grey, dry, co		Δ		100			20								
5.GLB	3 <u>-</u> 0.9 3 <u>-</u> 1.0 7 1.0	81.3 81.2		_ NATIVE :		$\overline{\mathbb{N}}$	SS2	71		2-2-11-15	13								
9 HO	4 _ 1:0	0.112		SP-GP-SAND and brown, moist, com	GRAVEL, trace clay, pact	\square									-				
EOTE	5				K, weathered, grey		RC1	82		0									
	6 <u>-</u> - 2:8	80.2		SHALE-BEDROC	K, moderately to highly	╢													
5379 0				weathered, thinly i moderately fractur	bedded, highly to														
: 1120	8 - <u>-</u> + 9 - <u>-</u>				ou, g. c,,cu.		RC2	95		10									
Z File	0 3.0													\square				_	
Libra	1																		
	2 —			occasional clay an	d shale layers														
ADDITION.GPJ	3 - 4.0																		
	4						RC3	100		37									
BARAG	5																		
	6 — 5.0			occasional clay an	d shale lavers								_	$\left \right $	+	+		_	
I PAR	7			,,,															
. 05379	9						RC4	100		43									
SE/112	20 6.0							100											
2 TABA	21 -																		
40 2	22 - 6.6	75.5				┦╹													
2 ECHI	23 - 7.0			END OF BOREHO	<u>LE .</u>														
2 2379/1	24			NOTE : - End of Borehole															
Z/1120	25 <u>-</u> 26 <u>-</u> 80			 Borehole was dry Rock coring from 	1.32 m bgs									\square		\square			
2 2 2	²⁶ 8.0			- bgs donates 'bel	ow ground sufface										+				
	28 —																		
	29											+		+		+	+	_	
ORON 3	80 - 9.0												+	\square	+	\downarrow			
File: N./CATORONTOPROJECTS/662/11205379/TECHLOG DATABASE/11205379 - PARKING GARAGE	31 <u>-</u>												+	\square	+	\ddagger			
File: 1 3	32 — +																		

Image: Section of the secting of the secting of th	_	REFEREN	CE No.	:	11205379								ENCLOS	URE N	0.:	1	4
ELEVATION:						BOREHOLE No.	:		3H14	-22		В	ORE	IOL	ER	EPC)RT
Interviewer 401 Smyth Road, Ottawa, Ontario Image: SS - SPLIT SP DRILLING RIG: Track Drill Rig DRILLING METHOD: 203mm OD Hollow Stem Augers SS - SPLIT SP DESCRIBED BY: D. Ash CHECKED BY: A. Khandekar - SPLIT SP DATE (START): 12 July 2022 DATE (FINISH): 12 July 2022 - WATER L NORTHING: 5027618.1 m EASTING: 449237.3 m - WATER L MORTHING: 5027618.1 m EASTING: 449237.3 m - WATER L MORTHING: 5027618.1 m EASTING: 449237.3 m - WATER L MORTHING: 5027618.1 m EASTING: 449237.3 m - WATER L MORTHING: 5027618.1 m EASTING: 449237.3 m - WATER L MORTHING: 5027618.1 m EASTING: 449237.3 m - WATER L MORTHING: SOIL AND BEDROCK Image: Biolows per part 150m/ part 120m/ part						ELEVATION:		82	.2 m			-					
Description		CLIENT:	Infrast	tructur	e Ontario (I.O.)	PROJECT: _F	reli	minary	Geote	chnica	al Investigat	ion	LEGE	ND			
Bit International Control DRILLING RIG: Track Drill Rig DRILLING METHOD: 203mm OD Hollow Stem Auges St St - SHELBY C - NOCK CC DESCRIBED BY: D.Ash CHECKED BY: A Khandekar - WATER L DATE (START): 12 July 2022 DATE (FINISH): 12 July 2022 - WATER L MORTHING: 5027518.1 m EASTING: 449237.3 m - WATER L Solid AND BEDROCK Solid AND BEDROCK Box Strate Control (N) (Strate Control (N) (S	5	LOCATION	l:	401	Smyth Road, Ottaw	a, Ontario							🖂 ss	- S	PLIT	SPOOI	N
Described BY: D. Ash CHECKED BY: A. Khandekar WATER L DATE (START): 12 July 2022 DATE (FINISH): 12 July 2022 WATER L NORTHING: 5027618.1 m EASTING: 449237.3 m See 30 (2000) See 30	: 1/9/2	DRILLING	RIG:	Trac	k Drill Rig	DRILLING MET	НО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers					E
DATE (START): 12 July 2022 DATE (FINISH): 12 July 2022 NORTHING: 5027618.1 m EASTING: 449237.3 m Image: Strength of the s	Date	DESCRIBE	D BY:	D. A	sh	CHECKED BY:		A. Kha	ndeka	ır							EL
NORTHING: 5027618.1 m EASTING: 449237.3 m Image: Source of the standard stress of the standard s	I+WELI	DATE (STA	ART):	12 J	uly 2022	DATE (FINISH)	: _	12 July	2022								
Image: Section of the sectio	GRAPH	NORTHING	G:	5027	7618.1 m	EASTING:		449237	7.3 m	1	I	I					
Fill GROUND SURFACE % 10 20 30 40 50 60 70 8C 1 -	9 SOIL LOG WITH	Depth	Elevation (m)	Stratigraphy			State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sensitivit	y (S) er conte berg lin alue	nt (%) hits (%) cm)	∆ Fie □ Lat	
FILE: FILE: FILE: FILE: GW-GM-SANDY GRAVEL, trace silt, trace clay, brown, moist, dense Gravel: 66%, Sand : 22%, Clay & Silt: SS1 58 2 11-25-16-6 41 <td>20537</td> <td>Feet Metres</td> <td>82.2</td> <td></td> <td></td> <td>D SURFACE</td> <td></td> <td></td> <td></td> <td>%</td> <td></td> <td></td> <td>10 20 3</td> <td>0 40 50</td> <td>60 70</td> <td>80 90</td> <td>_</td>	20537	Feet Metres	82.2			D SURFACE				%			10 20 3	0 40 50	60 70	80 90	_
	4:\CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE	$\begin{array}{c} 0 \\ - \\ 1 \\ - \\ - \\ 0.5 \\ 2 \\ - \\ 0.5 \\ 2 \\ - \\ 0.5 \\ 2 \\ - \\ 0.5 \\ -$	81.6 81.5		FILL : GW-GM-SANDY (trace clay, brown, Gravel : 66%, San 12% NATIVE : SP-GP-SAND and trace clay, brown, SHALE-BEDROCI brown Borehole terminate auger refusal END OF BOREHO NOTE : - End of Borehole - Borehole was dry	GRAVEL, trace silt, moist, dense d : 22%, Clay & Silt : I GRAVEL, trace silt, moist, very dense K, weathered, light ed due to spoon and <u>LE :</u> at 1.22 m bgs y upon completion				2			0				

	REFEREN	CE No.		11205379								ENC	LOSL		10.:		15	
					BOREHOLE No.:			3H15	-22		B	OR	EH	OI	FF	2FF	POF	ъ
			iHL		ELEVATION:		82	.1 m			5		Page:					
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: P	reli	minary	Geote	chnica	al Investigat	ion	LI	EGEN	ID				
~	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							\boxtimes	SS	- 5	SPLIT	SPC	ON	
1/9/2	DRILLING	RIG:	Trac	ck Drill Rig	DRILLING MET	но	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers		ST RC		SHEL ROCK			
Date:	DESCRIBE	ED BY:	D. A	sh	CHECKED BY:		A. Kha	ndeka	ır			Ţ			NATE			
+WELL	DATE (ST	ART):	12 J	luly 2022	DATE (FINISH)	:	12 July	2022	!									
GRAPH	NORTHIN	G:	502	7642.6 m	EASTING:		449234	l.7 m										
ADDITION GPJ LIbrary File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	Depth	Elevation (m)	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Ser ⊖ w _p w	ear tes isitivity Wate Atterl "N" Va ws / 12	r (S) ´ r conte perg lir alue	ent (%) nits (% 0 cm)		Field Lab	
20537	Feet Metres	82.1			D SURFACE				%			10	20 30	40 50	0 60 7	0 80	90	
1 1 1 1			\bigotimes		AVEL, trace silt, trace	\mathbb{N}												
Repo	1 -			clay, brown, moist Gravel : 40%, San	, dense d : 47%, Silt : 10%,	IX	SS1	62	3	16-18-13-5	31	0	•					
05.GLE	- 0.5		\bigotimes	Clay: 3%		\mathbb{N}												
CH_<	2 — 0.6	81.5			K, weathered, light													
GEOTE				brown		IX	SS2	100	6	20-25-50/		0					+	
GHD	3 1.0 1.1	81.1				$\langle \rangle$				125mm ⁻	125mn	h					+	
05379	4 -	01.1		Borehole terminate auger refusal	ed due to spoon and									+				
e: 112	-			END OF BOREHO	<u>LE :</u>													
ary Fil	5 1.5			NOTE :														
Libr	-			 End of Borehole Borehole was dry 	upon completion													
N.GPJ	6 —			- bgs donates 'belo	ow ground surface'													
DITIO	2.0																+	
AGE AI	7 -																	
GAR/	8 -													_			+	
RKING	- 2.5																	
79 - PA	9 —																	
12053																		
3ASE/1	10 - 3.0																	
DATAE	11																	
1/L0G	11 — — 3.5																	
9/TECF	12 —																+	
205379	_													_			+	
662/11	13 - 4.0												++	+				
IECTS/																		
NPRO.	14 —																	
SONTC	15 - 4.5																	
CANTOF																		
File: N:/CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE	16 —											\vdash	+	+		$\left \right $	+	
Ĕ١																		

	REFEREN	CE No.	:	11205379								ENCLOSURE No.: 16
					BOREHOLE No.:	_	E	3H16	-22		B	OREHOLE REPORT
					ELEVATION:		82	.1 m				Page: <u>1</u> of <u>1</u>
ľ	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: P	reli	minary (Geote	chnica	al Investigat	ion	LEGEND
N	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							🔀 SS – SPLIT SPOON
7/8/1	DRILLING	RIG:	Trac	ck Drill Rig	DRILLING MET	но	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	s 🖾 ST - SHELBY TUBE
Date:	DESCRIBE	ED BY:	D. A	Ash	CHECKED BY:		A. Kha	ndeka	ır			I RC - ROCK CORE ▼ - WATER LEVEL
	DATE (ST	ART):	12 J	July 2022	DATE (FINISH):	: _	17 Dec	embe	r 202	2		
	NORTHIN	G:	502	7594.4 m	EASTING:		449262	2.3 m				
	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab Water content (%) \square_{μ_p} Atterberg limits (%) \square_{μ_p} N" Value (blows / 12 in30 cm)
10007	Feet Metres	82.1			D SURFACE				%			10 20 30 40 50 60 70 80 90
חובטים אינט אינייי	1	81.4		trace clay, brown, Gravel : 44%, San : 2% NATIVE :	d GRAVEL, trace silt, moist, compact d : 45%, Silt : 9%, Clay GRAVEL, trace silt,		SS1	54	3	2-6-8-6	14	
<u></u>	3 0.9	81.2		trace clay, brown, SHALE-BEDROCI	moist, compact/		SS2	87	7	2-4-11-14	15	
	4 - 1.2	80.9		Borehole terminate auger refusal	ed due to spoon and		SS3	100		50/ 0mm	50/ 0mm	
ary riit	5 1.5			END OF BOREHO	<u>LE :</u>							
	6 7 7 6 7 7			NOTE : - End of Borehole - Borehole was dry - bgs donates 'belo	upon completion							
	8 – – 2.5											
U - 6 100071	9											
	11 — — 3.5											
10100031112												
	13 — 4.0 14 —											
	- 4.5											
	15											
2	16 —											

	REFERENC	REFERENCE No.: 11205379		RENCE No.: <u>11205379</u>			ENCLOSURE No.: 17					
					BOREHOLE No.:	_	I	3H17	-22		B	SOREHOLE REPORT
					ELEVATION:		82	.1 m				Page: <u>1</u> of <u>1</u>
	CLIENT: _I	Infrast	ructur	e Ontario (I.O.)	PROJECT: P	reli	minary	Geote	chnica	al Investigati	ion	LEGEND
2	LOCATION:		401	Smyth Road, Ottaw	a, Ontario							SS - SPLIT SPOON
: 1/9/	DRILLING R	RIG: _	Trac	k Drill Rig	DRILLING MET	НО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	s 🖾 ST - SHELBY TUBE
L Date	DESCRIBED	O BY:	<u>D.</u> A	sh	CHECKED BY:		A. Kha	ndeka	r			▼ - WATER LEVEL
1+WEL	DATE (STAF	RT): _	12 J	uly 2022	DATE (FINISH)	: _	12 July	2022				
GRAPI	NORTHING:	:	5027	7619.3 m	EASTING:		449258	3.6 m		1		
9 SOIL LOG WITH	Depth	Elevation (m)	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) \bigtriangleup Field Sensitivity (S) \Box Lab \bigcirc Water content (%) W_{p} W ₁ Atterberg limits (%) (blows / 12 in30 cm)
20537	Feet Metres 8	82.1			D SURFACE				%			10 20 30 40 50 60 70 80 90
File: N:/CATTORONTOPPROJECTS(662/11205379)TECH/LOG DATABASE/11205379 - PARKING GARAGE ADDITION.GPJ LIbrary File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	0 - - - - - - - - 0.5 2 - - 0.7 - - - - - - 0.7 - - - - - - - - - - - - -	81.4 81.0 81.0		FILL : GW-GM-GRAVEL trace clay, brown, Gravel : 52%, San : 2%, NATIVE : SP-GP-SAND and trace clay, brown, SHALE-BEDROCI brown,	with SAND, trace silt, moist, compact d : 39%, Silt : 7%, Clay GRAVEL, trace silt, moist, compact , weathered, light due to spoon and <u>LE :</u> at 1.14 m bgs upon completion		SS1	54		4-10-17-11 3-8-22-50/ 75mm	30	
File: ∧	16 —											

_	REFEREN	ICE No.	:	11205379								ENC	LOS	URE	No.:		18	
					BOREHOLE No.:	_	E	3H18	-22		B	OR	?Fŀ	IOI	ΕF	SED	ORI	г
					ELEVATION:		82	.1 m								f <u>1</u>		•
	CLIENT:	Infrast	tructur	e Ontario (I.O.)	PROJECT: P	eli	minary (Geote	chnica	al Investigati	ion	LE	EGE	ND				
	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario								SS	-	SPLIT	SPO	ЛС	
1/9/22	DRILLING	RIG:	Trac	k Drill Rig	DRILLING METI	ю	D: 203	nm C	D Ho	llow Stem A	ugers		ST	-		BY TU		
Date:	DESCRIB	ED BY:	D. A	sh	CHECKED BY:		A. Kha	ndeka	ır			LL T] RC			< COR ER LE\		
VELL				uly 2022								-	-					
RAPH+/	NORTHIN	G:	5027	7645.0 m	EASTING:		449256	.7 m										
Library File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Ser ○ ₩ _p ₩	Nsitivii Wat Atte	st (Cu) y (S) er con rberg l /alue 12 in:	tent (% imits (% 30 cm)		ield ab	
20537	Feet Metres	82.1		GROUN	D SURFACE				%			10	20 3	0 40 5	50 60 7	70 80 9	0	
port: 112					GRAVEL with sand, y, grey/brown, moist,	M	SS1	62		9-8-10-4	18							
GLB Re	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	81.5 81.3		⊂ compact ∣Gravel : 73%, San	d : 21%, Silt : 5%, Clay∬	\mathbb{N}	SS2	83		2-11-27-50	38							
CH_V05.	4			NATIVE :	GRAVEL, trace silt,	Δ	002	00		2-11-27-50	00			-				
GEOTE	5 - 1.4 5 - 1.4 6	80.7		trace clay, moist, c SHALE-BEDROCI	ense		RC1	100		0								
79 GHD	7 <u>-</u> 2.0				K, moderately to highly													
112053	8 — <u> </u>		իկկկ	moderately strong	edded, very weak to grey/black													
ary File:	10 <u>-</u> 3.0						RC2	100		0								
یا Libr																		
z	12 — 13 — 4.0																	
	14																	
Ϋ́	15 — 16 — - 5.0						RC3	100		36								
PARKIN	17																	
05379 -	18 — 19 —																	
4SE/112	20 _ 6.0																	
DATAB/	21 —						RC4	100		51								
H/LOG	22 <u>-</u> 23 <u>- 7</u> .0																	
VTECH	23 <u>-</u> 7.0 <u>-</u> 7.1 24 <u>-</u>	75.0																
205379	25 —			END OF BOREHO														
362/11:	26 _ 8.0			NOTE : - End of Borehole														
ECTS	27 -			 Rock coring from Borehole was dry 	upon completion													
PROJE	28 —			- bgs donates 'belo	ow ground surface'								\square	\mp			-	
NTO/	29																	
VTORC	30 —											\vdash				$\left \right $	\vdash	
N:\CA	31											\square						
File:	32 —																	

	REFEREN	CE No.	:	11205379								ENCLO	SURE	No.:		19
					BOREHOLE No.:	: _		BH19	-22		B	ORE	ноі	EF	REP	ORT
					ELEVATION:		81	.1 m					ge: <u>1</u>			
ľ	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: P	reli	minary	Geote	chnica	al Investigat	ion	LEG	END			
~	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							⊠ s	s -	SPLIT	SPO	N
1/9/2	DRILLING	RIG:	Trac	ck Drill Rig	DRILLING MET	ΉО	D: 203	mm C	D Ho	llow Stem A	ugers	⊠ S ∏ R			BY TU COR	
Date:	DESCRIBE	ED BY:	D. A	sh	CHECKED BY:		A. Kha	ndeka	ır			⊥⊥ ∩ Ţ			ER LE	
+WELL	DATE (STA	ART):	14 J	luly 2022	DATE (FINISH)	: _	14 July	/ 2022								
GRAPH	NORTHING	G:	502	7588.9 m	EASTING:		449046	6.7 m		1						
9 SOIL LOG WITH 0	Depth	Elevation (m)	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sensitiv OW: W _p W ₁ Att	ater con terberg l	tent (% imits (%	△ F □ L) 6)	
20537	Feet Metres	81.1			D SURFACE				%			10 20	30 40 5	50 60 7	0 80 9	0
CH_V05.GLB Report: 112	$\begin{array}{c} 0 \\ - \\ 0.1 \\ - \\ 1 \\ - \\ - \\ 0.5 \\ 2 \\ - \\ 0.7 \end{array}$	81.0		clay, brown, loose	AND, trace silt, trace		SS1	79		4-5-3-6	8	•				
File: N:/CATTORONTOPPROJECTS(662/11205379)TECH/LOG DATABASE/11205379 - PARKING GARAGE ADDITION.GPJ Library File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	3 0.9 - 1.0 4 - 1.4 5 1.5	80.2		Trace clay, brown, Gravel : 31%, San Clay : 7% SHALE-BEDROCI brown to grey/blac	d : 46%, Silt : 16%, <, weathered, light k		SS2	71		17-33-50/ 125mm	83/ 125mn	1				
(ING GARAGE ADDITION.GPJ LI	6 6 2.0 7 8 8 2.5			NOTE : - End of Borehole - Borehole was dry - bgs donates 'belo	upon completion											
VSE/11205379 - PARK	9 – 10 – 3.0															
CH/LOG DATAB/	+ 11 - - 3.5															
379/TEC	12 —															
11205.																
TS\662	13 - 4.0												++			
SOJEC	14 —												+			
NTO/PF													+			
TORO	15 — 4.5												++			
N:\CA\																
File:	16 —															

	REFEREN	CE No.	:	11205379								ENCLOSU	IRE No	.:	20	
					BOREHOLE No.:	_	Ν	/W20	-22		B	OREH	OLE		POI	RT
					ELEVATION:		81	.2 m						of <u>1</u>		
ľ	CLIENT:	Infras	tructur	e Ontario (I.O.)	PROJECT: P	reli	minary	Geote	chnica	al Investigati	ion	LEGEN	ID			
2	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							🖂 ss	- SF	PLIT SPO	DON	
: 1/9/2	DRILLING	RIG:	Trac	ck Drill Rig	DRILLING MET	НО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	⊠ ST ∎ RC		IELBY T CK CO		
- Date	DESCRIBE	ED BY:	<u>D.</u> A	Nsh	CHECKED BY:		A. Kha	ndeka	ır			Ţ		ATER L		
H+WEL	DATE (ST	ART):	14 J	luly 2022	DATE (FINISH)	: _	14 July	2022								
GRAPH	NORTHIN	G:	502	7656.2 m	EASTING:		44909	5.7 m	1	1		I				
9 SOIL LOG WITH	Depth	Elevation (m)	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test Sensitivity Wate Market Sensitivity Wate Market Sensitivity Wate Market Sensitivity Wate Market Sensitivity Wate Market Sensitivity Market Market Sensitivity Market M	(S) r conten perg limi ilue	□ t (%) ts (%)	Field Lab	
20537	Feet Metres	81.2			D SURFACE				%			10 20 30	40 50	60 70 80	90	
File: N.CATTORONTOPROJECTS(862/11205379)TECHLOG DATABASE/1205379 - PARKING GARAGE ADDITION.GPJ LIbrary File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.1 80.5 80.2 79.6		ASPHALT : 75 mn FILL : SM-GRAVELLY S clay, brown, moist Gravel : 36%, San Clay : 4% NATIVE : SP-GP-SAND and trace clay, brown, Gravel : 46%, San : 4% SHALE-BEDROCI Borehole terminate auger refusal END OF BOREHO NOTE : - End of Borehole - Monitoring well ir	AND, some silt, trace , compact d : 44%, Silt : 16%, GRAVEL, trace silt, moist, dense d : 41%, Silt : 9%, Clay K, weathered, grey ed due to spoon and LE :		SS1 SS2 SS3	58 87 100	5	6-10-8-5 8-21-29-27 50/ 75mm	18 50/ 75mm	0			m n	
CTS/662	16 - 5.0															
PROJE	17														\parallel	
ONTO													+		\parallel	
A/TOR	18 5.5													$\left \right $	+	
File: N:\C	19															

Appendix B Geotechnical Laboratory Test Results

Clie	ent:	Infrastructure Ontario			Lab No.:	G-21-01	
	ject, Site:	Proposed Parking Structure Children's Hospital of Easterr 401 Smyth Road, Ottawa, Or	n Ontario Car Itario		Project No.:	11205379-80	
	Borehole No.:	B1-21			Sample No.:	SS2	
	Depth:	0.7-1.0r	n		Enclosure:	-	
	100						
	100						
	90						10
	80						20
	70						30
_	70						
assing	60						detaine
Percent Passing	50						Bercent Retained
Per	10						
	40						60
	30						70
	20						80
	10						90
	0.001	0.01	0.1 Diameter	r (mm)		10	100 <u>100</u>
		Clay & Silt		Sand		Gravel	
			Fine Size Limits as	Mediu per USCS (ASTM		Fine Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay & Silt (%)	
	s	and and Gravel, some Silt, trace Cl	ay	39	39	22	
		Clay-size particles (<0.002 mm)	:			7 %	
Rei	marks:						
_							
Pei	formed by:	Z. Mat	hurin		Date: February 10, 2021		21
Vei	ified by:	E. Ber	nett		Date:	February 17, 202	21

Client	:	Infrastructure Ontario		Lab No.:	G-21-01		
	ct, Site:	Proposed Parking Structure Children's Hospital of Eastern C 401 Smyth Road, Ottawa, Ontar	ntario Campus io	Project No.:	11205379-80		
Во	prehole No.:	B3-21		Sample No.:	SS2		
De	epth:	0.7-1.0		Enclosure:	-		
100 90 80)					0 10 20	
70)					30	
60 56 40 30 20 10		0.01 0.1 Clay & Silt	Diameter (mm)		I I	40 Percent Herain Participants	
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)		
	Sand	d, some Gravel, some Silt, some Clay	19	50	31		
		Clay-size particles (<0.002 mm):		1	14 %		
Rema	rks:						
Perfor	med by:	Z. Mathurin		Date:	February 10, 202	:1	
Verifie	ed by:	E. Bennett		Date:	e: February 17, 2021		

Clie	ent:	Infrastructure Ontario		Lab No.:	G-21-01	
	ject, Site:	Proposed Parking Structure Children's Hospital of Eastern 401 Smyth Road, Ottawa, Or	n Ontario Campus ntario	Project No.:	11205379-80	_
	Borehole No.	BH1-21		Sample No.:	Grab	
	Depth:	0.1-0.3m		Enclosure:	-	
	100					0
	90					10
	80					20
	70					30
Percent Passing	60					Percent Retained
ent P	50					50 50
Perc						Perc
	40					60
	30					70
	20					80
	20					80
	10					90
						100
	0.001	0.01	0.1 Diameter (mm) 1		10 100	J
		Clay & Silt	Sand Fine Mediu	ım Coarse	Gravel Fine Coarse	
		Particle-Si	ze Limits as per USCS (ASTM			
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
		Gravel and Sand, trace Silt, trace Clay	48	41	11	-
					3 %	
Rei	narks:					
				D-1-	Estation 40,0004	_
	formed by:	Z. Mathu		Date: February 10, 2021		_
Ver	ified by:	E. Benn	ett	Date:	February 17, 2021	

Clie	ent:	Infrastructure Ontario		Lab No.:	G-21-01	
Pro	ject, Site:	Proposed Parking Structure Children's Hospital of Eastern 401 Smyth Road, Ottawa, Or	n Ontario Campus Itario	Project No.:	11205379-80	
	Borehole No.	: BH2-21		Sample No.:	Grab	
	Depth:	0.1-0.3m		Enclosure:	_	
	100 -					
	90					10
	80					20
	70					
_	70					
assing	60					tetaine
Percent Passing	50					Percent Retained
Per	40					60 5
	40					60
	30					70
	20					80
	10					90
	10					
	0.001	0.01	0.1 Diameter (mm) 1		10	100 100
		Clay & Silt	Sand		Gravel	
			Fine Mediu ze Limits as per USCS (ASTM		Fine Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
		Sand and Gravel, trace Silt, trace Clay	42	50	8	
					2 %	
Rei	narks:					
Per	formed by:	Z. Mathu	ırin	Date: February 10, 2021		
Ver	ified by:	E. Benn	ett	Date:	February 17, 2021	

