

Phase Two Environmental Site Assessment 5993 Flewellyn Road Ottawa, Ontario

Submitted to:

Tartan Homes Ltd. 233 Metcalfe Street Ottawa, Ontario K2P 2C2

Phase Two Environmental Site Assessment 5993 Flewellyn Road Ottawa, Ontario

> July 15, 2014 Project: 14-150

EXECUTIVE SUMMARY

The Phase One ESA report previously carried out for the subject property recommended that a Phase Two ESA investigation be carried out for the property 5993 Flewellyn Road in Ottawa, Ontario. The Phase Two ESA investigated the following Areas of Potential Environmental Concern (APECs) that were identified in the Phase One ESA:

APEC 1: Old Farm House

The interview identified that the former farm house burned down in 1965. The interview also identified that the former farm house was heated by coal and switched to heating oil in 1962. Miscellaneous debris including a fuel tank from a snowmobile and oil containers were identified during the site reconnaissance. The contaminants of concern are PHCs, BTEX, PAHs and metals.

APEC 2: Rusted Metal Debris

The site reconnaissance identified rusted metal debris along the west property boundary in the northwest portion of the subject property. The contaminants of concern are PHCs, BTEX and metals.

APEC 3: Oil Changes in Fields

The interview identified that oil changes on tractors were performed once or twice a year in the fields at different locations. The locations where the oil changes were performed are not known and, therefore, it is not technically possible to identify and investigate those areas. The contaminants of concern are PHCs and BTEX.

The Phase Two ESA investigation was carried out during May and June 2014. The components of the Phase Two ESA investigation consisted of advancing three (3) boreholes and installing three (3) monitoring wells to assess the soil and groundwater in the area of APEC 1 and APEC 2. Soil and groundwater samples were collected and submitted to Paracel Laboratories Ltd. of Ottawa, Ontario for laboratory analyses of selected parameters.

The data collected during the borehole drilling indicated that the site is underlain by a surficial layer of topsoil overlying glacial till. Possible bedrock was encountered at depths ranging from 5.2 to 5.5 metres below ground surface.

The groundwater levels measured in the monitoring wells ranged from 5.8 to 7.1 metres below ground surface.

The analytical results of the soil and groundwater sampling meet the applicable MOE Table 3 site condition standards for the contaminants of concern identified during the Phase One ESA.

Based on the results of the current investigation, no further investigations are required at this time.

TABLE OF CONTENTS

EXECU	TIVE SUMMARY	
1.0 IN	TRODUCTION	.1
1.1 1.2 1.3 1.4	Phase Two Property Description Phase Two Property Ownership Current and Future Land Uses Applicable Site Condition Standard	1 1
2.0 BA	ACKGROUND INFORMATION	2
2.1 2.2	Physical Setting Past Investigations	
3.0 SC	COPE OF INVESTIGATION	4
3.1 3.2 3.3 3.3 3.3	· · · · · · · · · · · · · · · · · · ·	4 4 5
3.4 3.5	Deviations from Sampling and Analysis Plan Impediments	
4.0 IN	VESTIGATION METHODS	7
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	General Borehole Drilling Soil Sampling Groundwater Monitoring Well Installation Groundwater Field Measurements Groundwater Sampling Sediment Sampling Analytical Testing Residue Management Procedures Quality Assurance and Quality Control Measures	7 7 8 8 9 9 9
5.0 RE	EVIEW AND EVALUATION OF INFORMATION1	1
5.1 5.2 5.3 5.4 5.5	Geology	1 2 2

5.	6	Sed	liment Quality	14
5.	7	Qua	ality Assurance and Quality Control Results	14
5.	8	Pha	se Two Conceptual Site Model	15
	5.8.	1	Potentially Contaminating Activities	15
	5.8.	2	Areas of Potential Environmental Concern (APECs)	16
	5.8.	3	Subsurface Structures	
	5.8.		Physical Settings and Hydrogeological Characteristics of the Subject Property	
	5.8.	5	Selection of Site Condition Standards	16
	5.8.	6	Identified Contamination and Impacted Medium on the Subject Property	
	5.8.	7	Summary of Identified Impacts	17
6.0	CC	NCL	USIONS	18
7.0	LIN	/ITA	TION OF LIABILITY	20
8.0	RE	FER	ENCES	22

LIST OF FIGURES

Figure 1	Key Plan
Figure 2	Borehole Location Plan

LIST OF TABLES

Table 1	Soil Analytical Results – Petroleum Parameters
Table 2	Soil Analytical Results – Metal and Inorganic Parameters
Table 3	Soil Analytical Results – Polycyclic Aromatic Hydrocarbons
Table 4	Groundwater Analytical Results – Petroleum Parameters
Table 5	Groundwater Analytical Results – Metal and Inorganic Parameters
Table 6	Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons

LIST OF APPENDICES

Appendix A	Record of Borehole Sheets
Appendix B	Grain Size Distribution Curve
Appendix C	Soil Laboratory Certificates of Analysis
Appendix D	Groundwater Laboratory Certificates of Analysis

1.0 INTRODUCTION

Houle Chevrier Engineering Ltd. (HCEL) was retained by Tartan Land Development to carry out a Phase Two Environmental Site Assessment (ESA) for the property located 5993 Flewellyn Road in Ottawa, Ontario (hereafter referred to as "the subject property"). The general location of the subject property is illustrated on the Key Plan, Figure 1.

The purpose of the Phase Two ESA was to investigate the areas of potential environmental concern identified in the Phase One ESA dated October 2013, and to assess the potential for environmental impact at the subject property. This Phase Two ESA was completed in general accordance with Ontario Regulation 153/04.

1.1 Phase Two Property Description

The subject property is approximately 62.8 hectares (155.3 acres) in size. The legal description for the property is Part of Lot 25, Concession 9, as in C+216436, save & except parts, subject to Easements NS260743 & N391074, Geographic Township of Goulbourn, City of Ottawa; PIN 04449-0516.

1.2 Phase Two Property Ownership

The subject property is owned by Mr. William Davidson, who can be contacted at 613-266-0740.

1.3 Current and Future Land Uses

The current land use is agricultural land and has historically been agricultural land with a residence. The subject property is currently zoned as rural countryside. Plans are being prepared to develop the land as residential. In accordance with Section 168.3.1 of the Environmental Protection Act (Ministry of Environment, December 31, 2011) a Record of Site Condition is not required to be filed for the subject property.

1.4 Applicable Site Condition Standard

Site restoration standards were selected for this site in accordance with the requirements of Ontario Regulation 153/04, Record of Site Condition – Part XV.1 of the Environmental Protection Act (O. Reg. 153/04, Ministry of Environment, October 31, 2011).

The following information was considered in selecting the site condition standards:

- The subject property is within an urban area;
- Drinking water wells may be located on the subject property or within 250 metres of the subject property;
- The current property use is agricultural; however, plans are being prepared to develop the property as residential;

- The overburden thickness in the area of the APECs investigated is greater than 2 metres;
- A grain size distribution analysis was completed on a sample of the glacial till from borehole 14-1. The grain size distribution curve is provided in Appendix B and indicates that approximately 61 percent of particles are greater than 75 micrometres in diameter.

Based on the above information, the current Ministry of Environment (MOE) Table 3 full depth generic site condition standards for coarse grained soil, residential property use, in a potable groundwater condition as outlined in the MOE, Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act (MOE, April 15, 2011) was selected for the subject property.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The subject property is agricultural land and has historically been agricultural land. The subject property is currently serviced by overhead hydro.

The subject property has a relatively flat topography gently sloping from the northwest down to the southeast. The subject property is at elevations of approximately 103 to 113 metres above sea level. Surrounding topography generally slopes gradually downwards to the southeast. Based on the topography of the area, it is expected that the local shallow groundwater flow is towards the southeast.

2.2 Past Investigations

A Phase One ESA was conducted by Houle Chevrier Engineering Ltd. for the subject property and is provided in the report titled "Phase One Environmental Site Assessment, 1575 Diamondview Road, Ottawa, Ontario" dated October 2013. The Phase One ESA was carried out under the supervision of a qualified person in accordance with the Ontario Regulation 153/04 made under the Environmental Protection Act. The following Areas of Potential Environmental Concern (APECs) were determined through the Phase One ESA to exist for the subject property:

APEC 1: Old Farm House

The interview identified that the former farm house burned down in 1965. The interview also identified that the former farm house was heated by coal and switched to heating oil in 1962. Miscellaneous debris including a fuel tank from a snowmobile and oil containers were identified during the site reconnaissance. The contaminants of concern are PHCs, BTEX, PAHs and metals.

APEC 2: Rusted Metal Debris

The site reconnaissance identified rusted metal debris along the west property boundary in the northwest portion of the subject property. The contaminants of concern are PHCs, BTEX and metals.

APEC 3: Oil Changes in Fields

The interview identified that oil changes on tractors were performed once or twice a year in the fields at different locations. The locations where the oil changes were performed are not known and, therefore, it is not technically possible to identify and investigate those areas. The contaminants of concern are PHCs and BTEX.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The objectives of the Phase Two ESA were based on the results of the Phase One ESA and are to document the presence or absence of contaminants in the land or water on, in or under the subject property, and if contaminants are present, to identify the locations of and concentrations of contaminants in the land or water on, in or under the subject site, and to assess if the subject property meets the applicable Ministry of the Environment site condition standards. The presence or absence of contaminants was investigated at discrete sampling locations using a limited number of samples.

The following tasks were completed during the Phase Two ESA:

- Preparation of a sampling and analysis plan;
- Three (3) boreholes were advanced at the site to collect soil samples;
- The three (3) boreholes were instrumented with monitoring wells in order to collect groundwater samples;
- Soil and groundwater samples were submitted to an accredited laboratory for laboratory analysis of contaminants of concern;
- Compare the analytical results with the applicable site condition standard; and,
- Preparation of a Phase Two Environmental Site Assessment report.

3.2 Media Investigated

This Phase Two ESA included sampling and analysis of soil and groundwater. No sediment sampling was conducted as no surface water bodies are present on the subject property. The rationale for sampling the soil and groundwater was to investigate the potential for contamination at the APECs identified in the Phase One ESA.

The soil quality at discrete locations on the subject property was assessed by collecting soil samples from three (3) boreholes, numbered 14-1 to 14-3, at regular depth intervals. All soil samples were field preserved in methanol and screened in the field and at the office, with a subset being submitted for laboratory analysis of the identified contaminants of concern. The locations of the boreholes are provided on Figure 2.

The groundwater quality at the subject property was assessed through the collection of groundwater samples from the three (3) monitoring wells that were installed. Groundwater samples were collected in laboratory supplied bottles using dedicated sampling equipment.

3.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) prepared as part of the Phase One ESA identified the following details:

- A garage with a summer kitchen that was attached to the former house, a detached garage, a barn and two (2) wooden stables for horses were observed on the subject property;
- Surrounding land use has historically been agricultural and currently remains the same with a residential subdivision to the west along Fernbank Road;
- No areas of natural significance are present on the subject property or within the Phase One study area;
- The portion of the property (40 hectares along Fernbank Road) being considered for development is located within the City of Ottawa urban boundary;
- Locations of where potentially contaminating activities have occurred;
- Areas of potential environmental concern on the subject property.

3.3.1 Potentially Contaminating Activities

The following potentially contaminating activities were identified during the Phase One ESA:

- There was a fire that burned down the former house located on the subject property.
- The former house that burned down was heated by coal and oil.
- Miscellaneous debris including an old snowmobile and fuel tank was observed adjacent to the summer kitchen.
- A pile of miscellaneous debris with old rusted parts was observed on the west property line of the subject property in the area of the stables.
- Oil changes were performed in the agricultural fields on the subject property. The oil changes were performed only once or twice a year and in different locations and therefore, it is not technically possible to identify and investigate those areas.

3.3.2 Areas of Potential Environmental Concern

The areas of potential environmental concern (APEC) on the subject property are summarized in the following table:

APEC	Location of APEC on Phase One Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 1	Northwest portion of subject property	Heating oilDebrisHouse fire	On site	 BTEX¹ PHCs² Metals PAHs³ 	SoilShallowGroundwater
APEC 2	Northwest portion of subject property	Rusted metal debrisRusted oil containers	On site	BTEXPHCsMetals	 Soil Shallow Groundwater

APEC	Location of APEC on Phase One Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 3	Unknown	Oil changes	On site	• PHCs • BTEX	SoilShallow Groundwater

Notes:

- 1. BTEX Bezene, Toluene, Ethylbenze and Xylenes
- 2. PHCs Petroleum Hydrocarbon
- 3. PAHs Polycyclic Aromatic Hydrocarbons

3.4 Deviations from Sampling and Analysis Plan

One (1) deviation occurred from the sampling and analysis plan. One (1) additional groundwater sampling event was carried out due to the results of the first sampling event.

3.5 Impediments

No impediments occurred during the investigation.

4.0 INVESTIGATION METHODS

4.1 General

Three (3) boreholes (numbered 14-1 to 14-3) were advanced on May 26, 2014. Soil samples were recovered at regular depth intervals and screened for combustible headspace gas concentrations and visual and olfactory indications of contamination. Well screens were installed in both of the boreholes. Soil and groundwater samples were collected from the boreholes and well screens, and submitted to Paracel Laboratories Ltd. for chemical analyses of selected parameters.

4.2 Borehole Drilling

The boreholes were advanced at the subject property using a direct push drill rig supplied and operated by Strata Drilling Group.

Cross-contamination between samples was minimized by using dedicated tube samplers. Clean gloves were worn and changed between each sample.

4.3 Soil Sampling

Soil samples were collected following the Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996). Soil samples were collected from the tube sampler and placed directly into sample jars and resealable zipper bags using nitrile gloves. An approximately 5 gram soil sample was also obtained using new disposable syringes and placed into methanol preserved vials for volatile organic compounds (VOCs) analysis.

Geological descriptions of the collected soil samples based on the Record of Borehole sheets in Appendix A are summarized in the following table:

Sample	Sample Depth (metres below ground surface)	Geological Description
SA1	0.0 – 1.2	Brown silty sand, trace silt, with
SA2	1.2 – 2.4	gravel and cobbles (Glacial Till)
SA3	2.4 – 3.1	
SA4	3.1 – 3.7	Grey silty sand, some gravel and
SA5	3.7 – 4.3	cobbles, possible boulders (Glacial Till)
SA6	4.3 – 4.9	
	SA1 SA2 SA3 SA4 SA5	Sample (metres below ground surface) SA1 0.0 - 1.2 SA2 1.2 - 2.4 SA3 2.4 - 3.1 SA4 3.1 - 3.7 SA5 3.7 - 4.3

Borehole	Sample	Sample Depth (metres below ground surface)	Geological Description
	SA7	4.9 – 5.5	
	SA1	0.0 – 1.2	
	SA2	1.2 – 1.8	Grey brown silty sand, some
BH14-2	SA3	1.8 – 2.4	gravel, possible cobbles and boulders (Glacial Till)
	SA4	2.4 – 3.1	
	SA1	0.0 – 1.2	Brown silty sand, some gravel, possible boulders (Glacial Till)
BH14-3	SA2	1.2 – 2.0	Grey silty sand, some gravel,
	SA3	2.0 - 2.7	possible cobbles and boulders (Glacial Till)

4.4 Groundwater Monitoring Well Installation

Groundwater monitoring wells were installed in boreholes 14-1, 14-2 and 14-3 by Strata Drilling Group at the time of drilling the boreholes. The monitoring wells were constructed with 51 mm diameter PVC screens and risers. Silica sand was placed around the screen and to 0.3 metres above the top of the screen. The remaining annulus space to ground surface was sealed with bentonite to minimize cross-contamination. The monitoring well construction details are provided in the Record of Borehole sheets in Appendix A.

