

REPORT

Project: 122764-6.2.3

DESIGN BRIEF ORLEANS GARDENS RESIDENTIAL 1615 Orleans Boulevard

Development Application File No. D07-12-23-0026

Table of Contents

1	INTR	ODUCTION	ON	1
	1.1	Scope		1
	1.2	Subjec	ct Property	1
	1.3	Previo	us Studies	2
	1.4	Guide	lines and Standards	2
	1.5	Pre-Co	onsultation Meeting	2
	1.6	Enviro	nmental Issues	2
	1.7	Geote	chnical Considerations	2
2	WAT	ER SUPF	PLY	4
	2.1	Existin	ng Conditions	4
	2.2	Design	n Criteria	4
		2.2.1	Water Demands	4
		2.2.2	System Pressures	4
		2.2.3	Fire Flow Rate	4
		2.2.4	Hydrant Spacing	5
	2.3	Propos	sed Water Plan	5
3	WAS	TEWATE	R DISPOSAL	7
	3.1	Existin	ng Conditions	7
	3.2	Design	n Criteria	7
	3.3	Recon	nmended Wastewater Plan	7
4	SITE	STORM	WATER MANAGEMENT	9
	4.1	Existin	ng Conditions	9
	4.2	Desigr	n Criteria	9
	4.3	Syster	m Concept	9
	4.4	Storm	water Management	10
		4.4.1	Restricted Flowrate	10
		4.4.2	Uncontrolled Release	10
		4.4.1	Maximum Allowable Release Rate	11
		4.4.2	2 Year Ponding	12
		4.4.3	100 year + 20% Stress Test	12
		4.4.4	Hvdraulic Grade Line	13

May 23, 2024

5	SOU	RCE CONTROLS	14
	5.1	General	14
	5.2	Lot Grading	14
	5.3	Roof Leaders	14
	5.4	Vegetation	14
6	CON	VEYANCE CONTROLS	15
	6.1	General	15
	6.2	Catchbasins	15
7	SEDI	IMENT AND EROSION CONTROL PLAN	16
	7.1	General	16
	7.2	Trench Dewatering	16
	7.3	Bulkhead Barriers	16
	7.4	Seepage Barriers	16
	7.5	Surface Structure Filters	16
	7.6	Stockpile Management	17
8	ROA	DS AND NOISE ATTENUATION	18
9	REC	OMMENDATIONS	19

May 23, 2024 ii

List of Appendices

Appendix A

- Site Plan
- Site Servicing Plan 122764-C-001
- Pre-consultation Meeting City Comments
- Pre-consultation Meeting City Engineering Comments
- CCL Original Development Servicing Plan (Circa 1988)
- CCL Original Development Grading Plan (Circa 1988)
- Development Checklist

Appendix B

- Watermain Demand Calculation Sheet
- Fire Flow Calculations
- Water Model Schematic and Results
- City Correspondence regarding Boundary Conditions

Appendix C

- Sanitary Sewer Design Sheet
- Sanitary Drainage Area Plan 122764-C-400
- Sanitary External Drainage Area Plan (Whole Site) 122764-C-401

Appendix D

- Storm Sewer Design Sheet
- Storm Drainage Area Plan 122764-C-500
- Storm External Drainage Area Plan 122764-C-501
- Ponding Plan 122764-C-600
- Stormwater Management Design Sheet Modified Rational Method
- Orifice Sizing Sheet
- Underground Storage Calculation Sheet
- Uncounted Underground Calculation Sheet
- 2 Year Ponding Acceptance Letter NADG
- ADS Stormtech Underground Storage System @ MH21
- ADS Stormtech Underground Storage System @ MH25
- ADS Stormtech Underground Storage System @ MH10
- Stress Test Overflow Calculation
- Sample C Value Calculation and Plan

Appendix E

- Grading Plan 122764-C-200
- Erosion and Sediment Control Plan 122764-C-900

May 23, 2024 iii

1 INTRODUCTION

1.1 Scope

IBI Group Professional Services Inc. (IBI Group) has been retained by North American Development Group to prepare the necessary engineering plans, specifications and documents to support the proposed Site Plan Application for the subject lands in accordance with the policies set out by the Planning and Development Branch of the City of Ottawa. This Brief will present a detailed servicing scheme to support development of the property, and will include sections on water supply, wastewater disposal, minor and major stormwater management, grading and with erosion and sediment control.

1.2 Subject Property

The subject property, currently known as Orleans Gardens, is located on the southeast corner of the intersection of Jean D'Arc Boulevard and Orleans Boulevard, in Orleans. The site is bound by Jean D'Arc Boulevard to the North, existing residential to the east, Beausejour Drive to the South and Orleans Boulevard to the West. Refer to key plan Figure 1.1 below.

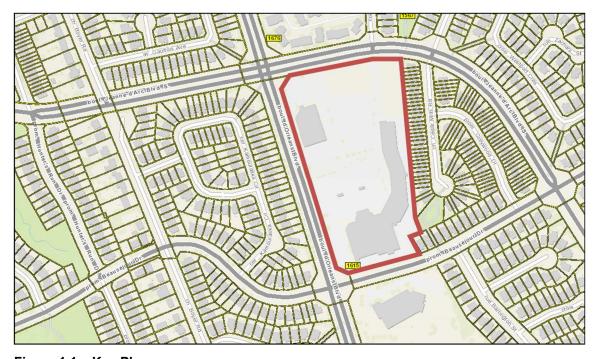


Figure 1.1 – Key Plan

Key Plan taken from City of Ottowa Co

Key Plan taken from City of Ottawa GeoOttawa

The existing site is currently entirely commercial use, with development being completed for the site in various stages from the late 1980's through to the 2000's. Previous site plan approval for the site included commercial development concepts for the northern lands, which have remained undeveloped for the last 30+ years. The client previously received permission rezone this portion of the existing site to allow for and residential use. A copy of the Architectural Site Plan upon which this report is based has been provided in **Appendix A**. The plan identifies 60 units which consist of 1 and 2 bedroom stacked townhouse units with attached garages. The site will share services and roads with the existing commercial site and will consist of new on-site private roadways, on-site dedicated private parking areas and a private amenity area.

1.3 Previous Studies

Design Brief, Orleans Gardens Pads A & B, prepared by IBI Group July 2013
 This report was not approved, and the application was ceased. The report demonstrated that storm, sanitary and water service allocations for commercial buildings which differed from the original site plan from 1988.

Servicing reports or memorandums were unable to tracked through the City's archive database, nor through CCL records for which IBI maintains access to. Various servicing, and grading plan drawings from original site plan application and design are included in **Appendix A**.

1.4 Guidelines and Standards

This evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01, the June 2018 Technical Bulletin ISTB-2018-04, October 2019 Technical Bulletin 2019-01, and the July Technical Bulletin 2019-02.

It also considers the City of Ottawa Water Distribution Design Guidelines (OWDDG), and the 2010 Technical Bulletin 2010-02, the 2014 Technical Bulletin 2014-02, and the 2018 Technical Bulleting 2018-02.

All specifications are as per current City of Ottawa standards and specifications, and Province of Ontario (OPSS/D) standards, specifications, and drawings.

1.5 Pre-Consultation Meeting

The City of Ottawa hosted a virtual pre-consultation meeting on September 27th, 2022. Notes of the meeting are provided in **Appendix A**. There were no major engineering concerns flagged in this meeting. The City of Ottawa Servicing Study Checklist has also been included in **Appendix A**.

1.6 Environmental Issues

There are no environmental issues related to this site.

There are no existing watercourses or drainage features associated with this site.

1.7 Geotechnical Considerations

Paterson Group Inc. was retained to prepare a geotechnical investigation for the site. The objectives of the investigation were to prepare a report to:

• To provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations.

The geotechnical investigation report PG3068-1 Dated September 13, 2013 confirmed that the site consists a stiff clay crust over a deep sensitive silty clay deposit. These conditions will provide a suitable base for construction. The subject site is subject to a 1.0m grade raise restrictions.

The report contains recommendations which include but are not limited to the following:

Fill for roads to be suitable native material in 300mm lifts compared to 95% SPMDD

Pavement Structure - Car Parking Areas:

LOCAL ROAD THICKNESS

Asphaltic Concrete	50mm
OPSS Granular A Base	150mm
OPSS Granular B Type II Subbase	300mm

Pavement Structure - Private Roadways and Main Drive Aisles:

LOCAL ROAD	THICKNESS
Asphaltic Concrete	90mm
OPSS Granular A Base	150mm
OPSS Granular B Type II Subbase	450mm

• Pipe bedding and cover: The pipe bedding for sewer and water pipes placed on a relatively dry, undisturbed subgrade surface should consist of at least 150 mm of OPSS Granular A material. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm. The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to 300 mm above the obvert of the pipe. The material should be placed in 225 mm thick lifts and compacted to a minimum of 95% of its SPMDD.

2 WATER SUPPLY

2.1 Existing Conditions

The subject site is located within Pressure Zone 2E of the City of Ottawa's water distribution system.

The plaza is serviced by a 200 mm diameter watermain that connects to the 400 mm diameter watermain on Orleans Blvd and a 200 mm diameter watermain connection to the 600 mm diameter watermain on Jeanne D'Arc Blvd. The Orleans Gardens Plaza has several 150 mm and 200 mm diameter watermains that run throughout the site to service the different commercial buildings located within.

2.2 Design Criteria

2.2.1 Water Demands

The subject lands are proposed to consist of 4 buildings of Back-to-Back townhouses with a of 60 units. A water demand has been calculated using the following data as per table 4.2 of the Ottawa Design Guidelines – Water Distribution.

Townhouses
 Residential Average Day Demand
 2.7 person per unit
 280 l/cap/day

A watermain demand calculation sheet is included in **Appendix B** and the total demands for the townhouse units are summarized as follows;

Average Day 0.53 l/s
 Maximum Day 1.32 l/s
 Peak Hour 2.90 l/s

2.2.2 System Pressures

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure: Minimum system pressure under peak hour demand conditions

shall not be less than 276 kPa (40 psi).

Fire Flow: During the period of maximum day demand, the system pressure

shall not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure: Maximum pressure at any point in the distribution system shall not

exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system

pressure below 552 kPa.

2.2.3 Fire Flow Rate

The fire flow rate for the subject building is determined by the Fire Underwriters Survey (FUS) method in which the building construction type, type of occupancy, sprinkler system and

separation from adjacent building is considered. FUS calculations has been conducted for all townhouse blocks, 2 hour rated firewalls are used to breakup the blocks into smaller fire units in accordance with the FUS methodology. Results of the calculations results in a fire flow demand of 12,000 l/min for Building A, 12,000 l/min for Building B and 10,000 l/min for Buildings C and D. Copies of the FUS calculations is included in **Appendix B**.

2.2.4 Hydrant Spacing

Four fire hydrants have been added to the site to satisfy the fire hydrant spacing guidelines, this brings the total amount of of hydrants in proximity of the buildings to eight. The figure below illustrates the fire hydrant spacing on site.

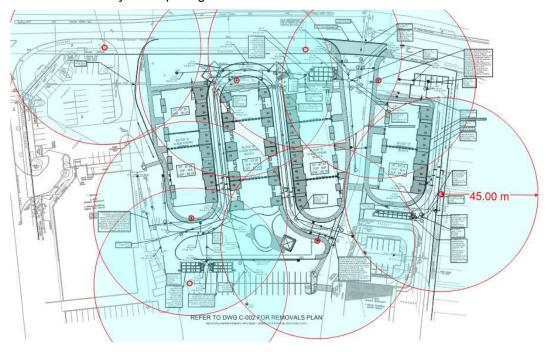


Figure 1.2 - Fire Hydrant Spacing

2.3 Proposed Water Plan

The watermain layout for this site is shown on Drawing C-001 General Plan of Services. As stated in Section 2.1 the plaza is serviced by existing 100 mm, 150 mm diameter and 200 mm diameter watermains. The 200 diameter watermain that runs along the eastern edge of the site will be able to adequately service the 'Block D' building.

To service Blocks A, B & C, two watermain connections will need to be made within the site to existing 100 mm and 150 mm diameter watermains to create a loop that will run along the access roads inside the new development area. There are 5 hydrants that service the new townhouse blocks, 4 of the hydrants are new with one installed on an existing main. Spacing of the hydrants is per Section 4.5.1 of the Ottawa Design Guidelines – Water Distribution.

City of Ottawa has provided the hydraulic boundary conditions at both the 406 mm watermain on Orleans Gardens Blvd and the 305 mm watermain on Jeanne D'Arc Blvd. A copy of the boundary conditions is included in **Appendix B** and summarized as follows

Criteria	Hydraulic Head (m)		Pressure (psi)	
Connection Locaiton	Orleans Gardens Blvd	Jeanne D'Arc Blvd	Orleans Gardens Blvd	Jeanne D'Arc Blvd
Maximum HGL	130.3	130.4	63.2	62.8
Peak Hour	127.3	127.3	58.9	58.4
Max Day Plus Fire Flow	128.8	127.5	59.6	58.6

Ground elevation of Orleans Gardens Blvd: 85.9 m

Ground elevation of Jeanne D'Arc Blvd: 86.2 m

Hydraulic modeling of the watermains in this area was conducted with the InfoWater 12.4. Update #5 program by Innovyze. Results of the analysis is summarized as follows for each scenario and output from the water model is included in **Appendix B**.

Basic Day (Maximum Pressure)

The maximum basic day pressure on the site is 431.55 kPa at Node J01. As this does not exceed 553 kPa (80 psi) pressure reducing control in the form of pressure reducing valves at the building in accordance with Technical Bulletin ISDTB-2014-02 is not recommended for all buildings.

Peak Hour (Minimum Pressure)

The lowest peak hour pressure on the site is 405.08 kPa which exceeds the minimum requirement of 278 kPa (40 psi).

Max Day and Fire (Fire Flows)

The lowest design fire flow is 186.08 l/s (11,164.8 l/min) at the node H1 which represents the hydrant at the south end of Building A which exceeds the required fire flow of 11,000 l/min for Building A. All other hydrant nodes have design flows over 200 l/s (12,000 l/min) which exceeds the required fire flows for the remainder of the buildings.

3 WASTEWATER DISPOSAL

3.1 Existing Conditions

As previously noted, the existing site was developed in the late 1980s through the 2000's. The wastewater disposal system was previously constructed to service the entire commercial parcels lands, and is currently operational.

3.2 Design Criteria

The sanitary sewers for the subject site will be based on the City of Ottawa design criteria. It should be noted that the sanitary sewer design for new sewers in this study incorporates the latest City of Ottawa design parameters identified in Technical Bulletin ISTB-2018-01. Some of the key criteria will include the following:

Demand per capital
 280 litres/person/day

Peaking factor
 Harmon formula where K=0.8

Infiltration allowance 0.33 l/s/ha

Velocities
 0.60 m/s min. to 3.0 m/s max.

Minimum Pipe Size Residential
 Minimum Pipe Size Commercial
 200mm @ 0.35%
 250mm @ 0.25%

Pre-Dev Commercial Flow 35,000 L/Ha/Day (based on OSDG prior to 2018)

Pre-Dev Commercial Peak Factor 1.5

3.3 Recommended Wastewater Plan

The sanitary system will consist of a new 250mm sewer through the redevelopment plan to service the commercial site to the west. An existing sewer required relocation due to conflict with proposed Block 'C', and its flows will be conveyed through the new private streets and will remain a 250mm diameter, per OSDG for sewers servicing ICI lands. The remainder of the sewers within the redevelopment plan which service only residential blocks will be sized to 200mm. Sewers will be installed at normal depth and slope and have been designed using the criteria noted above in section 3.2.

The predevelopment wastewater allocation for the redevelopment lands can be calculated based using the 1988 Servicing Plan, the total redevelopemt area is 1.54 ha and which contains "FUTURE DEV" building Area of 0.13Ha at a commercial flow of 35,000 L/Ha/Day (OSDG prior to 2018), with a peaking factor of 1.5, for a total peak flow average allocation of 0.6 L/s.

The proposed redevelopment will have a peak flow of 1.86 L/s, refer to Sanitary Sewer Design Sheet in Appendix C for supporting calculations. Since the infiltration allowance area is unchanged between pre- and post-development, with no new areas being added, the total increase in flow from the site is 1.26 L/s. This flow increase is well within the residual capacity of all existing on-site. It is expected that this marginal increase in flow will have a negligible impact on the downstream wastewater system.

A copy of the sanitary sewer design sheet and the sanitary drainage area plan can be found in **Appendix C.** Please refer to the site servicing plan 122764-C-001 in **Appendix A** for further details.

In order to maintain service to the existing commercial block to the west of the redevelopment area, the realigned 250mm privately owned sanitary sewer configuration required a longer length

than previously constructed. Invert changes at the manholes on the 250mm run through the redevelopment are designed at 0.02m, regardless of angle, which is less than the minimum stipulated in Section 6.2.12 of the OSDG.

4 SITE STORMWATER MANAGEMENT

4.1 Existing Conditions

As previously noted, the subject lands are part of an existing development plan, and remained undeveloped through the years due to market considerations. The area of redevelopment has been allocated to the existing storm sewer system, where the majority of the area exists as asphalt parking lot with some grassy soft scape along Jean D'Arc Boulevard. A stormwater management report was not available for the existing development.

4.2 Design Criteria

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

Design Storm
 1:2 year return (Ottawa)

Rational Method Sewer Sizing

Initial Time of Concentration
 10 minutes

Runoff Coefficients for new areas
 Calculated Individually

Pipe Velocities
 0.80 m/s to 6.0 m/s

Minimum Pipe Size 250 mm diameter

(200 mm CB Leads)

4.3 System Concept

The redevelopment configuration requires to the relocation of some of the existing on-site storm sewers.

Where existing drainage is captured, unaltered by grading adjustments, new sewers have been sized to convey those flows uncontrolled to a 2-year design storm, with an anticipated starting time of concentration of 15minutes plus the length of the existing sewer network at an assumed velocity of 1.0m/s. The 15minute starting Tc is consistent with sewer design principles of the era.

Where redeveloped areas are provided with a new storm sewer, the sewer has been sized to the 2-year storm design, per OSDG.

In some instances, the existing pipes are shown in the new storm sewer design sheet with negative capacity, they convey existing development flows. Without access to the 1988 site development calculations, we are unable to determine the reasoning for this. It is possible that the existing site had a stormwater management plan implemented with restricted flow rates, which in turn may have been used for sewer sizing, or that a higher 20 minute starting Tc may have been used for sewer sizing, both of these possibilities would reduce the design flow solving the theoretical negative capacity issues which are presented in the new storm sewer design sheet. There are no basements on site, therefore some minor potential for surcharging would have no impact on any of the existing or proposed buildings.

4.4 Stormwater Management

4.4.1 Restricted Flowrate

An offsite dual drainage release was not provided by the downstream system. In pre-consultation with the City of Ottawa, a restricted flow rate for the new development area was determined to be a 5yr release, based on a runoff coefficient of 0.5 and a Tc of 10minutes.

STORM EVENT	CRITERIA AND FORMULAS
Redevelopment Area (ha), A	1.54Ha
Runoff Coefficient, C	0.50
Time of Concentration, Tc	10min
5yr Storm Intensity, I	=998.071 / (Tc + 6.053) ^{0.814}
	=998.071 / (10 + 6.053) ^{0.814}
	=104.19
Restricted Flowrate, Qr	=2.78 x A x C x I
	=2.78 x 1.54 x 0.50 x 104.19
	=223.04 L/s

Therefore, the maximum allowable release from the redevelopment area is 223.04 L/s.

4.4.2 Uncontrolled Release

There are several areas which tie into existing storm sewers, where existing catchbasin are maintained, however the drainage area and grading conditions have changed from predevelopment. As a result, we have designed these areas to be uncontrolled release for the 100 year rainfall event is used for the uncontrolled areas.

STORM EVENT	CRITERIA AND FORMULAS
Uncontrolled Area (ha), A	0.05
Runoff Coefficient, C	0.85
Time of Concentration, Tc	10min
100yr Storm Intensity, I	=1735.688 / (Tc + 6.014) ^{0.820}
	=1735.688 / (10 + 6.014) ^{0.820}
	=178.56
Uncontrolled Flowrate, Qu	=2.78 x A x 1.25C x I
	=2.78 x 0.05 x 1.25(0.85) x 178.56
	=26.37 L/s

Therefore, the uncontrolled release from site can be quantified as 26.37L/s.

4.4.1 Maximum Allowable Release Rate

The maximum allowable release rate to the storm sewer system is the restricted flowrate less the uncontrolled release.

Qmax = Qr - Qu

Qmax = 223.04 L/s - (26.37 L/s)

Qmax = 196.66 L/s

Therefore, the maximum allowable release rate to the sewer system is 175.57 L/s.

Surface flows in excess of the site's allowable release rate will be stored on site in strategic surface storage areas and underground storage system or pipes, and gradually released into the minor system to respect the site's allowable release rate. The maximum static surface retention depth located within the redeveloped areas is limited to 300mm as shown on the **Ponding Plan** located in **Appendix D**. Overland flow routes will be provided in the grading to permit emergency overland flow. Each building entrance is provided with a minimum of 300mm freeboard from adjacent ponding areas.

The modified rational method was used to evaluate the on-site stormwater management for the redevelopment area. The total restricted flow rate through the minor system will be the maximum allowable release rate of **175.57 l/s**. This will be achieved by the used of Inlet Control Devices (ICD's) placed strategically in site catchbasins or maintenance holes. A summary of the ICD's, their corresponding storage requirements, storage availability, and associated drainage areas has been provided below.

DRAINAGE AREA/ICD LOCATION	ICD RESTRICTED FLOW (L/s)	100 YEAR STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	Underground Storage *Provided (m3)	100yr OVERFLOW
MH18	80	180.49	99.40	88.81	0
MH11	40	25.99	29.26	0	0
CBMH05	10	99.10	107.50	0	0
CBMH09	10	37.14	37.83	0	0
MH21	15	97.18	6.56	93.94	0
MH25	40	40.62	2.90	43.31	0
TOTAL	195	480.52	283.45	226.06	0

^{*}Underground storage provided within storm sewers, dedicated storage system, or combination.

Where underground storage is required, a summary of the underground storage calculations, including dedicated storage system sizing information has been provided in **Appendix D**. There are three underground storage systems, which utilizes arched HDPE chambers and clear stone surround to meet the storage target for the prescribed area. Sample shop drawings have also been provided in **Appendix D**.

The total controlled release rates from the redevelopment areas are less than the maximum allowable, therefore the stormwater management objective have been met.

4.4.2 2 Year Ponding

A review of the 2 year ponding has been completed using the modified rational method. A minimum Tc of 10min has been used. Where volumes are calculated as a negative value, 0.0m3 has been shown. A summary of each drainage area has been provided below.

DRAINAGE AREA	Total 2-Year Ponding Volume (m3)	2-year Ponding Depth (m)	Comment
MH18	32.60	0.0	Contained within U/G Storage
MH11	1.55	0.13	Minimal Ponding during 2year event
CBMH05	21.56	0.0	Minimal Ponding during 2year event
CBMH09	3.29	0.13	Minimal Ponding during 2year event
MH21	22.12	0	Contained within U/G Storage
MH25	5.30	0	Contained within U/G Storage

Drainage areas MH11, CBMH09 and CBMH05 have some demonstrated 2 year ponding in the modified rational method storm water management calculations (1.55m3, 2.68m3 and 21.56m3 respectively). Based on ODSG underground storage cannot be accounted for unless a reduction of 50% of the release rate is applied. However, each of these areas is able to meet the 100 year stormwater management requirements without the use of underground storage. Notwithstanding that, each of these areas includes some underground storage capacity upstream of the ICD, which exceeds the calculated 2 year ponding volumes. Therefore, ponding during the 2 year event can be contained within the proposed infrastructure. Storage calculations for these three areas can be found in **Appendix D**. They area also summarized in the table provided below.

DRAINAGE AREA	Total 2-Year Ponding Volume (m3)	Uncounted Structure Storage (m3)	
MH11	1.55	9.42	
CBMH09	2.68	5.01	
CBMH05	21.56	36.8	

A letter from the owner accepting a small amount of 2 year ponding for this private site has been provided in **Appendix D**.

4.4.3 100 year + 20% Stress Test

A cursory review of the 100yr event + 20% has been performed using the modified rational method. The Peak flow from each area during a 100year event has been increased by 20%. The calculations have been included in **Appendix D**.

A summary of the required storage volumes, and overflow balances is provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100yr20 STORAGE REQUIRED (m³)	STORAGE PROVIDED (m³)	100yr20 OVERFLOW (m3)
MH18	80	233.39	188.21	45.18
MH11	40	35.03	29.26	5.77
CBMH05	10	125.52	107.50	18.02
CBMH09	10	30.79	39.60	0.00
MH21	15	123.10	100.50	22.60
MH25	40	53.55	46.21	7.34

TOTAL	195	601.38	511.28	98.91

^{*}Overflow from R3 to R4, and from S2 to S5.

Where overflow is noted, the peak overflow volume can be reverse calculated using the peaking time of concentration to determine a flow rate. Once the flow rate is established an open channel flow depth calculation was performed at each spill location to determine the depth of the stress test overflow. A copy of the calculations has been provided in **Appendix** D. A summary of the overflow rates and depths is provided below.

DRAINAGE AREA	100yr20 OVERFLOW (m3)	Peaking Time of Concentration (Tc)	OVERFLOW (L/s)	OVERFLOW DEPTH (m)
MH18	45.18	35	21.51	0.02
MH11	5.77	8	12.01	0.02
CBMH05	18.02	36	5.46	0.03
CBMH09	0.00	22	0.00	0.00
MH21	22.60	72	5.23	0.02
MH25	7.34	20	6.12	0.02
TOTAL	112.65		49.35	

All overflow depths have been rounded up to the nearest 0.01 for consistency on the ponding plan. Where stress test overflow occurs, the overflow does not touch the building, or the building openings, and is well within the 300mm provided freeboard over the static ponding elevation.

4.4.4 Hydraulic Grade Line

A Hydraulic Grade Line analysis was not completed in the original site plan from 1988. All buildings on site consist of low-rise commercial buildings with slab on grade construction (i.e. no basements).

Depending on storm intensity, localized surcharging of the storm sewer may occur in existing and proposed conditions. The proposed residential development will also consist of slab on grade buildings, therefore there are no hydraulic grade line implications associated with the proposed buildings.

The three locations that utilize UGS all have a minimum vertical separation of at least 0.45m between the inverts of the UGS and their individual connections to the main sewer. This vertical separation is beyond a standard 300mm freeboard, thus reducing the concern associated with the impacts of a surcharge system.

DRAINAGE AREA	STORAGE INVERT (M)	SURCHARGE PIPE OBVERT (M)	DIFFERENCE (M)
UGS21	84.000	82.765	1.235
UGS25	84.400	82.761	1.639
UGS75	84.000	83.513	0.487

^{**}Storage provided in R4 and S5 reduces the total overflow.

5 SOURCE CONTROLS

5.1 General

On site level or source control management of runoff will be provided to provide quality control for the subject lands. Such controls or mitigative measures are proposed for the development not only for final development but also during construction and build out. Some of these measures are:

- flat lot grading;
- split lot drainage;
- Roof-leaders to vegetated areas where possible;
- vegetation planting

5.2 Lot Grading

In accordance with local municipal standards, the parking lots will be graded between 1.5% and 5.0%. Private roadways will have a minimum gradient of 0.5% along barrier curbs. Most landscaped area drainage will be directed into a dedicated drainage system, and connects to the storm sewer system. Copies of the grading plans have been included in **Appendix E**.

5.3 Roof Leaders

This development will consist of stacked homes and apartments. It is proposed that roof leaders from these units be constructed such that runoff is directed to grass areas adjacent to the units. This will promote water quality treatment through settling, absorption, filtration and infiltration and a slower release rate to the conveyance network.

5.4 Vegetation

As with most site plan agreements, the developer will be required to complete a vegetation and planting program. Vegetation throughout the development including planting along roadsides and within landscape and amenity areas provide the opportunity to improve vegetation.

