

Phase II – Environmental Site Assessment

1166 Bank Street Ottawa, Ontario

Prepared for Ambassador Realty Inc.

Report: PE5590-2 April 18, 2024

TABLE OF CONTENTS

PAGE

EXE	CUTIV	E SUMMARY	iii
1.0	INTR	ODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	
	1.3	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	2
	2.1	Physical Setting	2
3.0	SCO	PE OF INVESTIGATION	3
	3.1	Overview of Site Investigations	3
	3.2	Media Investigated	3
	3.3	Phase I ESA Conceptual Site Model	4
	3.4	Deviations from the Sampling and Analysis Plan	6
	3.5	Physical Impediments	6
4.0	INVE	STIGATION METHOD	7
	4.1	Subsurface Investigation	7
	4.2	Soil Sampling	7
	4.3	Field Screening Measurements	8
	4.4	Groundwater Monitoring Well Installation	8
	4.5	Field Measurement of Water Quality Parameters	9
	4.6	Groundwater Sampling	9
	4.7	Analytical Testing	9
	4.8	Residue Management	11
	4.9	Elevation Surveying	11
	4.10	Quality Assurance and Quality Control Measures	12
5.0	REV	IEW AND EVALUATION	13
	5.1	Geology	13
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	13
	5.3	Fine/Coarse Soil Texture	14
	5.4	Field Screening	14
	5.5	Soil Quality	14
	5.6	Groundwater Quality	22
	5.7	Quality Assurance and Quality Control Results	28
	5.8	Phase II Conceptual Site Model	30
6.0		CLUSIONS	
7.0	STA	FEMENT OF LIMITATIONS	40

List of Figures

Figure 1 – Key Plan Drawing PE5590-1 - Site Plan Drawing PE5590-2 – Surrounding Land Use Plan Drawing PE5590-3 – Test Hole Location Plan Drawing PE5590-4 – Analytical Testing Plan – Soil (VOCs, Metals, PAHs, Lead, EC, SAR, pH) Drawing PE5590-4A – Cross Section A-A' – Soil (VOCs, Metals, PAHs, Lead, EC, SAR, pH) Drawing PE5590-4B - Cross Section B-B' - Soil (VOCs, Metals, PAHs, Lead, EC, SAR, pH) Drawing PE5590-5 – Analytical Testing Plan – Soil (PHCs) Drawing PE5590-5A - Cross Section A-A' - Soil (PHCs) Drawing PE5590-5B – Cross Section B-B' – Soil (PHCs) Drawing PE5590-6 – Analytical Testing Plan – Groundwater (PHCs) Drawing PE5590-6A – Cross Section A-A' – Groundwater (PHCs) Drawing PE5590-6B – Cross Section B-B' – Groundwater (PHCs) Drawing PE5590-7 – Analytical Testing Plan – Groundwater (VOCs) Drawing PE5590-7A – Cross Section A-A' – Groundwater (VOCs) Drawing PE5590-7B – Cross Section B-B' – Groundwater (VOCs)

List of Appendices

Appendix 1 Sampling and Analysis Plan Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 1166 Bank Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) throughout the Phase II Property, all three of which were equipped with monitoring wells to allow for the collection of groundwater samples. The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand.

It should be noted that additional subsurface information, including historical soil and groundwater testing data, was obtained from a previous Phase II ESA conducted for the Phase II Property in March 2021 by Golder Associates Ltd. and utilized as part of this assessment.

In general, the subsurface soil profile encountered at the borehole locations consists of a surficial pavement structure (asphaltic concrete and granular sub-grade fill), underlain by fill material (brown silty sand with some clay, gravel, and cobbles) over top of multiple layers of compact to dense native brown sand with varying silt and clay contents, turning grey at deeper depths in line with the long-term water table. Bedrock was not encountered in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface. The groundwater beneath the Phase II Property was encountered within an overburden layer of grey silty clay at depths ranging from approximately 5.14 m to 5.83 m below ground surface.

Between Golder's 2021 and Paterson's 2022 subsurface investigations, a total of ten soil samples were submitted for laboratory analysis of VOCs, PHCs (F₁-F₄), metals, PAHs, lead, EC, SAR, and pH parameters. Based on the analytical test results, the concentration of PHCs (F₁) in Sample MW21-04-07 was in excess of the MECP Table 3 Coarse-Grained Residential Soil Standards. It should be noted that this borehole is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property.

Some elevated levels of EC and SAR were identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22. It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to the site surface for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase II Property.

Groundwater samples were recovered from monitoring wells MW21-01 to MW21-04 on April 8, 2021 as part of Golder's 2021 subsurface investigation and submitted for laboratory analysis of VOCs and PHCs (F_1 - F_4). Based on the analytical test results, the concentration of chloroform in Sample MW21-02, as well as the concentrations of chloroform, 1-2-Dichloroethane, and benzene in Sample MW21-04 were in excess of the MECP Table 3 Non-Potable Groundwater Standards.

The elevated concentrations of chloroform were suspected to be the result of the use of municipal water during the drilling process, and thus was not considered to present a contaminant issue to the property. The benzene exceedance was suspected to be the result of the historical presence of the former on-site retail fuel outlet. It should be noted that this benzene exceedance was identified in the monitoring well placed within the location of the former underground fuel storage tank nest in the southern portion of the site. The presence of 1-2-Dichloroethane, which is not typical of fuel related impacts, was suspected to be related to the historical use of solvents in an auto service garage which was formerly present on the property.

As part of this current assessment, groundwater samples were recovered from BH1-22, BH2-22, BH3-22, MW21-02, and MW21-04 on May 11, 2022 and March 19, 2024 and submitted for laboratory analysis of VOCs and PHC (F₁-F₄) parameters. Based on the analytical test results, all detected parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards. It should be noted that no chloroform was detected in the samples analyzed as part of the 2022 and 2024 groundwater sampling program, confirming our theory that the initial concentrations identified in the 2021 sampling program were likely the result of the use of municipal water. The benzene concentration detected in MW21-04 during the 2022 and 2024 groundwater sampling program was also significantly lower than initially identified in the 2021 sampling program. It is possible that the initially identified elevated levels of benzene could be the result of suspended sediment collected in the water samples due to improperly established wells.

Recommendations

Soil

Based on the findings of this assessment, PHC impacted soil was identified in the southern portion of the Phase II Property, in the vicinity of the former on-site underground fuel storage tank nest.

It is our understanding that the Phase II Property is to be redeveloped in the future, thus it is recommended that this contaminated soil be remediated at the time of site redevelopment. This contaminated soil will require disposal at a licensed waste disposal facility.

Prior to off-site disposal of impacted soil at a licensed waste disposal facility, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is recommended that Paterson personnel be present on-site during remediation activities to direct the excavation and segregation of impacted soil, as well as to conduct confirmatory sampling as required.

Based on the soil test results, the majority of the on-site soils comply with the MECP Table 2.1 Excess Soil Quality Standards (Ontario Regulation 406/19), for off-site disposal. Additional excess soil testing may be required prior to future site excavation activities.

Monitoring Wells

If the groundwater monitoring wells installed on-site are not going to be used in the future, or will be destroyed during future construction activities, then they must be decommissioned according to Ontario Regulation 903 (Ontario Water Resources Act), however, we recommend that the wells be maintained for future sampling purposes, at least until the excavation for the foundation has commenced. The monitoring wells will be registered with the MECP under this regulation. Further information can be provided upon request in this regard.

1.0 INTRODUCTION

At the request of Ambassador Realty Inc., Paterson Group (Paterson) conducted a Phase II – Environmental Site Assessment (Phase II ESA) the property addressed 1166 Bank Street, in the City of Ottawa, Ontario (the Phase II Property).

The purpose of this Phase II ESA has been to address the areas of potential environmental concern (APECs) identified on the Phase II Property as a result the findings of the Phase I ESA.

1.1 Site Description

Address:	1166 Bank Street, Ottawa, Ontario.
Legal Description:	Part of Lot L, Concession C (Rideau Front), Formerly the Township of Nepean, in the City of Ottawa, Ontario.
Location:	The Phase II Property is located on the northwest corner of the intersection of Bank Street and Grove Avenue, in the City of Ottawa, Ontario. Refer to Figure 1 – Key Plan, appended to this report.
Latitude and Longitude:	45° 23' 33" N, 75° 40' 57" W.
Site Description:	
Configuration:	Rectangular.
Site Area:	1,020 m ² (approximate).
Zoning:	TM – Traditional Main Street Zone.
Current Uses:	The Phase II Property is currently occupied with a one- storey commercial retail building (<i>Quickie Convenience</i> <i>Store</i>).
Services:	The Phase II Property is located within a municipally serviced area.

1.2 Property Ownership

The Phase II Property is currently owned by Ambassador Realty Inc. Paterson was retained to complete this Phase II ESA by Mr. Arthur Loeb of Ambassador Realty Inc., whose offices are located at 185 Somerset Street West, Ottawa, Ontario. Mr. Loeb can be contacted via telephone at 613-233-1104.

1.3 Applicable Site Condition Standard

The site condition standards for the subject property were obtained from Table 3 of the document entitled, *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"*, prepared by the Ministry of the Environment, Conservation and Parks (MECP), and dated April 15, 2011. The selected MECP standards are based on the following considerations:

- □ Full depth soil conditions;
- □ Coarse-grained soil conditions;
- □ Non-potable groundwater conditions;
- Residential land use.

Grain size analysis was not conducted as part of this assessment, and as such, the coarse-grained soil standards were selected as a conservative approach.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is currently occupied with a one-storey commercial retail building, located in the western portion of the property. The remainder of the site is largely paved with an asphaltic concrete parking lot, though a small, landscaped area is present within the southeastern corner of the property.

The site topography appears to slope down towards the south, in the general direction of the Rideau River, which is consistent with the greater regional topography. The Phase II Property is considered to be at grade with respect to the adjacent streets and the neighbouring properties.

Water drainage on the Phase II Property occurs primarily via surface runoff towards catch basins located in the exterior parking lot or the adjacent streets. No ponded water, stressed vegetation, surficial staining, or any other indications of potential sub-surface contamination were observed on the Phase II Property at time of the site inspection.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigations

March 2021

A subsurface investigation, carried out by Golder Associates Ltd., was conducted for the Phase II Property on March 29 and March 30, 2021. At that time, four boreholes (MW21-01 to MW21-04) were advanced throughout the property and terminated within the overburden at depths ranging from approximately 6.6 to 7.6 m below ground surface. Upon completion, all boreholes were equipped with monitoring wells to allow for the collection of groundwater samples.

May 2022

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) throughout the Phase II Property, all three of which were equipped with monitoring wells to allow for the collection of groundwater samples.

The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand. It should be noted that a dynamic cone penetration test was carried out at BH1-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

3.2 Media Investigated

During the course of this subsurface investigation, soil and groundwater samples were obtained from the Phase II Property and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the contaminants of potential concern identified in the Phase I ESA.

The contaminants of potential concern for the soil and groundwater on the Phase II Property include the following:

- □ Volatile Organic Compounds (VOCs);
- **D** Petroleum Hydrocarbons, fractions 1 4 (PHCs F₁-F₄);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Metals (including Mercury and Hexavalent Chromium);
- □ Electrical Conductivity (EC);
- □ Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

3.3 Phase I ESA Conceptual Site Model

Geological and Hydrogeological Setting

Based on the available mapping information, the bedrock beneath the Phase II Property generally consists of shale of the Billings Formation, while the surficial geology consists largely of offshore marine sediments (erosional terraces) with an overburden ranging in thickness from approximately 5 m to 10 m.

Groundwater is anticipated to be encountered within the overburden and flow in a southerly direction towards the Ottawa River.

Water Bodies and Areas of Natural and Scientific Interest

No water bodies or areas of natural and scientific interest were identified within the Phase I Study Area.

The nearest named water body with respect to the Phase II Property is the Rideau River, located approximately 360 m to the south.

Drinking Water Wells

Based on the availability of municipal services, no drinking water wells are expected to be present within the Phase I Study Area.

Existing Buildings and Structures

The Phase II Property is currently occupied with a one-storey commercial retail building.

Current and Future Property Use

The Phase II Property is currently being used for commercial purposes.

It is our understanding that the Phase II Property is to be redeveloped with a sixstorey mixed-use building, with one level of underground parking.

Due to the change to a more sensitive land use (commercial to residential), this will require that a record of site condition (RSC) be filed with the MECP.

Neighbouring Land Use

The surrounding lands within the Phase I Study Area consist largely of residential properties, with the exception of commercial properties and some institutional land present along Bank Street.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Section 7.1 of the Phase I ESA report, six potentially contaminating activities (PCAs), resulting in areas of potential environmental concern (APECs), were identified on the Phase II Property. These APECs include:

- □ A former auto service garage, located in the northwestern portion of the Phase II Property.
- □ A former underground fuel storage tank nest, located in the southern portion of the Phase II Property.
- □ A former fuel pump island, located in the eastern portion of the Phase II Property.
- Fill material of unknown quality, located beneath the asphaltic concrete parking lot throughout the northern, eastern, and southern portions of the Phase II Property.
- □ The application of road salt during snow and/or ice conditions, located beneath the asphaltic concrete parking lot throughout the northern, eastern, and southern portions of the Phase II Property.
- ❑ A former auto service garage and retail fuel outlet, located approximately 20 m to the east of the Phase II Property (1159 Bank Street).

Other off-site PCAs were identified within the Phase I Study Area but were deemed not to be of any environmental concern to the Phase II Property based on their separation distances as well as their inferred down-gradient or cross-gradient orientation with respect to anticipated groundwater flow.

Contaminants of Potential Concern

The contaminants of potential concern (CPCs) associated with the aforementioned APECs are considered to be:

□ Volatile Organic Compounds (VOCs);

- **D** Petroleum Hydrocarbons, fractions 1 4 (PHCs F₁-F₄);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Metals (including Mercury and Hexavalent Chromium);
- Electrical Conductivity (EC);
- □ Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I ESA is considered to be sufficient to conclude that there are PCAs and APECs associated with the Phase II Property.

The presence of any PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from the Sampling and Analysis Plan

No deviations from the Sampling and Analysis were made during the course of this Phase II ESA.

3.5 Physical Impediments

No physical impediments were encountered during the course of the field drilling program.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) within the exterior parking lot of the Phase II Property.

The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand. It should be noted that a dynamic cone penetration test was carried out at BH1-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

Upon completion, all three boreholes were instrumented with groundwater monitoring wells in order to access the groundwater table. During the field sampling program, the groundwater was measured at depths ranging from approximately 5.14 m to 5.83 m below the existing ground surface.

Under the full-time supervision of Paterson personnel, the boreholes were drilled using a low-clearance drill rig provided by George Downing Estate Drilling of Hawkesbury, Ontario. The locations of the boreholes are illustrated on "Drawing PE5590-3 – Test Hole Location Plan", appended to this report.

4.2 Soil Sampling

Soil sampling protocols were followed using the MECP document entitled, *"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario"*, dated May 1996.

The samples were recovered using a stainless-steel split spoon, while wearing protective gloves (changed after each sample), and immediately placed into plastic bags. If significant contamination was encountered, the samples were instead placed into glass jars. Sampling equipment was routinely washed in soapy water and rinsed with methylhydrate after each split spoon to prevent any cross contamination of the samples. The samples were also stored in coolers to reduce analyte volatilization during transportation.

A total of 31 soil samples were obtained from the boreholes by means of auger and split spoon sampling. The depths at which auger and split spoon samples were obtained from the boreholes are shown as "**AU**" and "**SS**", respectively, on the Soil Profile and Test Data Sheets, appended to this report.

4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as soil vapour screening with a Photo Ionization Detector.

The recovered soil samples were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey, ensuring consistency of readings between samples. To measure the soil vapours, the analyser probe was inserted into the nominal headspace above the sample. The sample was then agitated and manipulated gently by hand as the measurement was taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement. The parts per million (ppm) scale was used to measure concentrations of organic vapours.

The results of the vapour survey are presented on the Soil Profile and Test Data Sheets, appended to this report.

4.4 Groundwater Monitoring Well Installation

Three groundwater monitoring wells were installed on the Phase II Property as part of this assessment. These monitoring wells were constructed using 50 mm diameter Schedule 40 threaded PVC risers and screens. A sand pack consisting of silica sand was placed around the screen with a bentonite seal placed above to minimize cross-contamination. A summary of the monitoring well construction details are listed below in Table 1 as well as on the Soil Profile and Test Data Sheets provided in Appendix 1.

Upon completion, the groundwater monitoring wells were developed using a dedicated inertial lift pump, with a minimum of three well volumes being removed from the wells at the time of installation. The wells were developed until the appearance of the water was noted to have stabilized. In addition, the ground surface elevations of each borehole were subsequently surveyed with respect to a known geodetic elevation.

Table 1 Monitor	ing Well Const	ruction D	etails			
Well ID	Ground Surface Elevation (m ASL)	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type
BH1-22	62.80	7.62	4.62-7.62	5.79-7.62	0.31-5.79	Flushmount
BH2-22	62.88	6.10	3.10-6.10	2.74-6.10	0.31-2.74	Flushmount
BH3-22	62.33	6.86	3.86-6.86	3.35-6.86	0.31-3.35	Flushmount

4.5 Field Measurement of Water Quality Parameters

Groundwater monitoring and sampling was conducted on-site on May 11, 2022 and March 19, 2024. Following their development and stabilization during the May 2022 field sampling event, select water quality parameters were measured at each monitoring well location using a multi-reader probe device. The stabilized field parameter values are summarized below in Table 2.

Table 2 Measurem	ent of Water Quality	Parameters	
Well ID	Temperature (°C)	Conductivity (μS)	pH (Units)
BH1-22	13.6	2,258	7.29
BH2-22	16.7	>3,999	6.44
BH3-22	-	-	-
MW21-02	13.6	2,565	7.26
MW21-04	-	-	-

Due to high amounts of suspended sediment in the recovered groundwater, no water quality parameters were measured at BH3-22 and MW21-04 during the May 2022 field sampling event.

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled, *"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario"*, dated May 1996.

Standing water was purged from each monitoring well prior to the recovery of the groundwater samples using dedicated sampling equipment. The samples were then stored in coolers to reduce possible analyte volatilization during their transportation. Further details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan, appended to this report.

4.7 Analytical Testing

The following soil and groundwater samples were submitted for laboratory analysis:

Table 3											
Testing Pa	rameters for	Sub	omit	ted	So	il S	am	ples	5		
			1	Para	amet	ers /	Analy	/zed	1	1	
Sample ID	Sample Depth & Stratigraphic Unit	VOCs	PHCs (F1-F4)	Metals	+gH	Cr√	SHA	EC	SAR	Hq	Rationale
BH1-22- SS3/SS4A	1.52 – 2.44 m Fill Material	х	х					х	x		To assess for potential impacts resulting from the presence of a former auto service garage and the use of road salt for de-icing purposes.
BH1-22-SS8	5.33 – 5.94 m Silty Sand	х	x							x	To assess for potential impacts resulting from the presence of a former on-site auto service garage.
BH2-22-SS4A	2.29 – 2.44 m Fill Material			х	х	х					To assess for potential impacts resulting from the presence of fill material of unknown quality.
BH2-22-SS5	3.05 – 3.66 m Silty Sand	x	x	X1							To assess for potential impacts resulting from the presence of a former on-site fuel pump island and a former off-site auto service garage.
BH3-22-SS3	1.52 – 2.13 m Fill Material			x	x	x	x	x	x	x	To assess for potential impacts resulting from the presence of fill material of unknown quality and the use of road salt for de- icing purposes.
BH3-22-SS6	3.81 – 4.42 m Silty Sand	х	x	X1							To assess for potential impacts resulting from the presence of a former on-site underground fuel storage tank nest.
DUP-1 ²	3.81 – 4.42 m Silty Sand	х									For laboratory QA/QC purposes.
 Lead content on Duplicate sample 											

Table 4				
Testing F	Parameters for	r Submitte	ed Groun	dwater Samples
		Parameters Analyzed		
Sample ID	Screened Interval & Stratigraphic Unit	SOOV	PHCs (F1-F4)	Rationale
MW21-02- GW2	4.82 – 7.82 m Silty Sand	х		To verify the initial results obtained during the previous 2021 Phase II ESA.
MW21-04- GW2	3.10 – 6.10 m Silty Sand	х	х	To assess for potential impacts resulting from the presence of a former on-site underground fuel storage tank nest.
BH1-22- GW1	4.62 – 7.62 m Silty Sand	Х	х	To assess for potential impacts resulting from the presence of a former on-site auto service garage.
BH2-22- GW1	3.10 – 6.10 m Silty Sand	х	х	To assess for potential impacts resulting from the presence of a former on-site fuel pump island and a former off-site auto service garage.
BH3-22- GW1	3.86 – 6.86 m Silty Sand	х	х	To assess for potential impacts resulting from the presence of a former on-site underground fuel storage tank nest.
DUP-1 ¹	3.86 – 6.86 m Silty Sand	х		For laboratory QA/QC purposes.
MW21-02- GW3	4.82 – 7.82 m Silty Sand	х		To confirm the groundwater quality at this monitoring well location.
MW21-04- GW3	3.10 – 6.10 m Silty Sand	х		To confirm the groundwater quality at this monitoring well location.
1 – Duplicate sa	mple of BH3-22-GW1			·

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA) and is accredited and certified by the SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings were removed from the site following the field program, while all purge water and equipment cleaning fluids were retained on-site.

4.9 Elevation Surveying

The ground surface elevations at each borehole location were surveyed using a GPS device by Paterson personnel and referenced to a geodetic datum.

4.10 Quality Assurance and Quality Control Measures

A summary of the quality assurance and quality control (QA/QC) measures, undertaken as part of this assessment, is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

In general, the subsurface soil profile encountered at the borehole locations consists of a surficial pavement structure (asphaltic concrete and granular subgrade fill), underlain by fill material (brown silty sand with some clay, gravel, and cobbles) over top of multiple layers of compact to dense native brown sand with varying silt and clay contents, turning grey at deeper depths in line with the long-term water table.

Bedrock was not encountered in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

Site geology details are provided in the Soil Profile and Test Data Sheets in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels beneath the Phase II Property were most recently measured using an electronic water level meter on March 19, 2024. The groundwater levels are summarized below in Table 5.

Table 5 Groundwat	er Level Measu	rements		
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement
BH1-22	62.80 m	5.65 m	57.15 m	
BH2-22	62.88 m	5.67 m	57.21 m	
BH3-22	62.33 m	5.14 m	57.19 m	
MW21-01	62.96 m	5.83 m	57.13 m	March 19, 2024
MW21-02	62.95 m	5.79 m	57.16 m	
MW21-03	62.39 m	5.27 m	57.12 m	
MW21-04	62.41 m	5.26 m	57.15 m	

The groundwater at the Phase II Property was encountered within the overburden at depths ranging from approximately 5.14 m to 5.83 m below the existing ground surface.

No unusual visual observations were identified within the recovered groundwater samples, with the exception of the groundwater purged from MW21-04, which was noted to contain a slight petroleum hydrocarbon odour.

Using the groundwater elevations recorded during the sampling event, groundwater contour mapping was completed as part of this assessment. Due to the incongruity with the low variability in the measured groundwater levels, a flow direction and hydraulic gradient could not be accurately calculated as part of this assessment.

It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations.

5.3 Fine/Coarse Soil Texture

Grain size analysis was not completed as part of this investigation. As a result, the coarse-grained soil standards were chosen as a conservative approach.

5.4 Field Screening

Field screening of the soil samples collected during the drilling program resulted in organic vapour readings ranging from 0.3 ppm to 3.8 ppm, with one notable exception. In general, the organic vapour readings obtained from the field screening indicate that there is a negligible potential for the presence of volatile substances, however, the vapour measurement of one sample (BH2-22-SS5) returned an outlier reading of 92.4 ppm. Upon recovery, this sample was noted to contain a distinct fuel-like odour, though no unusual discolouration or visible fuel staining was observed.

This sample was obtained from the borehole placed within the footprint of a former fuel pump island, at a depth of approximately 3.05 to 3.66 m below ground surface. As a result of the high vapour reading, this sample was selected for further laboratory testing.

Field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

March 2021

As part of the previous 2021 Phase II ESA completed by Golder, four soil samples were submitted for laboratory analysis of VOCs, PHCs (F_1 - F_4), and metal parameters. The results of the 2021 analytical testing are presented below in Tables 6 to 8, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 6 Analytical Test Results – Soil (Golder Associates Phase II ESA) Volatile Organic Compounds (VOCs)

		,	,	oles (ug/g)		
		March 29,		March 30,		MECP Table 3
	MDL	2021		2021		Coarse-Grained
Parameter	(μg/g)	MW21-01-	MW21-02-	MW21-03-	MW21-04-	Residential
	(P9/9)	09	10	01	07	Soil Standards
			•	pth (m bgs)		(µg/g)
		6.10 - 6.60	5.49 – 6.10	0.15 – 0.61	3.66 - 4.27	
Acetone	0.50	nd	nd	nd	nd	16
Benzene	0.02	nd	nd	nd	nd	0.21
Bromodichloromethane	0.05	nd	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	nd	0.27
Bromomethane	0.05	nd	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	nd	9.4
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	16
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	3.4
1,3-Dichlorobenzene	0.05	nd	nd	nd	nd	4.8
1,4-Dichlorobenzene	0.05	nd	nd	nd	nd	0.083
1,1-Dichloroethane	0.05	nd	nd	nd	nd	3.5
1,2-Dichloroethane	0.05	nd	nd	nd	nd	0.05
1,1-Dichloroethylene	0.05	nd	nd	nd	nd	0.05
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	3.4
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	0.084
1,2-Dichloropropane	0.05	nd	nd	nd	nd	0.05
1,3-Dichloropropene	0.05	nd	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	nd	2
Ethylene Dibromide	0.05	nd	nd	nd	nd	0.05
Hexane	0.05	nd	nd	nd	nd	2.8
Methyl Ethyl Ketone	0.50	nd	nd	nd	nd	16
Methyl Isobutyl Ketone	0.50	nd	nd	nd	nd	1.7
Methyl tert-butyl ether	0.05	nd	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	nd	0.7
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	nd	0.28
Toluene	0.05	nd	nd	nd	nd	2.3
1,1,1-Trichloroethane	0.05	nd	nd	nd	nd	0.38
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	nd	0.061
Trichlorofluoromethane	0.05	nd	nd	nd	nd	4
Vinyl Chloride	0.02	nd	nd	nd	nd	0.02
Xylenes	0.05	nd	nd	nd	nd	3.1
Notes: MDL – Method Detect nd – not detected ab Bold and Underline	ove the MDL		ECP standards			

No VOC parameter were detected in the soil samples analyzed as part of the 2021 Phase II ESA. The results are considered to be in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 7 Analytical PHCs (F1-		Results – So	oil (Golder /	Associates	Phase II ES	A)
		March 29,	Soil Samp	oles (µg/g) March 30,		MECP Table 3
Parameter	MDL	2021		2021		Coarse-Grained Residential
Farameter	(µg/g)	MW21-01-09	MW21-02-10	MW21-03-01	MW21-04-07	Soil Standards
			Sample De	pth (m bgs)		(µg/g)
		6.10 – 6.60	5.49 – 6.10	0.15 – 0.61	3.66 - 4.27	(#9/9/
PHCs F1	7	nd	nd	nd	<u>78.4</u>	55
PHCs F ₂	4	nd	nd	nd	nd	98
PHCs F ₃	8	nd	nd	nd	nd	300
PHCs F ₄	6	nd	nd	nd	nd	2,800
🖵 nd – n	ot detected	etection Limit above the MDL ined – value exceeds	s selected MECP sta	Indards		

The concentration of PHCs F₁ detected in soil sample MW21-04-07 was in excess of the MECP Table 3 Coarse-Grained Residential Soil Standards. All other PHC parameters were non-detect in the remaining soil samples analyzed as part of the 2021 Phase II ESA.