4.5 Groundwater Field Measurements

A Heron Instruments oil/water interface meter was used to measure groundwater levels and did not detect the presence of free petroleum product in any of the monitoring wells.

4.6 Groundwater Sampling

Groundwater samples were collected following the Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996). All groundwater samples were collected in laboratory supplied bottles, using a peristaltic groundwater pump with dedicated tubing. Prior to sampling, the monitoring wells were developed by purging the wells using a low flow groundwater pump. The groundwater samples were obtained after field tests showed that the pH, conductivity, total dissolved solids, oxidation reduction potential and temperature had stabilized. All groundwater samples were stored in a cooler filled with ice and were submitted to Paracel Laboratories Ltd. for analyses of selected parameters

4.7 Sediment Sampling

No sediments were sampled as part of the Phase Two ESA work program as there are no surface water bodies present on the site.

4.8 Analytical Testing

Laboratory analysis of soil samples and groundwater samples was carried out by Paracel Laboratories Ltd. located at 300-2319 St. Laurent Boulevard in Ottawa, Ontario.

4.9 Residue Management Procedures

No excess soil cuttings were produced during the borehole drilling. Water used during cleaning and purged groundwater produced during the well development and groundwater sampling was stored on-site in sealed plastic containers.

4.10 Quality Assurance and Quality Control Measures

Soil Samples

Soil samples were collected in clear glass jars and vials containing methanol preservative supplied by the laboratory. The jars were partially pre-labeled prior to going out in the field to record the client (Houle Chevrier Engineering Ltd.), project number, borehole number and date of sampling on each laboratory supplied jar. In the field, a black pen or permanent marker was used to fill in the sample number and date. This allowed for the time spent in the field labeling jars to be minimized and reduced possible errors. A chain of custody was clearly completed to include the information for each sample collected and was attached to the sampling cooler storing the samples while the samples were transferred to the analytical laboratory for chemical testing.

A new pair of nitrile gloves was worn for collecting each of the soil samples to minimize cross contamination between samples and to protect staff from exposure to contaminants. The sampling tubes were opened by the contractor and samples were collected directly into laboratory supplied jars using a putty scraper and/or knife which was wiped with a clean cloth and rinsed with a decontamination solution and distilled water following each sampling event. The samples for the vials containing the methanol preservative were collected using new plastic syringes supplied by the laboratory. Following collection of soil samples in laboratory supplied jars, the remaining soil in the sampling tubes was placed in a plastic resealable zipper bag for combustible headspace gas screening at the end of the day.

The soil samples collected in the laboratory supplied containers were immediately preserved in the field by placing the samples in a laboratory supplied cooler filled with ice packs to maintain the temperature between 4 and 10 degrees Celsius. Soil samples were returned to our office and placed into a dedicated refrigerator for storage of soil and groundwater samples. Soil samples were selected for submission based on combustible gas measurements and visual and

olfactory signs of contamination. All samples were submitted within the maximum allowable holding time of 14 days.

Groundwater

The groundwater samples were collected in laboratory supplied bottles and vials specific to the requested analysis. The jars were partially pre-labeled prior to going out in the field to record the client (Houle Chevrier Engineering Ltd.), project number, borehole number and date of sampling on each laboratory supplied jar. In the field a black pen or permanent marker was used to fill in the sample number and date.

A new pair of nitrile gloves was worn during the collection of each of the groundwater samples to minimize cross contamination between samples and to protect staff from exposure to contaminants. Groundwater was sampled from the wells using dedicated sampling equipment for each well.

The groundwater samples collected in the laboratory supplied containers were immediately cooled in the field by placing the samples in a laboratory supplied cooler filled with ice packs. Groundwater samples were submitted to the laboratory the same day for analysis. All samples were submitted within the maximum allowable holding time of 48 hours.

No equipment other than disposable nitrile gloves and dedicated groundwater sampling equipment was used in sampling the groundwater from the wells. No cleaning procedures were required as the gloves and dedicated sampling equipment were disposed of following sample collection.

5.0 REVIEW AND EVALUATION OF INFORMATION

5.1 Geology

Surficial geology at the subject property was interpreted from the stratigraphic information obtained during drilling at the specific test locations only. Detailed descriptions of soil conditions can be found on the Record of Borehole sheets in Appendix A.

The following presents an overview of the subsurface conditions encountered in the boreholes advanced during this investigation.

Topsoil

A surficial layer of topsoil was encountered at the borehole locations and had a thickness of approximately 0.1 to 0.2 metres.

Glacial Till

Glacial till was encountered at all three borehole locations below the surficial topsoil layer. The glacial till is generally composed of silty sand with gravel, cobbles and possible boulders. The thickness of the glacial till could not be fully determined due to practical refusal of the direct push drill rig on possible bedrock or boulders. Practical refusal occurred at varying depths of between 2.7 and 5.5 metres below ground surface.

Bedrock

Air hammering was used below the glacial till into the bedrock and/or boulders and therefore this portion of the boreholes could not be logged. The boreholes were terminated at depths ranging from approximately 6.7 to 9.1 metres below ground surface.

5.2 Groundwater Elevations

The groundwater levels were measured in the monitoring wells on June 3 and 12, 2014. No free product was detected by the Heron Instruments oil/water interface meter. The groundwater levels and combustible headspace vapour readings are summarized in the following table:

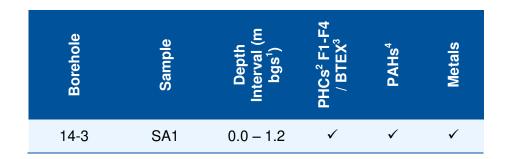
Borehole	Date Measured	Groundwater Depth Below Ground Surface (metres)	Combustible Headspace Vapour Reading (ppm)
14-1	03/06/2014	6.93	0
14-1	12/06/2014	7.08	0
14.0	03/06/2014	6.68	0
14-2	12/06/2014	6.91	30

14-3	03/06/2014	5.82	190
------	------------	------	-----

5.3 Site Condition Standards

Site condition standards were selected for this site in accordance with the requirements of Ontario Regulation 153/04, Records of Site Condition – Part XV.1 of the Environmental Protection Act (O. Reg. 153/04, MOE, October 31, 2011).

The following information was considered in selecting the site condition standards:


- The subject property is within an urban area;
- No drinking water wells are located on the subject property or within 250 metres of the subject property;
- The current property use is residential;
- The overburden thickness in the area of the APECs investigated is greater than 2 metres.

Based on the above information, the current Ministry of Environment (MOE) Table 3 full depth generic site condition standards for coarse grained soil, residential property use, in a non-potable groundwater condition as outlined in the MOE, Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act (MOE, April 15, 2011) was selected for the subject property.

5.4 Soil Quality

The laboratory certificates of analysis for the selected soil samples are presented in Appendix C. The locations and depths of the selected soil samples submitted for laboratory analysis are summarized in the following table:

Borehole	Sample	Depth Interval (m bgs¹)	PHCs ² F1-F4 / BTEX ³	PAHS ⁴	Metals
14-1	SA2	1.2 – 2.4	\checkmark	\checkmark	\checkmark
14-101 ⁵	SA2	1.2 – 2.4	\checkmark	\checkmark	\checkmark
14-2	SA2	1.2 – 1.8	\checkmark	\checkmark	\checkmark

Notes:

- 1. m bgs metres below ground surface
- 2. PHCs F1 to F4 Petroleum Hydrocarbon Fractions in the F1 to F4 ranges
- 3. BTEX Benzene, Toluene, Ethylbenzene and Xylenes
- 4. PAHs Polycyclic Aromatic Hydrocarbons
- 5. 14-101 is a duplicate of borehole 14-1

The analytical results from the laboratory certificates of analysis were compared with the applicable Table 3 site condition standards (MOE, 2011). The results are summarized in Tables 1 to 3 following the text of the report. As shown in Tables 1 to 3, the soil sample results satisfy the applicable MOE Table 3 site condition standards for all parameters analysed.

5.5 Groundwater Quality

The laboratory certificates of analysis for the groundwater samples are presented in Appendix D. The location, date and parameters analysed are summarized in the following table:

Monitoring Well	Screened Interval (m BGS ¹⁾	Date Sampled	Water Level (m BGS)	Parameters Analysed
14-1	6.09 – 9.14	03/06/2014	6.93	PHCs/BTEX, Metals, PAHs
14-1	6.09 – 9.14	12/06/2014	7.08	PHCs/BTEX, Metals, PAHs
14.0	14-2 3.91 – 6.96	04/06/2014	6.68	PHCs/BTEX, Metals, PAHs
14-2		12/06/2014	6.91	PHCs/BTEX, Metals, PAHs
14-3	3.66 – 6.71	03/06/2014	5.82	PHCs/BTEX, Metals, PAHs

Notes:

1. m BGS - metres below ground surface

The analytical results from the laboratory certificates of analysis were compared with the applicable Table 3 site condition standards (MOE, 2011). The results are summarized in Tables 4 to 6 following the text of the report.

The duplicate sample BH14-101-GW SA1 from borehole 14-1, and the sample BH14-2-GW SA1 from borehole 14-2 obtained during the sampling event on June 3 and 4, 2014, exceeded the site condition standard for PHCs F3 (520 and 609 μ g/L versus the standard of 500 μ g/L). Additional samples were obtained from boreholes 14-1 and 14-2 on June 12, 2014. The concentration of PHCs F3 was below the method detection limit for the additional samples from boreholes 14-1 and 14-2, and therefore the marginal exceedance in the initial samples taken on June 3 and 4, 2014 is not considered significant. As indicated in Tables 4 to 6 the groundwater sample results satisfy the applicable MOE Table 3 site condition standards for all parameters analysed.

5.6 Sediment Quality

No sediments were investigated as part of the Phase Two ESA as there are no surface water bodies present on the site.

5.7 Quality Assurance and Quality Control Results

One (1) duplicate soil sample was submitted to Paracel Laboratories for analysis of PHCs, BTEX, Metals and PAHs. The soil sample BH14-101 SA2 is a duplicate of sample 14-1 SA2. As indicated in Tables 1 to 3, the results of the duplicate soil sample are similar to the original sample.

One (1) duplicate groundwater sample was submitted to Paracel Laboratories for analysis of PHCs, BTEX, Metals and PAHs. The groundwater sample BH14-101-GW SA1 is a duplicate of sample BH14-1-GW SA1. As indicated in Tables 1 to 3, the results of the duplicate groundwater sample are similar to the original sample with the exception of the parameter PHCs F3. The result of the duplicate sample is 520 μ g/L which exceeds the site condition standard of 500 μ g/L, while the original sample is 380 μ g/L which is below the site condition standard. The difference in the results could be due to laboratory error and/or variation within the groundwater at the time of sampling.

One (1) trip blank water sample was submitted to Paracel Laboratories for analysis of PHCs and BTEX. The results of the trip blank were below the method detection limit for all parameters analysed which supports our sampling, transportation and handling methods in that PHCs and BTEX parameters were not introduced into the samples.

The Laboratory QA/QC results for the soil analysis are included with the laboratory analytical data provided in Appendix C. Soil sample holding times were met, and all laboratory quality

control blanks, duplicates and spikes and surrogate compound recoveries met applicable industry criteria with the exception of the following:

• The quality control duplicate results exceed the relative percent difference limits for PHCs F3 and F4 due to a non-homogeneous matrix.

The Laboratory QA/QC results for the groundwater analysis are included with the laboratory analytical data provided in Appendix D. Groundwater sample holding times were met, and all laboratory quality control blanks, duplicates and spikes and surrogate compound recoveries met applicable industry criteria with the exception of the following:

- The sample BH14-2 GW SA1 had greater than 5% sediment and therefore a whole bottle extraction was performed in accordance with Ontario Regulation 153/04;
- In the analysis for sample BH14-2 GW SA1 the quality control duplicate relative percent difference is high for vanadium, however, the sample result is less than ten times the method detection limit;
- In the analysis for sample BH14-2 GW SA1 the quality control spike recovery was outside acceptance limits for beryllium and silver. The batch was accepted based on other acceptable QC.

Based on the measures discussed above, sample collection and handling protocols are considered acceptable and associated analytical results reproducible. The quality of the field data and laboratory data from the investigation was sufficient in that decision making was not affected and the overall objectives of the investigation and assessment were met.

5.8 Phase Two Conceptual Site Model

5.8.1 Potentially Contaminating Activities

The following potentially contaminating activities were identified during the Phase One ESA:

- There was a fire that burned down the former house located on the subject property.
- The former house that burned down was heated by coal and oil.
- Miscellaneous debris including an old snowmobile and fuel tank was observed adjacent to the summer kitchen.
- A pile of miscellaneous debris with old rusted parts was observed on the west property line of the subject property in the area of the stables.
- Oil changes were performed in the agricultural fields on the subject property. The oil changes were performed only once or twice a year and in different locations and therefore, it is not technically possible to identify and investigate those areas.

5.8.2 Areas of Potential Environmental Concern (APECs)

A description and assessment of areas where potentially contaminating activities have occurred and areas of potential environmental concern are summarized in the following table:

APEC	Location of APEC on Phase One Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 1	Northwest portion of subject property	Heating oilDebrisHouse fire	On site	 BTEX¹ PHCs² Metals PAHs³ 	SoilShallow Groundwater
APEC 2	Northwest portion of subject property	 Rusted metal debris Rusted oil containers	On site	BTEXPHCsMetals	SoilShallowGroundwater
APEC 3	Unknown	Oil changes	On site	PHCsBTEX	SoilShallow Groundwater

As indicated on Tables 1 to 6, no soil or groundwater exceedances were identified in the Phase Two ESA compared with the MOE Table 3 site condition standards.

5.8.3 Subsurface Structures

No underground services are located on the subject property. Underground municipal water and sewer services, and natural gas are located along Fernbank Road and Flewellyn Road.

5.8.4 Physical Settings and Hydrogeological Characteristics of the Subject Property The stratigraphy of the subject property is generally taken as a surficial layer of topsoil overlying glacial till.

The groundwater level measured in the monitoring wells ranged from between 5.8 to 7.1 metres below ground surface.

5.8.5 Selection of Site Condition Standards

Based on the results of the Phase One and Two ESAs conducted for the subject property, the site restoration standards selected for this site are the MOE Table 3 Full Depth Generic Site Condition Standards for Residential Property Use in a Non-Potable Ground Water Condition (coarse textured soils).

