February 22, 2023 File: PE1962-LET.09

Orleans Gardens J.V. c/o North American Property Group 1-2851 John Street Markham ON L3R 5R7

Attention: Ms. Giordana Sita

Subject: Phase II - Environmental Site Assessment Update Part of 1615 Orleans Boulevard Ottawa, Ontario 9 Auriga Drive Ottawa, Ontario

K2E 7T9 Tel: (613) 226-7381

Geotechnical Engineering Environmental Engineering Hydrogeology Materials Testing Building Science Rural Development Design Retaining Wall Design Noise and Vibration Studies

patersongroup.ca

Dear Madam,

Further to your request, Paterson Group (Paterson) conducted a Phase II - Environmental Site Assessment (ESA) Update for the aforementioned property. This report updates a Phase II-ESA entitled "Phase II-Environmental Assessment, Part of 1615 Orleans Boulevard, Ottawa, Ontario" prepared by Paterson and dated February 24, 2020

As part of this Phase II ESA Update Paterson completed a groundwater sampling program to update the groundwater quality at the Phase II ESA property.

Conceptual Site Model

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

Based on the results of the Phase I ESA completed for the subject site, three PCAs have been identified within the study area.

- D PCA 1: Former retail fuel outlet
- D PCA 2: Former UST.
- D PCA3: Existing Hydro Transformer

However, only one PCA (PCA1) is considered to have resulted in an APEC on the Phase II Property:

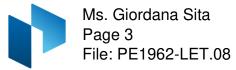
Areas of Pot	ential Environ	mental Conce	ern							
Area of Potential Environmental Concern (APEC)	Location of APEC on Phase I Property	Potentially Contaminating Activity (PCA)	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Soil and/or Groundwater)					
APEC 1: Former Retail Fuel Outlet	On the western portion of the property	Item 28: Gasoline and associated product storage in fixed tanks	Off-Site	BTEX PHCs	Soil and Groundwater					
APEC2 ¹ Application of Road Salt	Within the parking areas and drive lanes	NA	On-Site	EC SAR	Soil					
1 In accordance with Section 49.1 of O.Reg. 153/04 standards are deemed to be met if an applicable site condition standard is exceeded at a property solely because the qualified person has determined that a substance										

condition standard is exceeded at a property solely because the qualified person has determined that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. The exemption outlined in Section 49.1 is being relied upon with respect to the Phase I ESA property.

The APEC on the Phase I Property is presented on Drawing PE1962-3 – Site Plan. PCAs identified within the Phase I Study Area are outlined in green on Drawing PE1962-4 – Surrounding Land Use Plan.

The remaining PCAs are not considered to represent APECs on the Phase II ESA property due the nature of the PCA and/or the separation distance from the Phase II ESA property.

Contaminants of Potential Concern


The following contaminants of potential concern (CPCs) are identified with respect to the Phase II Property:

- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX).
- **D** Petroleum Hydrocarbons fractions 1 through 4 (PHCs F_1 - F_4).

BTEX and PHCs F₁-F₄ were selected as CPCs for the Phase II Property due to the former presence of a retail fuel outlet situated on the property to the west of the Phase II ESA property.

Subsurface Structures and Utilities

Utilities on the Phase II Property included sanitary/storm sewer lines, a municipal water service, electrical services and telephone lines. Based on standard practice for subsurface utility installation, service trenches are expected to be present approximately 2 m below the existing grade. Subsurface infrastructures on the Phase II Property are shown illustrated on Drawing PE1962-5.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on the attached cross sections. The site stratigraphy consists of:

Pavement structure, consisting of approximately 0.08m of asphaltic concrete over 0.8 to 0.66m of engineered fill material (crushed stone) was encountered at BH1, BH2, BH5 and BH6. Groundwater was not encountered in this layer.

□ Native soil consisting of sand was encountered beneath the pavement structure or topsoil at most sampling locations. At a similar depth to the native sand intermittent areas of reworked native sand and clay were identified

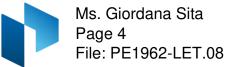
Silty clay was encountered in all boreholes at depths between approximately 1.47 m and 2.64 m below grade and extended until the borehole was terminated.

Hydrogeological Characteristics

Groundwater at the Phase II Property was encountered in the native silty clay layer. During the most recent groundwater monitoring event, groundwater flow was measured in a northwesterly direction, towards the Ottawa River, with a hydraulic gradient of 0.025 m/m. Groundwater contours are shown on Drawing PE1962-5.

Approximate Depth to Water Table

Depth to the water table at the subject site varies between approximately 1.81m and 3.65 m below existing grade.


Approximate Depth to Bedrock

Bedrock was not confirmed during the drilling program. All boreholes were completed in the native soil and did not reach refusal, as the drift thickness is estimated to be on the order of 50 to 100 m.

Well records for the Phase II Property and study area did not provide any information regarding the bedrock depth.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the Phase II Property, in that the subject property is not within 30m of an environmentally sensitive area, and the pH of the soil is between 5 and 9.

Section 43.1 of the Regulation does not apply to the subject site as bedrock is not located less than 2 m below ground surface.

Fill Placement

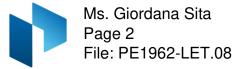
Engineered fill is present on the Phase II Property and exists as part of the pavement structure. The fill material consists of crushed stone larger than 2 millimeters in size and is not considered to be soil as defined by O.Reg.153/04. The engineered fill material is not considered to represent an APEC on the Phase II Property. Fill material consisting of a brown silty clay was also present on site, this fill material is re-worked native soil from site grading and servicing. This material is not considered to represent a PCA or APEC on the subject site.

Existing Buildings and Structures

The Phase II Property is currently vacant and partially used for parking. The asphaltic paved parking areas, lights and roadway fronting Jeanne d'Arc Boulevard South are the only permanent structures on the subject site. No other structures exist on the Phase II Property.

Proposed Buildings and Other Structures

The proposed site development for the subject site includes several blocks of attached residential dwellings on the northern, central and eastern portions of the property with associated parking on the southern part of the property. The footprint of the development will cover the majority of the site.


Areas of Natural Significance

No areas of natural significance are present on the Phase II Property or within the 250 m study area.

Environmental Condition

Areas Where Contaminants are Present

Based on the analytical test results and Section 49.1 of O.Reg. 153/04 there are no contaminants exceeding the appliable MECP Standards on the subject site.

Statement of Limitations

This Phase II - Environmental Site Assessment Update report has been prepared in general accordance with Ontario Regulation 153/04, as amended by O.Reg. 269/11 under the Environmental Protection Act. The conclusions presented herein are based on information gathered from a limited historical review and field inspection program. The findings of the Phase II - ESA Update are based on a review of readily available geological, historical and regulatory information and a cursory review made at the time of the field assessment.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Orleans Gardens J.V. c/o North American Property Group Inc. Permission and notification from the above noted party and this firm will be required to release this report to any other party.