Table 8Analytical Test Results – Soil (Golder Associates Phase II ESA)Metals

			Soil Samp	oles (ug/g)		
		March 29,		March 30,		MECP Table 3
	MDL	2021		2021		Coarse-Grained
Parameter		MW21-01-	MW21-02-	MW21-03-	MW21-04-	Residential
	(µg/g)	09	10	01	07	Soil Standards
			Sample De	pth (m bgs)		(µg/g)
		6.10 – 6.60	5.49 – 6.10	0.15 – 0.61	3.66 – 4.27	
Antimony	1.0	nd	nd	nd	nd	7.5
Arsenic	1.0	1	1	3	1	18
Barium	1.0	18.4	15.8	151	44	390
Beryllium	0.5	nd	nd	nd	nd	4
Boron	5.0	nd	nd	5	nd	120
Cadmium	0.5	nd	nd	nd	nd	1.2
Chromium	5.0	6	5	15	8	160
Chromium VI	0.2	nt	nt	nt	nt	8
Cobalt	1.0	2.8	2.8	6.9	3.8	22
Copper	5.0	5.9	6.2	15.3	8.2	140
Lead	1.0	2	2	17	2	120
Mercury	0.1	nt	nt	nt	nt	0.27
Molybdenum	1.0	nd	nd	1.5	nd	6.9
Nickel	5.0	4	4	17	7	100
Selenium	1.0	nd	nd	nd	nd	2.4
Silver	0.3	nd	nd	nd	nd	20
Thallium	1.0	nd	nd	nd	nd	1
Uranium	1.0	0.58	nd	0.75	nd	23
Vanadium	10.0	12.8	11.1	21.2	18.8	86
Zinc	20.0	11	9	42	15	340
Notes: MDL – Method De nd – not detected nt – not tested for Bold and Underl	etection Limit above the MDL this parameter		1 -	42	13	J 340

All detected metal parameter concentrations in the soil samples analyzed as part of the 2021 Phase II ESA were in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

May 2022

As part of this current Phase II ESA, six soil samples were submitted for laboratory analysis of VOCs, PHCs (F₁-F₄), metals, PAHs, lead, EC, SAR, and pH parameters. The results of the analytical testing are presented below in Tables 9 to 13, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 9 Analytical Test Results – Soil Volatile Organic Compounds (VOCs)

Parameter Acetone Benzene	MDL (µg/g)	BH1-22- SS3/SS4A	May 3 BH1-22-	,		MECP Table 3 Coarse-Grained					
Acetone	(µg/g)			BH1-22- BH1-22- BH2-22- BH3-22- Coarse-Graine							
Acetone		SS3/SS4A	Parameter								
			558	SS5	SS6	Residential Soil Standards					
			Sample De		-	(µg/g)					
		1.52 – 2.44	5.33 – 5.94	3.05 – 3.66	3.81 – 4.42	(1 0 0 <i>/</i>					
Benzene	0.50	nd	nd	nd	nd	16					
	0.02	nd	nd	nd	nd	0.21					
Bromodichloromethane	0.05	nd	nd	nd	nd	13					
Bromoform	0.05	nd	nd	nd	nd	0.27					
Bromomethane	0.05	nd	nd	nd	nd	0.05					
Carbon Tetrachloride	0.05	nd	nd	nd	nd	0.05					
Chlorobenzene	0.05	nd	nd	nd	nd	2.4					
Chloroform	0.05	nd	nd	nd	nd	0.05					
Dibromochloromethane	0.05	nd	nd	nd	nd	9.4					
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	16					
,2-Dichlorobenzene	0.05	nd	nd	nd	nd	3.4					
I,3-Dichlorobenzene	0.05	nd	nd	nd	nd	4.8					
I,4-Dichlorobenzene	0.05	nd	nd	nd	nd	0.083					
I,1-Dichloroethane	0.05	nd	nd	nd	nd	3.5					
I,2-Dichloroethane	0.05	nd	nd	nd	nd	0.05					
I,1-Dichloroethylene	0.05	nd	nd	nd	nd	0.05					
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	3.4					
rans-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	0.084					
I,2-Dichloropropane	0.05	nd	nd	nd	nd	0.05					
I,3-Dichloropropene	0.05	nd	nd	nd	nd	0.05					
Ethylbenzene	0.05	nd	nd	nd	nd	2					
Ethylene Dibromide	0.05	nd	nd	nd	nd	0.05					
Hexane	0.05	nd	nd	nd	nd	2.8					
Methyl Ethyl Ketone	0.50	nd	nd	nd	nd	16					
Vethyl Isobutyl Ketone	0.50	nd	nd	nd	nd	1.7					
Methyl tert-butyl ether	0.05	nd	nd	nd	nd	0.75					
Methylene Chloride	0.05	nd	nd	nd	nd	0.1					
Styrene	0.05	nd	nd	nd	nd	0.7					
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.058					
I,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.05					
Fetrachloroethylene	0.05	nd	nd	nd	nd	0.28					
Foluene	0.05	nd	nd	nd	nd	2.3					
I,1,1-Trichloroethane	0.05	nd	nd	nd	nd	0.38					
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	0.05					
Frichloroethylene	0.05	nd	nd	nd	nd	0.061					
Frichlorofluoromethane	0.05	nd	nd	nd	nd	4					
/inyl Chloride	0.02	nd	nd	nd	nd	0.02					
Kylenes	0.05	nd	nd	nd	nd	3.1					
Votes:		1	1		1	<u> </u>					
MDL – Method Detec	tion Limit										
 nd – not detected about the second sec											

No VOC parameters were detected in any of the soil samples analyzed. The results are considered to be in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 10 **Analytical Test Results – Soil** PHCs (F1-F4)

			Soil Samp	oles (ug/g)		
			May 3	, 2022		MECP Table 3
Parameter	MDL (µg/g)	BH1-22- SS3/SS4A	BH1-22- SS8	BH2-22- SS5	BH3-22- SS6	Coarse-Grained Residential Soil Standards
			Sample De	pth (m bgs)	•	(µg/g)
		1.52 – 2.44	5.33 - 5.94	3.05 - 3.66	3.81 – 4.42	(1-9, 9)
PHCs F1	7	nd	nd	nd	nd	55
111001	-					
PHCs F ₂	4	nd	nd	35	nd	98
	4 8	nd 38	nd nd	35 10	nd nd	98 300
PHCs F ₂	-	-	-			

Bold and Underlined – value exceeds selected MECP standards

All detected PHC parameter concentrations in the soil samples analyzed are in compliance are considered to be in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

		Soil Samp	MECP Table 3		
- .	MDL	May 3		Coarse-Grained	
Parameter	(μg/g)	BH2-22-SS4A	BH3-22-SS3	Residential	
		Sample Der 2.29 – 2.44	Soil Standards (µg/g)		
A .::			1.52 – 2.13		
Antimony	1.0	2.8	1.0	7.5	
Arsenic	1.0	3.0	4.8	18	
Barium	1.0	38.1	161	390	
Beryllium	0.5	nd	0.7	4	
Boron	5.0	7.2	9.0	120	
Cadmium	0.5	nd	nd	1.2	
Chromium VI	0.2	nd	nd	8	
Chromium	5.0	15.9	22.5	160	
Cobalt	1.0	5.6	8.3	22	
Copper	5.0	13.1	23.0	140	
Lead	1.0	48.0	26.2	120	
Mercury	0.1	nd	nd	0.27	
Molybdenum	1.0	nd	nd	6.9	
Nickel	5.0	14.7	18.7	100	
Selenium	1.0	nd	nd	2.4	
Silver	0.3	nd	nd	20	
Thallium	1.0	nd	nd	1	
Uranium	1.0	nd	nd	23	
Vanadium	10.0	26.6	36.0	86	
Zinc	20.0	37.1	59.9	340	

nd - not detected above the MDL

Bold and Underlined - value exceeds selected MECP standards

All detected metal parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Parameter	MDL (µg/g)	Soil Samples (ug/g) May 3, 2022 BH3-22-SS3	MECP Table 3 Coarse-Grained Residential
	(µg/g)	Sample Depth (m bgs) 1.52 – 2.13	Soil Standards (µg/g)
Acenaphthene	0.02	nd	7.9
Acenaphthylene	0.02	0.04	0.15
Anthracene	0.02	0.02	0.67
Benzo[a]anthracene	0.02	0.06	0.5
Benzo[a]pyrene	0.02	0.08	0.3
Benzo[b]fluoranthene	0.02	0.10	0.78
Benzo[g,h,i]perylene	0.02	0.06	6.6
Benzo[k]fluoranthene	0.02	0.05	0.78
Chrysene	0.02	0.08	7
Dibenzo[a,h]anthracene	0.02	nd	0.1
Fluoranthene	0.02	0.15	0.69
Fluorene	0.02	nd	62
Indeno [1,2,3-cd] pyrene	0.02	0.05	0.38
1-Methylnaphthalene	0.02	nd	0.99
2-Methylnaphthalene	0.02	nd	0.99
Methylnaphthalene (1&2)	0.04	nd	0.99
Naphthalene	0.01	nd	0.6
Phenanthrene	0.02	0.08	6.2
Pyrene	0.02	0.14	78

All detected PAH parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 13 Analytica Inorganic	l Test Res s	ults – So	bil				
-				Samples (u	00/		
				May 3, 2022			MECP Table 3
Parameter	MDL	BH1-22-	BH1-22-	BH2-22-	BH3-22-	BH3-22-	Coarse-Grained
		SS3/SS4A	SS8	SS5	SS3	SS6	Residential
		Sample Depth (m bgs)					Soil Standards
		1.52 – 2.44	5.33 – 5.94	3.05 – 3.66	1.52 – 2.13	3.81 – 4.42	
Lead	1.0 µg/g	nt	nt	5	26.2	2	120 µg/g
EC	5.0 µS/cm	<u>1,670</u>	nt	nt	<u>2,760</u>	nt	700 µS/cm
SAR	0.01	<u>13.5</u>	nt	nt	<u>14.1</u>	nt	5.00
pН	0.05 pH units	nt	7.49	nt	7.30	nt	5.00 – 11.00 pH units
□ nd – n □ nt – ne	- Method Detectior tot detected above tot tested for this pa and Underlined –	the MDL arameter	selected MEC	P standards			

The EC and SAR levels detected in Samples BH1-22-SS3/SS4A and BH3-22-SS6 are in excess of the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase I Property.

Parameter	Maximum Concentration (μg/g)	Sample ID	Depth Interval (m BGS)	
Antimony	2.8	BH2-22-SS4A	2.29 - 2.44	
Arsenic	4.8	BH3-22-SS3	1.52 – 2.13	
Barium	161	BH3-22-SS3	1.52 – 2.13	
Beryllium	0.7	BH3-22-SS3	1.52 – 2.13	
Boron	9.0	BH3-22-SS3	1.52 – 2.13	
Chromium	15	MW21-03-01	0.15 – 0.61	
Cobalt	8.3	BH3-22-SS3	1.52 – 2.13	
Copper	23.0	BH3-22-SS3	1.52 – 2.13	
Lead	48.0	BH2-22-SS4A	2.29 – 2.44	
Molybdenum	1.5	MW21-03-01	0.15 – 0.61	
Nickel	18.7	BH3-22-SS3	1.52 – 2.13	
Uranium	0.75	MW21-03-01	0.15 – 0.61	
Vanadium	36.0	BH3-22-SS3	1.52 – 2.13	
Zinc	59.9	BH3-22-SS3	1.52 – 2.13	

Parameter	Maximum Concentration (µg/g)	Sample ID	Depth Interval (m BGS)	
PHCs F1	<u>78.4</u>	MW21-04-07	3.66 – 4.27	
PHCs F ₂	35	BH2-22-SS5	3.05 - 3.66	
PHCs F ₃	38	BH1-22-SS3/SS4A	1.52 – 2.44	
PHCs F ₄	66	BH1-22-SS3/SS4A	1.52 – 2.44	
Acenaphthylene	0.04	BH3-22-SS3	1.52 – 2.13	
Anthracene	0.02	BH3-22-SS3	1.52 – 2.13	
Benzo[a]anthracene	0.06	BH3-22-SS3	1.52 – 2.13	
Benzo[a]pyrene	0.08	BH3-22-SS3	1.52 – 2.13	
Benzo[b]fluoranthene	0.10	BH3-22-SS3	1.52 – 2.13	
Benzo[g,h,i]perylene	0.06	BH3-22-SS3	1.52 – 2.13	
Benzo[k]fluoranthene	0.05	BH3-22-SS3	1.52 – 2.13	
Chrysene	0.08	BH3-22-SS3	1.52 – 2.13	
Fluoranthene	0.15	BH3-22-SS3	1.52 – 2.13	
Indeno [1,2,3-cd] pyrene	0.05	BH3-22-SS3	1.52 – 2.13	
Phenanthrene	0.08	BH3-22-SS3	1.52 – 2.13	
Pyrene	0.14	BH3-22-SS3	1.52 – 2.13	
EC	<u>2,760</u>	BH3-22-SS6	3.81 – 4.42	
SAR	14.1	BH3-22-SS6	3.81 – 4.42	
рН	7.49	BH1-22-SS8	5.33 – 5.94	

All other parameter concentrations analyzed were below the laboratory detection limits. The laboratory certificates of analysis are provided in Appendix 1.

5.6 Groundwater Quality

March 2021

As part of the previous 2021 Phase II ESA, four groundwater samples were submitted for laboratory analysis of VOCs and PHC (F_1 - F_4) parameters. The results of the 2021 analytical testing are presented below in Tables 15 and 16, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 15Analytical Test Results – Groundwater (Golder Associates Phase II ESA)Volatile Organic Compounds (VOCs)

			Groundwater S)	MECP Table 3		
	MDL		April 8, 2021					
Parameter	(μg/L)	53-MW21-1	53-MW21-2	53-MW21-3 terval (m bgs)	53-MW21-4	Groundwater		
	(#9/ =/		Standards					
		5.00 - 6.50	4.82 – 7.82	3.58 – 6.58	3.10 – 6.10	(µg/L)		
Acetone	5.0	nd	nd	nd	nd	130,000		
Benzene	0.5	0.46	0.25	nd	<u>70.7</u>	44		
Bromodichloromethane	0.5	nd	nd	nd	nd	85,000		
Bromoform	0.5	nd	nd	nd	nd	380		
Bromomethane	0.5	nd	nd	nd	nd	5.6		
Carbon Tetrachloride	0.2	nd	nd	nd	nd	0.79		
Chlorobenzene	0.5	nd	nd	nd	nd	630		
Chloroform	0.5	0.54	<u>3.49</u>	0.91	<u>4.61</u>	2.4		
Dibromochloromethane	0.5	nd	nd	nd	nd	82,000		
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	4,400		
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	4,600		
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	9,600		
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	8		
1,1-Dichloroethane	0.5	nd	nd	nd	nd	320		
1,2-Dichloroethane	0.5	nd	nd	nd	<u>5.31</u>	1.6		
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	1.6		
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6		
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6		
1,2-Dichloropropane	0.5	nd	nd	nd	nd	16		
1,3-Dichloropropene	0.5	nd	nd	nd	nd	5.2		
Ethylbenzene	0.5	nd	nd	nd	108	2,300		
Ethylene Dibromide	0.2	nd	nd	nd	nd	0.25		
Hexane	1.0	nd	nd	nd	nd	51		
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	470,000		
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	140,000		
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	190		
Methylene Chloride	5.0	nd	nd	nd	nd	610		
Styrene	0.5	nd	nd	nd	nd	1,300		
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	3.3		
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	nd	3.2		
Tetrachloroethylene	0.5	nd	nd	nd	nd	1.6		
Toluene	0.5	nd	nd	nd	10.9	18,000		
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	640		
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	4.7		
Trichloroethylene	0.5	nd	nd	nd	nd	1.6		
Trichlorofluoromethane	1.0	nd	nd	nd	nd	2,500		
Vinyl Chloride	0.5	nd	nd	nd	nd	0.5		
Xylenes	0.5	nd	nd	nd	55.1	4,200		

The concentration of chloroform in Sample MW21-02, as well as the concentrations of chloroform, 1-2-Dichloroethane, and benzene in Sample MW21-04 were in excess of the MECP Table 3 Non-Potable Groundwater Standards.

The elevated concentrations of chloroform were suspected to be the result of the use of municipal water during the drilling process, and thus are not considered to present a contaminant issue to the property.

The benzene exceedance was suspected to be the result of the historical presence of the former on-site retail fuel outlet. It should be noted that this benzene exceedance was identified in the monitoring well placed within the location of the former underground fuel storage tank nest in the southern portion of the site.

The presence of 1-2-Dichloroethane, which is not typical of fuel related impacts, was suspected to be related to the historical use of solvents in an auto service garage which was formerly present on the property.

			Groundwater Samples (ug/L)					
			MECP Table 3 Non-Potable					
Parameter (µg/	MDL	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	Groundwater		
	(μg/L)		Standards					
		5.00 - 6.50	4.82 - 7.82	3.58 - 6.58	3.10 – 6.10	(µg/L)		
PHCs F1	25	nd	nd	nd	528	750		
PHCs F ₂	100	nd	nd	nd	nd	150		
PHCs F ₃	100	nd	nd	nd	nd	500		
PHCs F ₄	100	nd	nd	nd	nd	500		

All detected PHC parameter concentrations in the groundwater samples analyzed were in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

May 2022

As part of this current Phase II ESA, five groundwater samples were submitted for laboratory analysis of VOCs and PHC (F_1 - F_4) parameters. The results of the analytical testing are presented below in Tables 17 and 18, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 17Analytical Test Results – GroundwaterVolatile Organic Compounds (VOCs)

				ater Sampl	,		MECP Table 3
				Non-Potable			
Parameter	MDL	BH1-22- GW1	BH2-22- GW1	BH3-22- GW1	MW21-02- GW2	MW21-04- GW2	Groundwater
	(µg/L)	Screening Interval (m bgs)					Standards
		4.62 - 7.62	3.10 - 6.10	3.86 – 6.86	4.82 – 7.82	3.10 - 6.10	(µg/L)
Acetone	5.0	nd	nd	nd	nd	nd	130,000
Benzene	0.5	nd	nd	nd	nd	5.0	44
Bromodichloromethane	0.5	nd	nd	nd	nd	nd	85,000
Bromoform	0.5	nd	nd	nd	nd	nd	380
Bromomethane	0.5	nd	nd	nd	nd	nd	5.6
Carbon Tetrachloride	0.2	nd	nd	nd	nd	nd	0.79
Chlorobenzene	0.5	nd	nd	nd	nd	nd	630
Chloroform	0.5	nd	nd	nd	nd	nd	2.4
Dibromochloromethane	0.5	nd	nd	nd	nd	nd	82,000
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	nd	4,400
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	4,600
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	9,600
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	8
1,1-Dichloroethane	0.5	nd	nd	nd	nd	nd	320
1,2-Dichloroethane	0.5	nd	nd	nd	nd	nd	1.6
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	nd	nd	nd	16
1,3-Dichloropropene	0.5	nd	nd	nd	nd	nd	5.2
Ethylbenzene	0.5	nd	nd	nd	nd	38.2	2,300
Ethylene Dibromide	0.2	nd	nd	nd	nd	nd	0.25
Hexane	1.0	nd	nd	nd	nd	nd	51
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	nd	470,000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	nd	140,000
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	nd	190
Methylene Chloride	5.0	nd	nd	nd	nd	nd	610
Styrene	0.5	nd	nd	nd	nd	nd	1,300
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	nd	3.3
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	nd	nd	3.2
Tetrachloroethylene	0.5	nd	nd	nd	nd	nd	1.6
Toluene	0.5	nd	nd	nd	nd	1.1	18,000
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	nd	640
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	nd	4.7
Trichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
Trichlorofluoromethane	1.0	nd	nd	nd	nd	nd	2,500
Vinyl Chloride	0.5	nd	nd	nd	nd	nd	0.5
Xylenes	0.5	nd	nd	nd	nd	1.8	4,200

All detected VOC parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

			Groundw	ater Sampl	es (ug/L)			
			Ν	May 11, 202	2		MECP Table 3 Non-Potable	
Parameter	r MDL (μg/L)	BH1-22- GW1	BH2-22- GW1	BH3-22- GW1	MW21-02- GW2	MW21-04- GW2	Groundwater Standards	
		Screening Interval (m bgs)				(µg/L)		
		4.62 - 7.62	3.10 – 6.10	3.86 - 6.86	4.82 – 7.82	3.10 – 6.10	(µg/⊏)	
PHCs F1	25	nd	nd	nd	nt	nd	750	
PHCs F2	100	nd	nd	nd	nt	nd	150	
PHCs F₃	100	nd	nd	nd	nt	nd	500	
PHCs F₄	100	nd	nd	nd	nt	nd	500	

No PHC parameter concentrations were detected in the groundwater samples analyzed. The results are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

March 2024

A second round of groundwater testing was carried out on March 19, 2024 to confirm the groundwater quality at MW21-02 and MW21-04. Groundwater samples were recovered from the two wells and submitted for laboratory analysis of VOCs parameters. The results of the analytical testing are presented below in Table 19, as well as on the laboratory certificates of analysis included in Appendix 1.

		Groundwater	Samples (ug/L)	MECP Table 3
	MDL	March [·]	Non-Potable	
Parameter		MW21-02-GW2	MW21-04-GW2	Groundwater
	(µg/L)	Screening In	terval (m bgs)	Standards
		4.82 - 7.82	3.10 - 6.10	(µg/L)
Acetone	5.0	nd	nd	130,000
Benzene	0.5	nd	nd	44
Bromodichloromethane	0.5	nd	nd	85,000
Bromoform	0.5	nd	nd	380
Bromomethane	0.5	nd	nd	5.6
Carbon Tetrachloride	0.2	nd	nd	0.79

Table 19 (Continued) Analytical Test Results – Groundwater Volatile Organic Compounds (VOCs)

			Samples (ug/L)	MECP Table 3
	MDL		19, 2024 MW21-04-GW2	Non-Potable
Parameter	(μg/L)	MW21-02-GW2	Groundwater	
	(P.5' -/		nterval (m bgs)	Standards
		4.82 – 7.82	3.10 – 6.10	(µg/L)
Chlorobenzene	0.5	nd	nd	630
Chloroform	0.5	nd	nd	2.4
Dibromochloromethane	0.5	nd	nd	82,000
Dichlorodifluoromethane	1.0	nd	nd	4,400
1,2-Dichlorobenzene	0.5	nd	nd	4,600
1,3-Dichlorobenzene	0.5	nd	nd	9,600
1,4-Dichlorobenzene	0.5	nd	nd	8
1,1-Dichloroethane	0.5	nd	nd	320
1,2-Dichloroethane	0.5	nd	nd	1.6
1,1-Dichloroethylene	0.5	nd	nd	1.6
cis-1,2-Dichloroethylene	0.5	nd	nd	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	16
1,3-Dichloropropene	0.5	nd	nd	5.2
Ethylbenzene	0.5	nd	nd	2,300
Ethylene Dibromide	0.2	nd	nd	0.25
Hexane	1.0	nd	nd	51
Methyl Ethyl Ketone	5.0	nd	nd	470,000
Methyl Isobutyl Ketone	5.0	nd	nd	140,000
Methyl tert-butyl ether	2.0	nd	nd	190
Methylene Chloride	5.0	nd	nd	610
Styrene	0.5	nd	nd	1,300
1,1,1,2-Tetrachloroethane	0.5	nd	nd	3.3
1,1,2,2-Tetrachloroethane	0.5	nd	nd	3.2
Tetrachloroethylene	0.5	nd	nd	1.6
Toluene	0.5	nd	nd	18,000
1,1,1-Trichloroethane	0.5	nd	nd	640
1,1,2-Trichloroethane	0.5	nd	nd	4.7
Trichloroethylene	0.5	nd	nd	1.6
Trichlorofluoromethane	1.0	nd	nd	2,500
Vinyl Chloride	0.5	nd	nd	0.5
	0.5	nd	nd	4,200
Xylenes Notes: MDL – Method Deterned nd – not detected ab	ction Limit	nd	nd nd	4,200

Bold and Underlined - value exceeds selected MECP standards

No VOC parameter concentrations were detected in the groundwater samples analyzed. The results are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of this Phase II ESA were handled in accordance with the analytical protocols with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O. Reg. 153/04, as amended by the Environmental Protection Act, the certificates of analysis have been received for each sample submitted for laboratory analysis and have been appended to this report.

As per the Sampling and Analysis Plan, a duplicate soil sample was obtained from sample BH3-22-SS6 and submitted for laboratory analysis of VOC parameters. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 20.

Parameter	MDL (µg/g)	BH3-22-SS6	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
Acetone	0.50	nd	nd	0	Meets Target
Benzene	0.02	nd	nd	0	Meets Target
Bromodichloromethane	0.05	nd	nd	0	Meets Target
Bromoform	0.05	nd	nd	0	Meets Target
Bromomethane	0.05	nd	nd	0	Meets Target
Carbon Tetrachloride	0.05	nd	nd	0	Meets Target
Chlorobenzene	0.05	nd	nd	0	Meets Target
Chloroform	0.05	nd	nd	0	Meets Target
Dibromochloromethane	0.05	nd	nd	0	Meets Target
Dichlorodifluoromethane	0.05	nd	nd	0	Meets Target
1,2-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,1-Dichloroethane	0.05	nd	nd	0	Meets Target
1,2-Dichloroethane	0.05	nd	nd	0	Meets Target
1,1-Dichloroethylene	0.05	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.05	nd	nd	0	Meets Target
trans-1,2-Dichloroethylene	0.05	nd	nd	0	Meets Target
1,2-Dichloropropane	0.05	nd	nd	0	Meets Target
1,3-Dichloropropene	0.05	nd	nd	0	Meets Target
Ethylbenzene	0.05	nd	nd	0	Meets Target
Ethylene Dibromide	0.05	nd	nd	0	Meets Target
Hexane	0.05	nd	nd	0	Meets Target
Methyl Ethyl Ketone	0.50	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	0.50	nd	nd	0	Meets Target
Methyl tert-butyl ether	0.05	nd	nd	0	Meets Target
Methylene Chloride	0.05	nd	nd	0	Meets Target
Styrene	0.05	nd	nd	0	Meets Target

Bold and Underlined – value exceeds selected MECP standards

Parameter	MDL (µg/g)	BH3-22-SS6	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
1,1,1,2-Tetrachloroethane	0.05	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.05	nd	nd	0	Meets Target
Tetrachloroethylene	0.05	nd	nd	0	Meets Target
Toluene	0.05	nd	nd	0	Meets Target
1,1,1-Trichloroethane	0.05	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.05	nd	nd	0	Meets Target
Trichloroethylene	0.05	nd	nd	0	Meets Target
Trichlorofluoromethane	0.05	nd	nd	0	Meets Target
Vinyl Chloride	0.02	nd	nd	0	Meets Target
Xylenes	0.05	nd	nd	0	Meets Target

No VOC parameters were detected above the laboratory method detection limits in both the original and the duplicate sample, and as such, the results are considered to meet the data quality objectives outlined in the Sampling and Analysis Plan, appended to this report.

Similarly, a duplicate groundwater sample was obtained from sample BH3-22-GW1 and submitted for laboratory analysis of VOC parameters. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 21.

Parameter	MDL (µg/L)	BH3-22-GW1	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
Acetone	5.0	nd	nd	0	Meets Target
Benzene	0.5	nd	nd	0	Meets Target
Bromodichloromethane	0.5	nd	nd	0	Meets Target
Bromoform	0.5	nd	nd	0	Meets Target
Bromomethane	0.5	nd	nd	0	Meets Target
Carbon Tetrachloride	0.2	nd	nd	0	Meets Target
Chlorobenzene	0.5	nd	nd	0	Meets Target
Chloroform	0.5	nd	nd	0	Meets Target
Dibromochloromethane	0.5	nd	nd	0	Meets Target
Dichlorodifluoromethane	1.0	nd	nd	0	Meets Target
1,2-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.5	nd	nd	0	Meets Target

Parameter	MDL (µg/L)	BH3-22-GW1	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
1,1-Dichloroethane	0.5	nd	nd	0	Meets Target
1,2-Dichloroethane	0.5	nd	nd	0	Meets Target
1,1-Dichloroethylene	0.5	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
trans-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
1,2-Dichloropropane	0.5	nd	nd	0	Meets Target
1,3-Dichloropropene	0.5	nd	nd	0	Meets Target
Ethylbenzene	0.5	nd	0.6	N/A	Does Not Meet Targe
Ethylene Dibromide	0.2	nd	nd	0	Meets Target
Hexane	1.0	nd	nd	0	Meets Target
Methyl Ethyl Ketone	5.0	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	5.0	nd	nd	0	Meets Target
Methyl tert-butyl ether	2.0	nd	nd	0	Meets Target
Methylene Chloride	5.0	nd	nd	0	Meets Target
Styrene	0.5	nd	nd	0	Meets Target
1,1,1,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
Tetrachloroethylene	0.5	nd	nd	0	Meets Target
Toluene	0.5	nd	0.5	N/A	Does Not Meet Targe
1,1,1-Trichloroethane	0.5	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.5	nd	nd	0	Meets Target
Trichloroethylene	0.5	nd	nd	0	Meets Target
Trichlorofluoromethane	1.0	nd	nd	0	Meets Target
Vinyl Chloride	0.5	nd	nd	0	Meets Target
Xylenes	0.5	nd	nd	0	Meets Target

The relative percent difference (RPD) calculated for the majority of the parameters fell within of the acceptable range of 20%, with two exceptions. Due to the low concentrations measured, which are marginally in excess of the laboratory method detection limits and comply with the site specific standards, the results are considered sufficient to meet the data quality objectives outlined in the Sampling and Analysis Plan, appended to this report.

Based on the results of the QA/QC analysis, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O. Reg. 153/04 amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As described in Section 7.1 of the Phase I ESA report, as well as Section 2.2 of this report, the following PCAs, as defined by Table 2 of O. Reg. 153/04, are considered to result in APECs on the Phase II Property:

Table 22 Areas of Potential Environmental Concern						
Area of Potential Environmental Concern	Location of APEC on Phase I Property	Potentially Contaminating Activity (Table 2 – O. Reg. 153/04)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)	
APEC #1 Former Auto Service Garage	Northwestern Portion of Phase I Property	"Item 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems"	On-Site	VOCs PHCs (F1-F4)	Soil and/or Groundwater	
APEC #2 Former Underground Fuel Storage Tank Nest	Southern Portion of Phase I Property	<i>"Item 28: Gasoline and Associated Products Storage in Fixed Tanks"</i>	On-Site	VOCs PHCs (F ₁ -F ₄)	Soil and/or Groundwater	
APEC #3 Former Fuel Pump Island	Eastern Portion of Phase I Property	"Item 28: Gasoline and Associated Products Storage in Fixed Tanks"	On-Site	VOCs PHCs (F ₁ -F ₄)	Soil and/or Groundwater	
APEC #4 Fill Material of Unknown Quality	Eastern and Southern Portions of Phase I Property	"Item 30: Importation of Fill Material of Unknown Quality"	On-Site	PAHs Metals	Soil	
APEC #5 Application of Road Salt During Snow/Ice Conditions	Northern, Eastern, and Southern Portions of Phase I Property	"No Item Number: Application of Road Salt During Snow and Ice Conditions"	On-Site	EC SAR	Soil	
APEC #6 Former Auto Service Garage	Eastern Portion of Phase I Property	"Item 28: Gasoline and Associated Products Storage in Fixed Tanks" "Item 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems"	Off-Site (20 m East)	VOCs PHCs (F1-F4)	Groundwater	

Contaminants of Potential Concern (CPCs)

The contaminants of potential concern (CPCs) associated with the aforementioned APECs are considered to be:

- □ Volatile Organic Compounds (VOCs);
- **D** Petroleum Hydrocarbons, fractions 1 4 (PHCs F_1 - F_4);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Metals (including Mercury and Hexavalent Chromium);
- Electrical Conductivity (EC);
- □ Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

Subsurface Structures and Utilities

Underground service locates were completed prior to the subsurface investigation. Underground utilities on the Phase II Property included electrical cables, natural gas pipelines, as well as municipal water and wastewater services.