6 CONVEYANCE CONTROLS

6.1 General

Besides source controls, the development also proposes to use several conveyance control measures to improve runoff quality. These will include:

catchbasin and maintenance hole sumps; and

6.2 Catchbasins

All catchbasins within the development, either rear yard or street, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both rear yard and street catchbasins will be fabricated to OPSD 705.010 or 705.020. All storm sewer maintenance holes servicing local sewers less than 900 mm diameter shall be constructed with a 300 mm sump as per City standards.

7 SEDIMENT AND EROSION CONTROL PLAN

7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- silt sacks will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use.

7.2 Trench Dewatering

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

7.3 Bulkhead Barriers

At the first manhole constructed immediately upstream of an existing sewer, a $\frac{1}{2}$ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment-carrying flows, thus preventing any construction–related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

7.4 Seepage Barriers

These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the sediment and erosion control drawing. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

7.5 Surface Structure Filters

All catch basins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures will be covered to prevent sediment from entering the minor storm sewer system. Until rear yards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be equipped with geotextile filter socks. These will stay in place and be maintained during construction and until it is appropriate to remove them.

7.6 Stockpile Management

During construction of any development similar to that being proposed both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rear yard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern since these materials are quickly used and the mitigative measures stated previously, especially the use of filter fabric in catchbasins and manholes help to manage these concerns.

The roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

8 ROADS AND NOISE ATTENUATION

Vehicular access to the redevelopment area is provided by two private entrances from within the existing Orleans Gardens commercial development. The Orleans Gardens commercial development has multiple private entrances, some signalized, others unsignalized off Orleans Boulevard, and Jean D'Arc Boulevard.

There are sidewalks proposed within the redevelopment. They vary from 1.2 to 1.8m in width. Pedestrian access to the site will be via the existing private roadway, each with sidewalks connecting to Jean D'Arc Boulevard.

The site has been designed in order to provide curbside municipal waste disposal.

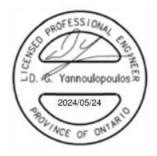
There are no bus routes proposed within the redevelopment area.

Jean D'Arc is an Arterial Road which would generate significant noise. An environmental noise impact assessment is required for this site.

9 RECOMMENDATIONS

Water, wastewater and stormwater systems required to redevelop a portion of the 1615 Orleans Boulevard site will be designed in accordance with MOE and City of Ottawa's current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the proposed sediment and erosion control plan during construction will minimize harmful impacts on surface water.


Final detail design will be subject to governmental approval prior to construction, including but not limited to the following:

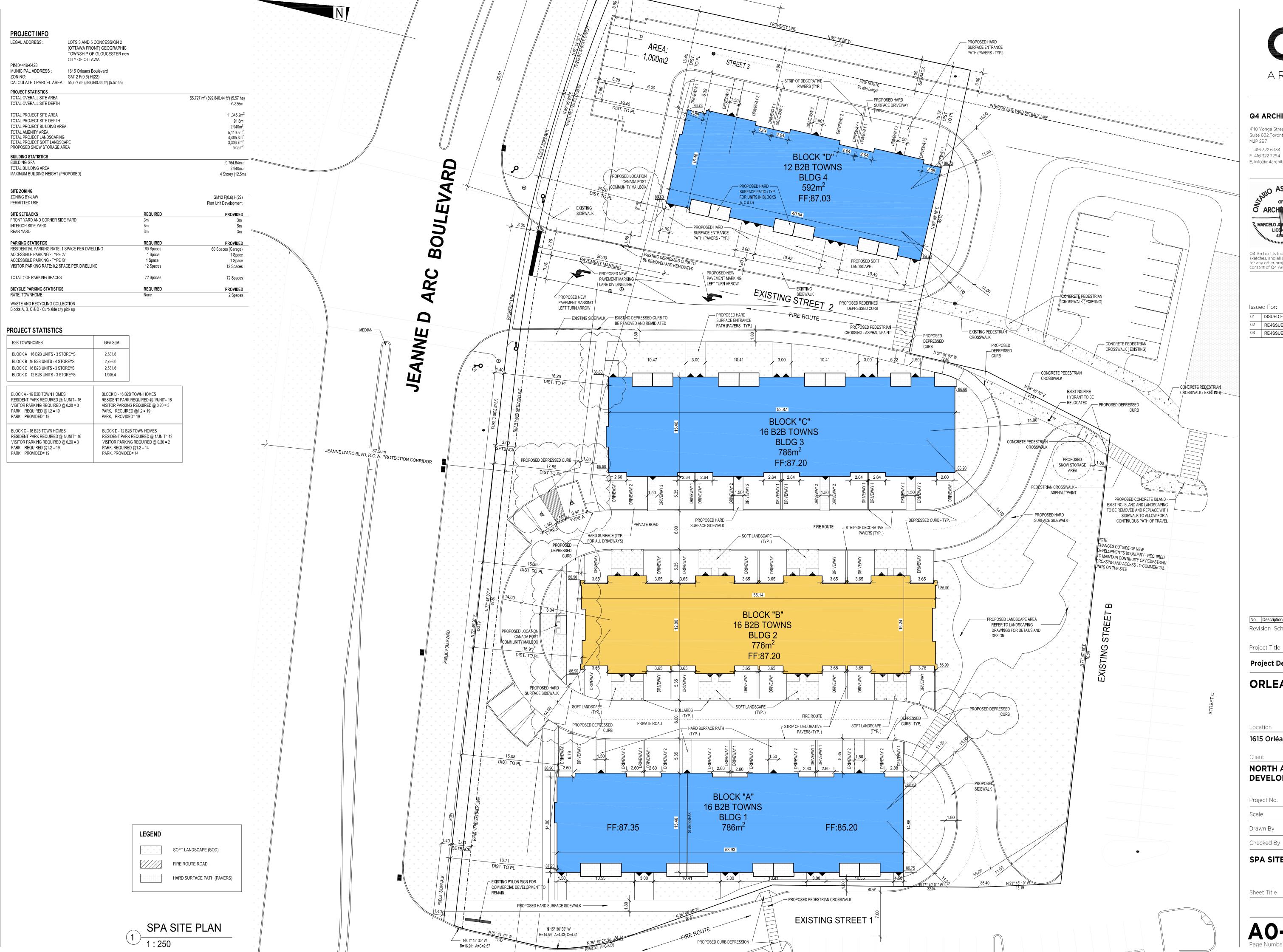
Commence Work Order: City of Ottawa

ECA for Sewage Works: MOECP Transfer of Review by City of Ottawa

Watermain Approval: City of Ottawa

Report prepared by:

Demetrius Yannoulopoulos, P.Eng. Director


Ryan Magladry, C.E.T. Project Manager

Arthur Beresniewicz, E.I.T. Engineering Intern

Engineering intern

APPENDIX A

- Site Plan
- Site Servicing Plan 122764-C-001 Preconsultation Meeting City Comments
- Preconsultation Meeting City Engineering Comments
- CCL Original Development Servicing Plan (Circa 1988) CCL Original Development Grading Plan (Circa 1988)
- Development Checklist

ARCHITECTS

Q4 ARCHITECTS INC. 4110 Yonge Street Suite 602, Toronto, ON. M2P 2B7 T. 416.322.6334

F. 416.322.7294 E. info@q4architects.com TN = TRUE NORTH

PN = PROJECT NORTH The contractor / builder must verify all dimensions on the job and report any discrepancy to the designer before proceeding with the Drawings are NOT to be scaled. All drawings and specifications are instruments of service and the copyright property of the designer and

sketches, and all digital information. They may not be copied or used for any other projects or purposes or distributed without the written consent of Q4 Architects Inc.

Issued For:

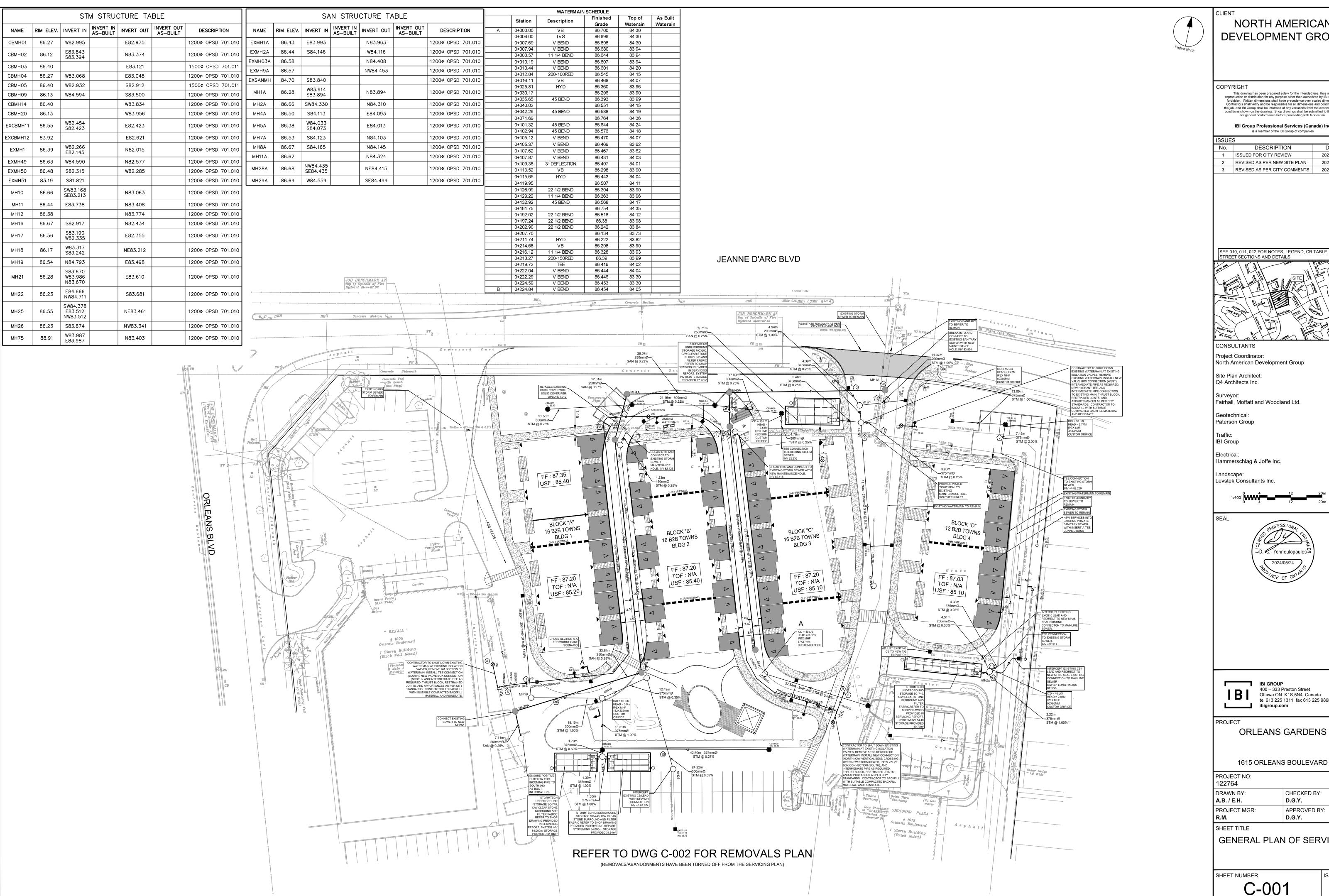
1554	133464 1 011					
01	ISSUED FOR SPA #1	02/10/2023				
02	RE-ISSUED FOR SPA #1 - City Comments	08/31/2023				
03	RE-ISSUED FOR SPA #2 - City Comments	05/24/2024				

No Description Revision Schedule

Project Description

ORLEANS GARDENS

1615 Orléans Blvd. Orléans, ON K1C 7E2


NORTH AMERICAN DEVELOPMENT GROUP

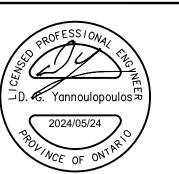
17047 Project No. As indicated Scale Drawn By Checked By Checker

SPA SITE PLAN

Sheet Title

BLOCKS A, B, C & D




NORTH AMERICAN **DEVELOPMENT GROUP**

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

IBI Group Professional Services (Canada) Inc.

SUES				
No.	DESCRIPTION	DATE		
1	ISSUED FOR CITY REVIEW	2023-02-06		
2	REVISED AS PER NEW SITE PLAN	2023-09-06		
3	REVISED AS PER CITY COMMENTS	2024-05-24		

400 – 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

1615 ORLEANS BOULEVARD

GENERAL PLAN OF SERVICES

3

ISSUE

D07-16-22-(

No.

FILE

18981

AN NO.

Pre-Application Consultation Meeting – City Comments

Property Address: 1615 Orleans Boulevard

File Number: PC2022-0222

Description: Application for Site Plan Control to build 60 back-to-back stacked townhouses, including required parking spaces and outdoor amenity space.

Meeting Location: Virtual – Microsoft Teams

Meeting Date: September 27, 2022

Submission Requirements

Documents required in support of this application are highlighted in the attached Study and Plan Identification List.

When checking for Application Completeness the City refers to the requirements provided in Ottawa's <u>Guide to preparing studies and plans</u>. Additional information is also available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>.

These pre-application consultation comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another preconsultation meeting and/or the submission requirements may change.

Application Type and Fees

The application fees (2022 rates) for the proposed applications are as follows. Application fees may vary from now to time of submission:

Application Type	Planning / Legal Fee	Initial Engineering Design Review and Inspection Fee	Conservation Authority Fee (Initial)	Total (HST may apply to part or all)
Site Plan Control - Complex	\$46,037.00	\$10,000	n/a (not in regulated area)	\$56,037.00

Staff Comments

Planning Comments - Kelly Livingstone

Policy Comments

2003 Official Plan

- Site designated General Urban Area
- Jeanne d'Arc is a Spine Route, Transit Priority Corridor, and an Existing Arterial road

2021 (New) Official Plan

- Ottawa's New Official Plan was adopted by Council in November 2021.
- With the new Official Plan the site received some new planning policy.
- The Site is in the **Suburban Transect**, and is designated **Neighbourhood**, with an **Evolving Neighbourhood** designation along the frontage to Jeanne d'Arc.
- Jeanne d'Arc is now a Minor Corridor as well. It is still considered a transit priority corridor and existing arterial.

Staff would encourage the exploration of a revised layout that is more in keeping
with the <u>minor corridor</u> and <u>evolving neighbourhood</u> designations in the new
Official Plan. These designations speak about a gradual evolution to more urban
built form patterns. The orientation of the townhouse units, with parking abutting
the street is not desirable and may not achieve these objectives. The design
suggestions provided by Urban Design may better accomplish these goals and
could be preferable if you are willing to explore them. I'm happy to arrange for
another pre-consultation meeting to discuss.

Zoning Comments

- The site is zoned GM12, F(0.6), H(22)
- GM12 Permitted residential uses include: apartment dwellings low and medium rise, planned unit development, stacked dwelling, and townhouse dwellings.
- F(0.6) Max FSI is 0.6, about 33,000 sq.m. based on site area. Confirmed in a
 previous pre-consultation that FSI is calculated over the entire site, so this also
 includes the commercial uses. Future plans will have to show the full site in a
 calculation.
- H(22) Max height is 22m
- Any development would be a Planned Unit Development over the entire site.
 Information is limited on the plans submitted, which is fine, but I can't confirm

zoning complies at this point. There didn't seem to be glaring concerns however so long as FSI is less than 0.6.

Additional Items

- I encourage you to reach out to the local ward councillor before making a submission this is Ward 2, Laura Dudas this may change with the municipal election in less than a month.
- The City will soon be changing its Site Plan and Zoning By-law Amendment processes in response to Bill 109. A follow up pre-application consultation, and integration into this new planning process will be required if your application is submitted on or after January 1, 2023. More details can be shared at a future date.
- The High Performance Development Standards have been approved by Council
 and will apply once the New Official Plan is officially in effect. Site Plan metrics
 include such things like Building Energy Efficiency, Accessibility, Tree Planting
 and Species requirements. You can view them all by searching it up on the City's
 website.
 - The current Tier 1 High Performance Development Standard Requirements are provided on the linked page: https://engage.ottawa.ca/ottawa-high-performance-development-standard1/news feed/hpds-requirements-site-plan
 - These will be design standards required to be shown on plans and met through Site Plan review and approval.

Transportation Planning - Mike Giampa

- TIA is not required
- A Noise Study is required.
- Jeanne D'Arc has a ROW protection of 37.5m.
- Regarding the internal private street layout, an appropriate throat length needs to be maintained at the signalized access. Refer to TAC guidelines.

Engineering – Rubina Rasool

- Engineering comments are provided in the attached "Preconsultation Engineering Comments 1615 Orleans" document.
- Engineering plan and report requirements are included in the "Preconsultation Required Plans 1615 Orleans" document.

Parks Planning – Phil Castro

Parks & Facilities Planning's (PFP) comments on the above-noted development application are below:

 Please note that PFP has recently undertaken a legislated replacement of the Parkland Dedication By-law, with the new by-law approved by City Council on August 31, 2022. To ensure you are aware of the parkland dedication requirements for your proposed development, we encourage you to familiarize

yourself with the staff report and By-Law that were approved by Council on August 31, 2022.

 In accordance with the City of Ottawa's Parkland First Policy, on development or redevelopment sites that generate a minimum of 400m2 of parkland, PFP will take the maximum amount of parkland permitted as specified by the Parkland Dedication By-law. The land dedicated as parkland will meet the requirements of the Parkland Dedication By-law and Park Development Manual, to the satisfaction of PFP in consultation with Planning, Real Estate and Economic Development (PRED).

Please provide PFP with a surveyor's note (or equivalent) which specifies the gross land area of the property as well as the area to be redeveloped with your application.

Urban Design - Selma Hassan

- 1. A Design Brief is required with the submission. A Terms of Reference for the Brief is attached; all items highlighted in yellow must be included in the Brief.
- 2. Pedestrian connections, from the Jeanne D'Arc sidewalk, across the frontages of all the new units are important. These were shown on the applicant's preconsultation drawings and should all be retained.
- 3. Understanding the site's limitations, we feel that there are still opportunities to explore alternative layouts that improve the interface with Jeanne D'Arc, consolidate open space for greater resident benefit and don't reduce unit counts.
 - a. The attached PDF is a very rough illustration of one possibility. On the PDF, the red lines are roads, the yellow and blue blocks are the proposed residential blocks pushed further into the site, the orange is visitor parking and the green is open space. While, surface parking is still visible from Jeanne D'Arc, a landscaped open space would be the primary impression from the street. The open space would also create a reasonable sized area for play for the children who are likely to be living in these family sized units.
- 4. The infill is primarily surrounded by commercial buildings and parking. To help establish a more residential feel to the development, planting in front of and around the units, as well as in the open space, is important. As illustrated in the applicant's package, the fronts of the units will essentially be hardscape (image below as example). The frontages need to include soft surface areas. While, the driveways and walkways can't be soft surface, the area between the stoop and street can be, and should include trees wherever there is enough soil volume.

The landscape plan should show trees:

- In the green areas shown in the PDF adjacent to Street B.
- For Block D, along the unit fronts, in the area to the west adjacent to Jeanne D'Arc, and along the rear property line abutting the existing residential. Low planting should screen the surface parking from Jeanne D'Arc.
- Along the frontage of Jeanne D'Arc, streets 1 and 2. The visitor parking should be screened with vegetation.
- In the open space are shown in the PDF. The planting should create park like area for residents and patrons of the commercial uses. The area would also benefit from seating opportunities
- 5. Architecture a slight simplification of the colours and / or material selection is suggested.
- 6. Questions:
 - a. As part of the redevelopment, will the pylon sign at the southern entrance to the plaza be relocated?
 - b. How will residential garbage be handled? Will there be a common garbage area? If yes, where?

Forestry - Mark Richardson

LP tree planting requirements:

For additional information on the following please contact tracy.smith@Ottawa.ca

Minimum Setbacks

- Maintain 1.5m from sidewalk or MUP/cycle track or water service laterals.
- Maintain 2.5m from curb
- Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.

Maintain 7.5m between large growing trees, and 4m between small growing trees.
 Park or open space planting should consider 10m spacing, except where otherwise approved in naturalization / afforestation areas. Adhere to Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.

Tree specifications

- Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
- Maximize the use of large deciduous species wherever possible to maximize future canopy coverage
- Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and include watering and warranty as described in the specification (can be provided by Forestry Services).
- Plant native trees whenever possible
- No root barriers, dead-man anchor systems, or planters are permitted.
- No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree)

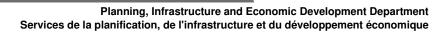
Hard surface planting

- Curb style planter is highly recommended
- No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.
- Trees are to be planted at grade

Soil Volume

• Please document on the LP that adequate soil volumes can be met:

Tree Type/Size	Single Tree Soil	Multiple Tree Soil
	Volume (m3)	Volume (m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15


Sensitive Marine Clay

Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines

?

Tree Canopy Cover

- The landscape plan shall show how the proposed tree planting will replace and increase canopy cover on the site over time, to support the City's 40% urban forest canopy cover target.
- At a site level, efforts shall be made to provide as much canopy cover as possible, through tree planting and tree retention, with an aim of 40% canopy cover at 40 years, as appropriate.
- Indicate on the plan the projected future canopy cover at 40 years for the site.

Site Plan Pre- Application Consultation Notes

Date: Tuesday, September 27, 2022.				
Site Location: 1615 Orleans Blvd				
Type of Development: $oxtimes$ Residential ($oxtimes$ townhomes, $oxtimes$ stacked, $oxtimes$ singles,				
\square apartments), \square Office Space, \boxtimes Commercial, \square Retail, \square Institutional,				
☐ Industrial, Other: N/A				
Infrastructure				
Water				
Existing public services:				
 Jeanne D'Arc Blvd – 610mm backbone (existing service connection to remain) 				
 Orleans Blvd – 406 DI watermain (existing service connection) 				
Watermain Frontage Fees to be paid (\$190.00 per metre) \square Yes \boxtimes No				
Boundary conditions:				
Civil consultant must request boundary conditions from the City's assigned Project Manager prior to				
first submission.				
• Water boundary condition requests must include the location of the service(s) and the expected				
loads required by the proposed developments. Please provide all the following information:				
 Location of service(s) 				
 Type of development and the amount of fire flow required (as per FUS, 1999) 				
 Average daily demand: L/s 				
Maximum daily demand: L/s				
 Maximum hourly daily demand: L/s 				
Fire protection (Fire demand, Hydrant Locations)				
 Please submit sanitary demands with the water boundary conditions to identify any capacity 				

General comments

constraints at the local pumping station

- Service areas with a basic demand greater than 50 m³/day shall be connected with a minimum of two water services, separated by an isolation valve, to avoid creation of vulnerable service area.
- A District Metering Area Chamber (DMA) is required for services 150mm or greater in diameter.

Sanitary Sewer
Existing public services:
 Jeanne D'Arc Blvd – 250mm Conc. (existing service connection)
Orleans Blvd – 375mm unknown
Is a monitoring manhole required on private property? ☑ Yes ☐ No
General comments
Please submit sanitary demands with the water boundary conditions to identify any capacity
constraints at the local pumping station.
 For concrete sewer pipe, maintenance holes shall be installed when the service is greater than 50% of the diameter of the mainline concrete pipe.
Storm Sewer
Existing public services:
 Jeanne D'Arc Blvd – 1350mm Conr. (existing service connection)
Orleans Blvd – 1050 Conr. mm unknown
Is a monitoring manhole required on private property? $oximes$ Yes $oximes$ No
General comments
Building foundation drains must be connected to a storm sewer that is operating in a free-flow
state
Stormwater Management
Quality Control:
Rideau Valley Conservation Authority to confirm quality control requirements.
Quantity Control:
Site is located within the Billberry Creek Area Subwatershed Study Area draining to the Ottawa
River. Please contact the RVCA for subwatershed study area requirements.
• Time of concentration (Tc): Tc = pre-development; maximum Tc = 10 min
• Allowable run-off coefficient: post-development to pre-development, max C = 0.5
• Allowable flowrate: Allowable flowrate: Control the 100-year storm events to the 5-year storm
event.
• The stormwater management for the entire site must be provided to demonstrate adequate
capacity in the private on-site network and that the site is within the overall site release rate
requirement.
Compared Compiles Designs Compared to
General Service Design Comments
• All structure must be a minimum of 1.0m from existing mains on-site. Sewer mains within 6.0m of
the building foundation must provide include a section within the geotechnical report discussing
the minimum separation distance between the mains and the building foundations for future maintenance and repair.
manitenance and repair.
Other
Capital Works Projects within proximity to application? ☐ Yes ☒ No
References and Resources

- As per section 53 of the Professional Engineers Act, O. Reg 941/40, R.S.O. 1990, all documents prepared by engineers must be signed and dated on the seal.
- All required plans & reports are to be provided in *.pdf format (at application submission and for any, and all, re-submissions)
- Please find relevant City of Ottawa Links to Preparing Studies and Plans below:
 https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans#standards-policies-and-guidelines

• To request City of Ottawa plan(s) or report information please contact the City of Ottawa Information Centre:

<u>InformationCentre@ottawa.ca<mailto:InformationCentre@ottawa.ca</u>> (613) 580-2424 ext. 44455