Cli	ent:	Infrastructure Ontario		Lab No.:	G-21-01	
Pro	oject, Site:	Proposed Parking Structure Children's Hospital of Eastern (401 Smyth Road, Ottawa, Onta	ntario Campus	_ Project No.:	11205379-80	
	Borehole No.:	BH2-21	10	Sample No.:	SS1	
	Depth:	0.5-0.8m		Enclosure:		
	Deptil.			Enclosure.		
	100					● 0
	90					10
	80					20
	70					30
assing	60					40 40 Hercent Bercent Bercent Bercent
Percent Passing	50					50 50
Perc						Perc
	40					60
	30					70
	20					
	20					80
	10					90
	0					100
	0.001	0.01 0.	Diameter (mm)		10	100
		Clay & Silt	Sand Fine Medi	um Coarse	Gravel Fine Coarse	_
		Particle-Size	imits as per USCS (ASTM		Fille Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
	Sa	nd, some Silt, some Gravel, trace Clay	15	61	24	
		Clay-size particles (<0.002 mm):			6 %	
Re	marks:					
Pe	formed by:	Z. Mathurin		Date:	February 10, 202	1
Ve	rified by:	E. Bennet		Date:	February 17, 202	1

Clie	ent:	Infrastructure Ontario		Lab No.:	G-21-01	
	ject, Site:	Proposed Parking Structure Children's Hospital of Eastern Ont 401 Smyth Road, Ottawa, Ontario	ario Campus	Project No.:	11205379-80	
	Borehole No.:	BH4-21		Sample No.:	SS1	
	Depth:	0.2-0.5m		Enclosure:	-	
-						
	100				· · · · · · · · · · · · · · · · · · ·	● 0
	90					10
	80					20
	70					
	70					30
Percent Passing	60					bercent Retained
ent Pa	50					50 50
Perc						Perc
	40					60
	30					70
	20					80
	10					90
	0					100
	0.001	0.01 0.1	iameter (mm)		10	100
		Clay & Silt	Sand		Gravel]
			Fine Medi ts as per USCS (ASTM		Fine Coarse	
						-
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
	C	Gravel and Sand, trace Silt, trace Clay	46	41	13	
					3 %	
Rer	narks:					
Per	formed by:	Z. Mathurin		Date:	February 10, 202	1
Ver	ified by:	E. Bennett		Date:	February 17, 202	1

Clie	Client:	Infrastructure Ontario		Lab No.:	G-21-01	
	ject, Site:	Proposed Parking Structure Children's Hospital of Eastern On 401 Smyth Road, Ottawa, Ontario		_ Project No.:	11205379-80	
	Borehole No.:	MW5-21		Sample No.:	Grab	
	Depth:	0.1-0.3m		Enclosure:	-	
	100					• • •
	90					10
	90					10
	80					20
	70					30
_	10					
Percent Passing	60					40 40 Hercent Betained
ent Pa	50					Sent Be
Perc						Perc
	40					60
	30					70
	20					80
	10					90
	0.001	0.01 0.1	Diameter (mm)		10	100 <u>100</u>
		Clay & Silt	Sand Fine Media	um Coarse	Gravel Fine Coarse	
		Particle-Size Li	hits as per USCS (ASTN]
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
	C	Gravel and Sand, some Silt, trace Clay	43	41	16	
		Clay-size particles (<0.002 mm):			3 %	
Rer	narks:					
Per	formed by:	Z. Mathurin		Date:	February 10, 202 [.]	1
	ified by:	E. Bennett		Date: February 17, 2021		

Cli	ent:	Infrastructure Ontario		Lab No.:	G-21-01	
	oject, Site:	Proposed Parking Structure Children's Hospital of Eastern On 401 Smyth Road, Ottawa, Ontario	ario Campus	Project No.:	11205379-80	
	Borehole No.:	MW5-21		Sample No.:	SS1	
	Depth:	0.5-0.8m		Enclosure:	-	
	100				· · · · · · · · · · · · · · · · · · ·	● 0
	90					10
	80					20
	70					30
bc						eq
Passir	60					Retain 05
Percent Passing	50					40 40 Bercent Bercent Bercent Bercent
4	40					60 •
	20					
	30					70
	20					80
	10					90
	0					100
	0.001	0.01 0.1	1 Diameter (mm)		10	100
		Clay & Silt	Sand Fine Mediu	um Coarse	Gravel Fine Coarse	
		Particle-Size Lir	hits as per USCS (ASTM		rine Coalse	
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
	(Gravelly Sand, some Silt, trace Clay	23	49	28	
		Clay-size particles (<0.002 mm):			8 %	
Re	marks:					
Pe	formed by:	Z. Mathurin		Date:	February 10, 202	1
Ve	rified by:	E. Bennett		Date:	February 17, 202	1

Client: Project, Site:		Infrastructure Ontario		Lab No.:	G-21-01	
		Proposed Parking Structure Children's Hospital of Eastern Ontario Campus 401 Smyth Road, Ottawa, Ontario		_ Project No.:	11205379-80	
Borehole No.:		MW6-21		Sample No.:	SS2	
Depth:		0.8-1.1m		Enclosure:	-	
	100					
Percent Passing						
	90					10
	80					20
	70					30
	70					
	60					etaine
	50					Bercent Retained
						Pero
	40					60
	30					70
	20					80
	10					90
	0					100
	0.001				10	100
		Clay & Silt			Gravel	
			Fine Media nits as per USCS (ASTM		Fine Coarse	
	Soil Description Gravelly, Sand, some Silt, trace Clay		Gravel (%)	Sand (%)	Clay & Silt (%)	
			32	45	23 7 %	
		Clay-size particles (<0.002 mm):				
Re	marks:					
Performed by:		Z. Mathurin		Date:	February 10, 2021	
Verified by:		E. Bennett		Date:	February 17, 2021	

Clie	ent:	Infrastructure Ontario		Lab No.:	G-21-01	
	ject, Site:	Proposed Parking Structure Children's Hospital of Easte 401 Smyth Road, Ottawa, 0	ern Ontario Campus	Project No.:		
	Borehole No.:	MW8-2	1	Sample No.:	Grab	
	Depth:	0.0-0.3r	n	Enclosure:	-	
	100					
	90					10
	80					20
	80					20
	70					30
sing	60					40 in
nt Pas						nt Ret
Percent Passing	50					Generation Percent Retained
	40					60
	30					70
	30					70
	20					80
	10					90
	0		•			100
	0.001	0.01	0.1 Diameter (mm)	1	10	100
		Clay & Silt		nd Madium Caaraa	Gravel	
		Particle-	Fine Size Limits as per USCS	Medium Coarse	e Fine Coarse	
		Soil Description	Gravel	(%) Sand (%)) Clay & Silt (%)	
		Sandy Gravel, trace Silt, trace Clay	61	33	6	
					2 %	
Rer	narks: 					
Per	formed by:	Z. Mati	nurin	Date:	February 10, 20	21
Ver	ified by:	E. Ber	inett	Date:	February 17, 20	21

Clie	nt:		BH10-22 0 - 0,61 m																	La	bl	No.:						(G-2	2-0	3				
Pro	ject, S	Site:						С	hild	lrer	ו H	os	pital							_Pro	oje	ctl	No.	:	-			1	120)537	79			_	
	Boreł	hole No.:							BH	110-	-22								_	Sa	mp	le N	lo.:		_				SS	S-1					
	Dept	h:							0 -	0,6 ⁻	1 m	<u>1</u>							-	En	clos	sure	e:		-					-					
Percent Passing	100 90 80 70 60 50 30 20 10																										/	/						0 10 20 30 40 50 60 70 80 90	Percent Retained
	0.00	01													ter (r	nm)			1							1	0						100	100))
	Г																	nd										Grav	/el			7			
				Cla	ay 8	k Silt								ine				N	/ledi	um			ars	e		Fir				coar	se				
									Par	ticle	ə-Si	zel	Limit	is a	s pe	r US	SCS	(A	STN	1 D-24	487)													
				ę	Soil	Des	crip	otion	ı						(Gra	vel	(%)		S	and	(%))				Cla	у&	Silt	t (%))			
		Gravel a	and S	and,	wit	h Sor	ne S	Silt a	ind 1	Frac	ces	of	Clay	'			43					43	3						1	4					
	_		Clay								mn	n):												1 [.] 3										-	
Bor	narks	Clay & Silt Fin Particle-Size Limits Soil Description Gravel and Sand, with Some Silt and Traces of Clay Silt-size particles (%) : Clay-size particles (%) (<0.002 mm):																																	
Rei	liains	• <u>Mor</u>	e info	orma	tion	is a\	vaila	ible	upor	n re	que	est.																							
Per	forme	ed by:			_	\sim	\nearrow		J.	. La		lde	9								[Dat	e:		_		A	ugı	ust ⁻	15,	202	22			
Ver	ified	by:	Clay & Silt Particle-Size Lir Soil Description ravel and Sand, with Some Silt and Traces of Cl Silt-size particles (%) : Clay-size particles (%) (<0.002 mm): More information is available upon request. Dy: J. Lalonde																	_	[Dat	e:		-		A	ugı	ust 2	24,	202	22			

Client:	Infrastructur	re Ontario	Lab No.:	G-22-03	_
Project, Site:	Children F	Hospital	Project No.:	11205379	_
Borehole No. Depth:	: BH11-2: 0 - 0,61 r		Sample No.: Enclosure:	SS-1	_
Bemerke	Clay & Silt Clay & Silt Soil Description avel and Sand, with Traces of Silt and Silt-size particles (%) : Clay-size particles (%) (<0.002 m	m):	Medium Coarse		00 00 00 00 00 00 00 00 00 00
_					_
Performed by:	J. Lalo	onde	Date:	August 11, 2022	
Verified by:	<u> </u>		Date:	August 24, 2022	_

Infrastructure On	0	Lab No.:	G-22-03	_
Children Hospi		Project No.:	11205379	_
BH12-22 0 - 0,61 m		Sample No.: Enclosure:	SS-1	_
Soil Description	meter (mm) Sand ne Medi	ium Coarse		0 10 20 30 40 50 50 50 60 70 80 90 100
J. Lalopde		_ Date: Date:	August 11, 2022	
	Children Hospital BH12-22 0 - 0,61 m 0 - 0,61 m	$\begin{array}{ $	Project No.: BH12-22 Sample No.: 0 - 0,61 m Enclosure:	Children Hospital Project No.: 11205379 BH12-22 Sample No.: SS-1 0-0.61 m Enclosure: - 0 0-0.61 m Image: Construction of the second of the se

Clie	ent:													taric)						Lab	No	.:		_			(G-2	2-0	3				
Pro	ject	, Site:	_						Chil	dre	n F	lo	spit	tal							Pro <u></u>	ject	No) .:	_			1	120)537	79			_	
	Bor	ehole No	.: _						BI	H14	-22	2									Sam	ple	No.	:	_				S	S-1					
	Dep	oth:							0 -	- 0,6	61 r	n									Encl	osu	re:		_					-					
Percent Passing	100 90 80 70 60 50 40 30 20																										/		7					0 10 20 30 40 50 60 70 80	Percent Retained
	10											•		-		+																	9	90	
	0 0.	001				0.0	1					(J).1	Diar	nete	r (mr	n)			1						1	0						100	100	
				с	lay	& S	Silt										;	San										Grav							
									Ра	rticl	le-S	ize) Lir	Fir mits		per	USC	CS (Mec AST				oar	se		Fir	ie			Coar	se				
					So	oil C	Descr	iptic	on							G	rave	el ('	%)			San	d (%	%)			(Cla	у&	Silt	: (%)			
			Sandy (Grav	el, v	with	n Trac	ces c	of Sil	t an	d C	la	y				6	6				:	22						1	12					
							-																									_			
			Clay	/-siz	e p	art	icles	(%)	(<0.	002	m	m)	:																						
Rer	nark	(s: <u>N</u>	lore inf	orma	atio	on is	s avai	ilable	e upo	on re	equ	ies	;t.																					_	
Per	forn	ned by:				/		\sum		J. Li	alo	ne	lę_									Da	te:				A	ugı	ust	11,	202	22		_	
Ver	ifiec	l by:	_	0.01 0.1 0.01 0.1 Clay & Silt Particle-Size Lin Ore information is available upon request. J. Lalonde																		Da	te:		_		A	ugı	ust	24,	202	22			

Cli	ent:		0 - 0,61 m												io							Lab	N	o.:			_				G-2	22-0)3				
Pro	oject	, Site:						C	Chilo	dre	n ŀ	Ho	spi	tal								Pro	jec	ct N	lo.	:	_			1	120)53	79				
	Bor	ehole No.:							Bŀ	H15	5-22	2								_		Sam	nple	e N	o.:						S	S-1					
	Dep	oth:							0 -	0,6	61 i	m								_		Enc	los	ure	:		_					-					
	100 ·							1									<u> </u>									-	ТТ					-•	┍─┍╸	┍	▶	0	
	90 -																													Ζ						- 10	1
	80 -																													, 						- 20	
																											20										
	70 -																						20 30 40 50 60 70														
Percent Passing	60																- 40	Retaine																			
Percent	50																- 50	Percent																			
	40 -																					1															
	30 -									_																10 20 30 40 50 50 60 70 60 70 80 90 10 10 10 10 10 10 10 10 10 1											1
	20 -			Diameter (mm)													- 80	1																			
	10 -		Diameter (mm)													- 90	1																				
	0 -		0.01 0.1 Diameter (mm) 1 10																- 10	0																	
	0.0	001				0.01							0.1	Dia	ame	ter (mm)			1							1	0						10		
				СІ	ay	& Sili	t							-	ine			s		d Me	dir		-	60	arse			Eir		Gra		C					
									Pa	rtic	le-S	Size	e Li				er U	ISC				D-24			a130								130				
					Soi	il De	scrip	ptio	n								Gra	ave	1 (%	%)			Sa	nd	(%)				Cla	ıy &	Sil	lt (%	5)			
		Sand a	nd Gr	avel,	wi	th Sc	me	Silt a	and	Tra	ice	s o	f C	lay				40)					47	,							13					
			0			ze pa																				10											
			Clay	/-SIZ6	e pa	artic	ies (%) (<0.0	J02	m	m)	:													3											
Re	mark	к s: <u>М</u> с	ore inf	orma	tio	n is a	availa	able	upo	n r	eqı	ues	st.																								
Pe	forn	ned by:		(6			<u> </u>	J	. L	alc (nd	le									-	D	ate	e :		_		А	۱ug	ust	11,	, 20	22			
Ve	rified	l by:			$\overline{(}$	\sim	\geq	Ċ		2	2	5										-	D	ate	ə:		_		А	lug	ust	24,	, 20	22			

Cli	ent:								On	tario)						Lat	o N	o.:						(G-2	2-0	3									
Pro	ject	, Site	:							Chil	ldre	en H	Ю	spi	tal							Pro	ojec	ct N	lo.:		_			1	120	537	79			_	
	Bor	ehole	No.:							В	3H10	6-22	2							_		San	nple	e No	D.:						SS	S-1					
	Dep	oth:		_						0	- 0,	61 ı	m									Enc	los	ure			_					-	·	·			
	100																			Π											-•	-•	-	••	Т'	0	
	90	-																											\vdash				_		·	10	
	80																											ł	-				+			20	
	70	-																-++ : 	30	þé																	
Percent Passing	60																							/							+			40	Percent Retained		
Perce	50 40																						/	/											50 60	Perce	
	30																					/														70	
	20																					<i></i>														80	
	10														~		1																		?	90	
	0 0.	001														nete	r (mi	 m)			1							10)						 100	100	
																		:	Sar	d									(Grav	/el						
					C	lay	/ &	Silt		De	artic	-lo_9	Siz	ألم	Fii		nor		<u> </u>	Me				Coa	irse	•		Fin	e		C	oar	se				
													512			-	per					0-24					-									7	
						So	oil	Desc	riptio	on							G	rav	el (%)			Sa	nd	(%))				Cla	у&	Silt	: (%)			
			Sand	and								and	IC	lay				4	4					45							1	1					
				Clay								2 m	m)):												9 2											
Rei	marl	(S:	Mor	e inf	orm	atio	on	is ava	ailable	e up	on r	equ	ues	st.																							
L														-l -									_										0.04			_	
		ned b	у:			Ć	_		7		J. L	alc.) N	de								-		ate			_				ust 1					_	
Vei	ified	l by:			Clay & Silt Particle-Size Limit Soil Description nd Gravel, with Traces of Silt and Clay Silt-size particles (%) : lay-size particles (%) (<0.002 mm): information is available upon request. J. Lalonde																	-	D	ate	:		_		A	ugu	ust 2	24,	202	22		_	

Clie	ent:												e (Dnf	tario	c						La	ab	No.	:						G-:	22-(03				-
Pro	ject,	Site:	_						C	Chilo	drei	n⊦	los	spit	al							_Pr	roje	ect	No	.:					112	053	379	1			-
	Bore	ehole No	.: _							Bł	H17	-22	2									Sa	amp	ole N	lo.:						S	SS-1	1				-
	Dep	th:	_							0 -	0,6	1 r	n									En	nclo	sure	э:							-					-
Percent Passing	100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 -																													/						0 10 20 30 40 50 60 70 80 90	C C C C C C C C C C C C C C C C C C C
	0.0	01	0.01 0.7).1	Dia	met	ter (r	mm)			1				<u> </u>				10						1	⊥ ₁₍ 00	00
	[Cla		Silt												Sa	and										Gra	avel]		
						ya				Pa	rticl	e-S	Size	Li		ne as	s pe	er U	scs			ium M D-2	248		oars	se		Fi	ne			Coa	arse	<u>)</u>	-		
	l r																			. (.,				1									1
					S	oil	Des	scrij	otio	n							C	Gra	vel	(%)		S	Sano	d (%	%)				Cl	ay 8	& Si	ilt (S	%)			
	-	S	Sandy	Gra	vel	, w	ith T	race	es of	f Silt	t an	d C	Clay	/					52					3	9							9					
																											7										
	ļ		Cla	iy-si	ize	ра	rtic	es (%) (<0.(002	mı	m):			_										2	2										
Rei	Soil Description Sandy Gravel, with Traces of Silt and Clay Silt-size particles (%) : Clay-size particles (%) (<0.002 mm):											t.																							- -		
Per	form	ed by:	_			_		\		J	نم ا	alo	nd	е								_		Dat	e:					Au	gus	t 9,	, 20)22			-
Ver	ified	by:	Clay & Silt Particle-Size I Soil Description Sandy Gravel, with Traces of Silt and Clay Silt-size particles (%) : Clay-size particles (%) (<0.002 mm): More information is available upon request. More information is available upon request.													·								Dat	e:					Aug	gust	: 24	, 20	022	2		

Clie	ent:		No:: BH18-22 Sample No.: SS-1 0 - 0,61 m Enclosure: -																															
Pro	ject	, Site:	_						C	Child	ren	H	osp	oital						_P	roje	ct N	lo.:				11	1205	5379	9				
		ehole No).: _																_									SS	-1					
	Dep	oth:	_							0 -	0,6′	1 m	1						_	E	nclos	sure						-						
Percent Passing	100 90 80 70 60 50 40 30 20																															- 10 - 20 - 30 - 40 - 50 - 60 - 70	Percent Retained	
	10								-		•	-•		-+	-	+	-	-	-					40 50 60 70 80 90 10 100										
	0.0	001	•	Diameter (mm)														10																
					Cla	y 8	& Silt										5	San				_			_		irave							
										Par	ticle	ə-Si	ze l	Fi Limits	ine s as	per	USC		Med ASTI				arse		FI	ne		C	oars	e	-			
					s	ioil	l Des	scrij	ptio	n						Gı	rave	əl (%	6)		Si	and	(%)			C	Clay	/& \$	Silt ((%)				
		ç	Sandy	Gra	vel	, w	ith T	race	es of	Silt	and	I CI	ay				7	3				21						6						
				S	ilt-s	siz	e pa	rtic	les (%):														5										
			Cla	ıy-si	ize	ра	articl	les ((%) (<0.0	02 I	mm	ו):											1										
Rer	nark	(s: <u>N</u>	/lore in	lforn	nat	ion	ı is a	vaila	able	upoi	n re	que	est.																					
Per	forn	ned by:	_		/			7		J.	Lą	lor	nde)								Date):			А	ugı	ust §	9, 20)22				
Ver	ifiec	l by:	_		$\langle $	2	\leq		0	20	2	ł								_	[Date	:			Aı	Jgu	st 2	4, 2	022	2			

Clie	nt:	Infrastructure	e Ontario		Lab No.:	G-22-03	
Proj	ect, Site:	Children H	ospital		Project No.:	11205379	
	Borehole No.	: ВН19-22		_	Sample No.:	SS-2	
	Depth:	0,76 - 1,37	m		Enclosure:	<u> </u>	
Percent Passing		O.01	Fine	ter (mm) 1 Sand Mediu s per USCS (ASTM Gravel (%)		Gravel Fine Coarse Clay & Silt (%)	- 10 - 20 - 30 - 40 peresent - 50 peresent
			(0)				
	Sand	and Gravel, with Some Silt and Traces Silt-size particles (%) :	of Clay	31	46	23	
		Clay-size particles (%) (<0.002 mm	ו):		7		
Ren	iarks: <u>M</u>	lore information is available upon reque	est.				
Perf	ormed by:	J. Lajor	nde		Date:	August 17, 2022	
Veri	fied by:	- Coal			Date:	August 24, 2022	

Clie	nt:	Infrastructure	e Ontario		Lab No.:	G-22-03	
Pro	ject, Site:	Children H	lospital		Project No.:	11205379	
	Borehole No Depth:	p.: MW20-22 0,00 - 0,61			Sample No.: Enclosure:	SS-1	
Percent Passing	100 90 80 70 60 50 40 30 20 10 0.001 Sance	Image: Clay & Silt Clay & Silt Soil Description	Fine ize Limits a	ter (mm) 1 Sand Sand Gravel (%)		Gravel Fine Coarse Clay & Silt (%) 20	- 0 - 10 - 20 - 30 - 40 - 50 - 50 - 50 - 70 - 80 - 70 - 90 - 100
		Silt-size particles (%) : Clay-size particles (%) (<0.002 mn	n).		16		
		More information is available upon requ	est.				
	formed by: ified by:	J. Lalo	nde)		Date:	August 9, 2022 August 24, 2022	
ver	ineu by.)		Date.	Augusi 24, 2022	—

Clie	ent:							Inf	rast	ruc	tur	re (Onta	ario						La	b١	lo.:			_			G	i-22	2-03				-
Pro	ject, Sit	e:						(Chil	dre	n F	Hos	spita	al						_Pro	oje	ct I	۱o.	:	_			11	205	5379	9			-
	Borehole Depth:	e No.:							M\ 0,61	W2										Sa En		e N sure			_				SS- -					-
Percent Passing						0.01								Fine			Sa		ledi	um		Cos	arse			10	G						0 10 20 30 40 50 70 80 90 10	Percent Retained
									Ра	rtic	le-S	Size	Lim	its a	as p	er U	SCS	6 (A	STN	1 D-24	487)												
					So	il De	escri	iptio	n							Gra	vel	(%)		Sa	and	(%)			c	Clay	& S	Silt (%)			
		Gra	avel	and	Saı	nd, ⁻	Trace	es of	Silt	and	d C	lay					46					41							13	3				
			Clay				oartic cles				m	m):	:											9 4										
Rei	marks:	Mor	e inf	orma	atio	n is	avai	lable	upc	on r	equ	Jes	t.																					-
Per	formed	by:			1				L	J. L	alq	nd	е								0	Date	e:				A	ugu	ıst 9	9, 20)22			_
Ver	ified by:				\langle	\geq	\sim	k	X	X	2	<u>Y</u>	*								0	Date	e:		_		Αι	ıgu	st 2	3, 2	022	2		-

Client:		l	Infrastructure Or	ntario		Lab no.:	G-20-01	
Project/Site:		CHEO P	roposed New Pa	arking Garage		Project no.:	11205379-80	
Borehole no.:	BH3		Sample no.:		SS2	Depth: Date sampled:	0.6-1.2m 18-Jan-21	
Apparatus: Liquid limit device no.: Sieve no.:	Hand		Balance no.: Oven no.: Glass plate no.:		1 1 1	Porcelain bowl no.: Spatula no.:	11	
	Liquid Limit (LL):	I	Soil Preparati	on:			
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µn		Dry preparation	
Number of blows	30	25	20		Cohesive >425 µn	ו 🗹	Wet preparation	
	Water Conte	nt:			Non-cohesive			
Tare no.	S39	S11	S32	4		Results		
Wet soil+tare, g	32.39	33.80	32.26	38.0				
Dry soil+tare, g	29.85	30.89	29.53	36.0				
Mass of water, g	2.54	2.91	2.73					
Tare, g	21.63	21.65	21.60	0.45 Water Content (%)				
Mass of soil, g	8.22	9.24	7.93	er Col				
Water content %	30.9%	31.5%	34.4%	Å 32.0				
Plastic Limit (P	L) - Water Conte	ent:						
Tare no.	S37	S18		30.0				
Wet soil+tare, g	28.17	28.51		28.0				
Dry soil+tare, g	27.24	27.53			15 17 19	21 23 25 27 Nb Blows	29 31 33 35	
Mass of water, g	0.93	0.98			Soil	Plasticity Chart		
Tare, g	21.98	22.23		70		LL 5D		
Mass of soil, g	5.26	5.30		60	Low plasticity	High plastic Inorganic cl	ity	
Water content %	17.7%	18.5%		۔ 50 –	Inorganic clay	Сн		
Average water content %	18.	1%		[#] / _− 40				
Natural Wate	er Content (W ⁿ)	:		tity Inde				
Tare no.	G		-	lastic	Low compressibility		MH and CH	
Wet soil+tare, g	445.80			° 20 −	-Ilnorganic silt	 High inorg 	compressibility janic silt	
Dry soil+tare, g	393.10			10		norganid sil	compressibility janic silt ianic clay npressibility t	
Mass of water, g	52.70			0 +		ML and OL - Organic clay 30 40 50 60	70 80 90 100	
Tare, g	0.00			0	10 20 3	20 40 50 60 Liquid Limit LL	10 00 90 100	
Mass of soil, g	393.10			Liquid Limit	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W	
Water content %	13.4%		-	(LL) 32	18	14	13	
Remarks:	1		1			1		
Performed by:		Ali E	lhaddad		Date:	Feb	ruary 12, 2021	
Verified by:	E. Bennett				Date: February 18, 2021			