5.8.6 Identified Contamination and Impacted Medium on the Subject Property

The Phase Two ESA investigated the APECs identified in the Phase One ESA and the results of the investigation for each APEC are summarized below:

APEC 1: Old Farm House

As indicated in Tables 1 to 6, the soil samples and groundwater samples submitted from boreholes 14-1 and 14-2 meet the applicable MOE Table 3 site condition standards for PHCs, BTEX, metals and PAHs.

APEC 2: Rusted Metal Debris

As indicated in Tables 1 and 6, the soil sample and groundwater sample submitted from borehole 14-3 meet the applicable site condition standards for PHCs, BTEX, metals and PAHs.

APEC 3: Oil Changes in Fields

The locations where the oil changes were performed are not known and, therefore, it is not technically possible to identify and investigate the isolated areas within the 62.8 hectares of property.

5.8.7 Summary of Identified Impacts

No impacts from APECs 1 and 2 were identified during the Phase Two ESA.

6.0 CONCLUSIONS

The Phase One ESA report previously carried out for the subject property recommended that a Phase Two ESA investigation be carried out for the property 5993 Flewellyn Road in Ottawa, Ontario. The Phase Two ESA investigated the following Areas of Potential Environmental Concern (APECs) that were identified in the Phase One ESA:

APEC 1: Old Farm House

The interview identified that the former farm house burned down in 1965. The interview also identified that the former farm house was heated by coal and switched to heating oil in 1962. Miscellaneous debris including a fuel tank from a snowmobile and oil containers were identified during the site reconnaissance. The contaminants of concern are PHCs, BTEX, PAHs and metals.

APEC 2: Rusted Metal Debris

The site reconnaissance identified rusted metal debris along the west property boundary in the northwest portion of the subject property. The contaminants of concern are PHCs, BTEX and metals.

APEC 3: Oil Changes in Fields

The interview identified that oil changes on tractors were performed once or twice a year in the fields at different locations. The locations where the oil changes were performed are not known and, therefore, it is not technically possible to identify and investigate those areas. The contaminants of concern are PHCs and BTEX.

The Phase Two ESA investigation was carried out during May and June 2014. The components of the Phase Two ESA investigation consisted of advancing three (3) boreholes and installing three (3) monitoring wells to assess the soil and groundwater in the area of APEC 1 and APEC 2. Soil and groundwater samples were collected and submitted to Paracel Laboratories Ltd. of Ottawa, Ontario for laboratory analyses of selected parameters.

The data collected during the borehole drilling indicated that the site is underlain by a surficial layer of topsoil overlying glacial till. Possible bedrock was encountered at depths ranging from 5.2 to 5.5 metres below ground surface.

The groundwater levels measured in the monitoring wells ranged from 5.8 to 7.1 metres below ground surface.

The analytical results of the soil and groundwater sampling meet the applicable MOE Table 3 site condition standards for the contaminants of concern identified during the Phase One ESA.

Based on the results of the current investigation, no further investigations are required at this time.

7.0 LIMITATION OF LIABILITY

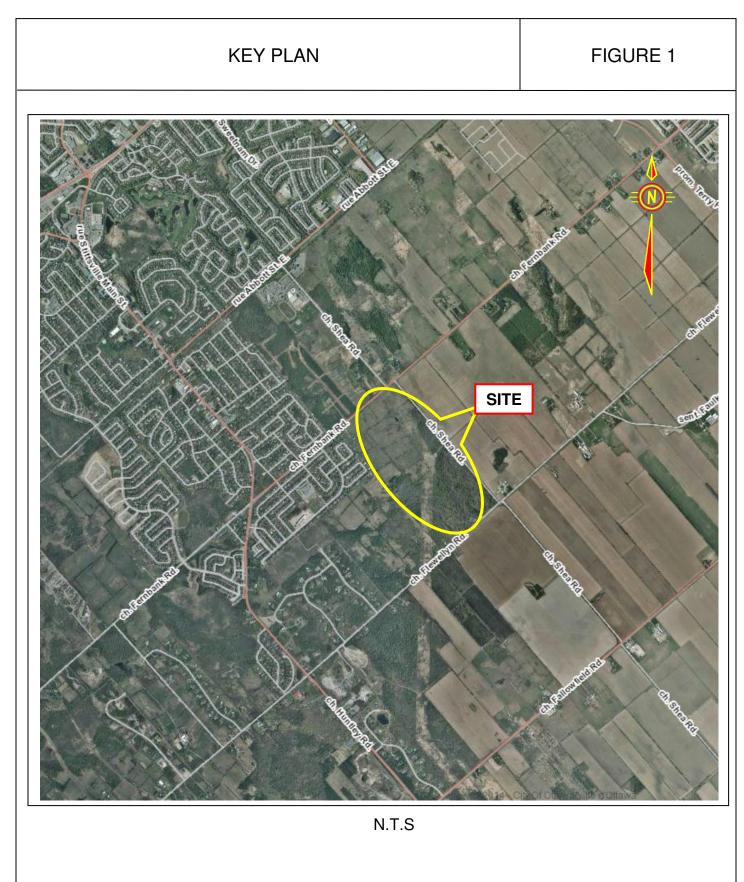
This report was prepared for and the work referred to within it has been undertaken by Houle Chevrier Engineering Ltd. (HCEL) for the Tartan Homes Ltd. and is intended for the exclusive use of the Tartan Homes Ltd. This report may not be relied upon by any other person or entity without the express written consent of HCEL and Tartan Homes Ltd. Nothing in this report is intended to provide a legal opinion.

The investigation undertaken by HCEL with respect to this report and any conclusions or recommendations made in this report reflect the best judgements of HCEL based on the site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been prepared for the application noted and it is based, in part, on visual observations made at the site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations on the site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Chemical parameters other than those addressed by the investigation described in this report may exist in soil and groundwater elsewhere on the site, the chemical parameters addressed in the report may exist in soil and groundwater at other locations at the site that were not investigated and concentrations of the chemical parameters addressed which are different than those reported may exist at other locations on the site than those from where the samples were taken.

Should new information become available during future work, including excavations, borings or other studies, HCEL should be requested to review the information and, if necessary, re-assess the conclusions presented herein.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Brett Painter, M.Sc. Environmental Scientist


Andrew Chevrier, M.Eng., P.Eng. Principal

8.0 **REFERENCES**

Houle Chevrier Engineering Ltd. <u>Phase One Environmental Site Assessment, 5993 Flewellyn</u> <u>Road, Ottawa, Ontario</u>. October 2013. Reference Number 13-422.

Ontario Ministry of the Environment. <u>Ontario Regulation 153/04</u>, Made under the Environmental Protection Act, Part XV.1 – Records of Site Condition. October 31, 2011.

Date:	July 2014
Project:	14-150

TABLE 1 SOIL ANALYTICAL RESULTS **PETROLEUM PARAMETERS**

			Sample Location: Sample ID: Laboratory Sample ID: Sample Depth (mBGS): Date Sampled:	BH14-1 BH14-1 SA2 1422117-01 1.2 - 2.4 2014-05-26	BH14-1 BH14-101 SA2 1422117-02 1.2 - 2.4 2014-05-26	BH14-2 BH14-2 SA2 1422117-03 1.2 - 1.8 2014-05-26	BH14-3 BH14-3 SA1 1422117-04 0.0 - 1.2 2014-05-26
Parameter	Units	MDL	MOE Table 3 [*]				
Benzene	μg/g	0.02	0.21	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Ethylbenzene	µg/g	0.05	2	ND (0.05)	ND (0.05)	0.10	ND (0.05)
Toluene	µg/g	0.05	2.3	ND (0.05)	ND (0.05)	0.11	ND (0.05)
m/p-xylene	µg/g	0.05	NS	ND (0.05)	ND (0.05)	0.10	ND (0.05)
o-xylene	µg/g	0.05	NS	ND (0.05)	ND (0.05)	0.11	ND (0.05)
Total Xylene**	μg/g	0.05	3.1	ND (0.05)	ND (0.05)	0.22	ND (0.05)
F1 PHC's (C6-C10)	μg/g	7	55	ND (7)	ND (7)	ND (7)	ND (7)
F2 PHC's (C10-C16)	μg/g	4	98	ND (4)	ND (4)	ND (4)	ND (4)
F3 PHC's (C16-C34)	μg/g	8	300	49	ND (8)	ND (8)	ND (8)
F4 PHC's (C34-C50)	μg/g	6	2800	ND (6)	ND (6)	ND (6)	ND (6)

Notes:

1 MDL - Method Detection Limit

2 NS - No Standard

3 ND - Not Detected

⁴ - Table 3: Full Depth Generic Site Condition Standards for Residential Property Use in a Non-Potable Ground Water Condition (coarse textured soils) (MOE, April 15, 2011)

5 ** - Total Xylene is calculated using the sum of m/p-xylene and o-xylene 6 **Bold** - Exceeds MOE Table 3 Site Condition Standard

TABLE 2 SOIL ANALYTICAL RESULTS METAL PARAMETERS

			Sample Location: Sample ID: Laboratory Sample ID: Sample Depth (mBGS): Date Sampled:	BH14-1 BH14-1 SA2 1422117-01 1.2 - 2.4 2014-05-26	BH14-1 BH14-101 SA2 1422117-02 1.2 - 2.4 2014-05-26	BH14-2 BH14-2 SA2 1422117-03 1.2 - 1.8 2014-05-26	BH14-3 BH14-3 SA1 1422117-04 0.0 - 1.2 2014-05-26
Parameter	Units	MDL	MOE Table 3 [*]				
Antimony	μg/g	1	7.5	ND (1)	2	1	ND (1)
Arsenic	µg/g	1	18	ND (1)	1	1	2
Barium	µg/g	1	390	116	78	70	84
Beryllium	µg/g	0.5	4	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Boron	µg/g	5.0	120	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Boron, available	µg/g	0.5	1.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Cadmium	μg/g	0.5	1.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chromium	µg/g	5	160	16	14	32	16
Chromium (VI)	μg/g	0.2	8	0.3	ND (0.2)	ND (0.2)	ND (0.2)
Cobalt	μg/g	1	22	5	5	5	11
Copper	µg/g	5	140	11	10	15	33
Lead	μg/g	1	120	4	4	7	8
Mercury	μg/g	0.1	0.27	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Molybdenum	µg/g	1	6.9	1	ND (1)	3	ND (1)
Nickel	μg/g	5	100	14	14	16	16
Selenium	μg/g	1	2.4	ND (1)	ND (1)	ND (1)	ND (1)
Silver	μg/g	0.3	20	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)
Thallium	µg/g	1	1	ND (1)	ND (1)	ND (1)	ND (1)
Uranium	µg/g	1	23	ND (1)	ND (1)	ND (1)	ND (1)
Vanadium	μg/g	10	86	22	20	21	31
Zinc	µg/g	20	340	22	ND (20)	22	31

Notes:

1 MDL - Method Detection Limit

2 NS - No Standard

3 ND - Not Detected

4 * - Table 3: Full Depth Generic Site Condition Standards for Residential Property Use in a Non-Potable Ground Water Condition (coarse textured soils) (MOE, April 15, 2011)

5 Bold - Exceeds MOE Table 3 Site Condition Standard

TABLE 3 SOIL ANALYTICAL RESULTS POLYCYCLIC AROMATIC HYDROCARBON

			Sample Location: Sample ID: Laboratory Sample ID: Sample Depth (mBGS): Date Sampled:	BH14-1 BH14-1 SA2 1422117-01 1.2 - 2.4 2014-05-26	BH14-1 BH14-101 SA2 1422117-02 1.2 - 2.4 2014-05-26	BH14-2 BH14-2 SA2 1422117-03 1.2 - 1.8 2014-05-26	BH14-3 BH14-3 SA1 1422117-04 0.0 - 1.2 2014-05-26
Parameter	Units	MDL	MOE Table 3 [*]				
Acenaphthene	µg/g	0.02	7.9	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Acenaphthylene	µg/g	0.02	0.15	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Anthracene	µg/g	0.02	0.67	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[a]anthracene	µg/g	0.02	0.5	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[a]pyrene	µg/g	0.02	0.3	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[b]fluoranthene	µg/g	0.02	0.78	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[g,h,i]perylene	µg/g	0.02	6.6	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Benzo[k]fluoranthene	µg/g	0.02	0.78	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
1,1-Biphenyl	µg/g	0.02	0.31	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Chrysene	µg/g	0.02	7	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Dibenzo[a,h]anthracene	µg/g	0.02	0.1	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Fluoranthene	μg/g	0.02	0.69	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Fluorene	μg/g	0.02	62	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Indeno[1,2,3-cd]pyrene	μg/g	0.02	0.38	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
1-Methylnaphthalene	μg/g	0.02	0.99	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
2-Methylnaphthalene	μg/g	0.02	0.99	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Methylnaphthalene (1&2)	μg/g	0.04	0.99	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.04)
Naphthalene	μg/g	0.01	0.6	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Phenanthrene	μg/g	0.02	6.2	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Pyrene	µg/g	0.02	78	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)

Notes:

1 MDL - Method Detection Limit

2 NS - No Standard

3 ND - Not Detected

4 * - Table 3: Full Depth Generic Site Condition Standards for Residential Property Use in a Non-Potable Ground Water Condition (coarse textured soils) (MOE, April 15, 2011)

5 Bold - Exceeds MOE Table 3 Site Condition Standard

TABLE 4 GROUNDWATER ANALYTICAL RESULTS PETROLEUM PARAMETERS

			Sample Location: Sample ID: Laboratory Sample ID: Date Sampled:	1423172-01	BH14-1 BH14-101 GW SA1 1423172-02 2014-06-03	BH14-1 BH14-1 GW SA2 1424256-01 2014-06-12	BH14-2 BH14-2 GW SA1 1423202-01 2014-06-04	BH14-2 BH14-2 GW SA2 1424256-02 2014-06-12	BH14-3 BH14-3 GW SA1 1423172-03 2014-06-03	Trip Trip Blank 1423172-04 2014-06-02
Parameter	Units	MDL	MOE Table 3							
Benzene	μg/L	0.5	44	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Ethylbenzene	µg/L	0.5	2300	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Toluene	μg/L	0.5	18000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
m/p-xylene	μg/L	0.5	NS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
o-xylene	μg/L	0.5	NS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Total Xylene**	µg/L	0.5	4200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
F1 PHC's (C6-C10)	µg/L	25	750	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
F2 PHC's (C10-C16)	μg/L	100	150	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
F3 PHC's (C16-C34)	μg/L	100	500	380	520	ND (100)	609	ND (100)	ND (100)	ND (100)
F4 PHC's (C34-C50)	μg/L	100	500	140	160	ND (100)	379	ND (100)	ND (100)	ND (100)

Notes:

1 MDL - Method Detection Limit

2 NS - No Standard

3 ND - Not Detected

4 * - Table 3: Full Depth Generic Site Condition Standards for Residential Property Use in a Non-Potable Ground Water Condition (coarse textured soils) (MOE, April 15, 2011)

5 ** - Total Xylene is calculated using the sum of m/p-xylene and o-xylene 6 **Bold** - Exceeds MOE Table 3 Site Condition Standard