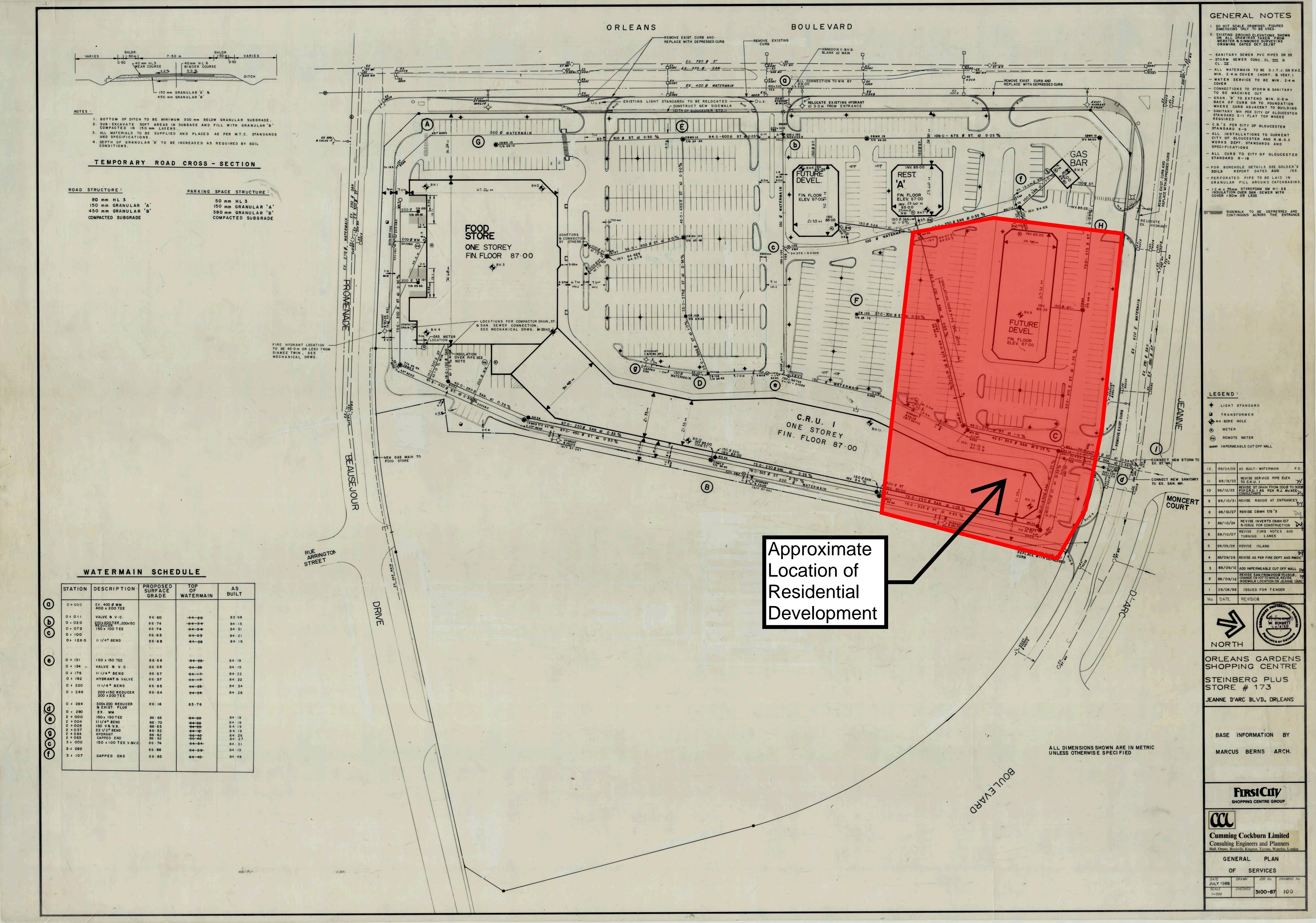
geoOttawa

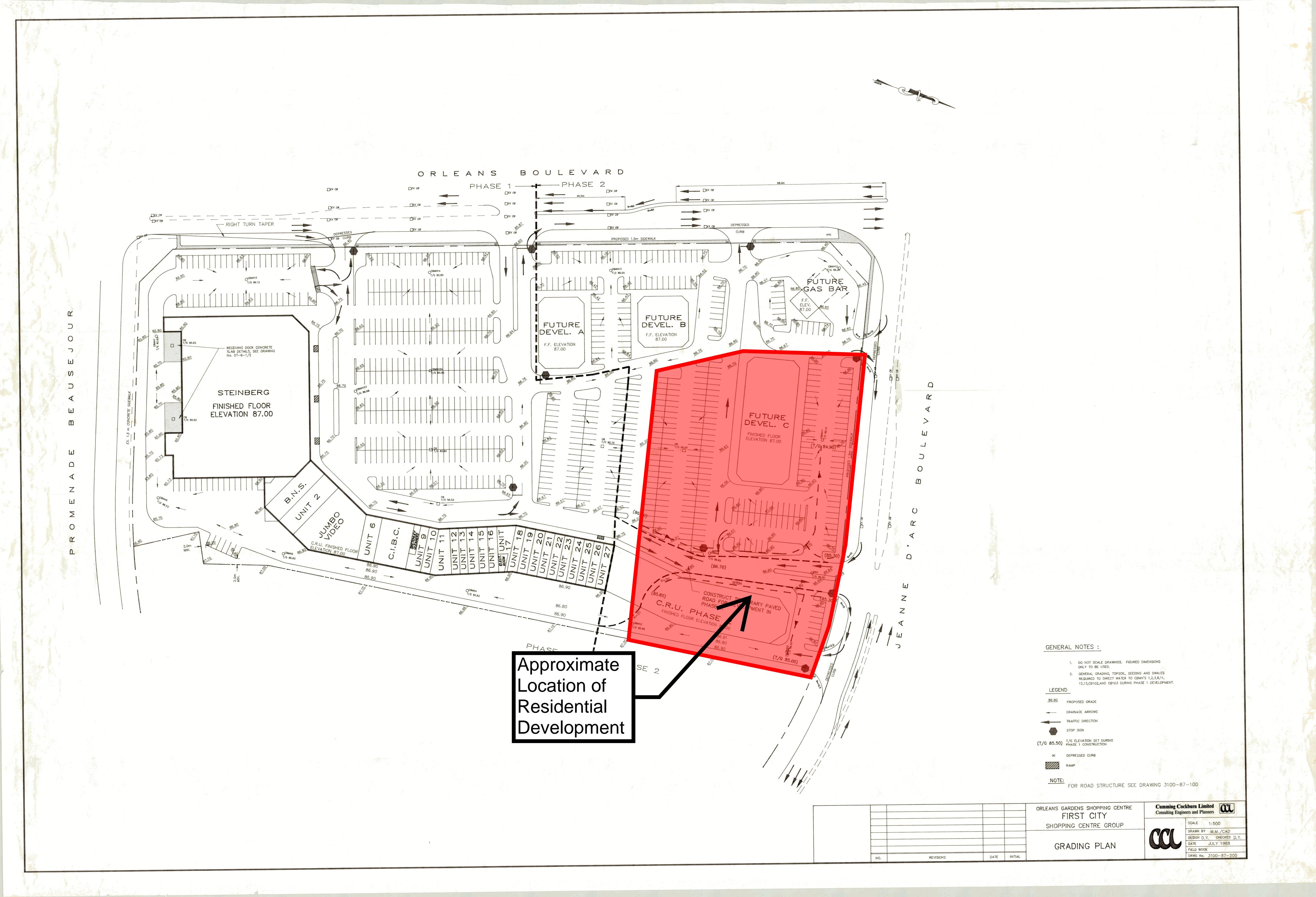
http://maps.ottawa.ca/geoOttawa/

SITE PLAN APPLICATION - Municipal servicing

For information on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans


S/Z	Number of copies	ENGINEERING		S/A	Number of copies
S		 Site Servicing Plan 	2. Site Servicing Brief	S	
S		3. Grade Control and Drainage Plan	4. Geotechnical Study	S	
		5. Composite Utility Plan	6. Groundwater Impact Study		
		7. Servicing Options Report	8. Wellhead Protection Study		
		9. Community Transportation Study and/or Transportation Impact Study / Brief	10. Erosion and Sediment Control Plan / Brief	S	
S		11. Storm water Management Brief	12. Hydro-geological and Terrain Analysis		
		13. Water main Analysis	14. Noise / Vibration Study	S	
		15. Roadway Modification Design Plan	16. Confederation Line Proximity Study		


S – Required for Site Plan Control/Subdivision

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, City Planning will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the City.

Notes:

- 4. Geotechnical Study / Slope Stability Study required as per Official Plan section 4.8.3. All site plan applications need to demonstrate the soils are suitable for development. A Slope Stability Study may be required with unique circumstances (Schedule K or topography may define slope stability concerns).
- 10. Erosion and Sediment Control Plan required with all site plan applications as per Official Plan section 4.7.3.
- 11. Stormwater Management Report/Brief required with all site plan applications as per Official Plan section 4.7.6.

Servicing study guidelines for development applications

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

□ Executive Summary (for larger reports only).□ Date and revision number of the report.

×	Location map and plan showing municipal address, boundary, and layout of proposed development.
×	Plan showing the site and location of all existing services.
	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
×	Summary of Pre-consultation Meetings with City and other approval agencies.
×	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
×	Statement of objectives and servicing criteria.
×	Identification of existing and proposed infrastructure available in the immediate area.
]	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).
]	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.
×	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.
	Proposed phasing of the development, if applicable.

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

- Reference to geotechnical studies and recommendations concerning servicing.
- All preliminary and formal site plan submissions should have the following information:
 - Metric scale
 - North arrow (including construction North)
 - Key plan
 - Name and contact information of applicant and property owner
 - Property limits including bearings and dimensions
 - Existing and proposed structures and parking areas
 - Easements, road widening and rights-of-way
 - Adjacent street names

4.2 Development Servicing Report: Water

П	Confirm consistency with Master Servicing Study, if available
×	Availability of public infrastructure to service proposed development
×	Identification of system constraints
×	Identify boundary conditions
×	Confirmation of adequate domestic supply and pressure
×	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
×	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
×	Address reliability requirements such as appropriate location of shut-off valves
	Check on the necessity of a pressure zone boundary modification.
×	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient

water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range

×	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure tha will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.
×	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.
×	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.
	4.3 Development Servicing Report: Wastewater
×	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).
	Confirm consistency with Master Servicing Study and/or justifications for deviations.
	Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.
×	Description of existing sanitary sewer available for discharge of wastewater from proposed development.
×	Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
	Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.
×	Description of proposed sewer network including sewers, pumping stations, and forcemains.
	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).
	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
×	Special considerations such as contamination, corrosive environment etc.

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

4.4 Development Servicing Report: Stormwater Checklist

<u>N</u>	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)
×	Analysis of available capacity in existing public infrastructure.
	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
×	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
×	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
×	Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
	Set-back from private sewage disposal systems.
	Watercourse and hazard lands setbacks.
	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.
×	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.
×	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
	Any proposed diversion of drainage catchment areas from one outlet to another.
×	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.
	Identification of potential impacts to receiving watercourses
	Identification of municipal drains and related approval requirements.
×	Descriptions of how the conveyance and storage capacity will be achieved for the development.
×	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.

	Inclusion of hydraulic analysis including hydraulic grade line elevations.
×	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.
	Identification of fill constraints related to floodplain and geotechnical investigation.
	4.5 Approval and Permit Requirements: Checklist
	The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.
	Changes to Municipal Drains.
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)
	4.6 Conclusion Checklist
×	Clearly stated conclusions and recommendations
×	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.
×	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

APPENDIX B

- City Correspondence regarding Boundary Conditions Watermain Demand Calculation Sheet
- Fire Flow Calculations
- Water Model Schematic and Results

Boundary Conditions 1615 Orléans Blvd.

Provided Information

Scenario	Demand				
Scenario	L/min	L/s			
Average Daily Demand	49	0.82			
Maximum Daily Demand	106	1.76			
Peak Hour	205	3.42			
Fire Flow Demand #1	12,000	200.00			

Location

Results

Connection 1 - Orléans Blvd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	63.2
Peak Hour	127.3	58.9
Max Day plus Fire Flow #1	127.8	59.6

¹ Ground Elevation = 85.9 m

Connection 2 - Jeanne d'Arc Blvd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.4	62.8
Peak Hour	127.3	58.4
Max Day plus Fire Flow #1	127.5	58.6

¹ Ground Elevation = 86.2 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

WATERMAIN DEMAND CALCULATION SHEET

IBI GROUD

IBI GROUD

333 PRES
OTTAWA,
K1S 5N4

IBI GROUP 333 PRESTON STREET OTTAWA, ONTARIO K1S 5N4

PROJECT: Orleans Gardens
CLIENT: North Ameican Dev.

FILE: 122764-6.4.4

DATE PRINTED: 23-May-24

DESIGN: AB

PAGE: 1 OF 1

		RESIDE	NTIAL		NON	N-RESIDENTIAL	_ (ICI)	AVERAGI	E DAILY DEM	AND (I/s)	MAXIMUN	I DAILY DEMA	AND (I/s)	MAXIMUM I	HOURLY DEM	MAND (I/s)	
NODE	SINGLE FAMILY UNITS	TOWNHOUSE / BACK TO BACK UNITS	MEDIUM DENSITY UNITS	POPULATION	INDUST.	COMM. (ha)	INSTIT.	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	FIRE DEMAI (I/mir
New Residentail						, ,	` ′										
J20		24		64.8				0.21		0.21	0.53		0.53	1.16		1.16	
J21		24		64.8				0.21		0.21	0.53		0.53	1.16		1.16	
J23		12		32.4				0.11		0.11	0.26		0.26	0.58		0.58	-
Hydrants																	
H1																	11,0
H2																	12,0
H3 H4				+				1			1						12,0 10,0
H5																	10,0
xisting Commercial																	
J04 - REXALL						0.13		1	0.04	0.04		0.06	0.06		0.07	0.07	
- NORTHSTRIP MALL						0.21			0.06	0.06		0.09	0.09		0.11	0.11	
SOUTH STRIP MALL	i					0.17			0.05	0.05		0.07	0.07		0.09	0.09	
- GROCERY STORE - BLOCK W/ REXALL						0.45 0.07			0.13	0.13 0.02	1	0.20	0.20 0.03		0.23 0.04	0.23 0.04	
Total		60		162.0		1.03		0.53	0.30	0.82	1 31	0.45	1 76	2 89	0.54	3 /12	

•	•		•		
POPULATION DENSITY		WATER DEMAND RATES	<u>S</u>	PEAKING FACTORS	
Single Family	3.3 persons/unit	Residential	280 I/cap/day	Maximum Daily	
Townhouse Units	2.7 persons/unit			Residential	2.5 x avg. day
Back to Back Un	2.7 persons/unit	Commercial Shopping Ce	nter	Commercial	1.5 x avg. day
			2,500 L/(1000m2)/day	Maximum Hourly	
*Note: Population Density as per MSS, not OSDG				Residential	2.2 x max. day
				Commercial	1.8 x avg. day

1615 Orleans Blvd - Block A

Building Floor Area Building divided into 2 sections with 2 hour fire wall

width 25.4 m depth 15.5 m stories 3 Area $1,176.0 \text{ m}^2$

F = 220C√A

C 1.5 C = 1.5 wood frame A 1,176 m^2 1.0 ordinary

0.8 non-combustile

F 11,316 I/min 0.6 fire-resistive use 11,000 I/min

Occupancy Adjustment -25% non-combustile

-15% limited combustile

Use -15% 0% combustile

+15% free burning
Adjustment -1650 I/min +25% rapid burning

Fire flow 9,350 I/min

Sprinkler Adjustment

Use 0%

Adjustment 0 l/min

Building	Separation	Adjac	Exposure		
Face	(m)	Length	Stories	L*H Factor	Charge *
	-				
north	0.0	0.0	0	0	0%
east	15.2	27.0	3	81	14%
south	0.0	0.0	0	0	0%
west	18.4	19.0	1	19	10%
Total					24%

Adjustment	2,244 l/min
	,

Total adjustments	2,244	l/min
Fire flow	11,594	l/min
Use	12,000	l/min
	200.0	I/e

^{*} Exposure charges from Water Supply For Public Protection in Canada 2020 Techinical Bulletin ISTB 2021-03

1615 Orleans Blvd - Block B

Building Floor Area	Building	divided into 3	sections	with 2 hou	r fire wall
---------------------	----------	----------------	----------	------------	-------------

width 18.5 m depth 14.0 m stories 4 Area 1,036.0 m^2

F = 220C√A

C 1.5 C = 1.5 wood frame A 1,036 m^2 1.0 ordinary

A 1,036 m² 1.0 ordinary 0.8 non-combustile

F 10,622 I/min 0.6 fire-resistive use 11,000 I/min

Occupancy Adjustment -25% non-combustile

-15% limited combustile

Use -15% 0% combustile

+15% free burning

Adjustment -1650 l/min +25% rapid burning Fire flow 9,350 l/min

Sprinkler Adjustment

Use 0%

Adjustment 0 l/min

Building	Separation	Adjac	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
					•
north	0.0	0.0	0	0	0%
east	15.2	23.4	3	70	13%
south*	0.0	0.0	0	0	0%
west	15.2	27.6	3	83	14%
Total					27%

Adjustment	2,525 l/min
Adjustitiont	2,020 1/111111

Total adjustments	2,525	l/min
Fire flow	11,875	l/min
Use	12,000	l/min
	200.0	I/s

^{*} Exposure charges from Water Supply For Public Protection in Canada 2020 Techinical Bulletin ISTB 2021-03

1615 Orleans Blvd - Block C

Building Floor Area	Building divided into 3 sections	with 2 hour fire wall
---------------------	----------------------------------	-----------------------

width 18.1 m depth 14.5 m stories 3 Area 785.6 m^2

F = 220C√A

C 1.5 C = 1.5 wood frame A 786 m^2 1.0 ordinary

F 9,249 I/min 0.8 non-combustile 0.6 fire-resistive

use 9,000 l/min

Occupancy Adjustment -25% non-combustile

-15% limited combustile

Use -15% 0% combustile +15% free burning

Adjustment -1350 l/min +25% rapid burning

Fire flow 7,650 I/min

Sprinkler Adjustment

Use 0%

Adjustment 0 l/min

Building	Separation	Adjace	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
	-				•
north	0.0	0.0	0	0	0%
east	18.3	21.6	3	65	13%
south	35.6	2.1	2	4	0%
west	15.2	23.4	3	70	13%
Total					26%

Adjustment	1,989 l/min
<u> </u>	.,

Total adjustments	1,989	l/min
Fire flow	9,639	l/min
Use	10,000	l/min
	166 7	I/s

^{*} Exposure charges from Water Supply For Public Protection in Canada 2020 Techinical Bulletin ISTB 2021-03

1615 Orleans Blvd - Block D

Building Floor Area	Building divided into 2 sections	with 2 hour fire wall
---------------------	----------------------------------	-----------------------

width 20.4 m depth 14.5 m stories 3 Area 887.8 m^2

F = 220C√A

C 1.5 C = 1.5 wood frame A 888 m^2 1.0 ordinary

F 9,833 I/min 0.6 fire-resistive use 10,000 I/min

Occupancy Adjustment -25% non-combustile

-15% limited combustile

Use -15% 0% combustile +15% free burning

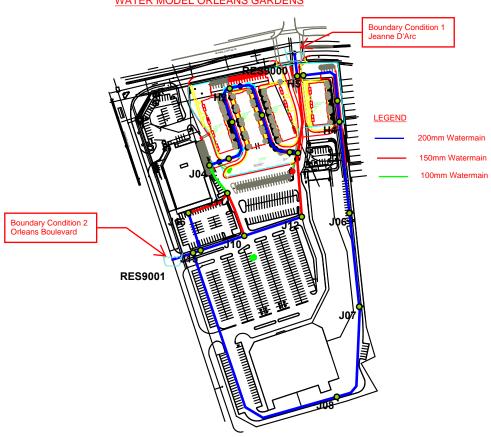
Adjustment -1500 l/min +25% rapid burning

Fire flow 8,500 I/min

Sprinkler Adjustment

Use 0%

Adjustment 0 l/min


Building	Separation	Adjac	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
	-				
north	0.0	0.0	0	0	0%
east	21.3	38.0	2	76	6%
south	>45	11.0	2	22	0%
west	18.3	39.6	3	119	15%
Total					21%

Adjustment 1,785 l/min

Total adjustments	1,785	l/min
Fire flow	10,285	l/min
Use	10,000	l/min
	166.7	I/s

^{*} Exposure charges from Water Supply For Public Protection in Canada 2020 Techinical Bulletin ISTB 2021-03

WATER MODEL ORLEANS GARDENS

Basic Day (Max HGL) Junction Report

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	H1	0.00	86.66	130.36	428.28
2	H2	0.00	86.47	130.36	430.08
3	Н3	0.00	86.47	130.36	430.06
4	H4	0.00	86.51	130.32	429.30
5	H5	0.00	86.29	130.31	431.39
6	J01	0.00	86.27	130.31	431.55
7	J02	0.00	86.47	130.36	430.06
8	J04	0.04	86.70	130.36	427.84
9	J06	0.06	86.70	130.33	427.54
10	J07	0.05	86.70	130.34	427.65
11	J08	0.13	86.60	130.35	428.75
12	J09	0.00	86.55	130.39	429.58
13	J10	0.00	86.76	130.38	427.47
14	J11	0.00	86.56	130.38	429.43
15	J12	0.00	86.75	130.38	427.52
16	J15	0.00	86.70	130.39	428.10
17	J16	0.02	86.57	130.39	429.36
18	J20	0.21	86.55	130.36	429.26
19	J21	0.21	86.47	130.36	430.07
20	J23	0.11	86.45	130.32	429.85

Date: Thursday, May 23, 2024, Time: 14:31:22, Page 1

Basic Day Pipe Report

Das	ול ט	ay Fipe	Report										
		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1		P1	RES9000	J01	21.06	204.00	110.00	-7.35	0.22	0.01	0.46	Open	0
2		P10	J09	RES9001	21.11	204.00	110.00	-8.18	0.25	0.01	0.56	Open	0
3		P13	J11	J04	32.26	108.00	100.00	1.55	0.17	0.02	0.67	Open	0
4		P14	J10	J12	58.85	204.00	110.00	2.79	0.09	0.00	0.08	Open	0
5		P15	J02	J12	62.03	155.00	100.00	-2.79	0.15	0.02	0.34	Open	0
6		P17	J11	J10	44.54	155.00	100.00	-0.27	0.01	0.00	0.00	Open	0
7		P18	J10	J15	44.65	204.00	110.00	-3.06	0.09	0.00	0.09	Open	0
8		P19	J15	J09	7.68	204.00	110.00	-4.35	0.13	0.00	0.17	Open	0
9		P20	J15	J16	38.10	204.00	110.00	1.29	0.04	0.00	0.02	Open	0
10		P22	J16	J11	44.01	155.00	100.00	1.27	0.07	0.00	0.08	Open	0
11		P24	H1	J04	19.81	204.00	110.00	-1.51	0.05	0.00	0.02	Open	0
12		P26	J20	H1	44.35	204.00	110.00	-1.51	0.05	0.00	0.02	Open	0
13		P28	J21	H2	51.93	204.00	110.00	-1.30	0.04	0.00	0.02	Open	0
14		P3	J02	H3	7.98	204.00	110.00	-1.09	0.03	0.00	0.01	Open	0
15		P30	H3	J21	49.89	204.00	110.00	-1.09	0.03	0.00	0.01	Open	0
16		P34	J23	H4	20.37	204.00	110.00	-3.59	0.11	0.00	0.12	Open	0
17		P36	J01	J02	75.17	155.00	100.00	-3.87	0.21	0.05	0.63	Open	0
18		P38	H5	J23	56.45	204.00	110.00	-3.48	0.11	0.01	0.11	Open	0
19		P4	H2	J20	37.21	204.00	110.00	-1.30	0.04	0.00	0.02	Open	0
20		P5	J01	H5	5.99	204.00	110.00	-3.48	0.11	0.00	0.11	Open	0
21		P6	H4	J06	89.08	204.00	110.00	-3.59	0.11	0.01	0.12	Open	0
22		P7	J06	J07	91.15	204.00	110.00	-3.65	0.11	0.01	0.12	Open	0
23		P8	J07	J08	99.60	204.00	110.00	-3.70	0.11	0.01	0.13	Open	0
24		P9	J08	J09	252.44	204.00	110.00	-3.83	0.12	0.03	0.14	Open	0

Date: Thursday, May 23, 2024, Time: 14:32:26, Page 1

Peak Hour Juction Report

ГСа	K I IU	ui Jui	ction Report			
		ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1		H1	0.00	86.66	129.22	417.06
2		H2	0.00	86.47	129.16	418.33
3		Н3	0.00	86.47	129.11	417.81
4		H4	0.00	86.51	127.92	405.80
5		H5	0.00	86.29	127.63	405.13
6		J01	0.00	86.27	127.61	405.08
7		J02	0.00	86.47	129.10	417.78
8		J04	0.07	86.70	129.23	416.77
9		J06	0.11	86.70	128.27	407.35
10		J07	0.09	86.70	128.63	410.88
11		J08	0.23	86.60	129.03	415.75
12		J09	0.00	86.55	130.05	426.25
13		J10	0.00	86.76	129.89	422.61
14		J11	0.00	86.56	129.88	424.51
15		J12	0.00	86.75	129.75	421.39
16		J15	0.00	86.70	130.01	424.39
17		J16	0.04	86.57	129.99	425.47
18		J20	1.16	86.55	129.18	417.72
19		J21	1.16	86.47	129.13	418.03
20		J23	0.58	86.45	127.84	405.59

Date: Thursday, May 23, 2024, Time: 14:34:08, Page 1

Peak Hour Pipe Report

Pea	K HC	our Pip	e Report										
		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1		P1	RES9000	J01	21.06	204.00	110.00	-47.84	1.46	0.31	14.63	Open	0
2		P10	J09	RES9001	21.11	204.00	110.00	-51.28	1.57	0.35	16.63	Open	0
3		P13	J11	J04	32.26	108.00	100.00	9.71	1.06	0.65	20.16	Open	0
4		P14	J10	J12	58.85	204.00	110.00	17.61	0.54	0.14	2.30	Open	0
5		P15	J02	J12	62.03	155.00	100.00	-17.61	0.93	0.65	10.45	Open	0
6		P17	J11	J10	44.54	155.00	100.00	-1.69	0.09	0.01	0.14	Open	0
7		P18	J10	J15	44.65	204.00	110.00	-19.31	0.59	0.12	2.72	Open	0
8		P19	J15	J09	7.68	204.00	110.00	-27.36	0.84	0.04	5.20	Open	0
9		P20	J15	J16	38.10	204.00	110.00	8.06	0.25	0.02	0.54	Open	0
10		P22	J16	J11	44.01	155.00	100.00	8.02	0.42	0.11	2.43	Open	0
11		P24	H1	J04	19.81	204.00	110.00	-9.64	0.29	0.01	0.75	Open	0
12		P26	J20	H1	44.35	204.00	110.00	-9.64	0.29	0.03	0.75	Open	0
13		P28	J21	H2	51.93	204.00	110.00	-8.48	0.26	0.03	0.59	Open	0
14		P3	J02	H3	7.98	204.00	110.00	-7.32	0.22	0.00	0.45	Open	0
15		P30	H3	J21	49.89	204.00	110.00	-7.32	0.22	0.02	0.45	Open	0
16		P34	J23	H4	20.37	204.00	110.00	-23.49	0.72	0.08	3.92	Open	0
17		P36	J01	J02	75.17	155.00	100.00	-24.93	1.32	1.50	19.90	Open	0
18		P38	H5	J23	56.45	204.00	110.00	-22.91	0.70	0.21	3.74	Open	0
19		P4	H2	J20	37.21	204.00	110.00	-8.48	0.26	0.02	0.59	Open	0
20		P5	J01	H5	5.99	204.00	110.00	-22.91	0.70	0.02	3.74	Open	0
21		P6	H4	J06	89.08	204.00	110.00	-23.49	0.72	0.35	3.92	Open	0
22		P7	J06	J07	91.15	204.00	110.00	-23.60	0.72	0.36	3.95	Open	0
23		P8	J07	J08	99.60	204.00	110.00	-23.69	0.72	0.40	3.98	Open	0
24		P9	J08	J09	252.44	204.00	110.00	-23.92	0.73	1.02	4.05	Open	0

Date: Thursday, May 23, 2024, Time: 14:36:00, Page 1

Max Day Fireflow Design Report

	ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Pressure for Design Run (kPa)
1	H1	183.30	186.08	H1	139.96	139.96
2	H2	200.00	206.30	H2	139.96	139.96
3	Н3	200.00	260.75	H3	139.96	139.96
4	H4	166.70	318.77	H4	139.96	139.96
5	H5	166.70	603.21	H5	139.96	139.96

Date: Thursday, May 23, 2024, Time: 14:39:57, Page 1

Max Day Fireflow Design Report

	ID	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1	H1	186.08	139.98
2	H2	206.30	140.01
3	Н3	260.75	140.27
4	H4	318.77	139.96
5	H5	603.21	139.97

Date: Thursday, May 23, 2024, Time: 14:39:57, Page 2

Max Day Fireflow Report

	ID	Static Demand (L/s)	Static Pressure (kPa)	Static Head (m)	Fire-Flow Demand (L/s)	Residual Pressure (kPa)	Hydrant Available Flow (L/s)
1	H1	0.00	397.44	127.21	183.30	147.02	186.08
2	H2	0.00	399.32	127.22	200.00	154.40	206.30
3	Н3	0.00	399.43	127.23	200.00	240.49	260.75
4	H4	0.00	400.77	127.41	166.70	321.63	318.77
5	H5	0.00	403.37	127.45	166.70	378.37	603.21

Date: Thursday, May 23, 2024, Time: 14:38:56, Page 1

Max Day Fireflow Report

1	ID	Hydrant Pressure at Available Flow (kPa)
1	H1	139.96
2	H2	139.96
3	НЗ	139.96
4	H4	139.96
5	H5	139.96

Date: Thursday, May 23, 2024, Time: 14:38:56, Page 2

Max Day Junction Report

IVIAA	Day	Junc	tion Report							
1		ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)				
1		H1	0.00	86.66	127.58	401.05				
2		H2	0.00	86.47	127.59	402.92				
3		НЗ	0.00	86.47	127.60	403.01				
4		H4	0.00	86.51	127.73	403.92				
5		H5	0.00	86.29	127.76	406.42				
6		J01	0.00	86.27	127.76	406.62				
7		J02	0.00	86.47	127.60	403.02				
8		J04	0.06	86.70	127.58	400.60				
9		J06	0.09	86.70	127.69	401.71				
10		J07	0.07	86.70	127.66	401.36				
11		J08	0.20	86.60	127.62	401.96				
12		J09	0.00	86.55	127.53	401.55				
13		J10	0.00	86.76	127.54	399.60				
14		J11	0.00	86.56	127.54	401.57				
15		J12	0.00	86.75	127.55	399.80				
16		J15	0.00	86.70	127.53	400.11				
17		J16	0.03	86.57	127.53	401.39				
18		J20	0.53	86.55	127.58	402.06				
19		J21	0.53	86.47	127.59	402.96				
20		J23	0.26	86.45	127.74	404.58				