Client:			nfrastructure On	tario		Lab no.:	G-22-03	
Project/Site:			Children Hospi	tal		Project no.:	11205379	
Borehole no.:	BH13-22		Sample no.:		SS-2	Depth:	0,61 - 1,22 m	
Soil Description:						Date sampled:		
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1	
Liquid limit device no.:		1	Oven no.:	B23	-04645	Spatula no.:	1	
Sieve no.:	015	5690	Glass plate no.:		1			
	Liquid Limit	(LL):		Soil Preparati	on:			
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µr	n 🗸	Dry preparation	
Number of blows					Cohesive >425 µr	n 🗆	Wet preparation	
	Water Conte	ent:			Non-cohesive			
Tare no.						Results		
Wet soil+tare, g				2.0				
Dry soil+tare, g								
Mass of water, g				(%)				
Tare, g				ntent				
Mass of soil, g				Water Content (%)				
Water content %				Wat				
Plastic Limit (Pl	L) - Water Cont	ent:						
Tare no.								
Wet soil+tare, g				0.0				
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27	
Mass of water, g					Soil	Plasticity Chart AST	M D2487	
Tare, g				70		LL 50		
Mass of soil, g				60	Lean clay (CL)	Fat clay (
Water content %				ын 1 50 —				
Average water content %						Organic cla	ау ОН	
Natural Wate	r Content (W ⁿ):			Orga	nic clay OL		
Tare no.					ty clay (CL (ML)	7 Ela	astic silt MH	
Wet soil+tare, g				20 —		Org	anic silt OH	
Dry soil+tare, g				10		Organic silt		
Mass of water, g				0	10 20 3	ML OL 01	70 80 90 100	
Tare, g						Liquid Limit LL		
Mass of soil, g				Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ	
Water content %								
Remarks:	Non-Plastic S	Sample		-				
Performed by:			atonde		Date:	Sente	ember 13, 2022	
			V					
Verified by:	-	jage	3		Date:	Septe	ember 13, 2022	
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario				

Client:			Infrastructure On	tario		Lab no.:	G-22-03
Project/Site:			Children Hospi	tal		Project no.:	11205379
Borehole no.:	BH19-22	2	Sample no.:		SS-2	Depth:	0,76 - 1,37 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1	-	
	Liquid Limit	(LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	7	Cohesive <425 µr	n 🗸	Dry preparation
Number of blows					Cohesive >425 µr	n 🗆	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent (
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	tent:					
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g			1		15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart ASTI	M D2487
Tare, g			1	70		LL 50	
Mass of soil, g				60 -	Lean clay (CL)	Fat clay	
Water content %				14 			
Average water content %		I		50 — = IT-ЪГ ичех ы		Organic cla	ау ОН
Natural Wate	r Content (W ⁿ):			Orga	anic clay OL	
Tare no.				Last Si	ty clay (CL (ML)-	T EI	astic silt MH
Wet soil+tare, g				20		Org	anic silt OH
Dry soil+tare, g				10		Organic silt	
Mass of water, g			1	0	10 20 3	ML OL 60	70 80 90 100
Tare, g			1			Liquid Limit LL	
Mass of soil, g				Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %							
Remarks:	Non-Plastic S	Sample	·				
Performed by:	\frown		Alonde		Date:	Sent	ember 13, 2022
Verified by:	$\langle $	In	\mathbf{V}		Date:		ember 13, 2022
	$\overline{}$	<u>here</u>	5	.	Date:	3ept	51110GE 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

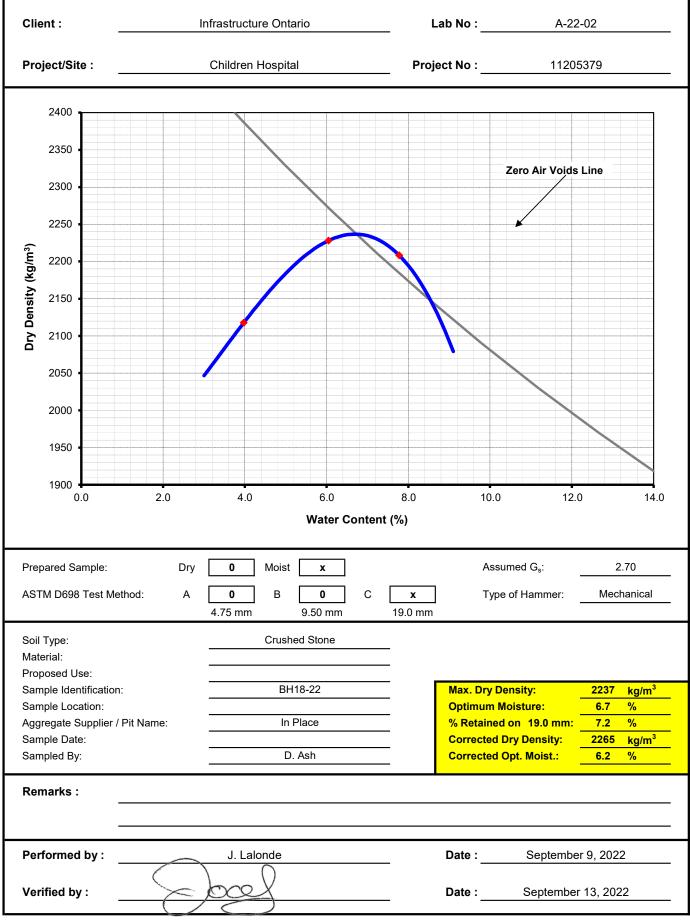
Client:			Infrastructure On	tario		Lab no.:	G-22-03
Project/Site:			Children Hospi	ital		Project no.:	11205379
Borehole no.:	MW20-22	2	Sample no.:		SS-2	Depth:	0,61 - 1,22 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	3-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1		
	Liquid Limit	(LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µr	n 🗸	Dry preparation
Number of blows					Cohesive >425 µr	n 🗆	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent (
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	ent:					
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g			-		Soil	Plasticity Chart AST	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60 —	Lean clay (CL)	Fat clay	
Water content %				н - 50 -			
Average water content %						Organic cla	ау ОН
Natural Wate	r Content (W ⁿ):			Orga	Inic clay OL	
Tare no.				Last Si	lty clay (CL (ML)	T EI	astic silt (MH)
Wet soil+tare, g				20 —		Org	anic silt OH
Dry soil+tare, g			1	10		Organic silt	
Mass of water, g					10 20 3	ML OL 01	70 80 90 100
Tare, g				, i i i i i i i i i i i i i i i i i i i	10 20 0	Liquid Limit LL	
Mass of soil, g			1	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %							
Remarks:	Non-Plastic S	Sample				•	
Performed by:		<u> </u>	alonde		Date:	Sent	ember 13, 2022
			<u> </u>				
Verified by:	$-\epsilon$	100	5		Date:	Septe	ember 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	ı, Ontario			

Moisture Content of Soils (ASTM D 2216)

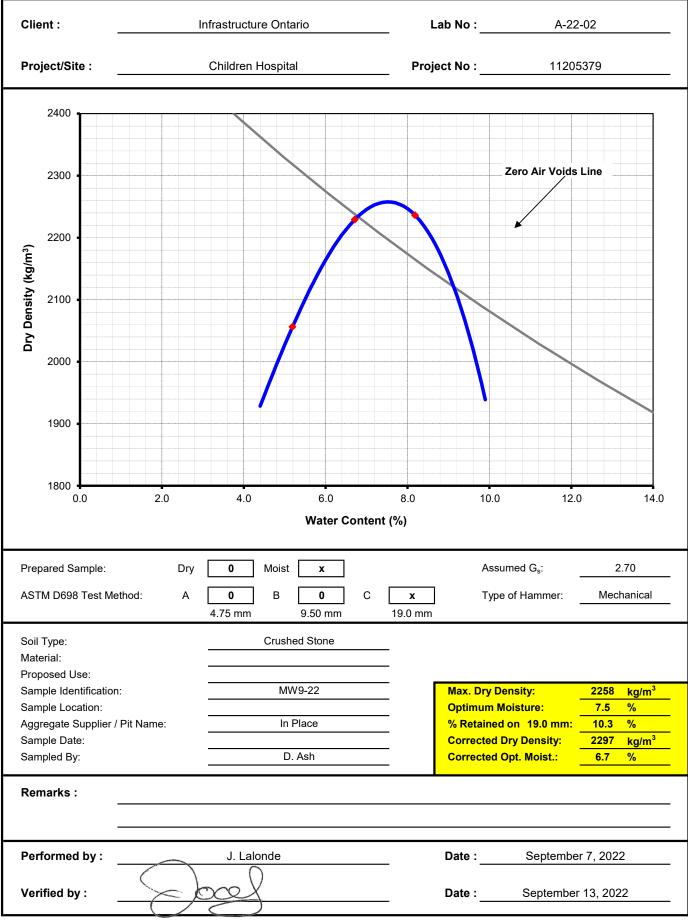
Client:	Infrastr	ucture Ontar	io		Lab No.:		G-22-03	
Project/Site:	Childr	en's Hospita	I		Project No.	:	11205379	
Apparatus Used for Testing	Oven No.: B23-04645 Sca			Scale No.:	80330	31049		
BH No.:					BH10-22	BH10-22	BH11-22	BH11-22
Sample No.:					SS1	SS2	SS1	SS2
Depth:					0,0-2,0	2,0-3,3	0,0-2,0	2,0-4,0
Container no.					32	25	28	4
Mass of container + wet soil (g)					70.50	70.00	75.70	72.80
Mass of container + dry soil (g)					68.90	66.80	74.40	68.10
Mass of container (g)					14.80	14.60	14.70	14.80
Mass of dry soil (g)					54.1	52.2	59.7	53.3
Mass of water (g)					1.6	3.2	1.3	4.7
Moisture content (%)					3.0	6.1	2.2	8.8
BH No.:	BH12-22	BH12-22	BH14-22	BH14-22	BH15-22	BH15-22	BH16-22	BH16-22
Sample No.:	SS1	SS2	SS1	SS2	SS1	SS2	SS1	SS2
Depth:	0,0-2,0	2,0-4,0	0,0-2,0	2,0-4,0	0,0-2,0	2,0-3,5	0.0-2,0	2,0-4,0
Container no.	42	15	14	35	18	9	13	23
Mass of container + wet soil (g)	83.70	74.40	79.40	74.00	61.00	62.70	78.90	58.40
Mass of container + dry soil (g)	81.60	71.80	77.90	71.10	59.50	60.20	77.00	55.40
Mass of container (g)	14.60	14.80	14.80	15.10	15.00	14.70	14.80	15.10
Mass of dry soil (g)	67.0	57.0	63.1	56.0	44.5	45.5	62.2	40.3
Mass of water (g)	2.1	2.6	1.5	2.9	1.5	2.5	1.9	3.0
Moisture content (%)	3.1	4.6	2.4	5.2	3.4	5.5	3.1	7.4
Remarks:								
Performed By:		Date:		. July 2	7 2022			
Verified by :				Date:	July 27, 2022 August 3, 2022			

Moisture Content of Soils (ASTM D 2216)

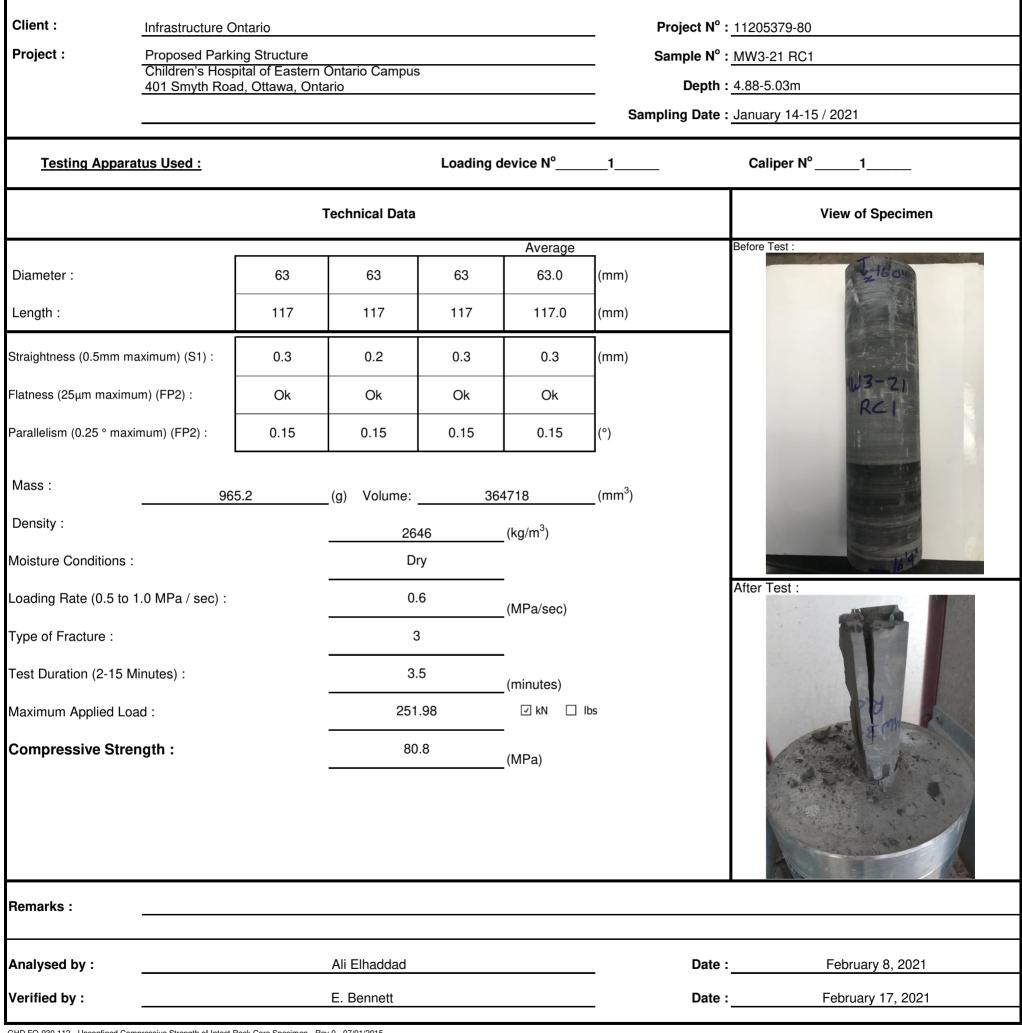
Client:	Infrastr	ucture Ontar	io		Lab No.:	G-2	G-22-03		
Project/Site:	Childr	en's Hospita	I		Project No.:	1120	5379		
Apparatus Used for Testing	Oven No.:	B23-(04645	Scale No.:	80330310	949			
MW No.:	BH9-22	BH9-22							
Sample No.:	SS1	SS2							
Depth:	0,0-2,0	2,5-4,5							
Container no.	9	32							
Mass of container + wet soil (g)	59.30	55.60							
Mass of container + dry soil (g)	56.90	54.30							
Mass of container (g)	14.70	14.90							
Mass of dry soil (g)	42.2	39.4							
Mass of water (g)	2.4	1.3							
Moisture content (%)	5.7	3.3							
MW No.:	BH14	BH20-22	BH20-22						
Sample No.:	SS3B	SS1	SS2						
Depth:	2,4-5,1	0,5-2,5	2,5-4,5						
Container no.	23	16	28						
Mass of container + wet soil (g)	54.30	48.50	58.60						
Mass of container + dry soil (g)	52.60	47.00	56.40						
Mass of container (g)	15.00	14.90	14.90						
Mass of dry soil (g)	37.6	32.1	41.5						
Mass of water (g)	1.7	1.5	2.2						
Moisture content (%)	4.5	4.7	5.3						
Remarks:									
Performed By:	J A Ba	aptiste		Date:		July 27, 2022			
Verified by :						August 3, 2022			


GHD

Standard Proctor Test (ASTM D698)


Client :	Ir	frastructure Ontari	0	Lab N	No :	A-22-02
Project/Site :		Children Hospital		Project N	No :	11205379
2400						
2300 •					Zero Air	Voids Line
2200 ·		/				
Dry Density (kg/m ³)						
کم 2000 •						
1900						
1800	2.0	4.0	6.0 Water Conte	8.0 ent (%)	10.0	12.0 14.0
Prepared Sample ASTM D698 Tes		0 Moist [0 B [4.75 mm S	x 0 C	x 19.0 mm	Assumed G _s : Type of Hamn	2.70 ner: Manual
Soil Type: Material:		Crushed				
Proposed Use: Sample Identifica Sample Location Aggregate Suppl		BH11 In Pla		OI	ax. Dry Density: ptimum Moisture: Retained on 19.0	2254 kg/m ³ 6.4 % mm: 2.8 %
Sample Date: Sampled By:		D. A		C	orrected Dry Dens orrected Opt. Mois	ity: 2254 kg/m ³
Remarks :						
Performed by	:	J. Lalonde		Da	ite : Sep	tember 2, 2022
Verified by :		bæl		Da	ite :Sep	tember 6, 2022

GHD


Standard Proctor Test (ASTM D698)

Standard Proctor Test (ASTM D698)

Client : Project :	Infrastructure C Proposed Parki Children's Hosp 401 Smyth Roa	ng Structure bital of Eastern	Ontario Campus ario			Sam	Project Nº : <u>11205379-80</u> Sample Nº : <u>MW3-21 RC2</u> Depth : <u>6.4-6.55m</u>		
Testing Appara	tus lleed :				device N ^o	Sampling 1	g Date : <u>·</u>	January 14-15 / 2021 Caliper Nº1	
			Technical Data			'		View of Specimen	
					Average	7	E	Before Test :	
Diameter :		63	63	63	63.0	(mm)			
Length :		74	74	74	74.0	(mm)		21'0"	
Straightness (0.5mm m	aximum) (S1) :	0.2	0.2	0.2	0.2	(mm)			
Flatness (25µm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok			MW3-21	
Parallelism (0.25 ° maxi	mum) (FP2) :	0.1	0.1	0.1	0.15	(°)		RC2	
Mass : Density :	6	12	_(g) Volume:	23		(mm ³)			
				53	_(kg/m ³)				
Moisture Conditions :			Dr	Ŷ	-		-	After Test :	
Loading Rate (0.5 to	1.0 MPa / sec) :		0.	6	(MPa/sec)				
Type of Fracture :			3	3	_				
Test Duration (2-15 M	linutes) :		4	Ļ	(minutes)				
Maximum Applied Loa	ad :		335	.49	🗹 kN 🗌	lbs			
Compressive Stre	ngth :		107	7.6	(MPa)				
								4	
Remarks :									
Analysed by :			Ali Elhaddad				Date :	February 8, 2021	
Verified by :			E. Bennett			_	Date :	February 17, 2021	
			<u></u> , _,						

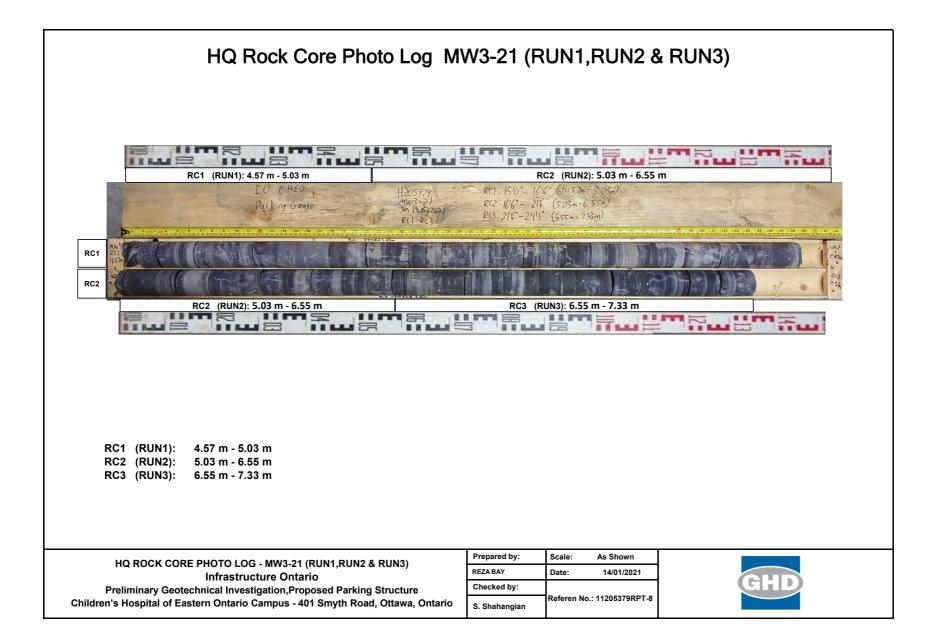
Client :	Infrastructure C	Intario				Pro	oject Nº :	11205379-80	
Project :	Proposed Parki	ng Structure				Sar	mple N ^o :	MW3-21 RC3	
	Children's Hosp 401 Smyth Roa	oital of Eastern <u>d, Ottawa, Ont</u> a	Ontario Campus ario	\$ 		Depth : <u>7.92-8.07m</u>			
						Samplii	ng Date :	January 14-15 / 2021	
Testing Appara	itus Used :			Loading	device Nº	1		Caliper Nº1	
			Technical Data					View of Specimen	
Diameter :		63	63	63	Average 63.0	(mm)		Before Test :	
Length :		78	78	78	78.0	(mm)		726'0"	
Straightness (0.5mm m	aximum) (S1) :	0.3	0.2	0.3	0.3	(mm)			
Flatness (25µm maximu	um) (FP2) :	Ok	Ok	Ok	Ok	_		MW 3-21 RC3	
Parallelism (0.25 ° maxi	mum) (FP2) :	0.1	0.15	0.1	0.15	(°)			
Mass :	65	6.6	(g) Volume:	24	3145	(mm ³)			
Density :	0		_	00	_(kg/m ³)	()			
Moisture Conditions :			Di	ry				16150	
Loading Rate (0.5 to	1.0 MPa / sec) :		0.	.6	_ _(MPa/sec)			After Test :	
Type of Fracture :			3	3					
Test Duration (2-15 M	linutes) :		3.	.5	_ (minutes)				
Maximum Applied Loa	ad :		260	0.09	✓ kN	lbs		111/22	
Compressive Stre	ngth :		83	3.4	(MPa)				
								· · ··································	
								The test of the second	
Remarks :									
Analysed by :			Ali Elhaddad			_	Date :	•	
Verified by :			E. Bennett			_	Date :	February 17, 2021	

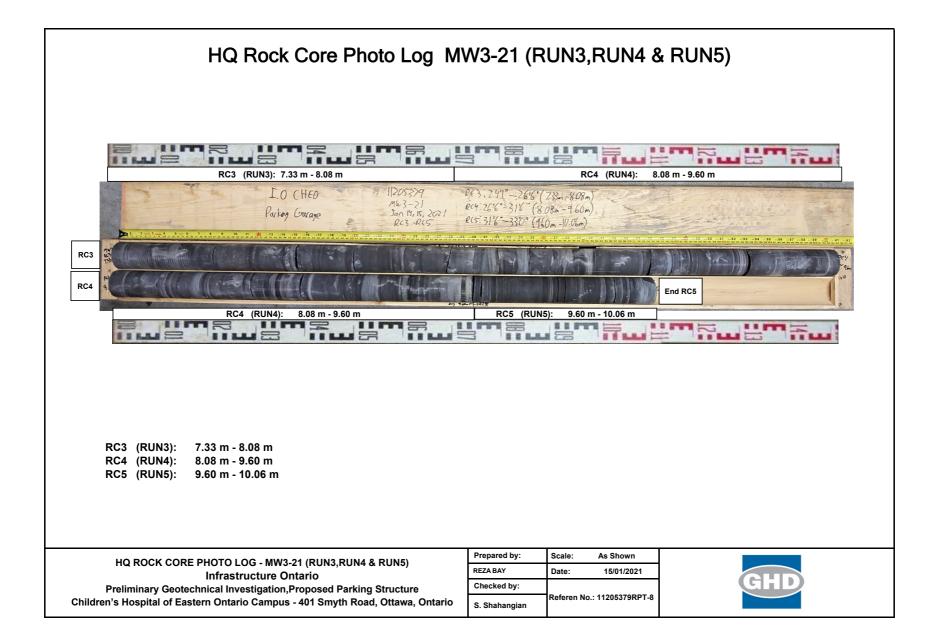
Client : Project :	Infrastructure C Proposed Parki Children's Hosp 401 Smyth Roa	ng Structure bital of Eastern	Ontario Campus ario			Sampl	e N° : epth :	11205379-80 MW3-21 RC5 9.63-9.75m January 14-15 / 2021
Testing Appara	tus Used :			Loading	device Nº	1		Caliper Nº1
			Technical Data					View of Specimen
					Average			Before Test :
Diameter :		63	63	63	63.0	(mm)		J 31'74
Length :		91	91	91	91.0	(mm)		
Straightness (0.5mm ma	aximum) (S1) :	0.2	0.3	0.3	0.3	(mm)		MW 2-21
Flatness (25µm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok			RC5
Parallelism (0.25 ° maxi	mum) (FP2) :	0.15	0.15	0.15	0.15	(°)		
Mass :	73	6.3	_(g) Volume:	28	3669	(mm ³)		
Density :			259	96	(kg/m ³)			
Moisture Conditions :			Dr	ſУ				
Loading Rate (0.5 to ⁻	I.0 MPa / sec) :		0.	6	(MPa/sec)			After Test :
Type of Fracture :			3	3				
Test Duration (2-15 M	linutes) :		4		(minutes)			
Maximum Applied Loa	ad :		251	.57	🗹 kN 🗌	lbs		-
Compressive Stre	ngth :		80	.7	_(MPa)			
Remarks :								
Analysed by :			Ali Elhaddad				Date :	February 8, 2021
Verified by :			E. Bennett			_	Date :	February 17, 2021