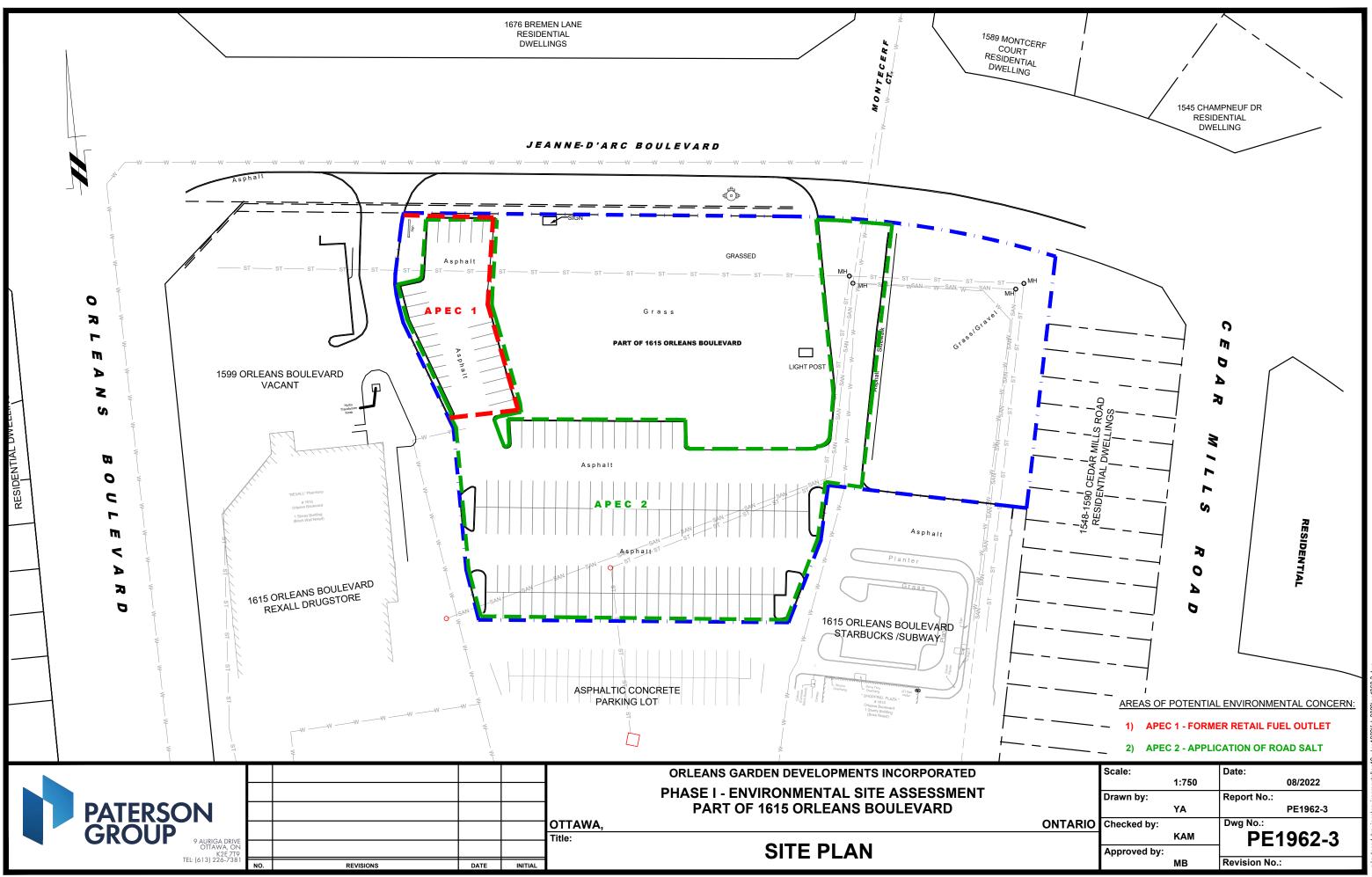
We trust that this submission satisfies your current requirements. Should you have any questions please contact the undersigned.

Paterson Group Inc.