Physical Setting

Site Stratigraphy

The stratigraphy of the Phase II Property generally consists of:

- Pavement structure (asphaltic concrete over crushed stone and gravel); encountered at ground level and extending to a maximum depth of approximately 0.20 m below ground surface.
- Fill material (brown silty sand with some clay, and gravel); extending to depths ranging from approximately 2.44 m to 2.97 m below ground surface.
- □ Compact reddish brown silty sand; extending to depths ranging from approximately 2.97 m to 4.34 m below ground surface.
- Grey silty clay with some sand and gravel; extending to depths ranging from approximately 3.66 m to 5.18 m below ground surface (BH1-22 and BH3-22 only).
- Dense brown silty sand to sandy silt with some clay and gravel; extending to depths ranging from approximately 4.27 m to 4.50 m below ground surface (BH1-22 and BH2-22 only).

Dense light brown silty sand; extending to depths ranging from approximately 6.10 m to 7.62 m below ground surface (bottom of boreholes)

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets in Appendix 1.

Hydrogeological Characteristics

The groundwater at the Phase II Property was encountered within an overburden layer of grey silty sand at depths ranging from approximately 5.14 m to 5.83 m below the existing ground surface.

Approximate Depth to Bedrock

Bedrock was not confirmed in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

Approximate Depth to Water Table

The depth to the water table is approximately 5.14 m to 5.83 m below the existing ground surface.

Sections 41 and 43.1 of Ontario Regulation 153/04

Section 41 of the Regulation does not apply to the Phase II Property, as there are no bodies of water or areas of natural significance located on or within 30 m of the Phase II Property. The Phase II Property is therefore not considered to be environmentally sensitive.

Section 43.1 of the Regulation does not apply to the Phase II Property, since the bedrock is situated at depths greater than 2 m below ground surface, and thus is not considered to be a shallow soil property.

Existing Buildings and Structures

The Phase II Property is currently occupied with a one-storey commercial retail building.

Environmental Condition

Areas Where Contaminants are Present

Based on the analytical test results of the 2021 Phase II ESA and this current assessment, petroleum hydrocarbon impacted soil was identified in MW21-04, which is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property.

Some elevated levels of EC and SAR were identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22. It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to the site surface for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase II Property.

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

Types of Contaminants

The soil in MW21-04 contains a level of PHCs (F₁) in excess of the selected MECP Table 3 coarse-grained residential soil standards.

Elevated levels of EC and SAR were also identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22, however, these concentrations are considered to meet the site standards according to Section 49.1 of O. Reg. 153/04.

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

Contaminated Media

Based on the findings of the 2021 Phase II ESA, the soil within the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property is contaminated with PHCs (F₁).

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

What Is Known About Areas Where Contaminants Are Present

PHC impacted soil was identified in MW21-04, which is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property. Based on the sample depth (3.66 to 4.27 m below ground surface), the source of this contaminant is suspected to have been the result of possible leaks or spillages from the former underground fuel storage tanks at this location.

The exceedances of EC and SAR, though not posing a contaminant issue to the Phase II Property, is considered to be a result of the use of a substance for safety purposes during conditions of snow or ice or both, and thus is deemed to meet the site standards.

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

Distribution and Migration of Contaminants

As previously noted, PHC impacted soil was identified in the vicinity of MW21-04, located within the southern portion of the Phase II Property. Based on the clean groundwater test results, this contamination is anticipated to be limited to the soil within this location.

Discharge of Contaminants

The PHC impacted soil identified in the vicinity of MW21-04 is suspected to have been the result of possible leaks or spillages from the former underground fuel storage tanks at this location.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants via the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

The downward migration of PHC contaminants in the vicinity of MW21-04 is not suspected to have occurred, due to the clean groundwater test results.

Potential for Vapour Intrusion

During redevelopment of the Phase II Property, all soils exceeding the selected MECP Table 3 coarse-grained residential soil standards will be removed and disposed of off-site. As such, there is no anticipated potential for future vapour intrusion at the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 1166 Bank Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) throughout the Phase II Property, all three of which were equipped with monitoring wells to allow for the collection of groundwater samples. The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand.

It should be noted that additional subsurface information, including historical soil and groundwater testing data, was obtained from a previous Phase II ESA conducted for the Phase II Property in March 2021 by Golder Associates Ltd. and utilized as part of this assessment.

In general, the subsurface soil profile encountered at the borehole locations consists of a surficial pavement structure (asphaltic concrete and granular subgrade fill), underlain by fill material (brown silty sand with some clay, gravel, and cobbles) over top of multiple layers of compact to dense native brown sand with varying silt and clay contents, turning grey at deeper depths in line with the long-term water table. Bedrock was not encountered in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface. The groundwater beneath the Phase II Property was encountered within an overburden layer of grey silty clay at depths ranging from approximately 5.14 m to 5.83 m below ground surface.

Between Golder's 2021 and Paterson's 2022 subsurface investigations, a total of ten soil samples were submitted for laboratory analysis of VOCs, PHCs (F_1 - F_4), metals, PAHs, lead, EC, SAR, and pH parameters. Based on the analytical test results, the concentration of PHCs (F_1) in Sample MW21-04-07 was in excess of the MECP Table 3 Coarse-Grained Residential Soil Standards. It should be noted that this borehole is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property.

Some elevated levels of EC and SAR were identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22. It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to the site surface for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase II Property.

Groundwater samples were recovered from monitoring wells MW21-01 to MW21-04 on April 8, 2021 as part of Golder's 2021 subsurface investigation and submitted for laboratory analysis of VOCs and PHCs (F₁-F₄). Based on the analytical test results, the concentration of chloroform in Sample MW21-02, as well as the concentrations of chloroform, 1-2-Dichloroethane, and benzene in Sample MW21-04 were in excess of the MECP Table 3 Non-Potable Groundwater Standards.

The elevated concentrations of chloroform were suspected to be the result of the use of municipal water during the drilling process, and thus was not considered to present a contaminant issue to the property. The benzene exceedance was suspected to be the result of the historical presence of the former on-site retail fuel outlet. It should be noted that this benzene exceedance was identified in the monitoring well placed within the location of the former underground fuel storage tank nest in the southern portion of the site. The presence of 1-2-Dichloroethane, which is not typical of fuel related impacts, was suspected to be related to the historical use of solvents in an auto service garage which was formerly present on the property.

As part of this current assessment, groundwater samples were recovered from BH1-22, BH2-22, BH3-22, MW21-02, and MW21-04 on May 11, 2022 and March 19, 2024 and submitted for laboratory analysis of VOCs and PHC (F₁-F₄) parameters. Based on the analytical test results, all detected parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards. It should be noted that no chloroform was detected in the samples analyzed as part of the 2022 and 2024 groundwater sampling program, confirming our theory that the initial concentrations identified in the 2021 sampling program were likely the result of the use of municipal water. The benzene concentration detected in MW21-04 during the 2022 and 2024 groundwater sampling program. It is possible that the initially identified in the 2021 sampling program. It is possible that the initially identified levels of benzene could be the result of suspended sediment collected in the water samples due to improperly established wells.

Recommendations

Soil

Based on the findings of this assessment, PHC impacted soil was identified in the southern portion of the Phase II Property, in the vicinity of the former on-site underground fuel storage tank nest.

It is our understanding that the Phase II Property is to be redeveloped in the future, thus it is recommended that this contaminated soil be remediated at the time of site redevelopment. This contaminated soil will require disposal at a licensed waste disposal facility.

Prior to off-site disposal of impacted soil at a licensed waste disposal facility, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is recommended that Paterson personnel be present on-site during remediation activities to direct the excavation and segregation of impacted soil, as well as to conduct confirmatory sampling as required.

Based on the soil test results, the majority of the on-site soils comply with the MECP Table 2.1 Excess Soil Quality Standards (Ontario Regulation 406/19), for off-site disposal. Additional excess soil testing may be required prior to future site excavation activities.

Monitoring Wells

If the groundwater monitoring wells installed on-site are not going to be used in the future, or will be destroyed during future construction activities, then they must be decommissioned according to Ontario Regulation 903 (Ontario Water Resources Act), however, we recommend that the wells be maintained for future sampling purposes, at least until the excavation for the foundation has commenced. The monitoring wells will be registered with the MECP under this regulation. Further information can be provided upon request in this regard.

7.0 STATEMENT OF LIMITATIONS

This Phase II – Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04, as amended, and CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the Phase II Property and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Ambassador Realty Inc. Permission and notification from Ambassador Realty Inc. and Paterson Group will be required prior to the release of this report to any other party.

Paterson Group Inc.

N. Sullin

Nick Sullivan, B.Sc.

Mark D'Arcy, P.Eng., QPESA

Report Distribution:

- Ambassador Realty Inc.
- Paterson Group Inc.

FIGURES

FIGURE 1 – KEY PLAN

DRAWING PE5590-1 – SITE PLAN

DRAWING PE5590-2 – SURROUNDING LAND USE PLAN

DRAWING PE5590-3 – TEST HOLE LOCATION PLAN

DRAWING PE5590-4 – ANALYTICAL TESTING PLAN – SOIL (VOCs, METALS, PAHs, LEAD, EC, SAR, pH)

DRAWING PE5590-4A – CROSS SECTION A-A' – SOIL (VOCs, METALS, PAHs, LEAD, EC, SAR, pH)

DRAWING PE5590-4B – CROSS SECTION B-B' – SOIL (VOCs, METALS, PAHs, LEAD, EC, SAR, pH)

DRAWING PE5590-5 – ANALYTICAL TESTING PLAN – SOIL (PHCs)

DRAWING PE5590-5A – CROSS SECTION A-A' – SOIL (PHCs)

DRAWING PE5590-5B - CROSS SECTION B-B' - SOIL (PHCs)

DRAWING PE5590-6 – ANALYTICAL TESTING PLAN – GROUNDWATER (PHCs)

DRAWING PE5590-6A - CROSS SECTION A-A' - GROUNDWATER (PHCs)

DRAWING PE5590-6B – CROSS SECTION B-B' – GROUNDWATER (PHCs)

DRAWING PE5590-7 – ANALYTICAL TESTING PLAN – GROUNDWATER (VOCs)

DRAWING PE5590-7A – CROSS SECTION A-A' – GROUNDWATER (VOCs)

DRAWING PE5590-7B – CROSS SECTION B-B' – GROUNDWATER (VOCs)

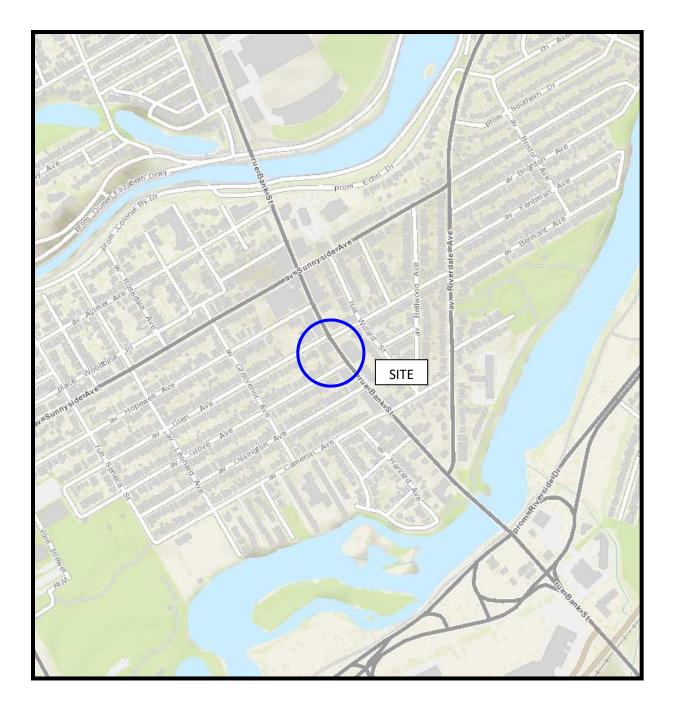
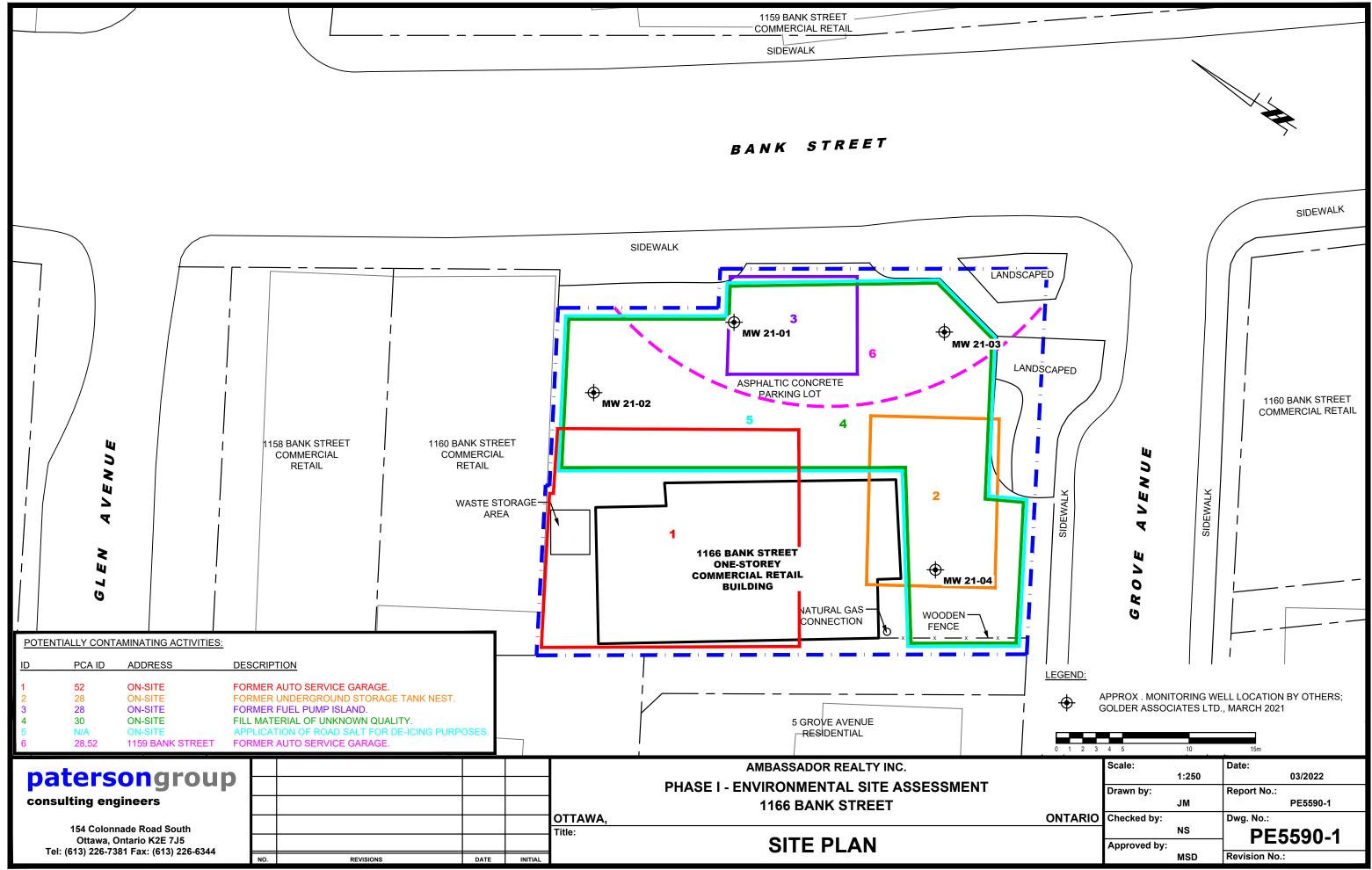



FIGURE 1 KEY PLAN

patersongroup -

utocad drawings\environmental\pe55xx\pe5590\pe5590-1 phase i.dv

PHASE I - ENVIRONMENTAL SITE ASSESSMENT STUDY AREA

rav.sSunnyside:Ave:

POTEN	TIALLY CONT	AMINATING ACTIVITIES:	
ID	PCA ID	ADDRESS	DESCRIPTION
1	52	ON-SITE	FORMER AUTO SERVICE GARAGE.
2	28	ON-SITE	FORMER UNDERGROUND STORAGE TANK NEST.
3	28	ON-SITE	FORMER FUEL PUMP ISLAND.
4	30	ON-SITE	FILL MATERIAL OF UNKNOWN QUALITY.
5	N/A	ON-SITE	APPLICATION OF ROAD SALT FOR DE-ICING PURPOSES.
6	28,52	1159 BANK STREET	FORMER AUTO SERVICE GARAGE.
7	37	1149 BANK STREET	EXISTING DRY CLEANERS.
8	37	1136 BANK STREET	FORMER DRY CLEANERS.
9	37	1103 BANK STREET	FORMER DRY CLEANERS.
10	52	1201 BANK STREET	EXISTING AUTO SERVICE GARAGE.
11	37	1235 BANK STREET	EXISTING DRY CLEANERS.
12	52	1242 BANK STREET	FORMER AUTO SERVICE GARAGE.
13	N/A	11 CAMERON AVE.	FORMER LUMBER YARD.
14	38	1080 BANK STREET	FORMER RETAIL FUEL OUTLET.
15	52	1250 BANK STREET	FORMER AUTO SERVICE GARAGE.
16	31	1069 BANK STREET	FORMER PRINTING SHOP.

AMBASSADOR REALTY INC. PHASE I - ENVIRONMENTAL SITE ASSESSMENT 1166 BANK STREET

NSTITUTIONAL

PARKLAND

OTTAWA,

Title:

INITIAL

8

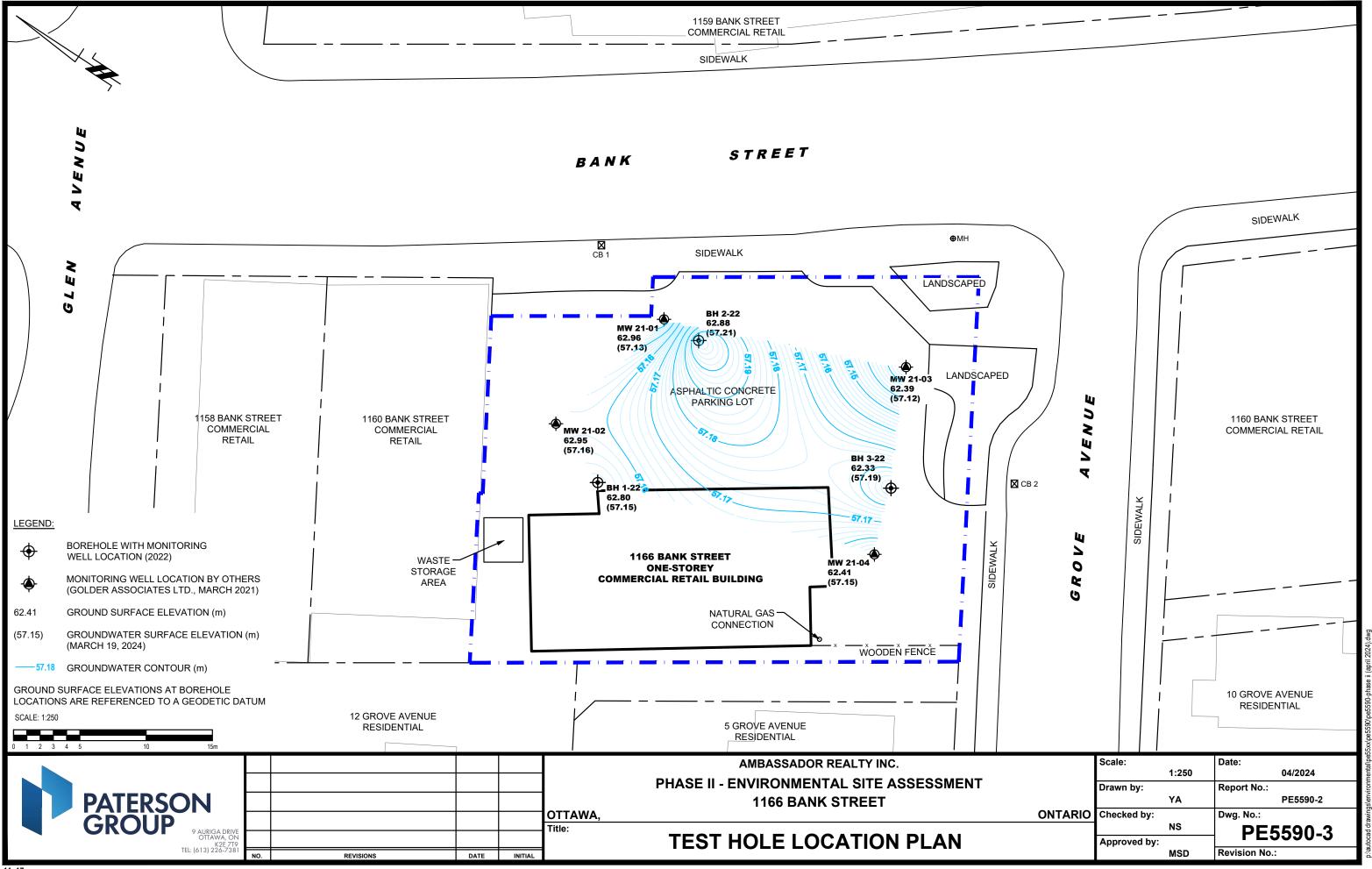
COMME

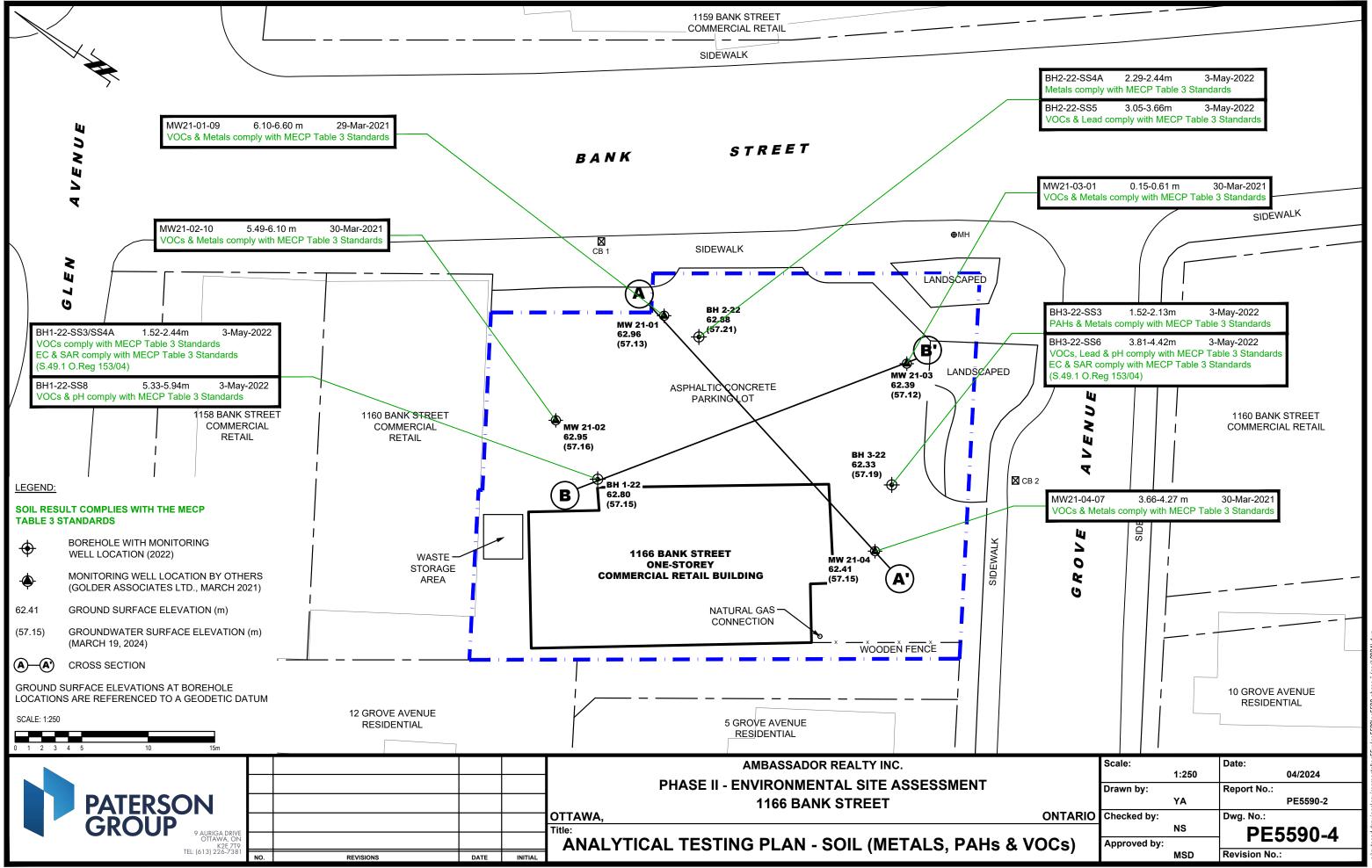
COMMERCIAL

COMMERCIAL

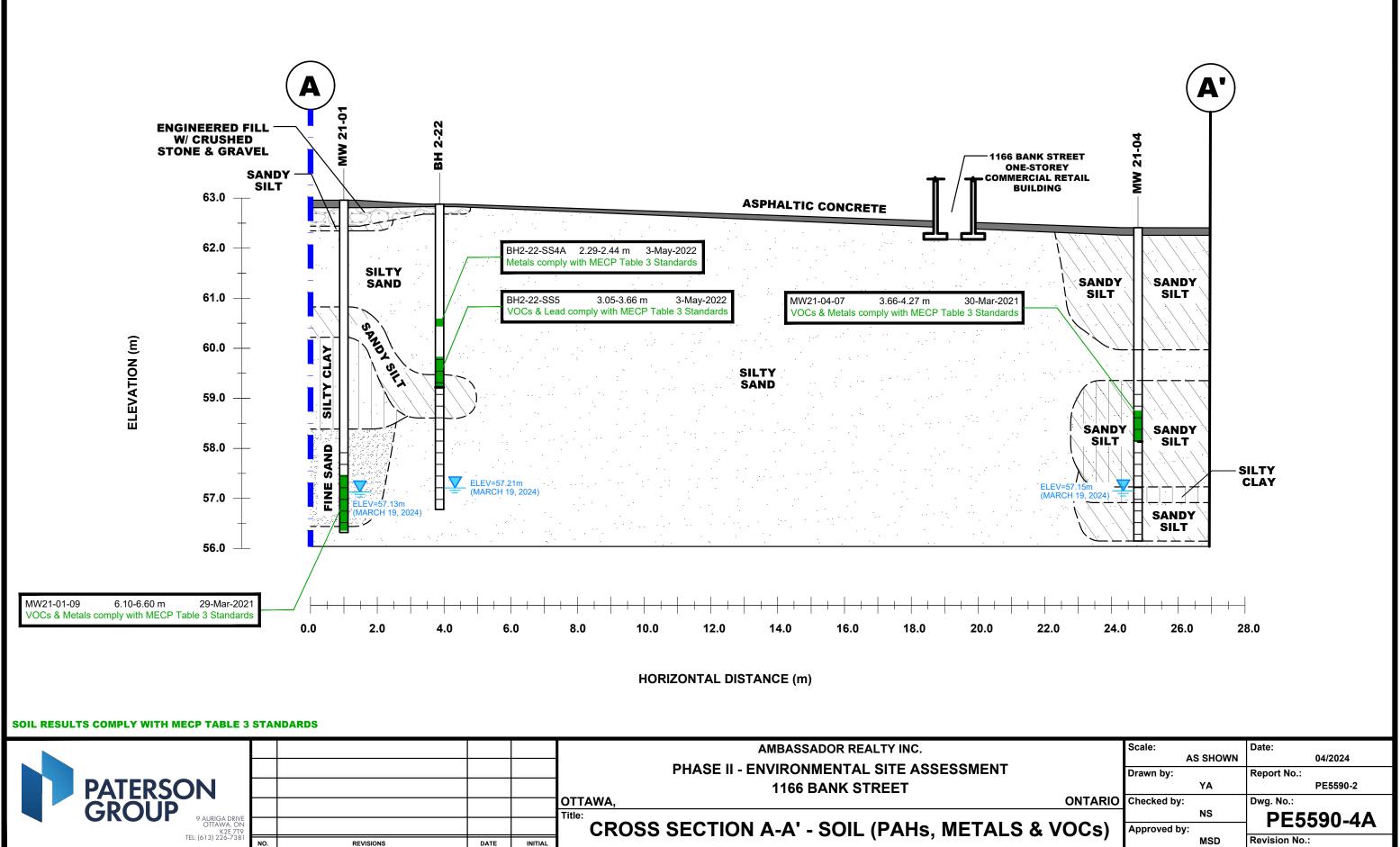
CONMERCIA

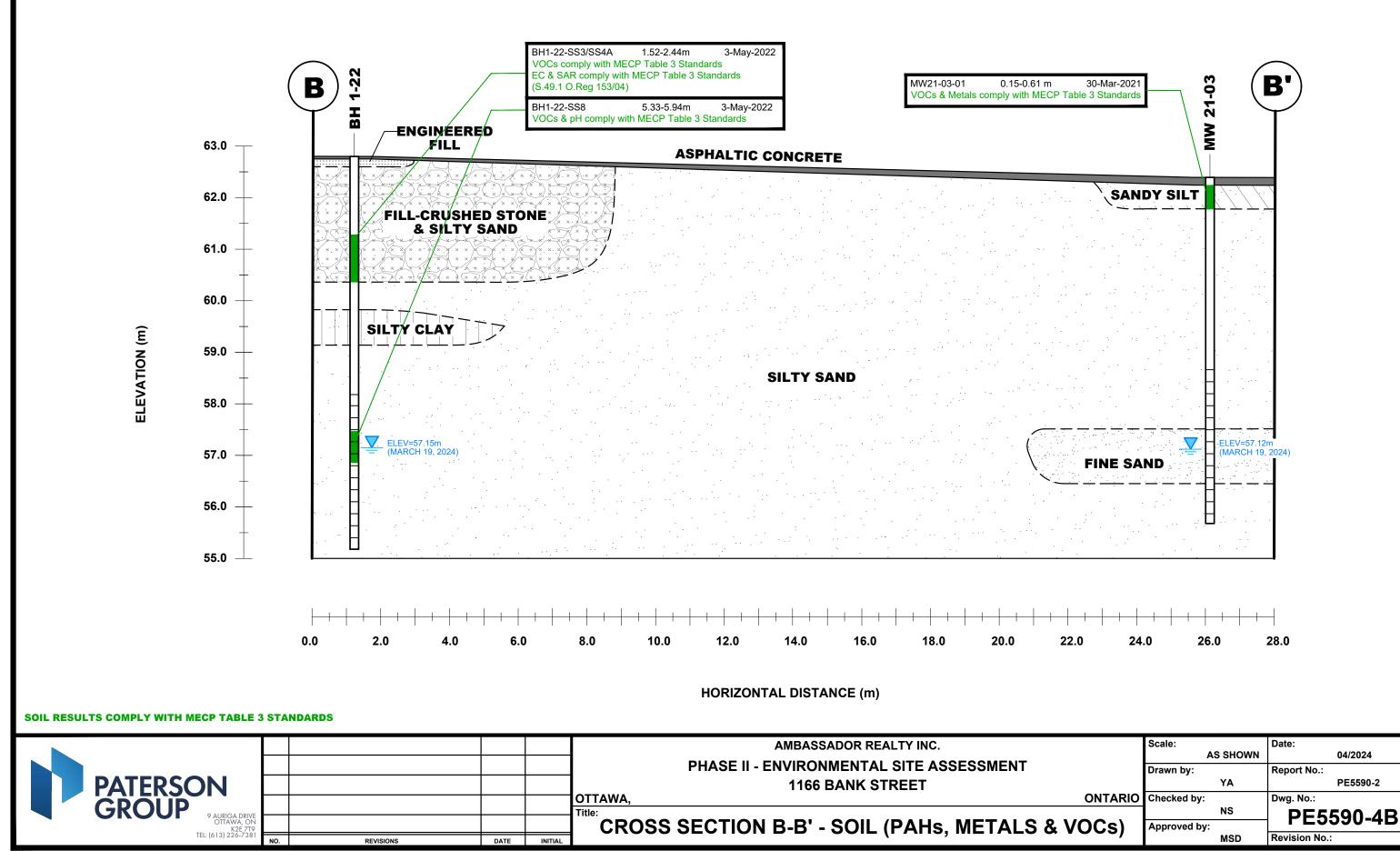
SURROUNDING LAND USE PLAN

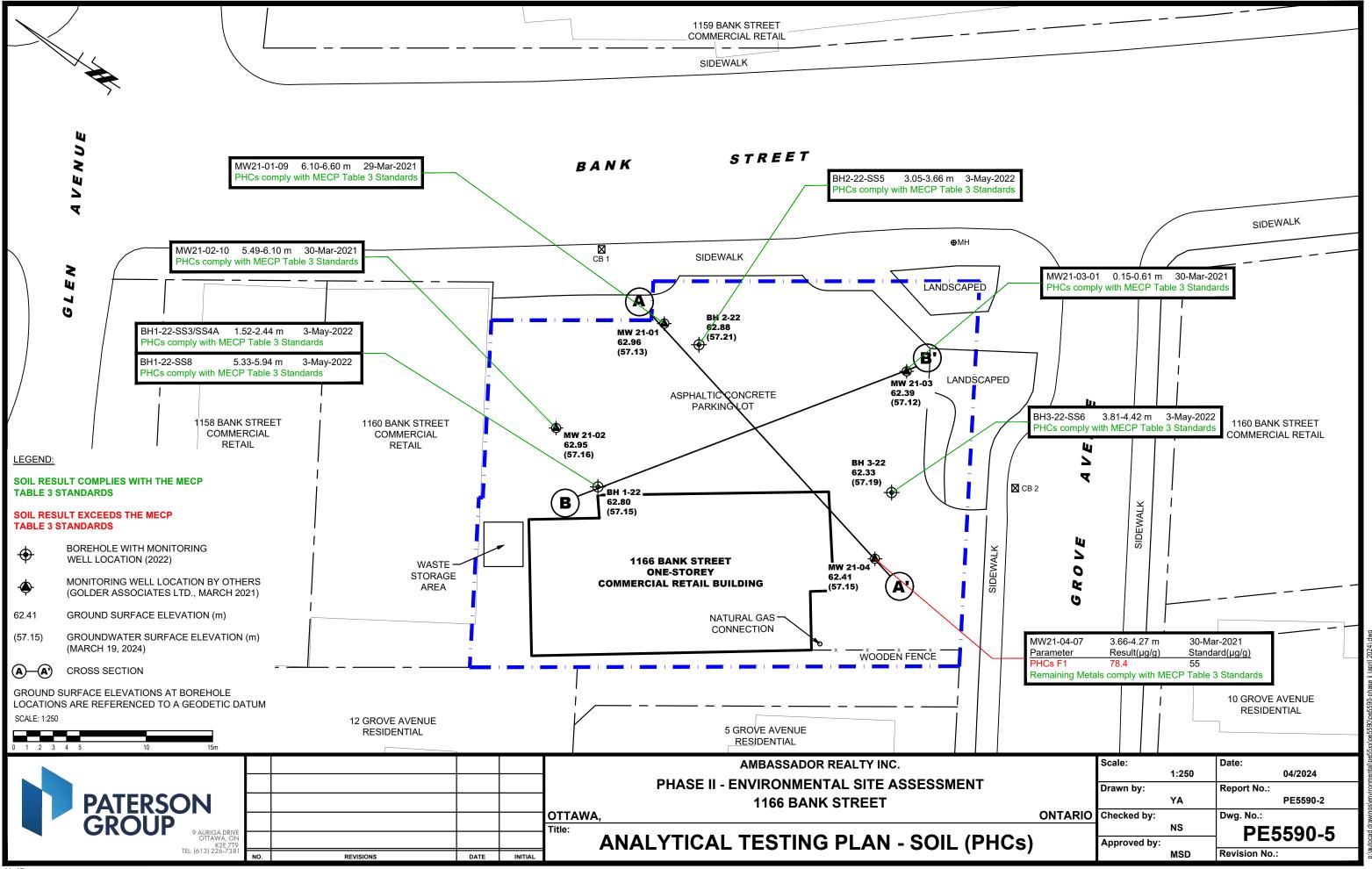

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

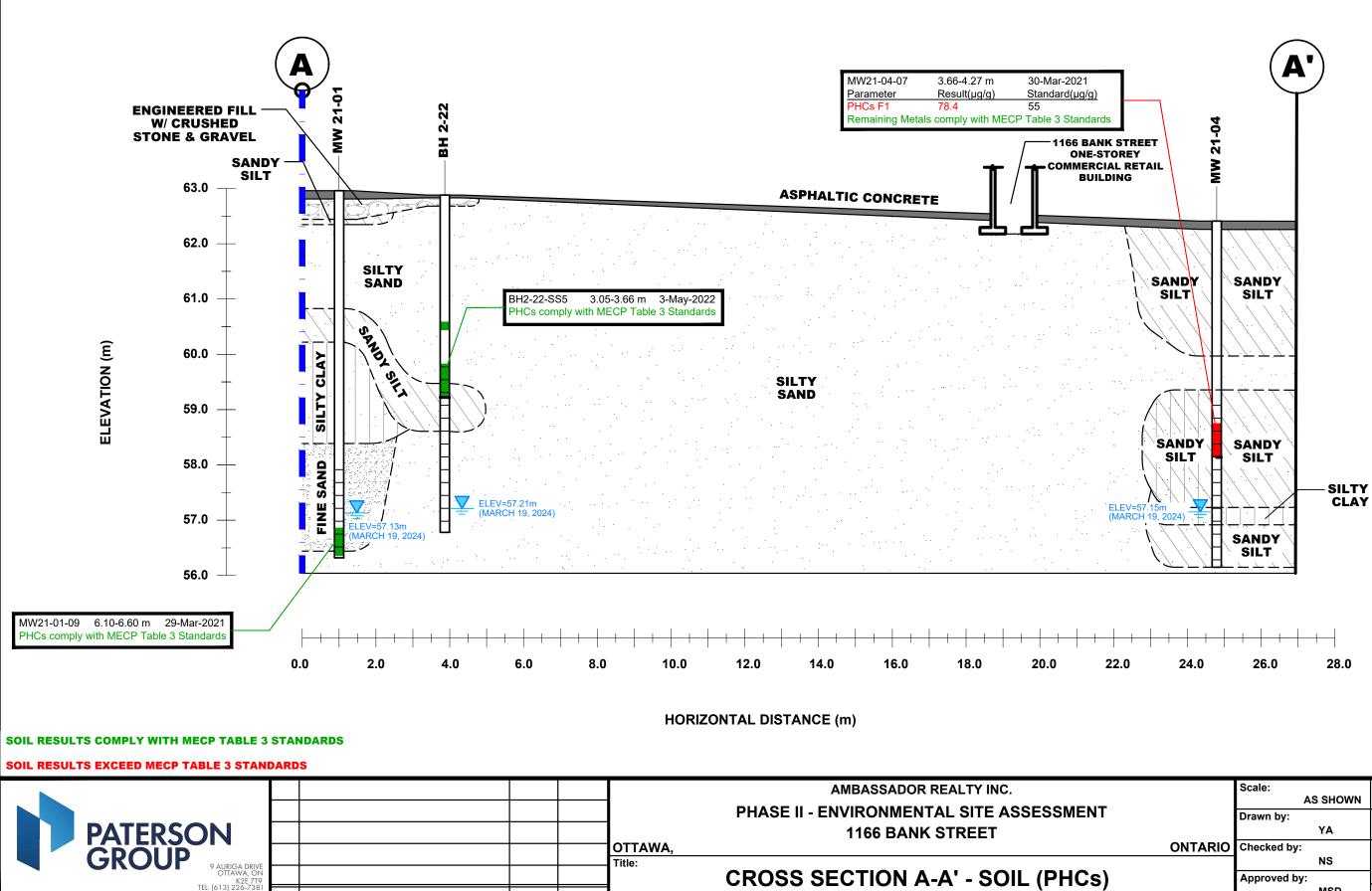

consulting engineers

patersongroup


NO. REVISIONS DATE




autocad drawings\environmental\pe55xx\pe5590\pe5590-phase



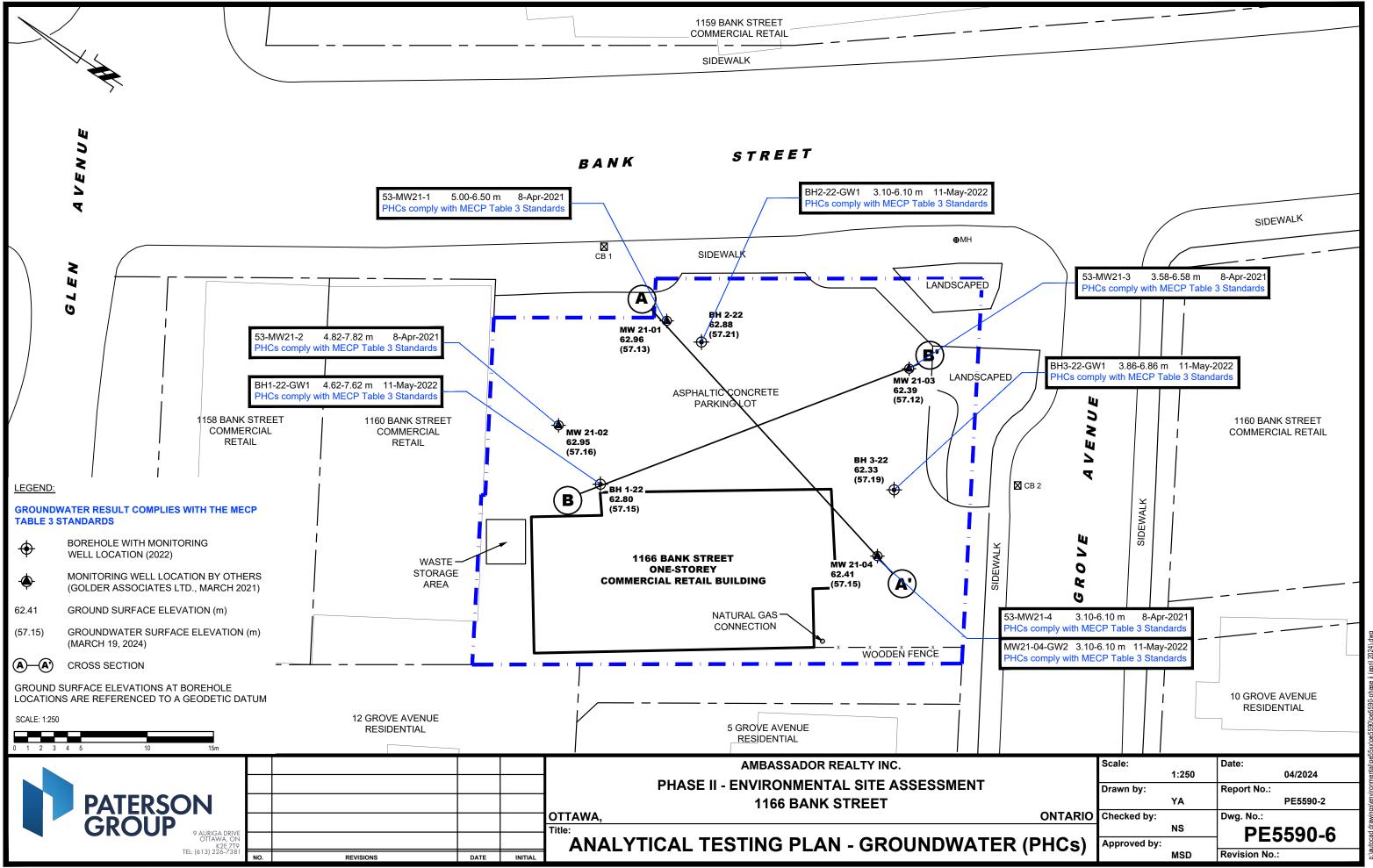
04/2024

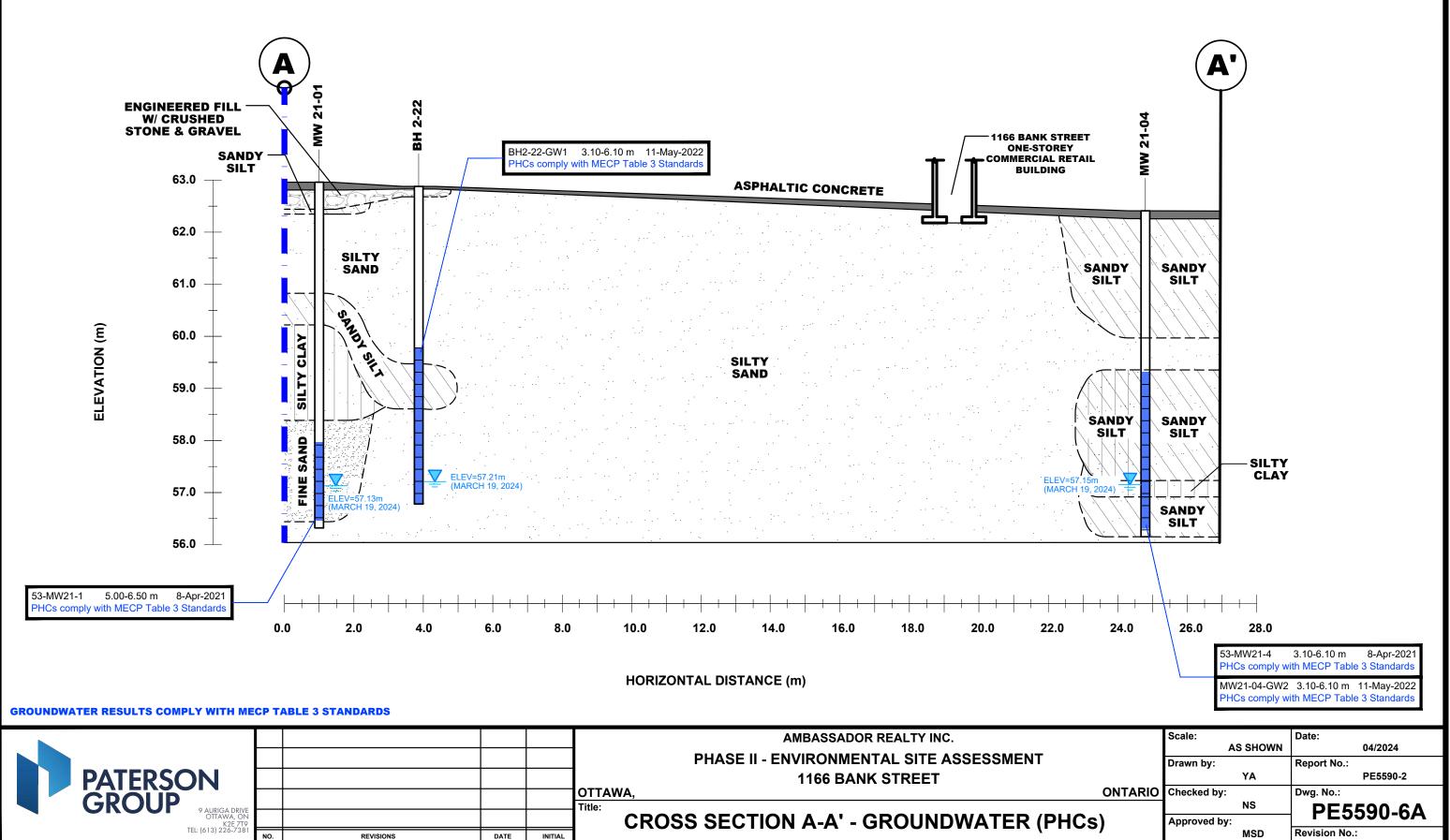
PE5590-2

K2E 7T9 TEL: (613) 226-738

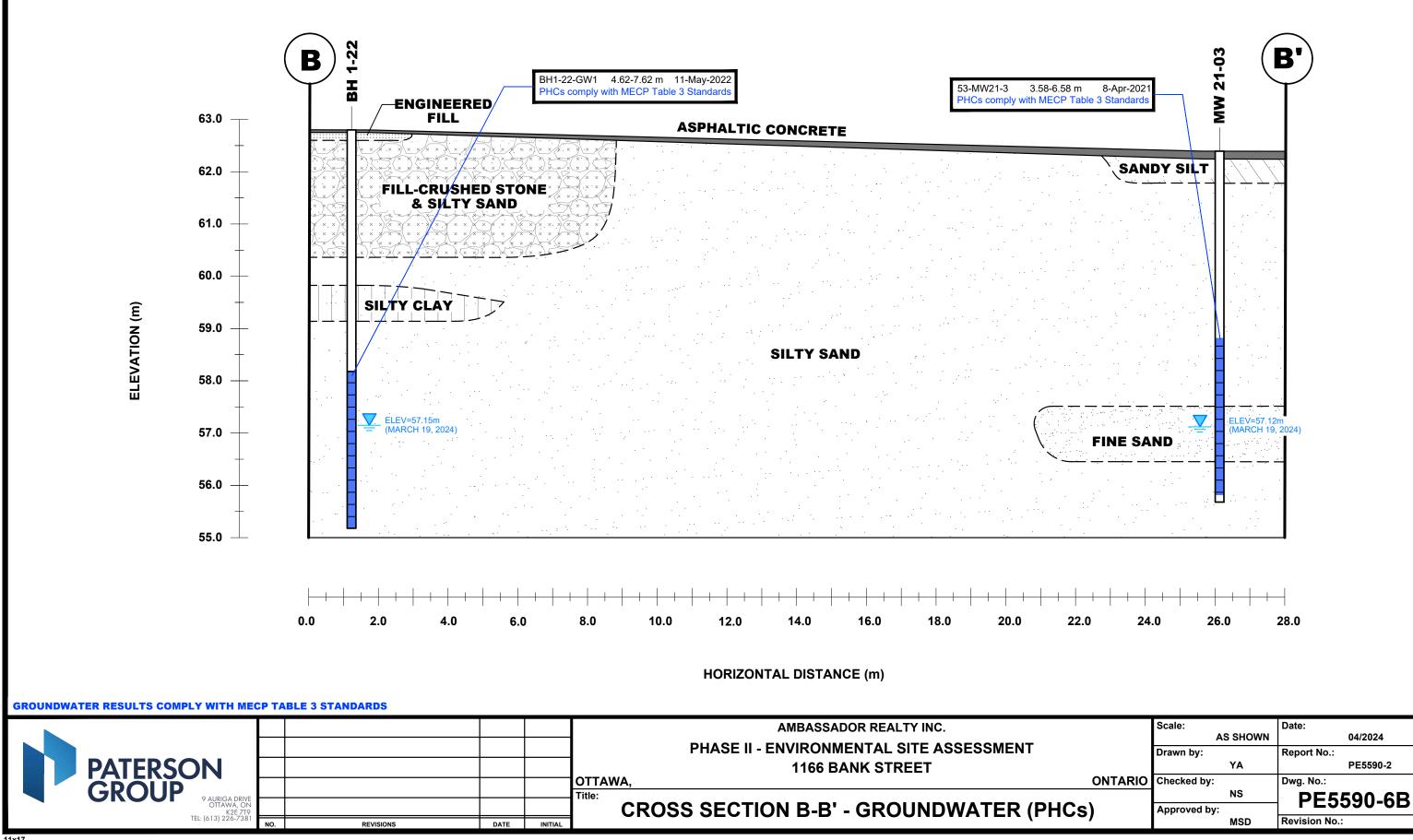
NO.

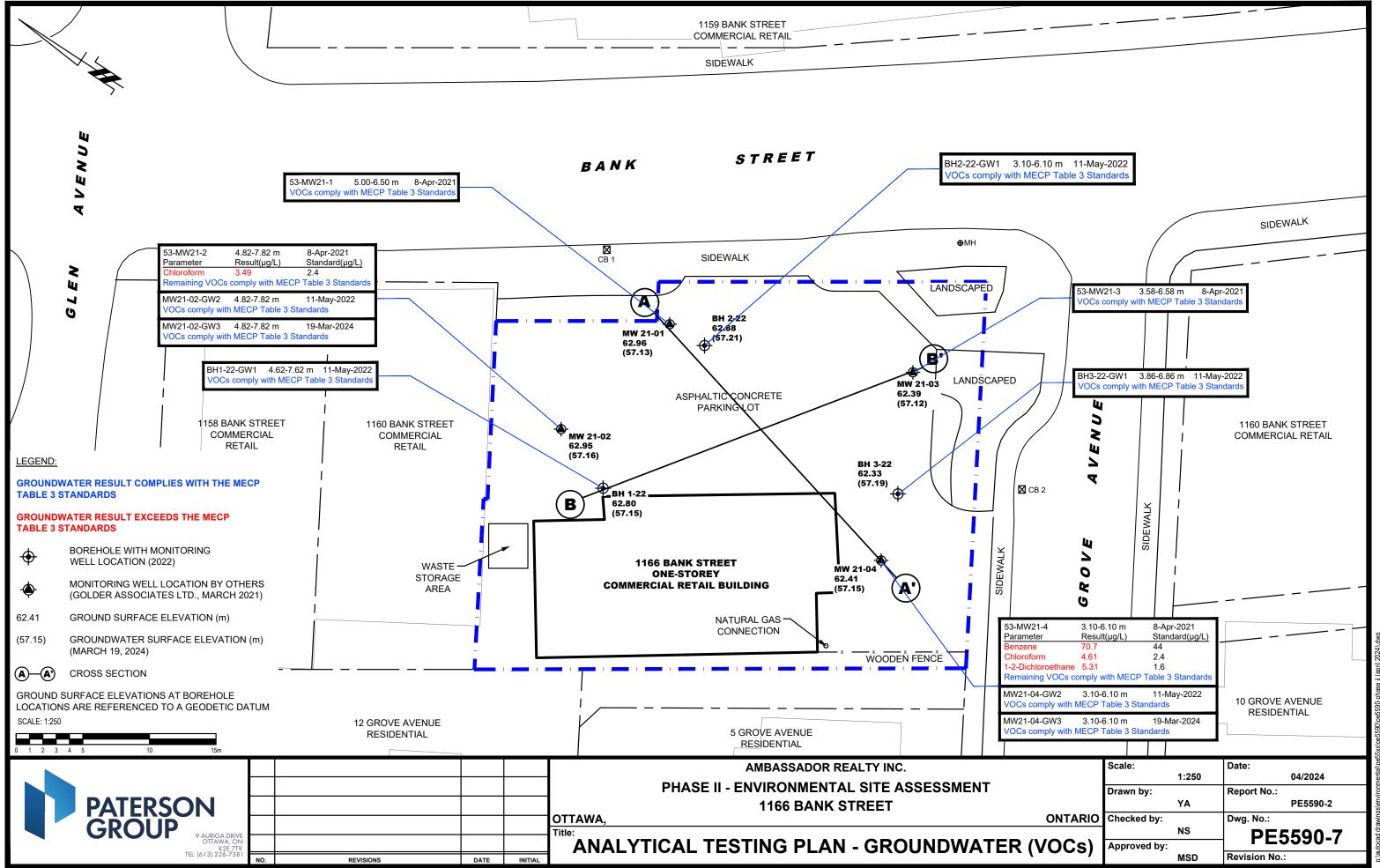
REVISIONS

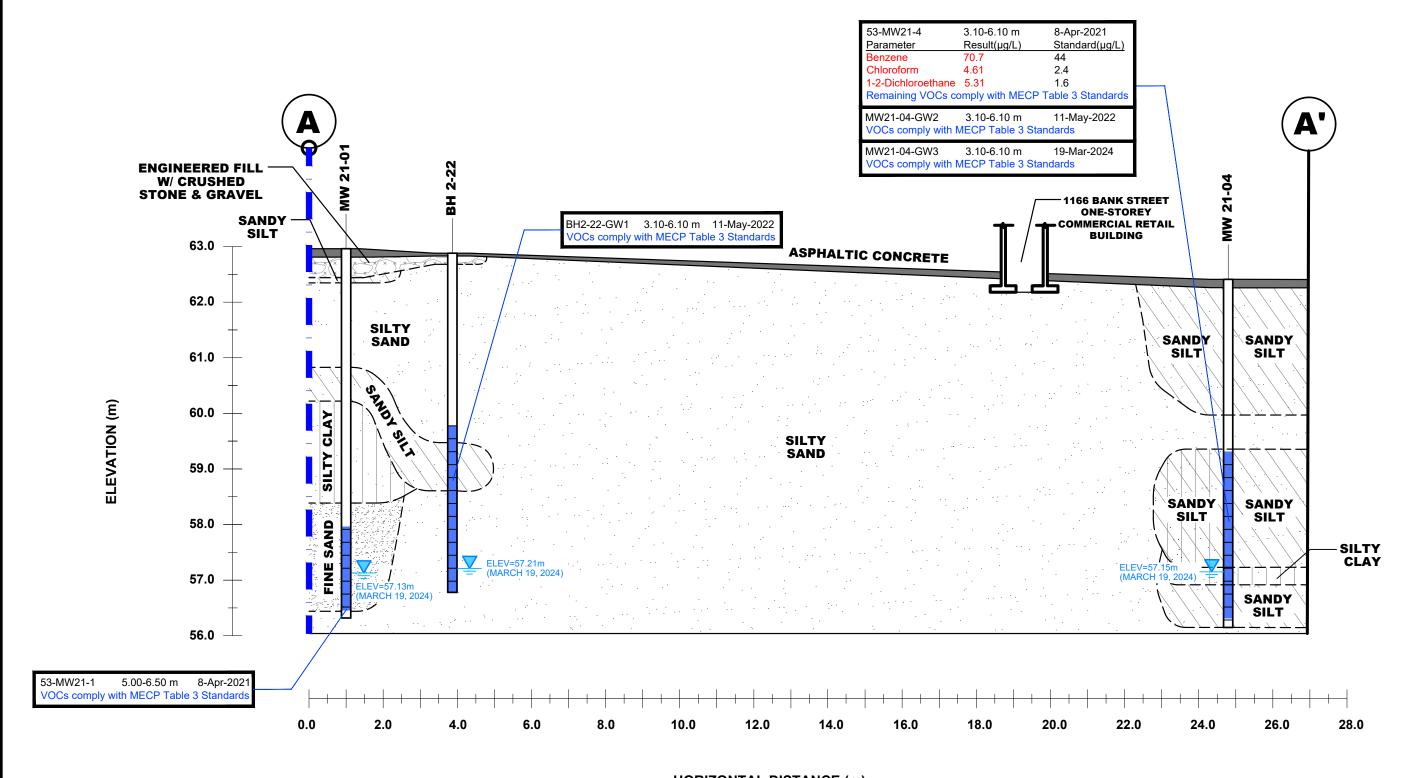

DATE


INITIAL

Scale:		Date:
AS	S SHOWN	04/2024
Drawn by:		Report No.:
	YA	PE5590-2
Checked by:		Dwg. No.:
	NS	PE5590-5A
Approved by:		F L 3330-3A
	MSD	Revision No.:
	AS Drawn by: Checked by:	AS SHOWN Drawn by: YA Checked by: NS Approved by:

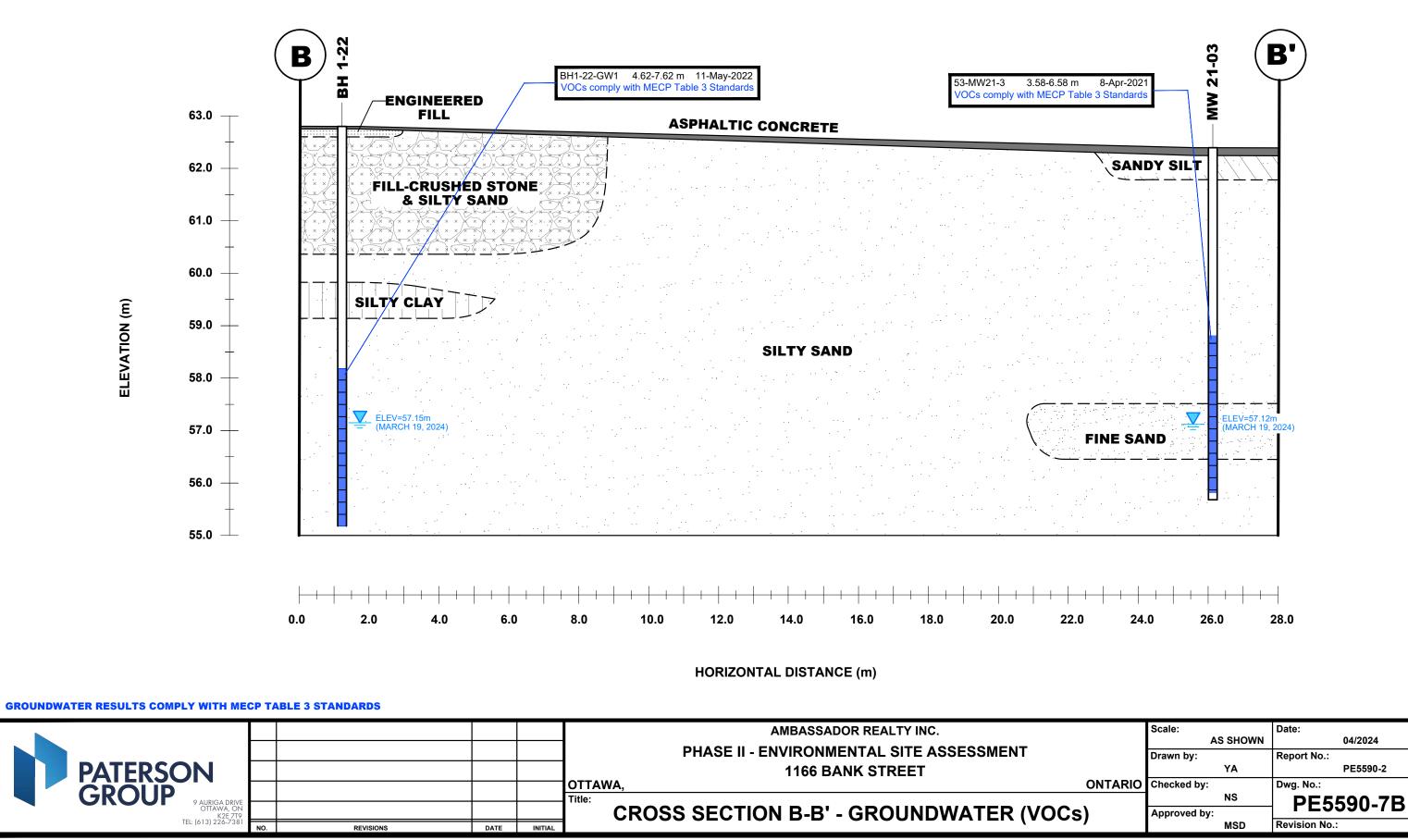

	Scale:	AS SHOWN	Date: 04/2024
	Drawn by:		Report No.:
	_	YA	PE5590-2
ONTARIO	Checked by:		Dwg. No.:
		NS	PE5590-5B
	Approved by	:	FE3330-3B
		MSD	Revision No.:


11x17


,		MSD	Revision No.:
Cs)	Approved	by:	FL3330-0A
_		NS	PE5590-6A
ONTAI	RIO Checked b	y:	Dwg. No.:
		YA	PE5590-2
	Drawn by:		Report No.:
		AS SHOWN	04/2024
	Scale:		Date:

04/2024

PE5590-2



HORIZONTAL DISTANCE (m)

GROUNDWATER RESULTS COMPLY WITH MECP TABLE 3 STANDARDS

GROUNDWATER RESULTS EXCEED MECP TABLE 3 STANDARDS						
					AMBASSADOR REALTY INC.	
					PHASE II - ENVIRONMENTAL SITE ASSESSMENT	
					1166 BANK STREET	
CPOLID					OTTAWA,	
9 AURIGA DRIVE OTTAWA, ON KEL (VIA) KEZ TO						
TEL: (613) 226-7381	NO.	REVISIONS	DATE	INITIAL		

	Scale:		Date:
	Å	AS SHOWN	04/2024
	Drawn by:		Report No.:
		YA	PE5590-2
ONTARIO	Checked by:		Dwg. No.:
		NS	PE5590-7A
Cs)	Approved by:		F L 3330-7 A
,		MSD	Revision No.:

04/2024

PE5590-2

APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Sampling & Analysis Plan

Phase II – Environmental Site Assessment 1166 Bank Street Ottawa, Ontario

Prepared For

Ambassador Realty Inc.

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca May 1, 2022

Report: PE5590-SAP

TABLE OF CONTENTS

1.0	SAMPLING PROGRAM	1
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	3
	3.2 Monitoring Well Installation Procedure	6
	3.3 Monitoring Well Sampling Procedure	7
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
5.0	DATA QUALITY OBJECTIVES	9
6.0	PHYSICAL IMPEDIMENTS	

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Ambassador Realty Inc., to conduct a Phase II – Environmental Site Assessment (Phase II ESA) for the property addressed 1166 Bank Street, in the City of Ottawa, Ontario.

Based on the findings of the Phase I ESA, the following subsurface investigation program was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1-22	Northwestern portion of the subject site; to assess for potential impacts resulting from the presence of a former auto service garage and the use of road salt for de-icing purposes.	5-8 m; for geotechnical purposes and to intercept the groundwater table for the purpose of installing a groundwater monitoring well.
BH2-22	Northeastern portion of the subject site; to assess for potential impacts resulting from the presence of fill material of unknown quality, a former on-site fuel pump island, and a former off-site auto service garage.	5-8 m; for geotechnical purposes and to intercept the groundwater table for the purpose of installing a groundwater monitoring well.
BH3-22	Southern portion of the subject site; to assess for potential impacts resulting from the presence of fill material of unknown quality, the use of road salt for de-icing purposes, and a former on-site underground fuel storage tank nest.	5-8 m; for geotechnical purposes and to intercept the groundwater table for the purpose of installing a groundwater monitoring well.

Borehole locations are shown on "Drawing PE5590-3 – Test Hole Location Plan", appended to the main report.

At each borehole, split-spoon samples of the overburden soils will be obtained at 0.76 m (2'6") intervals. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following the borehole drilling, groundwater monitoring wells will be installed in all three boreholes to allow for the collection of groundwater samples.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the Phase I Property is based on the following general considerations:

- □ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
- □ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
- In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards.
- □ In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.

The analytical testing program for soil at the Phase I Property is based on the following general considerations:

- Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- ☐ At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing.
- Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- Glass soil sample jars
- two buckets
- □ cleaning brush (toilet brush works well)
- dish detergent
- methyl hydrate
- □ water (if not available on site water jugs available in trailer)
- □ latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- □ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- If sampling for VOCs, BTEX, or PHCs F₁, a soil core from each soil sample, which may be analyzed, must be taken and placed in the laboratory-provided methanol vial.
- □ Note all and any odours or discolouration of samples.
- □ Split spoon samplers must be washed between samples.
- If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
- ☐ As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.

Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples.

- □ Obtain two buckets of water (preferably hot if available)
- Add a small amount of dish soap to one bucket
- □ Scrub spoons with brush in soapy water, inside and out, including tip
- **D** Rinse in clean water
- □ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- □ Allow to dry (takes seconds)
- □ Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- □ Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
- **Turn instrument on and allow to come to zero** calibrate if necessary
- If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- Break up large lumps of soil in the sample bag, taking care not to puncture bag.
- □ Insert probe into soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in bag while observing instrument readings.
- Record the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- □ Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Equipment

- ☐ 5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" if installing in cored hole in bedrock)
- □ 5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" if installing in cored hole in bedrock)
- □ Threaded end-cap
- □ Slip-cap or J-plug
- □ Asphalt cold patch or concrete
- □ Silica Sand
- Bentonite chips (Holeplug)
- □ Steel flushmount casing

Procedure

- Drill borehole to required depth, using drilling and sampling procedures described above.
- If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- □ Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
- □ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).
- Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.

3.3 Monitoring Well Sampling Procedure

Equipment

- □ Water level metre or interface probe on hydrocarbon/LNAPL sites
- Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- D Polyethylene tubing for peristaltic pump
- □ Flexible tubing for peristaltic pump
- Latex or nitrile gloves (depending on suspected contaminant)
- □ Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- D pH/Temperature/Conductivity combo pen
- □ Laboratory-supplied sample bottles

Sampling Procedure

- □ Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
- Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
- □ Measure total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- □ Calculate volume of standing water within well and record.
- Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
- Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
- Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- □ Replace well cap and flushmount casing cap.

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- □ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- Where groundwater samples are to be analyzed for VOCs, one laboratoryprovided trip blank will be submitted for analysis with every laboratory submission.
- Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
- Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

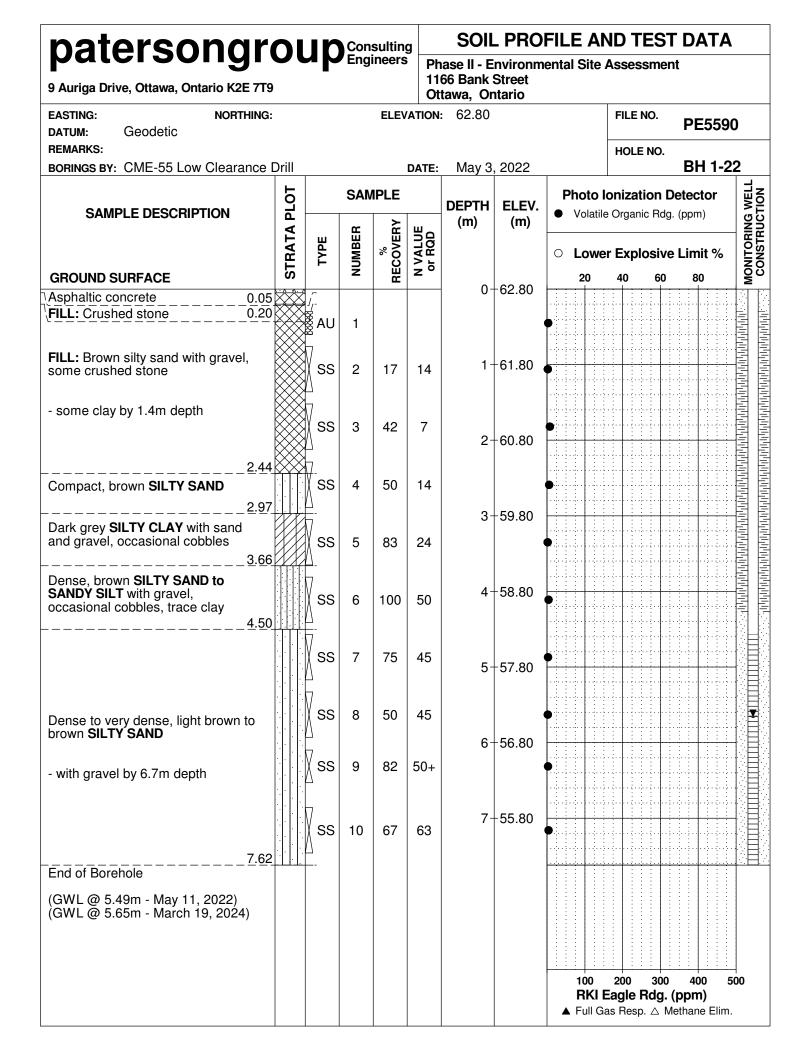
The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half the laboratory detection limit.

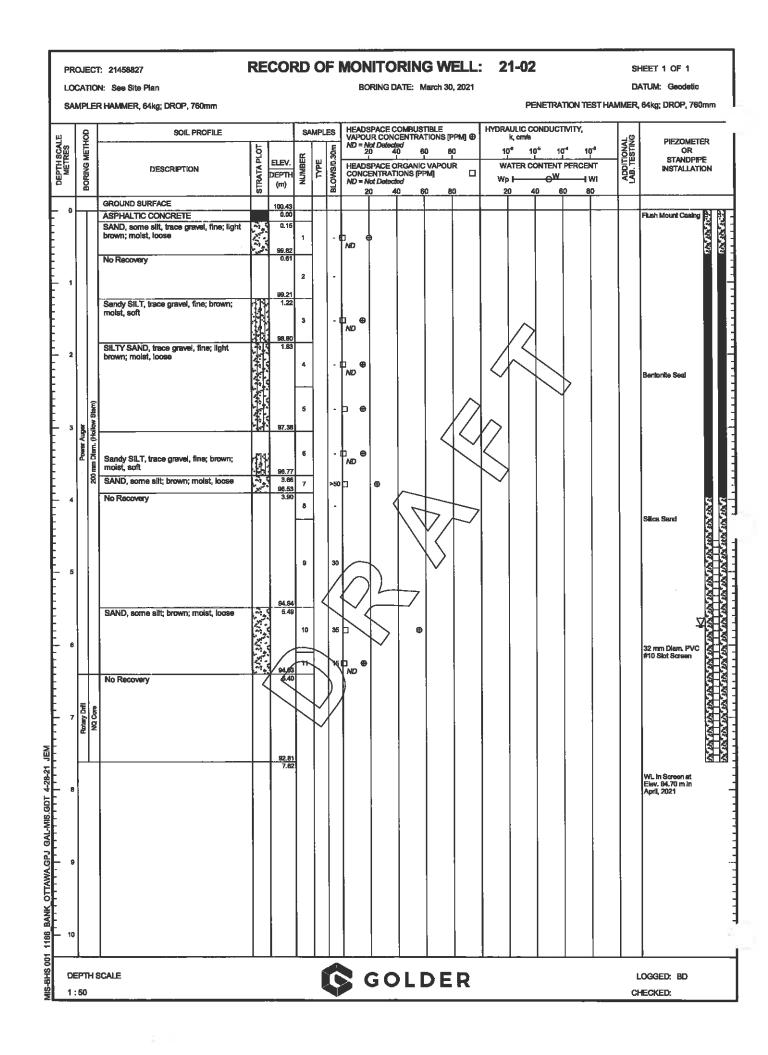
It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.


These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS

Physical impediments to the Sampling and Analysis plan may include:

- □ The location of underground utilities
- Poor recovery of split-spoon soil samples
- □ Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
- Drill rig breakdowns
- Winter conditions
- **O** Other site-specific impediments


Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II ESA report.

patersongr		In	Con	sulting]	SOIL	_ PRO	FILE AI	ND TEST	DATA				
9 Auriga Drive, Ottawa, Ontario K2E 7T9			Eng	ineers	11	66 Bank	Street	ental Site	Assessmen	t				
EASTING: NORTHING: DATUM: Geodetic				ELEV		t tawa, Or 1: 62.88	itario		FILE NO.	PE5590)			
REMARKS: BORINGS BY: CME-55 Low Clearance I	Drill				DATE:	May 3	2022		HOLE NO.	BH 2-22	2			
			SAN	IPLE .										
SAMPLE DESCRIPTION	A PLOT		æ	<u>ک</u>	ш.	DEPTH (m)	ELEV. (m)	Volatil	e Organic Rdg.	(ppm)				
	STRATA	түре	NUMBER	% RECOVERY	VALUE r RQD			• Lowe	er Explosive	Limit %	MONITORING WELI CONSTRUCTION			
GROUND SURFACE			ĨŽ	RE	N </th <th></th> <th>-62.88</th> <th>20</th> <th>40 60</th> <th>80</th> <th>δğ</th>		-62.88	20	40 60	80	δğ			
Asphaltic concrete 0.05 FILL: Crushed stone with gravel 0.20		J _I -	1				02.00							
FILL: Brown silty sand with gravel		× V				-	01.00							
- some clay by 0.8m depth		SS	2	8	7] -	-61.88				նորերիներիներիներիներիներիներիներիներիների			
		ss	3	8	8			•						
2.44		\square				2-	-60.88				<u>իրիդիր</u>			
Compact, reddish brown SILTY SAND 2.97		ss	4	58	12									
		ss	5	75	17	3-	-59.88							
Compact, dark brown to brown SILTY SAND to SANDY SILT, some gravel, trace clay		Δ												
<u>4.27</u>		∑ ss 	6	100	50+	4-	-58.88							
		$\overline{\mathbb{V}}$	_		~~~									
Very dense, light brown to brown SILTY SAND		ss	7	75	62	5-	-57.88	•						
		ss	8	83	52			•			T			
6.10		∐ 												
(GWL @ 5.48m - May 11, 2022)														
(GWL @ 5.67m - March 19, 2024)														
									200 300 Eagle Rdg. (as Resp. △ Me	ppm)	00			

patersongr	ΟΙ	JC	Con	sulting]				ND TEST		
9 Auriga Drive, Ottawa, Ontario K2E 7T9				ineer 5	11	nase II - E ∣66 Bank : ttawa, Or	Street	ental Site	Assessmer	nt	
EASTING: NORTHING: DATUM: Geodetic				ELEV	ATION	I: 62.33			FILE NO.	PE5590)
REMARKS: BORINGS BY: CME-55 Low Clearance	וויח					Mov 2	2022		HOLE NO.	BH 3-22	2
BORINGS BY: CIVIE-55 LOW Clearance					DATE:	May 3	, 2022				
SAMPLE DESCRIPTION	PLOT			APLE ►		DEPTH (m)	ELEV. (m)		onization E e Organic Rdg		NG WE
	STRATA	түре	NUMBER	% RECOVERY	N VALUE or RQD			• Lowe	er Explosive	e Limit %	MONITORING WELL CONSTRUCTION
GROUND SURFACE	ST		ž	REC	zō			20	40 60	80	NON MON
Asphaltic concrete 0.05						- 0-	-62.33				
FILL: Crushed stone with gravel _0.20		AU	1								
		ss	2	75	13	1-	-61.33	•		· · · · · · · · · · · · · · · · · · ·	
FILL: Brown silty sand with gravel,		1									ուներիներիներիներիներիներիներիներիներին ԱՄՆԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐ
trace clay, occasional cobbles				07	10						
		ss	3	67	10	2-	-60.33	-			
		ss	4		27			•			
2.97		14				3-	-59.33				
		∇	_	100	~~	5-	-59.55				
Compact, brown SILTY SAND with		ss	5	100	22			•			
gravel, occasional cobbles		6									
4.34		ss	6	58	29	4-	-58.33	•			
4.34 Hard, dark grey SILTY CLAY with		₽-									
sand and gravel		$\overline{\mathbb{N}}$	_	00	00						
5.18		ss	7	92	32	5-	-57.33				
		<u> </u>									
		∦ ss	8	83	58			•			
		μ				6-	-56.33				
Very dense, brown SILTY SAND with gravel, occasional cobbles and		ss	9	100	50+			•			
boulders											
		ss	10	36	50+	7-	-55.33				
		A 33		30	50+		55.55				
7.47											
(GWL @ 4.93m - May 11, 2022)											
(GWL @ 5.14m - March 19, 2022)											
								100	200 300	400 50	00
								RKI I	Eagle Rdg.	(ppm)	
								L ▲ Full G	as Resp. $ riangle$ M	lethane Elim.	

,	RO	JEC	T: 21458827	RE		RD	0	F	MON	ITO	RIN	g W	ELL:	: 2	1-01				Sŀ	EET 1 OF 1
			Nt: See Site Plan		BORING DATE: March 29, 2021										DA	TUM: Geodelic				
	SAM	PLE	R HAMMER, 64kg; DROP, 760mm	_											P	ENETR/	ATION TES	STHAN	imer,	64kg; DROP, 760mm
۳.		E C	SOIL PROFILE			SA	MPL		HEAD VAPO	SPACE C	CENTRA	TIBLE TIONS (F	PM] @	HYDRA	NULIC C k, cm/s	ONDUC	ΤΙΜΤΥ,		-19	PIEZOMETER
DEPTH SCALE		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	IVPE	BLOWS/0.30m	HEAD CONC ND = 1	ENTRAT Iot Dated	RGANIC IONS (PI	VAPOL	R		ATER C		0 ⁴ 10 1 PERCEN 1 W 80 80		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
F		_	GROUND SURFACE	Ĺ	100.59					Ĭ										
Ē			GRAVEL, medium to coarse		0.15															Flush Mount Cesing 🐉 🧎 -
Ē			Sandy SILT, trace gravel, fine; light		100.07		88	•	IÐ ND											Flush Mount Casing
ŧ			brown SILTY SAND; brown, contains cobbles; loose	個	0.61															
E	1					2	55	-	∎ € ND											
	2		SILTY SAND, trace gravel; brown; moist, loose		<u>98.07</u> 1.52	з	58	-	P D B						$\langle \chi \rangle$					
ŧ			Sandy SILT, fine; light brown; moist, very loose	TT.	2 98.46 2.13							1			\wedge	\triangleright				
E					07.05	4	88	•									2			Benionite Seal
Ē	3	w Stem)	SILTY CLAY; brown; moist, soft to firm		2.74															
E		Power Auger Ditem. (Hollow)				б	88	.	□●				\sim	K						
Ē	ľ	E			96.78									\triangleright						
E	4	200	SLTY CLAY; brown with orange mottling; moist, firm		3.81		ss			 ● 〈	-									
Ē											1/	$\overline{}$	\square							
Ē			SAND, medium; light brown; moist to wet, loose		98.02 4.57	7					$ \setminus$									
F	6					7	88													Silica Send
Ē				×.			<	Ľ	K/	1-										
ŧ						8	88		Ne	B										32 mm Diam. PVC
Ē	6			2.75		╞				arphi										
ŧ				<u> </u>	30.01	9	SS SS		P _{ND}		•									
Ē	ŀ		BEDROCK		6.3 8.64			1/	1				i							WL In Screen at
F	7							ľ												Elev. 94.79 m in April, 2021
JEW																				
28-21																				
1166 BANK OTTAWA.GPJ GALMIS.GDT 4-28-21 JEM	a																			-
- GA																				
WA.G	9																			-
<u>i</u>																				
BAN																				
	10																			-
9	DEF 1:5		SCALE					5		GC		DE	R							ogged: BD Ecked:

PROJEC	T: 21458827	RECO	ORD	0	FN	IONIT	ORIN	GW	ELL	: 2	1-03	;			s	HEET 1 OF 1
LOCATIC	DN: See Site Plan					BORING	3 DATE:	March 2	9, 2021						D	ATUM: Geodetic
SAMPLE	R HAMMER, 64kg; DROP, 760mm										PE	ENETR/		TEST HA	MMER,	64kg; DROP, 760mm
0	SOIL PROFILE			WPL		HEADSPAC	E COMBUS	TIBLE				ONDUC	TARTY		•	
METRES BORING METHOD		TEL				HEADSPAC VAPOUR CO ND = Not De	DNCENTR	ATIONS [PPM) @		k, om/s	UNDOC	- I W I I Y,		₽₽	PIEZOMETER
		STRATA PLOT	. S		BLOWS/0.30m	ND = Not De			<u>0</u>		2 ⁰ 10	1	<u> </u>	10-9	ADDITIONAL LAB. TESTING	OR STANDPIPE
	DESCRIPTION			ž	NSN	HEADSPAC CONCENTR ND = Not De	E ORGANI	C VAPOL (PM)	R		ATER CO	ONTEN'	T PERCI			NSTALLATION
8		Ĕ (r	n) Z		읦	ND = Not De 20			10	Wp		e ^w	60	4 WI 60	 <5	
0	GROUND SURFACE	100	1.00					Ī	Ĩ			<u> </u>	Ĩ		1	
	ASPHALTIC CONCRETE Sandy SILT, trace gravel, coarse; brown;		1.00 1.15					<u> </u>	[—		1	Fluish Mount Casing
	moist, loose		1	88	76	1 e			[İ				
						ND										Flush Mount Casing # 1
	SILTY SAND, trace gravel, fine; brown; moist, loose		1.61							l i						
1			2	SS	9 🛱	I ⊕ ND										
			3	88		I ¢9 ND ∣										
	SILTY SAND; brown, contains cobblee;		.17								//	1				Bentonite Seel
2	molet, loose					.				$ \land$	$\langle \langle \rangle$					
			14	88	16	ן פא פא				$ \langle \rangle $	\sim	$\left \right\rangle$				
	No Recovery		7.59 1.44							Ň		\sim	\triangleright			
			5	8	21				$ \land$				ſ			
Stem)				[]		ND			V/							5
≹	SILTY SAND; brown, contains cobbles;	नार व	L95 L05					/	K,	771						Silica Sand
rr Auger N. (Holic	moist, loose		6	SS	61	ND D			$^{\prime}$							
Paweer Dfam.										$[\]$						
Let up and a second sec	No Recovery		1.34 1.06							\sim						3-
4							~									
			.73				15		$ \rightarrow $							
	SILTY SAND; brown; moist, compact		.73	11			$ \rangle\rangle$	$\sqrt{7}$	\vdash							
			a	86	38		$ \rangle$	1								
			.12			ND		$\langle \rangle$								
5	SAND, medium; brown; molet, loose		.68	11												32 mm Diam. PVC 2 #10 Slot Somen
		5.	9	86	хq	NOL										
			เต] {	[{		17									
	SAND, medium; brown; wet, loose		6.49		Y	$\langle \mathbf{A} \rangle$										
		3	10	85	51	ND ND	,									
6	SILTY SAND; brown; wet, soft		194	Ł												
		[]]/	ト	71	\mathbf{N}											2
		(我) <	1"	33	42	ND										
	End of Borehole				/ /											
7			K	۲I	/											WL in Screen at
				М												Elev. 94.75 m in April, 2021
													1			
8																
												ŀ	1			
													1			
9									1							
													1			
														[
													1			
10									1							
									1							
	•••								<u> </u>				1			
DEPTH 8	SCALE)	C	G	DLI	DE	R						L	DGGED: BD
1:50															CH	ECKED:

PROJECT:	21459927
PRUJELI	Z14000Z7

RECORD OF MONITORING WELL: 21-04

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 30, 2021

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

	_		·······						Line a fer			A 4751 141			15000		NUM I A				
щ.			SOIL PROFILE			SA	MPI.			SPACE JR CC	E CO DNCE	mbus" Entra' 1	TIBLE TIONS [I	PPM] (E) Io		ULIC CC k, cm/s			_	BA	PIEZOMETER
DEPTH SCALE METRES	BOBING METHOD			STRATA PLOT	ELEV.	ц,	ш	BLOWS/0.30m							10			ī	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
H			DESCRIPTION	ATA	DEPTH	NUMBER	μ	NSMC		ENTR	E DR	IGANIC DNS (PF	vapol M]		Wp	ATER CO			IWI	ADD ADD	INSTALLATION
Ľ		4		НS S	(m)	Ľ		Ă		10 1	40			0	2	-			60		
- 0	╘	_	GROUND SURFACE ASPHALTIC CONCRETE		100.01	_	┝				+							<u> </u>		+	Flush Mount Casing
Ē			Sandy SILT, trace gravel, fine to coarse; brown; molst, loose	ЯЛ	0.15		88	23	6 6												Plush Mount Casing
E			brown; moist, loose		3	l .	1	_	โพD ั้												
₿ ¦				ł	1	┣──	1														ê ê :
Ē,				H	1	2	ss	19	þ e												
				H																1	
F				Ш																	
E	ļ]	3	88	16	ND ND							\wedge					Bentonite Seel
ŧ.			Lost	144	9 <u>8.18</u> 1.83											$\langle \langle \rangle$					
2					1	4	88	11								\sim					
-					87.57	<u> </u>									$ $ \sim			5			-
Ē		Stem)	SILTY SAND, trace gravel, fine; brown; moist, loose		2.44	I .			L									ſ			Silica Sand
È .	5	≱		Î		5	85	10	D⊕ ND					γ/							Silica Sand
E 's	Power Auger	n. (Hoftaw	Sandy SLT; brown; moist, soft		3 96.96 3.05									K	X7.		ļ				
È.	Pow			H		6	88	9						N	K						
Ē.		200 mm		H											\wedge			1			
È.			Sandy SiLT; grey with black staining; moist to wet, soft	邯	96.25 3.76	7	85	20				-	-000		Ĩ						
F 1			Indiat to wet, solt			Ľ						7		\vdash	,						A-3- A-4
E						\vdash	1				ſ	//	V /	\vdash							
F				H.		8	\$\$	15			. 🛉										32 mm Diam. PVC #10 Slot Screen
E		1											\mathbb{N}								
- 5				h	94.63	9	88	4		\mathcal{D}			ľ			ļ		1			
Ē	ŀ		SILTY CLAY; brown; moist, soft		5.18 94.52	1		X	< /	74	+	7									
ŧ.			Sandy SILT, trace gravel, fine; brown;	ĨĨ	5.49		1	\succ	\sum_{i}	$\left[-\right]$											
Ē	1		moist, soft			10	88	27		\square	>										
- 6						Þ	╞			\sim			1								
Ē	F	1	End of Borehole	1.121	<u>в.</u> В.2		╲	\mathbb{N}													<u>EZCE</u>
E				1	4 <))								ł				WI. in Screen at Elev. 94.80 m in April, 2021
Ē						Γ	\downarrow	1/	1												
F 7							\checkmark	X													-
F						1															
2														1							
8 - 8																	1			ļ	
3									1												
ξ.																	-	1			
5															1						
19 9																					-
- AW															1						
Ē									1						1						
																					2
															1						
<u> </u>	L							 					1								<u> </u>
100 SH9-SIW	EP1	TH S	SCALE				ĺ			G	0	LI	DE	R						1	OGGED: BD
¢ ₩ 1:	: 60)									_		-							C	HECKED:

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, St, is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

Low Sensitivity:	St < 2
Medium Sensitivity:	$2 < S_t < 4$
Sensitive:	$4 < S_t < 8$
Extra Sensitive:	8 < St < 16
Quick Clay:	St > 16

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

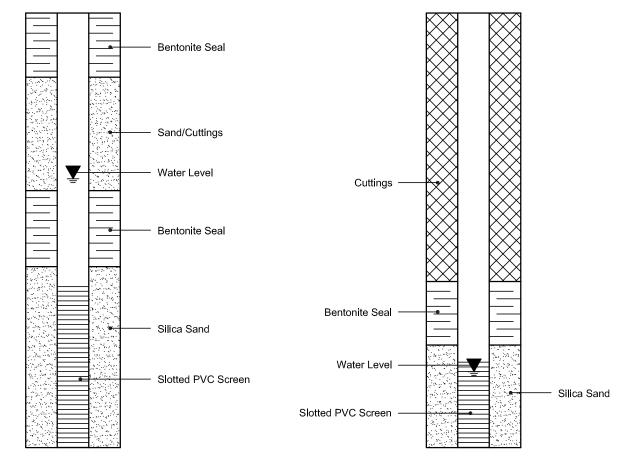
WC%	-	Natural water content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic Limit, % (water content above which soil behaves plastically)
PI	-	Plasticity Index, % (difference between LL and PL)
Dxx	-	Grain size at which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
	0	we also access the supplicer of several and supplices

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'c / p'o
Void Rati	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: James Doyle PROJECT: 21458827 AGAT WORK ORDER: 21Z730619 SOIL ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Apr 16, 2021 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- . This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warrantles of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 17

the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating

conformity with a specified requirement.