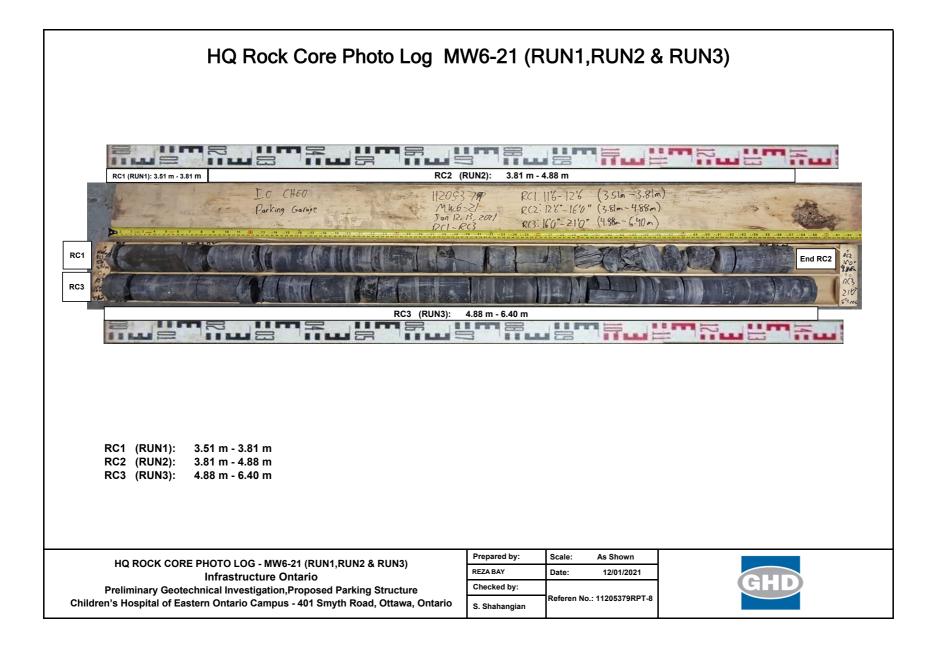
Client :	Infrastructure C	Intario				Proje	ect N° : 1	1205379-80		
Project :	Proposed Parki Children's Hosp	ng Structure bital of Fastern (Ontario Campus			Sam	Sample N° : MW6-21 RC2			
	401 Smyth Roa	d, Ottawa, Onta	ario			Depth : <u>4.75-4.88m</u>				
						Sampling	g Date : <u>.</u>	lanuary 14-15 / 2021		
Testing Appara	itus Used :			Loading o	levice N°	1		Caliper N ^o 1		
		٢	Fechnical Data					View of Specimen		
Diameter :		63	63	63	Average 63.0	(mm)	E	Before Test :		
						_				
Length :		86	86	86	86.0	(mm)				
Straightness (0.5mm m	aximum) (S1) :	0.3	0.3	0.3	0.3	(mm)		2130		
Flatness (25µm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok			MW6-21		
Parallelism (0.25 ° maxi	mum) (FP2) :	0.15	0.15	0.15	0.15	(°)		RC2		
Mass :	70	2.4	(g) Volume:	26	8083	(mm ³)				
Density :			26		_(kg/m ³)	(,)		15'7" -16'		
Moisture Conditions :			Di		_(,					
Loading Rate (0.5 to	1.0 MPa / sec) :		0.	6	- (MPa/sec)		7	After Test :		
Type of Fracture :			3	}						
Test Duration (2-15 N	linutes) :		4	Ļ	- (minutes)			Carlo and the		
Maximum Applied Loa	ad :		294	4.5	_ (lbs				
Compressive Stre	ngth :		94	.5	(MPa)			THE REAL OF		
								A Company of the second se		
Remarks :										
Analysed by :			Ali Elhaddad			_	Date :	February 8, 2021		
Verified by :			E. Bennett				Date :_	February 17, 2021		

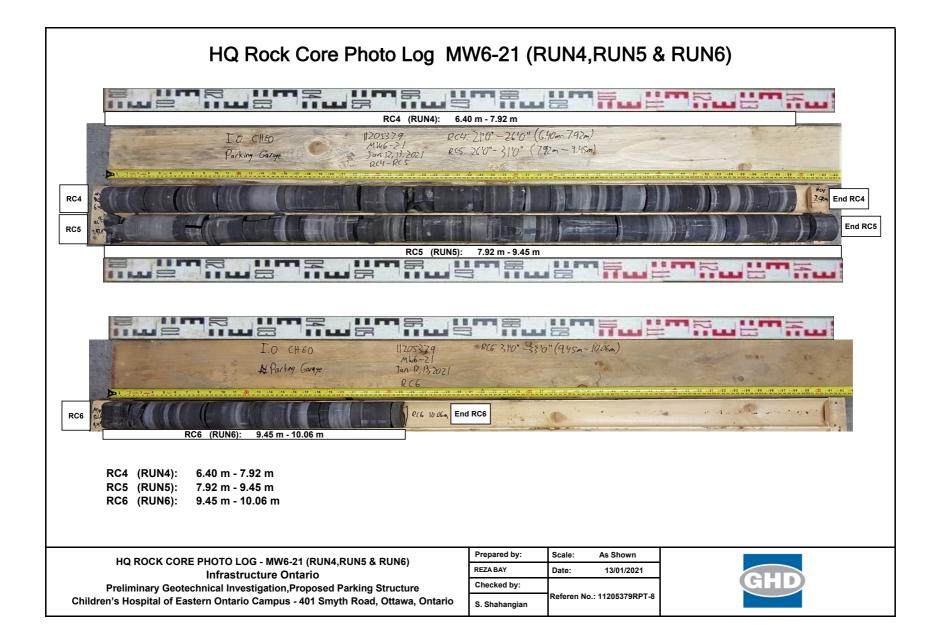
Client :	Infrastructure C	Intario				Proj	ect N° : <u>1</u>	1205379-80		
Project :	Proposed Parki Children's Hosp	ng Structure pital of Eastern	Ontario Campus	3		Sam	Sample Nº : MW6-21 RC4			
	401 Smyth Roa	id, Ottawa, Onta	ario				Depth : <u>6.65-6.81m</u> Sampling Date : <u>January 14-15 / 2021</u>			
						Sampling	g Date : Ja	anuary 14-15 / 2021		
Testing Appara	tus Used :			Loading o	device N°	1		Caliper N ^o 1		
		-	Technical Data					View of Specimen		
Diamator :		63	63	63	Average	(mm)	B	efore Test :		
Diameter :					63.0	(mm)		and the second		
Length :		82	82	82	82.0	(mm)		72'0"		
Straightness (0.5mm ma	aximum) (S1) :	0.3	0.3	0.3	0.3	(mm)		The second second		
Flatness (25µm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok			221		
Parallelism (0.25 ° maxi	mum) (FP2) :	0.15	0.15	0.15	0.15	(°)		MW6-21		
Mass :	67	6.1	(g) Volume:	25	5614	(mm ³)				
Density :			_	45	(kg/m ³)	_ ` ` `		Tan' WII E		
Moisture Conditions :			Di		_()			C C C		
Loading Rate (0.5 to ⁻	1.0 MPa / sec) :		0.	.6	- (MPa/sec)		А	fter Test :		
Type of Fracture :			3	3	_(0.000)					
Test Duration (2-15 M	linutes) :		4	1	- (minutes)					
Maximum Applied Loa	ad :		311	.75	✓ kN	lbs		CTER! -		
Compressive Stre	ngth :		100	0.0	(MPa)					
								and the second second		
Remarks :										
Analysed by :			Ali Elhaddad			_	Date : _	February 8, 2021		
Verified by :			E. Bennett				Date :	February 17, 2021		

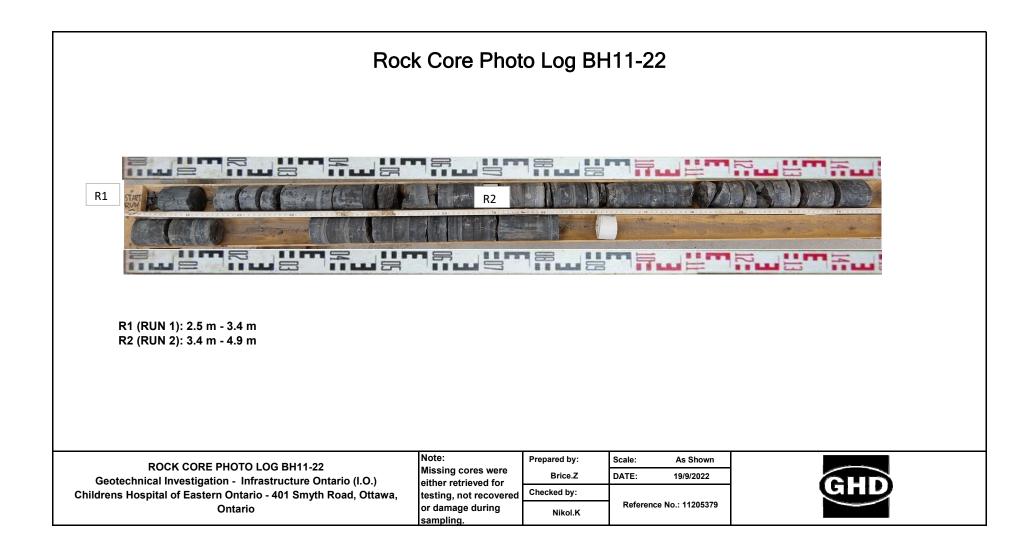
Client : Infrastructure Ontario							Project Nº : 11205379-80			
Project :							Sample N° : MW6-21 RC5			
	401 Smyth Roa	d. Ottawa. Onta	ontario Campus ario		Depth :	7.98-8.10m				
						Sampling	J Date :	January 14-15 / 2021		
Testing Apparatus Used : Loading device N ^o								Caliper Nº1		
Technical Data								View of Specimen		
		20			Average	٦, 、		Before Test :		
Diameter :		63	63	63	63.0	(mm) 				
Length :		93	93	93	93.0	(mm)		26'2		
Straightness (0.5mm ma	uximum) (S1) :	0.3	0.3	0.3	0.3	(mm)				
Flatness (25µm maximu	m) (FP2) :	Ok	Ok	Ok	Ok			MW6-1		
Parallelism (0.25 ° maxir	mum) (FP2) :	0.15	0.15	0.15	0.15	(°)		RCS		
Mass :	77	6.4	(g) Volume:	28	9904	(mm ³)				
Density :		-	-	78	(kg/m ³)					
Moisture Conditions :			D	ry						
Loading Rate (0.5 to 1	.0 MPa / sec) :		0.	.6	(MPa/sec)			After Test :		
Type of Fracture :			4		-					
Test Duration (2-15 M	inutes) :		5		– _(minutes)					
Maximum Applied Loa	d :		318	8.7	🗸 kN 🗌	lbs				
Compressive Strength : 102.2 (MPa)										
								A STA		
Remarks :										
Analysed by :			Ali Elhaddad				Date :	February 8, 2021		
Verified by :			E. Bennett			_	Date :	February 17, 2021		

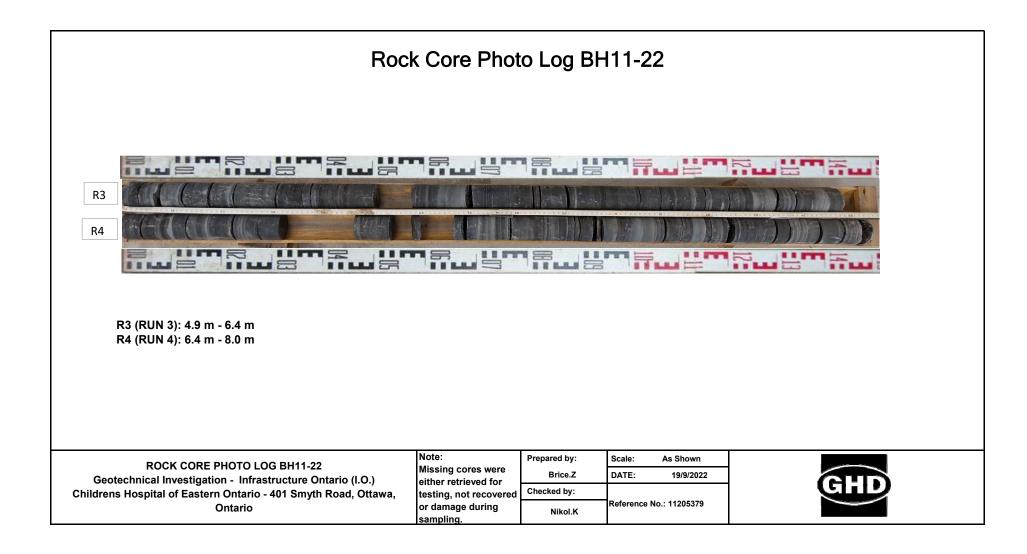

Client :	Infrastructure C	Ontario				Project N°	: 11205379
Project :	Children's Hosp	pital			Sample N ^o	: MW9-22 r.1	
						Depth	: <u>3,20 - 3,31 m</u>
						Sampling Date	·
Testing Appar	ratus Used :			9130	Caliper N°_1		
		-	Fechnical Data				View of Specimen
			1		Average	7	Before Test :
Diameter :		63.09	63.09	63.21	63.13	(mm)	
Length :		109.59	108.25	109.84	109.23	(mm)	
Straightness (0.5mm n	naximum) (S1) :	0.4	0.4	0.4	0.4	(mm)	
Flatness (25µm maxim	num) (FP2) :	Ok	Ok	Ok	Ok	(μm)	
Parallelism (0.25 ° max	ximum) (FP2) :	0.15	0.20	0.20	0.18	(°)	After Test :
Mass :	91	3.8	_(g) Volume:	34	1893	(mm ³)	
Density :			2673		(kg/m ³)		
Moisture Conditions	:		Dr	ТУ	_		
Loading Rate (0.5 to	o 1.0 MPa / sec) :		0.58		(MPa/sec)		
Type of Fracture :			Multiple Fracture		_		
Test Duration (2-15	Minutes) :		123		(seconds)		
Maximum Applied L	oad :		222	.24	_(kN)		
Compressive Strength :				.0	_(MPa)		
Remarks :							
Analysed by :	J. Lalonde	\cap				Date	8/18/2022
Verified by :	X	<u>ref</u>				Date	8/25/2022

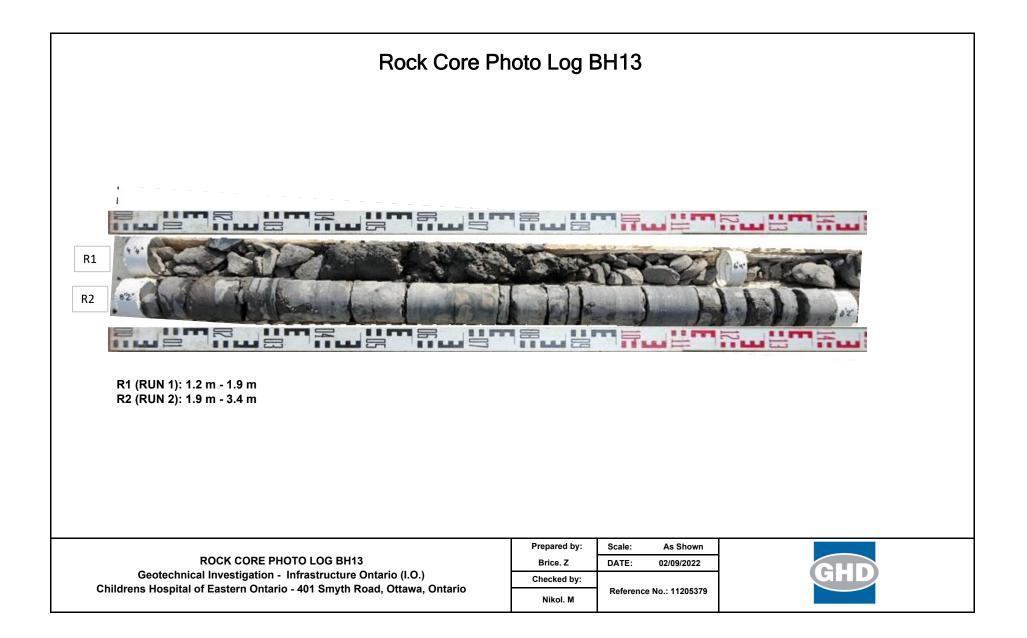

Client :	Infrastructure C	Ontario				Project N ^o	: 11205379	
Project :	Children's Hos	oital			Sample N ^o	: MW9-22 r.2		
						Depth	: 4,04 - 4,14 m	
Testing Appar	atus Used :			9130	Caliper N ^o _1			
			Technical Data					View of Specimen
					Average		Before Test :	
Diameter :		63.18	63.20	63.00	63.13	(mm)		-
Length :		96.49	95.36	95.29	95.71	(mm)		「東部」
Straightness (0.5mm m	aximum) (S1) :	0.1	0.1	0.2	0.1	(mm)		
Flatness (25µm maxim	um) (FP2) :	Ok	Ok	Ok	Ok	(μm)		
Parallelism (0.25 ° max	imum) (FP2) :	0.05	0.10	0.10	0.08	(°)	After Test :	
Mass :	79	8.9	_(g) Volume: _	29	9563	(mm ³)		
Density :			266	57	(kg/m ³)			
Moisture Conditions	:		Dry	y	-			and the second sec
Loading Rate (0.5 to	1.0 MPa / sec) :		0.4	8	(MPa/sec)			
Type of Fracture :			Multiple F	racture	-			
Test Duration (2-15 I	Minutes) :		118	8	(seconds)			
Maximum Applied Lo	bad :		175.	67	_(kN)			
Compressive Strength :56.1 (MPa)								
Remarks :								
Analysed by :	Analysed by : J. Lalonde						: 8/18/2022	
Verified by :	bal	ζ	Date	: 8/25/2022				
			/	January 2021				

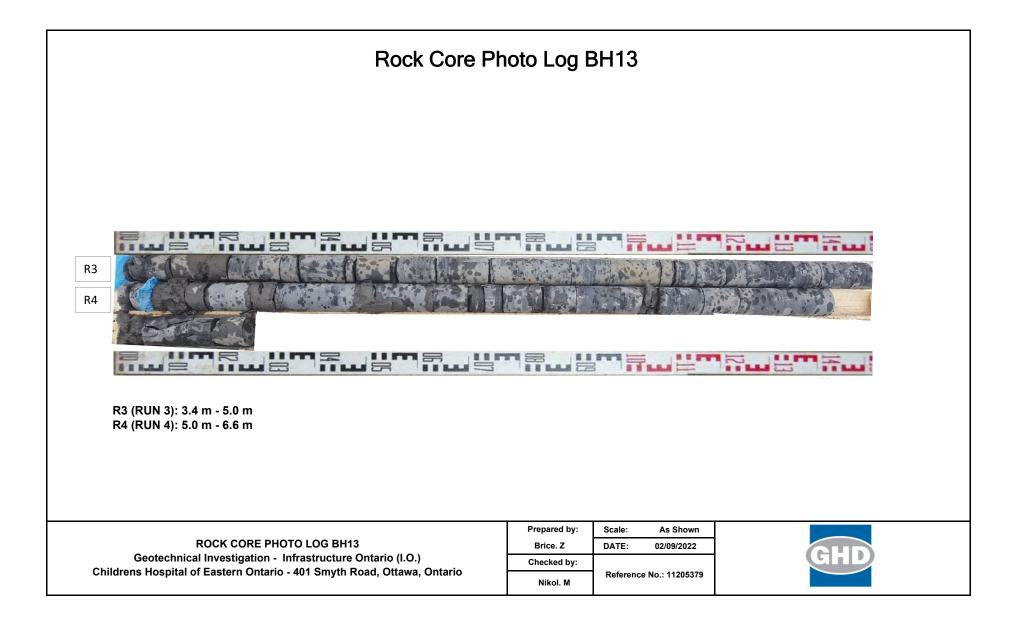

Client :	Infrastructure C	Ontario				Project N ^o	: 11205379
Project :	Children's Hos	pital			Sample N ^o	: BH13-22 r.3	
						Depth	: <u>3,61 - 3,71 m</u>
						Sampling Date	:
Testing Appara	atus Used :			9130	Caliper N ^o _1		
			Technical Data				View of Specimen
					Average		Before Test :
Diameter :		63.00	63.09	63.15	63.08	(mm)	
Length :		100.38	100.26	100.38	100.34	(mm)	E-MP-
Straightness (0.5mm ma	aximum) (S1) :	0.2	0.3	0.2	0.2	(mm)	
Flatness (25µm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok	(μm)	
Parallelism (0.25 ° maxi	mum) (FP2) :	0.15	0.15	0.15	0.15	(°)	After Test :
Mass :	83	1.5	_(g) Volume:	31	3579	(mm ³)	
Density :			265	52	_(kg/m ³)		
Moisture Conditions :			Dr	у	_		2 74 ····
Loading Rate (0.5 to	1.0 MPa / sec) :		0.33		(MPa/sec)		
Type of Fracture :			Multiple F	Fracture			
Test Duration (2-15 N	/linutes) :		10	8	(seconds)		
Maximum Applied Lo	ad :		112.	.31	(kN)		
Compressive Stre	35.9		_(MPa)				
Remarks :							
Analysed by :	J. Latonde	<u>()</u>				Date	: 8/18/2022
Verified by :	\rightarrow	<u>oæf</u>				Date	: 8/25/2022
					,		

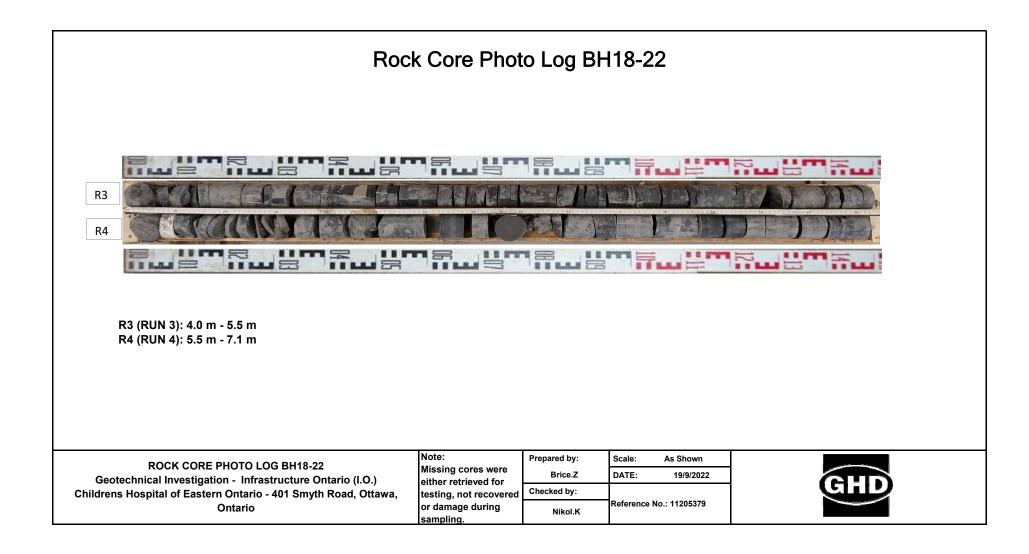

Client :	Infrastructure (Ontario				Project N° :	11205379	
Project :						Sample N ^o :	: MW23-22 r.2	
						Depth :	6,93 - 7,03 m	
						Sampling Date :		
Testing Appar	atus Used :		9130	Caliper N°_1				
		-	Fechnical Data				View of Specimen	
					Average	7	Before Test :	
Diameter :		63.11	63.04	63.06	63.07	(mm)		
Length :		100.32	100.27	100.42	100.34	(mm)		
Straightness (0.5mm m	naximum) (S1) :	0.2	0.1	0.2	0.2	(mm)		
Flatness (25µm maxim	um) (FP2) :	Ok	Ok	Ok	Ok	(μm)		
Parallelism (0.25 ° max	kimum) (FP2) :	0.10	0.15	0.15	0.13	(°)	After Test :	
Mass :	84	15.1	(g) Volume:	31	3469	_(mm ³)		
Density :			269	6	_(kg/m ³)			
Moisture Conditions	:		Dr	y	-			
Loading Rate (0.5 to	1.0 MPa / sec) :		0.39		(MPa/sec)			
Type of Fracture :			Multiple F	racture				
Test Duration (2-15	Minutes) :		121		(seconds)			
Maximum Applied Lo	oad :		146.	16	_(kN)			
Compressive Stre	46.8		_(MPa)					
Remarks :								
Analysed by : J. Latonde						Date :	8/18/2022	
Verified by :	\rightarrow	Dal				_ Date :	8/25/2022	
				Jonuary 2021				


Appendix C Rock Core Photographs









Roc	k Core Photo	o Log BH	18-22	
R1 (RUN 1): 1.4 m - 2.2 m R2 (RUN 2): 2.2 m - 4.0 m				
ROCK CORE PHOTO LOG BH18-22 Geotechnical Investigation - Infrastructure Ontario (I.O.) Childrens Hospital of Eastern Ontario - 401 Smyth Road, Ottawa,	Note: Missing cores were either retrieved for testing, not recovered or damage during sampling.	Prepared by: Brice.Z Checked by: Nikol.K	Scale: As Shown DATE: 19/9/2022 Reference No.: 11205379	GHD

Appendix D Soil Corrosivity Testing

CLIENT NAME: GHD LIMITED 455 Phillip St WATERLOO, ON N2V1C2 (519) 884-0510 ATTENTION TO: Jennifer Balkwill PROJECT: 11205379-RPT8 AGAT WORK ORDER: 21Z712939 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Mar 01, 2021 PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*Notes</u> VERSION 1:Excluding Sulphide in Soil analysis

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 5

Certificate of Analysis

AGAT WORK ORDER: 21Z712939 PROJECT: 11205379-RPT8 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GHD LIMITED

SAMPLING SITE:

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

Corrosivity Package

DATE RECEIVED: 2021-02-19								DATE REPORTED: 2021-03-01				
						11205379-BH4-		11205379-MW6-	11205379-BH7-		11205379-MW8-	
				SAMPL	E DESCRIPTION: 2	21-SS2-0.7-1.0m		21-SS2-0.7-1.0m	21-SS2-0.7-1.0m		21-SS2-1.1-1.3m	
					SAMPLE TYPE:	Soil		Soil	Soil		Soil	
				I	DATE SAMPLED:	2021-01-18		2021-01-13	2021-01-19		2021-01-18	
Parameter	Unit	G / S	RDL	Date Prepared	Date Analyzed	2122180	RDL	2122181	2122182	RDL	2122183	
Chloride (2:1)	µg/g		4	2021-02-24	2021-02-24	440	2	253	69	4	562	
Sulphate (2:1)	µg/g		4	2021-02-24	2021-02-24	439	2	395	6	4	195	
pH (2:1)	pH Units		NA	2021-02-24	2021-02-24	6.35	NA	7.4	7.23	NA	7.95	
Electrical Conductivity (2:1)	mS/cm		0.005	2021-02-24	2021-02-24	1.21	0.005	0.936	0.163	0.005	1.40	
Resistivity (2:1) (Calculated)	ohm.cm		1	2021-02-24	2021-02-24	826	1	1070	6130	1	714	
Redox Potential 1	mV		NA	2021-02-23	2021-02-23	428	NA	389	429	NA	377	
Redox Potential 2	mV		NA	2021-02-23	2021-02-23	446	NA	394	416	NA	379	
Redox Potential 3	mV		NA	2021-02-23	2021-02-23	432	NA	397	414	NA	377	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2122180-2122183 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from field measured results.