TABLE 5 GROUNDWATER ANALYTICAL RESULTS METAL PARAMETERS

Parameter	Units	MDL	Sample Location: Sample ID: Laboratory Sample ID: Date Sampled: MOE Table 3 [°]	BH14-1 BH14-1 GW SA1 1423172-01 2014-06-03	BH14-1 BH14-101 GW SA1 1423172-02 2014-06-03	BH14-2 BH14-2 GW SA1 1423202-01 2014-06-04	BH14-2 BH14-2 GW SA2 1424256-02 2014-06-12	BH14-3 BH14-3 GW SA1 1423172-03 2014-06-03
Mercury	μg/L	0.1	0.29	ND (0.1)	ND (0.1)	ND (0.1)	NA	ND (0.1)
Antimony	μg/L	0.5	20000	ND (0.5)	ND (0.5)	1.1	ND (0.5)	ND (0.5)
Arsenic	μg/L	1	1900	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
Barium	μg/L	1	29000	82	82	80	64	69
Beryllium	μg/L	0.5	67	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Boron	μg/L	10	45000	79	79	43	40	56
Cadmium	μg/L	0.1	2.7	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Chromium	μg/L	1	810	2	2	6	ND (1)	1
Chromium (VI)	μg/L	10	140	ND (10)	ND (10)	ND (10)	NA	ND (10)
Cobalt	μg/L	0.5	66	1.2	1.2	ND (0.5)	0.8	1.3
Copper	μg/L	0.5	87	2.2	4.1	1.7	2.4	1.0
Lead	μg/L	0.1	25	ND (0.1)	ND (0.1)	ND (0.1)	0.2	ND (0.1)
Molybdenum	μg/L	0.5	9200	ND (0.5)	ND (0.5)	0.7	ND (0.5)	1.0
Nickel	μg/L	1	490	4	4	3	3	4
Selenium	μg/L	1	63	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
Silver	μg/L	0.1	1.5	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Sodium	μg/L	200	2300000	19900	19800	6340	5970	9140
Thallium	μg/L	0.1	510	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Uranium	μg/L	0.1	420	0.2	0.2	0.3	0.2	0.5
Vanadium	μg/L	0.5	250	3.0	3.3	11.9	5.0	2.9
Zinc	μg/L	5	1100	8	18	25	8	5

Notes:

1 MDL - Method Detection Limit

2 NS - No Standard

3 ND - Not Detected

* - Table 3: Full Depth Generic Site Condition Standards for Residential Property Use in a Non-Potable Ground Water Condition (coarse textured soils) (MOE, April 15, 2011)
 5 Bold - Exceeds MOE Table 3 Site Condition Standard

TABLE 6 **GROUNDWATER ANALYTICAL RESULTS** POLYCYCLIC AROMATIC HYDROCARBONS

			Sample Location: Sample ID: Laboratory Sample ID: Date Sampled:	BH14-1 BH14-1 GW SA1 1423172-01 2014-06-03	BH14-1 BH14-101 GW SA1 1423172-02 2014-06-03	BH14-2 BH14-2 GW SA1 1423202-01 2014-06-04	BH14-2 BH14-2 GW SA2 1424256-02 2014-06-12	BH14-3 BH14-3 GW SA1 1423172-03 2014-06-03
Parameter	Units	MDL	MOE Table 3 [°]					
Acenaphthene	μg/L	0.05	600	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Acenaphthylene	μg/L	0.05	1.8	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Anthracene	μg/L	0.01	2.4	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[a]anthracene	μg/L	0.01	4.7	ND (0.01)	ND (0.01)	0.10	0.05	ND (0.01)
Benzo[a]pyrene	μg/L	0.01	0.81	ND (0.01)	ND (0.01)	0.07	0.13	ND (0.01)
Benzo[b]fluoranthene	μg/L	0.05	0.75	ND (0.05)	ND (0.05)	0.12	0.10	ND (0.05)
Benzo[g,h,i]perylene	μg/L	0.05	0.2	ND (0.05)	ND (0.05)	0.06	0.06	ND (0.05)
Benzo[k]fluoranthene	μg/L	0.05	0.4	ND (0.05)	ND (0.05)	0.11	0.12	ND (0.05)
1,1-Biphenyl	μg/L	0.05	1000	ND (0.05)	ND (0.05)	ND (0.05)	NA	ND (0.05)
Chrysene	μg/L	0.05	1	ND (0.05)	ND (0.05)	0.14	0.18	ND (0.05)
Dibenzo[a,h]anthracene	μg/L	0.05	0.52	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Fluoranthene	μg/L	0.01	130	ND (0.01)	ND (0.01)	0.17	0.25	ND (0.01)
Fluorene	μg/L	0.05	400	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Indeno[1,2,3-cd]pyrene	μg/L	0.05	0.2	ND (0.05)	ND (0.05)	ND (0.05)	0.06	ND (0.05)
1-Methylnaphthalene	μg/L	0.05	1800	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
2-Methylnaphthalene	μg/L	0.05	1800	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Methylnaphthalene (1&2)	μg/L	0.10	1800	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Naphthalene	μg/L	0.05	1400	ND (0.05)	ND (0.05)	0.06	0.07	ND (0.05)
Phenanthrene	μg/L	0.05	580	ND (0.05)	ND (0.05)	0.08	0.20	ND (0.05)
Pyrene	μg/L	0.01	68	ND (0.01)	ND (0.01)	0.16	0.21	ND (0.01)

Notes:

1 MDL - Method Detection Limit

2 NS - No Standard

3 ND - Not Detected

4 * - Table 3: Full Depth Generic Site Condition Standards for Residential Property Use in a Non-Potable Ground Water Condition (coarse textured soils) (MOE, April 15, 2011) 5 Bold - Exceeds MOE Table 3 Site Condition Standard

APPENDIX A

Record of Borehole Sheets

Houle Chevrier Engineering

PROJECT:

RECORD OF BOREHOLE 14-1

SHEET 1 OF 1 DATUM: N/A DRILL RIG: GM 100 GT SPT HAMMER:

OUR PROJECT No.: 14-150

LOCATION: See Borehole Location Plan, Figure 2

BORING DATE: May 26, 2014

r	ОD	SOIL PROFILE					;	SAM	PLE DATA				VAPOUR ON (ppm)	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	RECOVERY (%)	LABORATORY ANALYSES	CC COI	i Mbus Ncen	I STIBLE TRATIO	00 400 VAPOUR DN (%LEL 0 80	MONITORING WELL INSTALLATION AND NOTES
		Ground Surface												Protective Steel Casing
1	Direct Push Double Tube	Dark brown, fine to medium grained sand, trace to some silt some gravel (TOPSOIL) Brown silty sand, with gravel and cobbles (GLACIAL TILL)	12 0 0 0 0	0.20	1	Direc Push		29.2						
2	Doub			-2.44	2	Direct Push	:	40.0	PHCs, BTEX, PAHs & Metals	5				
3		Grey silty sand, some gravel and cobbles, possible boulders (GLACIAL TILL)			3	Direc Push		100.0		0				Bentonite
	Direct Push Macro					Direct Push		100.0		0				
4						Direc Push Direc	. 1	100.0		o				
5						Push Direc Push	. 1	100.0		0				
6		Air hammered, stratigraphy not logged Possilbe Bedrock or Boulders with voids		5.49										
8	Direct Push Air Hammer													Filter Sand 51mm diameter, 3.05m long slotted PVC pipe
9		End of Borehole		9.14										GROUNDWATER OBSERVATIONS
														DATE TIME DEPTH (m) ELEVATION Jun. 03-14 00:00 6.93 ∑ Jun. 12-14 00:00 7.08 ∑

(L	.OCA1	CT: ROJECT No.: 14-150 'ION: See Borehole Location Plan, Figure 2 G DATE: May 26, 2014	2		RE	CC	DR	DC	of Borehol	-E '	14-:	2			Sheet 1 (Datum: N Drill Rig: Spt Hammi	/A GM 100 GT	
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	RECOVERY (%)	PLE DATA LABORATORY ANALYSES			NTRA ⁻ 200 : J STIBL ITRAT	FION () 300 4 1 E VAP ION (%	ppm)▲ 100 		ONITORING WELL INSTALLATION AND NOTES	
	Direct Push Direct Push Direct Push Air Hammer Macro Double Tube	Air hammered, stratigraphy not logged (Possible Bedrock or Boulders)		6.96	2 1	Direc Push Direc Push		12.5	PHCs, BTEX, PAHs & Metals	5						6.68 💆	
	C	Houle Chevrier Engineering H80 Wescar L R.R. 2 Carp, Ontario,		1L0												LOGGED: A.N.	

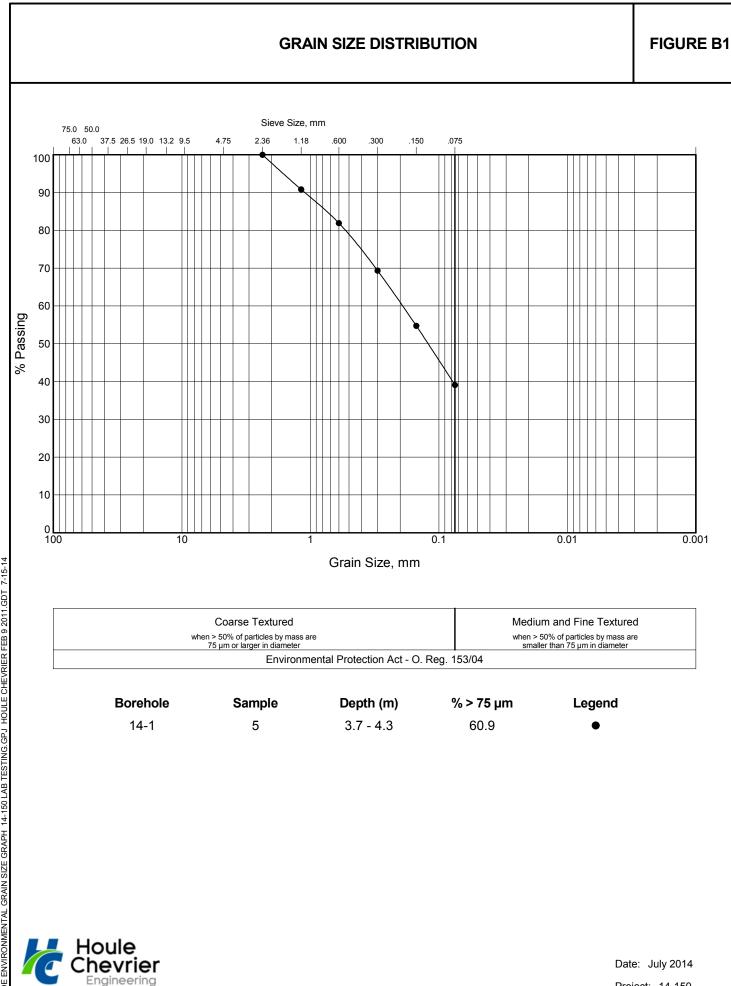
CHECKED:

ENV BOREHOLE GAS READINGS BY GINT 2012 14-150 GINT LOGS MAY 26 2014.GPJ HCE SAMPLE PROJECT.GPJ 7-15-14

OUR PROJECT No.: 14-150

LOCATION: See Borehole Location Plan, Figure 2

BORING DATE: May 26, 2014


SHEET 1 OF 1 DATUM: N/A DRILL RIG: GM 100 GT SPT HAMMER:

		SOIL PROFILE						SAM	PLE DATA	CON	ABUS	TIBLE	VAPOL			
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	RECOVERY (%)	LABORATORY ANALYSES	100 	0 20 //BUS CENT	0 30 TIBLE RATIC	ON (pp 00 400 VAPOL DN (%L 0 80	0 MONITORING WELL INSTALLATION UR AND NOTES EL) •		
		Ground Surface												Protective Steel Casing		
1	Direct Push Double Tube	Dark brown, fine to medium grained sand, trace to some silt some gravel (TOPSOIL)	A & & A & A	0.10	1	Direc Push	:	31.0	PHCs, BTEX, PAHs & Metals	0						
2	Direct Push Macro	Grev silty sand some gravel possible		- <u>1.7</u> 8	2	Direc Push	t	63.0		0				Bentonite		
-	Direc	Grey silty sand, some gravel, possible cobbles and boulders (GLACIAL TILL)		2.74	3	Direc Push	t	63.0		15 ▲						
3		Air hammered, stratigraphy not logged Probable GLACIAL TILL with cobbles and boulders														
4	sh Ter															
5	Direct Push Air Hammer													Filter Sand		
6														51mm diameter, 3.05m Iong slotted PVC pipe		
				6.71												
														GROUNDWATER OBSERVATIONS		
														DATE TIME DEPTH (m) ELEVATIO		
														Jun. 04-14 00:00 5.82 💆		
														<u> </u>		

RECORD OF BOREHOLE 14-3

APPENDIX B

Grain Size Distribution Curve

Project: 14-150

APPENDIX C

Soil Laboratory Certificates of Analysis

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔹 KINGSTON 🔹 NIAGARA 🔹 MISSISSAUGA 🔹 SARNIA

Certificate of Analysis

Houle Chevrier

180 Wescar Lane Ottawa, ON K0A1L0 Attn: Brett Painter

Phone: (613) 836-1422 Fax: (613) 836-9731

Client PO:	Report Date: 2-Jun-2014
Project: 14-150	Order Date: 27-May-2014
Custody: 98560	Order #: 1422117

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1422117-01	BH14-1 SA2
1422117-02	BH14-101 SA2
1422117-03	BH14-2 SA2
1422117-04	BH14-3 SA1

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: **Houle Chevrier** Client PO:

Project Description: 14-150

Report Date: 02-Jun-2014 Order Date:27-May-2014

Order #: 1422117

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	31-May-14	2-Jun-14
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	28-May-14	29-May-14
Chromium, hexavalent	MOE E3056 - Extraction, colourimetric	28-May-14	29-May-14
Mercury	EPA 7471B - CVAA, digestion	2-Jun-14	2-Jun-14
Metals, ICP-MS	EPA 6020 - Digestion - ICP-MS	2-Jun-14	2-Jun-14
PAHs by GC-MS	EPA 8270 - GC-MS, extraction	27-May-14	29-May-14
PHC F1	CWS Tier 1 - P&T GC-FID	28-May-14	29-May-14
PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	28-May-14	29-May-14
Solids, %	Gravimetric, calculation	28-May-14	28-May-14