Date: Thursday, May 23, 2024, Time: 14:38:00, Page 1

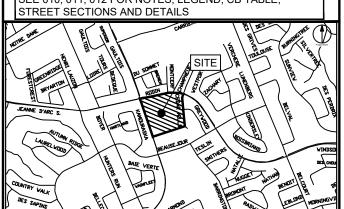
APPENDIX C

- Sanitary Sewer Design Sheet
 Sanitary Drainage Area Plan 122764-C-400
 Sanitary External Drainage Area Plan (Whole Site) 122764-C-401

SANITARY SEWER DESIGN SHEET

IBI GROUP
500-333 Preston Street
Ottawa, Ontario K 15 SN4 Canada
tel 613 225 1311 fax 613 225 9868
bigroup.com

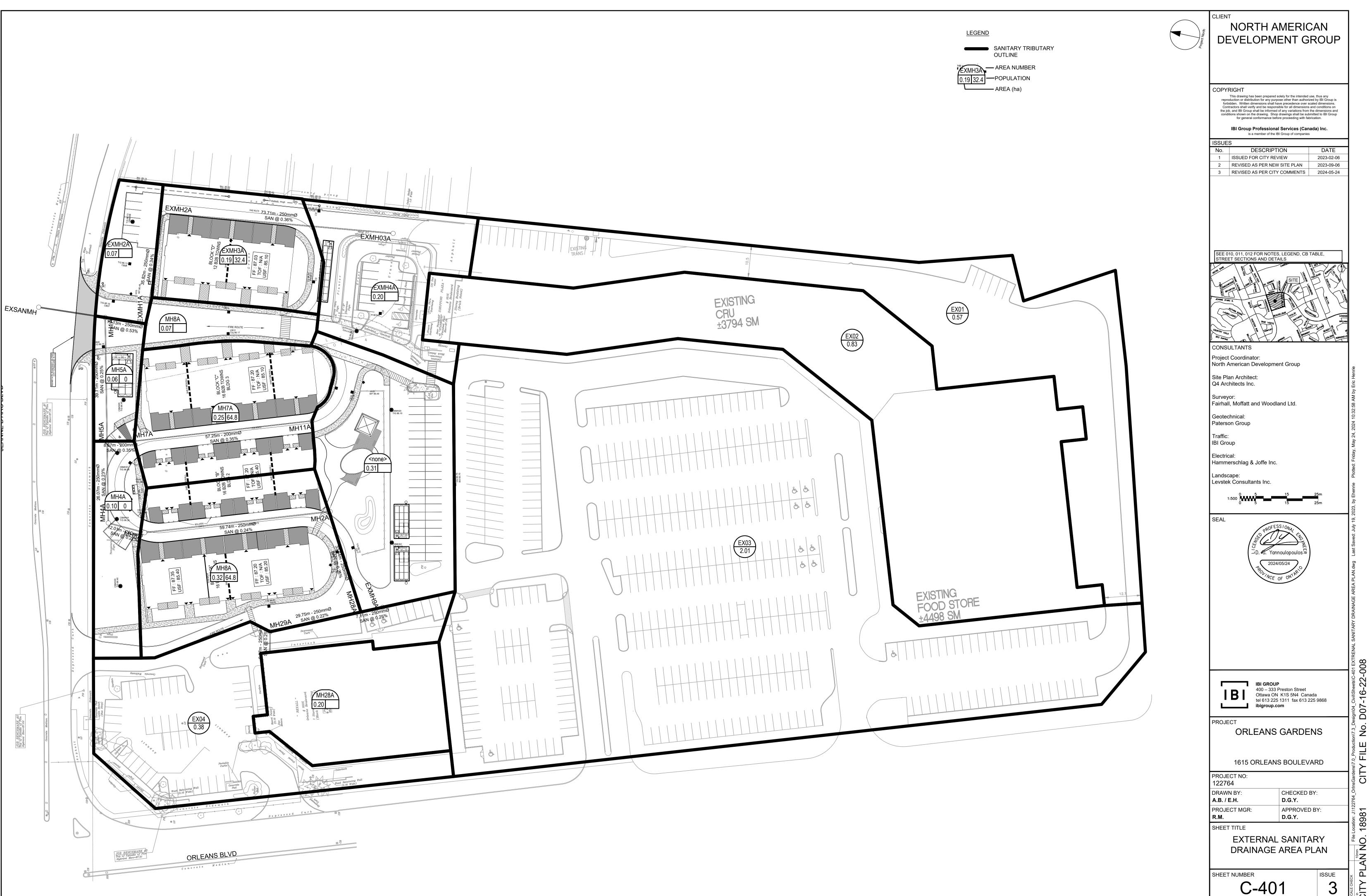
s Gardens Redevelopment - 1615 Orleans Blvd


CITY OF OTTAWA

North American Development Group

	LOCATION RESIDENTIAL							ICI AREAS II										INFILTRATION ALLOWANCE FIXED FLOW (L/s)					TOTAL	1		PROPOSED SEWER DESIGN								
	LOCATION			AREA		UNIT	TYPES		AREA	POPUL	LATION	RES	PEAK				A (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	FIXED F	LOW (L/s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY		LABLE
STREET	AREA ID	FROM	TO	w/ Units	SF	TH/SD	1 Bed	2 Bed APT	w/o Units	IND	CUM	PEAK	FLOW		UTIONAL	COMM		INDUST		PEAK	FLOW	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)		ACITY
		MH	МН	(Ha)			API	API	(Ha)			FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)							,	. ,		(,	(m/s)	L/s	(%)
						-																										_		
	MH28A	FXMH-VFT	MH9A	1	1				1	0.0	0.0	3.80	0.00			0.08	0.08			150	0.04	0.08	0.08	0.03	0.00	0.0	0.07	31.02	70.57	250	0.25	0.612	30.95	99.79%
	MIT IAMPS	MH9A	MH28A	+	_			1		0.0	0.0	3.80	0.00			0.00	0.08			1.50	0.04	0.00	0.08	0.03	0.00	0.0	0.07	31.02	7.11	250	0.25	0.612	30.95	99.79%
	MH28A	REXALL	MH29A							0.0	0.0	3.80	0.00			0.12	0.12			1.50	0.06	0.12	0.12	0.04	0.00	0.0	0.10	31.02	6.57	250	0.25	0.612	30.92	99.68%
	EX04	MH29A	MH28A							0.0	0.0	3.80	0.00			0.00	0.12			1.50	0.06	0.38	0.50	0.17	0.00	0.0	0.22	31.02	25.66	250	0.25	0.612	30.80	99.28%
		MH28A	MH2A							0.0	0.0	3.80	0.00			0.00	0.20			1.50	0.10	0.00	0.58	0.19	0.00	0.0	0.29	31.02	33.95	250	0.25	0.612	30.73	99.07%
		MH2A	MH8A	0.32		24				64.8	64.8		0.76			0.00	0.20			1.50	0.10	0.32	0.90	0.30	0.00	0.0	1.16	31.02	58.24	250	0.25	0.612	29.86	96.27%
		MH8A	MH4A							0.0	64.8		0.76			0.00	0.20			1.50	0.10	0.00	0.90	0.30	0.00	0.0	1.16	31.02	12.78	250	0.25	0.612	29.86	96.27%
		MH4A	MH5A	0.10						0.0	64.8	3.63	0.76			0.00	0.20			1.00	0.06	0.10	1.00	0.33	0.00	0.0	1.16	31.02	23.87	250	0.25	0.612	29.86	96.27%
		MH11A	MH7A	0.25		24				64.8			0.76			0.00	0.00			1.00	0.00	0.25	0.25	0.08	0.00	0.0	0.85	20.24	57.25	200	0.35	0.624	19.40	95.82%
		MH7A	MH5A							0.0	64.8	3.63	0.76			0.00	0.00			1.00	0.00	0.00	0.25	0.08	0.00	0.0	0.85	20.24	8.67	200	0.35	0.624	19.40	95.82%
		MH5A	MH1A	0.06						0.0	129.6	3.57	1.50			0.00	0.20			1.00	0.06	0.06	1.31	0.43	0.00	0.0	2.00	31.02	39.71	250	0.25	0.612	29.02	93.57%
	EXR1 EXR2 EXR3	FXMH3A	FXMH2A		1					0.0	0.0	3.80	0.00			0.83	0.83			1.50	0.40	3.41	3.41	1.13	0.00	0.0	1.53	36.70	75.00	250	0.35	0.724	35.17	95.83%
	EXU1, EXU2, EXU3	EXMPI3A EXMH2A	EXMH1A	0.19	1	12				32.4	32.4		0.00		_	0.00	0.83			1.50	0.40	0.19	3.41	1.13	0.00	0.0	1.53	36.70	36.00	250	0.35	0.724	34.72	94.61%
		EXMIT2A	EXMITTA	0.19	-	12		_	-	32.4	32.4	3.00	0.39	-	-	0.00	0.03			1.50	0.40	0.19	3.00	1.19	0.00	0.0	7.90	30.70	30.00	200	0.35	0.724	34.72	94.01%
		FXMH1A	MH1A	0.07	1	-		-	1	0.0	32.4	3.68	0.39	_		0.00	0.83			150	0.40	0.07	3.67	1.21	0.00	0.0	2.00	31.02	13.13	250	0.25	0.612	29.02	93.55%
		MH1A	EXSANMH	0.07	1				1	0.0		3.54	1.86			0.00	1.03			1.50	0.50	0.07	5.05	1.67	0.00	0.0	4.03	31.02	21.49	250	0.25	0.612	26.99	87.02%
				1.06	1			1		162.00						1.03						5.05												
Design Parameters:				Notes:								Designed:		AB			No.						R	evision	•							Date		
				1. Mannings	coefficient	(n) =		0.013									1.						Servicing Brie	f - Submissio	n No. 1							2023-02-07		
Residential		ICI Areas		2. Demand (per capita):		280	L/day	200	L/day							2.						Servicing Brie	f - Submissio	n No. 2							2023-02-21		
SF 3.4 p/p/u				3. Infiltration	allowance:		0.33	3 L/s/Ha				Checked:		RM			3.						Servicing Brie	f - Submissio	n No. 3							2024-05-23		
TH/SD 2.7 p/p/u		L/Ha/day		4. Residentia								1																						
1 Bed 1.4 p/p/u		L/Ha/day				ormula = 1+(00)^0.5))0.8																										
2 Bed 2.1 p/p/u	IND 35,000	L/Ha/day	MOE Chart		where K =	0.8 Correction	on Factor					Dwg. Refe	rence:	122764-40	0																			
Other 60 p/p/Ha	17000	L/Ha/day		Commerci	al and Instit	utional Peak	Factors bas	ed on total a	area,			1					F	ile Reference	c						Date:							Sheet No:		
1				1.5 if are	eater than 2	0%, otherwis	e 1.0					1					1	22764-6 04 0a	1						2024-05-23	3						1 of 1		

S	
DESCRIPTION	DATE
ISSUED FOR CITY REVIEW	2023-02-06
REVISED AS PER NEW SITE PLAN	2023-09-06
REVISED AS PER CITY COMMENTS	2024-05-24
	DESCRIPTION ISSUED FOR CITY REVIEW REVISED AS PER NEW SITE PLAN


SANITARY DRAINAGE AREA

ISSUE 3

Jesign\04_Civil\Sheets\C-400 SANIT

18981

AN NO.

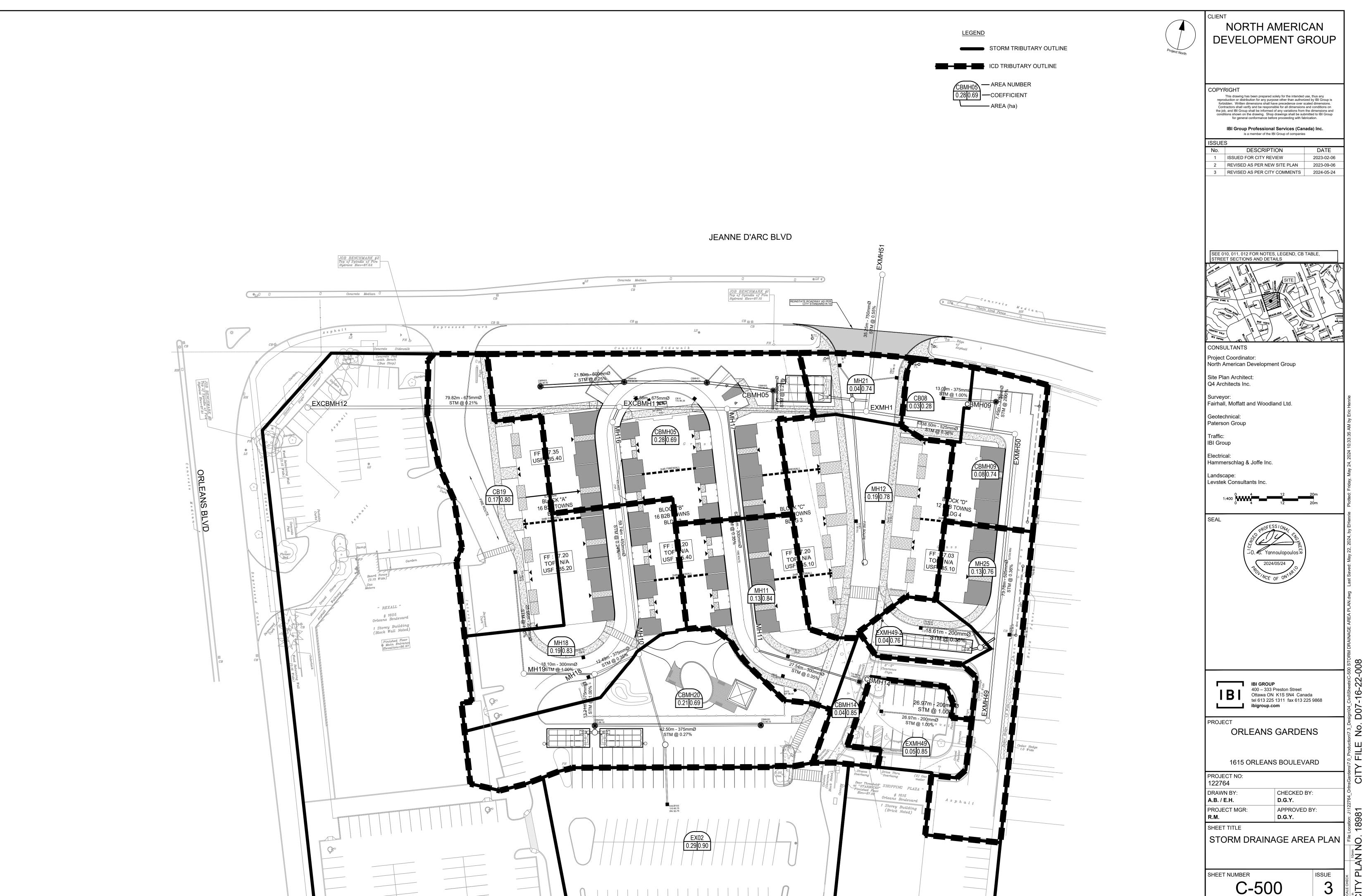
3

nsGardens\7.0_Production

18981

CITY PLAN NO.

APPENDIX D


- Storm Sewer Design Sheet
- Storm Drainage Area Plan 122764-C-500
- Storm External Drainage Area Plan 122764-C-501
- Ponding Plan 122764-C-600
- Stormwater Management Design Sheet Modified Rational Method
- Orifice Sizing Sheet
- Underground Storage Calculation Sheet
- Uncounted Underground Storage Calculation Sheet
- 2 Year Ponding Letter NADG
- ADS Stormtech Underground Storage System @ MH18
- ADS Stormtech Underground Storage System @ MH21
- ADS Stormtech Underground Storage System @ MH25
- Stress Test Overflow Calculation
- C value Calculation Sheet
- C Value Calculation Soft Scape plan

STORM SEWER DESIGN SHEET

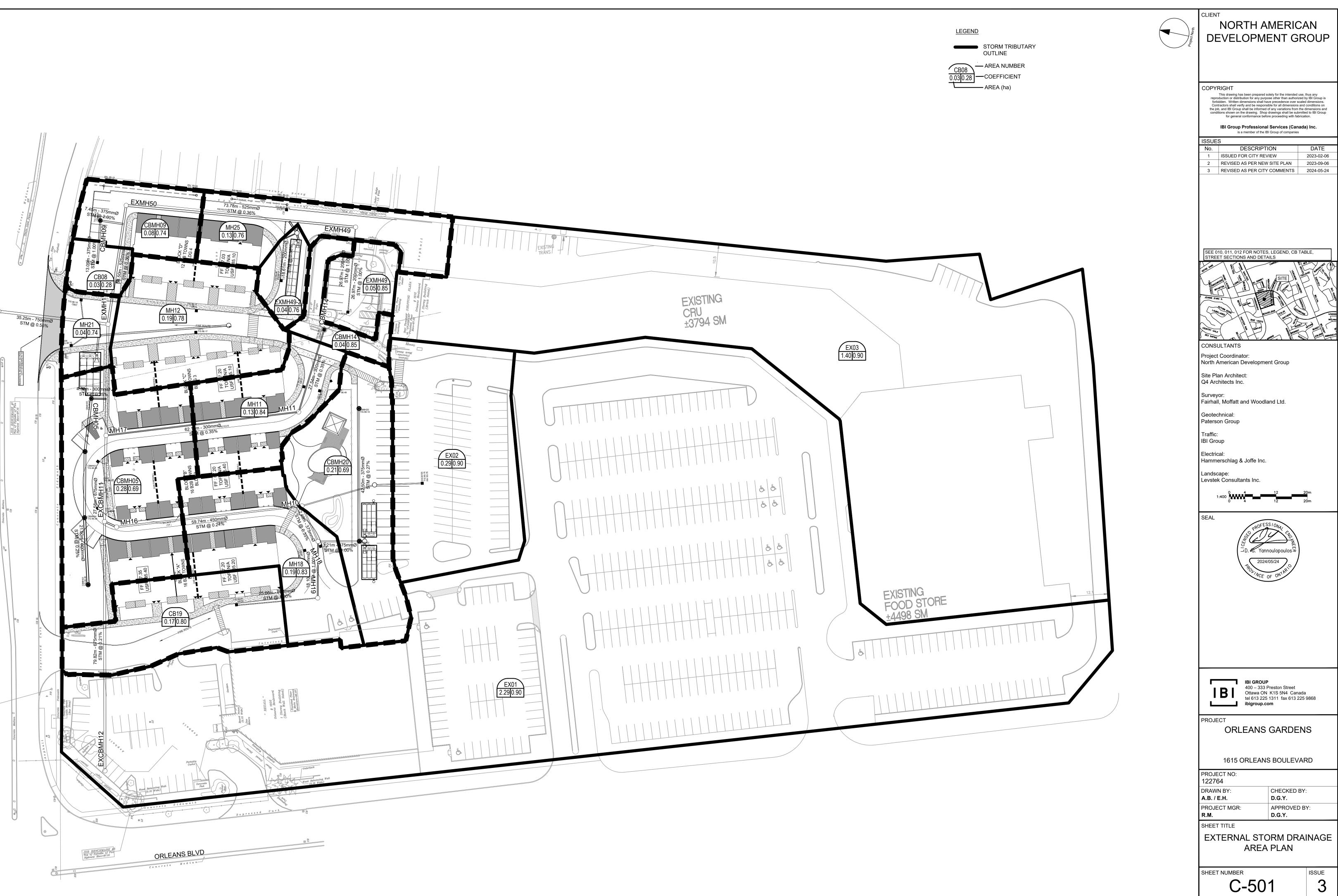
IBI GROUP
500-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868
ibigroup.com

Orleans Gardens - 1615 Orleans Blvd. City of Ottawa North American Development Group

	LOCATION							REA (Ha)										RATIONA	L DESIGN FLOW										WER DATA			
STREET	AREA ID	FROM	то		C= C	C= C	C= C	:= C= C= C 78 0.80 0.83 0.	= C	= C=	INE	CUM	INLET	TIME IN PIPE	TOTAL (min)	i (2) (mm/hr)		i (10) (mm/hr)	i (100) 2yr PEAK	5yr PEAK	10yr PEAK 100yr PEAF FLOW (L/s) FLOW (L/s)	IND	FLOW	DESIGN FLOW (L/s)	CAPACITY	(m)	P	IPE SIZE (mr	n) SLOPE H (%)	VELOCITY (m/s)	AVAIL (CAP (2yr) (%)
				0.20	0.69 0.	./4 0.	.76 0.	78 0.80 0.83 0.	04 0.0	0.90	2.70	4C 2.76AC	(min)	IN PIPE	()	,,	(mm/nr) (i	(mm/nr) ((mm/nr) FLOW (L/s)	PLOW (L/S)	PLOW (L/S) PLOW (L/S	IND	CUM	PLOW (L/S)				**	n (%)		(L/S)	
		CB19	MH19					0.17				0.38		0.41		76.81			29.04			0.00	0.00	29.04		25.66			1.00	1.055	5.18	15.13%
		MH19	MH18			-	_	0.19	_		0.4	4 0.82	10.41	0.22	10.62	75.28	-		61.47			0.00	0.00	61.47	100.88	18.10	300		1.00	1.383	39.41	39.07%
		CBMH20	CBMH02		0.21						0.4	0.40	10.00	0.94	10.94	76.81			30.94			0.00	0.00	30.94	91.46	45.20	375		0.25	0.802	60.52	66.17%
		UGS75E	MH75			_					0.0	0.00	0.00											0.00	182 91	1.30	375		100	1 604	182 91	100.00%
		UGS75W	MH75								0.0	0.00	0.00											0.00	182.91	1.30	375		1.00	1.604	182.91	100.00%
		MH75	CBM02								0.0	0.00	0.00											0.00	129.34	1.70	375		0.50	1.134	129.34	100.00%
		CBMH02	MH18			_	_		_		0.0	0.40	10.94	0.14	11.08	73.38			29.56			0.00	0.00	29.56	182.91	13.21	375		1.00	1.604	153.35	83.84%
		MH18	MH10			-	_		_		0.0	1.22	11.08	0.23	11.31	72.91	-		88.89			0.00	0.00	88.89	106.65	13.03	375		0.34	0.935	17.76	16.65%
		EXCB103	MH26							0.29				0.26			104.19			75.60		0.00	0.00	75.60		15.28	300		0.50	0.978	-4.27	-5.98%
		MH26	MH10			_					0.0	0.73	10.26	0.44	10.70		102.84			74.62		0.00	0.00	74.62	71.33	25.70	300		0.50	0.978	-3.28	-4.60%
		MH10	MH16			_			_		0.0	1.22	11.31	1.07	12.38	72.12			87.94			0.00	0.00	158.87	148.72	58.24	450		0.25	0.906	-10.15	-6.83%
		MH10	MH16								0.0	0.73		1.07	12.38		97.75			70.93				158.87	148.72	58.24	450		0.25	0.906	-10.15	-6.83%
		MH16	EXCBMH11	\vdash		-	_		_			0 1.22		0.08	20.35	51.60	69.66		62.92	50.55		0.00	0.00	113.46	148.72	4.23	450	-	0.25	0.906	35.26	23.71%
											-																					
		EXCBMH12	EYCRMH11	EXT	ERNAL to E	EXBMH1	2: 2.29Ha	, C=0.9, 5yr flow, Tc= 15+	249m @	1.0m/s 2.29	5.7	3 5.73	19.15	1.12	20.27	-	72.17			413.53		0.00	0.00	413.53	438.47	79.82	675	-	0.25	1.187	24.94	5.69%
		EAUDMIN12	LACOMH11			-+-			+	2.28	5.7	5./3	19.15	1.12	20.27	_				#13.53		0.00	0.00	413.53	430.4/	79.02	0/3		0.25	1.10/	24.94	3.09%
		EXCBMH11	MH17									1.22		0.39	20.74	51.48		81.32	118.65 62.77	440.00	99.16 144.67	0.00	0.00	511.37	438.47	27.58	675		0.25	1.187	-72.90	-16.63%
		- ''		1			-	+	+	+	0.00	6.46	f - · · · ·	+	+	1	69.50			448.60		1	1		-	1		1		1	+	
		CB15	MAIN						06			0.14				76.81			10.76			0.00	0.00	10.76	34.22		200		1.00	1.055	23.46	68.55%
		CB16 CBMH14	MAIN MH11	1		_ _		0.	0.0	22		0.16			10.06	76.81 76.81			12.55 28.74			0.00	0.00	12.55 28.74	34.22	4.02 27.54	200 300		1.00	1.055	21.66	63.31% 51.85%
		MH11	MH17				_		0.0	J4.			10.56			74.72	 		27.96			0.00	0.00	27.96		62.14			0.35	0.818	31.72	53.16%
		CBMH03 CBMH04	CBMH04	+	0.14	_	_		_		0.2	7 0.27	10.00	0.33	10.33	76.81 73.17			20.63			0.00	0.00	20.63 0.00	320.28	21.50 21.16	600		0.25 0.25	1.097	299.65 320.28	93.56% 100.00%
		CBMH01	CBMH05								0.0	0.00	12.00	0.26	12.26	69.89			0.00			0.00	0.00	0.00	320.28	17.09	600		0.25	1.097	320.28	100.00%
		CBMH05	TEE		0.14	_					0.2	7 0.54	10.33	0.11	10.44	75.57			40.59			0.00	0.00	40.59	50.44	4.76	300		0.25	0.691	9.85	19.53%
		MH17	EXMH1						_		0.0	2.13	20.74	0.50	21.24	50.88			108.40			0.00	0.00	551.71	438.47	25.62	675		0.25	1.187	-113.25	-25.83%
		MH1/	EXMH1								0.0	6.46	20.74	0.50	21.24		68.68			443.32				551./1	438.47	35.63	6/5		0.25	1.18/	-113.25	-25.83%
		CB14	EXMH49			-	_	0.04	_		0.0	9 0.09	10.00	0.43	10.43	76.81	104 19		7.09	9.62		0.00	0.00	7.09	34.22	26.97	200		1 00	1.055	27.13	79.28%
												-																				
		UGS25 EXCB11	MH25				13		_			0.00		0.02	10.02	76.81 76.81			0.00 21.10			0.00	0.00	0.00 21.10		2.22 8.23	375 200		1.00 8.00	1.604 2.984	182.91 75.68	100.00% 78.20%
		MH25	MAIN			U.	13		_			0.27			10.05				21.05			0.00	0.00	21.05	91.46		375		0.25	0.802	70.41	76.99%
		EL COR CA																														07.000
		EXCB10	MAIN			0.	04		_		0.0	8 0.08	10.00	0.51	10.51	76.81			6.49			0.00	0.00	6.49	20.24	18.98	200		0.35	0.624	13.75	67.93%
				EXT	ERNAL to E	EXBMH1	2: 1.40Ha	, C=0.9, 5yr flow, Tc= 15+	305m @	1.0m/s																						
		EXMH49	EXMH50	\vdash		_			0.0	1.40	0.12	2 0.57 3.50	20.08	1.04	21.12	51.90	70.08		29.57	39.92		0.00	0.00	69.48	265.43	73.78	525	-	0.35	1.19	195.95	73.82%
										7.40							70.00			35.52											 	
		CB08	CBMH09	0.04								3 0.03			10.14				2.39			0.00	0.00	2.39		13.09	375		1.00	1.604	180.52	98.69%
		CBMH09	TEE		0.	.08	_		_		0.1	6 0.20	10.14	0.05	10.19	76.29	-		14.93			0.00	0.00	14.93	258.68	7.45	375		2.00	2.269	243.74	94.23%
		EXMH50	EXMH1									0.77	21.12	0.54	21.66	50.30			38.50			0.00	0.00	90.46	265.43	38.50	525		0.35	1.19	174.97	65.92%
		EVIMI 190	->MIII	\vdash				+	#=	+=	0.0	3.50	21.12	0.54	21.00		67.89			51.96				50.40	200.43	30.30	323		0.35	1.18	1/4.5/	33.52/6
		CB13	MAIN	1		-	0.0	09	+	+	0.2	0.20	10.00	0.08	10.08	76.81			14.99		 	0.00	0.00	14.99	34.22	5.09	200		1.00	1.055	19.23	56.19%
		CB12	MAIN				0.				0.2	2 0.22	10.00	0.02	10.02	76.81			16.65			0.00	0.00	16.65	34.22	1.01	200		1.00	1.055	17.56	51.33%
1		MH12	MH21			_	_	\perp	_	_	0.0	0.41	10.08	0.87	10.95	76.50			31.52		 	0.00	0.00	31.52	91.46	41.76	375		0.25	0.802	59.94	65.54%
		CB07	MH22		0.				土	土		4 0.04				76.81						0.00	0.00	0.00		11.37	200		1.00	1.055	34.22	100.00%
		CB06	MH22		0.	.02	Ŧ		Ŧ					0.08		76.81						0.00	0.00	0.00		4.94	200		1.00	1.055		100.00%
 		MH22	MH21			+	_			+	0.0	0.08	10.18	0.09	10.27	76.12	+ + +					0.00	0.00	0.00	91.46	4.39	375		0.25	0.802	91.46	100.00%
		UGS21	MH21											0.11					0.00			0.00	0.00	0.00		5.46	375		0.25	0.802	91.46	100.00%
		MH21	MAIN	\vdash				+	#=	+=	0.0	0.49	10.95	0.08	11.03	73.35	+		36.25			0.00	0.00	36.25	91.46	3.90	375		0.25	0.802	55.20	60.36%
		EXMH1	EXMH51			士			土	土		3.39	21.66	0.31	21.97	49.51			167.86			0.00	0.00	394.37	861.33	25.25	750		0.55	1.89	466.95	54.21%
		EAMH1	EAMH51									9.96	∠1.66	0.31	21.97		66.82			226.52				394.37	001.33	35.25	/50		0.55	1.89	400.95	54.21%
				0.04	U.49 0.	.12 0.	.1/ 0.:	19 0.17 0.23 0.	13 0.0	3.98	13.3	2	 	+	+	1	+ +					1	1		-	1		1		-	+	
											┖																					
Definitions:				Notes:		-1		040					Designed	:	AB				No.			Cantal	Revi							Date		
Q = 2.78CiA, where: Q = Peak Flow in Litres per	r Second (L/s)			r. wann	ings coeffic	uent (n)	- 0.0	013					1					-	2.			Servicing B	Brief - Submit Brief - Submit	ssion No. 2						2023-02-0		
A = Area in Hectares (Ha)													Checked:		RM				3.				Brief - Submis							2024-05-2		
i = Rainfall intensity in millir [i = 732.951 / (TC+6.199)	imeters per hour (mr	n/hr) 2 YEAR											1					-														
[i = 998.071 / (TC+6.053	3)^0.814]	5 YEAR											Dwg. Refe	erence:	122764-50	10		-														
[i = 1174.184 / (TC+6.01	14)^0.816]	10 YEAR		l									1							ference:				Date						Sheet No:		
[i = 1735.688 / (TC+6.01	14)^0.820]	100 YEAR																	122764	4-6.04.04				2024-05	5-23					1 of 1		