Redox potential measurement in soil is quite variable and non reproducible due in part, to the general heterogeneity of a given soil. It is also related to the introduction of increased oxygen into the sample after extraction. The interpretation of soil redox potential should be considered in terms of its general range rather than as an absolute measurement.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GHD LIMITED

PROJECT: 11205379-RPT8

SAMPLING SITE:

AGAT WORK ORDER: 21Z712939 ATTENTION TO: Jennifer Balkwill SAMPLED BY:

Soil Analysis

RPT Date: Mar 01, 2021				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	METHOD BLANK SPIKE MATRIX		MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	1.10	eptable nits
		ld				Value	Lower	Upper		Lower	Upper		Lower	Upper	
Corrosivity Package															
Chloride (2:1)	2129123		42	42	0.0%	< 2	93%	70%	130%	102%	80%	120%	104%	70%	130%
Sulphate (2:1)	2129123		3	3	NA	< 2	100%	70%	130%	107%	80%	120%	106%	70%	130%
pH (2:1)	2122180 2	2122180	6.35	6.38	0.5%	NA	100%	90%	110%						
Electrical Conductivity (2:1)	2122180 2	2122180	1.21	1.40	14.6%	< 0.005	105%	80%	120%						
Redox Potential 1	1						100%	90%	110%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 3 of 5

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GHD LIMITED

PROJECT: 11205379-RPT8

AGAT WORK ORDER: 21Z712939 **ATTENTION TO: Jennifer Balkwill**

SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	1		
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH (2:1)	INOR 93-6031	MSA part 3 & SM 4500-H+ B	PH METER
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION
Redox Potential 1	INOR-93-6066	modified G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 2	INOR-93-6066	modified G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 3	INOR-93-6066	modified G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE

hain of Custody Reco	If this is a l	Orlnking Water s	ample, pleas	se use Drink	king Water Chain of Custody Form (potal	ble water	consum	ed by h	umans)							5	4.01	18.6	14.	N S
ienniter halkwill@ghd_com				- (Please	gulatory Requirements: check all applicable boxes) agulation 153/04 ble Indicate One Ind/Com Res/Park Agriculture	e	_	anitary Regio	- 🗆 S	-		No Tur Rej	ntes: rnarc gular		Time Most Ana	alyses)	") Requ			□N//
Conorts to be cost to:	com			Soil Te	Soil Texture (check One) Coarse Fine Is this submission for a		Objectives (PWQO)				-	3 Business 2 Business Next Business Days Days Day OR Date Required (Rush Surcharges May Apply):								
Project Information: Project: <u>11205379-RPT8</u> Site Location: Sampled By:				Rec	Record of Site Condition? Certificate of Yes No Yes				f Ana			Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holic For 'Same Day' analysis, please contact your AGAT				ory holld	-			
Please note: if quotation num Invoice Information: Company: Contact: Address: Email:		be billed full price for a		В	aple Matrix Legend Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Metals - 🗆 CrVI, 🗆 Hg, 🗆 HWSB	BTEX, F1-F4 PHCs Analyze F4G if required 🗆 Yes 🛛 No	Bs 🗆 Arochor	1	Disposal Characterization TCLP: Mist. Thurre Thank Thereis Theres	SPLP Rainwater Le	Metals L VOCS L SVOCS Soils Characterization Peckage	ICPMS Metals, BLEX, F1-F4	Corrosivity				
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals -	BTEX, F1-F4 Analyze F4G	PAHS Total PCBs	voc		Excess	Excess S	Salt - EC/SAR	Cor				
11205379- BH4-21 - SS2 - 0.7-1.0m	2021-01-18	AM PM AM PM AM PM	1	Soil	Corrosivity					-	-		-							
11205379- MW6-21 – SS2 - 0.7-1.0m 11205379- BH7-21 – SS2 - 0.7-1.0m 11205379- MW8-21 – SS2 - 1.1-1.3m	2021-01-13 2021-01-19 2021-01-18	AM PM AM PM AM PM	1 1 1	Soil Soil Soil	Corrosivity Corrosivity Corrosivity															
		AM PM AM PM AM PM AM FM																		
		AM PM	Time		Samples Received By (Print Name and Sign)	<u>()</u>				1,01	811	0	Tim	200	-					

CERTIFICATE OF ANALYSIS

Work Order	: WT2214174	Page	÷ 1 of 5
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Rick Hawthorne	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo ON Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 11205379-100	Date Samples Received	: 14-Sep-2022 10:30
PO	: 735-004287	Date Analysis	: 15-Sep-2022
		Commenced	
C-O-C number	:	Issue Date	: 16-Sep-2022 16:35
Sampler	: CLIENT		
Site	:		
Quote number	11205379-100-SSOW 735-004287		
No. of samples received	: 8		
No. of samples analysed	: 8		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Joseph Scharbach		Centralized Prep, Waterloo, Ontario
Walt Kippenhuck	Team Leader - Inorganics	Inorganics, Waterloo, Ontario

General Comments

for analysis.

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent
µS/cm	Microsiemens per centimetre
mg/kg	milligrams per kilogram
mV	millivolts
ohm cm	ohm centimetre (resistivity)
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
FR5	As per applicable reference method(s), soil:water ratio for Fixed Ratio Leach was modified to 1:5 due to high soil organic content

Analytical Results

WT2214174-001

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID: 11205379- BH16-SS2 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		2650 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		10.4	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		436	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.26	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		380	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	1300	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	498	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-002

Sub-Matrix:Soil (Matrix: Soil/Solid) Client sample ID: 11205379- BH20-SS2 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		422 FR5,	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		10.1	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		419	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.78	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		2370	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	19.6	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	173	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-003 Sub-Matrix:**Soil**

(Matrix: Soil/Solid)

Client sample ID: 11205379- MW17-SS1 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		231 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		<0.25	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		419	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.26	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		4330	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	8.6	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	54	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-004

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID: 11205379- MW18-SS3 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests							Date	
conductivity (1:2 leachate)		1310 FR5,	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		8.45	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		398	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.16	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		760	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	734	5.0	mg/kg	E236.Cl	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	215	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-005

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID:	11205379- BH11-22-SS2
-------------------	-----------------------

Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		2540 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.72	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		393	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.28	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		390	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	1420	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	219	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-006

Sub-Matrix:Soil	
Oub-Inaulix.com	

(Matrix: Soil/Solid)

Client sample ID: 11205379- BH16-22-SS2 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		430 FR5,	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.03	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		354	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.85	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		2320	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	83.2	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	116	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-007

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID: 11205379- BH17-22-SS2 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		622 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		7.97	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		350	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.47	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		1610	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	609	5.0	mg/kg	E236.Cl	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	94	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-008

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		5560 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.16	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		371	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		6.81	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		180	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	611	5.0	mg/kg	E236.Cl	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	6500	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WT2214174	Page	: 1 of 11
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Rick Hawthorne	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 11205379-100	Date Samples Received	: 14-Sep-2022 10:30
20	: 735-004287	Issue Date	: 16-Sep-2022 16:35
C-O-C number	:		
Sampler	: CLIENT		
Site	:		
Quote number	: 11205379-100-SSOW 735-004287		
No. of samples received	: 8		
No. of samples analysed	: 8		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

Page	: 3 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	: 11205379-100

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

latrix: Soil/Solid					E١	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding T
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH11-22-SS2	E236.Cl	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E236.Cl	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E236.Cl	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- MW17-SS1	E236.Cl	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						

Page	: 4 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	11205379-100

atrix: Soil/Solid					Ev	/aluation: × =	Holding time exce	edance ; •	= Within	Holding T
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E236.Cl	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC				-						
Glass soil jar/Teflon lined cap										
11205379- BH11-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC									1	
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- MW17-SS1	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	1	16-Sep-2022	28 days	0 days	1
				days						

Page	: 5 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	11205379-100

atrix: Soil/Solid			-				Holding time exce			riolaling
Inalyte Group	Method	Sampling Date		traction / Pr	-			Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Rec	g Times Actual	Eval
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	~
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH16-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)					1					
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	√
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH17-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH20-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- MW09-22	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)								1		
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Moisture Content by Gravimetry								1		
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E144	14-Sep-2022					15-Sep-2022			

Page	: 6 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	· 11205379-100

/latrix: Soil/Solid					E	/aluation: × =	Holding time exce	edance ; ·	🗸 = Within	Holding T
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	Analysis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- BH16-22-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry									11	
Glass soil jar/Teflon lined cap 11205379- BH17-22-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- BH20-SS2	E144	14-Sep-2022					15-Sep-2022			
hysical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- MW09-22	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E144	14-Sep-2022					15-Sep-2022			
hysical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1
hysical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- BH16-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1

Page	: 7 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	11205379-100

Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Ti
Analyte Group	Method	Sampling Date				Analys				
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	~
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- BH17-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	4
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- BH20-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- MW09-22	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	*
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	~
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received									1	
Glass soil jar/Teflon lined cap 11205379- BH16-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received									1	
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1

Page	: 8 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	· 11205379-100

Matrix: Soil/Solid					E١	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap 11205379- BH17-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	4
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap 11205379- BH20-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap 11205379- MW09-22	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	4
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received				1						
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	*

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid	Evaluation: \times = QC frequency outside specification; \checkmark = QC frequency within spec							
Quality Control Sample Type		· ·	Co	ount		Frequency (%)		
Analytical Methods	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	648051	1	8	12.5	5.0	✓	
Moisture Content by Gravimetry	E144	648057	1	8	12.5	5.0	✓	
ORP by Electrode	E125	648056	1	8	12.5	5.0	✓	
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	648054	1	8	12.5	5.0	✓	
Water Extractable Chloride by IC	E236.CI	648053	1	8	12.5	5.0	✓	
Water Extractable Sulfate by IC	E236.SO4	648052	1	8	12.5	5.0	✓	
Laboratory Control Samples (LCS)								
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	648051	2	8	25.0	10.0	1	
Moisture Content by Gravimetry	E144	648057	1	8	12.5	5.0	✓	
ORP by Electrode	E125	648056	1	8	12.5	5.0	✓	
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	648054	1	8	12.5	5.0	✓	
Water Extractable Chloride by IC	E236.Cl	648053	2	8	25.0	10.0	✓	
Water Extractable Sulfate by IC	E236.SO4	648052	2	8	25.0	10.0	✓	
Method Blanks (MB)								
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	648051	1	8	12.5	5.0	1	
Moisture Content by Gravimetry	E144	648057	1	8	12.5	5.0	✓	
Water Extractable Chloride by IC	E236.CI	648053	1	8	12.5	5.0	✓	
Water Extractable Sulfate by IC	E236.SO4	648052	1	8	12.5	5.0	✓	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L Waterloo - Environmental	Soil/Solid	CSSS Ch. 15 (mod)/APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Conductance is measured in the fluid that is observed in the upper layer.
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A Waterloo - Environmental	Soil/Solid	MOEE E3137A	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode.
ORP by Electrode	E125 Waterloo - Environmental	Soil/Solid	APHA 2580 (mod)	Oxidation Redution Potential (ORP) is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed in the analysis, measured in mV.
Moisture Content by Gravimetry	E144 Waterloo - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Water Extractable Chloride by IC	E236.Cl Waterloo - Environmental	Soil/Solid	EPA 300.1	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.
Water Extractable Sulfate by IC	E236.SO4 Waterloo - Environmental	Soil/Solid	EPA 300.1	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.
Resistivity Calculation for Soil Using E100-L	EC100R Waterloo - Environmental	Soil/Solid	APHA 2510 B	Soil Resistivity (calculated) is determined as the inverse of the conductivity of a 2:1 water:soil leachate (dry weight). This method is intended as a rapid approximation for Soil Resistivity. Where high accuracy results are required, direct measurement of Soil Resistivity by the Wenner Four-Electrode Method (ASTM G57) is recommended.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108 Waterloo - Environmental	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.

Page	: 11 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	: 11205379-100

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil : 0.01CaCl2 - As Received for	EP108A	Soil/Solid	MOEE E3137A	A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M
pH				calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is
	Waterloo -			separated from the soil by centrifuging, settling or decanting and then analyzed using a
	Environmental			pH meter and electrode.
Preparation of ORP by Electrode	EP125	Soil/Solid	APHA 2580 (mod)	Field-moist sample is extracted in a 1:2 ratio with DI water and then analyzed by ORP
				meter.
	Waterloo -			
	Environmental			
Anions Leach 1:10 Soil:Water (Dry)	EP236	Soil/Solid	EPA 300.1	5 grams of dried soil is mixed with 50 grams of distilled water for a minimum of 30
				minutes. The extract is filtered and analyzed by ion chromatography.
	Waterloo -			
	Environmental			
Distillation for Acid Volatile Sulfide in Soil	EP396-L	Soil/Solid	APHA 4500S2J	Acid Volatile Sulfide is determined by colourimetric measurement on a sediment sample
				that has been treated with hydrochloric acid within a purge and trap system, where the
	Waterloo -			evolved hydrogen sulfide gas is carried into a basic solution by argon gas for analysis.
	Environmental			

QUALITY CONTROL REPORT

Work Order	WT2214174	Page	: 1 of 4
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Rick Hawthorne	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 11205379-100	Date Samples Received	: 14-Sep-2022 10:30
PO	: 735-004287	Date Analysis Commenced	: 15-Sep-2022
C-O-C number	:	Issue Date	16-Sep-2022 16:35
Sampler	: CLIENT		
Site	:		
Quote number	: 11205379-100-SSOW 735-004287		
No. of samples received	: 8		
No. of samples analysed	: 8		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Joseph Scharbach		Waterloo Centralized Prep, Waterloo, Ontario
Walt Kippenhuck	Team Leader - Inorganics	Waterloo Inorganics, Waterloo, Ontario

Page	: 2 of 4
Work Order	: WT2214174
Client	: GHD Limited
Project	: 11205379-100

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 648051)										
WT2214174-006	11205379- BH16-22-SS2	conductivity (1:2 leachate)		E100-L	10.0	μS/cm	430	438	1.84%	20%	
Physical Tests (QC	Lot: 648054)										
WT2214174-008	11205379- MW09-22	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	6.81	6.82	0.147%	5%	
Physical Tests (QC	Lot: 648056)										
WT2214174-007	11205379- BH17-22-SS2	oxidation-reduction potential [ORP]		E125	0.10	mV	350	430	20.5%	25%	
Physical Tests (QC	Lot: 648057)										
WT2214174-008	11205379- MW09-22	moisture		E144	0.25	%	6.16	6.68	8.05%	20%	
Leachable Anions 8	Nutrients (QC Lot: 648	052)									
WT2214174-006	11205379- BH16-22-SS2	sulfate, soluble ion content	14808-79-8	E236.SO4	20	mg/kg	116	118	1	Diff <2x LOR	
Leachable Anions 8	Nutrients (QC Lot: 648	053)									
WT2214174-006	11205379- BH16-22-SS2	chloride, soluble ion content	16887-00-6	E236.Cl	5.0	mg/kg	83.2	83.3	0.136%	30%	

Page	: 3 of 4
Work Order	: WT2214174
Client	: GHD Limited
Project	: 11205379-100

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 648051)					
conductivity (1:2 leachate)	E100-L	5	µS/cm	<5.00	
Physical Tests (QCLot: 648057)					
moisture	E144	0.25	%	<0.25	
Leachable Anions & Nutrients (QCLot: 6480	52)				
sulfate, soluble ion content	14808-79-8 E236.SO4	20	mg/kg	<20	
Leachable Anions & Nutrients (QCLot: 6480	53)				
chloride, soluble ion content	16887-00-6 E236.CI	5	mg/kg	<5.0	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 648051)									
conductivity (1:2 leachate)		E100-L	5	µS/cm	1409 µS/cm	98.8	90.0	110	
Physical Tests (QCLot: 648054)									
pH (1:2 soil:CaCl2-aq)		E108A		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 648057)									
moisture		E144	0.25	%	50 %	101	90.0	110	
Leachable Anions & Nutrients (QCLot: 64	8052)								
sulfate, soluble ion content	14808-79-8	E236.SO4	20	mg/kg	5000 mg/kg	100	70.0	130	
Leachable Anions & Nutrients (QCLot: 64	8053)								
chloride, soluble ion content	16887-00-6	E236.Cl	5	mg/kg	5000 mg/kg	101	80.0	120	

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:						Refere	nce Material (RM) Re	port	
					RM Target	Recovery (%)	Recovery L	.imits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Physical Tests (QCLot: 648051)								
	RM	conductivity (1:2 leachate)		E100-L	3239 µS/cm	100	70.0	130	
Physical Tests (QCLot: 648056)								
	RM	oxidation-reduction potential [ORP]		E125	475 mV	102	80.0	120	
Leachable Anior	ns & Nutrients (QCLot: 6	648052)							
	RM	sulfate, soluble ion content	14808-79-8	E236.SO4	217 mg/kg	98.5	60.0	140	
Leachable Anior	ns & Nutrients (QCLot: 6	648053)							
	RM	chloride, soluble ion content	16887-00-6	E236.CI	673 mg/kg	94.1	70.0	130	

>

COC Number: 22 -

ď Page

Ś

Γ		ŭ	Į.				I	Γ	1	-							CTED:		-+-	_										and the second secon	ΈD		D N/A			
Waterioo	11110014114		 						Telephone: + 1 June	A Trib below			(ירנ		NC		d₩A	S											IAILS (ALS use only)	S D FROZEN DOULING INITIATED	of Notification:	Sample Custody Seals Intact: C	FINAL COOLER TEMPERATURES C	104	FINAL SHIPMENT RECEPTION (ALS use only)
Turnaround Time (TAT) Requeste	Routine [R] if received by 3pm M-F - no surcharges at	a day [P4] if received by 3pm M-F - 20% rush surchar	3 day [P3] if received by 3pm M-F - 25% rush surchan	12 2 day (FZ) it received by 3pm M-F - 50% rush surcharg []] 1 day [E] if received by 3pm M-F - 100% rush surcharn	Same day [E2] if received by 10am M-S - 200% rush su	Additional fees may apply to rush requests on w(Date and Time Required for all E&P TATs:	For all tests with rush TATs requested, plo	Analysis	Indicate Filtered (F), Preserved (P) or Filtere								Nisona	-											SAMPLE RECEIPT DETAILS (ALS use only)	Cooling Method: CONNE DICE DICE PACKS	Submission Comfinents Identified on Sample Receipt Notification:	D N/A	INITIAL COOLER TEMPERATURES "C		FINAL SHIPMENT
				C FAX					Mail 🗌 Fax				TN				BEK	Sample Type												op-down below		Su	8	1		
Reports / Recipients	nt Format: 🔄 PDF 🔲 EXCEL	It's with COA 🖸 YES	rt - provide det	bution: 🛃 Email 🔲 Mail	Email 1 or Fax jennifer.balkwill@ghd.com			Invoice Recipients	Select Invoice Distribution: 🔲 EMAIL 🔲 M	ax		Oil and Gas Required Fields (client use)	er: PO#	de: Routing Code	Ľ		t: Sampler:	-												Notes / Specify Limits for result evaluation by selecting from drop-down below	(Excel COC only)					INITIAL SHIPMENT RECEPTION (ALS use only)
lal report	Select Report Format	Merge QC/QCI Repo	Compare Re	Select Distribution:	Email 1 or Fe	Email 2	Email 3		Select Invoio	Email 1 or Fax	Email 2		AFE/Cost Center.	Major/Minor Code:	Requisitioner:	Location:	ALS Contact:	bordinates	nie ieborij											otes / Specify Limits for resul						
Contact and company name below will appear on the final report	GHD Limited	Jennifer Balkwill	519-340-4286	Company address below will appear on the final report	455 Phillip Street, Unit 100A	Waterloo, Ontario	N2L 3X2	Same as Report To 🔄 YES 🗋 NO	Capy of Invoice with Report 🛛 YES 🗍 NO			Project Information	t / Quote #:	11205379-100	735-003472-1		ALS Lab Work Order # (ALS use only):		1100070	1	1	11205379 - MW17 - 551	11205379 - MW/ 18-553	11205378 ~ BH 11-22-552	11205379 - B.H /6 - 27 - 55 2	11205379 - BH17.22-552	11206379 - MW09-22				lsej	ŝ [SMIPMEN I RELEASE (client use)
Report To	Company: 0		Phone:		Street:	City/Province: \	Postal Code: 1	Invoice To	1	Company:	Contact:		ALS Account # / Quote #:		PO / AFE: 7	LSD;	ALS Lab Work	ALS Sample #										a a state and a second				Are samples taker		Are samples for h) YES	

Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the use of this form the use of this form the use of the use of this form the use of
Appendix E Geophysical Survey

GEOPHYSICAL INTERPRETATION REPORT

REGARDING GEOPHYSICAL SURVEY FOR DETECTION OF UNDERGROUND ANOMALIES

401 SMYTH ROAD, OTTAWA, ON, CANADA

Prepared For: Adita Khandekar PE, Project Manager GHD 184 Front Street East, Suite 302, Toronto,Ontario, Canada, M5A 4N3

> Submitted By: Joel Halverson Geophysical Technologist MULTIVIEW LOCATES INC. 325 Matheson Blvd East, Mississauga ON, L4Z 1X8

> > August 29, 2022

TABLE OF CONTENTS

TABI	E OF CO	ONTENTS	1 -	
LIST	OF FIGL	JRES	3 -	
LIST	OF TAB	LES	3 -	
DIGI	TAL ARC	CHIVE CONTENT	4 -	
PRO.	JECT SP	ECIFICATION LIST	4 -	
CON	TRACT I	RELEASE LETTER: 52070	5 -	
1	Inti	roduction	6 -	
	1.1	Survey Objectives	6 -	
2	Prc	ject Overview	7 -	
	2.1	Site Location and Access	7 -	
	2.2	Weather and Terrain Conditions	8 -	
3	Me	thodology	10 -	
	3.1	Survey Grid Installment	10 -	
	3.2	Time Domain EM Data Acquisision (EM61)	12 -	
	3.3	GPR Data Acquisistion	12 -	
	3.4	Geophysical Data Interpretation and Presentation	12 -	
4	Res	sults	14 -	
	4.1	Geophysical Interpretaion	14 -	
	4.2	Geophysical Data Maps	17 -	
	4.3	GPR Line Data Sample Analysis	22 -	
5	Сог	nclusion	26 -	
6	Ref	erences	27 -	
Арре	ppendix A 29 -			

11

LIST OF FIGURES

Figure 2-1: Geophysical Survey General Location Map	7 -
Figure 2-2: Photo of the south west side of Parking Lot A during survey acquisition	8 -
Figure 2-3: Photo of the north west side of Parking Lot A during survey acquisition	8 -
Figure 2-4: Photo of Parking Lot E during survey acquisition	9 -
Figure 2-5: Photo of east side of Parking lot E	9 -
Figure 3-1: Geophysical Survey Area	11 -
Figure 3-2: Typical TDEM Acquisition System Setup	12 -
Figure 3-3: Typical GPR 250MHz Smart Cart System Setup	12 -
Figure 4-1: Geophysical Data Interpretation	16 -
Figure 4-2: TDEM Channel 3 Data	17 -
Figure 4-3: GPR Reflected Signal, Depth 0.25m to 0.75m	18 -
Figure 4-4: GPR Reflected Signal, Depth 0.75m to 1.25m	19 -
Figure 4-5: GPR Reflected Signal, Depth 1.25m to 1.75m	20 -
Figure 4-6: GPR Reflected Signal, Depth 1.75m to 2.25m	21 -
Figure 4-7: Typical GPR Line Data	22 -
Figure 4-8: GPR Line Data, Along Road to CHEO Emergency	22 -
Figure 4-9: GPR Line Data, Parking Lot E	23 -
Figure 4-10: GPR Line Data, North side of Parking Lot E	23 -
Figure 4-11: GPR Line Data, Eastern side of Parking Lot A.	24 -
Figure 4-12: GPR Line Data, South-Western Side of Parking Lot A	24 -
Figure 4-13: GPR Line Data, North-Eastern Side of Parking Lot A	25 -

LIST OF TABLES

Table 1: Digital Archive Content	- 4 -
Table 2: Project Specification List	- 4 -
Table 3: Geophysical Interpretation Summary Table	15 -

11

DIGITAL ARCHIVE CONTENT

Table 1: Digital Archive Content

Folder	Content
//Deliverables/	Digital copy of the survey results, final documents and maps
//Maps/	Grid and interpretation maps
//Reports/	Geophysical survey report

PROJECT SPECIFICATION LIST

Table 2: Project Specification List

Contract				
MLI Reference Number	52070			
Report Date	August 29, 2022			
Client				
Legal Name	GHD			
Address	184 Front Street East, Suite 302, Toronto,Ontario, Canada, M5A 4N3			
Phone	416-360-1600			
Contact				
Client Representative:	Adita Khandekar			
Qualifications:	PE, Project Manager			
Email	aditya.khandekar@ghd.com			
Survey				
Survey Description	Detection of Underground Anomalies			
Methodology	Geophysical Survey			
Location	401 Smyth Road, Ottawa, ON, Canada			
Execution Date	02/08/2022			
Contractor				
Survey by:	multiVIEW Locates Inc.			
Responsible	Joel Halverson			
Qualifications	Geophysical Technologist			
Phone	800-363-3116			
Email	jhalverson@multiview.ca			

110

CCTV Sewer Inspection

DIDE

Vacuum Excavation

CONTRACT RELEASE LETTER: 52070

August 29, 2022

GHD

184 Front Street East, Suite 302, Toronto,Ontario, Canada, M5A 4N3 Phone: 416-360-1600

Attention to: Mr. Adita Khandekar, PE, Project Manager

Re: Geophysical Interpretation Report regarding Detection of Underground Anomalies at 401 Smyth Road, Ottawa, ON, Canada.

Dear Mrs. Adita Khandekar:

GHD retained multiVIEW Locates Inc. to carry out Geophysical Survey for Detection of Underground Anomalies for the site located at 401 Smyth Road, Ottawa, ON, Canada. The geophysical survey was undertaken on 04/07/2022 and was completed on 02/08/2022.

Included, you will find a geophysical survey report describing the data acquisition, methodology, data quality, processing, interpretation results, conclusion and recommendations relevant to survey objectives, including appendices, tables and figures. A digital archive containing the acquired raw data and final processed results, digital maps, presentations and documents is also provided.

This represents the end of our contractual agreement regarding the aforementioned geophysical survey. Contact us if you need any additional material or information.

Thank you,

Signed by:

Joel Halverson, Geophysical Technologist multiVIEW Locates Inc.

Concrete Scanning

August 29, 2022 - 5 -

1 INTRODUCTION

GHD retained multiVIEW Locates Inc. (multiVIEW) to carry out a Geophysical Survey for Detection of Underground Anomalies for the site located at the Children's Hospital of Eastern Ontario (CHEO), 401 Smyth Road, Ottawa, ON, Canada.