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Niagara Falls, ON L2J 0A3

123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 11

OPARACEL Certificate of Analysis

Order #: 1422117

Report Date: 02-Jun-2014 **a**l **a** r Doto 07 M 0044

lient: Houle Chevrier		Draigat Dagarint	ion: 14 150	Order	Date:27-May-20
lient PO:		Project Descript			
	Client ID: Sample Date: Sample ID:	BH14-1 SA2 26-May-14 1422117-01	BH14-101 SA2 26-May-14 1422117-02	BH14-2 SA2 26-May-14 1422117-03	BH14-3 SA1 26-May-14 1422117-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	92.9	93.6	90.8	91.2
Metals					
Antimony	1 ug/g dry	<1	2	1	<1
Arsenic	1 ug/g dry	<1	1	1	2
Barium	1 ug/g dry	116	78	70	84
Beryllium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Boron	5.0 ug/g dry	<5.0	<5.0	<5.0	<5.0
Boron, available	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5 ug/g dry	16	14	32	16
Chromium (VI)	0.2 ug/g dry	0.3	<0.2	<0.2	<0.2
Cobalt	1 ug/g dry	5	5	5	11
Copper	5 ug/g dry	11	10	15	33
Lead	1 ug/g dry	4	4	7	8
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1 ug/g dry	1	<1	3	<1
Nickel	5 ug/g dry	14	14	16	16
Selenium	1 ug/g dry	<1	<1	<1	<1
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1 ug/g dry	<1	<1	<1	<1
Uranium	1 ug/g dry	<1	<1	<1	<1
Vanadium	10 ug/g dry	22	20	21	31
Zinc	20 ug/g dry	22	<20	22	31
/olatiles					
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	0.10	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	0.11	<0.05
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	0.10	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	0.11	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	0.22	<0.05
Toluene-d8	Surrogate	96.5%	95.1%	94.5%	95.6%
lydrocarbons	<u> </u>		· · · ·		1
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 11

Order #: 1422117

Certificate	of Analys
Client: Houle	Chevrier

Report Date: 02-Jun-2014 Order Date: 27-May-2014

Client: Houle Chevrier		Project Descript	ion: 14-150	Order	Date:27-May-20
	Client ID: Sample Date: Sample ID:	BH14-1 SA2 26-May-14 1422117-01	BH14-101 SA2 26-May-14 1422117-02	BH14-2 SA2 26-May-14 1422117-03	BH14-3 SA1 26-May-14 1422117-04
	MDL/Units	Soil	Soil	Soil	Soil
F3 PHCs (C16-C34)	8 ug/g dry	49	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6
Semi-Volatiles	0.02 ug/g dg/				
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Benzo [a] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Biphenyl	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Chrysene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Fluorene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	<0.04	<0.04
Naphthalene	0.01 ug/g dry	<0.01	<0.01	<0.01	<0.01
Phenanthrene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Pyrene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
2-Fluorobiphenyl	Surrogate	70.6%	73.0%	63.5%	66.2%
Terphenyl-d14	Surrogate	78.5%	72.3%	82.3%	81.3%

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 11

Client: **Houle Chevrier** Client PO:

Order #: 1422117

Report Date: 02-Jun-2014 Order Date: 27-May-2014

Project Description: 14-150

Method Quality Control: Blank		·							
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron Cadmium	ND ND	5.0 0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g ug/g						
Chromium	ND	5	ug/g ug/g						
Cobalt	ND	1	ug/g						
Copper	ND	5	ug/g						
Lead	ND	1	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum Nickel	ND ND	1 5	ug/g						
Selenium	ND	1	ug/g ug/g						
Silver	ND	0.3	ug/g ug/g						
Thallium	ND	1	ug/g						
Uranium	ND	1	ug/g						
Vanadium	ND	10	ug/g						
Zinc	ND	20	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene Benzo [a] pyrene	ND ND	0.02 0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Biphenyl	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene Fluorene	ND ND	0.02 0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene Surrogate: 2-Fluorobiphenyl	ND 1.02	0.02	ug/g		76.5	50-140			
Surrogate: Terphenyl-d14	1.02		ug/g		78.5 81.9	50-140 50-140			
	1.09		ug/g		01.9	50-140			
Volatiles	•								
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene m,p-Xylenes	ND ND	0.05 0.05	ug/g ug/g						
o-Xylene	ND	0.05	ug/g ug/g						
		0.00	~9'9						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 11

Client: Houle Chevrier Client PO:

Project Description: 14-150

Order #: 1422117

Report Date: 02-Jun-2014 Order Date:27-May-2014

Method Quality	Control: Blank
----------------	----------------

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total Surrogate: Toluene-d8	ND 7.70	0.05	ug/g <i>ug/g</i>		96.3	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 11

Client: Houle Chevrier **Client PO:**

Project Description: 14-150

Report Date: 02-Jun-2014

Order #: 1422117

Order Date:27-May-2014

Method Quality Control: D	apiicale	Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	254	8	ug/g dry	151			50.7	30	QR-04
F4 PHCs (C34-C50)	155	6	ug/g dry	53			98.6	30	QR-04
Metals		Ū.					00.0		
Antimony	5.8	1	ug/g dry	ND			0.0	30	
Arsenic	1.1	1	ug/g dry	ND			0.0	30	
Barium	123	1	ug/g dry	116			5.4	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron, available	ND	0.5	ug/g dry ug/g dry	ND			0.0	35	
Boron	ND	5.0	ug/g dry ug/g dry	ND			0.0	30	
Cadmium	ND	0.5	ug/g dry ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.5	ug/g dry ug/g dry	ND			0.0	30 35	
Chromium	15.7	5		15.9			1.5	30	
Cobalt	4.8	5 1	ug/g dry	5.1			7.1	30 30	
	4.8 10.7	5	ug/g dry	5.1 11.5			6.7	30 30	
	4.1	5 1	ug/g dry						
Lead			ug/g dry	4.2			0.8	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	35 30	
Molybdenum	ND	1	ug/g dry	1.4			0.0		
	13.3	5	ug/g dry	14.1			5.9	30	
Selenium	ND	1	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Fhallium	ND	1	ug/g dry	ND			0.0	30	
Jranium	ND	1	ug/g dry	ND			0.0	30	
Vanadium	21.8	10	ug/g dry	21.8			0.1	30	
	ND	20	ug/g dry	22.2			0.0	30	
Physical Characteristics	81.6	0.1	% by Wt.	81.3			0.4	25	
	01.0	0.1	78 Dy VVI.	01.0			0.4	25	
Semi-Volatiles		0.00	<i>,</i> ,					40	
Acenaphthene	ND	0.02	ug/g dry	ND				40	
Acenaphthylene	ND	0.02	ug/g dry	ND				40	
Anthracene	ND	0.02	ug/g dry	ND				40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND				40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND				40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND				40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND				40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND				40	
Biphenyl	ND	0.02	ug/g dry	ND				40	
	ND	0.02	ug/g dry	ND				40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND				40	
Fluoranthene	ND	0.02	ug/g dry	ND				40	
Fluorene	ND	0.02	ug/g dry	ND				40	
ndeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND				40	
-Methylnaphthalene	ND	0.02	ug/g dry	ND				40	
2-Methylnaphthalene	ND	0.02	ug/g dry	ND				40	
Naphthalene	ND	0.01	ug/g dry	ND				40	
Phenanthrene	ND	0.02	ug/g dry	ND				40	
Pyrene	ND	0.02	ug/g dry	ND				40	
Surrogate: 2-Fluorobiphenyl	1.14		ug/g dry	ND	69.5	50-140			
Surrogate: Terphenyl-d14	1.60		ug/g dry	ND	97.1	50-140			
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
		10	07774						
P: 1-800-	749-1947 L@PARACELLA	BS COM	OTTAWA 300–2319 St. La Ottawa, ON K1G		5415 Morni	A FALLS ing Glory Crt. is, ON L2J 0A3			
ET PARACE	LOFARAULLLA	53.COM	MISSISSAU		SADNTA				

WWW.PARACELLABS.COM

Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 11

Client: **Houle Chevrier** Client PO:

Project Description: 14-150

Order #: 1422117

Report Date: 02-Jun-2014 Order Date: 27-May-2014

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	5.50		ug/g dry	ND	95.7	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 11

Client: Houle Chevrier Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	190	7	ug/g	ND	94.9	80-120			
F2 PHCs (C10-C16)	81	4	ug/g	ND	89.7	80-120			
F3 PHCs (C16-C34)	181	8	ug/g	ND	97.2	80-120			
F4 PHCs (C34-C50)	116	6	ug/g	ND	93.5	80-120			
Metals									
Antimony	42.3		ug/L	0.09	84.4	70-130			
Arsenic	44.9		ug/L	0.4	89.0	70-130			
Barium	102		ug/L	46.5	110	70-130			
Beryllium	40.6		ug/L	0.11	81.0	70-130			
Boron, available	5.32	0.5	ug/g	ND	106	70-122			
Boron	38.5		ug/L	ND	81.9	70-130			
Cadmium	42.9		ug/L	0.04	85.6	70-130			
Chromium (VI)	5.1	0.2	ug/g	ND	94.0	70-130			
Chromium	52.0		ug/L	6.4	91.2	70-130			
Cobalt	45.0		ug/L	2.1	85.9	70-130			
Copper	47.8		ug/L	4.6	86.4	70-130			
Lead	48.8		ug/L	1.7	94.2	70-130			
Mercury	1.58	0.1	ug/g	ND	105	72-128			
Molybdenum	46.4		ug/L	0.6	91.7	70-130			
Nickel	48.4		ug/L	5.6	85.5	70-130			
Selenium	43.2		ug/L	0.1	86.2	70-130			
Silver	42.4		ug/L	0.01	84.8	70-130			
Thallium	47.1		ug/L	0.04	94.1	70-130			
Uranium	48.2		ug/L	0.2	96.0	70-130			
Vanadium	56.5		ug/L	8.7	95.6	70-130			
Zinc	48.2		ug/L	8.9	78.7	70-130			
Semi-Volatiles									
Acenaphthene	0.200	0.02	ug/g	ND	97.5	50-140			
Acenaphthylene	0.132	0.02	ug/g	ND	64.4	50-140			
Anthracene	0.159	0.02	ug/g	ND	77.2	50-140			
Benzo [a] anthracene	0.109	0.02	ug/g	ND	52.9	50-140			
Benzo [a] pyrene	0.128	0.02	ug/g	ND	62.4	50-140			
Benzo [b] fluoranthene	0.107	0.02	ug/g	ND	52.1	50-140			
Benzo [g,h,i] perylene	0.166	0.02	ug/g	ND	81.0	50-140			
Benzo [k] fluoranthene	0.150	0.02	ug/g	ND	73.2	50-140			
Biphenyl	0.168	0.02	ug/g	ND	81.8	50-140			
Chrysene	0.171	0.02	ug/g	ND	83.0	50-140			
Dibenzo [a,h] anthracene	0.123	0.02	ug/g	ND	59.8	50-140			
Fluoranthene	0.139	0.02	ug/g	ND	67.7	50-140			
Fluorene	0.139	0.02	ug/g	ND	67.7	50-140			
Indeno [1,2,3-cd] pyrene	0.134	0.02	ug/g	ND	65.3	50-140			
1-Methylnaphthalene	0.157	0.02	ug/g	ND	76.5	50-140			
2-Methylnaphthalene	0.146	0.02	ug/g	ND	71.1	50-140			
Naphthalene	0.151	0.01	ug/g	ND	73.5	50-140			
Phenanthrene	0.137	0.02	ug/g	ND	66.7	50-140			
Pyrene	0.154	0.02	ug/g	ND	74.8	50-140			
Surrogate: 2-Fluorobiphenyl	1.06		ug/g		64.4	50-140			
Volatiles									

volatiles

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 11

Order #: 1422117

Report Date: 02-Jun-2014 Order Date:27-May-2014

Project Description: 14-150

Client: Houle Chevrier Client PO:

Project Description: 14-150

Order #: 1422117

Report Date: 02-Jun-2014 Order Date:27-May-2014

Method Quality Co	ntrol: Spike								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	3.81	0.02	ug/g	ND	95.4	60-130			
Ethylbenzene	4.45	0.05	ug/g	ND	111	60-130			
Toluene	4.00	0.05	ug/g	ND	100	60-130			
m,p-Xylenes	8.55	0.05	ug/g	ND	107	60-130			
o-Xylene	4.49	0.05	ug/g	ND	112	60-130			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 11

Client: **Houle Chevrier** Client PO:

Report Date: 02-Jun-2014 Order Date:27-May-2014

Qualifier Notes:

QC Qualifiers :

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

> 123 Christina St. N. Sarnia, ON N7T 5T7

SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 11 of 11

	PARACEL LABORATORIES LTD		RES REL	IABL	SIVE. E.				c (F	300-2 Dttav b: 1-8 e: pa	va, C 300-7 racel	St. L Intari 749-1 @pa	racella	i 4J8 bs.com		(I N		9856	
Client N	TAWA ● KINGSTON ● NIAGARA ● MIS	SISSAU	GA 🖲	SARN					V	VWW.	para	cella	os.com	1		Pa	ge <u>1</u> o	f_1_	
Contact	note chevrica tag				Project Reference	14-1	50	4	_	1		1			TAT:	Regi	ılar (] 3 Day	
Address:	Name: Brett Painten				Quote #	1000		1					1	- mar				1.1	
Address:					PO #	sel.		d.					1			[] 2 Da	iy [] 1 Day	
Telephor	10: 612-836-1422				Email Address:	spainte	-0	hci	eng	.Ce					Date	Required:	A	SAP	
Criteria	: 10. Reg. 153/04 (As Amended) Table 21] RSC Film	ng [] 0.	Reg. 558	/00 []								minin	litze			Other:			
	ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)											nnoip	unty		1	Jouer.			
	l Order Number:	aa (atoriii).	Sannary c	J	(Paint) A (Air) O (Uner)		quir	ed A	naly	ses				_				
I urace	1422117	ix	Air Volume	of Containers	Sample	Taken	F1-F4+BTEX			s by ICP			VS)		jiadi -				
	Sample ID/Location Name	 Matrix	Air '	# of	Date	Time	PHCs	VOCs	PAHs	Metals	Hg	CrVI	B (HWS)	1		0.1			
1	BH 14-1 SA2	5		2	Man 26/14		V	ŕ	7	1	Ĵ	J	4	25	Dml	+ MEC	H vio	1	
2	BH 14-101 SA2	S		2	1		V	1	V	5	$\overline{\mathbf{V}}$	1				11120	1 410		-
3	BH 14-2 SA2	5		2	er		V		V	-	7	1	1	_	++				
4	BH14-3 SA1	5		2	25	Card Land	V	1	V	6	5	1	1	_	+				-
5	Juli 2 Jrie	-		0-			-	-		-	_		-		*			-	
6	1 1002	-			1	n ngata	-	-		-	_	-	-		1.1.7	-			
7	a statut a service of the					2011-001	-	-	\vdash	-		+	_		-				
8	1 De La porte a te				1.1.1.1.1.1		1		H	-		+	-						
9	1111						-	-	H	_		+	_	-	-		-	_	
10		-					-			_		+	_				-		
Comme	nts:					4									1	Matha	: d of Delive		
Relinquisl	hed By (Sign): Boo Paris			er/Depot	11		ved at I		J		L.	11		1.1	ed By:	(Valk	10	
Relinquisl	hed By (Print):	// C Date/Tir	ne: 1		11/14 11	Constant of the owner of the second statement of the s	MEF Fime:	necessaria de la	ADDITION OF A		KN		01.5		MI	44		71-	2
Date/Time	1 May 27, 2014	Tempera	and an and a state of the state	Arth Street Street	and grant and formation and an and a second second second		erature:			°C	U 11		01.		and a second	May By:	24/	14 2	:58