NORTH AMERICAN **DEVELOPMENT GROUP**

ISSUES	5	
No.	DESCRIPTION	DATE
1	ISSUED FOR CITY REVIEW	2023-02-06
2	REVISED AS PER NEW SITE PLAN	2023-09-06
3	REVISED AS PER CITY COMMENTS	2024-05-24

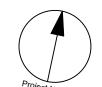


PROJECT NO: 122764 DRAWN BY: CHECKED BY: A.B. / E.H. D.G.Y.		
122764	A.B. / E.H.	D.G.Y.
1.1100=01.1101	DRAWN BY:	CHECKED BY:

3

ISSUE

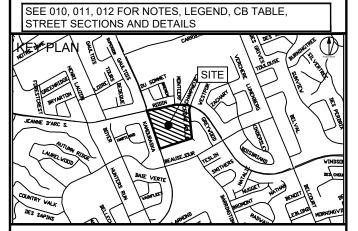
D07-16-22-008



ISSUES	5	
No.	DESCRIPTION	DATE
1	ISSUED FOR CITY REVIEW	2023-02-06
2	REVISED AS PER NEW SITE PLAN	2023-09-06
3	REVISED AS PER CITY COMMENTS	2024-05-24
	-	

ISSUE 3

Design/04_Civil/Sheets/C-501 EXTERM . D07-16-22-008 NV.3_De nsGardens\7.0_Production 18981 PLAN NO.


NORTH AMERICAN **DEVELOPMENT GROUP**

COPYRIGHT

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

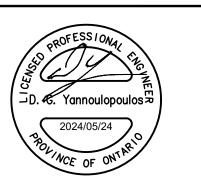
IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

ISSUE	S	
No.	DESCRIPTION	DATE
1	ISSUED FOR CITY REVIEW	2023-02-06
2	REVISED AS PER NEW SITE PLAN	2023-09-06
3	REVISED AS PER CITY COMMENTS	2024-05-24

CONSULTANTS Project Coordinator: North American Development Group

Site Plan Architect: Q4 Architects Inc.

Surveyor: Fairhall, Moffatt and Woodland Ltd.


Geotechnical: Paterson Group

Traffic: IBI Group

Electrical: Hammerschlag & Joffe Inc.

.andscape: Levstek Consultants Inc.

SEAL

BI GROUP

400 – 333 Preston Street

Ottawa ON K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868
ibigroup.com

ORLEANS GARDENS

1615 ORLEANS BOULEVARD

PROJECT NO: 122764	
DRAWN BY: A.B. / E.H.	CHECKED BY: R.M./D.G.Y.
PROJECT MGR:	APPROVED BY:

SHEET TITLE

PONDING PLAN

D.G.Y.

SHEET NUMBER C-600 ISSUE 3 D07-16-22-008

S O

FILE

18981

AN NO.

IBI GROUP 500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

PROJECT: Orleans Garden
DATE: 2024-05-23
FILE: 122764-5.11
REV #: 3
DESIGNED BY: AB
CHECKED BY: RM

STORMWATER MANAGEMENT

Formulas and Descriptions

$$\begin{split} &i_{2jr} = 1:2 \text{ year Intensity} = 732.951 / \left(T_c + 6.199\right)^{0.810} \\ &i_{9yr} = 1:5 \text{ year Intensity} = 998.071 / \left(T_c + 6.053\right)^{0.814} \\ &i_{100jr} = 1:100 \text{ year Intensity} = 1735.688 / \left(T_c + 6.014\right)^{0.820} \end{split}$$
T_c = Time of Concentration (min)
C = Average Runoff Coefficient
A = Area (Ha)
Q = Flow = 2.78ClA (L/s)

Maximum Allowable Release Rate

Restricted Flowrate (Q controlled = 2.78*C*i Syr *A controlled)

C =	0.5
T _c =	10 min
i _{5yr} =	104.19 mm/hr
A site =	1.540 Ha

223.04 L/s

Uncontrolled Release (Q uncontrolled = 2.78*1.25C*i 100yr *A uncontrolled)

C =	0.85
T _c =	10 min
i _{100yr} =	178.56 mm/hr
A uncontrolled =	0.05 Ha
Q uncontrolled =	26.37 L/s

Maximum Allowable Release Rate (Q max allowable = Q restricted - Q uncontrolled)

Q _{max allowable} = 196.66 L/s

SWM Statis	tics of Modified Sit	e Areas
Controlled	Area	ICD Flow
MH18	0.57	80.00
MH11	0.17	40.00
CBMH05	0.28	10.00
CBMH09	0.11	10.00
MH21	0.23	15.00
MH25	0.17	40.00
Sum	1.13	195.00
Uncontrolled	Area	Flow
EXMH49	0.05	26.37
Sum	0.05	26.37
Total Sum	1.18	221.371
Allowable		223.04
	_	TRUE

MODIFIED RATIONAL METHOD (100-Year & 2-Year Ponding)