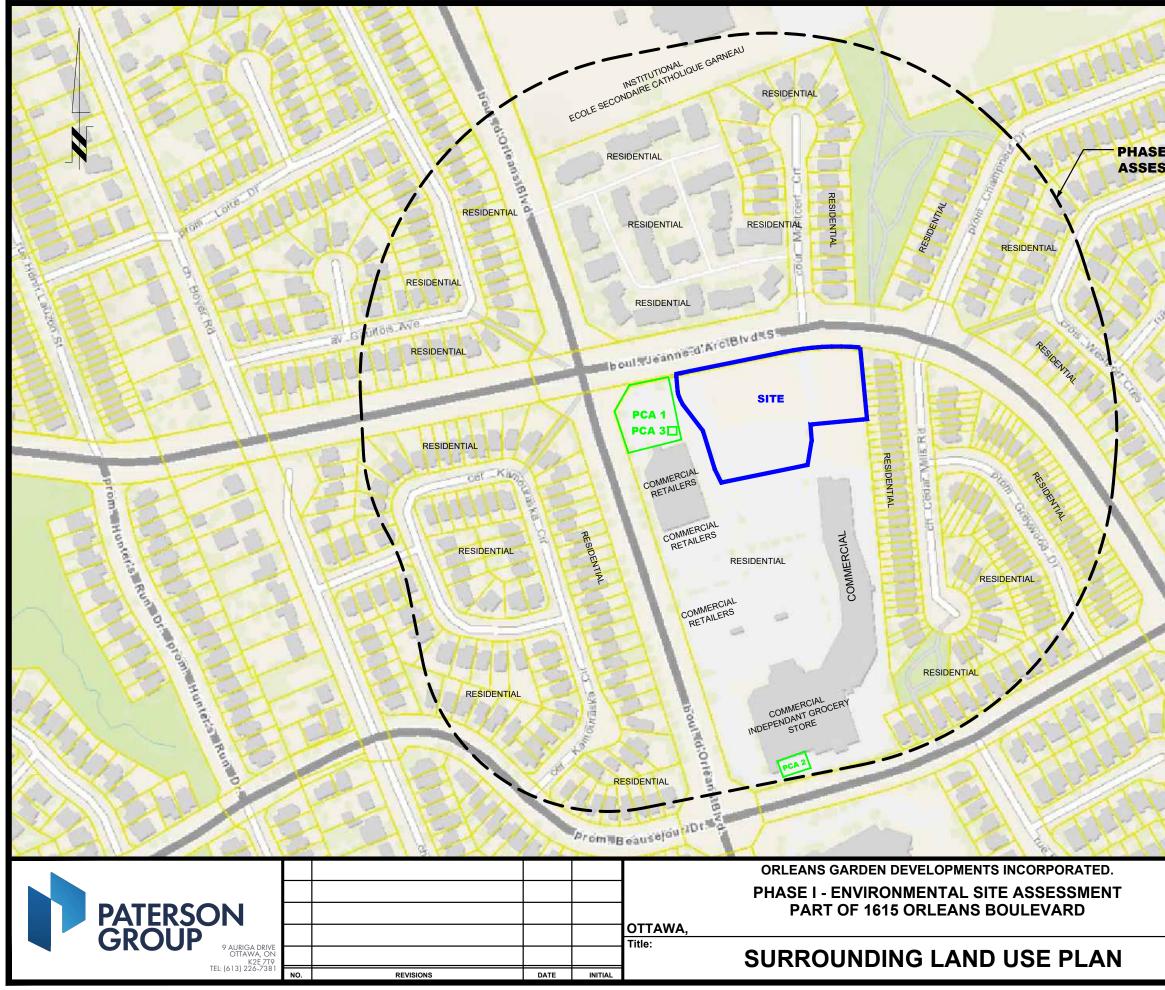
Michael Beaudoin, P.Eng., QPESA

Report Distribution

- Orleans Gardens J.V. c/o North American Property Group Inc
- Paterson Group



Ottawa Head Office 9 Auriga Drive Ottawa – Ontario – K2E 7T9 Tel: (613) 226-7381

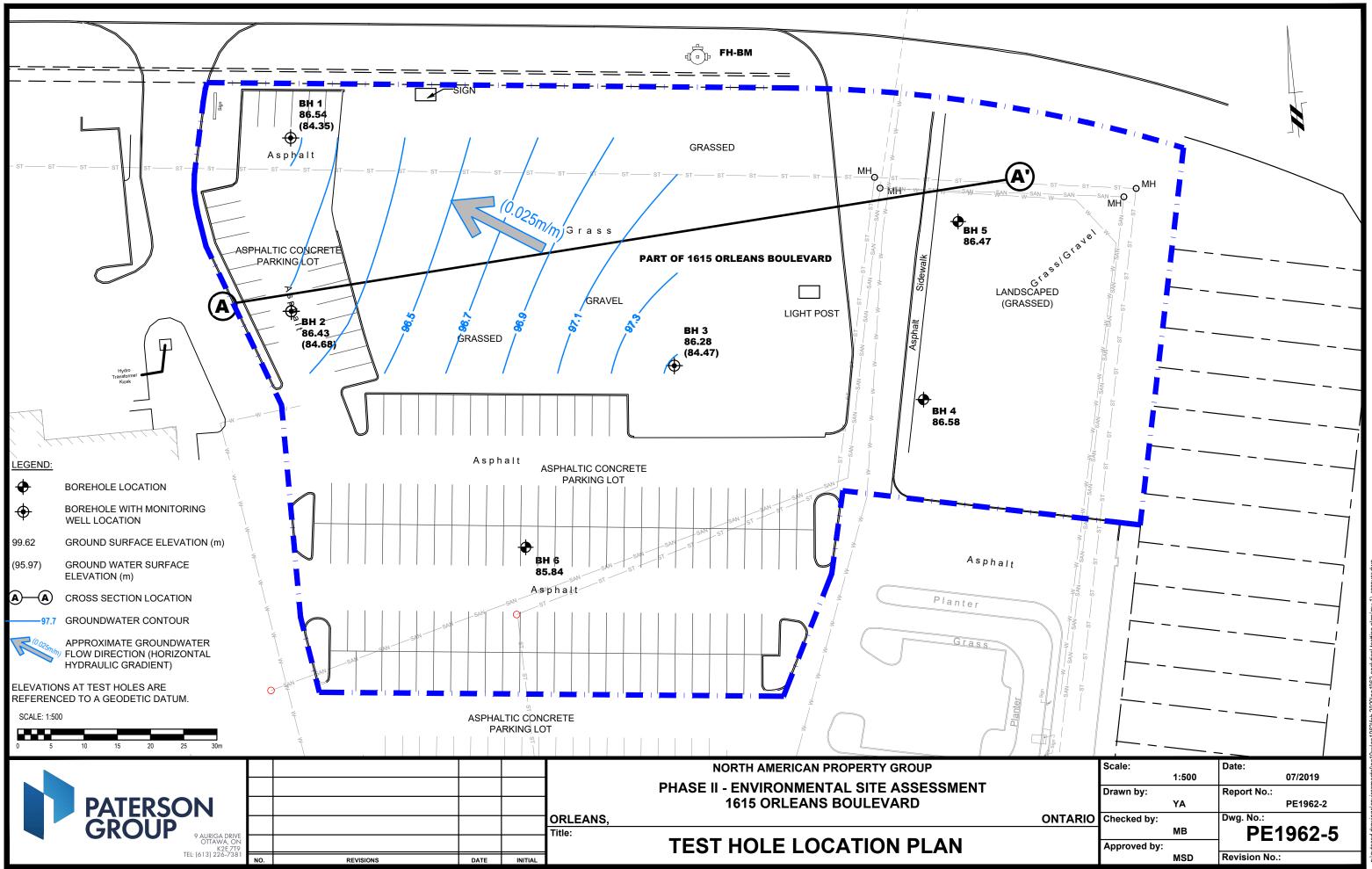

Ottawa Laboratory 28 Concourse Gate Ottawa – Ontario – K2E 7T7 Tel: (613) 226-7381

Northern Office and Laboratory 63 Gibson Street North Bay – Ontario – P1B 8Z4 Tel: (705) 472-5331

ocad drawings\environmental\pe19xx\pe1962\feb 2020\pe1962-3

PHASE I - ENVIRONMENTAL SITE ASSESSMENT STUDY AREA

POTENTIALLY CONTAMINATING ACTIVITIES:

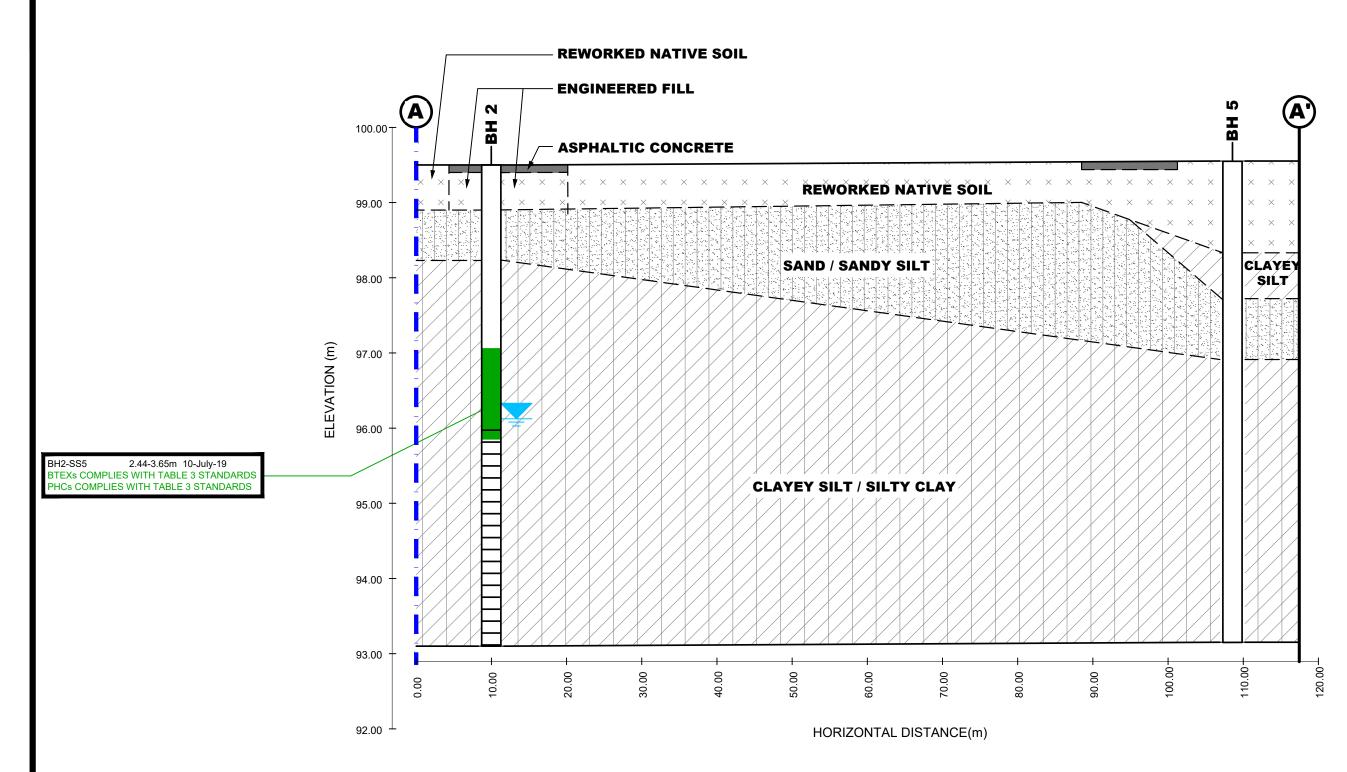

PCA 1: ITEM 28 - FORMER RETAIL FUEL OUTLET

PCA 2: ITEM 28 - FORMER UNDERGROUND FUEL OIL TANK

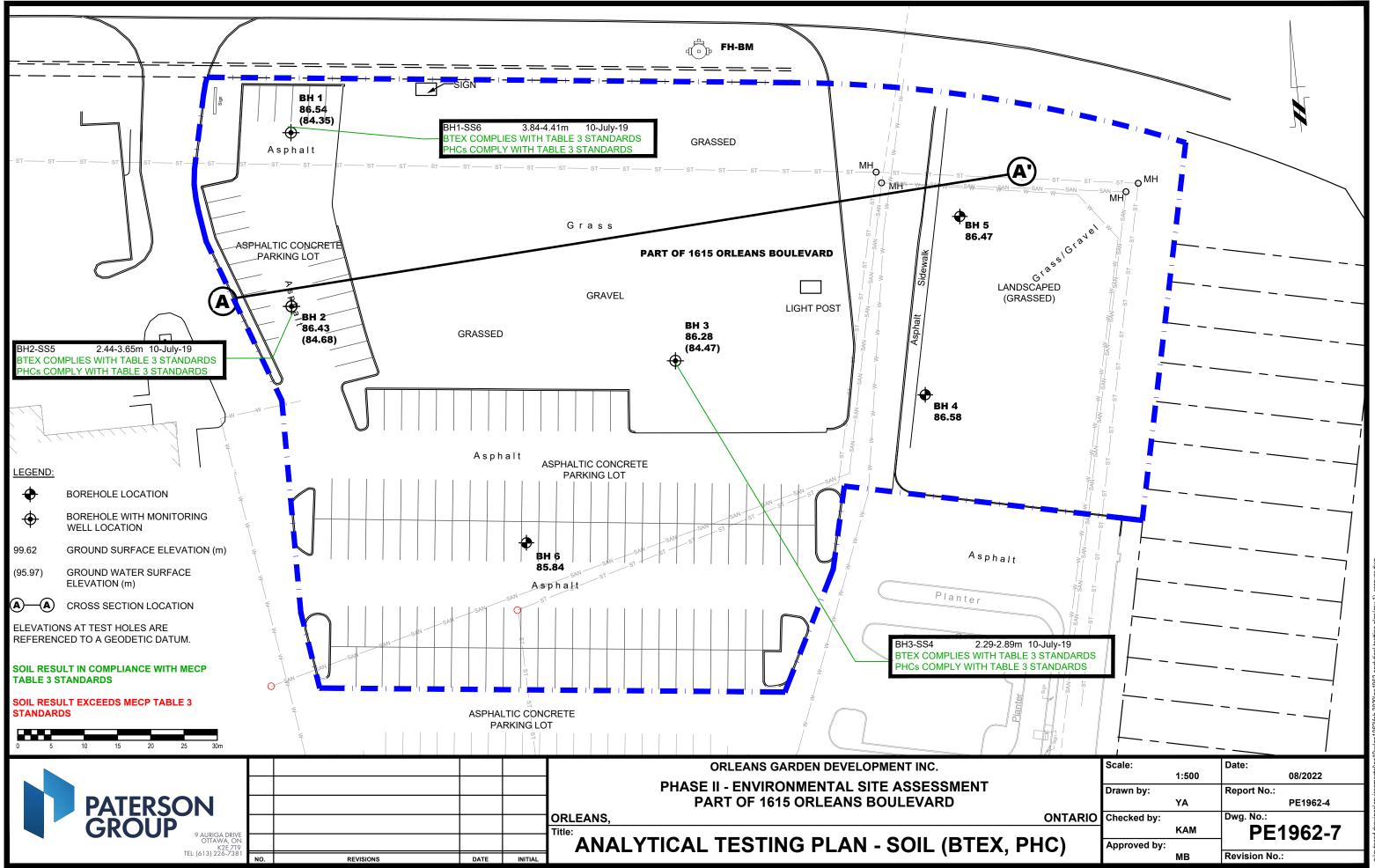
BeauseloursorA

PCA 3: ITEM 55 - EXISTING TRANSFORMER

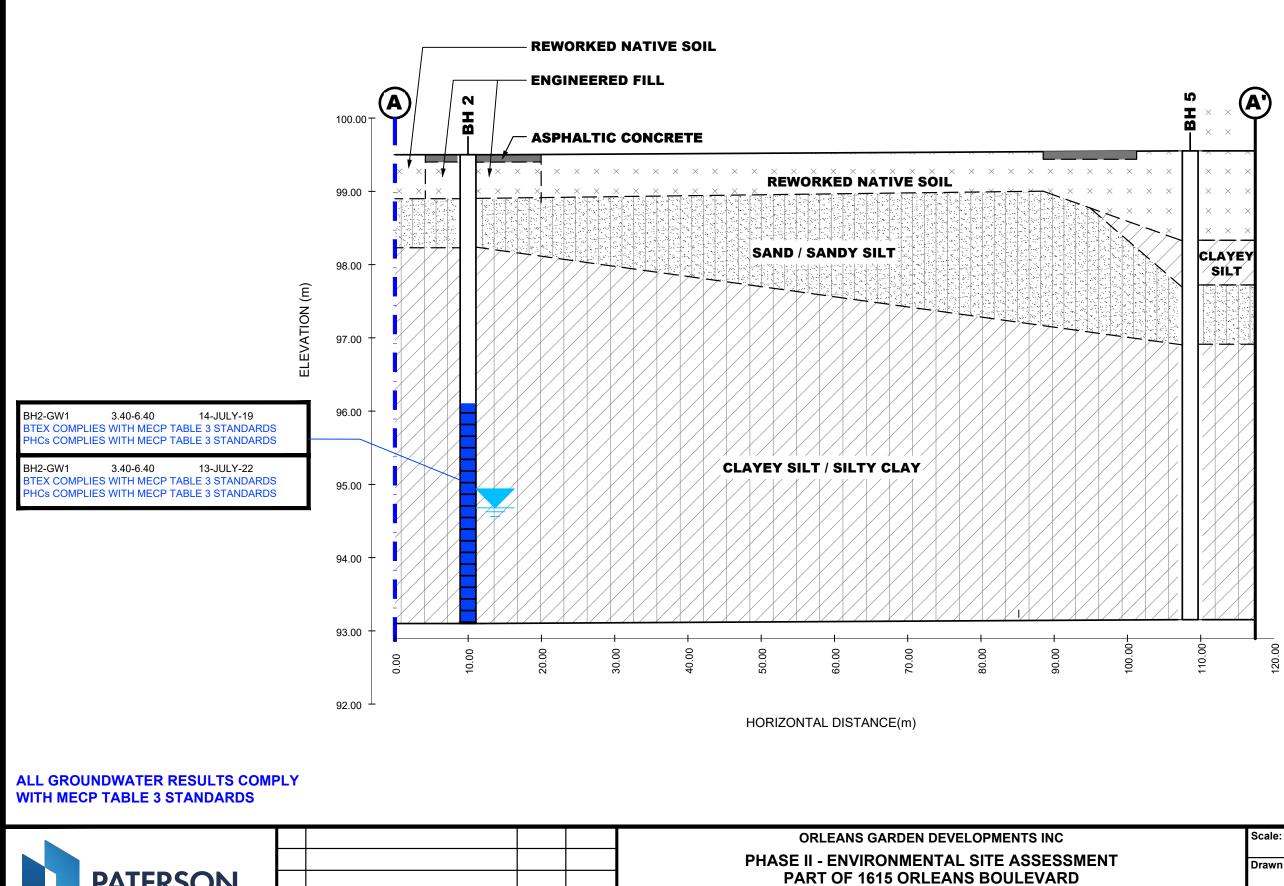
	Scale:		Date:
		1:3000	08/2022
	Drawn by:		Report No.:
		YA	PE1962-3
ONTARIO	Checked by:		Dwg. No.:
		KAM	PE1962-4
	Approved by:		FE1902-4
		MB	Revision No.:



utocad drawings\environmental\pe19xx\pe1962\feb 2020\pe1962-analytical testting plan(rev.1)_recover.dw


SOIL RESULT EXCEEDS MECP TABL	- 3 3	STANDARDS			
					ORLEANS GARDEN DEVELOPMENTS INC
					PHASE II - ENVIRONMENTAL SITE ASSESSMENT
PATERSON					PART OF 1615 ORLEANS BOULEVARD
					ORLEANS,
• GROUP 9 AURIGA DRIVE OTTAWA, ON					CROSS SECTION A-A' - SOIL (BTEX AND PH
K2Ē 719 TEL: (613) 226-7381	NO.	REVISIONS	DATE	INITIAL	CR033 SECTION A-A - SOIL (BTEX AND FI

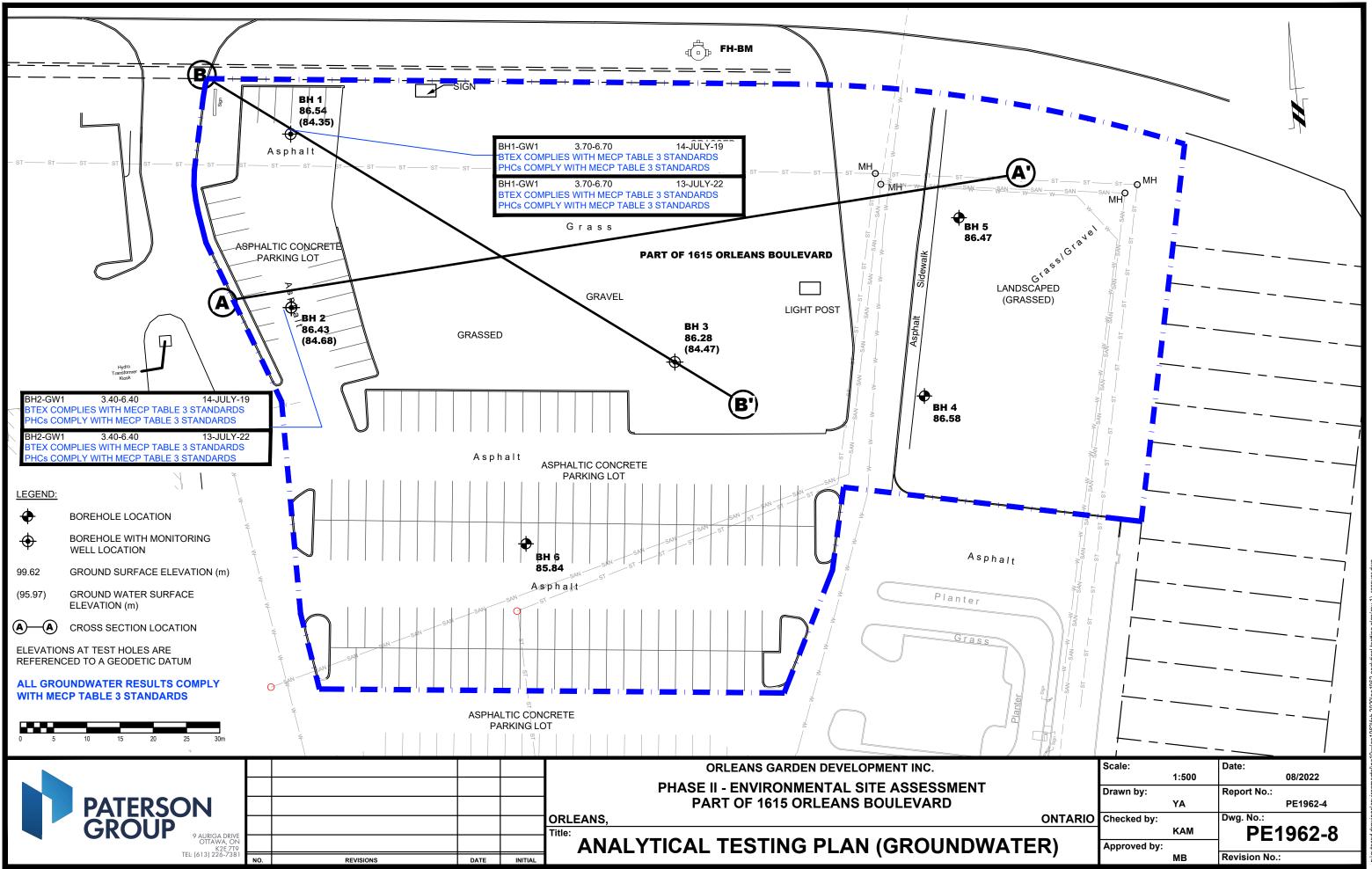
SOIL RESULT EXCEEDS MECP TABLE 3 STANDARDS