Chain of Custody (Env) - Rev 0.5 May 2013

APPENDIX D

Groundwater Laboratory Certificates of Analysis

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Houle Chevrier

180 Wescar Lane Ottawa, ON K0A1L0 Attn: Brett Painter

Phone: (613) 836-1422 Fax: (613) 836-9731

Client PO:	Report Date: 9-Jun-2014
Project: 14-150	Order Date: 3-Jun-2014
Custody: 15995	Order #: 1423172

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** BH14-1 GW SA-1 1423172-01 1423172-02 BH14-101 GW SA-1 1423172-03 BH14-3 GW SA-1 1423172-04 **Trip Blank**

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Houle Chevrier Client PO:

Project Description: 14-150

Report Date: 09-Jun-2014 Order Date:3-Jun-2014

Order #: 1423172

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	nalysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	5-Jun-14	6-Jun-14
Chromium, hexavalent	MOE E3056 - colourimetric	5-Jun-14	5-Jun-14
Mercury	EPA 245.1 - Cold Vapour AA	5-Jun-14	5-Jun-14
Metals, ICP-MS	EPA 200.8 - ICP-MS	4-Jun-14	5-Jun-14
PAHs by GC-MS	EPA 625 - GC-MS, extraction	5-Jun-14	9-Jun-14
PHC F1	CWS Tier 1 - P&T GC-FID	5-Jun-14	6-Jun-14
PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	4-Jun-14	4-Jun-14

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 10

OPARACEL Certificate of Analysis

Order #: 1423172

Report Date: 09-Jun-2014 Order Date:3-Jun-2014

lient PO:		Project Descript			
	Client ID: Sample Date: Sample ID: MDL/Units	BH14-1 GW SA-1 03-Jun-14 1423172-01 Water	BH14-101 GW SA-1 03-Jun-14 1423172-02 Water	BH14-3 GW SA-1 03-Jun-14 1423172-03 Water	Trip Blank 02-Jun-14 1423172-04 Water
Metals					
Mercury	0.1 ug/L	<0.1	<0.1	<0.1	-
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	-
Arsenic	1 ug/L	<1	<1	<1	-
Barium	1 ug/L	82	82	69	-
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	-
Boron	10 ug/L	79	79	56	-
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	-
Chromium	1 ug/L	2	2	1	-
Chromium (VI)	10 ug/L	<10	<10	<10	-
Cobalt	0.5 ug/L	1.2	1.2	1.3	-
Copper	0.5 ug/L	2.2	4.1	1.0	-
Lead	0.1 ug/L	<0.1	<0.1	<0.1	-
Molybdenum	0.5 ug/L	<0.5	<0.5	1.0	-
Nickel	1 ug/L	4	4	4	-
Selenium	1 ug/L	<1	<1	<1	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	-
Sodium	200 ug/L	19900	19800	9140	-
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	-
Uranium	0.1 ug/L	0.2	0.2	0.5	-
Vanadium	0.5 ug/L	3.0	3.3	2.9	-
Zinc	5 ug/L	8	18	5	-
/olatiles	- I - I			I	
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene-d8	Surrogate	99.6%	98.3%	98.3%	99.4%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	380	520	<100	<100
F4 PHCs (C34-C50)	100 ug/L	140	160	<100	<100

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 10

PARACEL

Order #: 1423172

Report Date: 09-Jun-2014 Order Date:3-Jun-2014

Certificate of Analysis Client: Houle Chevrier

Client PO:		Project Descript	ion: 14-150	Orde	er Dale:3-Jun-2014
	Client ID: Sample Date: Sample ID: MDL/Units	BH14-1 GW SA-1 03-Jun-14 1423172-01 Water	BH14-101 GW SA-1 03-Jun-14 1423172-02 Water	BH14-3 GW SA-1 03-Jun-14 1423172-03 Water	Trip Blank 02-Jun-14 1423172-04 Water
F1 + F2 PHCs	125 ug/L	<125	<125	<125	<125
F3 + F4 PHCs	200 ug/L	520	680	<200	<200
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	-
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	-
Anthracene	0.01 ug/L	<0.01	<0.01	<0.01	-
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01	-
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	-
Biphenyl	0.05 ug/L	<0.05	<0.05	<0.05	-
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	-
Fluoranthene	0.01 ug/L	<0.01	<0.01	<0.01	-
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	-
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	-
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	<0.10	-
Naphthalene	0.05 ug/L	<0.05	<0.05	<0.05	-
Phenanthrene	0.05 ug/L	<0.05	<0.05	<0.05	-
Pyrene	0.01 ug/L	<0.01	<0.01	<0.01	-
2-Fluorobiphenyl	Surrogate	75.4%	84.2%	67.3%	-
Terphenyl-d14	Surrogate	90.2%	93.6%	96.3%	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 10

Analyte

o-Xylene

m,p-Xylenes

Certificate of Analysis

Method Quality Control: Blank

Client: Houle Chevrier Client PO:

Hydrocarbons

Order #: 1423172

Report Date: 09-Jun-2014 Order Date:3-Jun-2014

RPD

Limit

Notes

RPD

%REC

Limit

Project Description: 14-150

Units

Source

Result

%REC

Reporting

Limit

Result

F1 PHCs (C6-C10)	ND	25	ug/L
F2 PHCs (C10-C16)	ND	100	ug/L
F3 PHCs (C16-C34)	ND	100	ug/L
F4 PHCs (C34-C50)	ND	100	ug/L
Metals			
Mercury	ND	0.1	ug/L
Antimony	ND	0.5	ug/L
Arsenic	ND	1	ug/L
Barium	ND	1	ug/L
Beryllium	ND	0.5	ug/L
Boron	ND	10	ug/L
Cadmium	ND	0.1	ug/L
Chromium (VI)	ND	10	ug/L
Chromium	ND	1	ug/L
Cohalt	ND	05	ua/l

Beryllium	ND	0.5	ug/L			
Boron	ND	10	uğ/L			
Cadmium	ND	0.1	uğ/L			
Chromium (VI)	ND	10	uğ/L			
Chromium	ND	1	uğ/L			
Cobalt	ND	0.5	ug/L			
Copper	ND	0.5	uğ/L			
Lead	ND	0.1	uğ/L			
Molybdenum	ND	0.5	uğ/L			
Nickel	ND	1	ug/L			
Selenium	ND	1	ug/L			
Silver	ND	0.1	ug/L			
Sodium	ND	200	ug/L			
Thallium	ND	0.1	ug/L			
Uranium	ND	0.1	ug/L			
Vanadium	ND	0.5	ug/L			
Zinc	ND	5	ug/L			
Semi-Volatiles		-	- 3			
	ND	0.05				
Acenaphthene	ND	0.05	ug/L			
Acenaphthylene	ND	0.05	ug/L			
Anthracene	ND	0.01	ug/L			
Benzo [a] anthracene	ND	0.01	ug/L			
Benzo [a] pyrene	ND	0.01	ug/L			
Benzo [b] fluoranthene	ND	0.05	ug/L			
Benzo [g,h,i] perylene	ND	0.05	ug/L			
Benzo [k] fluoranthene	ND	0.05	ug/L			
Biphenyl	ND	0.05	ug/L			
Chrysene	ND	0.05	ug/L			
Dibenzo [a,h] anthracene	ND	0.05	ug/L			
Fluoranthene	ND	0.01	ug/L			
Fluorene	ND	0.05	ug/L			
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L			
1-Methylnaphthalene	ND	0.05	ug/L			
2-Methylnaphthalene	ND	0.05	ug/L			
Methylnaphthalene (1&2)	ND	0.10	ug/L			
Naphthalene	ND	0.05	ug/L			
Phenanthrene	ND	0.05	ug/L			
Pyrene	ND	0.01	ug/L			
Surrogate: 2-Fluorobiphenyl	15.9		ug/L	79.6	50-140	
Surrogate: Terphenyl-d14	19.3		ug/L	96.5	50-140	
Volatiles			-			
Benzene	ND	0.5	ug/L			
Ethylbenzene	ND	0.5 0.5	ug/L			
Toluene	ND	0.5 0.5	ug/L			
noiuene m.p.Xvlenes		0.5	ug/L			

P: 1-800-749-1947

WWW.PARACELLABS.COM

E: PARACEL@PARACELLABS.COM

ND

ND

0.5

0.5

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

ug/L ug/L

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 10

Client: Houle Chevrier Client PO:

Project Description: 14-150

Order #: 1423172

Report Date: 09-Jun-2014 Order Date:3-Jun-2014

Method Quality	Control:	Blank
----------------	----------	-------

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total Surrogate: Toluene-d8	ND 78.5	0.5	ug/L <i>ug/L</i>		98.1	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 10

Client: **Houle Chevrier** Client PO:

Order #: 1423172

Report Date: 09-Jun-2014 Order Date: 3-Jun-2014

Project Description: 14-150

Method Quality Control: Duplicate	

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Mercury	ND	0.1	ug/L	ND			0.0	20	
Antimony	1.05	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	ND	1	ug/L	ND			0.0	20	
Beryllium	ND	0.5	uğ/L	ND			0.0	20	
Boron	ND	10	ug/L	ND			0.0	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium (VI)	ND	10	ug/L	ND				20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	ND	0.5	ug/L	ND			0.0	20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	ND	0.5	ug/L	ND			0.0	20	
Nickel	ND	1	ug/L	ND			0.0	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	ND	200	ug/L	ND			0.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	ND	5	ug/L	ND			0.0	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND			0.0	30	
Ethylbenzene	ND	0.5	ug/L	ND			0.0	30	
Toluene	ND	0.5	ug/L	ND			0.0	30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND			0.0	30	
Surrogate: Toluene-d8	78.9		ug/L	ND	98.6	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Client: Houle Chevrier Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2010	25	ug/L	ND	100	68-117			
F2 PHCs (C10-C16)	1800	100	ug/L	ND	100	60-140			
F3 PHCs (C16-C34)	3740	100	ug/L	ND	101	60-140			
F4 PHCs (C34-C50)	2560	100	ug/L	ND	103	60-140			
Metals									
Mercury	2.92	0.1	ug/L	ND	97.3	78-137			
Antimony	46.1		ug/L	ND	92.1	80-120			
Arsenic	45.6		ug/L	0.03	91.1	80-120			
Barium	45.1		ug/L	ND	90.4	80-120			
Beryllium	45.9		ug/L	0.003	91.8	80-120			
Boron	47		ug/L	4	84.4	80-120			
Cadmium	45.3		ug/L	ND	90.5	80-120			
Chromium (VI)	193	10	ug/L	ND	96.5	70-130			
Chromium	46.1		ug/L	0.3	91.6	80-120			
Cobalt	46.7		ug/L	0.003	93.4	80-120			
Copper	47.7		ug/L	0.03	95.3	80-120			
Lead	44.1		ug/L	0.003	88.2	80-120			
Molybdenum	44.0		ug/L	0.38	87.3	80-120			
Nickel	47.0		ug/L	ND	94.0	80-120			
Selenium	46.0		ug/L	0.2	91.6	80-120			
Silver	45.2		ug/L	ND	90.3	80-120			
Sodium	1140		ug/L	0.7	114	80-120			
Thallium	44.1		ug/L	0.006	88.2	80-120			
Uranium	44.4		ug/L	0.1	88.7	80-120			
Vanadium	47.4		ug/L	0.10	94.6	80-120			
Zinc	48		ug/L	1	93.3	80-120			
Semi-Volatiles									
Acenaphthene	3.65	0.05	ug/L	ND	73.0	50-140			
Acenaphthylene	2.93	0.05	ug/L	ND	58.5	50-140			
Anthracene	3.80	0.01	ug/L	ND	75.9	50-140			
Benzo [a] anthracene	3.86	0.01	ug/L	ND	77.2	50-140			
Benzo [a] pyrene	3.56	0.01	ug/L	ND	71.1	50-140			
Benzo [b] fluoranthene	4.39	0.05	ug/L	ND	87.8	50-140			
Benzo [g,h,i] perylene	3.99	0.05	ug/L	ND	79.8	50-140			
Benzo [k] fluoranthene	4.68	0.05	ug/L	ND	93.7	50-140			
Biphenyl	3.96	0.05	ug/L	ND	79.2	50-140			
Chrysene	4.31	0.05	ug/L	ND	86.3	50-140			
Dibenzo [a,h] anthracene	3.74	0.05	ug/L	ND	74.8	50-140			
Fluoranthene	2.95	0.01	ug/L	ND	59.1	50-140			
Fluorene	3.70	0.05	ug/L	ND	74.1	50-140			
Indeno [1,2,3-cd] pyrene	3.92	0.05	ug/L	ND	78.4	50-140			
1-Methylnaphthalene	3.73	0.05	ug/L	ND	74.5	50-140			
2-Methylnaphthalene	3.73	0.05	ug/L	ND	74.6	50-140			
Naphthalene	3.58	0.05	ug/L	ND	71.6	50-140			
Phenanthrene	3.71	0.05	ug/L	ND	74.1	50-140			
Pyrene	3.73	0.01	ug/L	ND	74.7	50-140			
Surrogate: 2-Fluorobiphenyl	14.9		ug/L		74.7	50-140			
Volatiles									

Project Description: 14-150

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Report Date: 09-Jun-2014 Order Date:3-Jun-2014

m,p-Xylenes

o-Xylene

Certificate of Analysis

Client: Houle Chevrier Client PO:

Project Description: 14-150

ug/L

ug/L

ND

ND

117

104

50-140

50-140

3172

Report Date: 09-Jun-2014 Order Date: 3-Jun-2014

Method Quality Control: Spike									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	42.4	0.5	ug/L	ND	106	50-140			
Ethylbenzene	43.8	0.5	ug/L	ND	110	50-140			
Toluene	41.9	0.5	ug/L	ND	105	50-140			

0.5

0.5

93.6

41.7

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 10

Client: Houle Chevrier Client PO:

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Project Description: 14-150

Report Date: 09-Jun-2014 Order Date:3-Jun-2014

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 10

OPARACEL LABORATORIES LTD.	RESPONSIVE .				Ottawa, p: 1-800 e: parao	9 St. La Ontario)-749-19 cel@par	Chain of Custody (Lab Use Only) Nº _15995 acellabs.com								
OTTAWA . KINGSTON . NIAGARA . MISSISSA	UGA 🖲 SAI	RNIA			1	www.pa	iracellab	s.com	sec		Pa	ga 1	_ of <u>1</u>	5	
Client Name: Houle Chevrier Englin Contact Name: Brett Painter Address: Abb Wescar Forme, RG Official Ontonio Telephone: 613-836-1422	22,	Quote # PO # Email A	and the second se	14-150 anter (a ha					L Date Rec]] 3 Day] 1 Day		
Criteria: 100. Reg. 153/04 (As Amended) Table []RS					e (aum	1 [] 30	an famin	11.97 1410		ired An		10000		1	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sanitary Se	ewer) P (P	aint) A (Air) O (O	(ner)	t				Requi		laryses				_
Paracel Order Number: 423172	Matrix Air Volume	of Containers	Sample	Taken	Hora F	SHAS	Netals	бн	S-VI						
Sample ID/Location Name	Matrix Air Vc	#	Date	Time	¢+	0	2	Ŧ	0						
1 BH14-1 GW SAI	Gw/	7	Jine 3	11:30am	1	1	1	/	1						
2 BH14-101 GW SA1	GW /	7	Sne 3	11:30m	1	1	1	1							
3 BH 14-3 GW SH	GNW /	17	June 3	1:30pm	V	1	/	/	/						
4 Trip Blank	GW/	3	June 2												
5															
6							·								
7															
8									-						
9															
10											1.1				
comments: Metals have be	ien fi	eld	filter	20,				ţ. J	1	. J.			of Delive		
Relinquished By (Sign): Serviouth SAVS	Received by Dr Kauer	a	dl	SI	ed at Lab	PORN		KMA	£30	And Description of the local division of the	MC	T	4/10	1	2:54
Relinquished By (Print): Samantha Sabo Date/Time: June 3, 2014	Date/Time:) Temperature:]		1	4 4 Date/T Tempe		7.3	2010	1	17.20	Date/T pH Ve			uin		2.2

Chain of Custody (Blank) - Rev 0.2 May 2013

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Houle Chevrier

180 Wescar Lane Ottawa, ON K0A1L0 Attn: Brett Painter

Phone: (613) 836-1422 Fax: (613) 836-9731

Client PO:	Report Date: 10-Jun-2014
Project: 14-150	Order Date: 4-Jun-2014
Custody: 16620	Order #: 1423202

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1423202-01 BH14-2 GW SA1

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: **Houle Chevrier** Client PO:

Project Description: 14-150

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

Order #: 1423202

Analysis Summary Table

Analysis Method Reference/Description		Extraction Date A	nalysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	5-Jun-14	6-Jun-14
Chromium, hexavalent	MOE E3056 - colourimetric	5-Jun-14	5-Jun-14
Mercury	EPA 245.1 - Cold Vapour AA	5-Jun-14	5-Jun-14
Metals, ICP-MS	EPA 200.8 - ICP-MS	6-Jun-14	6-Jun-14
PAHs by GC-MS	EPA 625 - GC-MS, extraction	5-Jun-14	9-Jun-14
PHC F1	CWS Tier 1 - P&T GC-FID	5-Jun-14	6-Jun-14
PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	5-Jun-14	5-Jun-14

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

 Ottawa, ON K1G 4J8
 Niag

 MISSISSAUGA
 SAF

 6645 Kitimat Rd. Unit #27
 123

 Mississauga, ON L5N 6J3
 Sam

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 10

OPARACEL

Order #: 1423202

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

Certificate of Analysis Client: Houle Chevrier

Client PO:		Project Description: 14-150		Older Date.4-5011-2014		
	Client ID:	BH14-2 GW SA1	-	-	-	
	Sample Date:	04-Jun-14	-	-	-	
	Sample ID:	1423202-01 Water	-	-	-	
Metals	MDL/Units	Waler	-	-	-	
Mercury	0.1 ug/L	<0.1	-	-	_	
Antimony	0.5 ug/L	1.1	-	-		
Arsenic	1 ug/L	<1	-			
Barium	1 ug/L	80		-		
	0.5 ug/L		-		-	
Beryllium	10 ug/L	<0.5	-	-	-	
Boron	_	43	-	-	-	
Cadmium	0.1 ug/L	<0.1	-	-	-	
Chromium	1 ug/L	6	-	-	-	
Chromium (VI)	10 ug/L	<10	-	-	-	
Cobalt	0.5 ug/L	<0.5	-	-	-	
Copper	0.5 ug/L	1.7	-	-	-	
Lead	0.1 ug/L	<0.1	-	-	-	
Molybdenum	0.5 ug/L	0.7	-	-	-	
Nickel	1 ug/L	3	-	-	-	
Selenium	1 ug/L	<1	-	-	-	
Silver	0.1 ug/L	<0.1	-	-	-	
Sodium	200 ug/L	6340	-	-	-	
Thallium	0.1 ug/L	<0.1	-	-	-	
Uranium	0.1 ug/L	0.3	-	-	-	
Vanadium	0.5 ug/L	11.9	-	-	-	
Zinc	5 ug/L	25	-	-	-	
/olatiles						
Benzene	0.5 ug/L	<0.5	-	-	-	
Ethylbenzene	0.5 ug/L	<0.5	-	-	-	
Toluene	0.5 ug/L	<0.5	-	-	-	
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-	
o-Xylene	0.5 ug/L	<0.5	-	-	-	
Xylenes, total	0.5 ug/L	<0.5	-	-	-	
Toluene-d8	Surrogate	98.6%	-	-	-	
lydrocarbons						
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-	
F2 PHCs (C10-C16)	100 ug/L	<100 [5]	-	-	-	
F3 PHCs (C16-C34)	100 ug/L	609 [5]	-	-	-	
F4 PHCs (C34-C50)	100 ug/L	379 [5]	-	-	-	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 10

PARACEL

Order #: 1423202

Certificate of Analysis

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

Client: **Houle Chevrier** Client PO:

	Client ID:	BH14-2 GW SA1	-	-	-
	Sample Date:	04-Jun-14	-	-	-
	Sample ID:	1423202-01	-	-	-
	MDL/Units	Water	-	-	-
F1 + F2 PHCs	125 ug/L	<125	-	-	-
F3 + F4 PHCs	200 ug/L	988	-	-	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	-	-	-
Acenaphthylene	0.05 ug/L	<0.05	-	-	-
Anthracene	0.01 ug/L	<0.01	-	-	-
Benzo [a] anthracene	0.01 ug/L	0.10	-	-	-
Benzo [a] pyrene	0.01 ug/L	0.07	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	0.12	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	0.06	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	0.11	-	-	-
Biphenyl	0.05 ug/L	<0.05	-	-	-
Chrysene	0.05 ug/L	0.14	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	0.17	-	-	-
Fluorene	0.05 ug/L	<0.05	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	-	-	-
Naphthalene	0.05 ug/L	0.06	-	-	-
Phenanthrene	0.05 ug/L	0.08	-	-	-
Pyrene	0.01 ug/L	0.16	-	-	-
2-Fluorobiphenyl	Surrogate	69.2%	-	-	-
Terphenyl-d14	Surrogate	90.4%	-	-	-

Project Description: 14-150

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 10

Client: Houle Chevrier Client PO:

Order #: 1423202

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

RPD

%REC

Project Description: 14-150

Source

Analyte	Result	Reporting Limit

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.1	ug/L						
Arisenic	ND	1	ug/L ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.5	ug/L						
Molybdenum	ND	0.1	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.1	ug/L						
Zinc	ND	5	ug/L						
	ND	0	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene		0.05	ug/L						
1-Methylnaphthalene	ND ND	0.05	ug/L						
2-Methylnaphthalene Methylnaphthalene (1&2)	ND	0.05 0.10	ug/L						
	ND		ug/L						
Naphthalene Phenanthrene	ND	0.05 0.05	ug/L						
Pyrene	ND	0.05	ug/L						
Surrogate: 2-Fluorobiphenyl	15.9	0.01	ug/L <i>ug/L</i>		79.6	50-140			
Surrogate: Terphenyl-d14	19.3				96.5	50-140 50-140			
	19.5		ug/L		90.5	50-140			
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 10

Client: Houle Chevrier Client PO:

Project Description: 14-150

Order #: 1423202

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

Method	Quality	Control:	Blank
--------	---------	----------	-------

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total Surrogate: Toluene-d8	ND 78.5	0.5	ug/L <i>ug/L</i>		98.1	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 10

Client: Houle Chevrier Client PO:

Order #: 1423202

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

Project Description: 14-150

thod Quality Control: Duplicate	
	Reporting

Method Quality Conti	rol: Duplicate								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Mercury	ND	0.1	ug/L	ND			0.0	20	
Antimony	ND	0.5	uğ/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	22.2	1	ug/L	23.8			7.2	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	28	10	ug/L	33			16.9	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium (VI)	ND	10	ug/L	ND				20	
Chromium	5.2	1	ug/L	6.2			16.2	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	1.82	0.5	ug/L	1.88			3.5	20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	0.87	0.5	ug/L	1.04			17.8	20	
Nickel	1.3	1	ug/L	1.2			9.3	20	
Selenium	1.4	1	ug/L	1.4			0.8	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	17900	200	ug/L	19100			6.1	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	4.46	0.5	ug/L	3.43			26.2	20	QR-01
Zinc	8	5	ug/L	7			11.5	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND			0.0	30	
Ethylbenzene	ND	0.5	ug/L	ND			0.0	30	
Toluene	ND	0.5	ug/L	ND			0.0	30	
m,p-Xylenes	ND	0.5	ug/L	ND			0.0	30	
o-Xylene	ND	0.5	ug/L	ND			0.0	30	
Surrogate: Toluene-d8	78.9	0.0	ug/L	ND	98.6	50-140	0.0		
	, 0.0		ug, L		00.0	50 1 10			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 10

Client: Houle Chevrier Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit Notes
Hydrocarbons								
F1 PHCs (C6-C10)	2010	25	ug/L	ND	100	68-117		
F2 PHCs (C10-C16)	1830	100	ug/L	ND	102	60-140		
F3 PHCs (C16-C34)	3650	100	ug/L	ND	98.1	60-140		
F4 PHCs (C34-C50)	2340	100	ug/L	ND	94.4	60-140		
Metals			-					
Mercury	2.92	0.1	ug/L	ND	97.3	78-137		
Antimony	50.2		ug/L	0.29	99.9	80-120		
Arsenic	52.3		ug/L	0.8	103	80-120		
Barium	64.6		ug/L	23.8	81.6	80-120		
Beryllium	61.6		ug/L	0.004	123	80-120		QM-07
Boron	80		ug/L	33	94.1	80-120		
Cadmium	43.0		ug/L	ND	86.1	80-120		
Chromium (VI)	193	10	ug/L	ND	96.5	70-130		
Chromium	60.2		ug/L	6.2	108	80-120		
Cobalt	55.8		ug/L	0.06	112	80-120		
Copper	57.3		ug/L	1.88	111	80-120		
Lead	45.4		ug/L	ND	91.1	80-120		
Molybdenum	44.8		ug/L	1.04	87.5	80-120		
Nickel	58.7		ug/L	1.2	115	80-120		
Selenium	55.7		ug/L	1.4	109	80-120		
Silver	35.0		ug/L	ND	70.0	80-120		QM-07
Sodium	1300		ug/L	296	99.9	80-120		
Thallium	44.9		ug/L	ND	90.1	80-120		
Uranium	50.8		ug/L	ND	102	80-120		
Vanadium	60.2		ug/L	3.43	114	80-120		
Zinc	48		ug/L	ND	95.2	80-120		
Semi-Volatiles								
Acenaphthene	3.65	0.05	ug/L	ND	73.0	50-140		
Acenaphthylene	2.93	0.05	ug/L	ND	58.5	50-140		
Anthracene	3.80	0.01	ug/L	ND	75.9	50-140		
Benzo [a] anthracene	3.86	0.01	ug/L	ND	77.2	50-140		
Benzo [a] pyrene	3.56	0.01	ug/L	ND	71.1	50-140		
Benzo [b] fluoranthene	4.39	0.05	ug/L	ND	87.8	50-140		
Benzo [g,h,i] perylene	3.99	0.05	ug/L	ND	79.8	50-140		
Benzo [k] fluoranthene	4.68	0.05	ug/L	ND	93.7	50-140		
Biphenyl	3.96	0.05	ug/L	ND	79.2	50-140		
Chrysene	4.31	0.05	ug/L	ND	86.3	50-140		
Dibenzo [a,h] anthracene	3.74	0.05	ug/L	ND	74.8	50-140		
Fluoranthene	2.95	0.01	ug/L	ND	59.1	50-140		
Fluorene	3.70	0.05	ug/L	ND	74.1	50-140		
Indeno [1,2,3-cd] pyrene	3.92	0.05	ug/L	ND	78.4	50-140		
1-Methylnaphthalene	3.73	0.05	ug/L	ND	74.5	50-140		
2-Methylnaphthalene	3.73	0.05	ug/L	ND	74.6	50-140		
Naphthalene	3.58	0.05	ug/L	ND	71.6	50-140		
Phenanthrene	3.71	0.05	ug/L	ND	74.1	50-140		
Pyrene	3.73	0.01	ug/L	ND	74.7	50-140		
Surrogate: 2-Fluorobiphenyl	14.9		ug/L		74.7	50-140		
Volatiles								

Project Description: 14-150

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Order #: 1423202

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

m,p-Xylenes

o-Xylene

Certificate of Analysis

Client: Houle Chevrier Client PO:

Project Description: 14-150

ug/L

ug/L

ND

ND

117

104

50-140

50-140

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

Method Quality Control: Spike									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	42.4	0.5	ug/L	ND	106	50-140			
Ethylbenzene	43.8	0.5	ug/L	ND	110	50-140			
Toluene	41.9	0.5	ug/L	ND	105	50-140			

0.5

0.5

93.6

41.7

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 10

Client: Houle Chevrier Client PO:

Qualifier Notes:

Login Qualifiers :

Sample - Received with >5% sediment, instructed to perform whole bottle extraction (analyze with sediment) Applies to samples: BH14-2 GW SA1

Project Description: 14-150

Sample Qualifiers :

5: Water sample included significant sediment amount that was included in extraction process. This is expected to result in reduced accuracy of the reported result.