This geophysical interpretation report summarizes the data collection logistics and methodology, processing results and data interpretation associated with the geophysical investigation.

The acquisition, processing and analysis of the data were performed according to professionally regulated industry standards. The geophysical data are presented in screen captured figures and plan maps throughout the sections of the report.

The geophysical interpretation contained in this report is based on the analysis of the Geophysical Survey responses recorded during the field acquisition stage. The images and figures presented in the body of the report are scaled to fit the report page size and should be used for illustration purposes only. Detailed maps and images of the data and results are available in the digital archive supplied along with the interpretation report.

The interpretation of the geophysical data obtained during this investigation is intended to provide guidance for any potential intrusive subsurface investigation work. Interpretation of the data used during any subsequent programs is subject to the Law of Physics and Technical limitations of the geophysical techniques used. The criteria and models used for the interpretation of the acquired data are not unique and may not represent the actual objects present on site.

1.1 SURVEY OBJECTIVES

The primary objective of the investigation was to detect and map the presence of underground anomalies in the survey area.

The inferred location of interpreted geophysical signatures was documented and transferred to digital drawings for referencing and assessment.

August 29, 2022 Introduction - 6 -

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

2 PROJECT OVERVIEW

The geophysical study was completed using Geophysical Survey techniques. The exploration and acquisition phase of the survey was completed on 02/08/2022. The raw data and survey results presented as digital plan maps and sections are:

- Integrated Interpretation Plan Maps depicting the spatial location of interpreted geophysical signatures and subsurface features;
- Time Domain Electromagnetics (TDEM) EM61 Channel 3 contour grid map;
- o 250mHz GPR reflected signal amplitude contour grid map;
- Sample GPR raw data used for interpretation results.

2.1 SITE LOCATION AND ACCESS

The geophysical project is located at 401 Smyth Road, Ottawa, ON, Canada, depicted in Figure 2-1. The site is occupied by two active parking lots divided by an access road to the CHEO Emergency Entrance. The survey area spanned from the western curb of Parking Lot A to the Eastern edge of gravel in Parking Lot E and from the northern limits of both Parking lots A and E to the southern limits of the parking lots. An accurate outline of the survey area is displayed in Figure 3-1.

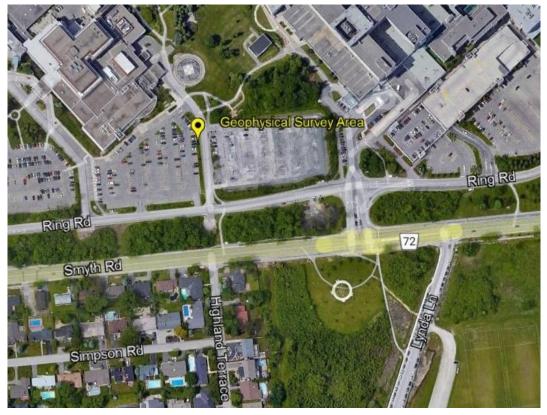


Figure 2-1: Geophysical Survey General Location Map

Concrete Scanning

CCTV Sewer Inspection

August 29, 2022 Project Overview - 7 -

2.2 WEATHER AND TERRAIN CONDITIONS

The geophysical data acquisition was performed at night to avoid traffic and vehicles in the parking lot. Average temperatures fluctuated from ~16 degrees Celsius ~25 degrees Celsius.

The parking lots, roads and pathways were, however some parked cars were present during the survey data collection. Photos taken during the survey are displayed in Figure 2-2 to Figure 2-5.

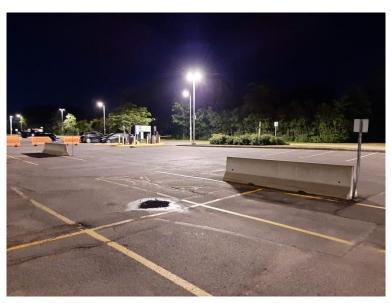


Figure 2 -2: Photo of the south west side of Parking Lot A during survey acquisition.

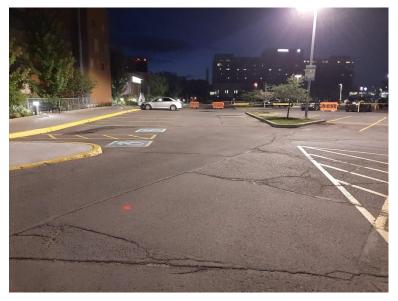


Figure 2 -3: Photo of the north west side of Parking Lot A during survey acquisition.

August 29, 2022 Project Overview - 8 -

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Figure 2 -4: Photo of Parking Lot E during survey acquisition.

Figure 2 -5: Photo of east side of Parking Lot E and driveway to CHEO Emergency during survey acquisition.

August 29, 2022 Project Overview - 9 -

3 **METHODOLOGY**

A subsurface investigation was performed using Geophysical Survey techniques. The TDEM data acquisition was performed using a EM61 from Geonics Limited. The acquisition phase of the survey was completed on 02/08/2022.

Field labor included the following activities:

- Grid Instalment; 0
- GPS Control Survey; 0
- TDEM profile imaging (EM61); 0
- GPR profile imaging; 0
- Site Documentation; 0
- 0 Data Interpretation and Results Presentation;

3.1 **SURVEY GRID INSTALLMENT**

The grid layout was done using commercial measuring tapes and line-of-site positioning. Data referenced to grid coordinates were acquired for the purpose of grid establishment, geophysical data collection, interpretation and map creation. The data collection grid is displayed on Figure 3-1.

A GPS receiver was utilized for to acquire the UTM (WGS84/Zone 18N) coordinates of the Site Survey Grid. The subsequent data presentation and interpretation are displayed in UTM coordinates.

The project area measured approximately 17700 square metres. The extent of the total survey coverage is displayed by the yellow line in Figure 3-1. This map is presented digitally in "DWG-1 Site Survey Grid".

TDEM data was acquired at a station spacing of 2 meters along survey lines spaced at 2 metres. The GPR data was acquired along bidirectional line orientation at station spacing 0.02m along survey lines spaced at 2 metres. Survey lines and data collection were partially restricted by large surface objects including gates, barriers, planters and vehicles.

August 29, 2022 Methodology - 10 -

Concrete Scanning

CCTV Sewer Inspection

Geophysical Survey for Detection of Underground Anomalies, 401 Smyth Road, Ottawa, ON, Canada, GHD, August 29, 2022

3.2 TIME DOMAIN EM DATA ACQUISITION (EM61)

A Time Domain Electromagnetic survey was conducted across the survey area using Geonics EM61 instrumentation with coincident receiver-transmitter loop configuration. The system is equipped with a secondary receiver loop for target depth estimation and noise rejection. The instrumentation provides high resolution data for indirect detection of buried metal objects to depth of approximately 2 meters. The measurement units of the time decaying induced secondary electromagnetic field are millivolts (mV). The data was acquired by pushing the cart at normal walking speed. These raw data were collected at a rate 0.2 meter station intervals at slow walking speed along lines spaced at roughly 2 meter intervals.

Figure 3-2: Typical TDEM Acquisition System Setup

3.3 GPR DATA ACQUISITION

Ground Penetrating Radar (GPR) transmits electromagnetic signal into the subsurface and is reflected by the structures, geological features and buried objects, are recorded by GPR instrumentation permitting real-time interpretation of subsurface features to a depth. The GPR data were acquired with station spacing of 0.05m along the grid profiles. Over the scanned area, the GPR profiling was run in multiple orientations with perpendicular cross lines spaced at 2 meter intervals. The GPR survey was completed using a Noggin GPR Smart Cart system manufactured by Sensors & Software Inc., with the 250MHz GPR Antenna sensor.

Figure 3-3: Typical GPR 250MHz Smart Cart System Setup

Subsurface Utility Engineering

August 29, 2022 Methodology - 12 -

3.4 GEOPHYSICAL DATA INTERPRETATION AND PRESENTATION

The TDEM (EM61) anomaly identification was accomplished by examining the data provided by the Channel 3 data output created by the difference of the two EM coils on the EM61. The interpretation was accomplished by examining the subsurface electromagnetic response of the channel 3 data compared to surface object responses and data analysis completed by comparing the characteristics of the acquired data to examples and results available at multiVIEW from historic field surveys. The Channel 3 TDEM data map is presented in a plan map containing contoured responses.

All TDEM elevated readings were evaluated based on the proximity to known surface objects that could have produced the elevated readings. The readings deemed likely to be caused by surface features were discounted as subsurface responses and were not included in the interpretation figures and not listed as buried anomalies for further investigation.

The GPR anomaly identification was accomplished by examining the subsurface electromagnetic reflection characteristics such as continuous anomalous trending and high amplitude hyperbolic reflection identification. Results of the ground penetrating radar survey (GPR) are presented plan maps containing contoured signal reflection amplitude and in sectional views (distance versus depth profiles) extracted from the line raw data as required for the interpretation.

The inferred location of all GPR features and interpreted anomalous zones was documented and transferred to digital drawings. Detailed plan maps illustrating the interpreted GPR anomalies associated with underground features are presented in the report. All distance units used throughout this report are in meters unless otherwise noted. GPR interpretation and compilation was completed by comparing the characteristics of the acquired profiles to examples and results available at multiVIEW from in-house tests and historic field surveys. GPR data processing and interpretation included the following tasks:

- Hyperbola Velocity Calibration for correcting depth estimates;
- Background Average Subtraction for removing direct wave reflections;
- De-wowing;
- Gain equalization and enhancement;
- Visual interpretation;
- Event picking;
- Maps and sections creation;

GRP data analysis was completed by comparing the characteristics of the acquired profiles to examples and results available at multiVIEW from historic field surveys.

Only data sets, figures and drawings relevant to the task of identifying the buried anomalies were included in this report. The interpretation of both equipment data sets are merged into an inclusive and comparative interpretation data set and figure. Interpretation results are presented in UTM 18N grid coordinates. Third party aerial photos were placed on the grid files at a best fit attempt and may not be accurate. Please use the UTM coordinates for accurate reference positions.

4 RESULTS

4.1 **GEOPHYSICAL INTERPRETATION**

A Geophysical Survey was performed at 401 Smyth Road, Ottawa, ON, Canada using Time Domain Electromagnetics (TDEM) and Ground Penetrating Radar (GPR) to map out Detection of Underground Anomalies.

The resulting data and interpretation of that data is outlined as follows.

- Fourteen (14) TDEM linear anomalies were detected and were only detected by the TDEM Equipment. These anomalies are designated "L".
- Four (4) GPR linear anomalies were detected and were only detected by the GPR Equipment. These anomalies are designated "R".
- Seven (7) linear anomalies were detected by both the TDEM and GPR Equipment. These anomalies are designated "LR"
- Two (2) TDEM zones of elevated Channel 3 data were detected but not detected by the GPR equipment. These anomalous zones are designated "Z"

Interpretation notes and UTM coordinates for each anomaly detected are listed on Table 3. As seen on Figure 4-1: Geophysical Data Interpretation, the anomalies are displayed on the map containing the UTM grid and aerial photo of the site. Each anomaly is numbered and labeled by the equipment that detected the anomaly.

As displayed on Figure 4-2 the TDEM Channel 3 data map presented. Surface objects including vehicles, gates, concrete barriers, planters and light posts prevented the entire area from being surveyed. Elevated TDEM responses occurred in the immediate vicinity of metal surface objects and are not considered anomalous.

As displayed on Figures 4-3 to 4-6, GPR reflections contour maps are presented in 0.5m depth increment slice images. The depth limits of the each depth slice reflection map were selected to best show the anomalous reflections.

GPR data for the survey grids were of good quality for providing a comprehensive interpretation of reflective responses and anomalous zones. For the scanned area, the main source of the GPR electromagnetic reflections, diffractions and edge-type responses observed in the acquired raw data are possibly related to previous excavations, utilities, roots and underground structures. GPR reflected data is classified as anomalous when compared to the surrounding reflections and reflection signature. GPR signal penetration appeared to be limited to 0.75 to 1.5 meters on average. Limited GPR signal penetration, or higher signal attenuation, increases the probability that the GPR equipment is unable to detect subsurface anomalies at greater depths. The signal penetration likely was restricted by increased attenuation caused by increase of soil conductivity near surface. The common use of road salt in winter conditions is likely the cause of the increase of soil conductivity in parking lots and road ways.

GPR line data sample analysis is displayed in section 4.3. These raw GPR data lines display sample analysis of the GPR lines and anomalies detected in the data.

Subsurface Utility Engineering

Concrete Scanning

August 29, 2022 Results - 14 -

Anomaly		Location of (Observation		Interpreation Notes
	Fro	m	Т	D	
	UTM Easting	UTM Northing	UTM Easting	UTM Northing	
- L -	TDEM Detected Linear Anomalies				
L1	449022.1131	5027590.886	449036.6597	5027573.915	Possible utility
L2	449037.8719	5027573.511	449131.2123	5027659.376	Possible Water line. Travels to water valve
L3	449051.6103	5027592.503	449082.9258	5027595.331	Possible Sewer Line, Travels to manhole
L4	449060.4999	5027630.889	449065.5508	5027576.946	Unkown Linear Anomaly
L5	449098.4826	5027632.708	449102.9273	5027585.229	Unkown Linear Anomaly
L6	449106.564	5027644.426	449112.221	5027654.527	Unkown Linear Anomaly
L7	449127.9797	5027647.052	449133.4347	5027655.336	Unkown Linear Anomaly
L8	449147.7792	5027641.799	449150.4057	5027608.867	Possible Electric Line, Travels to Electric Manhole and Electic Box
L9	449151.8199	5027605.029	449157.679	5027578.158	Possible Electric Line, Travels to Electric Manhole and Electic Box
L10	449151.4159	5027608.059	449180.509	5027595.331	Possible Electric Line, Travels to Electric Manhole and Light
L11	449152.8301	5027644.426	449175.6601	5027629.879	Possible Electric Line, Travels to Lights
L12	449178.4886	5027629.475	449209.8041	5027632.91	Possible Electric Line, Travels to Lights
L13	449181.5191	5027595.129	449249.4031	5027601.392	Possible Electric Line, Travels to Lights
L14	449213.0367	5027634.122	449245.9685	5027636.748	Possible Electric Line, Travels to Lights
R	GPR Detected L	inear Anomalie			
R1	449023.5274	5027593.311	449049.3879	5027585.229	Possible Electric Line
R2	449097.6744	5027566.844	449123.1309	5027569.066	Unkown Linear Anomaly
R3	449170.8113	5027578.36	449257.4845	5027590.28	Unkown Linear Anomaly
R4	449173.2357	5027645.84	449252.8377	5027652.911	Unkown Linear Anomaly
LR	TDEM Detected	Anomalous Zar			
LR1	449024.3355	5027569.673	449030.8007	5027563.409	Unkown Linear Anomaly
LR1	449033.2251	5027564.622	449130.8082	5027572.299	Unkown Linear Anomaly
LR3	449053.2251	5027624.022	449053.6307	5027616.949	Unkown Linear Anomaly
LR4	449054.0348	5027611.696	449056.2571	5027587.25	Unkown Linear Anomaly
LR5	449057.0653	5027582.199	449057.6714	5027575.33	Unkown Linear Anomaly
LR6	449037.0033	5027622.202	449126.1614	5027623.414	Possible Sewer line, Travels to Catch Basin
LR7	449121.9187	5027649.679	449135.6571	5027561.995	Possible Bell Duct, Travels to Bell Manhole
z	TDEM Anomalo	us Zones			
Z1	Centred on UTM	1 Grid Possition	449031.8822	5027581.388	Unknown Anomaly
Z2	Centred on UTM	1 Grid Possition	449040.5807	5027606.136	Unknown Anomaly

Table 3: Geophysical Interpretation Summary Table

August 29, 2022 Results - 15 -

Subsurface Utility Engineering

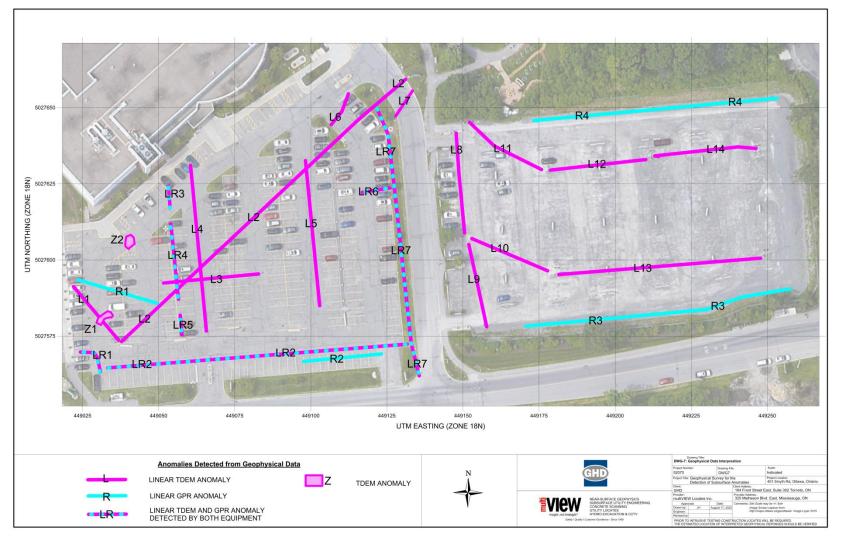


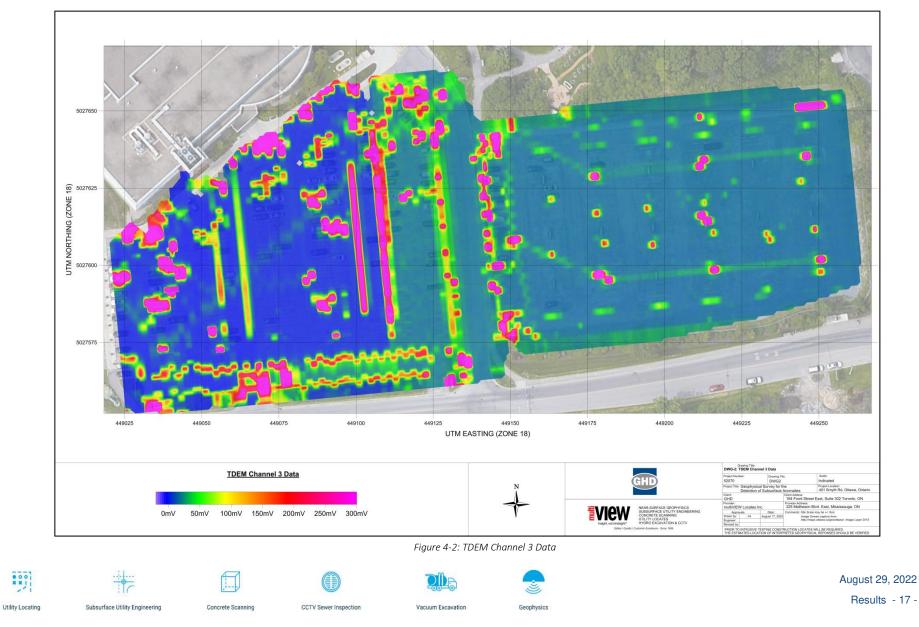
Figure 4-1: Geophysical Data Interpretation

Utility Locating

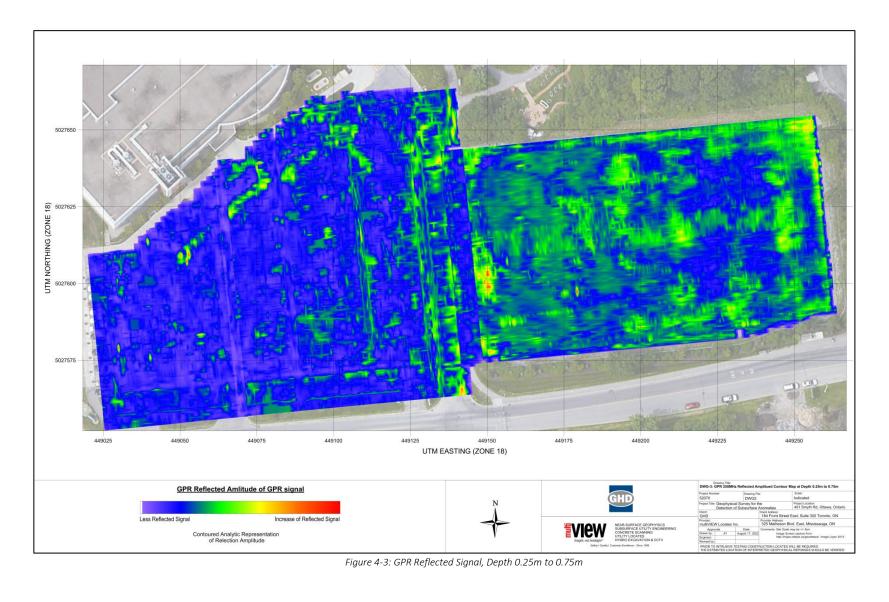
-

CCTV Sewer Inspection

Vacuum Excavation


August 29, 2022 . .

Resu	lts	-	16	-	
------	-----	---	----	---	--



....

4.2 GEOPHYSICAL DATA MAPS

Vacuum Excavation

Geophysics

ITC

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

August 29, 2022 Results - 18 -

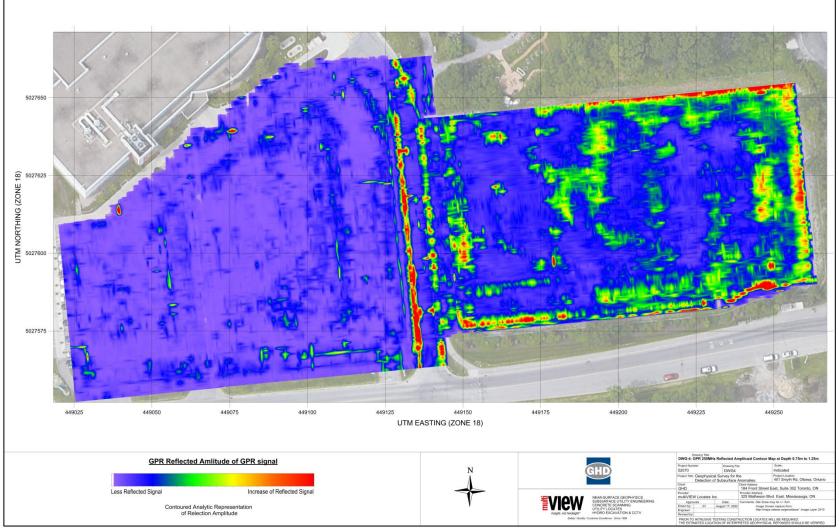


Figure 4-4: GPR Reflected Signal, Depth 0.75m to 1.25m

Geophysics

Vacuum Excavation

-

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Utility Locating

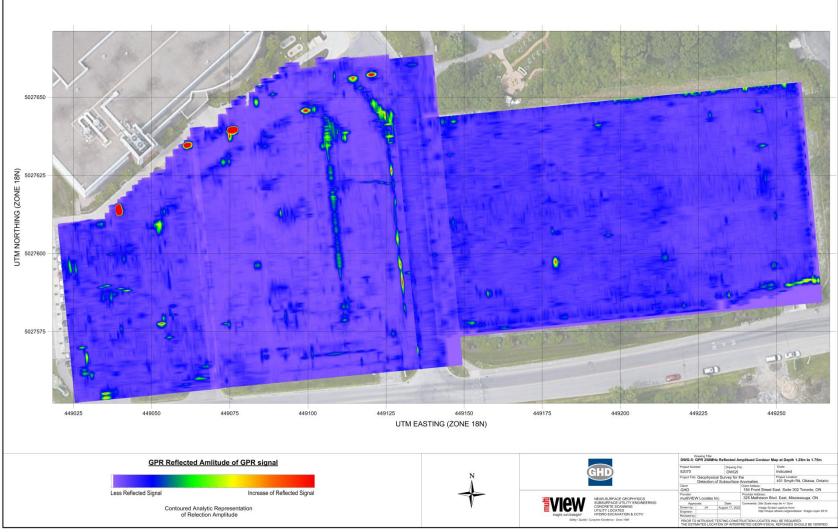


Figure 4-5: GPR Reflected Signal, Depth 1.25m to 1.75m

Geophysics

August 29, 2022 Results - 20 -

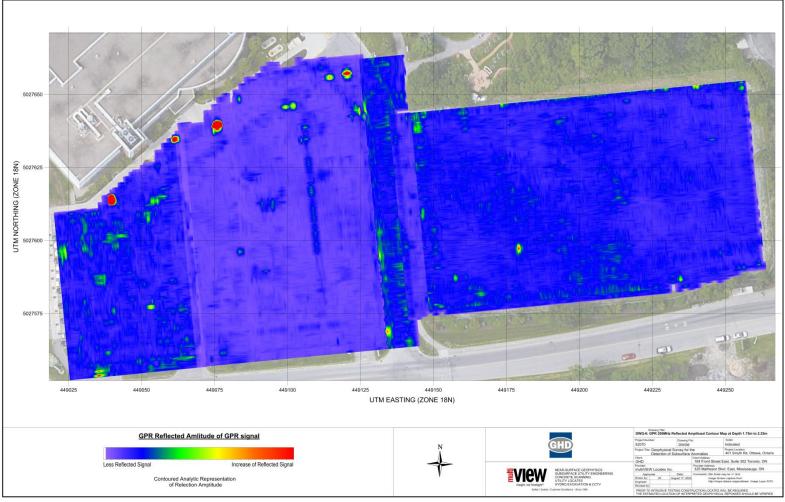


Figure 4-6: GPR Reflected Signal, Depth 1.75m to 2.25m

4.3 GPR LINE DATA SAMPLE ANALYSIS

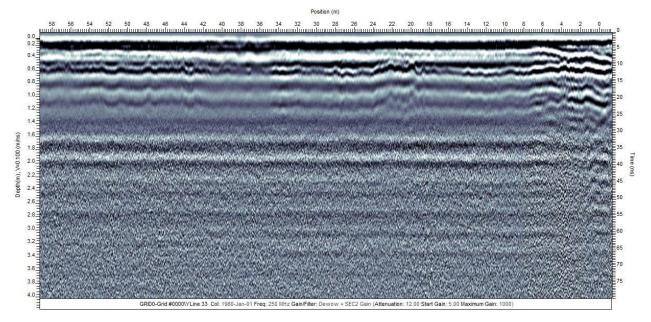


Figure 4-7: Typical GPR Line Data

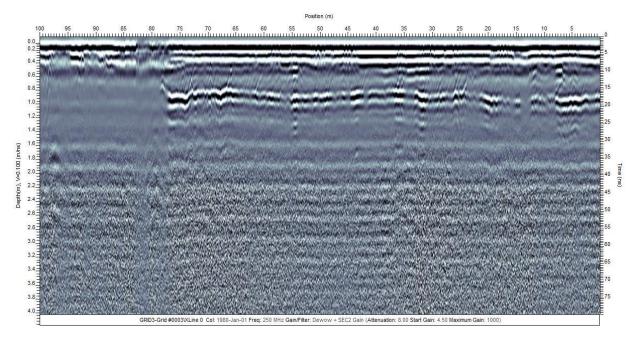


Figure 4-8: GPR Line Data, Along Road to CHEO Emergency

August 29, 2022 Conclusion - 22 -

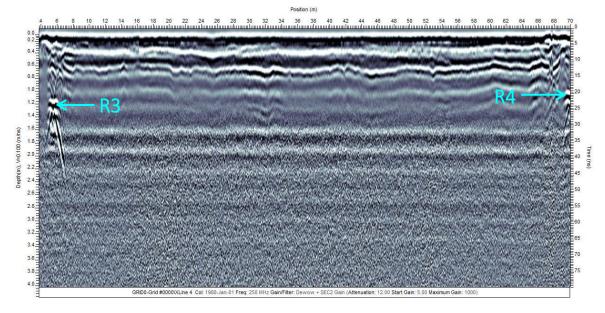


Figure 4-9: GPR Line Data, Parking Lot E

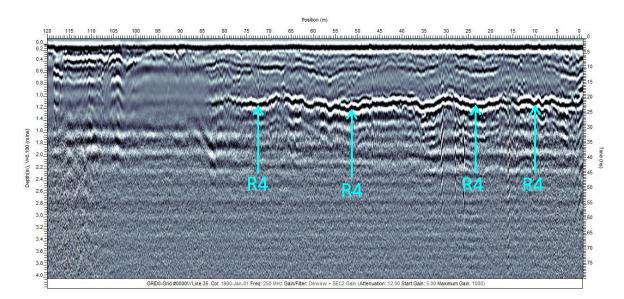


Figure 4-10: GPR Line Data, North side of Parking Lot E

August 29, 2022 Conclusion - 23 -

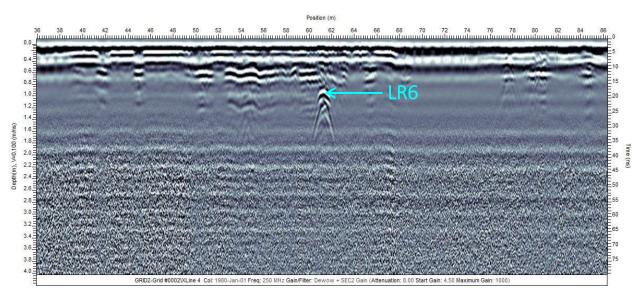


Figure 4-11: GPR Line Data, Eastern side of Parking Lot A.