SOIL RESULT IN COMPLIANCE WITH MECP TABLE 3 STANDARDS

	Scale:		Date:
		AS SHOWN	02/2020
	Drawn by:		Report No.:
		RCG	PE1962-4
ONTARIO	Checked by:		Dwg. No.:
		MB	PE1962-7A
HC)	Approved by	/:	
,		MSD	Revision No.:

utocad drawings\environmental\pe19xx\pe1962\feb 2020\pe1962-analytical testting plan(rev.1)_recover.dw

ORLEANS, Title:


DATE

INITIAL

CROSS SECTION A-A' - GROUNDWATER

PATERSON GROUP PL: (613) 226-7381 No. REVISIONS

	Scale:		Date:
		AS SHOWN	02/2020
	Drawn by:		Report No.:
		RCG	PE1962-4
ONTARIO	Checked by:		Dwg. No.:
		MB	PE1962-8A
	Approved by	/:	. =
		MSD	Revision No.:

lautocad drawings\environmental\pe19xx\pe1962\feb 2020\pe1962-analytical testting plan(rev.1)_recover.dwg

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Part of 1615 Orleans Boulevard Ottawa, Ontario مامم th norty bo doru

DATUM TBM - Top spindle of fire h Jeanne D'Arc Blvd. An arbi	ydrar itrary	nt loca eleva	ted o tion o	n the r f 100.	าorth 00m ง	property l was assig	poundary	v, along ne TBM.	FILE NO.	PE1962	2
REMARKS	-					-			HOLE NO.	BH 1	
BORINGS BY CME 55 Power Auger					AIE	2019 July					_
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		onization De tile Organic Rd		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• Lowe	r Explosive	Limit %	onitorir Constru
GROUND SURFACE	ß	0 \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{v} \mathbf{z} \mathbf{v} \mathbf{z} z				80	ž				
Asphaltic concrete0.08 FILL: Brown silty sand with gravel, crushed stone0.60		AU	1			0-	-99.62	A			
Compact, brown SAND	× × ×	ss	2	58	15	1-	-98.62 _	A			որերությունը ուրերությունը ուրերի հերությունը։ Դերերությունը ուրերերին որենությունը ուրե
Very stiff, brown CLAYEY SILT / SILTY CLAY	X	ss	3	92	7		2	*			րիիրիիրի իրիկինին
- silt content decreasing with depth		$\overline{\mathbb{N}}$				2-	-97.62				<u>լինդինդի</u>
		∬ SS	4	96	4	3-	-96.62				
Stiff, brown SILTY CLAY		ss	5	0	3		2				
- firm and grey by 3.8m depth		ss	6	88	W	4-	-95.62	A			
		ss	7	100	W	5-	-94.62	A			
		ss	8	100	W	6-	-93.62	A			
6.70		ss	9	100	W		2	▶			<u>. - .</u>
End of Borehole (GWL @ 3.65m - July 17, 2019)											
									200 300 Eagle Rdg. (as Resp. △ Me		00

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1615 Orleans Boulevard Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Jeanne D'Arc Blvd. An arb	TBM - Top spindle of fire hydrant located on the north property boundary, along Jeanne D'Arc Blvd. An arbitrary elevation of 100.00m was assigned to the TBM.FILE NO.PE1962											
REMARKS BORINGS BY CME 55 Power Auger				п	ATE 2	2019 July	10		HOLEN	^{10.} BH 2		
-	PLOT		SAN	IPLE		DEPTH	ELEV.			on Detector	Vell	
SOIL DESCRIPTION			R	RY	۶e	(m)	(m)	Vola	tile Organ	nic Rdg. (ppm)	ring \ tructi	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				-	sive Limit %	Monitoring Well Construction	
GROUND SURFACE	··· ^ · ^ · ^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		24	4	0-	-99.50	20	40	60 80	2	
FILL: Brown silty sand with gravel, crushed stone		AU	1									
Comapct to loose, brown SILTY SAND with clay		ss	2	67	8	1-	-98.50	Δ			։ Դերեներներները։ Դերեներներին	
1.27		4 <u>)</u> 77										
		ss	3	100	6	2-	-97.50					
		ss	4	0	2							
Very stiff to firm, brown SILTY CLAY		∇	_	100		3-	-96.50					
- firm and grey by 3.5m depth		ss	5	100	W		2					
		ss	6	100	w	4-	-95.50					
			7	100	W							
		ss	/	100	vv	5-	-94.50					
		ss	8	100	w		2	▲				
<u>6</u> .40		_				6-	-93.50					
End of Borehole												
(GWL @ 3.37m - July 17, 2019)												
									Eagle Ro	300 400 50 dg. (ppm) △ Methane Elim.	00	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1615 Orleans Boulevard Ottawa, Ontario

TBM - Top spindle of fire hydrant located on the north property boundary, along FILE NO. DATUM Jeanne D'Arc Blvd. An arbitrary elevation of 100.00m was assigned to the TBM. **PE1962** REMARKS HOLE NO. BH 3 BORINGS BY CME 55 Power Auger DATE 2019 July 10 SAMPLE **Photo Ionization Detector** Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Lower Explosive Limit % \bigcirc **GROUND SURFACE** 80 20 40 60 0+99.36FILL: Brown silty sand with gravel AU 1 and organics 0.60 1+98.36 SS 2 88 9 SS 3 100 6 2 + 97.36Very stiff to stiff, brown SILTY CLÁY SS 4 100 W 3+96.36 - firm and grey by 3.0m depth SS 5 100 W 4+95.36 SS 6 100 W SS 7 100 W 5+94.36SS 8 100 W 6+93.36 SS 9 W 100 6.70 End of Borehole (GWL @ 1.81m - July 17, 2019) 100 200 300 400 500 **RKI Eagle Rdg. (ppm)** ▲ Full Gas Resp. △ Methane Elim.

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1615 Orleans Boulevard Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM TBM - Top spindle of fire h Jeanne D'Arc Blvd. An arb	nydrar bitrary	nt loca eleva	ted o tion o	n the r f 100.	north 00m v	property l vas assig	poundary	r, along ie TBM.	FILE NO.	PE1962	2
REMARKS	-			_					HOLE NO.	BH 4	
BORINGS BY Geoprobe			C A A		AIE	2019 July		Dhata I	onization De		=
SOIL DESCRIPTION	PLOT		JAN		_	DEPTH (m)	ELEV. (m)		tile Organic Rd		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			○ Lowe	r Explosive	Limit %	nitorir
GROUND SURFACE	E S	Ĥ	INN	REC	N OF			20	40 60	80	δÖ
FILL: Brown silty sand, some gravel		S	1	25	26	0-	-99.66	4			
0.91		ss	2	100	9	1 -	-98.66 4	N			
		ss	3	100	2		2	N			
Very stiff to stiff, brown SILTY CLAY		ss	4	100	W	2-	-97.66	A			
		ss	5	100	W	3-	-96.66	A			
- firm and grey by 3.2m depth											
		ss	7	100	W	4-	-95.66 4				
		ss	8	100	W		2	N			
		ss	9	100	W	5-	-94.66	N			
		ss	10	100	W	6-	-93.66	2			
6.70		ss	11	100	W						
End of Borehole											
									200 300 Eagle Rdg. (as Resp. △ Me		bo

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1615 Orleans Boulevard Ottawa Ontario