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditation are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in

CANADA L4Z 1Y2 TEL (905)712-6100 FAX (905)712-6122 http://www.agatlabs.com 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO

Laboratories
U
E
A.

CLIENT NAME: GOLDER ASSOCIATES LTD

Certificate of Analysis AGAT WORK ORDER: 21Z730619

PROJECT: 21458827

ATTENTION TO: James Doyle SAMDI ED RV.

SAMPLING SITE:						SAMPLED BY:) BY:		
		Ő		11) - Metal	Reg. 153(511) - Metals & Inorganics (Soil)	ics (Soil)			
DATE RECEIVED: 2021-04-07								DATE REPORTED: 2021-04-16	
		SAMPLE DESCRIPTION:	MW21-01-09	DUPA	MW21-02-10	MW21-03-01	MW21-04-07	DUP	
		SAMPLE TYPE:	Soil	Soil	Soll	Soll	Soll	Soll	
		DATE SAMPLED:	2021-03-29	2021-03-29	2021-03-30	2021-03-29	2021-03-30	2021-03-30	-
Parameter	Unit	G/S RDL	2322004	2322005	2322006	2322007	2322008	2322009	
Antimony	В /Вн	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Aseric	B/Bri	5-	÷	F	-	ო	1	~	
Barlum	8/8rl	2.0	18.4	17.6	15.8	151	44.0	63.9	
Beryllhum	B/8rl	0.4	<0.4	404	<0.4	<0.4	<0.4	<0.4	
Boron	6,6rl	ο.	1 9 ♥	ę	\$	10	ŝ	\$5	
Boron (Hot Water Soluble)	D /Brl	0-10	<0.10	<0.10	<0.10	0.22	<0.10	≪0.10	
Cadmium	б/бп	0.5	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	6/6rl	C)	g	9	ŝ	15	ø	13	
Cobelt	6/6rl	0.5	2.8	2.8	2.8	6.9	3.8	4.8	
Copper	6/6rl	1.0	5.9	6.1	6.2	15.3	8.2	10.7	
Lead	6/8rl	-	7	2	61	17	2	4	
Molybdenum	6/6rt	0.5	€0.5	<0.5	<0.5	1.5	<0.5	1.0	
Nickel	6 /6rl	t	4	۲	4	17	7	10	
Selenium	B/Bri	0.8	<0.8	8.0	<0.8	<0.8	<0.8	<0.8	
Silver	6/6rl	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thellium	8/6H	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	8/8rl	0.50	0.58	0,50	<0.50	0.75	<0.50	0.56	
Vanadium	6/6rt	0.4	12.8	13.6	11.1	212	18.8	22.1	
Zinc	8/8rl	Ð	11	10	6	4	15	21	
Chromium, Hexavalent	8/61	0.2	<0.2	<u>8</u> .2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	B/6rl	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	B/6rl	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/am	0.005	0.283	0,294	0.168	1.16	0.227	0.297	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	N/A	2.68	2.74	1.70	20.5	3.88	4.83	
PH, 2:1 CaCl2 Extraction	pH Units	NA	7.76	7.83	7.85	7.84	7.83	7.80	
Comments: RDL - Reported Detection Limit:	tection Limit:	G / S - Guideline / Standard	ard						

2

2322004-2322009 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part sol), pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Page 2 of 17

Vris Verestegui

Certified By:

				- 4		
	JED	Laboi	Laboratories		Certificate of Analysis AGAT WORK ORDER: 21Z730619	MISSISSAUGA, ONTARIO CANADA L42 1Y2 TEL (305)712-5100 FAX (305)712-5122
CI JENT NAME: GOI DER ASSOCIATES I TD	SOCIATES L1			1	PROJECT: 21456627 ATTENTION TO: James Dovie	http://www.agatlabs.com
SAMPLING SITE:		2			SAMPLED BY:	
				O. Reg. 5	O. Reg. 558 Metals and Inorganics	
DATE RECEIVED: 2021-04-07					DATE REPC	DATE REPORTED: 2021-04-16
	15	SAMPLE DESCRIPTION:	CRIPTION:	TCLP		
		SAMF	SAMPLE TYPE:	Soil		
		DATES	DATE SAMPLED:	2021-03-30		
Parameter	Unit	G/S	2 2	2322010		
Arsenic Leachate	щg/L	2.5	0.010	<0.010		
Barium Leachate	mg/L	100	0.010	1.11		
Boron Leachate	mg/L		0.00			
Cadmium Leachate Channis and Associate	mg/L	с, к	0.050	<0.050		
Conomium Leachate	- 10 10 10	э к	0.010	<0.010		
Lead Lookingto Marrini sachata		, c	0.01	40.0×		
Selenium Leachate	mg/L	*-	0.010	<0.010		
Silver Leachate	mg/L	.10	0.010	<0.010		
Uranium Leachate	mg/L	10	0.050	<0.050		
Fluoride Leachate	mg/L	150	0.05	0.16		
Cyanide Leachate	mg/L	20	0.05	<0.05		
(Nitrate + Nitrite) as N Leachate	mg/L	1000	0.70	<0.70		
Comments: RDL - Reported Detection Limit;	Detection Limit; (G / S - Guidel	G / S - Guideline / Standard: ference only The guidelines	*: Refers to O. Re	Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria movided may or may not be relevant for the intended use. Refer directly to the applicable standard fo	r regulatory interpretation.
Guideline values	are for general ref	erence only. '	The guideline:	s provided may or	Guideline values are for general reference only. The guidelines provided may or may not be relevant for the Intended use. Reter directly to the applicable standard tor regulation interpretence.	r reguisiory merprevauri.
Analysis performed at AGAT Toronto (unless marked by *)	o (unless marked b	(* ^x	2			
						Vrix Vonastraii
					Certified By:	
AGAT CERTIFICATE OF ANALYSIS (V1)	IALYSIS (V1)					Page 3 of 17
			Real	Results relate only to the flems to	the fiers is 2-asufts apply to samples as received.	

Results relate only to the flems te ² esults apply to samples as received.

Laboratories
TRPP

Certificate of Analysis AGAT WORK ORDER: 21Z730619

PROJECT: 21458827

TEL (905)712-5100 FAX (905)712-5122 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 http://www.agetlebs.com

5
TES
OCIA
ASS
LDER
00
NAME
IENT
5

SAMPLING SITE:

ATTENTION TO: James Doyle SAMPLED BY:

		Ċ	0. Neg. 100(011) - LINO 1 - 1 + (-0 1 - 1) (001)					
DATE RECEIVED: 2021-04-07					,			DATE REPORTED: 2021-04-16
		SAMPLE DESCRIPTION:	MM		MW21-02-10	MW21-03-01	MW21-04-07	DUP
		SAMPLE I YPE: DATE SAMPLED:	2021-03-29	3011-03-29	2021-03-30	Sori 2021-03-29	501-03-30	2021-03-30
Parameter	Unit	G/S RDL		2322005	2322006	2322007	2322008	2322009
F1 (C6 - C10)	6/8rl	5	v	Ś	ŝ	Ŷ	78.4	55.9
F1 (C6 to C10) minus BTEX	6 /8rl	40	8	ø	₽	8	78	56
F2 (C10 to C16)	6/8rl	10	<10 <10	<10	<10	~10 ~10	<10	<10
F3 (C16 to C34)	6/6H	50	<50	\$	<50	\$50	<50	<50
F4 (C34 to C50)	6 /6rl	50	<50	\$50	<50	€0	<50	<50
Gravimetric Heavy Hydrocarbons	B/Bri	50	AN	¥	AN	MA	M	NA
Moisture Content	%	0.1	14.0	9.5	16.1	11.2	12.6	12.7
Surrogate	Unit	Acceptable Limits						
Toluene-d8	% Recovery	50-140	108	105	91	87	86	82
Terphenyl	%	60-140	76	78	60	88	78	20

Results are based on sample dry weight. 2322004-2322009

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chrometogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

rrC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC18 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample. Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Results relate only to the items tested. Results apply to samples as received.

Page 4 of 17

Pegnukola

0	Å R	
いりりり	い こ の に aboratories	CLIENT NAME: GOLDER ASSOCIATES LTD

Certificate of Analysis

ATTENTION TO: James Doyle GAT WORK ORDER: 21Z730619 ROJECT: 21458827

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANDAL 42 1Y2 TEL (905)712-5120 FAX (905)712-5120 http://www.agflebs.com

DATE RECEIVED: 2021-04-07 SAMPLE DESCRIPTION: SAMPLE TYPE:	Ö	O. Reg. 153(511) - VOCs (Soil)	- VOCs (Soi	(
RECEIVED: 2021-04-07 SAMPLE						
SAMPLE DESCRIPT SAMPLE T						DATE REPORTED: 2021-04-16
SAMPLE T	TION: MW21-01-09	DUP A	MW21-02-10	MW21-03-01	MW21-04-07	DUP
			Soll	Soll	Soil	Soil
DATE SAN	5	N	2021-03-30	2021-03-29	2021-03-30	2021-03-30
Parameter Unit G/S RD	RDL 2322004	2322005	2322006	2322007	2322008	600ZZSZ
Dichlorodifiuoramethane 0.0	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride 0.0	0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane 0.0	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6/6n	0.50 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6/6n	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
stryiene ug/g	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6/8n	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6/8n	0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone 0.5	0.50 <<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02
6/6n	0.04 <0.04	<0.04	<0.04	40.04	40.04	40.04
	0.03 <0.03	<0.03	<0.03	<0.03	<0.03	40.03
	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6/8n	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	0.03 <0.03	<0.03	<0.03	<0.03	<0.03	<0.03
	0.03 <0.03	<0.03	<0.03	<0.03	<0.03	<0.03
thane ug/g	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	0.50 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	0.04 <0.04	<0.04	<0.04	40.04	<0.04	<0.04
6/8n	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane 0.0	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	0.04 <0.04	<0.04	<0.04	40.04	<0.04	<0.04
	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane 0.0	0.04 <0.04	\$0:04	\$0.04	40:04	40.0 ₽	<0.04
6/6n	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene ug/g 0.0	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05
m & p-Xylene ug/g 0.0	0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Page 5 of 17

A CHAT CERTIFICATE OF ANALYSIS (V1)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L42 1Y2 TEL (905)712-5100 FAX (905)712-5122 FAX (905)712-5122 http://www.agetlabs.com

Lal
E
U
E

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

boratories

Certificate of Analysis **AGAT WORK ORDER: 21Z730619** PROJECT: 21458827

Doyle	
James	
ATTENTION TO:	SAMPLED BY:

				O. Reo	1. 153(511)	O. Red. 153(511) - VOCs (Soil)	(I)			
DATE RECEIVED: 2021-04-07									DATE REPORTED: 2021-04-16	
		SAMPLE DESCRIPTION:	:RIPTION:	MW21-01-09	DUP A	MW21-02-10	MW21-03-01	MW21-04-07	DUP	
		SAMF	SAMPLE TYPE:	Soll	Soll	Soil	Sail	Soil	Soil	
		DATE S	DATE SAMPLED:	2021-03-29	2021-03-29	2021-03-30	2021-03-29	2021-03-30	2021-03-30	
Parameter	Unit	G/S	RDL	2322004	2322005	2322006	2322007	2322008	2322009	
Bromoform	B/Bn		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	B/Sn		0.05	40.05	\$0.0£	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachioroethane	6j6n		0.05	40.05	₹0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	6/6n		0.05	<0.05	€0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichlorobenzene	8/8n		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,4-Dichlorobenzene	B/Bn		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	B/Bn		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	6/6n		0.05	<0.05	<u>80</u> .05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene (Cis + Trans)	B/6rl		0.04	<0.04	Ø.0	<0.04	<0.04	<0.04	<0.04	
n-Hexane	6,6rl		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	14.0	<0.1	16.1	11.2	12.64	12.7	
Surrogate	Unit	Acceptable Limits	e Limits							
Toluene-d8	% Recovery	50-140	40	96	96	96	100	95	100	
4-Bromofluorobenzene	% Recovery	50-140	40	86	88	86	88	99	96	

RDL - Reported Detection Limit, G / S - Guideline / Standard Comments:

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was 2322004-2322009

performed. Results are based on the dry weight of the soil. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameters are non-accredited. The parameters that are components of the calculated nare accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CERTIFICATE OF ANALYSIS (V1)

Page 6 of 17

NPognukol N

Results relate only to the items tested. Results apply to samples as received.

タミ		Laboratorie	ratorie		PROJECT: 21458827	FAX (905)712-5122 http://www.exatlahs.com
CLIENT NAME: GOLDER ASSOCIATES LTD	SSOCIATES L1	e			ATTENTION TO: James Doyle	noo-constation and the state
SAMPLING SITE:					SAMPLED BY:	
					O. Reg. 558 - VOCs	
DATE RECEIVED: 2021-04-07					DATE REPORTED: 2021-04-16	4-16
	<i>S</i>	SAMPLE DESCRIPTION:	DESCRIPTION:	TCLP		
		DATES	DATE SAMPLED:	2021-03-30		
Parameter	Unit	G/S	RDL	2322010		
Vinyl Chloride Leachate	mg/L	0.2	0:030	<0.030		
1,1 Dichloroethene Leachate	mg/L	1.4	0.020	<0.020		
Dichloromethane Leachate	mg/L	5.0	0.030	<0.030		
Methyl Ethyl Ketone Leachate	mg/L	200	0.090	<0.090		
Chloroform Leachate	mg/L	10.0	0.020	<0.020		
1,2-Dichloroethane Leachate	mg/L	0.5	0.020	<0.020		
Carbon Tetrachloride Leachate	mg/L	0.5	0.020	<0.020		
Benzene Leachate	тg/L	0.5	0.020	<0.020		
Trichloroethene Leachate	mg/L	5.0	0.020	40.020		
Tetrachloroethene Leachate	mg/L	3.0	0.050	<0.050		
Chlorobenzene Leachate	mg/L	8.0	0.010	<0.010		
1,2-Dichlorobenzene Leachate	mg/L	20.0	0.010	<0.010		
1,4-Dichlorobenzene Leachate	mg/L	0.5	0.010	<0.010		
Surrogate	W Bostoner	Acceptable Limits	e Limits	6		
rouerte-uo 4-Bmmoftwmbenzene	% Recovery	50-140	6 6	5 25		

Certified By:

Results relate only to the fiems te 'estifts apply to samples as received.

A CERTIFICATE OF ANALYSIS (V1)

MPagnukohof

Page 7 of 17

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agetiabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle SAMPLED BY:

Soil Analysis RPT Date: Apr 16, 2021 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE Method Acceptable Acceptable Accentable Sample PARAMETER Blank Measure l imita Batch Limits Limits Dup #1 Dup #2 RPD Recove Valus Upper .ower Upper Uppe Lower Lower O. Reg. 153(511) - Metals & Inorganics (Soil) Antimony 2324942 <0.8 <0.8 NA < 0.8 126% 70% 130% 101% 80% 120% 77% 70% 130% Arsenic 2324942 5 5 0.0% < 1 114% 70% 130% 100% 80% 120% 100% 70% 130% Barlum 2324942 69.1 67.3 2.6% < 2.0 102% 70% 130% 100% 80% 120% 92% 130% 70% Bervillium 2324942 0.6 0.5 NA < 0.4 85% 70% 130% 114% 80% 120% 82% 70% 130% Boron 2324942 5 6 NA < 5 74% 70% 130% 101% 120% 80% 72% 70% 130% Boron (Hot Water Soluble) 2322004 2322004 <0.10 <0.10 NA < 0.10 79% 60% 140% 94% 70% 130% 92% 60% 140% Cadmium 2324942 <0.5 < 0.5 NA < 0.5 109% 70% 130% 101% 80% 120% 103% 70% 130% Chromlum 2324942 20 21 NA < 5 88% 70% 130% 97% 80% 120% 91% 70% 130% Cobalt 2324942 88 8.8 0.0% < 0.5 93% 70% 130% 100% 80% 120% 93% 70% 130% Copper 2324942 20.7 20.4 1.5% < 1.0 87% 70% 130% 103% 80% 120% 87% 70% 130% Lead 2324942 10 10 0.0% < 1 100% 70% 130% 97% 80% 120% 87% 70% 130% Molvbdenum 2324942 <0.5 <0.5 NA < 0.5 70% 110% 130% 101% 80% 120% 101% 70% 130% Nickel 2324942 17 17 0.0% < 1 92% 70% 130% 102% 80% 120% 91% 70% 130% Selenium 2324942 <0.8 <0.8 NA < 0.8 125% 70% 130% 105% 80% 120% 104% 70% 130% Silver 2324942 <0.5 <0.5 NA < 0.5 102% 70% 130% 105% 80% 120% 95% 70% 130% Thallium 2324942 <0.5 <0.5 NA < 0.5 91% 70% 130% 102% 80% 120% 96% 70% 130% Uranium 2324942 0.55 0.54 NA < 0.50 99% 70% 130% 100% 80% 120% 99% 70% 130% Vanadium 2324942 32.9 33.6 2.1% < 0.4 92% 70% 130% 96% 80% 120% 96% 70% 130% Zinc 2324942 51 51 0.0% < 5 99% 70% 130% 104% 80% 120% 98% 70% 130% Chromium, Hexavalent 2324734 <0.2 < 0.2 NA < 0.2 102% 70% 130% 84% 80% 120% 74% 70% 130% Cyanide, Free 2320472 < 0.040 < 0.040 NA < 0.040106% 70% 130% 102% 120% 80% 77% 70% 130% Mercurv 2324942 <0.10 <0.10 NA < 0.10 108% 70% 130% 102% 80% 120% 102% 70% 130% Electrical Conductivity (2:1) 2322004 2322004 0.283 0.276 2.5% < 0.005 97% 80% 120% Sodium Adsorption Ratio (2:1) 2322004 2322004 2.68 2.57 4.2% NA (Calc.) pH, 2:1 CaCl2 Extraction 2326707 7.33 7.43 1.4% NA 100% 80% 120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Teble 5-15 of Analytical Protocol document. Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 558 Metals and inorganic	8														
Arsenic Leachate	2322099	<0.010	<0.010	NA	< 0.010	102%	70%	130%	108%	80%	120%	123%	70%	130%	
Barium Leachate	2322099	1.14	1.25	9.2%	< 0.010	100%	70%	130%	104%	80%	120%	120%	70%	130%	
Boron Leachate	2322099	0.052	0.056	NA	< 0.050	95%	70%	130%	98%	80%	120%	89%	70%	130%	
Cadmium Leachate	2322099	<0.010	<0.010	NA	< 0.010	99%	70%	130%	100%	80%	120%	1 02%	70%	130%	
Chromium Leachate	2322099	<0.050	<0.050	NA	< 0.050	103%	70%	130%	109%	80%	120%	112 %	70%	130%	
Lead Leachate	2322099	<0.010	<0.010	NA	< 0.010	99%	70%	130%	96%	80%	120%	90%	70%	130%	
Mercury Leachate	2322099	<0.01	<0.01	NA	< 0.01	101%	70%	130%	100%	80%	120%	106%	70%	130%	
Selenium Leachate	2322099	<0.010	<0.010	NA	< 0.010	105%	70%	130%	113%	80%	120%	124%	70%	130%	
Silver Leachate	2322099	<0.010	<0.010	NA	< 0.010	102%	70%	130%	102%	80%	120%	94%	70%	130%	

RGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation inc. (CALA) and/or Standards Council of Canada (SCC) for specific testa listed on the scope of accreditation. AGAT Laboratories (Mississeuga) is also accredited by the Canadian Association for Laboratory Accreditation inc. (CALA) for specific testa tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is evaluable from www.cala.ca and/or www.ecc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619

ATTENTION TO: James Doyle

SAMPLED BY:

			Soil	Analy	/sis	(Coni	tinue	d)							
RPT Date: Apr 16, 2021				UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	1 1 1 1	ptable nits
TANOMETEN		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Uranium Leachate	2322099		<0.050	<0.050	NA	< 0.050	102%	70%	130%	102%	80%	120%	101%	70%	130%
Fluoride Leachate	2322099		0.18	0.18	NA	< 0.05	104%	90%	110%	103%	90%	110%	103%	70%	130%
Cyanide Leachate	2322099		<0.05	<0.05	NA	< 0.05	106%	70%	130%	102%	80%	120%	98%	70%	130%
(Nitrate + Nitrite) as N Leachate	2322099		<0.70	<0.70	NA	< 0.70	98%	80%	120%	95%	80%	120%	96%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Iris Verastequi

Page 9 of 17

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agaitabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle SAMPLED BY:

			Trac	e Or	ganio	cs Ar	alys	is							
RPT Date: Apr 16, 2021				UPLICAT	E		REFERE	ICE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (oli)													
F1 (C6 - C10)	2321501		<5	<5	NA	< 5	91%	60%	140%	99%	60%	140%	93%	60%	140%
F2 (C10 to C16)	2322009	232009	< 10	< 10	NA	< 10	101%	60%	140%	78%	60%	140%	84%	60%	140%
F3 (C16 to C34) F4 (C34 to C50)	2322009	232009	< 50	< 50	NA	< 50	91%	60%	140%	80%	60%	140%	69%	60%	140%
	2322009	232009	< 50	< 50	NA	< 50	90%	60%	140%	85%	60%	140%	81%	60%	140%
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	2322009	2322009	<0.05	<0.05	NA	< 0.05	93%	50%	140%	106%	50%	140%	87%	50%	140%
Vinyl Chloride	2322009		<0.02	< 0.02	NA	< 0.02	93%	50%	140%	71%	50%	140%	82%	50%	140%
Bromomethane	2322009	2322009	<0.05	<0.05	NA	< 0.05	80%	50%	140%	72%	50%	140%	74%	50%	140%
Trichlorofluoromethane	2322009	2322009	<0.05	<0.05	NA	< 0.05	94%	50%	140%	72%	50%	140%	74%	50%	140%
Acetone	2322009	2322009	<0.50	<0.50	NA	< 0.50	81%	50%	140%	97%	50%	140%	86%	50%	140%
											0070	1-1070	0070	0070	1-1070
1,1-Dichloroethylene	2322009		<0.05	<0.05	NA	< 0.05	90%	50%	140%	84%	60%	130%	73%	50%	1 40%
Methylene Chloride	2322009		<0.05	<0.05	NA	< 0.05	95%	50%	1 40%	80%	60%	130%	114%	50%	1 40%
Trans- 1,2-Dichloroethylene	2322009		<0.05	<0.05	NA	< 0.05	89%	50%	140%	90%	60%	130%	73%	50%	1 40%
Methyl tert-butyl Ether	2322009		<0.05	<0.05	NA	< 0.05	91%	50%	140%	85%	60%	130%	88%	50%	1 40%
1,1-Dichlorosthane	2322009	2322009	<0.02	<0.02	NA	< 0.02	97%	50%	140%	76%	60%	130%	97%	50%	1 40%
Methyl Ethyl Ketone	2322009	2322009	<0.50	<0.50	NA	< 0.50	76%	50%	140%	97%	50%	140%	80%	50B/	4400/
Cis- 1,2-Dichloroethylene	2322009		<0.02	<0.02	NA	< 0.02	82%	50%	140%	73%	60%	130%		50% 50%	140%
Chloroform	2322009		<0.04	<0.04	NA	< 0.02	100%	50%	140%	92%	60%	130%	95% 106%	50%	140% 140%
1,2-Dichloroethane	2322009		<0.03	<0.03	NA	< 0.03	99%	50%	140%	110%	60%	130%	84%	50%	140%
1,1,1-Trichloroethane	2322009		<0.05	<0.05	NA	< 0.05	92%	50%	140%	83%	60%	130%	80%	50%	140%
										0070	0070	10070	0070	4070	1-7070
Carbon Tetrachloride	2322009		<0.05	<0.05	NA	< 0.05	78%	50%	140%	91%	60%	130%	71%	50%	140%
Benzene	2322009		<0.02	<0.02	NA	< 0.02	88%	50%	140%	73%	60%	130%	109%	50%	140%
1,2-Dichloropropane	2322009		<0.03	<0.03	NA	< 0.03	81%	50%	140%	76%	60%	130%	89%	50%	140%
Trichloroethylene	2322009		<0.03	<0.03	NA	< 0.03	96%	50%	140%	84%	60%	130%	112%	50%	140%
Bromodichloromethane	2322009	2322009	<0.05	<0.05	NA	< 0.05	78%	50%	140%	76%	60%	1 30%	82%	50%	140%
Methyl Isobutyl Ketone	2322009	2322009	<0.50	<0.50	NA	< 0.50	74%	50%	140%	96%	60%	1409/	0.087	500/	4409/
1,1,2-Trichloroethane	2322009		<0.04	<0.04	NA	< 0.04	104%	50%	140%	113%	50% 60%	140%	99% 02M	50%	140%
Toluene	2322009		<0.05	<0.05	NA	< 0.05	115%	50%	140%	94%	60%	130% 130%	93%	50%	140%
Dibromochloromethane	2322009		<0.05	<0.05	NA	< 0.05	84%	50%	140%	79%	60%	130%	83% 80%	50%	140%
Ethylene Dibromide	2322009		<0.04	<0.04	NA	< 0.04	101%	50%	140%	109%	60%	130%	86%	50% 50%	140% 140%
			-						1-1070	10070	0070	10070	0070	0070	1-10 /0
Tetrachioroethylene	2322009	-	<0.05	<0.05	NA	< 0.05	102%	50%	140%	104%	60%	130%	74%	50%	1 40%
1,1,1,2-Tetrachloroethane	2322009		<0.04	<0.04	NA	< 0.04	94%	50%	1 40%	84%	60%	130%	100%	50%	1 40%
Chlorobenzene	2322009		<0.05	<0.05	NA	< 0.05	99%	50%	1 40%	105%	60%	130%	77%	50%	1 40%
Ethylbenzene	2322009		<0.05	<0.05	NA	< 0.05	108%		1 40%	88%	60%	130%	85%	50%	1 40%
m & p-Xylene	2322009	2322009	<0.05	<0.05	NA	< 0.05	104%	50%	140%	96%	60%	130%	81%	50%	1 40%
Bromoform	2322009	2322009	<0.05	<0.05	NA	< 0.05	74%	50%	140%	72%	60%	130%	72%	50%	140%
Styrene	2322009		<0.05	<0.05	NA	< 0.05	103%		140%	72% 86%		130%	83%	50%	140%
1,1,2,2-Tetrachloroethane	2322009		<0.05	<0.05	NA	< 0.05	111%		140%	81%		130%	0376 95%	50%	140%
o-Xylene	2322009		<0.05	<0.05	NA	< 0.05	95%		140%	103%		130%	90%		140%
		_		-144		- 01010	00 M	50 /4	1-107d	100/0	00.10		9070	0070	1-1-1-70

REGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tasts listed on the scope of accreditation. AGAT Laboratories (Mississeuge) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.acc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatiabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 212730619 ATTENTION TO: James Doyle

SAMPLED BY:

	-	Frace	Org	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Apr 16, 2021			6	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	1 1 1 1	ptable nits
		Id					Value	Lower	Upper		Lower	Upper	_	Lower	Upper
1,3-Dichlorobenzene	2322009	2322009	<0.05	<0.05	NA	< 0.05	96%	50%	140%	107%	60%	130%	86%	50%	140%
1,4-Dichlorobenzene	2322009	2322009	<0.05	<0.05	NA	< 0.05	107%	50%	140%	90%	60%	130%	9 9%	50%	140%
1,2-Dichlorobenzene	2322009	2322009	<0.05	<0.05	NA	< 0.05	101%	50%	140%	91%	60%	130%	100%	50%	140%
n-Hexane	2322009	2322009	<0.05	<0.05	NA	< 0.05	78%	50%	140%	110%	60%	130%	82%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be Indicated as Not Applicable (NA).