QC Qualifiers :

- QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P :	1-800-749-1947
Ε:	PARACEL@PARACELLABS.COM
WW	W.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7 Order #: 1423202

Report Date: 10-Jun-2014 Order Date:4-Jun-2014

CARACEL RESPONSIVE.							Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com				Chain of Custody (Lab Use Only) Nº 16620				
OTTAWA KINGSTON	SAUGA	• SAF	RNIA				www.p	aracella	abs.com			Pag	ge <u>l</u> of	1	
Client Name: Hale Chevrier E Contact Name: Breff Painter Address: 180 wescar Lane, 0 Gnterro, KOA JUC Télephone: 618-836-1422	ttau	a.,	Quote # PO # Email A	. ^{ddress:} Бр	19-15C ainter6	Shce	~				Date Re	-	[]10	ay	
Criteria: 10, Reg. 153/04 (As Amended) Table [] R						B (Storn	1) []\$	UB (Sani] Other:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/Sa	mitary Se	wer) P (F	Paint) A (Air) O (O	ther)					Requi	red Ar	alyses			
Paracel Order Number: 1423202 Sample ID/Location Name 1 BH 14-2 GW SA1 2	E Matrix	Air Volume	4 / # of Containers	Sample Date Sure 4/14	Time	- ALCS R-F4	< Netals	1207	ett -	PAHS					
3															
4															
5															
6															
8	-														
9								-		1					
10	-														
Comments: Metals have b	Leen	Fie	6	Fi Hireq								N	Method of Del Walk		
Relinquished By (Sign): Seymouth Dirk Relinquished By (Print): Samartha Sabo	Received Late/Tin	aur	n a	ill		d at Lab: NEE	POPN	D	OKMA	and a second	Verified A Date/Tin	NC	UR 41	14	
Date/Time: 2412 4, 3014	Tempera	iture: 15	1.24	2	Temper	ature:	113	'C'			pH Veri	fied [] By	" M/c	`	7

Chain of Custody (Blank) - Rev 0.2 May 2013

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Houle Chevrier

180 Wescar Lane Ottawa, ON K0A1L0 Attn: Brett Painter

Phone: (613) 836-1422 Fax: (613) 836-9731

Client PO:	Report Date: 18-Jun-2014
Project: 14-150	Order Date: 13-Jun-2014
Custody: 16619	Order #: 1424256

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1424256-01 BH14-1 GW SA2 BH14-2 GW SA2 1424256-02

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Houle Chevrier **Client PO:**

Project Description: 14-150

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

Order #: 1424256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	13-Jun-14 17-Jun-14
Metals, ICP-MS	EPA 200.8 - ICP-MS	13-Jun-14 17-Jun-14
PHC F1	CWS Tier 1 - P&T GC-FID	13-Jun-14 17-Jun-14
PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	16-Jun-14 17-Jun-14
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	13-Jun-14 13-Jun-14

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 9

PARACEL

Order #: 1424256

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

Certificate of Analysis
Client: Houle Chevrier

Client PO:		Project Descripti	on: 14-150	Ciuc	1 Date. 13-Juli-2014
	Client ID: Sample Date: Sample ID:	BH14-1 GW SA2 12-Jun-14 1424256-01 Water	BH14-2 GW SA2 12-Jun-14 1424256-02 Water	- - -	- - -
Metals	MDL/Units	Water	Water	-	-
Antimony	0.5 ug/L	-	<0.5	-	-
Arsenic	1 ug/L	-	<1	_	-
Barium	1 ug/L	-	64	_	-
Beryllium	0.5 ug/L	-	<0.5	_	-
Boron	10 ug/L	-	40	_	-
Cadmium	0.1 ug/L	-	<0.1	_	-
Chromium	1 ug/L	-	<1	-	-
Cobalt	0.5 ug/L	-	0.8	-	-
Copper	0.5 ug/L	-	2.4	-	-
Lead	0.1 ug/L	-	0.2	-	-
Molybdenum	0.5 ug/L	-	<0.5	-	-
Nickel	1 ug/L	-	3	-	-
Selenium	1 ug/L	-	<1	-	-
Silver	0.1 ug/L	-	<0.1	-	-
Sodium	200 ug/L	-	5970	-	-
Thallium	0.1 ug/L	-	<0.1	-	-
Uranium	0.1 ug/L	-	0.2	-	-
Vanadium	0.5 ug/L	-	5.0	-	-
Zinc	5 ug/L	-	8	-	-
Volatiles			1 1		•
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	99.2%	99.5%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-
F1 + F2 PHCs	125 ug/L	<125	<125	-	-
F3 + F4 PHCs	200 ug/L	<200	<200	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 3 of 9

WWW, PARACELLABS.COM

PARACEL

Order #: 1424256

Certificate of Analysis

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

Client: Houle Chevrier	
Client PO:	

Client PO:		Project Descripti	ion: 14-150		
	Client ID: Sample Date: Sample ID:	BH14-1 GW SA2 12-Jun-14 1424256-01	BH14-2 GW SA2 12-Jun-14 1424256-02	- - -	
	MDL/Units	Water	Water	-	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	-	<0.05	-	-
Acenaphthylene	0.05 ug/L	-	<0.05	-	-
Anthracene	0.01 ug/L	-	<0.01	-	-
Benzo [a] anthracene	0.01 ug/L	-	0.05	-	-
Benzo [a] pyrene	0.01 ug/L	-	0.13	-	-
Benzo [b] fluoranthene	0.05 ug/L	-	0.10	-	-
Benzo [g,h,i] perylene	0.05 ug/L	-	0.06	-	-
Benzo [k] fluoranthene	0.05 ug/L	-	0.12	-	-
Chrysene	0.05 ug/L	-	0.18	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	<0.05	-	-
Fluoranthene	0.01 ug/L	-	0.25	-	-
Fluorene	0.05 ug/L	-	<0.05	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	0.06	-	-
1-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
2-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
Methylnaphthalene (1&2)	0.10 ug/L	-	<0.10	-	-
Naphthalene	0.05 ug/L	-	0.07	-	-
Phenanthrene	0.05 ug/L	-	0.20	-	-
Pyrene	0.01 ug/L	-	0.21	-	-
2-Fluorobiphenyl	Surrogate	-	71.0%	-	-
Terphenyl-d14	Surrogate	-	82.5%	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 9

Analyte

Certificate of Analysis

Method Quality Control: Blank

Client: Houle Chevrier **Client PO:**

Order #: 1424256

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

RPD

Limit

Notes

RPD

%REC

Limit

Project Description: 14-150

Units

Source

Result

%REC

Reporting

Limit

Result

ingarocarbonic			
F1 PHCs (C6-C10)	ND	25	ug/L
F2 PHCs (C10-C16)	ND	100	ug/L
F3 PHCs (C16-C34)	ND	100	ug/L
F4 PHCs (C34-C50)	ND	100	ug/L
Metals			
Antimony	ND	0.5	ug/L
Arsenic	ND	1	ug/L

Hydrocarbons						
F1 PHCs (C6-C10)	ND	25	ug/l			
	ND		ug/L			
F2 PHCs (C10-C16)		100	ug/L			
F3 PHCs (C16-C34)	ND	100	ug/L			
F4 PHCs (C34-C50)	ND	100	ug/L			
Metals						
Antimony	ND	0.5	ug/L			
Arsenic	ND	1	ug/L			
Barium	ND	1	ug/L			
Beryllium	ND	0.5	ug/L			
Boron	ND	10	ug/L			
Cadmium	ND	0.1				
	ND		ug/L			
Chromium		1	ug/L			
Cobalt	ND	0.5	ug/L			
Copper	ND	0.5	ug/L			
Lead	ND	0.1	ug/L			
Molybdenum	ND	0.5	ug/L			
Nickel	ND	1	ug/L			
Selenium	ND	1	ug/L			
Silver	ND	0.1	ug/L			
Sodium	ND	200	ug/L			
Thallium	ND	0.1	ug/L			
Uranium	ND	0.1	ug/L			
Vanadium	ND	0.5	ug/L			
Zinc	ND	5	ug/L			
Semi-Volatiles			0			
Acenaphthene	ND	0.05	ug/l			
	ND		ug/L			
Acenaphthylene		0.05	ug/L			
Anthracene	ND	0.01	ug/L			
Benzo [a] anthracene	ND	0.01	ug/L			
Benzo [a] pyrene	ND	0.01	ug/L			
Benzo [b] fluoranthene	ND	0.05	ug/L			
Benzo [g,h,i] perylene	ND	0.05	ug/L			
Benzo [k] fluoranthene	ND	0.05	ug/L			
Chrysene	ND	0.05	ug/L			
Dibenzo [a,h] anthracene	ND	0.05	ug/L			
Fluoranthene	ND	0.01	ug/L			
Fluorene	ND	0.05	ug/L			
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L			
1-Methylnaphthalene	ND	0.05	ug/L			
2-Methylnaphthalene	ND	0.05	ug/L			
Methylnaphthalene (1&2)	ND	0.10	ug/L			
Naphthalene	ND	0.05	ug/L			
Phenanthrene	ND	0.05	ug/L			
Pyrene	ND	0.01	ug/L			
Surrogate: 2-Fluorobiphenyl	14.1		ug/L	70.7	50-140	
Surrogate: Terphenyl-d14	20.1		ug/L	100	50-140	
	-		- 0			
Volatiles		0 5				
Benzene	ND	0.5	ug/L			
Ethylbenzene	ND	0.5	ug/L			
Toluene	ND	0.5	ug/L			
m,p-Xylenes	ND	0.5	ug/L			
o-Xylene	ND	0.5	ug/L			
Xylenes, total	ND	0.5	ug/L			
Surrogate: Toluene-d8	79.4		ug/L	<i>99.2</i>	50-140	

P: 1-800-749-1947

E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 9

Client: **Houle Chevrier** Client PO:

Order #: 1424256

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

Project Description: 14-150

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Antimony	ND	0.5	ug/L	0.65			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	22.2	1	ug/L	22.1			0.6	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	21	10	ug/L	21			0.9	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	5.5	1	ug/L	6.3			13.9	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	10.5	0.5	uğ/L	10.0			4.2	20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Volybdenum	4.23	0.5	ug/L	4.13			2.3	20	
Nickel	1.1	1	ug/L	1.1			2.7	20	
Selenium	ND	1	ug/L	1.6			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	16300	200	ug/L	15500			5.3	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	0.2	0.1	ug/L	0.2			0.5	20	
Vanadium	1.65	0.5	ug/L	1.84			10.6	20	
Zinc	18	5	ug/L	17			9.9	20	
Volatiles			•						
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	78.4		ug/L	ND	98.0	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 9

Client: **Houle Chevrier** Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2000	25	ug/L	ND	100	68-117			
F2 PHCs (C10-C16)	1880	100	ug/L	ND	104	60-140			
F3 PHCs (C16-C34)	3840	100	ug/L	ND	103	60-140			
F4 PHCs (C34-C50)	2560	100	ug/L	ND	103	60-140			
Metals			0						
Antimony	52.6		ug/L	0.65	104	80-120			
Arsenic	52.4		ug/L	0.9	103	80-120			
Barium	68.4		ug/L	22.1	92.7	80-120			
Beryllium	49.2		ug/L	0.01	98.4	80-120			
Boron	67		ug/L	21	90.5	80-120			
Cadmium	48.2		ug/L	0.0008	96.3	80-120			
Chromium	53.6		ug/L	6.3	94.7	80-120			
Cobalt	47.6		ug/L	0.05	95.2	80-120			
Copper	56.5		ug/L	10.0	92.9	80-120			
Lead	47.3		ug/L	0.05	94.6	80-120			
Molybdenum	51.2		ug/L	4.13	94.1	80-120			
Nickel	48.4		ug/L	1.1	94.7	80-120			
Selenium	54.9		ug/L	1.6	107	80-120			
Silver	47.1		ug/L	0.01	94.2	80-120			
Sodium	1110		ug/L	179	92.9	80-120			
Thallium	46.3		ug/L	ND	92.6	80-120			
Uranium	47.8		ug/L	0.2	95.2	80-120			
Vanadium	50.4		ug/L	1.84	97.2	80-120			
Zinc	64		ug/L	17	94.6	80-120			
Semi-Volatiles			0						
Acenaphthene	3.29	0.05	ug/L	ND	65.9	50-140			
Acenaphthylene	2.59	0.05	ug/L	ND	51.8	50-140			
Anthracene	3.16	0.01	ug/L	ND	63.1	50-140			
Benzo [a] anthracene	2.72	0.01	ug/L	ND	54.5	50-140			
Benzo [a] pyrene	2.56	0.01	ug/L	ND	51.2	50-140			
Benzo [b] fluoranthene	4.22	0.05	ug/L	ND	84.4	50-140			
Benzo [g,h,i] perylene	2.88	0.05	ug/L	ND	57.5	50-140			
Benzo [k] fluoranthene	3.90	0.05	ug/L	ND	77.9	50-140			
Chrysene	2.93	0.05	ug/L	ND	58.5	50-140			
Dibenzo [a,h] anthracene	2.54	0.05	ug/L	ND	50.7	50-140			
Fluoranthene	2.60	0.01	ug/L	ND	52.0	50-140			
Fluorene	3.16	0.05	ug/L	ND	63.1	50-140			
Indeno [1,2,3-cd] pyrene	2.62	0.05	ug/L	ND	52.3	50-140			
1-Methylnaphthalene	2.88	0.05	ug/L	ND	57.6	50-140			
2-Methylnaphthalene	2.78	0.05	ug/L	ND	55.7	50-140			
Naphthalene	3.05	0.05	ug/L	ND	61.0	50-140			
Phenanthrene	3.28	0.05	ug/L	ND	65.6	50-140			
Pyrene	2.76	0.01	ug/L	ND	55.2	50-140			
Surrogate: 2-Fluorobiphenyl	13.7		ug/L		68.5	50-140			
Volatiles									
Benzene	34.5	0.5	ug/L	ND	86.4	50-140			
Ethylbenzene	31.1	0.5	ug/L	ND	77.6	50-140			
Toluene	31.7	0.5	ug/L	ND	79.2	50-140			
		10							

Project Description: 14-150

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

WWW.PARACELLABS.COM

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 122 Christian St. N

123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 9

Order #: 1424256

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

Order #: 1424256

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

Client: **Houle Chevrier** Client PO:

Project Description: 14-150

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
m,p-Xylenes o-Xylene	65.8 30.3	0.5 0.5	ug/L ug/L	ND ND	82.2 75.7	50-140 50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 9

Client: Houle Chevrier Client PO:

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Project Description: 14-150

Report Date: 18-Jun-2014 Order Date:13-Jun-2014

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 9

GPARACEL	TRUST RESP(Έ.				Office 19 St. Laur , Ontario K				ain of (Lab Us	Custor e Only)	ly		
LABORATORIES LTD.		RELIABLE.					p: 1-800-749-1947 e: paracel@paracellabs.com				Nº 16619				
OTTAWA KINGSTON NIAGARA MISSISS	AUGA 🖲 SA	RNIA				www.pa	aracellabs.c	com		Pa	ige 🔟	_ of _/	_		
Client Name: Houle Chevrier Er Contact Name: Breff Painter Address: 180 Wescar Lane, R Carp, Onterio KOA I Télephone: 613-836-1402	9. R.J.,	Quote # PO #		4-150 ainter(Dha	eng].C9		TAT: [Date Rec] 2 Day		[] 3 Day] 1 Day			
Criteria: L/O. Reg. 153/04 (As Amended) Table [] RS	SC Filing [] O	Reg. 558	00 []PWQO [] CCME [] SU	IB (Storn	n) []\$1	JB (Sanitary)	Municipality	ß] Other				
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sanitary S	Sewer) P (1	Paint) A (Air) O (C	ther)	+	(cb)		Requ	ired An	alyses					
Paracel Order Number:	E E Matrix	C C A # of Containers	Sample Date JUN 12 JYV 12	Taken Time	K C HCS/BTE	< Metals(SHAR								
7															
8					-										
9															
Comments: Metals have be	en f	ield	Sitter	ed.							Method	i of Delive	rry: Cou	rier	
Relinguished By (Sign): <u>Acumantus</u> <u>Acuto</u> Relinguished By (Print): <u>Samantus</u> <u>Sabo</u> Date/Time:	Received by D Date/Time: Temperature:	river/Depo 7. 3.//L	Teaust	Receiv SM Date/T			DOK 1 13,2014 °C	12.04	Date/T	MC	Tune By: N	13]	14	5 12 3'	

Chain of Custody (Blank) - Rev 0.2 May 2013

geotechnical environmental hydrogeology materials testing & inspection

experience • knowledge • reliability