154 Colonnade Road South, Ottawa, Ont	ario K	(2E 7J	5			tawa, Or		s Bouleval	ſŨ		
DATUM TBM - Top spindle of fire h Jeanne D'Arc Blvd. An arb	ydrar itrary	nt loca eleva	ted o tion o	n the i f 100.	north 00m v	oroperty l vas assig	poundary	/, along ne TBM.	FILE NO.	PE1962	2
					ATE /	010 1010			HOLE NO.	BH 5	
BORINGS BY Geoprobe					ATE 2	2019 July					_
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH (m)	ELEV. (m)		onization D tile Organic Rd		ng Wel
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD			 Lowe 20 	er Explosive	Limit %	Monitoring Well Construction
FILL: Brown silty sand with gravel 0.25	$\times\!\!\times\!\!\times$	$\overline{\mathbf{V}}$				0-	-99.55				
FILL: Brown silty sand with gravel and crushed stone		ss ss	1 2	88 38	72 38		2	A			
1.22		$\overline{\mathbf{A}}$	L		00	1-	-98.55 '				
FILL: Brown silty clay with sand and gravel		ss	3	62	3	2-	-97.55				
5		ss	4	83	12	2	97.00				
2.70		ss	5	67	3	3-	-96.55	A			
Stiff, brown SILTY CLAY - firm and grey by 3.2m depth		ss	6	100	W		2				
		ss	7	100	w	4-	-95.55 4				
		ss	8	100	W		2	A			
		ss	9	100	W	5-	-94.55				
		ss	10	100	w			A		· · · · · · · · · · · · · · · · · · ·	
End of Borobolo		-				0-	-93.55				
End of Borehole											
									200 300 Eagle Rdg. (as Resp. △ Me		00

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1615 Orleans Boulevard Ottawa Ontario

154 Colonnade Road South, Ottawa, Ont	ario K	2E 7J	5			tawa, Or		S DOUIEV	aru				
DATUM TBM - Top spindle of fire h Jeanne D'Arc Blvd. An arb	ydrar itrary	nt loca eleva	ted o tion o	n the i f 100.	north 00m v	property l vas assig	boundary ned to th	/, along ne TBM.	FIL	.e no.	PE1962	2	
REMARKS					ATE (2010 101			нс	DLE NO.	BH 6		
BORINGS BY Geoprobe			CAN		AIE	2019 July		Dhata		nation D		=	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)				Detector dg. (ppm)	g We iction	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	(,		O Low 20	ver Ex 40	-	e Limit % 80	Monitoring Well Construction	
Asphaltic concrete 0.08	··· ^·· ^·· ^·					0-	-98.92						
FILL: Brown sand with gravel and crushed stone0.66		ss	1	10				A					
		ss	2	75	5	1-	-97.92 '						
Very stiff to stiff, brown SILTY		ss	3	100	3			4					
CLAY		$\overline{\mathbb{V}}$				2-	-96.92						
		ss	4	100	W			≜					
- firm and grey by 2.6m depth		ss	5	100	W		4	A					
End of Borehole						3-	-95.92						
									I Eagl	e Rdg. (400 50 (ppm) lethane Elim.	00	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Mike Beaudoin

Client PO: Project: PE1962 Custody: 136696

Report Date: 19-Jul-2022 Order Date: 13-Jul-2022

Order #: 2229405

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2229405-01	BH1
2229405-02	BH2
2229405-03	DUP

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 19-Jul-2022 Order Date: 13-Jul-2022

Order #: 2229405

Project Description: PE1962

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	15-Jul-22	15-Jul-22
PHC F1	CWS Tier 1 - P&T GC-FID	14-Jul-22	15-Jul-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-Jul-22	18-Jul-22

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO:

Order #: 2229405

Report Date: 19-Jul-2022

Order Date: 13-Jul-2022

	_		-		
	Client ID:	BH1	BH2	DUP	-
	Sample Date:	13-Jul-22 09:00	13-Jul-22 09:00	13-Jul-22 09:00	-
	Sample ID:	2229405-01	2229405-02	2229405-03	-
	MDL/Units	Water	Water	Water	-
Volatiles	•		•		
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene-d8	Surrogate	109%	109%	108%	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Report Date: 19-Jul-2022

Order Date: 13-Jul-2022

Project Description: PE1962

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	89.0		ug/L		111	50-140			

Report Date: 19-Jul-2022 Order Date: 13-Jul-2022

Project Description: PE1962

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	87.7		ug/L		110	50-140			

Report Date: 19-Jul-2022

Order Date: 13-Jul-2022

Project Description: PE1962

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2290	25	ug/L	ND	115	68-117			
F2 PHCs (C10-C16)	1460	100	ug/L	ND	91.2	60-140			
F3 PHCs (C16-C34)	4220	100	ug/L	ND	108	60-140			
F4 PHCs (C34-C50)	2360	100	ug/L	ND	95.0	60-140			
Volatiles									
Benzene	39.1	0.5	ug/L	ND	97.8	60-130			
Ethylbenzene	37.5	0.5	ug/L	ND	93.7	60-130			
Toluene	38.4	0.5	ug/L	ND	95.9	60-130			
m,p-Xylenes	73.1	0.5	ug/L	ND	91.4	60-130			
o-Xylene	38.6	0.5	ug/L	ND	96.6	60-130			
Surrogate: Toluene-d8	74.1		ug/L		92.6	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

			0 N S	SΙV	E ;			acel ID: (Lab Use (Lab Use 136	Only)	
Client Name: Paterson	1168	A L L		Proje PE	ct Ref:	2						1	<u> </u>	S.)	Page	of	1
Milce Beaudoin	en à a	www.f		Quot			1	1		T.	ł	j.	3	10	eg .	Turnaroun		
Address: QAJriga		17.1		PO #:	4	ana A	1.5	5	19		6	3	8	1 0	1 day	, X9.2		🗆 3 day
M MANA AND IN THE REAL AND	L MAR B			E-mai	l: Ress		1. 2	19 14		- 4		۱., .			2 day	1		🗹 Regular
Telephone: 613 226 7381		18 19 A		11	1 SI	duin @ Po	10,201	ngroup.c	٩					Date	Requ	ired:		
REG 153/04 REG 406/19		Regulation				S (Soil/Sed.)	SW IGrou	und Water)		No.								
🕅 Table 1 🗌 Res/Park 🔲 Med/Fine	e 🗆 REG 558	D PWQO			rface	Water) SS (Sto	orm/Sanita	ary Sewer)					Re	quired	d Anal	ysis		
Table 2 Ind/Comm Coarse	CCME	□ MISA			P (I	Paint) A (Air)	0 (Other)		X							+8TeX		
Table 3 Agri/Other	🗆 SU - Sani	SU - Storm			ers				F1-F4+BTEX			e.				1 +8		
Table	Mun:			me	Containers	Sa	ample Ta	ken	1-E	9 . J.		by IC	50	h e		IL .	р. Д	SAL.
For RSC: Yes No	Other:		Matrix	Air Volume	of Co				PHCs F	vocs	PAHs	Metals by ICP	1	5	B (HWS)	tes		
Sample ID/Locatio	on Name			-	#	Date		Time	7	\$	PA	Me	БН	CrVI	B	Hd		
<u>1</u> Внј	ta si se	1.1	CW	1	3	JUly 🇌	13	d sur	1/	20	1.1				les,	an gart	1.1	een 🛓
2 BH2	apar and some	en i georgel i			3		the the	19 5483	V	6 A 14 3	len d	2	n qa	non p	2.	en per	82.	
3 DUP			*		2		j i e lo	병금을			1	, i				\checkmark		
4	ini seli yanger L	e de geologicales de L	9 h w	e fondi	in the second	To be sound	- Alife of	Contrained				arahar at			ing data bi			
5	and a				1	5 F		2.32	1.17									
6																		1
7							1			1								
8		5			, .	4												1
9							-										-	
10				7				Sec. 1		1.			-					
omments:											-	-	Viethoo	of Del	ivery:		1	
PU # to come													1	The	A	EL L	OU	CIEC
elinquished By (Sign):	e dan sekilah neri se Selam sekilah neri se	Received By Dri	ver/De	pot:	1	Francis	Rece	eived at Lab:	BF	2			/erified	By:	P	P		
linquished By (Print): Grant Pater 500	1 - 14 - 1	Date/Time:	2	100	12	23:	Dat	e/Time:,	2 11	17	-12-	0	Date Ti	me:	l	100	2	21
ate/Time: JU 14 13 2022		Temperature:	7	4	6	° -		JU-	19.2	-	:)0		JU	fied: [14	100	9:.	31a
tain of Custody (Env) xisx		Sec. Sec.		8093	2.45	1	7.	2.4300	11.0		1-4	1	AL VE(ing tao ila	10110	NI	7	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mike Beaudoin