Certified By:

NPopukolo

Page 11 of 17

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauge) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLED BY:

DADAMETED	1017005		
PARAMETER Soil Analysis	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	

RGAT METHOD SUMMARY (V1)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agat(abs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 60208	
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 60208	
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 60208	3 ICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 60208	3 ICP-MS
Fluoride Leachate	INOR-93-6018	EPA 1311 & modified from SM4500-F-C	ION SELECTIVE ELECTRODE
Cyanide Leachate	INOR-93-6052	EPA 1311 modified from MOE 3015 SM 4500 CN-I,G387	TECHNICON AUTO ANALYZER
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & modified from SM 4500 - NO3- I	

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatilabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE: AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLING SITE:		ATTENTION TO:	Sallea Doyle
	4047000	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis F1 (C6 - C10)			
	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Molsture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methylene Chioride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Cls- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chlorafarm	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

AGAT WORK ORDER: 21Z730619

ATTENTION TO: James Doyle SAMPLED BY:

		SAMPLED BY:	-
SAMPLING SITE:	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,1 Dichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Dichloromethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chloroform Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Benzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatiabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Tetrachloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

No Declared Value Entered By Sender / Aucune valeur déclarée entrée pai

CONDITIONS OF CARRIAGE

IMPORTANT - PLEASE READ: The consignor agrees that the act of tendering the shipment to the carrier for transportation shall be sufficient to constitute signature of this bill of lading by the consignor and shall bind the consignor to the conditions of carriage stated below.

RECEIPT Carrier auknowledges receiving from the shipper, at this point of origin and on the date specified, the shipment described in this bill of taking in apparent good brider, except as noted (contents and contitions of borkents of themanut inductivent), and agrees to carry and deliver the shipment, to the secariver at the destination set out in this bill of taking, subject to payment of all lawind dranges. "Carrier" retiers to Provide on her, and any contracting and/or successive taking, subject to payment of all lawind dranges. "Carrier" retiers to Provide on her, and any contracting and/or successive carriers involved in the transportation of the shipment herein described, including any of their respective subsidiarias. NOTICE OF CLAIM Carrier is not liable for any loss, damage or delay to any goods carried under this bill of lading unless notice of the claim setting out particulars of the origin, destination and other of shipment of the goods and the days either the claim setting out particulars of the origin, destination and owning up the carrier within sixty (50) days either the claim set of a respect of such bass, defaure to make delivery, within nine (5) months from the date of shipment. Subject to any overriding statutory provisions, the final statement of the claim wild be filled within who (9) months from the date of periods may govern. No dainwill be enterstimed and regulate or dranges due in connection with this bill of lading have been paid in full. All blaims are subject to proof of emound of loss. TERMS INCORPORATED BY REFERENCE Every service to be performed under this bill of lading is subject to the conditions of carriage conterined in this bill of lading, including the terms and conditions contained in Purolator Inc.'s postishared amount and carriage and the terms and conditions prescribed by the awe of the identication where the goods originate (roulding the uniform conditions of carriage thereunder, if any). If the carriage involves an ultimate destination or a stop in a country of the name and conditions prescribed by the ave of the identication where the global or a stop in a country of the name of carriage thereunder, if any). If the carriage involves an ultimate destination or a stop in a country of the name of despiration, the Convention for staffined below) may apply and for the Unification of carriage to a class of, damage to ar delay of cargo. 'Convention' means apply and for the Unification of carriage by Air, signed at Warsew, Poland, 12 Octobert, 1820, or the Convention for the Unification of Contain Rules for International Carriage by Air, signed at Warsew, Colobert, Convention Convention for the Unification of carriage for interactional Carriage by Air, signed at Warsew, Foland, 12 Octobert, Carriade, 28 May, 1989, or those Conventions as amended or supplemented as may be applicable to the carriage MISCELLANEOUS Unless otherwise indicated, the consignor's name and address is the sender's name and address indicated on this bill of lading, and the latter is the place of execution and the place of destimus; the consignee's name and address is the reconstruct. The complexes indicated on this bill of lading, and the latter is the place of destination; and that address is the reconstruct the complexes indicated on this bill of lading is the space of destination; and the table indicated on this bill of lading is the date of execution. There are no specific stopping places which are agreed to, and the carrier reserves the right to select the route and the mode of transportation that the admines the appropriate. The consignor warrants that the athinent is properly described on this bill of tading and on any accompanying documentation. and that the athinent is properly described on this bill of tading and on any accompanying documentation. The consignor warrants that the athinent is properly described on this bill of tading and on any accompanying documentation. The consignor warrants that the athinent is properly described on this bill of tading and on any accompanying documentation. The consignor appoints the carrier set in handling. Unless otherwise indicated on this bill of transportation in accordance with the carrier's ordinary care in handling. Unless otherwise indicated on this bill of this bill of facing. The consignor appoints the carrier's at fix agent for the performance of customs destructs and on selecting a customs broker. ENTIRE AGREEMENT The terms and conditions contained in this bill of lading, including those incorporated herein by reference, constitute the entire agreement relating to the carriage of the suptoment described in this bill of lading, and no gash, serverur for representative of the carrier or consignor has the authority to after, waive or othewise modify any provision of this agreement. In the trading the suptoment described herein for carriago, the consignor agrees to these terms and conditions on his own behalf and on behalf of the consignee and any other party cleining an interest in this too. LMITATION ON LIABILITY Carrier's fieblify in respect of the shipment described in this bill of lading (including for any loss, damage, delay, misdelivery, non-derivery or failure to deliver) is limited to \$2.00 per pound (\$4.41 per kilopram) computed on the total work of the singment, unless a higher value is descreted in the specialiy merked Eurolstor Online Shipping user entry field, "Declared Value for Insurance (\$7. Notwithstanding any disclosure of the nature to value of the goods carrier of entry special agreement to the confrazy, carrier is not liable under any circumstances for the consequences of delay, or for any indirect or consequential damages (including lost profils) howsoever caused. controlled entities, and their respective employees, agents and independent contractors hereunder

Les Modalités et conditions de servica publiées de Puroletor s'appliquent - voir www.purolator.com.

Veuillez plier ce connaissement sur la lione pointiliée et l'insérer dans la pochette adhèsive. Veuillez loindre un connaissement à chaque colla

Fold the Bill of Lading on the dotted line and insert into the adhesive pouch. Attach a Bill of Lading to each package.

Purolator Express 9AM	es AVE GA, ON	905-712-5100	54	332856276487
	IDAT Sample Reception AGAT Laboratories 5835 COOPERS AVE MISSISSAUGA, L4Z 1Y2		30 LB	ATOR PIN:
-IPurolator	FROM / DE AGAT Laboratories 6 ANTARES DR 6 ANTARES DR Nerbean, ON K2E 849 613-225-9668 613-225-9668		DATE: 07 APR 2021 PIECES: 3 of/de 4 WEIGHT/POIDS: 3	EXP 9:00

17. of 17

shipment.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD **1931 ROBERTSON ROAD** OTTAWA, ON K2H5B7 (613) 592-9600 **ATTENTION TO: James Doyle** PROJECT: 21458827 AGAT WORK ORDER: 21Z732096 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer DATE REPORTED: Apr 19, 2021 PAGES (INCLUDING COVER): 13 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

110100			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
Disclaimer	 	 	

thiston

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may Incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 13

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA)

Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the Acceleration inc. (CAL-A) endors canoards count of canada (CAC) for specific tests tested on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the acope of accreditation. Measurement Uncertainty is not taken into consideration when starting conformity with a superified tax immerset. conformity with a specified requirement.

				Certificate of Analvsis	ate of Ar	nalvsis	5835 COOPERS AVENUE MISSISSAUGA, ONTARIO
りに		GAT Laboratories		AGAT WORK ORDER: 21Z732096 PROJECT: 21458827	ORDER: 21Z 458827	732096	CANADA L4Z 172 TEL (905)712-5100 FAX (905)712-5122 http://www.spatiates.com
CLIENT NAME: GOLDER ASSOCIATES LTD	SOCIATES	LTD				ATTENTION TO: James Doyle SAMPLED BY:S. Olthof	
). Reg. 153(5	O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)	-1 - F4 (-BTE	EX) (Water)	
DATE RECEIVED: 2021-04-09							DATE REPORTED: 2021-04-19
		SAMPLE DESCRIPTION:	23	53-MW21-2	53-MW21-3	53-MW21-4 Water	
		SAMPLE LTPE: DATE SAMPLED:	ED: 2021-04-08 11:30	2021-04-08 12:15	2021-04-08 10:15	2021-04-08 11:00	
Parameter	Unit	G/S RDL	(1	2330108	2330109	2330113	
F1 (C6 - C10)	ng/L	25	<25	<25	<25	528	
F1 (C6 to C10) minus BTEX	hg/L	25	<25	<25	<25	283	
F2 (C10 to C16)	hg/L	100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	100	<100	<100	<100	<100	
F4 (C34 to C50)	hg/L	100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	hg/L	500	NA	NA	NA	NA	
Sediment			Yes	Yes	Y08	Yes	
Surrogate	Unit	Acceptable Limits	S				
Toluene-d8	% Recovery	y 50-140	118	106	98.8	96.2	
Terphenyl	%	60-140	71	76	69	99	
Comments: RDL - Reported Detection Limit; 2330088-2330113 The C6-C10 fraction is celculate C6-C10 (F1 minus BTEX) is a c	etection Limit; on is catculated s BTEX) is a ca	RDL - Reported Detection Limit; G / S - Guideline / Standard The C6-C10 fraction is celculated using Toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculat	andard se factor. e calculated value li	s F1 minus BTEX. T	he calculated para	meter is non-accredited. The parame	RDL - Reported Detection Limit; G / S - Guideline / Standard The C6-C10 fraction is calculated using Toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are
accredited. The C10 - C16, C Gravimetric Heav The chromatogram	16 - C34, and (y Hydrocarbon n has returned	scoredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34. Dravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34. The chromatogram thas returned to baseline by the retention time of nC50.	calculated using the e Total C16 - C50 ai htton time of nC50.	average response nd are only determir	factor for n-C10, n- ned if the chromato	C16, and nC34. gram of the C34 - C50 Hydrocarbons	accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34. Gravimetric Heavy Hydrocarbons are not included in the Total C18 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to beseline by the retention time of nC50.
Total Job 200 read up to a local up to the method complies v nC6 and nC10 respons nC10, nC34, nC34, nC34, nC34, nC34, locator is Linearity is within 15%.	illes with the R ponse factors iC34 response iC34 response iC1 is within 70	rotal co-cov results are corrected for brite computation. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toltene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. nC10, nC16 and nC34 response factors are within 10% of their average. Inservice lawithin 15%.	a CWS PHC and is no response factor. of their average. 4 average.	validated for use in t	the laboratory.		
Extraction and ho Fractions 1-4 are	ding times wer quantified with	Extraction and holding times were met for this sample.	ls. Under Ontario R	egulation 153, resul	ts are considered v	alld without determining the PAH con	Extraction and holding times were met for this sample. Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

M. Paper i kohr

A CERTIFICATE OF ANALYSIS (V1)

esults apply to samples as received. Results relate only to the Items te

Fractions 1-4 are quantitied with the contribution of the sample prior to extraction and is not an accredited test. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5120 http://www.egatiabs.com

Lat
G
Ū
F

CLIENT NAME: GOLDER ASSOCIATES LTD

boratories

Certificate of Analysis AGAT WORK ORDER: 21Z732096 PROJECT: 21458827

ATTENTION TO: James Doyle

								ALLENTION TO. Jailles DUYIE
SAMPLING SITE: Bank #53							SAMPLED BY:S. Olthof	:S. Olthof
				O. Reg.	153(511) -	O. Reg. 153(511) - VOCs (Water)	er)	
DATE RECEIVED: 2021-04-09								DATE REPORTED: 2021-04-19
		SAMPLE DESCRIPTION:	CRIPTION:	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	DATE SAMPLED:	2021-04-08 11:30	2021-04-08 12:15	2021-04-08 10:15	2021-04-08 11:00	
Parameter	Unit	G/S	RDL	2330088	2330108	2330109	2330113	
Dichlorodifluoromethane	hg/L		0.20	<0.20	₫ 20	<0.20	<0.20	
Vinyl Chloride	hg/L		0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μ0/L		0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	µg∕L		0.40	<0.40	<0.40	<0.40	<0.40	
Acetone	µg√L		1.0	<1.0	<1.0	c.1.0	<1.0	
1,1-Dichiaroethyiene	hg/L		0:30	<0.30	<0.30	<0.30	<0.30	
Methylene Chloride	hg/L		0:30	<0.30	<0.30	<0.30	<0.30	
trans-1,2-Dichloroethylene	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	hg/L		0.30	<0.30	<0.30	<0.30	<0.30	
Mathyl Ethyl Ketone	hg/L		1.0	<1.0	<1.0	<1.0	<1.0	
ds-1,2-Dichlaroethylene	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	hg/L		0.20	0.54	3.49	0.91	4.61	
1,2-Dichloroethane	hg/L		0.20	<0.20	<0.20	<0.20	5.31	
1,1,1-Trichloroethane	Ъĝ		0.30	<0.30	<0.30	<0.30	<0.30	
Cerbon Tetrachioride	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	HOL		0.20	0.46	0.25	<0.20	70.7	
1,2-Dichloropropane	нgл		0.20	<0.20	<0.20	<0.20	<0.20	

Certified By:

<0.20 <1.0<0.20

<0.20

<0.20

<u>60.20</u> 0.1v

<0.20 <0.20

<0.20

<0.20 <0.20 <0.10 <0.10 <0.20

<0.20

⊲0.20 <0.20 ≪0.10

0.20 0.20 1.0 0.20 0.20 0.10

Bromodichloromethane

Trichioroethylene

Methyl Isobutyl Ketone 1,1,2-Trichloroethane

<1.0

<0.20 ⊲0.10

₹ 10

<020 <020

<0.10 <0.10

10.9

<0.10 <0.10

<0.10 <0.10 <0.10

<0.10

0.10

<0.20 ≤0.10 <0.10 **∂**.10

0.10 0.20 0.10 0.10 0.10

<0.20 <u>6.10</u>

₫.10 **60.10**

hg/L

1,1,1,2-Tetrachloroethane

Chlorobenzene Ethylbenzene

Dibromochloromethane

Toluene

Ethylene Dibromide Tetrachloroethylene <mark>98</mark>

<0.20

CERTIFICATE OF ANALYSIS (V1)

Page 3 of 13

+ Byrukok

Results relate only to the items tested. Results apply to samples as received.

	Laboratories
	LUDU
and the second	

Certificate of Analysis

ATTENTION TO: James Doyle AGAT WORK ORDER: 21Z732096 PROJECT: 21458827

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADAL 42 1Y2 TEL (905)712-5120 FAX (905)712-5120 http://www.agatlabs.com

ES LTD	
ASSOCIATE	
E: GOLDER	
CLIENT NAM	

SAMPLED BY:S. Olthof

SAMPLING SITE: Bank #53							SAMPLED BY:S. Olthof	Olthof
			0	. Reg. 15	3(511) - \	O. Reg. 153(511) - VOCs (Water)	ar)	
DATE RECEIVED: 2021-04-09								DATE REPORTED: 2021-04-19
		SAMPLE DESCRIPTION:	ON: 53-MW21-1		53-MW21-2	53-MW21-3	53-MW21-4	
		SAMPLE TYPE:	/PE: Water		Water	Water	Water	
		DATE SAMPLED:	30		2021-04-08 12:15	2021-04-08 10:15	2021-04-08 11:00	
Parameter	Chit	G/S RDL			2330108	2330109	2330113	
m & p-Xviene	ng/L	0.20	0 <0.20		<0.20	<0.20	53.2	
Bromoform	hg/L	0.10			<0.10	<0.10	<0.10	
Styrene	ng/L	0.10	0 <0.10		<0.10	<0.10	<0.10	
1.1.2.2-Tetrachloroethane	ug/L	0.1		10	<0.10	<0.10	<0.10	
o-Xviene	ua/L	0.10			<0.10	<0.10	1.88	
1.3-Dichlorobenzene	ng/L	0.10	0 <0.10		<0.10	<0.10	<0.10	
1.4-Dichlorobenzene	nα/L	0.10			<0.10	<0.10	<0.10	
1.2-Dichlorobenzene	ng/L	0.10	0 <0.10	10	<0.10	<0.10	<0.10	
1.3-Dichloropropene	hg/L	0:30	0 <0.30	30	<0.30	<0.30	<0.30	
Xvienes (Total)	hg/L	0.20	0 <0.20	20	<0.20	<0.20	56.1	
n-Hexane	hg/L	0.20	0 <0.20	20	<0.20	<0.20	<0.20	
Surrogate	Chrit	Acceptable Limits	Its					
Toluene-d8	% Recovery	50-140	20	0	73	77	80	
4-Bromofluorobenzene	% Recovery	50-140	95	10	102	111	103	
Comments: RDL - Reported Detection Limit;	betection Limit;	G / S - Guideline / Standard	tandard					

2330088-2330113 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.
The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

MPognukoli

Page 4 of 13

Laboratories	е
agat	CLIENT NAME: GOLDER ASSOCIATES LTD
	CLIENT NAM

AGAT WORK ORDER: 21Z732096 PROJECT: 21458827

Certificate of Analysis

ATTENTION TO: James Doyle

SAMPLING SITE: Bank #53							SAMPLED BY:S. Olthof	Olthof
			O. Reg.	153(511) -	Metals (Inc	Inding Hyd	153(511) - Metals (Including Hydrides) (Water)	
DATE RECEIVED: 2021-04-09								DATE REPORTED: 2021-04-19
		SAMPLE DE	SAMPLE DESCRIPTION:	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	
		SA	SAMPLE TYPE:	Water	Water	Water	Water	
		DAT	DATE SAMPLED:	2021-04-08 11:30	2021-04-08 12:15	2021-04-08 10:15	2021-04-08 11:00	
Parameter	Unit	G/S	RDL	2330088	2330108	2330109	2330113	
Dissolved Antimony	hg/L		1.0	<1.0	<1.0	<1.0 1	<1.0	
Dissolved Arsenic	101		1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Barlum	hg/L		2.0	165	185	90.7	216	
Dissofred Beryllium	hg/L		0.60	<0.50	<0.50	<0.50	<0.50	
Dissolved Boron	hg/L		10.0	43.2	35.4	35.3	53.1	
Dissolved Cadmium	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Chramium	hg/L		2.0	2.0	20	<2.0	<2.0	
Dissolved Cobait	hg/L		0.50	2.94	4.20	1.22	3.46	
Dissolved Copper	hg/L		1.0	1.6	11.5	1.5	1.0	
Dissolved Lead	hg/L		0.50	<0.50	1.58	<0.50	<0.50	
Dissolved Motybdenum	hg/L		0.50	2.70	2.24	0.90	2.75	
Dissolved Nickel	hg/L		3.0	4.5	16.3	3.0	<3.0	
Dissolved Selenium	hg/L		1.0	4.1	1.7	<1.0	<1.0	
Dissolved Silver	hgr		0.20	<0.20	0.58	0.34	<0.20	
Dissolved Thallium	μg/L		0:30	40.30	<0.30	<0.30	<0.30	
Dissolved Uranium	hg/L		0.50	1.80	1.36	1.26	6.34	
Dissolved Vanadium	нgЛ		0.40	<0.40	1.03	<0.40	0.88	
Dissolved Zinc	hg/L		5.0	<5.0	14.5	<5.0	<5.0	

G / S - Guideline / Standard 2330088-2330113 Metals analysis completed on a filtered sample. RDL - Reported Detection Lmit, Comments:

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

ADAT CERTIFICATE OF ANALYSIS (V1)

Page 5 of 13

Vris Venestiqui

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE:Bank #53 AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle

SAMPLED BY:S. Olthof

			Trac	e Or	ganio	cs Ar	nalys	is							
RPT Date: Apr 19, 2021				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	2334169		<0.20	<0.20	NA	< 0.20	83%	50%	140%	91%	50%	140%	99%	50%	140%
Vinyl Chloride	2334169		<0.17	<0.17	NA	< 0.17	103%	50%	140%	93%	50%	140%	106%	50%	140%
Bromomethane	2334169		<0.20	<0.20	NA	< 0.20	106%	50%	140%	115%	50%	140%	90%	50%	140%
Trichlorofluoromethane	2334169		<0.40	<0.40	NA	< 0.40	109%	50%	140%	108%	50%	140%	103%	50%	140%
Acetone	2334169		<1.0	<1.0	NA	< 1.0	103%	50%	140%	113%	50%	140%	117%	50%	140%
1,1-Dichloroethylene	2334169		<0.30	<0.30	NA	< 0.30	96%	50%	140%	90%	60%	130%	118%	50%	140%
Methylene Chloride	2334169		<0.30	<0.30	NA	< 0.30	107%	50%	140%	105%	60%	130%	109%	50%	140%
trans- 1,2-Dichloroethylene	2334169		<0.20	<0.20	NA	< 0.20	95%	50%	140%	89%	60%	130%	95%	50%	140%
Methyl tert-butyl ether	2334169		<0.20	<0.20	NA	< 0.20	103%	50%	140%	1 07%	60%	130%	91%	50%	140%
1,1-Dichloroethane	2334169		<0.30	<0.30	NA	< 0.30	109%	50%	140%	1 00%	60%	130%	102%	50%	140%
Methyl Ethyl Ketone	2334169		<1.0	<1.0	NA	< 1.0	105%	50%	140%	99%	50%	140%	99%	50%	140%
cis- 1,2-Dichloroethylene	2334169		<0.20	<0.20	NA	< 0.20	93%	50%	140%	102%	60%	130%	107%	50%	140%
Chloroform	2334169		<0.20	<0.20	NA	< 0.20	100%	50%	140%	89%	60%	130%	105%	50%	140%
1.2-Dichloroethane	2334169		<0.20	<0.20	NA	< 0.20	103%	50%	140%	96%	60%	130%	88%	50%	140%
1,1,1-Trichloroethane	2334169		<0.30	<0.30	NA	< 0.30	79%	50%	140%	83%	60%	130%	89%	50%	140%
Carbon Tetrachloride	2334169		<0.20	<0.20	NA	< 0.20	96%	50%	140%	94%	60%	130%	109%	50%	140%
Benzene	2334169		<0.20	<0.20	NA	< 0.20	99%	50%	140%		60%	130%	78%	50%	140%
1,2-Dichloropropane	2334169		<0.20	<0.20	NA	< 0.20		50%	140%		60%	130%	102%	50%	140%
Trichloroethylene	2334169		<0.20	<0.20	NA	< 0.20	110%	50%	140%	90%	60%	130%	96%	50%	140%
Bromodichloromethane	2334169		<0.20	<0.20	NA	< 0.20	115%	50%	140%	96%	60%	1 30%	110%	50%	140%
Methyl Isobutyl Ketone	2334169		<1.0	<1.0	NA	< 1.0	84%	50%	140%	81%	50%	140%	81%	50%	140%
1,1,2-Trichloroethane	2334169		<0.20	<0.20	NA	< 0.20	-	50%	140%		60%	130%		50%	
Toluene	2334169		<0.20	<0.20	NA	< 0.20		50%	140%		60%	130%		50%	
Dibromochloromethane	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%	130%		50%	140%
Ethylene Dibromide	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%			50%	140%
Totaschlornothydono	2334169		<0.20	<0.20	NA	< 0.20	95%	50%	140%	100%	60%	130%	109%	50%	140%
Tetrachloroethylene 1,1,1,2-Tetrachloroethane	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%			50%	
Chlorobenzene	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%			50%	
Ethylbenzene	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%			50%	
m & p-Xylene	2334169		<0.20	<0.20	NA	< 0.20		50%	140%		60%			50%	1409
Duamafarra	2224460		<0.10	<0,10	NA	< 0.10	100%	50%	140%	101%	60%	130%	97%	50%	1409
Bromoform	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%			50%	
Styrene 1,1,2,2-Tetrachloroethane	2334169 2334169		<0.10	<0.10	NA	< 0.10						130%			1409
o-Xylene	2334169		<0.10	<0.10	NA	< 0.10		50%			60%			50%	
1,3-Dichlorobenzene	2334169		<0.10	<0.10	NA	< 0.10			140%			130%			1409
	0004400		-0.10	-0.40	MA	~ 0.40	0.00%	60%	140%	5 112%	60%	130%	5 108%	50%	1409
1,4-Dichlorobenzene	2334169		<0.10	<0.10	NA	< 0.10		50%			60%			50%	
1,2-Dichlorobenzene	2334169		<0.10	<0.10	NA	< 0.10		50%							1407
n-Hexane	2334169		<0.20	<0.20	NA	< 0.20) 93%	50%	140%	5 78%	60%	130%	0176	50%	1407

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.sco.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items tested. Results apply to samples as received.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatiabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21458827 SAMPLING SITE:Bank #53

AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle SAMPLED BY:S. Olthof

	٦	Frace	Org	anics	Ana	alysis	(Cor	ntin	ued	l)					
RPT Date: Apr 19, 2021				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.1-	ptable nits	Recovery	1.1.1	ptable mits
							value	Lower	Upper		Lower	Upper			Upper
O. Reg. 153(511) - PHCs F1 - F4	4 (-BTEX) (Wa	iter)													<u> </u>
F1 (C6 - C10)	2330212		<25	<25	NA	< 25	101%	60%	140%	101%	60%	140%	103%	60%	140%
F2 (C10 to C16)	2337275		< 100	< 100	NA	< 100	101%	60%	140%	78%	60%	140%	76%	60%	140%
F3 (C16 to C34)	2337275		< 100	< 100	NA	< 100	91%	60%	140%	62%	60%	140%	60%	60%	140%
F4 (C34 to C50)	2337275		< 100	< 100	NA	< 100	90%	60%	140%	71%	60%	140%	60%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Parcent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

ROAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISC/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississeuga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific dinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 13

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

Manager Annals and a

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:Bank #53

AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle

SAMPLED BY:S. Olthof

				Wate	er An	alysi	S								
PT Date: Apr 19, 2021	·			UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.14	ptable nits	Recovery	1.14	ptable nits
TANAMETER		ld		_++			Value	Lower	Upper		Lower	Upper		Lower	Uppe
). Reg. 153(511) - Metals (includ	ing Hydride	s) (Water))												
Dissolved Antimony	2328681		<1.0	<1.0	NA	< 1.0	102%	70%	130%	106%	80%	120%	106%	70%	1309
Dissolved Arsenic	2328681		<1.0	1.9	NA	< 1.0	96%	70%	130%	101%	80%	120%	108%	70%	1309
Dissolved Barium	2328681		96.1	92.4	3.9%	< 2.0	99%	70%	130%	100%	80%	120%	105%	70%	1309
Dissolved Beryllium	2328681		<0.50	<0.50	NA	< 0.50	103%	70%	130%	103%	80%	120%	120%	70%	1309
Issolved Boron	2328681		35.4	37.3	NA	< 10.0	100%	70%	130%	101%	80%	120%	113%	70%	1309
Dissolved Cadmlum	2328681		<0.20	<0.20	NA	< 0.20	102%	70%	130%	105%	80%	120%	100%	70%	130
Dissolved Chromium	2328681		<2.0	<2.0	NA	< 2.0	91%	70%	130%	96%	80%	120%	99%	70%	130
Dissolved Cobalt	2328681		2.00	1.90	NA	< 0.50	96%	70%	130%	103%	80%	120%	106%	70%	130
Dissolved Copper	2328681		<1.0	1.6	NA	< 1.0	91%	70%	130%	99%	80%	120%	94%	70%	130
Dissolved Lead	2328681		<0.50	<0.50	NA	< 0.50	98%	70%	130%	103%	80%	120%	98%	70%	130
Dissolved Molybdenum	2328681		<0.50	<0.50	NA	< 0.50	99%	70%	130%	98%	80%	120%	104%	70%	130
Dissolved Nickel	2328681		<3.0	<3.0	NA	< 3.0	88%	70%	130%	96%	80%	120%	94%	70%	130
Dissolved Selenium	2328681		<1.0	<1.0	NA	< 1.0	106%	70%	130%	113%	80%	120%	109%	70%	130
Dissolved Silver	2328681		<0.20	0.24	NA	< 0.20	97%	70%	130%	105%	80%	120%	103%	70%	130
Dissolved Thallium	2328681		<0.30	<0.30	NA	< 0.30	104%	70%	130%	103%	80%	120%	102%	70%	130
Dissolved Uranlum	2328681		0.52	<0.50	NA	< 0.50	107%	70%	130%	110%	80%	120%	113%	70%	130
Dissoived Vanadium	2328681		<0.40	<0.40	NA	< 0.40	89%	70%	130%	93%	80%	120%	97%	70%	130
Dissolved Zinc	2328681		<5.0	<5.0	NA	< 5.0	93%	70%	130%	98%	80%	120%	94%	70%	130

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the dupilcates are under 5X the RDL and will not be calculated.