Drainage Area	MH18	3							Drainage Area	MH18	I				Drainage Area	MH18	I			
Area (Ha)		0 Restricted Flow ICD Actual (L/		80.00					Area (Ha)	0.570					Area (Ha)	0.570				
1.25C _(1.0 max) =	0.96	6 Restricted Flow Q _{r for swm calc} ((L/s)=	40.00	50% reduction for	sub-surface storage			C =	0.77	Restricted Flow Q _r (L/s)=	40.00		C =	0.77	Restricted Flow Q _r (L/s)=	40.00	
		100-Year Pondin	g			100-Y	ear +20% Po	onding			5-Year Pondin	g					2-Year Pondin	g		
T _c Variable	i _{100yr}	Peak Flow Q _p = 2.78x1.25Ci 100yr A	Q,	Qp-Qr	Volume 100vr	100YRQ _p 20%	Qp - Qr	Volume 100+20	T c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5vr	T c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q,	Volume 2vr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
25	103.85	158.39	40.00	118.39	177.58				12	94.70	115.54	40.00	75.54	54.39	10	76.81	93.71	40.00	53.71	32.23
30	91.87	140.12	40.00	100.12	180.21	151.14	111.14	233.39	14	86.93	106.07	40.00	66.07	55.50	11	73.17	89.27	40.00	49.27	32.52
35 40	82.58 75.15	125.95 114.61	40.00 40.00	85.95 74.61	180.49 179.06	151.14	111.14	233.39	16 18	80.46 74.97	98.17 91.47	40.00 40.00	58.17 51.47	55.85 55.59	12 13	69.89 66.93	85.28 81.66	40.00 40.00	45.28 41.66	32.60 32.50
45	69.05	105.31	40.00	65.31	176.35	†			20	70.25	85.72	40.00	45.72	54.86	14	64 23	78.37	40.00	38.37	32.30
		1					1	1	ı <u></u>						·				1	
		Stora	ige (m³)				100+20				Sto	rage (m3)					Sto	rage (m³)		
	Overflow 0.00	Required 180.49	Surface 99.40	Sub-surface 88.81	Balance 0.00	Overflow 0.00	Required 233.39	Balance 45.18		Overflow 0.00	Required 55.85	Surface 99.40	Sub-surface 88.81	Balance 0.00		Overflow 0.00	Required 32.60	Surface 99.40	Sub-surface 88.81	Balance 0.00
	0.00	100.40	00.40				ow with peak Tc (L/s			0.00	55.55	00.40				0.00	02.00	55.45		
		_		overflows to:	Existing						-		overflows to:	Existing			-		overflows to:	Existing
Drainage Area Area (Ha)	MH11 0.170		le)-	40.00	ā				Drainage Area Area (Ha)	MH11 0 170					Drainage Area Area (Ha)	MH11 0 170				
		0 Restricted Flow Q _{r for swm calc} (40.00					Alea (na)		Restricted Flow Q _r (1 /0)=	40.00		Area (na)		Restricted Flow Q _r (I /o\=	40.00	
1.25C _(1.0 max) =	1.00			40.00	50% reduction for	sub-surface storage			C =	0.84			40.00		C =	0.84			40.00	
-	1	100-Year Pondin	9		Materia		ear +20% Po		-		5-Year Pondin	y		Mataura	-		2-Year Pondin	y		W-t
T _c Variable	i 100yr	Peak Flow Q p = 2.78x1.25Ci 100yr A	Q,	Qp-Q,	Volume 100yr	100YRQ p	Qp - Qr	Volume 100+20	T _c Variable	i _{Syr}	Peak Flow Q _p =2.78xCi _{5vr} A	Q,	Q_p - Q_r	Volume	T c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Qp-Q,	Volume
(min)	(mm/hour)		(L/s)	a (=)	(m ³)		(1 (-)	(m ³)	(min)	(mm/hour)		<i>a</i> (-)	a (-)	5yr (m³)	(min)	(mm/hour)		0 (-)	(L/s)	2yr (m³)
(min) -2	(mm/nour) 555.31	(L/s) 262 44	(L/s) 40.00	(L/s) 222.44	-26.69	(L/s)	(L/s)	(111)	(min)	(mm/nour) 230 48	(L/s) 91.50	(L/s) 40.00	(L/s) 51.50	0.00	(min)	(mm/nour) 167.22	(L/s) 66.38	(L/s) 40.00	(L/s) 26.38	0.00
3	286.05	135.19	40.00	95.19	17.13	1	1	1	2	182.69	72.52	40.00	32.52	3.90	1	148.14	58.81	40.00	18.81	1.13
8	199.20	94.14	40.00	54.14	25.99	112.97	72.97	35.03	4	152.51	60.54	40.00	20.54	4.93	2	133.33	52.93	40.00	12.93	1.55
13	155.11	73.30	40.00	33.30	25.98				6	131.57	52.23	40.00	12.23	4.40	3	121.46	48.22	40.00	8.22	1.48
18	128.08	60.53	40.00	20.53	22.17				- 8	116.11	46.09	40.00	6.09	2.93	4	111.72	44.35	40.00	4.35	1.04
		Stora	ige (m³)				100+20				Sto	rage (m3)					Sto	rage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance	•	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	25.99	29.26	0	0.00	0.00	35.03	5.77		0.00	4.93	29.26	0	0.00		0.00	1.55	29.26	0	0.00
							ow with peak Tc (L/s) 12.01												
				overflows to:	MH18 (CBMH2	20)							overflows to:	MH18 (CBMH20	0)				overflows to:	MH18 (CBMH20
Drainage Area	CRMH05	5							Drainage Area	CRMH05	1				Drainage Area	CRMH05	1			
Drainage Area	CBMH05		's)=	10.00	ī				Drainage Area	CBMH05					Drainage Area	CBMH05				
Area (Ha)	0.280	Restricted Flow ICD Actual (L/		10.00	4	euh eurfana etnrana				0.280	Restricted Flow Q. (I/s)=	10.00			0.280	Restricted Flow Q. (I /s)=	10.00	ı
	0.280	Restricted Flow ICD Actual (L/ Restricted Flow Q _{r for swm calc})	(L/s)=		4	sub-surface storage	(par +20% Pr	onding		0.280	Restricted Flow Q _r (10.00			0.280	Restricted Flow Q _r (10.00	<u> </u>
Area (Ha) 1.25C _(1.0 max) =	0.280	0 Restricted Flow ICD Actual (L/ 6 Restricted Flow Q _{r for swm calc} 1 100-Year Pondin	(L/s)= 9	10.00	50% reduction for	100-Y	ear +20% Po		Area (Ha) C =	0.280	5-Year Pondin	g		Volumo	Area (Ha) C =	0.280	2-Year Pondin	g	1	Volumo
Area (Ha) 1.25C (1.0 max) =	0.280	0 Restricted Flow ICD Actual (L/ 6 Restricted Flow Q _r for sum calc I 100-Year Ponding Peak Flow	(L/s)=		50% reduction for Volume		/ear +20% Pc	Volume	Area (Ha) C =	0.280	5-Year Pondin		10.00 Q _p -Q _r	Volume 5vr		0.280	2-Year Pondin		10.00 Q _p -Q _r	Volume 2vr
Area (Ha) 1.25C _(1.0 max) =	0.280 0.86	0 Restricted Flow ICD Actual (L/ 6 Restricted Flow Q _e for swm calc 100-Year Pondin Peak Flow Q _p =2.78x1.25Ci 100yr A	(L/s)= g Q,	10.00 Q _p -Q _r	50% reduction for Volume 100yr	100-Y 100YRQ _p 20%	Qp - Qr	Volume 100+20	Area (Ha) C = T c Variable	0.280	5-Year Pondin Peak Flow Q _p =2.78xCi _{Syr} A	g Q,	Q _p -Q,	5yr	Area (Ha) C = T _c Variable	0.280 0.69	2-Year Pondin Peak Flow Q _p = 2.78xCi _{2yr} A	g Q,	1	2yr
Area (Ha) 1.25C _(1.0 max) = T _c Variable (min)	0.280 0.86 i _{100yr} (mm/hour)	0 Restricted Flow ICD Actual (L/ 6 Restricted Flow Q _e for sum calc 100-Year Pondin Peak Flow Q _p = 2.78x1.25Cl 100yr A (L/s)	Q, (L/s)	10.00 Q _p -Q _r (L/s)	Volume 100yr (m³)	100-Y		Volume	Area (Ha) C = T _c Variable (min)	0.280 0.69 i _{syr} (mm/hour)	5-Year Pondin Peak Flow Q _p = 2.78xCi _{Syr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	5yr (m³)	Area (Ha) C =	0.280 0.69 i _{2yr} (mm/hour)	2-Year Pondin Peak Flow Q _p = 2.78xCi _{2yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	2yr (m³)
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50	0.86 0.86 i _{100yr} (mm/hour) 69.05 63.95	0 Restricted Flow ICD Actual (L/ 6 Restricted Flow Q ₁ for sum calc 1 100-Year Pondin: Peak Flow Q _p = 2.78x1.25Cl 100yr A (L/s) 46.36 42.94	(L/s)= g Q, (L/s) 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94	Volume 100yr (m³) 98.17	100-Y 100YRQ , 20% (L/s)	Qp - Qr (L/s)	Volume 100+20 (m³)	Area (Ha) C = T c Variable (min) 24 26	0.280 0.69 i _{syr} (mm/hour) 62.54 59.35	5-Year Pondin Peak Flow Q _p = 2.78xCi _{5yr} A (L/s) 33.59 31.87	Q, (L/s) 10.00 10.00	Q _p -Q _r (L/s) 23.59 21.87	5yr (m³) 33.97 34.12	Area (Ha) C = T _c Variable (min)	0.280 0.69 i 2yr (mm/hour) 53.70 52.03	2-Year Pondin Peak Flow Q _p = 2.78xCi _{2yr} A (L/s) 28.84 27.95	Q, (L/s) 10.00 10.00	Q _p -Q _r (L/s) 18.84 17.95	2yr (m³) 21.48 21.53
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50 55	0.280 0.86 i _{100yr} (mm/hour) 69.05 63.95 59.62	0 Restricted Flow ICD _{Actual} (L/ 6 Restricted Flow Q ₁ to sem case) 100-Year Pondin Peak Flow Q _p = 2.78x1.25Cl _{100y} A (L/s) 46.36 42.94 40.03	(L/s)= g Q, (L/s) 10.00 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03	50% reduction for Volume 100yr (m³) 98.17 98.81 99.10	100-Y 100YRQ _p 20%	Qp - Qr	Volume 100+20	Area (Ha) C = T c Variable (min) 24 26 28	0.280 0.69 i _{Syr} (mm/hour) 62.54 59.35 56.49	5-Year Pondin Peak Flow Q _p = 2.78xCi _{syr} A (L/s) 33.59 31.87 30.34	Q, (L/s) 10.00 10.00	Q _p -Q _r (L/s) 23.59 21.87 20.34	5yr (m³) 33.97 34.12 34.17	Area (Ha) C = T c Variable (min) 19 20 21	0.280 0.69 i 2yr (mm/hour) 53.70 52.03 50.48	2-Year Pondin Peak Flow Qp = 2.78xCi 2y, A (L/s) 28.84 27.95 27.11	Q, (L/s) 10.00 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11	2yr (m³) 21.48 21.53 21.56
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50 60	0.280 0.86 I _{100yr} (mm/hour) 69.05 63.95 59.62 55.89	0 Restricted Flow ICD _{Actual} (L/6) 6 Restricted Flow Q ₁ to sense calc 100-Year Pondin Peak Flow Q _p = 2.78×1.25Cl _{100y} A (L/s) 46.36 42.94 40.03 37.53	(L/s)= 9 Q , (L/s) 10.00 10.00 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53	Volume 100yr (m³) 98.17 98.81 99.10	100-Y 100YRQ , 20% (L/s)	Qp - Qr (L/s)	Volume 100+20 (m³)	Area (Ha) C = T _c Variable (min) 24 26 28 30	0.280 0.69 i _{Syr} (mm/hour) 62.54 59.35 56.49 53.93	5-Year Pondin Peak Flow Q _p = 2.78xCi _{Syr} A (L/s) 33.59 31.87 30.34 28.96	Q, (L/s) 10.00 10.00 10.00 10.00	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96	5yr (m³) 33.97 34.12 34.17 34.14	Area (Ha) C = T _c Variable (min) 19 20 21 22	0.280 0.69 i 2yr (mm/hour) 53.70 52.03 50.48 49.02	2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 28.84 27.95 27.11 26.33	Q, (L/s) 10.00 10.00 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33	2yr (m³) 21.48 21.53 21.56 21.55
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50 55	0.280 0.86 i _{100yr} (mm/hour) 69.05 63.95 59.62	0 Restricted Flow ICD _{Actual} (L/ 6 Restricted Flow Q ₁ to sem case) 100-Year Pondin Peak Flow Q _p = 2.78x1.25Cl _{100y} A (L/s) 46.36 42.94 40.03	(L/s)= g Q, (L/s) 10.00 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03	50% reduction for Volume 100yr (m³) 98.17 98.81 99.10	100-Y 100YRQ , 20% (L/s)	Qp - Qr (L/s)	Volume 100+20 (m³)	Area (Ha) C = T c Variable (min) 24 26 28	0.280 0.69 i _{Syr} (mm/hour) 62.54 59.35 56.49	5-Year Pondin Peak Flow Q _p = 2.78xCi _{syr} A (L/s) 33.59 31.87 30.34	Q, (L/s) 10.00 10.00	Q _p -Q _r (L/s) 23.59 21.87 20.34	5yr (m³) 33.97 34.12 34.17	Area (Ha) C = T c Variable (min) 19 20 21	0.280 0.69 i 2yr (mm/hour) 53.70 52.03 50.48	2-Year Pondin Peak Flow Qp = 2.78xCi 2y, A (L/s) 28.84 27.95 27.11	Q, (L/s) 10.00 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11	2yr (m³) 21.48 21.53 21.56
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50 60	0.286 0.86 i _{100yr} (mm/hour) 69.05 63.95 59.02 55.89 52.65	Restricted Flow ICD _{Actual} (L/ Restricted Flow Q ₁ to sum case 100-Vear Pondin Peak Flow Q _p = 2.78x1.28C1 (op; A (L/s) 46.36 42.94 40.03 37.53 35.35 Stora	(L/s)= 9 Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35	Volume 100yr (m³) 98.17 98.81 99.10 99.09 98.85	100-Y 100YRQ p 20% (L/s) 48.04	Qp - Qr (L/s) 38.04	Volume 100+20 (m³) 125.52	Area (Ha) C = T _c Variable (min) 24 26 28 30	0.280 0.69 <i>i</i> _{Syr} (<i>mm/hour</i>) 62.54 59.35 56.49 53.93 51.61	5-Year Pondin Peak Flow Q p=2.78xCi syr A (L/s) 33.59 31.87 30.34 28.96 27.72	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m ³)	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72	5yr (m³) 33.97 34.12 34.17 34.14 34.02	Area (Ha) C = T _c Variable (min) 19 20 21 22	0.280 0.69 i 237 (mm/hour) 53.70 52.03 50.48 49.02 47.66	2-Year Pondin Peak Flow Qp=2.78xCi _{2y} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m ³)	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60	2yr (m³) 21.48 21.53 21.56 21.55 21.55
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50 60	0.286 1100yr (mm/hour) 69.05 63.95 59.62 55.89 52.65	O Restricted Flow ICD _{Account} (U.S. Restricted Flow Q _r trans out 100-Vear Pondin Q _r trans out 100-Vear Pondin Q _r = 2.78 × 150 vogs A (L/s) 46.36 42.94 40.03 37.53 35.35 Store Required	(L/s)= g Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35	50% reduction for Volume 100yr (m²) 98.17 98.81 99.10 99.09 98.85 Balance	100-Y 100YRQ p 20% (L/s) 48.04	Qp - Qr (L/s) 38.04 100+20 Required	Volume 100+20 (m ³) 125.52	Area (Ha) C = T _c Variable (min) 24 26 28 30	0.280 0.69 I syr (mmhour) 62.54 59.35 56.49 53.93 51.61	5-Year Pondin Peak Flow Q _p =2.78xCl _{Syr} A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72	5yr (m³) 33.97 34.12 34.17 34.14 34.02	Area (Ha) C = T _c Variable (min) 19 20 21 22	0.280 0.69 i z _{yr} (mm/hour) 53.70 52.03 50.48 49.02 47.66 Overflow	2-Year Pondin Peak Flow Q _p =2.78xCl _{2yr} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60	2yr (m³) 21.48 21.53 21.56 21.55 21.52
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50 60	0.286 0.86 i _{100yr} (mm/hour) 69.05 63.95 59.02 55.89 52.65	Restricted Flow ICD _{Actual} (L/ Restricted Flow Q ₁ to sum case 100-Vear Pondin Peak Flow Q _p = 2.78x1.28C1 (op; A (L/s) 46.36 42.94 40.03 37.53 35.35 Stora	(L/s)= 9 Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35	Volume 100yr (m³) 98.17 98.81 99.10 99.09 98.85	100-Y 100YRQ p 20% (L/s) 48.04 Overflow 0.00	Qp - Qr (L/s) 38.04 100+20 Required 125.52	Volume 100+20 (m³) 125.52 Balance 18.02	Area (Ha) C = T _c Variable (min) 24 26 28 30	0.280 0.69 <i>i</i> _{Syr} (<i>mm/hour</i>) 62.54 59.35 56.49 53.93 51.61	5-Year Pondin Peak Flow Q p=2.78xCi syr A (L/s) 33.59 31.87 30.34 28.96 27.72	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m ³)	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72	5yr (m³) 33.97 34.12 34.17 34.14 34.02	Area (Ha) C = T _c Variable (min) 19 20 21 22	0.280 0.69 i 237 (mm/hour) 53.70 52.03 50.48 49.02 47.66	2-Year Pondin Peak Flow Qp=2.78xCi _{2y} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface 107.50	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60	2yr (m³) 21.48 21.53 21.56 21.55 21.55
Area (Ha) 1.25C (1.0 max) = T c Variable (min) 45 50 60	0.286 1100yr (mm/hour) 69.05 63.95 59.62 55.89 52.65	O Restricted Flow ICD _{Account} (U.S. Restricted Flow Q _r trans out 100-Vear Pondin Q _r trans out 100-Vear Pondin Q _r = 2.78 × 150 vogs A (L/s) 46.36 42.94 40.03 37.53 35.35 Store Required	(L/s)= g Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0	50% reduction for Volume 100yr (m²) 98.17 98.81 99.10 99.09 98.85 Balance	100-Y 100YRQ p 20% (L/s) 48.04 Overflow 0.00 convert to fix	Qp - Qr (L/s) 38.04 100+20 Required	Volume 100+20 (m³) 125.52 Balance 18.02	Area (Ha) C = T _c Variable (min) 24 26 28 30	0.280 0.69 I syr (mmhour) 62.54 59.35 56.49 53.93 51.61	5-Year Pondin Peak Flow Q _p =2.78xCl _{Syr} A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0	5yr (m³) 33.97 34.12 34.17 34.14 34.02	Area (Ha) C = T _c Variable (min) 19 20 21 22 22 23	0.280 0.69 i z _{yr} (mm/hour) 53.70 52.03 50.48 49.02 47.66 Overflow	2-Year Pondin Peak Flow Q _p =2.78xCl _{2yr} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0	2yr (m³) 21.48 21.53 21.56 21.55 21.52
Area (Ha) 1.25C (10 max) = T c Variable (min) 45 50 56 65	0.286 0.86 i 100pr (mm/hour) 69.05 63.95 53.95 55.89 52.65 Overflow 0.00	O Restricted Flow ICD _{Account} (U Restricted Flow Q _r tree mode 1 100-Vear Pondin Peak Flow Q _p = 2.78x1.25C stopp A (L/bs) 46.36 42.94 40.03 37.53 35.35 Stora Required 99.10	(L/s)= g Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0	50% reduction for Volume 100yr (m³) 98.17 98.81 99.10 99.09 98.85 Balance 0.00	100-Y 100YRQ p 20% (L/s) 48.04 Overflow 0.00 convert to fix	Qp - Qr (L/s) 38.04 100+20 Required 125.52	Volume 100+20 (m³) 125.52 Balance 18.02	Area (Ha) C = T, Variable (min) 24 28 29 30 32	0.280 0.69 i syr (mmhour) 62.54 59.35 56.49 53.93 51.61 Overflow 0.00	5-Year Pondin Peak Flow Q _p =2.78xCl _{Syr} A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0	5yr (m³) 33.97 34.12 34.17 34.14 34.02 Balance 0.00	Area (Ha) C =	0.280 0.69 i 2yr (mm/hour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00	2-Year Pondin Peak Flow Q _p =2.78xCl _{2yr} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface 107.50	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0	2yr (m³) 21.48 21.53 21.56 21.55 21.52 Balance 0.00
Area (Ha) 1.25C (10 man) = T c Variable (min) 45 50 60 65	0.280 0.86 1.0000 (mm/hour) 69.05 63.95 59.02 55.89 52.65 Overflow 0.00	O Restricted Flow ICD _{Assets} (U. Restricted Flow _{Assets} (U	(L/s)= 9 Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to:	Volume 100yr (m³) 98.17 99.09 98.85 Balance 0.00	100-Y 100YRQ p 20% (L/s) 48.04 Overflow 0.00 convert to fix	Qp - Qr (L/s) 38.04 100+20 Required 125.52	Volume 100+20 (m³) 125.52 Balance 18.02	Area (Ha) C =	0.280 0.69 i syr (mm/hour) 62.54 59.35 56.49 33.93 51.61 Overflow 0.00	5-Year Pondin Peak Flow Q _p =2.78xCl _{Syr} A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0	5yr (m³) 33.97 34.12 34.17 34.14 34.02 Balance 0.00	Area (Ha) C =	0.280 0.69 I 2yr (mm/hour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00	2-Year Pondin Peak Flow Q _p =2.78xCl _{2yr} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto Required	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 rage (m³) Surface 107.50	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0	2yr (m³) 21.48 21.53 21.56 21.55 21.52 Balance 0.00
Area (Ha) 1.25C (10 man) = T Variable (min) 45 50 60 65 Drainage Area Area (Ha)	0.280 0.86 i 100y (mm/hour) 69.05 63.95 59.62 55.89 52.05 Overflow 0.00 CBMH09 0.110	Restricted Flow ICD _{Annual} U	(L/s)= g Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to:	Volume 100yr (m²) 98.81 99.10 99.99 98.85 Balance 0.00	100-Y 100YRQ p 20% (L/s) 48.04 Overflow 0.00 convert to fice	Qp - Qr (L/s) 38.04 100+20 Required 125.52	Volume 100+20 (m³) 125.52 Balance 18.02	Area (Ha) C = T, Variable (min) 24 28 29 30 32	0.280 0.69 I syr (mmhour) 62.54 59.35 59.35 56.49 0.00 Overflow 0.00 CBMH09 0.110	5-Year Pondin Peak Flow Q = 2.78xCi sp. A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 \$\text{rage}(m^3)\$\$\$ Surface 107.50	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0 overflows to:	5yr (m³) 33.97 34.12 34.17 34.14 34.02 Balance 0.00	Area (Ha) C =	0.280 0.69 I syr (minhour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110	2-Year Pondin Peak Flow p=2.78 Flow p=2.78 Flow p=2.795 26.33 25.60 Sto Required 21.56	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 21.56	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0 overflows to:	2yr (m³) 21.48 21.53 21.56 21.55 21.52 Balance 0.00
Area (Ha) 1.25C (10 man) = T c Variable (min) 45 50 60 65	0.280 0.86 i 100y (mm/hour) 69.05 63.95 59.62 55.89 52.05 Overflow 0.00 CBMH09 0.110	Restricted Flow ICD _{Ansau} (U Restricted Flow Q _r to sen each 100-Vear Pondin V Restricted Flow Q _r = 2.78x1.25Cl stop, A (L/b) 46.36 42.94 40.03 37.53 35.35 Required 99.10 O Restricted Flow ICD _{Ansau} (U Restricted F	(L/s)= Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 \$\text{Surface}\$ 107.50	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to:	Volume 100yr (m²) 98.81 99.10 99.99 98.85 Balance 0.00	100-Y 100/YRQ p 20% (L/s) 48.04 Overflow 0.00 convert to fice	Qp - Qr (L/s) 38.04 100+20 Required 125.52 ow with peak To (L/s	Volume 100+20 (m³) 125.52 Balance 18.02 5.46	Area (Ha) C =	0.280 0.69 I syr (mmhour) 62.54 59.35 59.35 56.49 0.00 Overflow 0.00 CBMH09 0.110	5-Year Pondin Peak Flow Q = 2.78xCl sp. A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17	Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0	5yr (m³) 33.97 34.12 34.17 34.14 34.02 Balance 0.00	Area (Ha) C =	0.280 0.69 I syr (minhour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110	2-Year Pondin Peak Flow Q = 2.78xCl _{3r} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto Required 21.56	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 21.56	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0	2yr (m³) 21.48 21.53 21.56 21.55 21.52 Balance 0.00
Area (Ha) 1.25C (10 man) = Τ ε Variable (min) 45 50 60 65 Drainage Area Area (Ha) 1.25C (10 man) =	0.286 1.100yr (mm/hour) 69.05 63.95 59.02 55.89 52.65 Overflow 0.00 CBMH09 0.111	Controlled Flow ICD _{Assiss} (U. Controlled Flow O _{C try} amount 100 Controlled Flow O _{C try} amount 100 Controlled Flow Co	(L/s)=	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to:	Volume Volume 100yr (m²) 100yr (m²) 100yr (m²) 100yr (m²) 100yr	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fic	Qp - Qr (L/s) 38.04 100+20 Required 125.52 w with peak To (L/s)	Volume 100+20 (m³) 125.52 Balance 18.02 5.46	Area (Ha) C = Fe	0 280 0.69 I syr (m/hour) 62.54 59.35 50.49 53.93 51.61 Overflow 0.00 CBMH09 0.110 0.59	5-Year Pondin Posk Flow Q p=2.78xCl _{sp} A Q p=2.78xCl _{sp} A 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Restricted Flow Q, (5-Year Pondin	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50	Q _p -Q _r (L/s) (L/s) 21.87 20.34 18.96 17.72 Sub-surface 0 overflows to:	5yr (m³) 33.97 34.12 34.17 34.14 34.02 Balance 0.00 EXMH11/Offsite	Area (Ha) C = T c Variable (min) 19 20 21 22 23 Drainage Area Area (Ha) C =	0.280 0.69 i 2yr (mmhour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110 0.59	2-Year Pondin Posk Flow Q P = 2.78 K Flow Q P = 2.795 25.84 27.95 27.91 26.33 25.60 Sto Required 21.56 Restricted Flow Q, ((2.798 Pondin)	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 20.00 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0 overflows to:	2yr (m³) 21.48 21.53 21.56 21.55 21.52 Balance 0.00 EXMH11/Offsite
Area (Ha) 1.25C (10 mar) = 7 ε Variable (min) 45 50 65 65 Drainage Area Area (Ha) 1.25C (10 mar) =	0.280 0.86 i 100y (mm/hour) 69.05 63.95 59.62 55.89 52.05 Overflow 0.00 CBMH09 0.110	Restricted Flow ICD _{Antial} (U Restricted Flow Q ₁ true mode 100-Vear Pondin Q ₂ = 2.78t.250 topy A (L/s) 46.36 42.94 40.03 37.53 35.35 Required Restricted Flow ICD _{Antial} (U 4 Restricted Flow ICD _{Antial} (U 4 Restricted Flow Q ₁₀ = 2.78t.250 topy A 40.00 40	(L/s)= Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 \$\text{Surface}\$ 107.50	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to:	Volume Volume 100 yr (m²) 98.17 98.81 99.09 98.85	100-Y 100/YRQ , 20% (L/s) 48.04 Overflow 0.00 convert to fic	Qp - Qr (L/s) 38.04 100+20 Required 125.52 ow with peak To (L/s	Volume	Area (Ha) C = Tr, Variable (min) 24 26 30 32 Drainage Area Area (Ha) C = Tr,	0.280 0.69 I syr (mmhour) 62.54 59.35 59.35 56.49 0.00 Overflow 0.00 CBMH09 0.110	5-Year Pondin Peak Flow Op-2.78xCl sp.A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 94.17 Restricted Flow Q.(5-Year Pondin Peak Flow	Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0 overflows to:	5yr (m³) 33.97 34.12 34.17 34.14 34.02 Balance 0.00 EXMH11/Offsite	Area (Ha) C = T c Variable (min) 10 20 21 22 23 Drainage Area Area (Ha) C =	0.280 0.69 I syr (minhour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110	2-Year Pondin Peak Flow Qp-2.78xCl ₃₇ A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto Required 21.56 Restricted Flow Q, (2-Year Pondin Peak Flow	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 21.56	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0 overflows to:	2yr (m³) 21.48 21.53 21.56 21.55 21.55 21.52 Balance 0.00 EXMH11/Offsite
Area (Ha) 1.25C (10 man) = T c Variable (min) 45 50 60 65 Drainage Area Area (Ha) 1.25C (10 man) = T c Variable (min) 45 50 50 60 60 65	0 286 0.86 I 100pr (mm/hour) (mm/hour) (m9.05 63.95 59.92 59.92 55.89 Overflow 0.00 CBMH09 0.110 0.74	O Restricted Flow ICD _{Austin} (U. 6) Restricted Flow ICD _{Austin} (U. 6) Restricted Flow O _{A rev} unmodel Q _p = 2.78x1.75Cv	(L/s)=	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.00 Q _p -Q _r	Volume Volume 100yr (m²) 100yr (m²) 100yr (m²) 100yr (m²) 100yr	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fic te 100-Y 100/RQ , 20%	Qp - Qr	Volume 100+20 (m³)	Arna (Ha) C = Fe	0.280 0.69 inproduction in the control of the cont	5-Year Pondin Posk Flow Q = 2.78xCl sp. A Q = 2.78xCl sp. A 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Restricted Flow Q, (5-Year Pondin Posk Flow Q = 2.78xCl sp. A	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	$\begin{array}{c} \mathbf{Q}_{\rho} \cdot \mathbf{Q}_{r} \\ (L/8) \\ (2.8) \\ 21.87 \\ 20.34 \\ 18.96 \\ 17.72 \\ \\ \mathbf{Sub-surface} \\ 0 \\ \mathbf{overflows} \text{ to:} \\ \\ 10.00 \\ \mathbf{Q}_{\rho} \cdot \mathbf{Q}_{r} \\ \end{array}$	Syr (m³) 33.97 34.12 34.17 34.14 34.02 Balance 0.00 EXMH11/Offsite	Area (Ha) C = T c Variable (min) 19 20 21 22 23 Drainage Area Area (Ha) C = T c Variable	0.280 0.69 i 2yy (mmhour) 0.52.03 0.048 49.06 Overflow 0.00 CBMH09 0.110 0.59	2-Year Pondin Peak Flow Q = 2.78 Flow Q = 2.78 Flow Q = 2.7.95 25.84 27.95 27.91 26.33 25.60 Sto Required 21.56 Restricted Flow Q, (2.7.95) 2-Year Pondin Peak Flow Q = 2.78 KG l ₃₇ A	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 20.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0 overflows to: 10.00	2yr (m³) 21.48 21.53 21.56 21.55 21.55 21.55 21.52 Balance 0.00 EXMH11/Offsite
Area (Ha) 1.25C (10 man) = T	0 286 0 .86 I 100pr (mm/hour) 69 05 63 95 55 96 55 85 Overflow 0.00 CBMH09 0.116 0.74	O Restricted Flow ICD _{Action} (U. 6) Restricted Flow Q _{rey} are moudin Q _p = 2.784.7504 Q _p = 2.78	(L/s)= g Q , (L/s) 10.00 10.00 10.00 10.00 10.00 5.00 Surface 107.50 Q , (L/s)= Q , (L/s) (L/s)= Q , (L/	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) (L/s) 26.57	Volume 100yr 1910	100-Y 100/YRQ , 20% (L/s) 48.04 Overflow 0.00 convert to fic	Qp - Qr (L/s) 38.04 100+20 Required 125.52 w with peak To (L/s)	Volume	Area (Ha) C = Tr, Variable (min) 24 26 30 32 Drainage Area Area (Ha) C = Tr,	0.280 0.69 i syr (mmhour) 62.54 59.35 59.49 59.19 51.61 Overflow 0.00 CBMH09 i syr (mmhour) 131.57	5-Year Pondin Posk Flow Q ρ=2.78xCl s _p A 2, 25xCl s _p A 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Restricted Flow Q, (2.5) 5-Year Pondin Posk Flow Ω ρ=2.78xCl s _p A (L/s) 23.74	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 U/s)= Q, (L/s) 10.00	Q_{ρ} - Q_{r} (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0 overflows to: 10.00	Syr (m²) 33.97 34.12 34.17 34.14 34.02	Area (Ha) C = T c Variable (min) 10 20 21 22 23 Drainage Area Area (Ha) C =	0.280 0.69 i 2yy (mmhour) 55.370 52.03 50.08 49.06 Overflow 0.00 CBMH09 0.110 0.59	2-Year Pondin Peak Flow α ρ = 2.78 κ Γloy α ρ = 2.78 κ Γloy α γ = 2.78 κ Γloy α γ = 2.79 κ Γloy α γ = 2.79 κ Γloy α γ = 2.78 κ Γloy α γ = 2.78 κ Γloy α ρ = 2.78 κ Γloy α ρ = 2.78 κ Γloy α γ	g Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 21.56 21.56	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 0 sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 10.16	2yr (m ²) 21.48 21.49 21.53 21.55 21.55 21.55 21.55 21.55 21.52 EXMH11/Offsite
Area (Ha) 1.25C (10 max) = T c Variable (min) 45 50 65 65 Drainage Area Area (Ha) 1.25C (10 max) = T c Variable (min) 1.25C (10 max) =	0.286 0.86 I 100pr (mm/hour) 69.05 59.02 55.89 52.05 Overflow 0.00 CBMH09 0.116 0.74	O Restricted Flow ICD _{Annual} (U o Restricted Flow ICD _{Annual} (U o Restricted Flow C _{V true mouse} 1 100-Vear Pondin Peak Flow Q = 27.87.1250 topy A 45.36 42.94 40.03 37.53 35.35 Stora Required 99.10 Restricted Flow ICD _{Annual} (U A Restri	(L/s)= g Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 G G (L/s)= G Q , (L/s)= Q , (L/s)= 10.00 10.00 10.00 10.00 10.00 10.00 10.00	10.000 Q _p -Q _r (L/s) 36.36 30.33 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.000 10.000 Q _p -Q _r (L/s) 26.57 19.91	Volume Volume 100yr (m²) 98.17 98.17 98.19 99.19 99.85	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fice to sub-surface storage 100-Y 100/RQ , 20% (L/s)	Qp - Qr	Volume 100+20 (m²)	Area (Ha) C = T _c Variable (min) 24 26 28 30 32 Drainage Area Area (Ha) C = T _c Variable (min) 6 8	0.280 0.69 I syr (mmhour) 62.54 59.35 50.49 53.93 51.61 Overflow 0.00 CBMH09 0.110 0.59 i syr (mmhour) 131.57 116.11	5-Year Pondin Peak Flow Q ρ-2.78xCl g _p A (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 94.17 Restricted Flow Q, (5-Year Pondin Q ρ=2.78xCl g _p A (L/s) 23.74 20.95	Q , (L/s) 10.00 10.00 10.00 Surface 107.50 L/s)= Q , (L/s) 10.00	$\begin{array}{c} \mathbf{Q}_{p} \cdot \mathbf{Q}_{r} \\ (L/s) \\ 22.59 \\ 21.67 \\ 2$	Syr (m²) 33.97 34.12 34.12 34.14 34.02	Area (Ha) G = T _c Variable (min) 19 20 21 21 22 23 Drainage Area Area (Ha) G = T _c Variable (min) 4 5	0.280 0.69 I 2yr (mm/hour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110 0.59 I 2yr (mm/hour) 111.72 110.3.57	2-Year Pondin Peak Flow ρ-2.78xCi _{gr} A (L/s) 28.84 27.95 27.11 26.33 25.60 Required 21.56 Restricted Flow Q, (2-Year Pondin Q _p = 2.78xCi _{gr} A (L/s) 20.16 18.69	Q , (L/s) 10.00 10.00 10.00 21.56 L/s)= Q , (L/s) 10.00 10.	Q _p ·Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 0 overflows to: 10.00 Q _p ·Q _r (L/s) 10.16 8.69	2yr (m²) 21.48 21.53 21.55 21.55 21.55 21.55 21.55 21.55 22.55 21.55 21.55 21.55 21.45 21.55 21.45 21.
Area (Ha) 1.25C (10 man) = T Variable (min) 45 50 60 65 Drainage Area Area (Ha) 1.25C (10 man) = T Variable (min) 1.25C (10 man) = T Variable (min) 1.25C (10 man) = 1.25C (10 man)	0.286 0.86 I 100pr (mm/hour) 6.9.05 6.3.95 5.9.62 5.9.65 0.00 Overflow 0.00 CBMH09 0.110 0.74 I 100pr (mm/hour) 112.63 112.88	O Restricted Flow ICD _{Asset} (U. 6) Restricted Flow Q _r y amount Q _r = 288 Flow Q _r = 288	(L/s)= g Q , (L/s) 10.00 10.00 10.00 10.00 10.00 Surface 107.50 Q , (L/s)= Q , (L/s) Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	10.000 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) (L/s) 15.46	Volume 100yr 1910	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fic te 100-Y 100/RQ , 20%	Qp - Qr	Volume 100+20 (m³)	Arna (Ha) C = F	0.280 0.69 i syr (mmhour) 62.54 59.35 59.39 51.61 Overflow 0.00 CBMH09 0.110 0.59 i syr (mmhour) 131.57 116.11	5-Year Pondin Posk Flow Q Q p=2.78xCl s _p A 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Sto From Pondin Posk Flow Q Q p=2.78xCl s _p A (L/s) 23.74 20.95 18.80	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 Q, (L/s) 10.00 10.00 10.00	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 13.74 10.95 8.80	5yr (m²) 33.57 33.57 34.17 34.17 34.17 34.14 34.02 EXMH1 1/Offsite 5yr (m²) 4.95 5.26 5.28 5.28	Area (Ha) C = Tc Variable (min) 19 20 21 21 22 23 Drainage Area Area (Ha) C = Tc Variable (min)	0.280 0.69 i 2yr (mm/hour) 52.03 52.03 50.48 49.06 Overflow 0.00 CBMH09 0.110 0.59 i 2yr (mm/hour) 111.72 103.57 103.57 96.64	2-Year Pondin Peak Flow Q Q Q P=2.78 Ci y _p A 27.95 26.84 27.95 27.91 26.33 25.60 Sto Required 21.56 Sto Required Q 1.56 2.76ar Pondin Peak Flow Q Q p=2.78 xCi y _p A (L/s) 20.16 18.69 17.44	g Q, (L/s) 10.00 10.00 10.00 21.56 21.56 21.56 21.00 10.00 10.00 10.00 21.56	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 0 overflows to: 10.00 Q _p -Q _r (L/s) 10.16 8.69	2yr (m²) 21.48 21.53 21.56 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.53
Area (Ha) 1.25C (10 max) = T c Variable (min) 45 50 65 65 Drainage Area Area (Ha) 1.25C (10 max) = T c Variable (min) 1.25C (10 max) = 12 17 22 27	0.286 0.86 I 100pr (mm/hour) 69.05 59.02 55.89 52.05 Overflow 0.00 CBMH09 0.11(0.74 I 100pr (mm/hour) 1162.13 112.83 112.83 98.66	O Restricted Flow ICD _{Antiall} (U S Restricted Flow Q ₁ trans and 100-Vear Pondin Q ₂ = 2.78t.250 top; A 45.36 45.35 45.35 55.35 45.35	(Us)= g Q , ((Us) 10.00 10.00 10.00 10.00 10.00 Surface 107.50 g g g g g g g g	10.000 Q _p -Q _r (L/s) 36.36 30.33 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.000 4Q _p -Q _r (L/s) 26.57 19.91 15.48 12.25	So% reduction for Volume 100yr (m³) 98.17 98.17 98.19 99.10 99.00 98.85 So% reduction for Volume 100yr (m³) 19.13 20.31 20.40 19.85	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fice to sub-surface storage 100-Y 100/RQ , 20% (L/s)	Qp - Qr	Volume 100+20 (m²)	Area (Ha) C = T _c Variable (min) 24 26 28 30 32 Drainage Area Area (Ha) C = T _c Variable (min) 6 8 10 12	0.280 0.69 I syr (mmhour) 62.54 99.35 96.49 95.39 51.61 Overflow 0.00 CBMH09 0.110 0.59 i syr (mmhour) 131.57 116.11 104.19 94.70	5-Year Pondin Peak Flow Q ρ=2.78xCl s _p Λ (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Sto Reprint Peak Flow Q (L/s) 2.78xCl s _p Λ (L/s) 2.78xCl s _p Λ (L/s) 2.78xCl s _p Λ (L/s) 2.74x 2.995 18.80 17.09	Q Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 Q, (L/s) 10.00 10.00 10.00	Q _p ·Q _r (L/s) 225.97 21.87 21.87 21.87 18.96 19.00 overflows to: 10.00 Q _p ·Q _r (L/s) 13.74 13.74 1.79 8.80 7.90	Syr (m²) 33.97 34.12 34.17 34.14 34.02	Area (Ha) G = T _c Variable (min) 19 20 21 21 22 23 Drainage Area Area (Ha) G = T _c Variable (min) 4 5	0.280 0.69 I 2yr (mm/hour) 53.370 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110 0.59 i 2yr (mm/hour) 111.72 111.72 110.3.57 96.64 90.66	2-Year Pondin Peak Flow Q ρ=2.78xCl _{3y} A (L/s) 28.84 27.95 27.11 26.33 25.60 Sto Required 21.56 Restricted Flow Q, (2-Year Pondin Peak Flow Q ρ=2.78xCl _{3y} A (L/s) 20.16 16.69 17.44 16.36	g Q, (L/s) 10.00 10.00 10.00 21.56 21.56 Q, (L/s) = Q, (L/s) 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 10.16 8.69 7.44	2yr (m²) 21.48 21.53 21.55 21.55 21.55 21.55 21.55 22.55 22.55 21.
Area (Ha) 1.25C (10 man) = T Variable (min) 45 50 60 65 Drainage Area Area (Ha) 1.25C (10 man) = T Variable (min) 1.25C (10 man) = T Variable (min) 1.25C (10 man) = 1.25C (10 man)	0.286 0.86 I 100pr (mm/hour) 6.9.05 6.3.95 5.9.62 5.9.65 0.00 Overflow 0.00 CBMH09 0.110 0.74 I 100pr (mm/hour) 112.63 112.88	O Restricted Flow ICD _{Asset} (U. 6) Restricted Flow Q _r y amount Q _r = 284 Flow Q _r = 285 Flow Q _r = 284 Flow Q _r = 285 Flow Q _r = 284	(L/s)= g Q , (L/s) 10.00 10.00 10.00 10.00 10.00 Surface 107.50 Q , (L/s)= Q , (L/s) Q , (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	10.000 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) (L/s) 15.46	Volume 100yr 1910	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fice to sub-surface storage 100-Y 100/RQ , 20% (L/s)	Qp - Qr	Volume 100+20 (m²)	Arna (Ha) C = F	0.280 0.69 i syr (mmhour) 62.54 59.35 59.39 51.61 Overflow 0.00 CBMH09 0.110 0.59 i syr (mmhour) 131.57 116.11	5-Year Pondin Posk Flow Q Q p=2.78xCl s _p A 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Sto From Pondin Posk Flow Q Q p=2.78xCl s _p A (L/s) 23.74 20.95 18.80	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 Q, (L/s) 10.00 10.00 10.00	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 13.74 10.95 8.80	5yr (m²) 33.57 33.57 34.17 34.17 34.17 34.14 34.02 EXMH1 1/Offsite 5yr (m²) 4.95 5.26 5.28 5.28	Area (Ha) G = T _c Variable (min) 19 20 21 21 22 23 Drainage Area Area (Ha) G = T _c Variable (min) 4 5	0.280 0.69 i 2yr (mm/hour) 52.03 52.03 50.48 49.06 Overflow 0.00 CBMH09 0.110 0.59 i 2yr (mm/hour) 111.72 103.57 103.57 96.64	2-Year Pondin Peak Flow Q Q Q P=2.78 Ci y _p A 27.95 26.84 27.95 27.91 26.33 25.60 Sto Required 21.56 Sto Required Q 1.56 2.76ar Pondin Peak Flow Q Q p=2.78 xCi y _p A (L/s) 20.16 18.69 17.44	g Q, (L/s) 10.00 10.00 10.00 21.56 21.56 21.56 21.00 10.00 10.00 10.00 21.56	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 0 overflows to: 10.00 Q _p -Q _r (L/s) 10.16 8.69	2yr (m²) 21.48 21.53 21.56 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.53
Area (Ha) 1.25C (10 max) = T c Variable (min) 45 50 65 65 Drainage Area Area (Ha) 1.25C (10 max) = T c Variable (min) 1.25C (10 max) = 12 17 22 27	0.286 0.86 I 100pr (mm/hour) 69.05 59.02 55.89 52.05 Overflow 0.00 CBMH09 0.11(0.74 I 100pr (mm/hour) 1162.13 112.83 112.83 98.66	O Restricted Flow ICD _{Antial} (U o Restricted Flow ICD _{Antial} (U o Restricted Flow C ₁ true most 100-Vear Pondin Peak Flow Q = 2.781.250 topy A 42.34 42.34 42.34 40.03 37.53 35.35 Stora Required 99.10 Restricted Flow ICD _{Antial} (U d Restricted Flow ICD _{Antial} (U d Restricted Flow Q ₁ true most 100-Vear Pondin Peak Flow Q = 2.781.250 topy A 10.35 40.35 10	(Us)= 9 Q , ((Us) 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 9 Q , ((Us)= 9 Q , ((Us)= 9 1 1 1 1 1 1 1	10.000 Q _p -Q _r (L/s) 36.36 30.33 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.000 4Q _p -Q _r (L/s) 26.57 19.91 15.48 12.25	So% reduction for Volume 100yr (m³) 98.17 98.17 98.19 99.10 99.00 98.85 So% reduction for Volume 100yr (m³) 19.13 20.31 20.40 19.85	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fice to sub-surface storage 100-Y 100/RQ , 20% (L/s)	Qp - Qr	Volume 100+20 (m²)	Area (Ha) C = T _c Variable (min) 24 26 28 30 32 Drainage Area Area (Ha) C = T _c Variable (min) 6 8 10 12	0.280 0.69 I syr (mmhour) 62.54 99.35 96.49 95.39 51.61 Overflow 0.00 CBMH09 0.110 0.59 i syr (mmhour) 131.57 116.11 104.19 94.70	5-Year Pondin Peak Flow Q ρ=2.78xCl s _p Λ (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Sto Reprint Peak Flow Q (L/s) 2.78xCl s _p Λ (L/s) 2.78xCl s _p Λ (L/s) 15.68	Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Q _p ·Q _r (L/s) 225.97 21.87 21.87 21.87 18.96 19.00 overflows to: 10.00 Q _p ·Q _r (L/s) 13.74 13.74 1.79 8.80 7.90	Syr (m²) 33.97 34.12 34.17 34.14 34.02	Area (Ha) G = T _c Variable (min) 19 20 21 21 22 23 Drainage Area Area (Ha) G = T _c Variable (min) 4 5	0.280 0.69 I 2yr (mm/hour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110 0.59 i 2yr (mm/hour) 111.72 111.73 103.57 96.64 90.66	2-Year Pondin Peak Flow Q ρ-2.78xCl ₂₇ A (L/s) 25.84 27.95 27.11 26.33 25.60 Required 21.56 Restricted Flow Q, (2-Year Pondin Peak Flow Q ρ-2.78xCl ₂₇ A (L/s) 20.16 16.69 17.44 16.36 15.42	g Q, (L/s) 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 10.16 8.69 7.44	2yr (m²) 21.48 21.53 21.55 21.55 21.55 21.55 21.55 22.55 22.55 21.
Area (Ha) 1.25C (10 max) = T c Variable (min) 45 50 65 65 Drainage Area Area (Ha) 1.25C (10 max) = T c Variable (min) 1.25C (10 max) = 12 17 22 27	0.286 0.86 I 100pr (mm/hour) 69.05 59.02 55.89 52.05 Overflow 0.00 CBMH09 0.11(0.74 I 100pr (mm/hour) 1162.13 112.83 112.83 98.66	O Restricted Flow ICD _{Antial} (U o Restricted Flow ICD _{Antial} (U o Restricted Flow C ₁ true most 100-Vear Pondin Peak Flow Q = 2.781.250 topy A 42.34 42.34 42.34 40.03 37.53 35.35 Stora Required 99.10 Restricted Flow ICD _{Antial} (U d Restricted Flow ICD _{Antial} (U d Restricted Flow Q ₁ true most 100-Vear Pondin Peak Flow Q = 2.781.250 topy A 10.35 40.35 10	(Us)= g Q , ((Us) 10.00 10.00 10.00 10.00 10.00 Surface 107.50 g g g g g g g g	10.000 Q _p -Q _r (L/s) 36.36 30.33 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.000 4Q _p -Q _r (L/s) 26.57 19.91 15.48 12.25	So% reduction for Volume 100yr (m³) 98.17 98.17 98.19 99.10 99.00 98.85 So% reduction for Volume 100yr (m³) 19.13 20.31 20.40 19.85	100-Y 100/RQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fice to sub-surface storage 100-Y 100/RQ , 20% (L/s)	Qp - Qr	Volume 100+20 (m²)	Area (Ha) C = T _c Variable (min) 24 26 28 30 32 Drainage Area Area (Ha) C = T _c Variable (min) 6 8 10 12	0.280 0.69 I syr (mmhour) 62.54 99.35 96.49 95.39 51.61 Overflow 0.00 CBMH09 0.110 0.59 i syr (mmhour) 131.57 116.11 104.19 94.70	5-Year Pondin Peak Flow Q ρ=2.78xCl s _p Λ (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Sto Reprint Peak Flow Q (L/s) 2.78xCl s _p Λ (L/s) 2.78xCl s _p Λ (L/s) 15.68	Q Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 Q, (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Q _p ·Q _r (L/s) 225.97 21.87 21.87 21.87 18.96 19.00 overflows to: 10.00 Q _p ·Q _r (L/s) 13.74 13.74 1.79 8.80 7.90	Syr (m²) 33.97 34.12 34.17 34.14 34.02	Area (Ha) G = T _c Variable (min) 19 20 21 21 22 23 Drainage Area Area (Ha) G = T _c Variable (min) 4 5	0.280 0.69 I 2yr (mm/hour) 53.70 52.03 50.48 49.02 47.66 Overflow 0.00 CBMH09 0.110 0.59 i 2yr (mm/hour) 111.72 111.73 103.57 96.64 90.66	2-Year Pondin Peak Flow Q ρ-2.78xCl ₂₇ A (L/s) 25.84 27.95 27.11 26.33 25.60 Required 21.56 Restricted Flow Q, (2-Year Pondin Peak Flow Q ρ-2.78xCl ₂₇ A (L/s) 20.16 16.69 17.44 16.36 15.42	g Q, (L/s) 10.00 10.00 10.00 21.56 21.56 Q, (L/s) = Q, (L/s) 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 10.16 8.69 7.44	2yr (m²) 21.48 21.53 21.55 21.55 21.55 21.55 21.55 22.55 22.55 21.
Area (Ha) 1.25C (10 max) = T c Variable (min) 45 50 65 65 Drainage Area Area (Ha) 1.25C (10 max) = T c Variable (min) 1.25C (10 max) = 12 17 22 27	0.286 0.86 I 100pr (mm/hour) 69.05 63.95 59.92 59.92 59.95 0.00 Overflow 0.00 CBMH09 0.110 0.74 I 100pr (mm/hour) 112.63 132.63 132.83 98.66 87.89	Committed Flow ICD August UL	(L/s)= 9 (L/s)= 0, (L/s) 10.00	10.00 Q _p -Q _r (L/s) 36.36 32.94 30.03 27.53 25.35 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 26.57 19.91 15.46 12.25 9.82	Volume 100yr 198.17 198.17 198.17 198.17 198.17 198.18 199.10 19	100-Y 100YRQ 20% (L/s) 48.04 48.04 48.04 Overflow 0.00 convert to fic te 100-Y 100YRQ 20% (L/s) 30.55	Qp - Qr	Volume 100+20 (m²)	Area (Ha) C = T _c Variable (min) 24 26 28 30 32 Drainage Area Area (Ha) C = T _c Variable (min) 6 8 10 12	0.280 0.69 i syr (mm2.54) 62.54 59.35 59.35 59.16 Overflow 0.00 0.110 0.59 i syr (mm3.57) 130.17 110.11 104.19 94.70 86.93	5-Year Pondin Peak Flow Q Q p=2.78xCl s _p A 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Sto Peak Flow Q Q p=2.78xCl s _p A (L/s) 2.374 20.95 18.80 17.09 15.68	g	Q _p -Q _r (L/s) 23.59 21.87 20.34 18.96 17.72 Sub-surface 0 overflows to: 10.00 Q _p -Q _r (L/s) 13.74 10.95 10.85 7.09 5.68	Syr (m²) 33.17 33.17 34.17 34.17 34.17 34.17 34.16 34.02	Area (Ha) C = Tc Variable (min) 19 20 21 21 22 23 Drainage Area Area (Ha) C = Tc Variable (min) 4 5	0.280 0.69 i 2yr (mm/hour) 52.03 52.03 50.48 49.06 Overflow 0.00 0.110 0.59 i 2yr (mm/hour) 111.72 103.57 103.57 103.57 103.57 103.57 103.57 103.57	2-Year Pondin Peak Flow Q Q Q P 2.78 Set	g Q, (L/s)= 10.00 10.00 10.00 10.00 10.00 10.00 21.56 L/s)= g Q, (L/s) 10.00	Q _p -Q _r (L/s) 18.84 17.95 17.11 16.33 15.60 0 overflows to: 10.00 Q _p -Q _r (L/s) 8.69 7.44 6.36	2yr (m²) 21.48 21.53 21.56 21.55 21.55 21.55 21.55 21.55 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.53 21.
Area (Ha) 1.25C (10 max) = T c Variable (min) 45 50 65 65 Drainage Area Area (Ha) 1.25C (10 max) = T c Variable (min) 1.25C (10 max) = 12 17 22 27	0.286 0.86 I 100pr (mm/hour) 69.05 69.05 59.62 55.69 52.05 Overflow 0.00 CBMH09 0.11(0.74 I 100pr (mm/hour) 162.13 132.63 112.88 99.66 87.89	O Restricted Flow ICD _{Antial} (U o Antial (U o Antial (U o Antial (U o A	(Us)= 9 Q , ((Us) 10.00 10.00 10.00 10.00 10.00 10.00 Surface 107.50 Q , ((Us)= Q , ((Us)= Q , ((Us)= Q , ((Us)= 10.00 1	10.000 Q _p -Q _r (L/s) 36.36 30.33 29.4 30.03 27.53 25.35 Sub-surface 0 10.000 Q _p -Q _r (L/s) 26.57 19.91 15.46 12.25 9.82 Sub-surface 0	So% reduction for Volume 100yr (m³) 98.17 98.17 98.19 99.10 99.09 98.85 So% reduction for Volume 100yr (m³) 19.13 20.31 20.40 18.86 Salance Sa	100-Y 100YRQ , 20% (L/s) 48.04 48.04 Overflow 0.00 convert to fice to storage (L/s) 100-YR , 20% (L/s) Overflow 0.00 convert to fice to storage (L/s)	Qp - Qr	Volume 100+20 (m²)	Area (Ha) C = T _c Variable (min) 24 26 28 30 32 Drainage Area Area (Ha) C = T _c Variable (min) 6 8 10 12	0.280 0.69 I syr (mmhour) 52.54 59.35 50.49 50.49 50.49 0.00 CBMH09 0.110 0.59 I syr (mmhour) 131.57 116.11 104.19 94.70 86.93 Overflow	5-Year Pondin Peak Flow Q ρ=2.78xCl s _p Λ (L/s) 33.59 31.87 30.34 28.96 27.72 Sto Required 34.17 Sto Reprint Peak Flow Q ρ=2.78xCl s _p Λ (L/s) 23.74 23.74 29.95 18.80 17.09 15.68 Sto Required	G (L/s) (L/s) (10.00 mg/s) (L/s) = G (L/s) (10.00 mg/s) (L/s) = G (L/s) (10.00 mg/s) (L/s) (10.00 mg/s) (L/s) (10.00 mg/s)	Q _p ·Q _r (L/s) 22.59 21.87 21.87 18.96 18.96 0 overflows to: 10.00 Q _p ·Q _r (L/s) 13.74 13.74 13.74 10.95 8.80 7.68	Syr (m²) 33.97 (m²) 33.97 (m²) 34.17 34.17 34.17 34.17 34.17 34.10 (m²) (m	Area (Ha) C = T _c Variable (min) 19 20 21 22 23 Drainage Area Area (Ha) C = T _c Variable (min) 4 5 6 6 7 7	0.280 0.69 l 2 _{yy} (mm/hour) 53.70 52.03 50.48 40.02 47.66 Overflow 0.00 CBMH09 0.110 0.59 l 2 _{yy} (mm/hour) 111.72 110.3.57 96.64 90.66 85.46 Overflow	2-Year Pondin Peak Flow Q ρ=2.78xCl _{3y} A (L/s) 28.84 27.95 25.80 Sto Required 21.56 Sto Repaired 21.56 2-Year Pondin Peak Flow Q ρ=2.78xCl _{3y} A (L/s) 20.16 16.69 17.44 16.36 15.42 Sto Required	G (L/s) 10.00 10.00 10.00 10.00 10.00 10.00 21.56 L/s)= Q, (L/s) 10.00 10.00 10.00 21.56	Q _p -Q _r (L/s) (L	2yr (m²) 21.48 21.53 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.52 Balance 0.00 EXMH11/Offsite Volume 2yr (m³) 2.44 2.66 2.66 2.60