Client PO: 27299 Project: PE1962 Custody: 122819

Report Date: 17-Jul-2019 Order Date: 11-Jul-2019

Order #: 1928549

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1928549-01	BH1-SS2
1928549-02	BH1-SS6
1928549-03	BH2-SS2
1928549-04	BH2-SS5
1928549-05	BH3-SS2
1928549-06	BH3-SS4

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	15-Jul-19	16-Jul-19
Conductivity	MOE E3138 - probe @25 °C, water ext	17-Jul-19	17-Jul-19
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	17-Jul-19	17-Jul-19
PHC F1	CWS Tier 1 - P&T GC-FID	15-Jul-19	16-Jul-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	15-Jul-19	17-Jul-19
SAR	Calculated	16-Jul-19	16-Jul-19
Solids, %	Gravimetric, calculation	16-Jul-19	16-Jul-19

Report Date: 17-Jul-2019 Order Date: 11-Jul-2019

Order #: 1928549

Report Date: 17-Jul-2019 Order Date: 11-Jul-2019

	ан				
	Client ID:	BH1-SS2	BH1-SS6	BH2-SS2	BH2-SS5
	Sample Date:	10-Jul-19 09:00	10-Jul-19 09:00	10-Jul-19 09:00	10-Jul-19 09:00
	Sample ID:	1928549-01	1928549-02	1928549-03	1928549-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	83.0	57.9	84.1	61.1
General Inorganics			-		-
SAR	0.01 N/A	5.85	-	3.07	-
Conductivity	5 uS/cm	568	-	426	-
рН	0.05 pH Units	7.17	-	-	-
Volatiles					
Benzene	0.02 ug/g dry	-	<0.02	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene	0.05 ug/g dry	-	<0.05	-	<0.05
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene-d8	Surrogate	-	80.4%	-	76.1%
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	-	<8
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	-	<6

Order #: 1928549

Report Date: 17-Jul-2019

Order Date: 11-Jul-2019

	T				
	Client ID:	BH3-SS2	BH3-SS4	-	-
	Sample Date:	10-Jul-19 09:00	10-Jul-19 09:00	-	-
	Sample ID:	1928549-05 Soil	1928549-06 Soil	-	-
	MDL/Units	3011	3011	-	-
Physical Characteristics			1		
% Solids	0.1 % by Wt.	63.3	58.9	-	-
General Inorganics					
SAR	0.01 N/A	14.2	-	-	-
Conductivity	5 uS/cm	1790	-	-	-
рН	0.05 pH Units	-	7.54	-	-
Volatiles					
Benzene	0.02 ug/g dry	-	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	-
Toluene	0.05 ug/g dry	-	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	-
o-Xylene	0.05 ug/g dry	-	<0.05	-	-
Xylenes, total	0.05 ug/g dry	-	<0.05	-	-
Toluene-d8	Surrogate	-	83.8%	-	-
Hydrocarbons			-		
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	-	-

Order #: 1928549

Report Date: 17-Jul-2019

Order Date: 11-Jul-2019

Project Description: PE1962

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	2.88		ug/g		90.0	50-140			

Order #: 1928549

Report Date: 17-Jul-2019

Order Date: 11-Jul-2019

Project Description: PE1962

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	0.18	0.01	N/A	0.19			5.4	200	
Conductivity	1960	5	uS/cm	1950			0.2	5	
pH	7.55	0.05	pH Units	7.60			0.7	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	29	7	ug/g dry	27			7.9	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND			0.0	30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND			0.0	30	
Physical Characteristics									
% Solids	96.2	0.1	% by Wt.	96.1			0.1	25	
Volatiles									
Benzene	1.22	0.02	ug/g dry	1.31			7.0	50	
Ethylbenzene	2.81	0.05	ug/g dry	3.07			8.9	50	
Toluene	0.441	0.05	ug/g dry	0.474			7.2	50	
m,p-Xylenes	6.13	0.05	ug/g dry	6.85			11.1	50	
o-Xylene	0.862	0.05	ug/g dry	0.859			0.3	50	
Surrogate: Toluene-d8	3.61		ug/g dry		87.1	50-140			

Order #: 1928549

Report Date: 17-Jul-2019

Order Date: 11-Jul-2019

Project Description: PE1962

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	197	7	ug/g		98.6	80-120			
F2 PHCs (C10-C16)	98	4	ug/g	ND	114	60-140			
F3 PHCs (C16-C34)	252	8	ug/g	ND	119	60-140			
F4 PHCs (C34-C50)	165	6	ug/g	ND	124	60-140			
Volatiles									
Benzene	5.01	0.02	ug/g		125	60-130			
Ethylbenzene	4.39	0.05	ug/g		110	60-130			
Toluene	4.37	0.05	ug/g		109	60-130			
m,p-Xylenes	8.58	0.05	ug/g		107	60-130			
o-Xylene	4.42	0.05	ug/g		111	60-130			
Surrogate: Toluene-d8	2.13		ug/g		66.5	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

PARACEL WO: 1928549 TRUSTED TRUSTED RESPON: RELIABLI									Chain of Custody (Lab Use Only) Nº 122819										
Client	1															Pa	ige 1	of _1	
Chient Name: HELLE PATERSON GROW					Project Reference: PE1962											Turnaround Time:			
MILL GEHUDOIN					Quote #											Day		D 3 I	Day
154 Colonnade AJS					PO# 27299										Day Regula				
154 Colonnade Ad S. Telephone: 613-226-7361					mbrandon @ patersongroup, ca										Date Required:			gular	
Crite	ria: 20. Reg. 153/04 (As Amended) Table _ 0	RSC Filing C	10. Re	g. 558/0		CME II SU	JB (Sto	(m)	DS.	UB	Sanit	P	funicina	liter	Date	-	Other:	1.5	
	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wa						T	quir					nancipa	aty			Juner:		
	cel Order Number:		T	1			-	dan.	cu A		ses	_	-						
	1928549		Air Volume	of Containers	Sample Taken		PHCs F1-F4+BTEX			Is by ICP		WS)	Sax	H					
	Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHC	VOCS	PAHs	Metals by	H	CrVI B (HWS)	EC	6					
1	BH1-552	5		1	July 10/19								×	×	1	20 m.			\vdash
2	13H1-556	5		2	i		×										1×V	al	\vdash
3	AH2-552	5		1									X			0 m.	p		
4	BH2-555	S		2	1		×									om.	V	Vial	-
5	BH3-552	3		1									X		1.1	0 m	0	V. S.	-
6	PH3-554	S		2	-		K							K	1	lom		Via	1
7	ē.																	VIS	
8																			
9																			
10																			
Comm	1.1.										8.19					Method	or Delive	xy;	
			COUSE Samuel									Verified							
Relinquished By (Print): Date/Time. 11/077			119 22											" Z-1-N/2					
ne tu	00:	Temperat	ture.	(P1	Tenipe	rature:	14.	2 "	C .			1	pH Verif	ied [] B	y:	1		11

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mike Beaudoin

Client PO: 27300 Project: PE1962 Custody: 122821

Report Date: 18-Jul-2019 Order Date: 12-Jul-2019

Order #: 1928679

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1928679-01	BH4-SS2
1928679-02	BH5-SS3
1928679-03	BH6-SS2

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 18-Jul-2019 Order Date: 12-Jul-2019

Project Description: PE1962

Order #: 1928679

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Conductivity	MOE E3138 - probe @25 °C, water ext	17-Jul-19 17-Jul-19
SAR	Calculated	16-Jul-19 18-Jul-19
Solids, %	Gravimetric, calculation	15-Jul-19 15-Jul-19

Order #: 1928679

Report Date: 18-Jul-2019 Order Date: 12-Jul-2019

Project Description: PE1962

	Client ID:	BH4-SS2	BH5-SS3	BH6-SS2	-
	Sample Date:	11-Jul-19 09:00	11-Jul-19 09:00	11-Jul-19 09:00	-
	Sample ID:	1928679-01	1928679-02	1928679-03	-
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	82.7	82.2	75.4	-
General Inorganics				-	-
SAR	0.01 N/A	2.56	5.43	10.5	-
Conductivity	5 uS/cm	380	724	1140	-

Report Date: 18-Jul-2019 Order Date: 12-Jul-2019

Project Description: PE1962

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Conductivity	ND	5	uS/cm						

Order #: 1928679

Report Date: 18-Jul-2019 Order Date: 12-Jul-2019

Project Description: PE1962

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	0.18	0.01	N/A	0.19			5.4	200	
Conductivity	1960	5	uS/cm	1950			0.2	5	
Physical Characteristics	00.0	0.4	0/	00.4			0.4	05	
% Solids	88.8	0.1	% by Wt.	88.4			0.4	25	