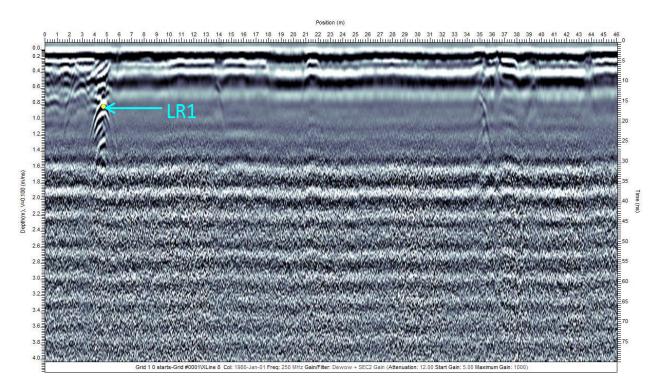


Figure 4-12: GPR Line Data, South-Western Side of Parking Lot A

August 29, 2022 Conclusion - 24 -

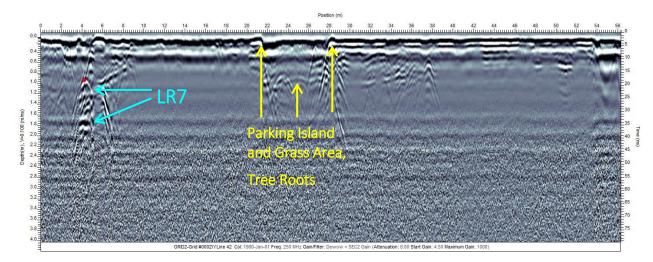


Figure 4-13: GPR Line Data, North-Eastern Side of Parking Lot A

Tr

[

August 29, 2022 Conclusion - 25 -

Subsurface Utility Engineering C

Concrete Scanning C

CCTV Sewer Inspection

Vacuum Excavation

5 CONCLUSION

Geophysical Survey was carried out in the property located at 401 Smyth Road, Ottawa, ON, Canada. The primary objective of the investigation was to map the presence of underground anomalies.

The results of the geophysical survey detected various anomalies in the Geophysical Survey data and outlined potential subsurface variance within project area. A summary depicting the interpretation of the geophysical responses is provided in the following list:

- Fourteen (14) TDEM linear anomalies were detected and were only detected by the TDEM Equipment.
- Four (4) GPR linear anomalies were detected and were only detected by the GPR Equipment.
- Seven (7) linear anomalies were detected by both the TDEM and GPR Equipment.
- Two (2) TDEM zones of elevated Channel 3 data were detected but not detected by the GPR equipment.

The geophysical data obtained during this investigation is intended for the guidance of the geotechnical engineering and excavation activities only. Interpretation of the data used during any subsequent programs is subject to the Law of Physics and Technical limitations. Additional information regarding advantages and limitations of this geophysical data is provided in the report appendices.

MultiVIEW services and geophysical technical limitations can be found at <u>http://www.multiview.ca/Services/Terms-and-Conditions</u>.

When physically locating the interpreted geophysical responses over the terrain for intrusive testing, excavation or site rehabilitation, it is recommended to properly correlate the reference grid stations with the stations presented on the digital maps.

Respectfully Submitted,

August 29, 2022

[signature and date] Joel Halverson Geophysical Technologist multiVIEW Locates Inc.

CCTV Sewer Inspection

August 29, 2022 Conclusion - 26 -

6 REFERENCES

- o Geonics Limited. 2002. Geophysical instrumentation for exploration & the environment. Geonics Limited.
- Misac N. Nabighian. 2008. Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B. (Society of Exploration Geophysicists). Newmont Exploration Limited, Denver, Colorado, US.
- Lisa Dojack. 2012. Ground Penetrating Radar Theory, Data Collection, Processing, and Interpretation: A Guide for Archaeologists.
- Reynolds, J.M. 2011. An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ltd, Chichester, 712 pp.

August 29, 2022 References - 27 -

APPENDICES

APPENDIX A

Terms and Conditions for Electromagnetic Investigations

Data Presentation

- 1. The electromagnetic point data were acquired at the station spacing and on the date as defined in the survey objectives.
- 2. Colour-contoured maps were created from the collected electromagnetic data and referenced to the survey grid coordinates
- 3. The images of the colour contoured maps presented in the body of the report are for display and review purposes only. The images are scaled to fit page sizes. Data acquired for QC/QA purposes (base station, background or auxiliary data) are available in the digital archive. The raw data and maps in the digital archive are properly referenced to the survey area, using either grid or UTM coordinates. The maps are presented at a scale to facilitate the accompanying interpretation.

Data Interpretation

Interpretation of the electromagnetic data is intended for guidance on environmental engineering and excavation purposes only. The user must be aware of the following interpretive restrictions:

- 4. Features shown on the interpretation map are related to the expression of subsurface man-made objects and other geological features and structures underground. The projection and location of these features on the surface is referenced to the grid coordinate system established at the time of the survey. All detected features are not necessarily shown due to the weak and non-relevance of the observed responses.
- 5. Interpretation of buried features or change in soil conditions cannot be made in areas where data were not collected.
- 6. The electromagnetic data were reviewed with respect to the position of the cultural features (i.e. manmade metallic objects) identified on site. The electromagnetic response observed in proximity to a known cultural feature is attributed to that feature.
- 7. Where known surface or subsurface metallic objects exist within 2 metres of the electromagnetic data observation station, it is possible that other metallic objects or a change in soil conditions may be present but not identified in the interpretation because the electromagnetic response is attributed to, or masked by, the known feature.
- The spatial position of all interpreted electromagnetic anomalies (zones where electromagnetic fields are different than background) inferred to represent buried metallic objects are indicated in red on this figure.
- 9. If red anomalies are not present on this figure, no electromagnetic signatures were identified which could not reasonably be ascribed to known metallic objects and/or no isolated electromagnetic anomalies could be identified.
- 10. The spatial position of all interpreted electromagnetic anomalies inferred to represent unusual soil conditions is indicated in blue on this figure. These anomalies may represent local changes in soil type or geology, changes in soil moisture conditions; fill versus natural soils or contaminated areas.
- 11. If blue anomalies are not present on this figure, no electromagnetic signatures were identified which could not reasonably be ascribed to known changes in soil type or geology, changes in soil moisture conditions, fill versus natural soils or contaminated areas.

CCTV Sewer Inspection

Vacuum Excavation

August 29, 2022 Appendix A- 29 -

Comments for Subsequent Investigations

- 12. The electromagnetic anomalies identified within the survey area and as potential buried objects relevant to the survey objectives should be excavated to confirm the source of the electromagnetic response. The excavation point and/or area must be referenced to the site survey grid and located in the center of the anomaly.
- 13. The survey grid coordinates were established using survey tapes. The stations and lines were picketed and marked over the ground and left in-place upon completion of the survey. After survey completion, if markings are unclear, the survey grid should be reconstructed prior to excavation activities, using all the information provided in this report and in the digital archive (e.g. GPS locations, photographs and additional location maps).
- 14. In all cases, excavation should be extended to a minimum depth of 2 metres to allow confident identification of the anomaly source.
- 15. It is recommended that this document be retained on site during any excavation activities. Excavation may reveal features not identified in the interpretation process due to the limitations of the technique.

August 29, 2022 Appendix A- 30 -

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Geophysical Survey for Detection of Underground Anomalies, 401 Smyth Road, Ottawa, ON, Canada, GHD, August 29, 2022

August 29, 2022 ource not found. - 31 -

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

GEOPHYSICAL INTERPRETATION REPORT

REGARDING GEOPHYSICAL SURVEY FOR DETECTION OF UNDERGROUND ANOMALIES

401 SMYTH ROAD, OTTAWA, ON, CANADA

Prepared For: Adita Khandekar PE, Project Manager GHD 184 Front Street East, Suite 302, Toronto,Ontario, Canada, M5A 4N3

> Submitted By: Joel Halverson Geophysical Technologist MULTIVIEW LOCATES INC. 325 Matheson Blvd East, Mississauga ON, L4Z 1X8

> > October 17, 2022

TABLE OF CONTENTS

TABLE C	OF CONTENTS	1 -			
LIST OF	FIGURES	3 -			
LIST OF	TABLES	3 -			
DIGITAL	L ARCHIVE CONTENT	4 -			
PROJEC	CT SPECIFICATION LIST	4 -			
CONTRA	ACT RELEASE LETTER: 52070	5 -			
1	Introduction	6 -			
1.1	1 Survey Objectives	6 -			
2	Project Overview	7 -			
2.2	1 Site Location and Access	7 -			
2.2	2 Weather and Terrain Conditions	8 -			
3	Methodology	10 -			
3.2	1 Survey Grid Installment	10 -			
3.2	2 Time Domain EM Data Acquisision (EM61)	12 -			
3.3	3 GPR Data Acquisistion	12 -			
3.4	4 Geophysical Data Interpretation and Presentation	12 -			
4	Results	14 -			
4.2	1 Geophysical Interpretaion	14 -			
4.2	2 Geophysical Data Maps	17 -			
4.3	3 GPR Line Data Sample Analysis	22 -			
5	Conclusion	26 -			
6	References	27 -			
Append	ppendix A 29 -				

11

CCTV Sewer Inspection

LIST OF FIGURES

Figure 2-1: Geophysical Survey General Location Map	7 -
Figure 2-2: Photo of the south west side of Parking Lot A during survey acquisition	8 -
Figure 2-3: Photo of the north west side of Parking Lot A during survey acquisition	8 -
Figure 2-4: Photo of Parking Lot E during survey acquisition	9 -
Figure 2-5: Photo of east side of Parking lot E	9 -
Figure 3-1: Geophysical Survey Area	11 -
Figure 3-2: Typical TDEM Acquisition System Setup	12 -
Figure 3-3: Typical GPR 250MHz Smart Cart System Setup	12 -
Figure 4-1: Geophysical Data Interpretation	16 -
Figure 4-2: TDEM Channel 3 Data	17 -
Figure 4-3: GPR Reflected Signal, Depth 0.25m to 0.75m	18 -
Figure 4-4: GPR Reflected Signal, Depth 0.75m to 1.25m	19 -
Figure 4-5: GPR Reflected Signal, Depth 1.25m to 1.75m	20 -
Figure 4-6: GPR Reflected Signal, Depth 1.75m to 2.25m	21 -
Figure 4-7: Typical GPR Line Data	22 -
Figure 4-8: GPR Line Data, Along Road to CHEO Emergency	22 -
Figure 4-9: GPR Line Data, Parking Lot E	23 -
Figure 4-10: GPR Line Data, North side of Parking Lot E	23 -
Figure 4-11: GPR Line Data, Eastern side of Parking Lot A	24 -
Figure 4-12: GPR Line Data, South-Western Side of Parking Lot A	24 -
Figure 4-13: GPR Line Data, North-Eastern Side of Parking Lot A	25 -

LIST OF TABLES

Table 1: Digital Archive Content	4-
Table 2: Project Specification List	4-
Table 3: Geophysical Interpretation Summary Table	15 -

11

DIDE

DIGITAL ARCHIVE CONTENT

Table 1: Digital Archive Content

Folder	Content
//Deliverables/	Digital copy of the survey results, final documents and maps
//Maps/	Grid and interpretation maps
//Reports/	Geophysical survey report

PROJECT SPECIFICATION LIST

Table 2: Project Specification List

Contract	Contract				
MLI Reference Number	52070				
Report Date	October 17, 2022				
Client					
Legal Name	GHD				
Address	184 Front Street East, Suite 302, Toronto,Ontario, Canada, M5A 4N3				
Phone	416-360-1600				
Contact					
Client Representative:	Adita Khandekar				
Qualifications:	PE, Project Manager				
Email	aditya.khandekar@ghd.com				
Survey					
Survey Description	Detection of Underground Anomalies				
Methodology	Geophysical Survey				
Location	401 Smyth Road, Ottawa, ON, Canada				
Execution Date	02/08/2022				
Contractor					
Survey by:	multiVIEW Locates Inc.				
Responsible	Joel Halverson				
Qualifications	Geophysical Technologist				
Phone	800-363-3116				
Email	jhalverson@multiview.ca				

110

CCTV Sewer Inspection

Vacuum Excavation

CONTRACT RELEASE LETTER: 52070

October 17, 2022

GHD

184 Front Street East, Suite 302, Toronto,Ontario, Canada, M5A 4N3 Phone: 416-360-1600

Attention to: Mr. Adita Khandekar, PE, Project Manager

Re: Geophysical Interpretation Report regarding Detection of Underground Anomalies at 401 Smyth Road, Ottawa, ON, Canada.

Dear Mrs. Adita Khandekar:

GHD retained multiVIEW Locates Inc. to carry out Geophysical Survey for Detection of Underground Anomalies for the site located at 401 Smyth Road, Ottawa, ON, Canada. The geophysical survey was undertaken on 04/07/2022 and was completed on 02/08/2022.

Included, you will find a geophysical survey report describing the data acquisition, methodology, data quality, processing, interpretation results, conclusion and recommendations relevant to survey objectives, including appendices, tables and figures. A digital archive containing the acquired raw data and final processed results, digital maps, presentations and documents is also provided.

This represents the end of our contractual agreement regarding the aforementioned geophysical survey. Contact us if you need any additional material or information.

Thank you,

Signed by:

Joel Halverson, Geophysical Technologist multiVIEW Locates Inc.

Reviewed by Alex Brkljac, P.Geo, PMP multiVIEW Locates Inc.

ABMELjac

Concrete Scanning

October 17, 2022 - 5 -

1 INTRODUCTION

GHD retained multiVIEW Locates Inc. (multiVIEW) to carry out a Geophysical Survey for Detection of Underground Anomalies for the site located at the Children's Hospital of Eastern Ontario (CHEO), 401 Smyth Road, Ottawa, ON, Canada.

This geophysical interpretation report summarizes the data collection logistics and methodology, processing results and data interpretation associated with the geophysical investigation.

The acquisition, processing and analysis of the data were performed according to professionally regulated industry standards. The geophysical data are presented in screen captured figures and plan maps throughout the sections of the report.

The geophysical interpretation contained in this report is based on the analysis of the Geophysical Survey responses recorded during the field acquisition stage. The images and figures presented in the body of the report are scaled to fit the report page size and should be used for illustration purposes only. Detailed maps and images of the data and results are available in the digital archive supplied along with the interpretation report.

The interpretation of the geophysical data obtained during this investigation is intended to provide guidance for any potential intrusive subsurface investigation work. Interpretation of the data used during any subsequent programs is subject to the Law of Physics and Technical limitations of the geophysical techniques used. The criteria and models used for the interpretation of the acquired data are not unique and may not represent the actual objects present on site.

1.1 SURVEY OBJECTIVES

The primary objective of the investigation was to detect and map the presence of underground anomalies in the survey area.

The inferred location of interpreted geophysical signatures was documented and transferred to digital drawings for referencing and assessment.

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

October 17, 2022 Introduction - 6 -

2 PROJECT OVERVIEW

The geophysical study was completed using Geophysical Survey techniques. The exploration and acquisition phase of the survey was completed on 02/08/2022. The raw data and survey results presented as digital plan maps and sections are:

- Integrated Interpretation Plan Maps depicting the spatial location of interpreted geophysical signatures and subsurface features;
- Time Domain Electromagnetics (TDEM) EM61 Channel 3 contour grid map;
- o 250mHz GPR reflected signal amplitude contour grid map;
- Sample GPR raw data used for interpretation results.

2.1 SITE LOCATION AND ACCESS

The geophysical project is located at 401 Smyth Road, Ottawa, ON, Canada, depicted in Figure 2-1. The site is occupied by two active parking lots divided by an access road to the CHEO Emergency Entrance. The survey area spanned from the western curb of Parking Lot A to the Eastern edge of gravel in Parking Lot E and from the northern limits of both Parking lots A and E to the southern limits of the parking lots. An accurate outline of the survey area is displayed in Figure 3-1.

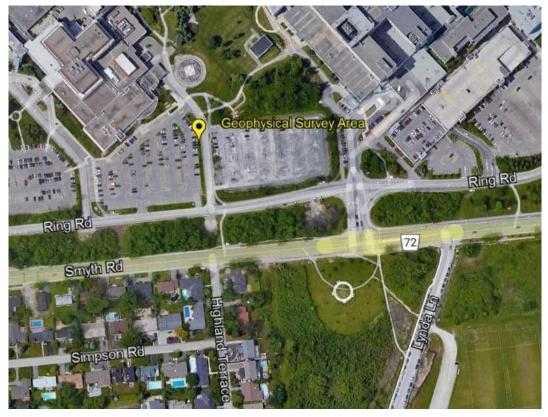


Figure 2-1: Geophysical Survey General Location Map

October 17, 2022 Project Overview - 7 -

Concrete Scanning

CCTV Sewer Inspection

2.2 WEATHER AND TERRAIN CONDITIONS

The geophysical data acquisition was performed at night to avoid traffic and vehicles in the parking lot. Average temperatures fluctuated from ~16 degrees Celsius ~25 degrees Celsius.

The parking lots, roads and pathways were, however some parked cars were present during the survey data collection. Photos taken during the survey are displayed in Figure 2-2 to Figure 2-5.

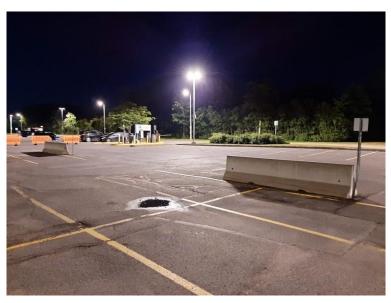


Figure 2 -2: Photo of the south west side of Parking Lot A during survey acquisition.

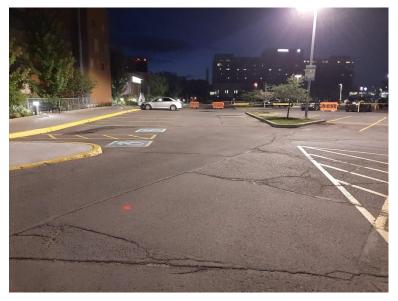


Figure 2 -3: Photo of the north west side of Parking Lot A during survey acquisition.

October 17, 2022 Project Overview - 8 -

Figure 2 -4: Photo of Parking Lot E during survey acquisition.

Figure 2 -5: Photo of east side of Parking Lot E and driveway to CHEO Emergency during survey acquisition.

October 17, 2022 Project Overview - 9 -

3 **METHODOLOGY**

A subsurface investigation was performed using Geophysical Survey techniques. The TDEM data acquisition was performed using a EM61 from Geonics Limited. The acquisition phase of the survey was completed on 02/08/2022.

Field labor included the following activities:

- Grid Instalment; 0
- GPS Control Survey; 0
- TDEM profile imaging (EM61); 0
- GPR profile imaging; 0
- Site Documentation; 0
- Data Interpretation and Results Presentation; 0

3.1 SURVEY GRID INSTALLMENT

The grid layout was done using commercial measuring tapes and line-of-site positioning. Data referenced to grid coordinates were acquired for the purpose of grid establishment, geophysical data collection, interpretation and map creation. The data collection grid is displayed on Figure 3-1.

A GPS receiver was utilized for to acquire the UTM (WGS84/Zone 18N) coordinates of the Site Survey Grid. The subsequent data presentation and interpretation are displayed in UTM coordinates.

The project area measured approximately 17700 square metres. The extent of the total survey coverage is displayed by the yellow line in Figure 3-1. This map is presented digitally in "DWG-1 Site Survey Grid".

TDEM data was acquired at a station spacing of 2 meters along survey lines spaced at 2 metres. The GPR data was acquired along bidirectional line orientation at station spacing 0.02m along survey lines spaced at 2 metres. Survey lines and data collection were partially restricted by large surface objects including gates, barriers, planters and vehicles.

October 17, 2022 Methodology - 10 -

Concrete Scanning

CCTV Sewer Inspection

Geophysical Survey for Detection of Underground Anomalies, 401 Smyth Road, Ottawa, ON, Canada, GHD, October 17, 2022

3.2 TIME DOMAIN EM DATA ACQUISITION (EM61)

A Time Domain Electromagnetic survey was conducted across the survey area using Geonics EM61 instrumentation with coincident receiver-transmitter loop configuration. The system is equipped with a secondary receiver loop for target depth estimation and noise rejection. The instrumentation provides high resolution data for indirect detection of buried metal objects to depth of approximately 2 meters. The measurement units of the time decaying induced secondary electromagnetic field are millivolts (mV). The data was acquired by pushing the cart at normal walking speed. These raw data were collected at a rate 0.2 meter station intervals at slow walking speed along lines spaced at roughly 2 meter intervals.

Figure 3-2: Typical TDEM Acquisition System Setup

3.3 GPR DATA ACQUISITION

Ground Penetrating Radar (GPR) transmits electromagnetic signal into the subsurface and is reflected by the structures, geological features and buried objects, are recorded by GPR instrumentation permitting real-time interpretation of subsurface features to a depth. The GPR data were acquired with station spacing of 0.05m along the grid profiles. Over the scanned area, the GPR profiling was run in multiple orientations with perpendicular cross lines spaced at 2 meter intervals. The GPR survey was completed using a Noggin GPR Smart Cart system manufactured by Sensors & Software Inc., with the 250MHz GPR Antenna sensor.

Figure 3-3: Typical GPR 250MHz Smart Cart System Setup

Subsurface Utility Engineering

October 17, 2022 Methodology - 12 -

3.4 GEOPHYSICAL DATA INTERPRETATION AND PRESENTATION

The TDEM (EM61) anomaly identification was accomplished by examining the data provided by the Channel 3 data output created by the difference of the two EM coils on the EM61. The interpretation was accomplished by examining the subsurface electromagnetic response of the channel 3 data compared to surface object responses and data analysis completed by comparing the characteristics of the acquired data to examples and results available at multiVIEW from historic field surveys. The Channel 3 TDEM data map is presented in a plan map containing contoured responses.

All TDEM elevated readings were evaluated based on the proximity to known surface objects that could have produced the elevated readings. The readings deemed likely to be caused by surface features were discounted as subsurface responses and were not included in the interpretation figures and not listed as buried anomalies for further investigation.

The GPR anomaly identification was accomplished by examining the subsurface electromagnetic reflection characteristics such as continuous anomalous trending and high amplitude hyperbolic reflection identification. Results of the ground penetrating radar survey (GPR) are presented plan maps containing contoured signal reflection amplitude and in sectional views (distance versus depth profiles) extracted from the line raw data as required for the interpretation.

The inferred location of all GPR features and interpreted anomalous zones was documented and transferred to digital drawings. Detailed plan maps illustrating the interpreted GPR anomalies associated with underground features are presented in the report. All distance units used throughout this report are in meters unless otherwise noted. GPR interpretation and compilation was completed by comparing the characteristics of the acquired profiles to examples and results available at multiVIEW from in-house tests and historic field surveys. GPR data processing and interpretation included the following tasks:

- Hyperbola Velocity Calibration for correcting depth estimates;
- Background Average Subtraction for removing direct wave reflections;
- De-wowing;
- Gain equalization and enhancement;
- Visual interpretation;
- Event picking;
- Maps and sections creation;

GRP data analysis was completed by comparing the characteristics of the acquired profiles to examples and results available at multiVIEW from historic field surveys.

Only data sets, figures and drawings relevant to the task of identifying the buried anomalies were included in this report. The interpretation of both equipment data sets are merged into an inclusive and comparative interpretation data set and figure. Interpretation results are presented in UTM 18N grid coordinates. Third party aerial photos were placed on the grid files at a best fit attempt and may not be accurate. Please use the UTM coordinates for accurate reference positions.

Concrete Scanning

4 RESULTS

4.1 **GEOPHYSICAL INTERPRETATION**

A Geophysical Survey was performed at 401 Smyth Road, Ottawa, ON, Canada using Time Domain Electromagnetics (TDEM) and Ground Penetrating Radar (GPR) to map out Detection of Underground Anomalies.