Drainage Area	MH21							
Area (Ha)		Restricted Flow ICD Actual (L/s		15.00				
1.25C _(1.0 max) =	0.96	Restricted Flow Q _{r for swm calc} (I	_/s)=	7.50	50% reduction for s	ub-surface storage		
		100-Year Ponding	1			100-Y	ear +20% Pc	nding
T _c Variable	I _{100yr}	Peak Flow Q _p = 2.78x1.25Ci 100yr A	Q,	Q _p -Q,	Volume 100yr	100YRQ _p 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m³)
62	54.54	33.57	7.50	26.07	96.97			
67	51.46	31.67	7.50	24.17	97.16			
72	48.74	30.00	7.50	22.50	97.18	36.00	28.50	123.10
77	46.32	28.51	7.50	21.01	97.05			
82	44.15	27.17	7.50	19.67	96.78			

	7.50	JO /6 TEGUCADIT IOF S	ubisultace storage		
			100-Y	ear +20% Po	nding
), /s)	Q _ρ -Q _τ (L/s)	Volume 100yr (m³)	100YRQ _p 20% (L/s)	Qp - Qr (L/s)	Volume 100+20 (m³)
50	26.07	96.97			
50	24.17	97.16			
50	22.50	97.18	36.00	28.50	123.10
50	21.01	97.05			
50	19.67	96.78			

riou (riu)	0.200	1			
C =	0.77	Restricted Flow Q _r (I	L/s)=	7.50	
		5-Year Ponding	g		
T _c Variable	I _{Syr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q,	Volume 5yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
30	53.93	26.55	7.50	19.05	34.29
32	51.61	25.41	7.50	17.91	34.39
34	49.50	24.37	7.50	16.87	34.42
36	47.58	23.42	7.50	15.92	34.40
38	45.81	22.55	7.50	15.05	34.32

MH21

Drainage Area

Drainage Area MH25

	Alea (IIa)	0.230				
	C =	0.77	Restricted Flow Q _r (L	/s)=	7.50	1
]			2-Year Ponding	g		
1	T _c Variable	I 2yr	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q,	Volume 2yr
ı	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
1	24	46.37	22.83	7.50	15.33	22.08
1	25	45.17	22.24	7.50	14.74	22.11
1	26	44.03	21.68	7.50	14.18	22.12
1	27	42.95	21.15	7.50	13.65	22.11
1	28	41.93	20.64	7.50	13.14	22.08

Required 22.12

Overflow 0.00

MH25 0.170

Drainage Area

	Sto	rage (m3)				100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	97.18	6.56	93.94	0.00	0.00	123.10	22.60
					convert to flo	w with peak Tc (L/s)	5.23
			overflows to: I	EXMH11/Offsite	•		

Storage (m ³)					
Overflow	Required	Surface	Sub-surface	Balance	
0.00	34.42	6.56	93.94	0.00	

d	Surface	Sub-surface	Balance
	6.56	93.94	0.00

Drainage Area	MH25							
Area (Ha)	0.170	Restricted Flow ICD Actual (L/s)=	40.00	1			
.25C (1.0 max) =	0.95	Restricted Flow Q _{r for swm calc} (L	/s)=	20.00	50% reduction for	sub-surface storage		
		100-Year Ponding				100-Year +20% Ponding		
T _c Variable	i _{100yr}	Peak Flow Q _p = 2.78x1.25Ci 100yr A	Q,	Qp-Qr	Volume 100yr	100YRQ _p 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(L/s)	(L/s)	(m³)
10	178.56	80.17	20.00	60.17	36.10			
15	142.89	64.16	20.00	44.16	39.74			
20	119.95	53.85	20.00	33.85	40.62	64.62	44.62	53.55
25	103.85	46.62	20.00	26.62	39.94			
30	91.87	41.25	20.00	21.25	38.24			

rea (Ha)	0.170				
=	0.76	Restricted Flow Q _r (I	_/s)=	20.00	
		5-Year Ponding	g		
T _c Variable	i _{Syr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Qp-Qr	Volume 5yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
6	131.57	47.26	20.00	27.26	9.81
8	116.11	41.70	20.00	21.70	10.42
10	104.19	37.42	20.00	17.42	10.45
12	94.70	34.01	20.00	14.01	10.09
14	86.93	31.22	20.00	11.22	9.43

	C =	0.76	Restricted Flow Q _r (L	/s)=	20.00	
1			2-Year Ponding)		
1	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q,	Volume 2yr
ı	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
1	4	111.72	40.13	20.00	20.13	4.83
1	5	103.57	37.20	20.00	17.20	5.16
1	6	96.64	34.71	20.00	14.71	5.30
1	7	90.66	32.56	20.00	12.56	5.28
1	8	85.46	30.69	20.00	10.69	5.13
_			•			

	Sto	rage (m3)				100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	40.62	2.90	40.77	0.00	0.00	53.55	9.88
					convert to flo	w with peak Tc (L/s)	8.23
			overflows to: I	EXMH11/Offsite	•		

Overflow	Required	Surface	Sub-surface	Balance	
0.00	10.45	2.90	40.77	0.00	

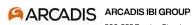
Storage (m ²)					
Overflow	Required	Surface	Sub-surface	Balance	
0.00	5.30	2.90	40.77	0.00	

overflows to: EXMH11/Offsite

overflows to: EXMH11/Offsite

overflows to: EXMH11/Offsite

IBI GROUP 500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com


PROJECT:
DATE:
FILE:
REV #:
DESIGNED BY:
CHECKED BY: Orleans Gardens 2024-05-22 122764-6.2.4 3 RM RM

ORIFICE SIZING

Orifice coefficients					
Cv =	0.60				

							Theoretical			Recommended	
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Hydraulic Slope	Target Flow	Orifice	Actual Flow	Orifice	Actual Flow	1
	(m)	(mm)	(m)	(m)	(m)	(I/s)	(m)	(I/s)	(m)	(l/s)	
MH18	83.212	375	83.400	86.40	3.00	80.00	0.1320	80.21	0.132	80.21	1
MH11	82.485	300	82.635	86.45	3.82	40.00	0.0870	39.29	0.087	39.29	1
CBMH05	82.912	300	83.062	86.60	3.54	10.00	0.0450	10.12	0.045	10.12	H-VE
CBMH09	83.500	375	83.688	86.43	2.74	10.00	0.0480	10.14	0.048	10.14	
MH21	83.610	375	83.798	86.27	2.47	15.00	0.0600	15.04	0.060	15.04	
MH25	83.461	375	83.649	86.51	2.86	40.00	0.0950	40.57	0.095	40.57	
						195.00				195.38	

EX

IBI GROUP

UNDERGROUND STORAGE CALCULATIONS

500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada

ibigroup.com

Orleans Gardens | North American Development Group 122764-6.0 | Rev #3 | 2024-05-23 Prepared By: AB | Checked By: RM

Pipe Storage	MH18	3			
From	То	Length	Diameter	X-sec Area	Volume
CBMH20	CBMH02	42.50	375	0.110	4.69
CBMH02	MH18	13.21	375	0.110	1.46
CB19	MH10	18.10	200	0.031	0.57
MH10	MH18	25.66	250	0.049	1.26
CB17	MAIN	6.00	200	0.031	0.19
CB18	MAIN	1.00	200	0.031	0.03
				Total	8.20

Structure Stora	ge	MH18				
	Base	Тор	Height	Dia. / Width	X-sec Area	Volume
CBMH20	83.956	86.10	2.14	1200	1.131	2.42
CBMH02	83.374	86.10	2.73	1200	1.131	3.08
MH75	83.403	86.10	2.70	1200	1.131	3.05
MH19	83.598	86.40	2.80	1200	1.131	3.17
MH18	83.212	86.40	3.19	1200	1.131	3.61
CB17	84.700	86.10	1.40	600	0.360	0.50
CB18	84.700	86.10	1.40	600	0.360	0.50
CB19	84.700	86.40	1.70	600	0.360	0.61
Stormtech East						31.83
Stormtech West						31.83
					Total	80.61

TOTAL MH18	88.81

Pipe Storage	MH21				
From	То	Length	Diameter	X-sec Area	Volume
CB06	MH22	4.94	200	0.031	0.16
CB07	MH22	11.37	200	0.031	0.36
MH22	MH21	4.39	375	0.110	0.48
CB12	MAIN	1.01	200	0.031	0.03
CB13	MAIN	5.09	200	0.031	0.16
MH12	MH21	41.76	375	0.110	4.61
ADS Stormtech	MH21	5.46	375	0.110	0.60
1	•	•	•	Total	6.40

Structure Stora	age	MH21				
	Base	Тор	Height	Dia. / Width	X-sec Area	Volume
CB06	84.760	86.16	1.40	600	0.283	0.40
CB07	84.780	86.18	1.40	600	0.283	0.40
MH22	83.681	86.20	2.52	1200	1.131	2.85
CB12	84.770	86.17	1.40	600	0.283	0.40
CB13	84.770	86.17	1.40	600	0.283	0.40
MH12	83.774	86.27	2.50	1200	1.131	2.82
MH21	83.610	86.27	2.66	1200	1.131	3.01
ADS Stormtech						77.27
	•	•	•	•	Total	87.53

TOTAL AREA EXMH11	93.94
-------------------	-------

500-333 Preston Street

IBI GROUP

Ottawa, Ontario K1S 5N4 Canada ibigroup.com

UNDERGROUND STORAGE CALCULATIONS

Orleans Gardens | North American Development Group 122764-6.0 | Rev#3 | 2024-05-23 Prepared By: AB | Checked By: RM

Pipe Storage	MH25				
From	То	Length	Diameter	X-sec Area	Volume
EXCB11	MH25	8.23	200	0.031	0.26
ADS Stormtech	MH25	2.22	375	0.110	0.25
	•			Total	0.50

Structure Stora						
	Base	Тор	Height	Dia. / Width	X-sec Area	Volume
EXCB11	84.170	86.51	2.34	600	0.283	0.66
MH25	83.461	86.51	3.05	1200	1.131	3.45
ADS Stormtech						33.73
					Total	37.84

UNCOUNTED UNDERGROUND STORAGE CALCULATIONS

5.01

Total

2.10

500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada **IBI GROUP** ibigroup.com

Orleans Gardens | North American Development Group 122764-6.0 | Rev #3 | 2024-05-23 Prepared By: AB | Checked By: RM

Pipe Storage	СВМН09				
From	То	Length	Diameter	X-sec Area	Volume
CB08	CBMH09	13.90	375	0.110	1.54
	•		•	Total	1.54

Structure Sto	rage	СВМН09	Ī			
	Base	Тор	Height	Dia. / Width	X-sec Area	Volume
CB08	84.730	86.13	1.40	600	0.360	0.50
СВМН09	83.500	86.13	2.63	1200	1.131	2.97
·	·	·		·	Total	3.48

Pipe Storage	MH11]			
From	То	Length	Diameter	X-sec Area	Volume
CBMH14	MH11	27.54	300	0.071	1.95
CB15	MAIN	0.89	200	0.031	0.03
CB16	MAIN	4.02	200	0.031	0.13

TOTAL CBMH09

Structure St	orage	MH11				
	Base	Тор	Height	Dia. / Width	X-sec Area	Volume
MH11	83.408	86.10	2.69	1200	1.131	3.04
CB15	84.700	86.10	1.40	600	0.360	0.50
CB16	84.700	86.10	1.40	600	0.360	0.50
CBMH14	83.834	86.10	2.27	1200	1.131	2.56
	_		•		Total	6.62

TOTAL MH11 8.72

IBI GROUP

UNCOUNTED UNDERGROUND STORAGE CALCULATIONS

500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada ibigroup.com

Orleans Gardens | North American Development Group 122764-6.0 | Rev #3 | 2024-05-23 Prepared By: AB | Checked By: RM

Pipe Storage	СВМН05				
From	То	Length	Diameter	X-sec Area	Volume
CBMH03	CBMH14	21.50	600	0.283	6.08
CB11	MAIN	3.60	200	0.031	0.11
CBMH14	CBMH09	21.16	600	0.283	5.98
CBMH09	CBM05	17.09	600	0.283	4.83
CB10	MAIN	3.55	200	0.031	0.11
				Total	17.12

Structure Storag	ge	СВМН05				
	Base	Тор	Height	Dia. / Width	X-sec Area	Volume
CBMH03	83.243	86.40	3.16	1500	1.767	5.58
CBMH05	83.034	86.40	3.37	1500	1.767	5.95
CB11	84.760	86.26	1.50	600	0.360	0.54
CBMH14	83.170	86.26	3.09	1200	1.131	3.49
CBMH09	83.097	86.26	3.16	1200	1.131	3.58
CB10	84.760	86.26	1.50	600	0.360	0.54
					Total	19.68

TOTAL CBMH05	36.80
TO TAL ODIVITIOS	30.00

May 17th, 2024

Mr. Cam Elsby
Project Manager, Infrastructure Approvals
Development Review – East Branch
City of Ottawa
110 Laurier Avenue West
Ottawa, Ontario K1P 1J1
cam.elsby@ottawa.ca

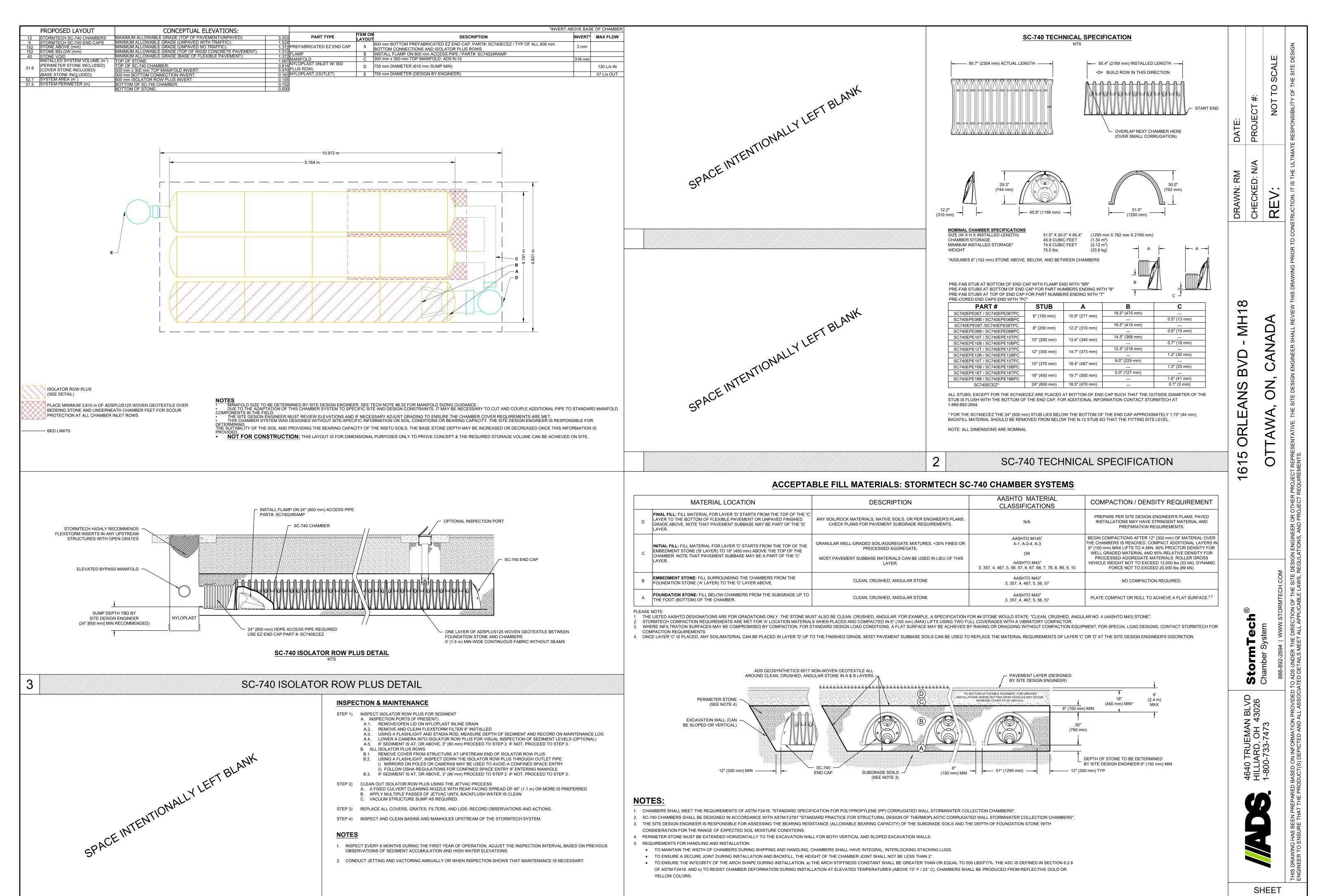
Dear Mr. Elsby:

RE: SITE PLAN CONTROL APPLICATION - 1615 ORLEANS BOULEVARD D07-12-23-0026

Orleans Gardens Shopping Centre Inc. (OGSC) & I.G. Investment management, LTD. are the owners of the Orleans Gardens Shopping Centre located at 1615 Orleans Boulevard. This letter has been prepared in consultation with our civil consultant, Arcadis Profession Services (Canada) Inc. Its intent is to provide our acceptance of the potential for localized surface ponding in parking areas during infrequent storm events, including the 2-year event.