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Report Date: 18-Jul-2019 Order Date: 12-Jul-2019 Project Description: PE1962

Order #: 1928679

OPARACE		PAR	ACE	L WO: 192	8679			3 C	Itawa : 1-80	19 St. I , Ontar 0-749-	aurent Blvd. io K1G 4J8 947 racellabs.com		(La Nº	122	wi 821	
1		_		Project Reference:	1 1	2/-						-	10005	round'		-
Chent Name: ATOPHON	,	-		Quote #	PE-19	62		-	-	-		DID			D 3 Day	v
Contact Name: MILLE MEAUDE Address: 154 Colo MAALE Telephone: 412-026-739	Rd S.			PO# 2730 Email Address: Mblau		2	1. 7.	1	~	m	0.50	- - 2 D		-	□ Regu	
Telephone: 13 - 226 - 736 Criteria: DO. Reg. 153/04 (As Amended) Table	C RSC Filing C	O. Reg	. 558/00	DPWQ0 DCCM	ME DI SUE	3 (Stor	m) 🗆	SUB	Sanit	ary) N	unicipality:			ther:		_
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surfac							uired									
Paracel Order Number: 1928679		Air Volume	of Containers	Sample Ta		PHCs F1-F4+BTEX	T	Metals by ICP		VS)	Sar					
Sample ID/Location Name	Matrix	Air V	# of c	Date	Time	PHCs	VOCA	Metal	Ηġ	CrVI B (HWS)	2					
1 BH 4-552	S	-	1	July 11/17							X		-12	omi	•	1
2 BH 5-553	5		1								X			1		1
3 PSH6 - 552	5		1	1			-	+			X			V	_	-
5													-			
6										_		-				
7										_		-	-		-	_
8							_			-		-	-		_	
9							-	+		-					_	_
10								1					Method	of Deliver	v:	
Comments:	7												19	rdie	1	
Relinquished By (Sign):	Receive	al by Dri	iver Depo	Trout	Rece	m	eep	arw	201	Del	Mai Verifi	hat	1)	N.	la	10
Relinquished By (Print):		mc //	2/0	7/19 4	Date/T	inc. rature	JUL	12	ا عد	9 0	Jily Date	Time. erified []	ALC: N	14	1811	0
Date/Time:	Temper	situne:	/	p p	e (empe	Tature		1		_	pri v	control 1	-7-			

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27106 Project: PE1962 Custody: 122840

Report Date: 24-Jul-2019 Order Date: 18-Jul-2019

Order #: 1929548

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1929548-01	BH1-GW1
1929548-02	BH2-GW1
1929548-03	BH3-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1929548

Report Date: 24-Jul-2019 Order Date: 18-Jul-2019

Project Description: PE1962

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Anions	EPA 300.1 - IC	19-Jul-19 19-Jul-19
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	22-Jul-19 22-Jul-19
Metals, ICP-MS	EPA 200.8 - ICP-MS	23-Jul-19 23-Jul-19
PHC F1	CWS Tier 1 - P&T GC-FID	20-Jul-19 22-Jul-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	24-Jul-19 24-Jul-19

Order #: 1929548

Report Date: 24-Jul-2019 Order Date: 18-Jul-2019

Project Description: PE1962

	- · · · - F				
	Client ID:	BH1-GW1	BH2-GW1	BH3-GW1	-
	Sample Date:	17-Jul-19 09:00	17-Jul-19 09:00	17-Jul-19 09:00	-
	Sample ID:	1929548-01	1929548-02	1929548-03	-
	MDL/Units	Water	Water	Water	-
Anions					
Chloride	1 mg/L	411	90	135	-
Metals			•	•	
Sodium	200 ug/L	124000	39500	66500	-
Volatiles	•		•	•	
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	118%	108%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Order #: 1929548

Report Date: 24-Jul-2019 Order Date: 18-Jul-2019

Project Description: PE1962

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals									
Sodium	ND	200	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	79.2		ug/L		99.0	50-140			

Order #: 1929548

Report Date: 24-Jul-2019

Order Date: 18-Jul-2019

Project Description: PE1962

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	135	1	mg/L	133			1.6	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Sodium	15900	200	ug/L	15800			0.7	20	
Volatiles									
Benzene	ND	0.5	ug/L	1.24			0.0	30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	79.5		ug/L		99.3	50-140			

Order #: 1929548

Report Date: 24-Jul-2019

Order Date: 18-Jul-2019

Project Description: PE1962

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	143	1	mg/L	133	101	77-123			
Hydrocarbons									
F1 PHCs (C6-C10)	1950	25	ug/L		97.3	68-117			
F2 PHCs (C10-C16)	1610	100	ug/L		101	60-140			
F3 PHCs (C16-C34)	3850	100	ug/L		98.3	60-140			
F4 PHCs (C34-C50)	2580	100	ug/L		104	60-140			
Metals									
Sodium	23500		ug/L	15800	77.1	80-120		G	QM-07
Volatiles									
Benzene	29.9	0.5	ug/L		74.7	60-130			
Ethylbenzene	50.6	0.5	ug/L		127	60-130			
Toluene	39.0	0.5	ug/L		97.6	60-130			
m,p-Xylenes	86.7	0.5	ug/L		108	60-130			
o-Xylene	49.0	0.5	ug/L		122	60-130			
Surrogate: Toluene-d8	69.1		ug/L		86.3	50-140			

Qualifier Notes:

Login Qualifiers :

Container(s) - Bottle and COC sample ID don't match -Applies to samples: BH2-GW1, BH3-GW1

QC Qualifiers :

QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL			201	aracel ID: 1929548 Head Offic 300-2319 Ottawa, O p: 1-800-7 e: paracel				19 St. Ontar)-749-	io K10 1947	i 4J8	Chain of Custody (Lab Use Only) Nº 122840						
LABORATORIES LTD	•								<u>}_</u>	2	-					3e 0	
Client Name: Autorson Group Inc.				Project Reference	PE/90	62)			_				-		around	Time:
Contact Name: Mark D'Arcy			_	Quote #		_		_	_		_	_		011	Day		□ 3 Day
Address:				PO# 27	106		_	_	_		_			021	Dav		🗆 Regula
154 Colonnade Rd S	_			Email Address:	000	Lais	- 11	20	n Pa	21.1		~	_		Requi	red:	
Telephoner 6/3) 226 - 738/ Criteria: 00 Reg. 153/04 (As Amended) Table _ 0 RSC	ntura in	D Das	520 M	maarc	W@ Par	1 (Su	501	Te	10 URI	Sanit	rv) N	<u>Cq</u> Iunicio	ality:			Other:	2
A											<i>a</i> //		any				
Matrix Type: S (Sod/Sed.) GW (Ground Water) SW (Surface Water) S	8 (Storm S	Sanitary S	ewer) P	(Paint) A (Air) O (Other)	-	quire	ed A	naly	ses		1	_		-		
Paracel Order Number: 1929548	n's	Air Volume	of Containers	Sample	Taken	PHCs F1-F4+BTEX	5	.9	Metals by ICP		CrVT B (HWS)	front +	10map				
Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHC	VOCs	PAHs	Metu	116	CrVT B OH	81	5 300	<u> </u>	_		
1 RHI-GW/I	gh		4	July 1/9	AM	X						X	_	-			
2 BH2-GW2 /	1		5	Jul 14/19		X				_	_	X	_	-	_		
3 BH3-GW3/	V		4	z v'	V					_	_	X	_	_	-	-	
4										_	-		-	-	-	_	-
5										-	_	1	-	-	-	_	
6										_	_		-	-	-	_	
7										_		-	-	-	-	-	
· hepotics que	4	4	m	Reg	itas		5	~	21	-	845	CS	1	SA	46	50	
, , , ,)					-				_	_	-	-	-	-	_	
10														_	Mathe	f of Deliv	
Comments: 130 ate of Samples read Jul (172019	f NO	3 1	1-	and the second se	General	+	Mp	y tal	IS	reid	104	BH	3-61	v 1		Hift	.ıy.
Relinquished Hy (Sign)	Receive	ed by Dri	ver/Dep	X.	Receive	0	Lab: AM (ul				-	Veni	The	h	1	
Relinquished By (Print):	Date/T	ime;	-		Date/Ti		pilotop .				15	:F7	Dute/	Finx.	7- 11	14	1614
Date/Time:	Тетре	rature:		°C	Temper	rature:	10	1.3	°C				pll V	rilled (By	X	NO. N

Chain of Custody (Env) - Rev 0.7 Feb. 2016