The resulting data and interpretation of that data is outlined as follows.

- Fourteen (14) TDEM linear anomalies were detected and were only detected by the TDEM Equipment. These anomalies are designated "L".
- Four (4) GPR linear anomalies were detected and were only detected by the GPR Equipment. These anomalies are designated "R".
- Seven (7) linear anomalies were detected by both the TDEM and GPR Equipment. These anomalies are designated "LR"
- Two (2) TDEM zones of elevated Channel 3 data were detected but not detected by the GPR equipment. These anomalous zones are designated "Z"

Interpretation notes and UTM coordinates for each anomaly detected are listed on Table 3. As seen on Figure 4-1: Geophysical Data Interpretation, the anomalies are displayed on the map containing the UTM grid and aerial photo of the site. Each anomaly is numbered and labeled by the equipment that detected the anomaly.

As displayed on Figure 4-2 the TDEM Channel 3 data map presented. Surface objects including vehicles, gates, concrete barriers, planters and light posts prevented the entire area from being surveyed. Elevated TDEM responses occurred in the immediate vicinity of metal surface objects and are not considered anomalous.

As displayed on Figures 4-3 to 4-6, GPR reflections contour maps are presented in 0.5m depth increment slice images. The depth limits of the each depth slice reflection map were selected to best show the anomalous reflections.

GPR data for the survey grids were of good quality for providing a comprehensive interpretation of reflective responses and anomalous zones. For the scanned area, the main source of the GPR electromagnetic reflections, diffractions and edge-type responses observed in the acquired raw data are possibly related to previous excavations, utilities, roots and underground structures. GPR reflected data is classified as anomalous when compared to the surrounding reflections and reflection signature. GPR signal penetration appeared to be limited to 0.75 to 1.5 meters on average. Limited GPR signal penetration, or higher signal attenuation, increases the probability that the GPR equipment is unable to detect subsurface anomalies at greater depths. The signal penetration likely was restricted by increased attenuation caused by increase of soil conductivity near surface. The common use of road salt in winter conditions is likely the cause of the increase of soil conductivity in parking lots and road ways.

GPR line data sample analysis is displayed in section 4.3. These raw GPR data lines display sample analysis of the GPR lines and anomalies detected in the data.

Subsurface Utility Engineering

Anomaly	Location of Observation				Interpreation Notes
	From		То		
	UTM Easting	UTM Northing	UTM Easting	UTM Northing	
L	TDEM Detected Linear Anomalies				
L1	449022.1131	5027590.886	449036.6597	5027573.915	Possible utility
L2	449037.8719	5027573.511	449131.2123	5027659.376	Possible Water line. Travels to water valve
L3	449051.6103	5027592.503	449082.9258	5027595.331	Possible Sewer Line, Travels to manhole
L4	449060.4999	5027630.889	449065.5508	5027576.946	Unkown Linear Anomaly
L5	449098.4826	5027632.708	449102.9273	5027585.229	Unkown Linear Anomaly
L6	449106.564	5027644.426	449112.221	5027654.527	Unkown Linear Anomaly
L7	449127.9797	5027647.052	449133.4347	5027655.336	Unkown Linear Anomaly
L8	449147.7792	5027641.799	449150.4057	5027608.867	Possible Electric Line, Travels to Electric Manhole and Electic Box
L9	449151.8199	5027605.029	449157.679	5027578.158	Possible Electric Line, Travels to Electric Manhole and Electic Box
L10	449151.4159	5027608.059	449180.509	5027595.331	Possible Electric Line, Travels to Electric Manhole and Light
L11	449152.8301	5027644.426	449175.6601	5027629.879	Possible Electric Line, Travels to Lights
L12	449178.4886	5027629.475	449209.8041	5027632.91	Possible Electric Line, Travels to Lights
L13	449181.5191	5027595.129	449249.4031	5027601.392	Possible Electric Line, Travels to Lights
L14	449213.0367	5027634.122	449245.9685	5027636.748	Possible Electric Line, Travels to Lights
R	GPR Detected Linear Anomalies				
R1	449023.5274	5027593.311	449049.3879	5027585.229	Possible Electric Line
R2	449097.6744	5027566.844	449123.1309	5027569.066	Unkown Linear Anomaly
R3	449170.8113	5027578.36	449257.4845	5027590.28	Unkown Linear Anomaly
R4	449173.2357	5027645.84	449252.8377	5027652.911	Unkown Linear Anomaly
LR	TDEM Detected Anomalous Zones				
LR1	449024.3355	5027569.673	449030.8007	5027563.409	Unkown Linear Anomaly
LR2	449033.2251	5027564.622	449130.8082	5027572.299	Unkown Linear Anomaly
LR3	449053.2266	5027624.02	449053.6307	5027616.949	Unkown Linear Anomaly
LR4	449054.0348	5027611.696	449056.2571	5027587.25	Unkown Linear Anomaly
LR5	449057.0653	5027582.199	449057.6714	5027575.33	Unkown Linear Anomaly
LR6	449116.4637	5027622.202	449126.1614	5027623.414	Possible Sewer line, Travels to Catch Basin
LR7	449121.9187	5027649.679	449135.6571	5027561.995	Possible Bell Duct, Travels to Bell Manhole
Z	TDEM Anomalous Zones				
Z1	Centred on UTM Grid Possition		449031.8822	5027581.388	Unknown Anomaly
Z2	Centred on UTM Grid Possition		449040.5807	5027606.136	Unknown Anomaly

Table 3: Geophysical Interpretation Summary Table

-

October 17, 2022 Results - 15 -

CCTV Sewer Inspection

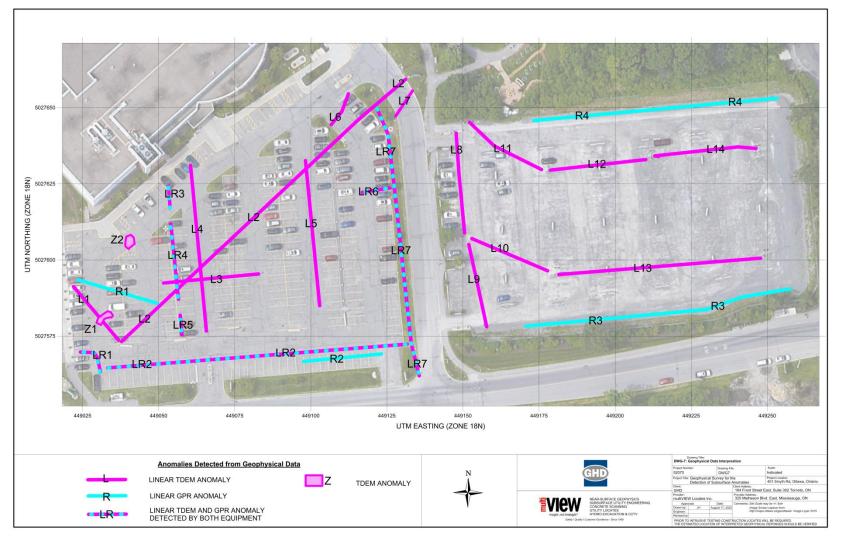


Figure 4-1: Geophysical Data Interpretation

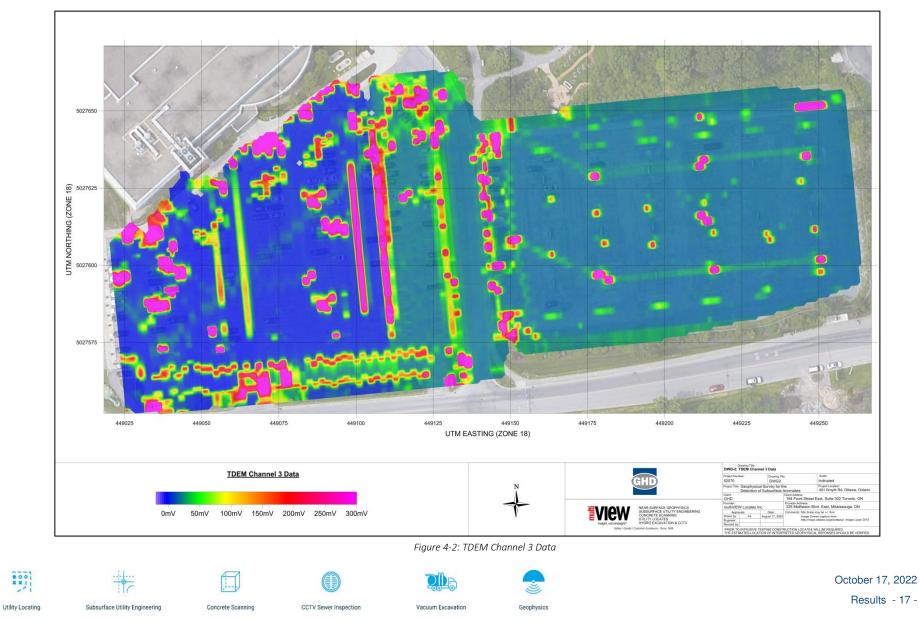
Utility Locating

-

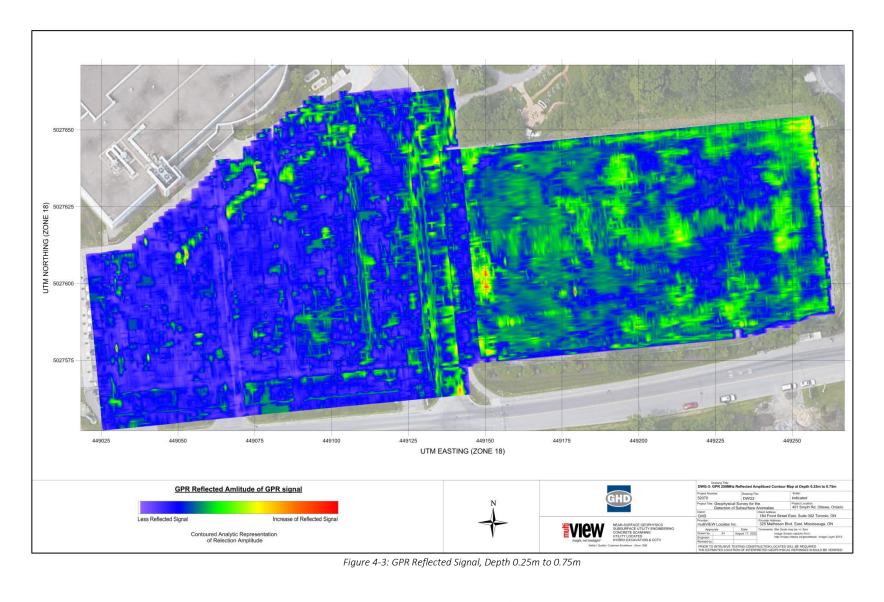
CCTV Sewer Inspection

Vacuum

October 17, 2022 Results - 16 -


Vacuum Excavation

Geophysics



....

4.2 **GEOPHYSICAL DATA MAPS**

Vacuum Excavation

Geophysics

110

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

October 17, 2022 Results - 18 -

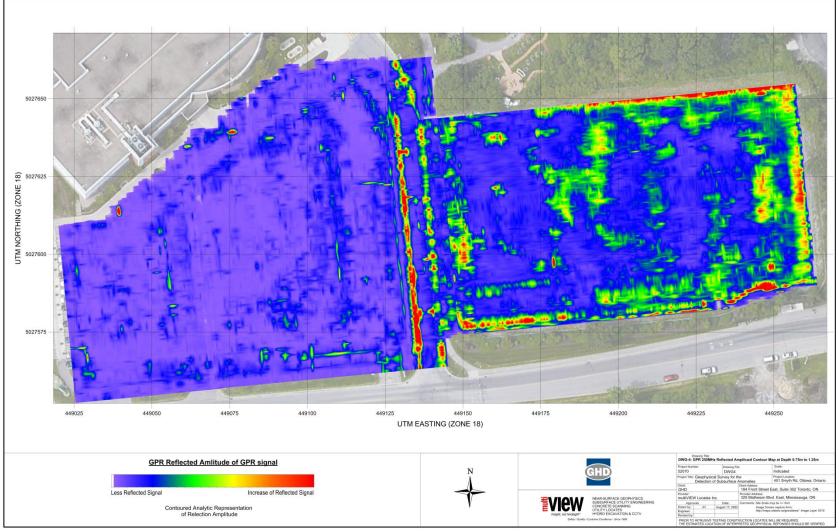


Figure 4-4: GPR Reflected Signal, Depth 0.75m to 1.25m

Geophysics

Vacuum Excavation

Utility Locating

-

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

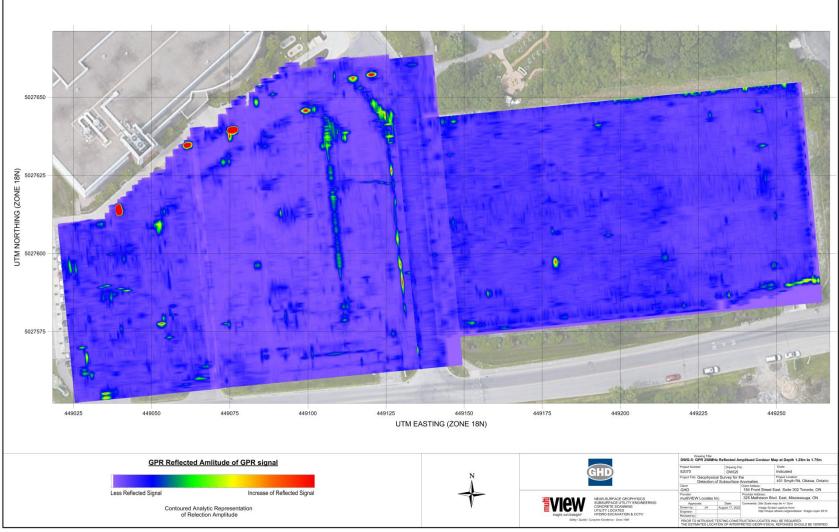


Figure 4-5: GPR Reflected Signal, Depth 1.25m to 1.75m

Geophysics

October 17, 2022 Results - 20 -

Geophysical Survey for Detection of Underground Anomalies, 401 Smyth Road, Ottawa, ON, Canada, GHD, October 17, 2022

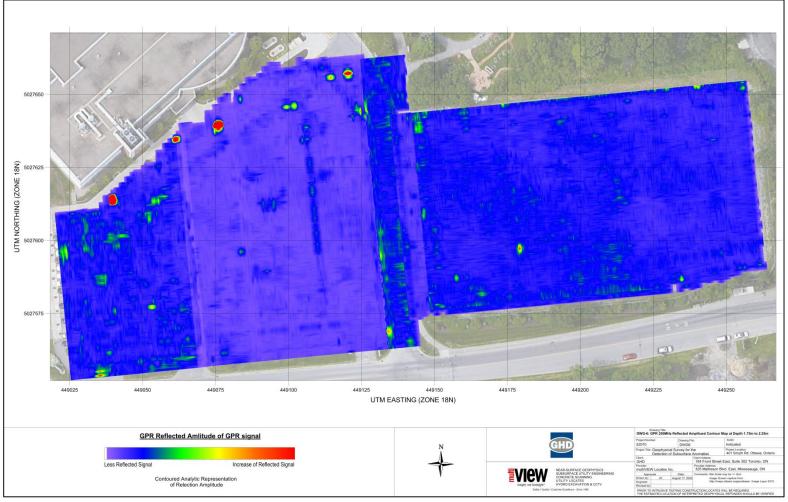


Figure 4-6: GPR Reflected Signal, Depth 1.75m to 2.25m

Utility Locating

4.3 GPR LINE DATA SAMPLE ANALYSIS

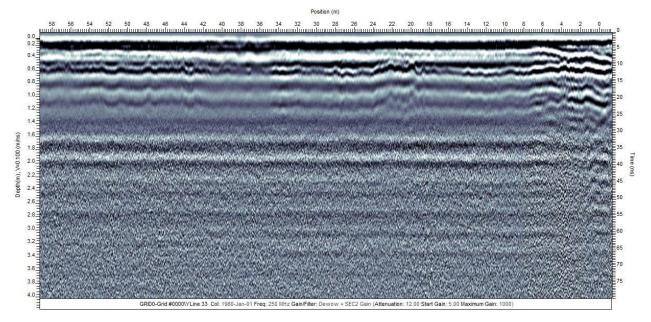


Figure 4-7: Typical GPR Line Data

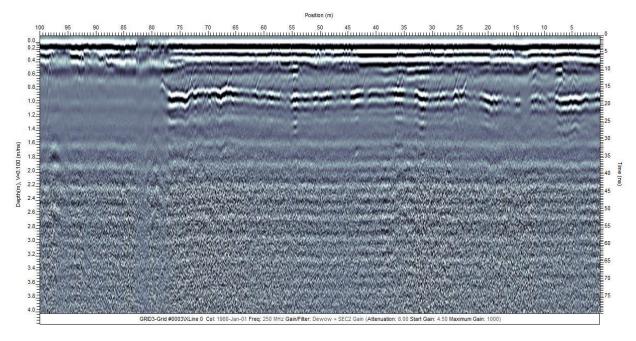


Figure 4-8: GPR Line Data, Along Road to CHEO Emergency

October 17, 2022 Conclusion - 22 -

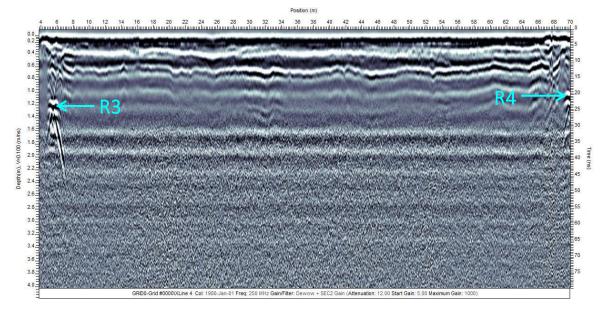


Figure 4-9: GPR Line Data, Parking Lot E

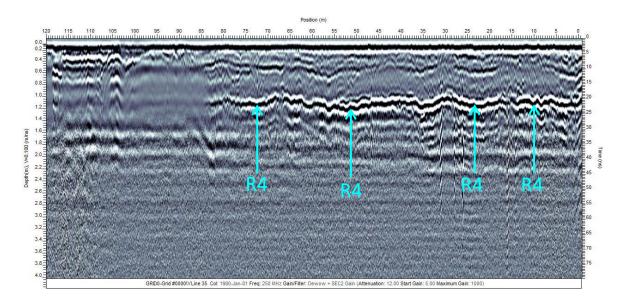


Figure 4-10: GPR Line Data, North side of Parking Lot E

October 17, 2022 Conclusion - 23 -

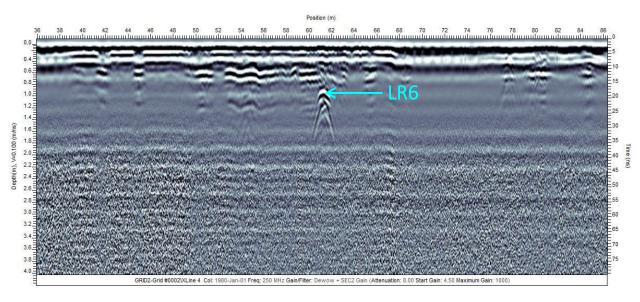


Figure 4-11: GPR Line Data, Eastern side of Parking Lot A.

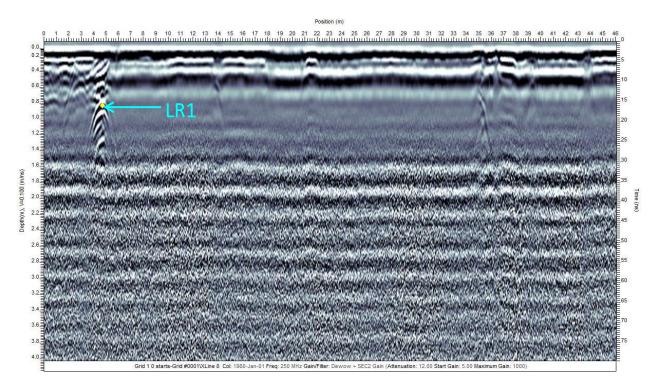


Figure 4-12: GPR Line Data, South-Western Side of Parking Lot A

October 17, 2022 Conclusion - 24 -

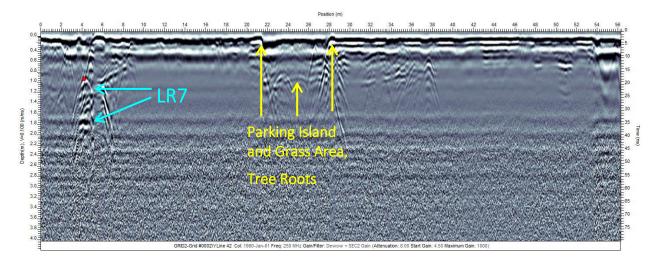


Figure 4-13: GPR Line Data, North-Eastern Side of Parking Lot A

October 17, 2022 Conclusion - 25 -

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

5 CONCLUSION

Geophysical Survey was carried out in the property located at 401 Smyth Road, Ottawa, ON, Canada. The primary objective of the investigation was to map the presence of underground anomalies.

The results of the geophysical survey detected various anomalies in the Geophysical Survey data and outlined potential subsurface variance within project area. A summary depicting the interpretation of the geophysical responses is provided in the following list:

- Fourteen (14) TDEM linear anomalies were detected and were only detected by the TDEM Equipment.
- Four (4) GPR linear anomalies were detected and were only detected by the GPR Equipment.
- Seven (7) linear anomalies were detected by both the TDEM and GPR Equipment.
- Two (2) TDEM zones of elevated Channel 3 data were detected but not detected by the GPR equipment.

The geophysical data obtained during this investigation is intended for the guidance of the geotechnical engineering and excavation activities only. Interpretation of the data used during any subsequent programs is subject to the Law of Physics and Technical limitations. Additional information regarding advantages and limitations of this geophysical data is provided in the report appendices.

MultiVIEW services and geophysical technical limitations can be found at <u>http://www.multiview.ca/Services/Terms-and-Conditions</u>.

When physically locating the interpreted geophysical responses over the terrain for intrusive testing, excavation or site rehabilitation, it is recommended to properly correlate the reference grid stations with the stations presented on the digital maps.

Respectfully Submitted,

October 17, 2022

Joel Halverson Geophysical Technologist multiVIEW Locates Inc.

Reviewed by Alex Brkljac, P.Geo, PMP multiVIEW Locates Inc.

October 17, 2022 Conclusion - 26 -

6 REFERENCES

- o Geonics Limited. 2002. Geophysical instrumentation for exploration & the environment. Geonics Limited.
- Misac N. Nabighian. 2008. Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B. (Society of Exploration Geophysicists). Newmont Exploration Limited, Denver, Colorado, US.
- Lisa Dojack. 2012. Ground Penetrating Radar Theory, Data Collection, Processing, and Interpretation: A Guide for Archaeologists.
- Reynolds, J.M. 2011. An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ltd, Chichester, 712 pp.

October 17, 2022 References - 27 -

APPENDICES

APPENDIX A

Terms and Conditions for Electromagnetic Investigations

Data Presentation

- 1. The electromagnetic point data were acquired at the station spacing and on the date as defined in the survey objectives.
- 2. Colour-contoured maps were created from the collected electromagnetic data and referenced to the survey grid coordinates
- 3. The images of the colour contoured maps presented in the body of the report are for display and review purposes only. The images are scaled to fit page sizes. Data acquired for QC/QA purposes (base station, background or auxiliary data) are available in the digital archive. The raw data and maps in the digital archive are properly referenced to the survey area, using either grid or UTM coordinates. The maps are presented at a scale to facilitate the accompanying interpretation.

Data Interpretation

Interpretation of the electromagnetic data is intended for guidance on environmental engineering and excavation purposes only. The user must be aware of the following interpretive restrictions:

- 4. Features shown on the interpretation map are related to the expression of subsurface man-made objects and other geological features and structures underground. The projection and location of these features on the surface is referenced to the grid coordinate system established at the time of the survey. All detected features are not necessarily shown due to the weak and non-relevance of the observed responses.
- 5. Interpretation of buried features or change in soil conditions cannot be made in areas where data were not collected.
- 6. The electromagnetic data were reviewed with respect to the position of the cultural features (i.e. manmade metallic objects) identified on site. The electromagnetic response observed in proximity to a known cultural feature is attributed to that feature.
- 7. Where known surface or subsurface metallic objects exist within 2 metres of the electromagnetic data observation station, it is possible that other metallic objects or a change in soil conditions may be present but not identified in the interpretation because the electromagnetic response is attributed to, or masked by, the known feature.
- 8. The spatial position of all interpreted electromagnetic anomalies (zones where electromagnetic fields are different than background) inferred to represent buried metallic objects are indicated in red on this figure.
- 9. If red anomalies are not present on this figure, no electromagnetic signatures were identified which could not reasonably be ascribed to known metallic objects and/or no isolated electromagnetic anomalies could be identified.
- 10. The spatial position of all interpreted electromagnetic anomalies inferred to represent unusual soil conditions is indicated in blue on this figure. These anomalies may represent local changes in soil type or geology, changes in soil moisture conditions; fill versus natural soils or contaminated areas.
- 11. If blue anomalies are not present on this figure, no electromagnetic signatures were identified which could not reasonably be ascribed to known changes in soil type or geology, changes in soil moisture conditions, fill versus natural soils or contaminated areas.

Comments for Subsequent Investigations

Concrete Scanning

October 17, 2022 Appendix A- 29 -

- 12. The electromagnetic anomalies identified within the survey area and as potential buried objects relevant to the survey objectives should be excavated to confirm the source of the electromagnetic response. The excavation point and/or area must be referenced to the site survey grid and located in the center of the anomaly.
- 13. The survey grid coordinates were established using survey tapes. The stations and lines were picketed and marked over the ground and left in-place upon completion of the survey. After survey completion, if markings are unclear, the survey grid should be reconstructed prior to excavation activities, using all the information provided in this report and in the digital archive (e.g. GPS locations, photographs and additional location maps).
- 14. In all cases, excavation should be extended to a minimum depth of 2 metres to allow confident identification of the anomaly source.
- 15. It is recommended that this document be retained on site during any excavation activities. Excavation may reveal features not identified in the interpretation process due to the limitations of the technique

October 17, 2022

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

Appendix A- 30 -

Geophysical Survey for Detection of Underground Anomalies, 401 Smyth Road, Ottawa, ON, Canada, GHD, October 17, 2022

October 17, 2022 ource not found. - 31 -

Subsurface Utility Engineering

CCTV Sewer Inspection

Vacuum Excavation

ghd.com

ightarrow The Power of Commitment