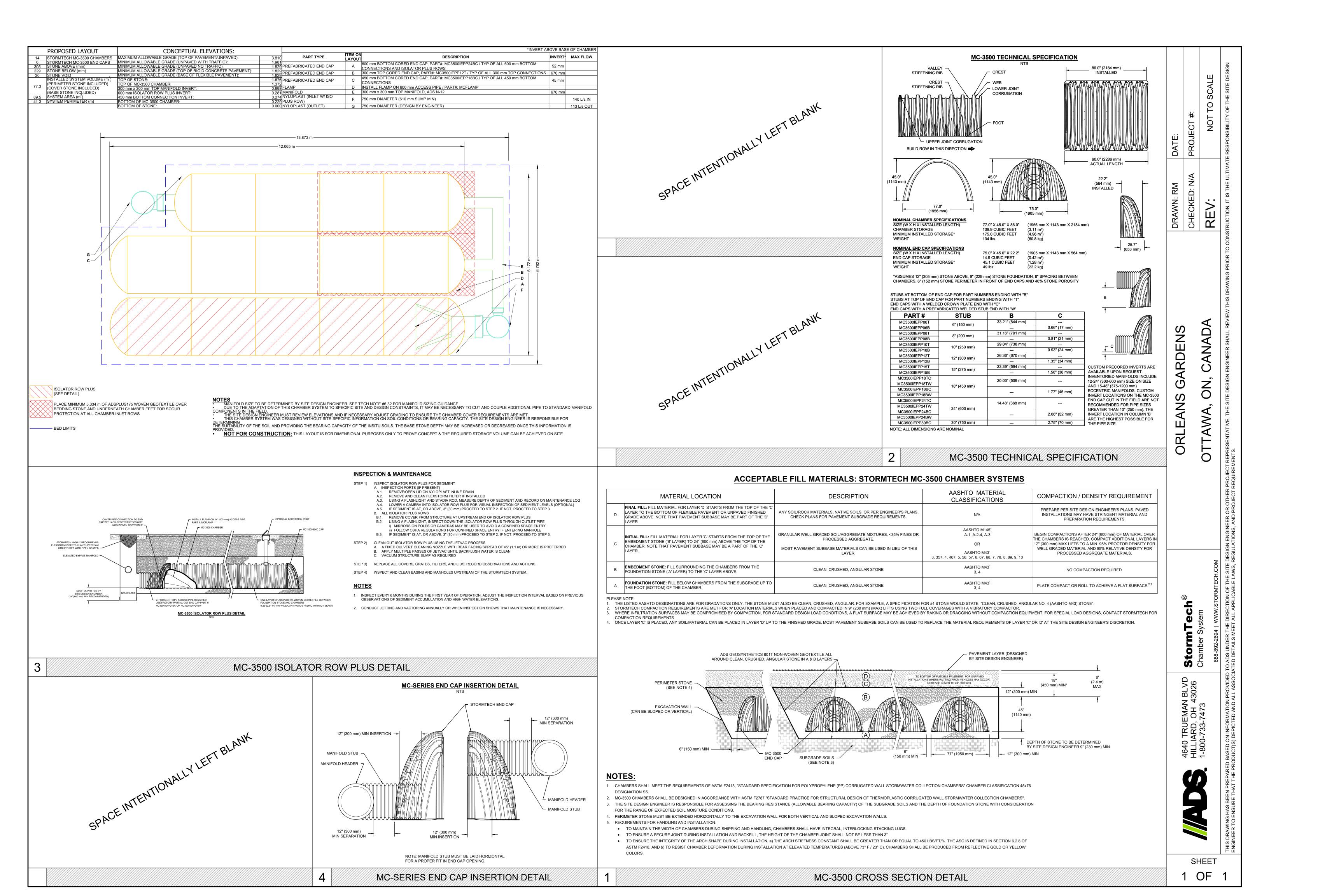
Based on our discussions with Arcadis, there are two areas (Area MH11 and Area CBMH09) where 2-year ponding has been flagged within the servicing brief. We understand that qualifying available underground storage in these areas is detrimental to the stormwater management of more severe and less frequent storms (100-year events), which are currently retained using only surface-level ponding strategies without additional underground storage. However, unaccounted underground storage exists in each area (9.42m3 in Area MH11 and 5.01m3 in Area CBMH09) with volumes exceeding the calculated 2-year ponding requirements (1.55m3 in Area MH11 and 3.07m3 in Area CBMH09). Given the City's guidelines for calculation methods when utilizing underground storage in combination with surface-level storage, the release rate to the system must be reduced by 50% when calculating the retention volumes, which would, in turn, increase the theoretical total storage requirements for each catchment. We are willing to accept the theoretical ponding potential during 2-year events.

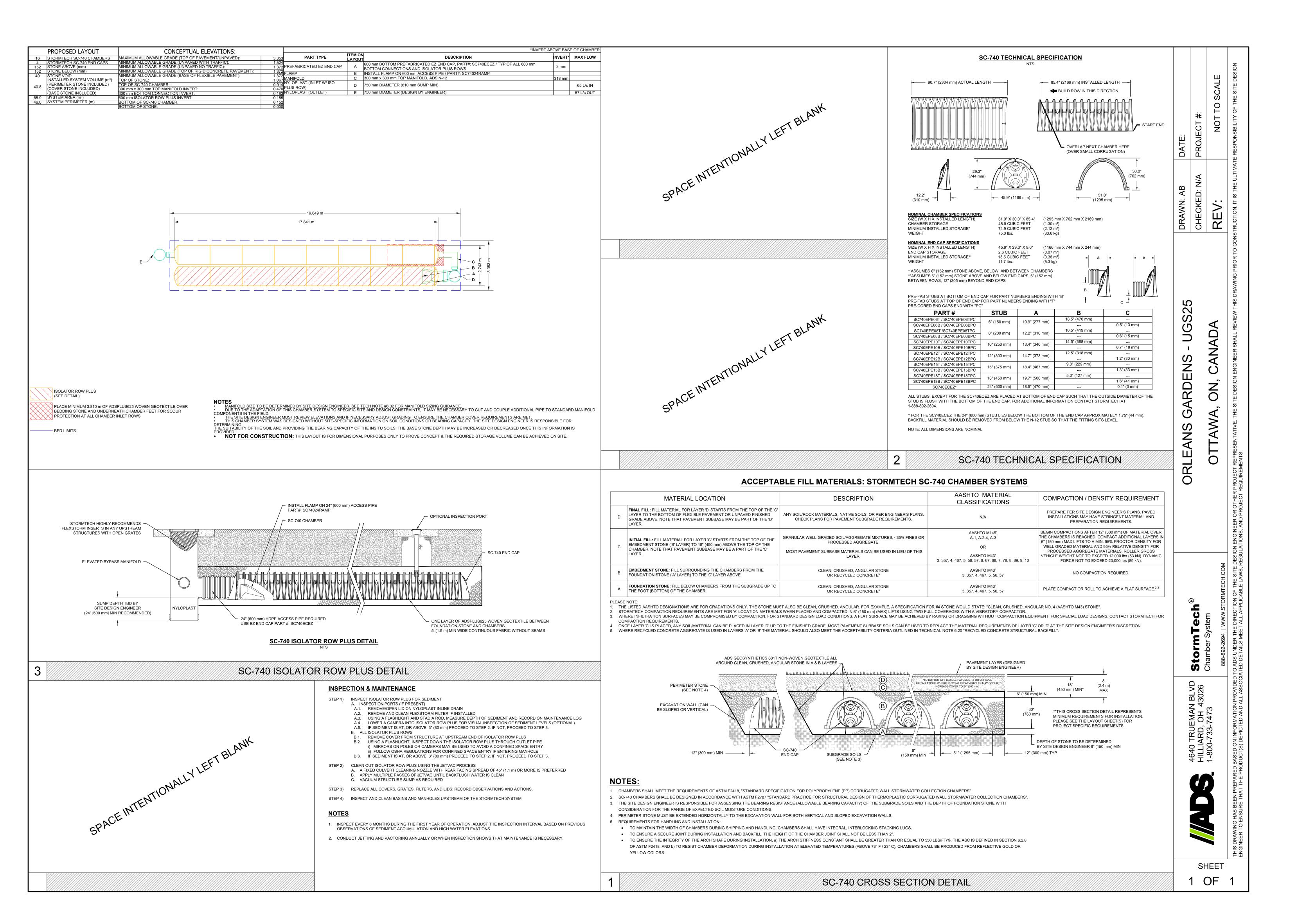
We understand that the City of Ottawa does not typically accept ponding during the 2-year event; however, as the owner of this privately owned system, we accept this condition.


Sincerely,

Pegah Abhari

Manager, Development Services North American Development Group


T: 289-800-1629 C: 416-400-4146


E: pabhari@nadg.com

1 OF 1

SC-740 CROSS SECTION DETAIL

Storm Overflow Calculations

Ditch MH1	18		Length =	15.00 m				
New Ditch	Section Required 1:1	100 yr. +20% flow = 21.51 l/s	0.022 Cu	ı m/sec				
From Seel	lye use n =	0.013 (Channels)				area=		0.12
choose:	slope S =	4.00 %	Up Stream Ditch	btm=	86.40	wp=		12.00
	Ditch Bottom	0.00 metres	Dn Stream Ditch	Btm =	85.80			
	Ditch slopes	300.00 :1	Difference =		0.60			
	Water depth	0.020 metres (depth n	eeded to carry 0.13 Cu. M/se	c)	Тор Ва	nk =	86.45	
Check Dite	ch Capacity (Q)				Free Bo	oard =	0.03	
	Q =	0.086 Cu M/sec	and Velocity =	0.71 M/s				

Ditch MH1	11		Length =	6.00 m				
New Ditch	Section Required 1:	100 yr. +20% flow = 12.01 l/s	0.012 Cu	ı m/sec				
From See	lye use n =	0.013 (Channels)				area=		0.05
choose:	slope S =	2.33 %	Up Stream Ditch	btm=	86.44	wp=		4.80
	Ditch Bottom	0.00 metres	Dn Stream Ditch	Btm =	86.30			
	Ditch slopes	120.00 :1	Difference =		0.14			
	Water depth	0.020 metres (depth n	eeded to carry 0.13 Cu. M/se	c)	Top B	ank =	86.6	
Check Dite	ch Capacity (Q)				Free E	Board =	0.14	
	Q =	0.026 Cu M/sec	and Velocity =	0.55 M/s				

Ditch CBN	ИН05		Length =	18.50 m				
New Ditch	Section Required 1:1	00 yr. +20% flow = 5.46 l/s	0.005 C	ı m/sec				
From See	lye use n =	0.020 (Channels)				area=		0.02
choose:	slope S =	1.03 %	Up Stream Ditch	btm=	86.40	wp=		1.76
	Ditch Bottom	0.00 metres	Dn Stream Ditch	Btm =	86.21			
	Ditch slopes	40.00 :1	Difference =		0.19			
	Water depth	0.022 metres (depth ne	eeded to carry 0.13 Cu. M/se	ec)	Top Bank	ς =	86.45	
Check Dit	ch Capacity (Q)	0.00			Free Boa	rd =	0.03	
	Q =	0.005 Cu M/sec	and Velocity =	0.25 M/s				

Ditch MH2	21		Length =	15.25 m				
New Ditch	n Section Required 1:1	00 yr. +20% flow = 5.23 l/s	0.005 C	u m/sec				
From See	elye use n =	0.013 (Channels)				area=		0.02
choose:	slope S =	2.10 %	Up Stream Ditch	n btm=	86.27	wp=		1.60
	Ditch Bottom	0.00 metres	Dn Stream Ditch	n Btm =	85.95			
	Ditch slopes	40.00 :1	Difference =		0.32			
	Water depth	0.020 metres (depth ne	0.020 metres (depth needed to carry 0.13 Cu. M/sec)		Top Ba	ink =	86.32	
Check Dit	tch Capacity (Q)				Free B	oard =	0.03	
	Q =	0.008 Cu M/sec	and Velocity =	0.52 M/s				

Ditch MH	25		Length =	7.00 m				
New Ditch	n Section Required 1:1	00 yr. +20% flow = 8.23 l/s	0.008 C	0.008 Cu m/sec				
From See	elye use n =	0.013 (Channels)				area=		0.02
choose:	slope S =	1.86 %	Up Stream Ditch	n btm=	86.51	wp=		1.60
	Ditch Bottom	0.00 metres	Dn Stream Ditch	Btm =	86.38			
	Ditch slopes	40.00 :1	Difference =		0.13			
	Water depth	0.020 metres (depth nee	eded to carry 0.13 Cu. M/se	ec)	Тор Ва	nk =	86.59	
Check Dit	tch Capacity (Q)				Free B	oard =	0.06	
	Q =	0.008 Cu M/sec	and Velocity =	0.49 M/s				

Q = $A^*(1.0/n)^*R^2/3^*S^1/2$ where: A = cross sectional area in Sq. m n = friction coefficient

R = hydraulic radius = A/wetted perimetre (wp) in m

ARCADIS IBI GROUP

500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada

ibigroup.com

RUN-OFF COEFFICIENTS

Development Name | Name of Client/Developer 123456-6.0 | Rev #3 | 2024-05-23 Prepared By: AB | Checked By: RM

	CBMH20		CB08		CBMH09		CBMH14					MH11			CB19						
	GRASS		HARD	GRASS		Hard	GRASS		Hard	GRASS		Hard				GRASS		Hard	GRASS		Hard
	406.70		1430.57	274.90		12.82	179.40		608.27	36.26		342.69				15.78		1175.26	41.46		1448.20
	175.95			12.28			12.33			21.05						15.78			40.44		l
	24.44															5.50			10.96		1
	62.34															56.00			7.33		<u> </u>
																31.68			151.61		<u> </u>
TOTAL (m²)	669.43	0.00	1430.57	287.18	0.00	12.82	191.73	0.00	608.27	57.31	0.00	342.69				124.74	0.00	1175.26	251.80	0.00	1448.2
. ,		2100.00			300.00			800.00			400.00						1300.00			1700.00	
Runoff Coefficient (C):	0.25	0.90	0.90	0.25	0.90	0.90	0.25	0.90	0.90	0.25	0.90	0.90				0.25	0.90	0.90	0.25	0.90	0.90
Ave. Runoff Coefficient (C):		0.69			0.28			0.74			0.81	I					0.84	ı		0.80	
			U.S.			J												J			
Runoff Coefficient Used(C):		0.69			0.28			0.74			0.85			0.76			0.84			0.80	
-																					
		CBMH05			MH22			EXMH49			MH25			EXMH49-2			MH10			MH12	
	GRASS		HARD	GRASS		Hard	GRASS		Hard	GRASS		Hard	GRASS		Hard	GRASS		Hard	GRASS		Hard
	740.14		1913.21	98.04		301.96	48.12		422.34	222.67		1021.42	62.79		306.08	38.52		1708.59	4.98		1556.31
	53.82						13.91			24.57			31.13			13.64			58.90		
	6.60						15.63			31.34						92.83			51.36		1
	15.86															8.00			54.77		
	15.84															16.06			53.28		-
	7.30															15.86			53.08 42.67		-
	37.86 9.37															6.50			9.61	-	
	9.51																		8.85		
																			6.19		
	886.79	0.00	1913.21	98.04	0.00	301.96	77.66	0.00	422.34	278.58	0.00	1021.42	93.92	0.00	306.08	191.41	0.00	1708.59	-	0.00	1556.3
TOTAL (m ²)		2800.00			400.00			500.00			1300.00			400.00			1900.00			1900.00	
<u></u>																					
Runoff Coefficient (C):	0.25	0.90	0.90	0.25	0.90	0.90	0.25	0.90	0.90	0.25	0.90	0.90	0.25	0.90	0.90	0.25	0.90	0.90	0.25	0.90	0.90
Ave. Runoff Coefficient (C):		0.69			0.74			0.80			0.76			0.75			0.83			0.78	
				1			1			1			T								
Runoff Coefficient Used(C):		0.69			0.74			0.85			0.76			0.76			0.83			0.78	

ISSUES									
No.	DESCRIPTION	DATE							
1	ISSUED FOR CITY REVIEW	2023-02-06							

18981

ssign/04_Civil/Sheets/C-500 STORN D07-12-23-0026

APPENDIX E

- Grading Plan 122764-C-200Erosion and Sediment Control Plan 122764-C-900

NORTH AMERICAN
DEVELOPMENT GROUP

COPYRIGHT

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

ISSUES							
No.	DESCRIPTION	DATE					
1	ISSUED FOR CITY REVIEW	2023-02-06					
2	REVISED AS PER NEW SITE PLAN	2023-09-06					
3	REVISED AS PER CITY COMMENTS	2024-05-24					

SEE 010, 011, 012 FOR NOTES, LEGEND, CB TABLE, STREET SECTIONS AND DETAILS

SITE OF PLAN

SITE OF PL

CONSULTANTS
Project Coordinator:
North American Development Group

Site Plan Architect: Q4 Architects Inc.

Surveyor: Fairhall, Moffatt and Woodland Ltd.

Paterson Group
Traffic:

Geotechnical:

IBI Group

Electrical: Hammerschlag & Joffe Inc.

Landscape: Levstek Consultants Inc.

> 0 4 12 20m 0 4 12 20m

SEAL

PROFESSIONAL PROPERTY OF ONT ARIO

IBI GROUP
400 – 333 Preston Street
Ottawa ON K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868
ibigroup.com

PROJECT

ORLEANS GARDENS

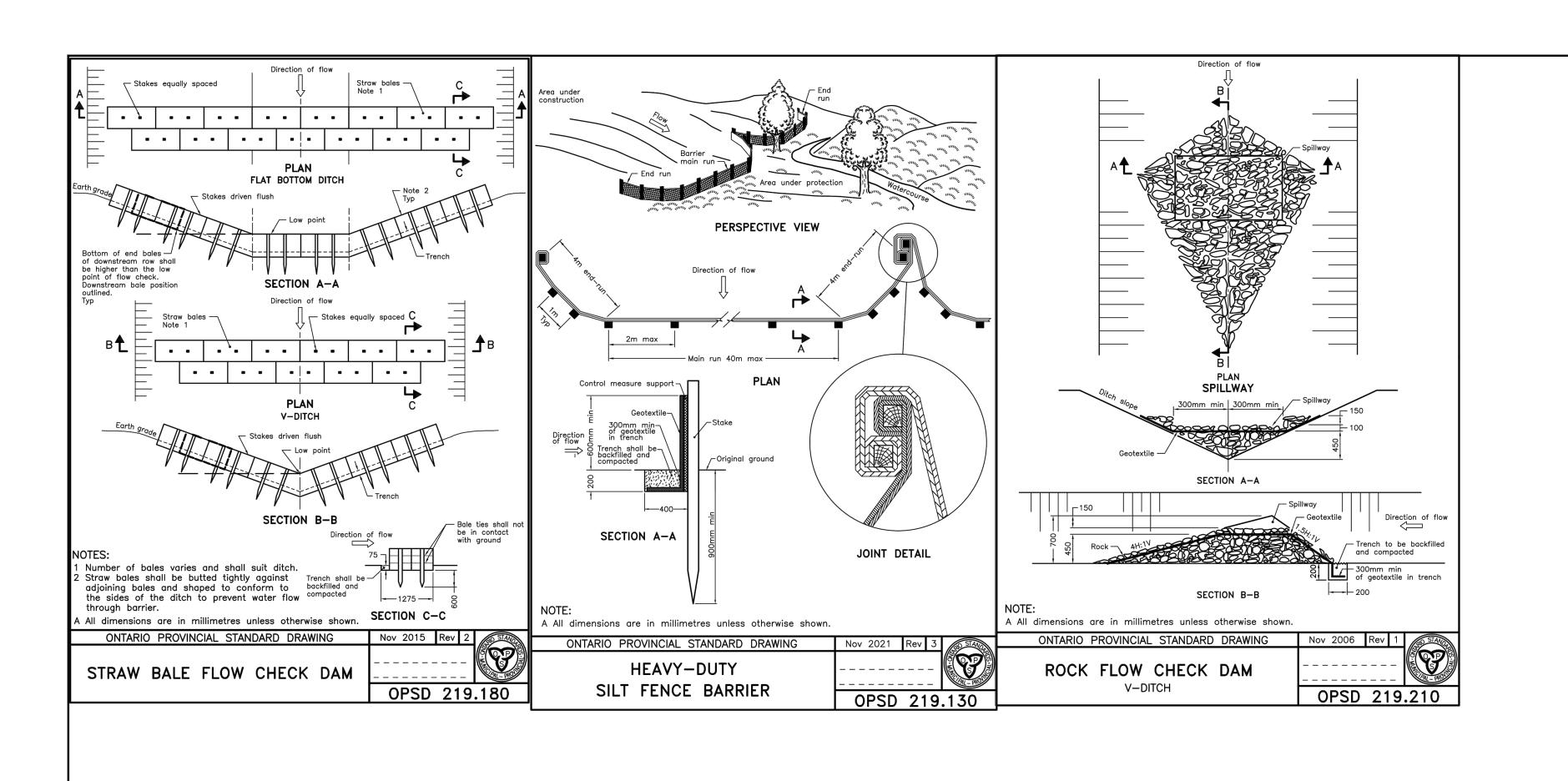
N.3_De

nsGardens\7.0_Production

ECK | File Location: J:\122;

1615 ORLEANS BOULEVARD

PROJECT NO: 122764	
DRAWN BY:	CHECKED BY:
A.B. / E.H.	R.M./D.G.Y.
PROJECT MGR:	APPROVED BY:
R.M.	D.G.Y.


SHEET TITLE

GRADING PLAN

SHEET NUMBER ISSUE 3

TOD TOTALIST OF THE TOTALIST O
ORE TO SERVICE TO SERV
BLOCK TO' 16 BLD O' 17 BLOCK TO' 16 BLOCK TO
Ordered Bridgerord Storey Buildings Control Contr
DOTTING CHE MAN AND AND AND AND AND AND AND AND AND A

JEANNE D'ARC BLVD

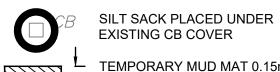
NOTES:

JEANNE D'ARC BLVD

THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY,

- 1. SILT FENCE TO BE ERECTED PRIOR TO EARTH WORKS BEING COMMENCED. SILT FENCE TO BE MAINTAINED UNTIL VEGETATION IS ESTABLISHED OR UNTIL START OF SUBSEQUENT PHASE.
- 2. STRAW BALE SEDIMENT TRAPS TO BE CONSTRUCTED IN EXISTING ROAD SIDE DITCHES. TRAPS TO REMAIN AND BE MAINTAINED UNTIL VEGETATION IS ESTABLISHED.
- 3. SILT SACK TO BE PLACED AND MAINTAINED UNDER COVER OF ALL CATCHBASINS. GEOTEXTILE SILT SACK IN STREET CBs TO REMAIN UNTIL ALL CURBS ARE CONSTRUCTED. GEOTEXTILE FABRIC IN RYCBs TO REMAIN UNTIL VEGETATION IS ESTABLISHED. ALL CATCHBASINS TO BE REGULARLY INSPECTED AND CLEANED, AS NECESSARY, UNTIL SOD AND CURBS ARE CONSTRUCTED.
- 4. CONTRACTOR TO PROVIDE DETAILS ON LOCATION(S) AND DESIGN OF DEWATERING TRAP(S) PRIOR TO COMMENCING WORK. CONTRACTOR ALSO RESPONSIBLE FOR MAINTAINING TRAP(S) AND ADJUSTING SIZE(S) IF DEEMED REQUIRED BY THE ENGINEER DURING CONSTRUCTION.
- 5. CONTRACTOR TO PROTECT EXISTING CATCHBASINS WITH FILTER CLOTH UNDER THE COVERS TO TRAP SEDIMENTATION. REFER TO IDENTIFIED STRUCTURES.
- 6. WORKS NOTED ABOVE ARE TO BE INSTALLED, INSPECTED, MAINTAINED AND ULTIMATELY REMOVED BY SERVICING CONTRACTOR.
- 7. THIS IS A "LIVING DOCUMENT" AND MAY BE MODIFIED IN THE EVENT THE PROPOSED CONTROL MEASURES ARE INSUFFICIENT

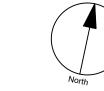
LEGEND :


HEAVY DUTY SILT FENCE AS PER OPSD-219.130

OPSD-219.180

SNOW FENCE

ROCK CHECK DAM AS PER OPSD-219.210

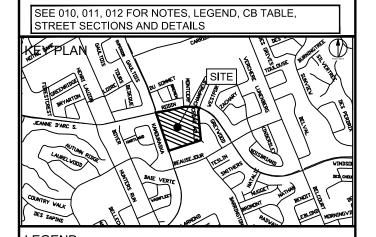

STRAW BALE CHECK DAM AS PER

EXISTING CB COVER

15.0

TEMPORARY MUD MAT 0.15m THICK 50mm CLEAR STONE ON NON WOVEN FILTER CLOTH

COPYRIGHT


This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

NORTH AMERICAN

DEVELOPMENT GROUP

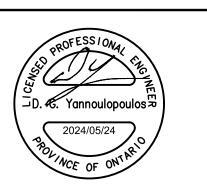
IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

ISSUES									
No.	DESCRIPTION	DATE							
1	ISSUED FOR CITY REVIEW	2023-02-06							
2	REVISED AS PER NEW SITE PLAN	2023-09-06							
3	REVISED AS PER CITY COMMENTS	2024-05-24							

LEGEND Project Coordinator: North American Development Group

> Site Plan Architect: Q4 Architects Inc.

Surveyor: Fairhall, Moffatt and Woodland Ltd.


Geotechnical: Paterson Group

IBI Group

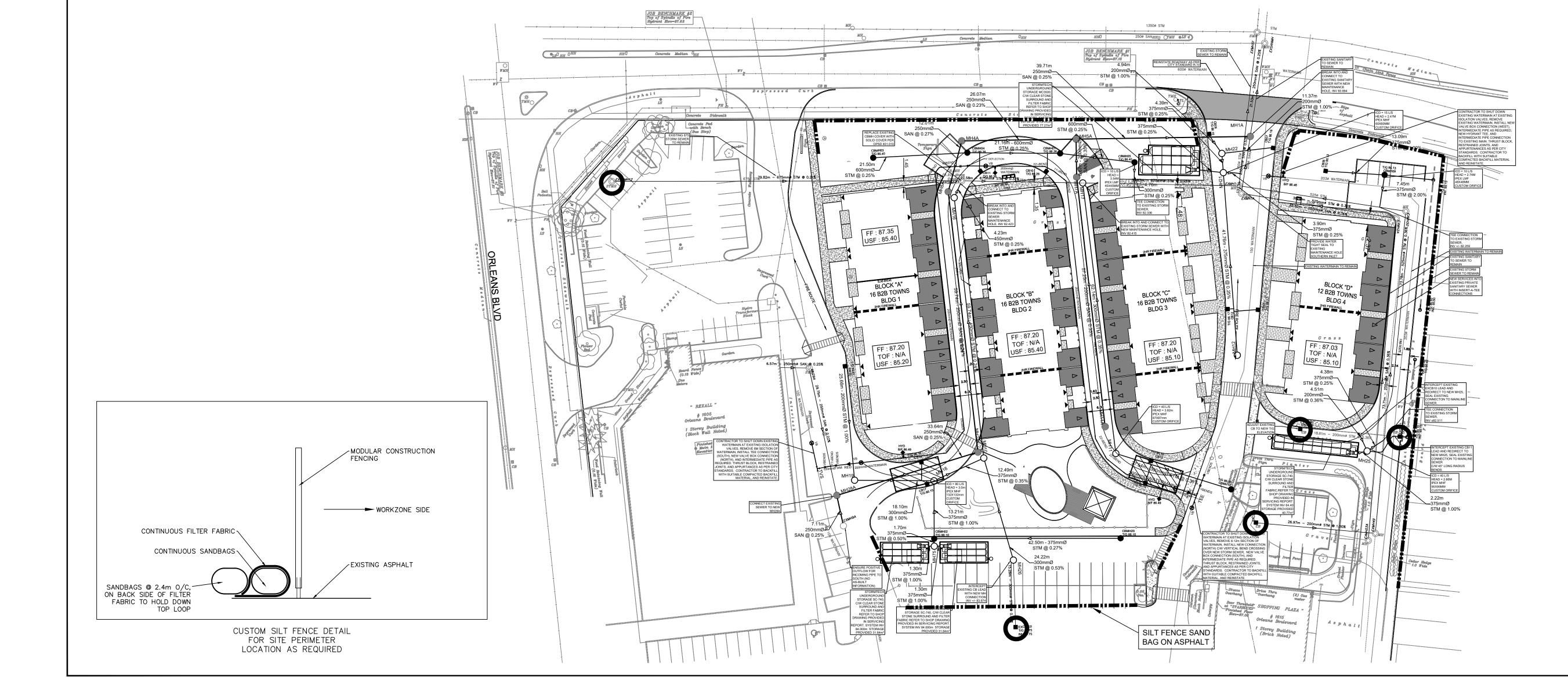
Electrical: Hammerschlag & Joffe Inc.

andscape: Levstek Consultants Inc.

SEAL

ORLEANS GARDENS

1615 ORLEANS BOULEVARD


PROJECT NO: 122764	
DAMN RV:	CHECKED BV:

RAWN BY: B. / E.H.	CHECKED BY: R.M./D.G.Y.
ROJECT MGR: M.	APPROVED BY: D.G.Y.

SEDIMENT-EROSION PLAN

SHEET NUMBER 3 C-900

AN NO.