Certified By:

Iris Verastegui

Page 8 of 13

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21458827

SAMPLING SITE: Bank #53

AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle

SAMPLING SITE:Bank #53		SAMPLED BY:S. (Olthof
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F1 (C6 - C10)	VOL-91- 5010	modified from MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC E3421	BALANCE
Terphenyl Sediment	VOL-91-5009	modified from MOE PHC E3421	GC/FID
Dichiorodifiuoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofiuoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylens Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichlorosthylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

RGAT METHOD SUMMARY (V1)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5122 Handi Canada L4Z 192 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

AGAT WORK ORDER: 21Z732096 **ATTENTION TO: James Doyle**

SAMPLING SITE:Bank #53		SAMPLED BY:S.	Olthof
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatiabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE:Bank #53 AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle

SAMPLING SITE:Bank #53		SAMPLED BY:S	. Olthof
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmlum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS

Laboratory Use Only Work Order #: 212732096 Cooler Quantity: GUE-ILE	Arrival Temperatures: 22 14-0 1213	tract:	Turnaround Time (TAT) Required:	Reguiar TAT (Ruch Surdanges Apply) Rush TAT (Ruch Surdanges Apply)	3 Business 2 Business Next Business Days Days Day OR Date Required (Rush Surcharges May Apply):	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM	MHT X Volatiles: X VOC BTEX THM ABNG PHGG F1 - F4 PBNG PBNG PBNG	Image: State of the state o
5835 Coopers Avenue Mississauga, Ortario L42 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com	able water consumed by humans)	🗌 No Regulatory Requirement	ise Regulation 558	y		Report Guideline on Certificate of Analysis Ves D No	Image: Constraint of the second of the se	
ries	ise Drinking Water Chain of Custody Form (potable water consumed by humans)	Regulatory Requirements:	Regulation 153/04	Table metate one Santtary Ind/Som ERes/Park Storm	Soil Texture cneek One) Region	s submission for I of Site Conditiones I of Site Conditiones I of Site Conditiones I of Site Conditiones I of Site Site Site Site Site Site Site Site	ample Matrix Legend Bidra W Ground Water Oil Paint Sediment W Surface Water W Surface Water Comments/ Special Instructions	Servers Restored Barting and Barting And Barting And Barting And Barting And Barting And
REGAT Laborato	Chain of Custody Record It this is a Drinking Water sample, please use	Report Information: CAL	T	Address: 613-298-6265 Fax.	9	Project Information: Project: 21458823 Site Location: Some # 53	AGAT Quote #: Mease mode: if quote different is intermediation intermediatintermediatintermediatintermediation intermediatintermediation int	Namples Referenti fra Brighti Varins and Kari. Namples Referenti fra Brighti Varins and Kari. Samples Relinquished By Phot Name and Signi: Samples Relinquished By Phot Name and Signi:

ō Instructions for use of this form: 1) complete all fields of info including total # of coolers and # of submissions rec'd, 2) photocopy and place in each Page: : Arrival Temperatures - Laboriatory 🕫 submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan [piese make sure to scan along with the COC) AM / PM abbratories t Fime: COC# or Work Order #: # of Submissions: Sample Temperature Hog ("boggged ice) Cooler #1: Cooler#10: . (Eve parts) cooler #2: Cooler#3: Cooler#4: Cooler#5: Cooler#6: Cooler #9: Cooler#8 Cooler#7 Date Led Te IR Gun ID: Taken By: :(pp/u/////// (bussed ine) (Welled Countral AM / PM Arrival Temperatures - Branch/Driver Ottawa Brionch 3 2.4 15.4 5.0 3-5 5 Tìme: 50 9 2.5 56 いし Cooler #1: 72 Cooler #4: 5.0 50 Cooler #2: 6.5 500 30 Cooler #5: % Cooler #3: 7 Cooler #10: Cooler #6: Cooler #7: Cooler #9: Cooler #8 ł Client: Date lyvyv/mm/dd): IR Gun ID: Taken By: # of Coolers:

Page 13 of 13

Document 10: SR-78-9511.003 Date issued: 2017-2-23

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Nick Sullivan

Client PO: 54500 Project: PE5590 Custody: 64385

Report Date: 12-May-2022 Order Date: 5-May-2022

Order #: 2219554

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2219554-01	BH1-22-SS3/SS4A
2219554-02	BH1-22-SS8
2219554-03	BH2-22-SS4A
2219554-04	BH2-22-SS5
2219554-05	BH3-22-SS3
2219554-06	BH3-22-SS6
2219554-07	DUP-1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 12-May-2022 Order Date: 5-May-2022

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	6-May-22	9-May-22
Conductivity	MOE E3138 - probe @25 °C, water ext	9-May-22	9-May-22
Mercury by CVAA	EPA 7471B - CVAA, digestion	10-May-22	10-May-22
Metals, ICP-MS	EPA 6020 - Digestion - ICP-MS	12-May-22	12-May-22
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	10-May-22	10-May-22
PHC F1	CWS Tier 1 - P&T GC-FID	6-May-22	7-May-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	6-May-22	8-May-22
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	9-May-22	9-May-22
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	6-May-22	8-May-22
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	6-May-22	7-May-22
SAR	Calculated	9-May-22	9-May-22
Solids, %	Gravimetric, calculation	6-May-22	9-May-22

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54500

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: PE5590

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-22-SS3/SS4A 03-May-22 09:00 2219554-01 Soil	BH1-22-SS8 03-May-22 09:00 2219554-02 Soil	BH2-22-SS4A 03-May-22 09:00 2219554-03 Soil	BH2-22-SS5 03-May-22 09:00 2219554-04 Soil	
Physical Characteristics				•	,	
% Solids	0.1 % by Wt.	84.0	83.2	78.3	88.4	
General Inorganics						
SAR	0.01 N/A	13.5	-	-	-	
Conductivity	5 uS/cm	1670	-	-	-	
рН	0.05 pH Units	-	7.49	-	-	
Metals	· · · · ·					
Antimony	1.0 ug/g dry	-	-	2.8	-	
Arsenic	1.0 ug/g dry	-	-	3.0	-	
Barium	1.0 ug/g dry	-	-	38.1	-	
Beryllium	0.5 ug/g dry	-	-	<0.5	-	
Boron	5.0 ug/g dry	-	-	7.2	-	
Cadmium	0.5 ug/g dry	-	-	<0.5	-	
Chromium	5.0 ug/g dry	-	-	15.9	-	
Chromium (VI)	0.2 ug/g dry	-	-	<0.2	-	
Cobalt	1.0 ug/g dry	-	-	5.6	-	
Copper	5.0 ug/g dry	-	-	13.1	-	
Lead	1 ug/g dry	-	-	-	5	
Lead	1.0 ug/g dry	-	-	48.0	-	
Mercury	0.1 ug/g dry	-	-	<0.1	-	
Molybdenum	1.0 ug/g dry	-	-	<1.0	-	
Nickel	5.0 ug/g dry	-	-	14.7	-	
Selenium	1.0 ug/g dry	-	-	<1.0	-	
Silver	0.3 ug/g dry	-	-	<0.3	-	
Thallium	1.0 ug/g dry	-	-	<1.0	-	
Uranium	1.0 ug/g dry	-	-	<1.0	-	
Vanadium	10.0 ug/g dry	-	-	26.6	-	
Zinc	20.0 ug/g dry	-	-	37.1	-	
Volatiles			<u> </u>	ł	·	
Acetone	0.50 ug/g dry	<0.50	<0.50	-	<0.50	
Benzene	0.02 ug/g dry	<0.02	<0.02	-	<0.02	
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05	
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	<0.05	
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05	
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05	
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05	

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 54500

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: PE5590

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-22-SS3/SS4A 03-May-22 09:00 2219554-01 Soil	BH1-22-SS8 03-May-22 09:00 2219554-02 Soil	BH2-22-SS4A 03-May-22 09:00 2219554-03 Soil	BH2-22-SS5 03-May-22 09:00 2219554-04 Soil
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
4-Bromofluorobenzene	Surrogate	123%	122%	-	112%

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

	Client ID:	BH1-22-SS3/SS4A	BH1-22-SS8	BH2-22-SS4A	BH2-22-SS5	
	Sample Date:	03-May-22 09:00	03-May-22 09:00	03-May-22 09:00	03-May-22 09:00	
	Sample ID:	2219554-01	2219554-02	2219554-03	2219554-04	
	MDL/Units	Soil	Soil	Soil	Soil	
Dibromofluoromethane	Surrogate	97.9%	101%	-	105%	
Toluene-d8	Surrogate	95.3%	96.9%	-	84.6%	
Hydrocarbons						
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	<7	
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	35	
F3 PHCs (C16-C34)	8 ug/g dry	38	<8	-	10	
F4 PHCs (C34-C50)	6 ug/g dry	66	<6	-	<6	

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54500

Order #: 2219554

Report Date: 12-May-2022

Order Date: 5-May-2022

Project Description: PE5590

	Client ID: Sample Date: Sample ID: MDL/Units	BH3-22-SS3 03-May-22 12:00 2219554-05 Soil	BH3-22-SS6 03-May-22 12:00 2219554-06 Soil	DUP-1 03-May-22 12:00 2219554-07 Soil	- - - -
Physical Characteristics					
% Solids	0.1 % by Wt.	83.1	88.0	88.2	-
General Inorganics	· · ·			- 	· · · · · · · · · · · · · · · · · · ·
SAR	0.01 N/A	14.1	-	-	-
Conductivity	5 uS/cm	2760	-	-	-
рН	0.05 pH Units	7.30	-	-	-
Metals	· · ·				· · · · · · · · · · · · · · · · · · ·
Antimony	1.0 ug/g dry	1.0	-	-	-
Arsenic	1.0 ug/g dry	4.8	-	-	-
Barium	1.0 ug/g dry	161	-	-	-
Beryllium	0.5 ug/g dry	0.7	-	-	-
Boron	5.0 ug/g dry	9.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	22.5	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	8.3	-	-	-
Copper	5.0 ug/g dry	23.0	-	-	-
Lead	1 ug/g dry	-	2	-	-
Lead	1.0 ug/g dry	26.2	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	18.7	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	36.0	-	-	-
Zinc	20.0 ug/g dry	59.9	-	-	-
Volatiles					
Acetone	0.50 ug/g dry	-	<0.50	<0.50	-
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	-	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	-	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	-	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: PE5590

	Client ID: Sample Date:	BH3-22-SS3 03-May-22 12:00	BH3-22-SS6 03-May-22 12:00	DUP-1 03-May-22 12:00	<u> </u>
	Sample ID:	2219554-05	2219554-06	2219554-07	-
	MDL/Units	Soil	Soil	Soil	-
Chloroform	0.05 ug/g dry	-	<0.05	<0.05	-
Dibromochloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	-	<0.05	<0.05	-
Hexane	0.05 ug/g dry	-	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	<0.05	<0.05	-
Styrene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-

Client PO: 54500

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

	Client ID: Sample Date:	BH3-22-SS3 03-May-22 12:00	BH3-22-SS6 03-May-22 12:00	DUP-1 03-May-22 12:00	-
	Sample ID:	2219554-05 Soil	2219554-06 Soil	2219554-07	-
	MDL/Units			Soil	-
4-Bromofluorobenzene	Surrogate	-	117%	123%	-
Dibromofluoromethane	Surrogate	-	98.8%	112%	-
Toluene-d8	Surrogate	-	90.8%	93.7%	-
Hydrocarbons	· · ·				
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	-	-
Semi-Volatiles	· · ·			- -	
Acenaphthene	0.02 ug/g dry	<0.02	-	-	-
Acenaphthylene	0.02 ug/g dry	0.04	-	-	-
Anthracene	0.02 ug/g dry	0.02	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.06	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.08	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.10	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.06	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.05	-	-	-
Chrysene	0.02 ug/g dry	0.08	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	-
Fluoranthene	0.02 ug/g dry	0.15	-	-	-
Fluorene	0.02 ug/g dry	<0.02	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.05	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-
Naphthalene	0.01 ug/g dry	<0.01	-	-	-
Phenanthrene	0.02 ug/g dry	0.08	-	-	-
Pyrene	0.02 ug/g dry	0.14	-	-	-
2-Fluorobiphenyl	Surrogate	96.7%	-	-	-
Terphenyl-d14	Surrogate	108%	-	-	-

Γ

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 54500

Method Quality Control: Blank

Report Date: 12-May-2022

Order Date: 5-May-2022

Project Description: PE5590

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead Lead	ND ND	1 1.0	ug/g						
Mercury	ND	0.1	ug/g ug/g						
Molybdenum	ND	1.0	ug/g ug/g						
Nickel	ND	5.0	ug/g ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND ND	0.02 0.02	ug/g						
Benzo [k] fluoranthene Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g ug/g						
Fluoranthene	ND	0.02	ug/g ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.58		ug/g		119	50-140			
Surrogate: Terphenyl-d14	1.85		ug/g		139	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane Carbon Tetrachloride	ND ND	0.05 0.05	ug/g						
	ND	0.00	ug/g						

Method Quality Control: Blank

Report Date: 12-May-2022

Order Date: 5-May-2022

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
	Result	LIIIII	Units	Result	70REC	LIIIII	INF D	LIIIII	Notes
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.78		ug/g		118	50-140			
Surrogate: Dibromofluoromethane	2.63		ug/g		82.1	50-140			
Surrogate: Toluene-d8	2.65		ug/g		82.8	50-140			
.									

Client PO: 54500

Method Quality Control: Duplicate

Report Date: 12-May-2022

Order Date: 5-May-2022

Project Description: PE5590

Arabyle Result Limit Units Result WREC Limit RPD Limit Notes General Inorganics SAR 0.10 0.10 0.01 0.0 0.0 0.5 5 Fill 7.20 0.5 pH (Linits) 40.5 0.5 5 Hydrocarbons Fill 7.31 0.8 2.3 1 FI PHS (C) (CAC10) 7 4 upg 6 0.0 30 FI PHS (C) (CAC10) 7 4 upg 6 0.0 30 FI PHS (C) (CAC10) 7 8 upg ND NC 30 FI PHS (C) (CAC10) 7 8 upg ND NC 30 FI PHS (C) (CAC10) 7 8 upg ND NC 30 FI PHS (C) (CAC10) 7 8 upg ND NC 30 FI PHS (C) (CAC10) 7 7 0.5 upg ND NC 30			Reporting		Source		%REC		RPD	
AAA 0.10 D.01 NA 0.10 0.03 30 Conductivity 7.25 0.05 pH linits 7.31 0.8 2.3 F1 PLGS (DS C10) ND 7 4 ugg ND NC 40 F2 PLGS (CC C10) 7 4 ugg 14 17.0 30 F1 PLGS (CC C10) 7 8 ugg 14 17.0 30 F3 PLGS (CC C10) 7 8 ugg 14 17.0 30 F4 PLGS (CG C10) 77 8 ugg ND NC 30 Matima 6.6 0.10 ugg 7.4 86 30 Section 7.7 5.0 ugg ND NC 30 Baryin ND 0.5 ugg ND NC 30 Cabrinium ND 0.5 ugg ND NC 30 Cabrinium ND 0.5 ugg ND NC	Analyte	Result		Units		%REC		RPD		Notes
Conductivity4075w/Sm4050.55PH7.310.852.3PJPH7.34w.92gNDND7F1 PHCs (CSAC10)74w.92g66.6.030F2 PHCs (CSAC50)74w.92g147.7.030F4 PHCs (CSAC50)89.4.9gNDNC30F4 PHCs (CSAC50)89.4.9gNDNC30F4 PHCs (CSAC50)89.4.9gNDNC30F4 PHCs (CSAC50)8.51.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)1.01.0w.92gNDNC30F4 PHCs (CSAC50)1.01.0w.92gNDNC30F4 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.	General Inorganics									
Conductivity4075w/Sm4050.55PH7.310.852.3PJPH7.34w.92gNDND7F1 PHCs (CSAC10)74w.92g66.6.030F2 PHCs (CSAC50)74w.92g147.7.030F4 PHCs (CSAC50)89.4.9gNDNC30F4 PHCs (CSAC50)89.4.9gNDNC30F4 PHCs (CSAC50)89.4.9gNDNC30F4 PHCs (CSAC50)8.51.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)2.31.0w.92gNDNC30F4 PHCs (CSAC50)1.01.0w.92gNDNC30F4 PHCs (CSAC50)1.01.0w.92gNDNC30F4 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.0w.92gNDNC30F5 PHCs (CSAC50)1.01.	SAR	0.10	0.01	N/A	0.10			0.0	30	
pH 7.3 0.8 2.3 PlyDracators ND 7 ug/g ND ND ND P1 Plo5(CPC10) ND 7 ug/g ND NC 40 P2 Plo5(CPC10) 7 4 ug/g ND NC 40 P3 Plo5(CPC10) 7 4 ug/g ND NC 40 P4 Plo5(CPC10) 7 4 ug/g ND NC 30 Attack (SC-G3) 17 8 ug/g ND NC 80 Attack (SC-G3) 10 ug/g ND										
r PL ND 7 ugig ND ND NC 40 F3 PHOS (C16-C34) 17 8 ugig ND ND NC 30 HAHCG (C16-C34) 17 8 ugig ND NC 30 Antinony 2.3 1.0 ugig 7.0 S.8 30 Antinony 2.3 1.0 ugig 7.7 S.8 30 Barium 86 1.0 ugig ND NC 30 Commun (N) ND 0.5 ugig ND NC 30 Commun (N) ND 0.5 ugig ND NC 30 Commun (N) ND 0.5 ugig ND NC 30 Commun (N) ND 0.4 ugig ND NC 30 Coper 7.7 5.0 ugig ND NC 30 Lead 27.1 1.0 ugig ND NC 30 Lead 27.1 1.0 ugig ND	-	7.25	0.05	pH Units	7.31			0.8	2.3	
F2 PHCs (C10-C16)74upg616.030F3 PHCs (C15-G3)6600NDNC30F3 PHCs (C15-G3)610upgNDNC30Matis10upgNDNC30Animony2.31.0upgNDNC30Barkurn86.91.0upg7486.830Barkurn86.91.0upgNDNC30Boron7.05.0upg6.82.630CadmiumND0.2upgNDNC30Chronium (V1)ND0.2upgNDNC30Cadmium (V1)ND0.2upg8.77.730Cadmium (V1)ND0.2upg9.01.530Cadmium (V1)ND0.1upg9.01.530Lead2.131upg9.01.530Lead2.131upg9.01.530Lead2.131.0upgNDNC30MenzymentND1.0upgNDNC30MenzymentND1.0upgNDNC30MenzymentND1.0upgNDNC30MenzymentND1.0upgNDNC30MenzymentND1.0upgNDNC30MenzymentND										
F2 PHCs (C10-C16)74up/g616.030F4 PHCs (C54-C53)66up/gNDNC30F4 PHCs (C54-C53)6000NDNC30Animony2.31.0up/gNDNC30Animony8.11.0up/g7.4NC30Barlum86.91.0up/g7.99.430Barlum86.91.0up/g7.05.02.6Barlum80.91.0up/g6.82.630CodamiumND0.2up/gNDNC30Chronium (V1)ND0.2up/g8.77.730Cobat9.41.0up/g1.7.7.730Cobat9.41.0up/g1.7.7.730Cobat9.41.0up/g1.7.7.730Cobat9.41.0up/g1.7.7.730Cobat9.41.0up/g1.7.7.730Cobat9.41.0up/g1.7.7.730Cobat9.41.0up/g1.7.7.730Cobat9.41.0up/g1.7.7.830Cobat9.41.0up/gND.7.4.7.4Laad1.75.0up/gND.7.4.7.4Solac1.71.9up/gND.7.4.7.	F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F3 PHCs (C16-C34)178ug/g14T.080HetaVVNC30MetaiVVNC30Arimony8.11.0ug/g7.48.830Arisony8.11.0ug/g7.48.830BanumND0.5ug/gNDNC30BenylluinND0.5ug/gNDNC30BenylluinND0.5ug/gNDNC35CadmiunND0.5ug/gNDNC35Commun10.75.0ug/g9.313.630Copper7.75.0ug/g9.313.630Copper7.75.0ug/g12.1NC30Lead21.31ug/g2469.930MercuryND1.0ug/g3.711.930Moklednum4.21.0ug/gNDNC30SeleriumND1.0ug/gNDNC30SeleriumND1.0ug/gNDNC30SeleriumND0.2ug/gNDNC30Moklednum1.0ug/gNDNC30SeleriumND0.0ug/gNDNC30MarcuryND0.0ug/gNDNC30MarcuryND0.0ug/gNDNC40 <tr< td=""><td>F2 PHCs (C10-C16)</td><td>7</td><td>4</td><td></td><td></td><td></td><td></td><td>16.0</td><td>30</td><td></td></tr<>	F2 PHCs (C10-C16)	7	4					16.0	30	
F4 PLO2 (C34-C50)66ug/gNDNC30Metals	F3 PHCs (C16-C34)	17	8	ug/g	14			17.0	30	
Animony 2.3 1.0 ug/g ND ND NC 30 Amenica 86.9 1.0 ug/g 7.4 8.6 30 Amenica 86.9 1.0 ug/g ND 94.4 30 Beryllum ND 0.5 ug/g ND ND 30 Constrained ND 0.5 ug/g ND NC 30 Constrained ND 0.5 ug/g ND NC 30 Constrained 94 1.0 ug/g 8.7 .7.7 30 Cobalt 94 1.0 ug/g ND .7.7 30 Lead 27.1 1.0 ug/g ND .7.7 30 Lead 27.1 1.0 ug/g ND .7.7 30 Mercury ND 0.1 ug/g ND .7.7 .9.0 Molydemun ND 1.0 ug/g ND .7.1 .9		6	6		ND			NC	30	
Asenic 8.1 1.0 ug'g 7.4 8.8 30 Barlum 86.9 1.0 ug'g 7.2 9.4 30 Berylium ND 0.5 ug'g ND NC 30 Cadmium ND 0.5 ug'g ND NC 30 Chornium(VI) ND 0.5 ug'g 9.3 13.6 30 Chornium(VI) ND 0.5 ug'g 9.3 13.6 30 Copper 7.7 5.0 ug'g 1.0 1.5 30 Copper 7.7 5.0 ug'g 1.0 1.0 30 Lead 2.1.3 1 ug'g 1.0 NC 30 Mercury ND 0.1 ug'g ND NC 30 Nokkel 1.8.7 5.0 ug'g ND NC 30 Siber ND 1.0 ug'g ND NC 30 30 <	Metals									
BarlumB6.91.0ug'g79.29.49.0Boron7.05.0ug'gNDNC30Boron7.05.0ug'gNDNC30Continum (V)ND0.2ug'gNDNC30Chromium (V)ND0.2ug'gNDNC30Coball9.41.0ug'g8.7NC30Coball9.41.0ug'g8.7NC30Coball2.131ug'g1.0NC30Laad2711.0ug'g3.7NC30MecuryND0.1ug'gNDNC30Mickel1.87.0ug'gNDNC30SelenumND1.0ug'gNDNC30SelenumND1.0ug'gNDNC30SelenumND1.0ug'gNDNC30SelenumND1.0ug'gNDNC30SelenumND1.0ug'gNDNC30SelenumND1.0ug'gNDNC30SelenumND1.0ug'gNDNC30SelenumND0.2ug'gNDNC40AntraceneND0.2ug'gNDNC40AntraceneND0.2ug'gNDNC40AntraceneND0.2<	Antimony	2.3	1.0	ug/g	ND			NC	30	
Berglium ND 0.5 ugg ND NC 30 Gardnum ND 0.5 ugg ND NC 30 Gardnum ND 0.5 ugg ND NC 30 Gronnum(N) ND 0.2 ugg ND NC 30 Gronnum(N) 10.7 5.0 ugg 9.7 . 30 Cobalt 9.4 1.0 ugg 8.7 . 30 Cobalt 2.13 1 ugg 10.1 ugg 30 Lead 2.11 1.0 ugg NC 30 Metcury ND 0.1 ugg NC 30 Nickel ND 1.0 ugg ND NC 30 Silver ND 1.0 ugg ND NC 30 Thallum ND 1.0 ugg ND NC 40 Varanum 1.0 ugg				ug/g						
Boron 7.0 5.0 ug'g 6.8 2.6 30 Chromium (V) ND 0.2 ugg ND NC 35 Chromium (V) ND 0.2 ugg ND 7.7 30 Cobalt 9.4 1.0 ug'g 8.7 7.7 30 Cobalt 2.13 1 ug'g 12.1 7.7 30 Lead 2.13 1 ug'g ND 1.1 30 Lead 2.13 1 ug'g ND NC 30 Mercury ND 0.1 ug'g ND NC 30 Mercury ND 1.0 ug'g ND NC 30 Siter ND 0.1 ug'g ND NC 30 Siter ND 1.0 ug'g ND NC 30 Urantum ND 1.0 ug'g ND NC 30 Vanadum										
Cadmium Chromium (V)ND0.5ug/gNDNC30Chromium (V)ND0.2ug/g9.313.630Chromium (V)9.410ug/g8.77.730Copper7.75.0ug/g12.1NC30Copper2.131ug/g10.015.530Lead2.711.0ug/gNDNC30MercuryND0.1ug/gNDNC30MercuryND0.1ug/gNDNC30Nickel18.75.0ug/gNDNC30NickelND0.3ug/gNDNC30SilverND0.3ug/gNDNC30SilverND1.0ug/gNDNC30Janc1.0ug/gNDNC30JancND1.0ug/gNDNC30JancND1.0ug/gNDNC30SilverND0.2ug/gNDNC30Janc0.0ug/gNDNC40AnadumND0.2ug/gNDNC40AnadumND0.2ug/gNDNC40AnadumND0.2ug/gNDNC40AnadumND0.2ug/gNDNC40AnadumND0.2ug/gND <t< td=""><td>-</td><td></td><td></td><td>ug/g</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-			ug/g						
Chromium (V) ND 0.2 ug'q ND NC 35 Chromium 9.4 1.0 ug'q 8.7 7.7 30 Copper 7.7 5.0 ug'q 8.7 7.7 30 Copper 2.1.3 1 ug'q 8.7 7.7 30 Lead 2.1.3 1.0 ug'q 8.7 9.9 30 Mercury ND 0.1 ug'q ND NC 30 Molydenum 4.2 1.0 ug'q ND NC 30 Selenium ND 1.0 ug'q ND NC 30 Selenium ND 1.0 ug'q ND NC 30 Uranium ND 1.0 ug'q ND NC 30 Uranium ND 1.0 ug'q ND NC 40 Admadum 1.0 ug'q ND NC 40 Solids										
Chronium 10.7 5.0 ug'g 9.3 3.6 3.6 3.0 Copper 7.7 5.0 ug'g 1.2.1 NC 3.0 Lead 2.1.3 1 ug'g 19.0 11.5 30 Lead 2.7.1 1.0 ug'g ND NC 30 Mercury ND 0.1 ug'g ND NC 30 Molydenum 4.2 1.0 ug'g ND NC 30 Silver ND 0.1 ug'g ND NC 30 Silver ND 0.3 ug'g ND NC 30 Vanadium ND 1.0 ug'g ND NC 30 Zinc 3.0 2.0.0 ug'g ND NC 30 Vanadium ND 0.0.2 ug'g ND NC 40 Acenaphthone ND 0.0.2 ug'g ND NC 40 <										
Cobalt 9.4 1.0 ug'g 8.7 7.7 80 Copper 7.7 5.0 ug'g 12.1 NC 30 Laad 21.3 1 ug'g 246 9.9 30 Mercury ND 0.1 ug'g ND NC 30 Molybdenum 4.2 1.0 ug'g ND NC 30 Molybdenum 4.2 1.0 ug'g ND NC 30 Selenium ND 1.0 ug'g ND NC 30 Silver ND 1.0 ug'g ND NC 30 Uranium ND 1.0 ug'g ND NC 30 Uranium ND 1.0 ug'g ND NC 30 Solids Solids Solids ND NC 40 Acenaphthylene Acenaphthylene ND 0.02 ug'g ND NC 40 <										
Copper 7,7 5.0 ug/g 1.1 NC 80 Laad 21.3 1 ug/g 19.0 11.5 30 Laad 27.1 1.0 ug/g 24.6 9.9 30 Mercury ND 0.1 ug/g ND NC 30 Nickel 18.7 5.0 ug/g ND NC 30 Silver ND 0.3 ug/g ND NC 30 Silver ND 1.0 ug/g ND NC 30 Vanadium ND 1.0 ug/g 27.2 19.3 30 Vanadium ND 0.0 ug/g 77.3 3.0 30 30 Zinc 33.0 20.0 ug/g ND NC 40 Vanadium ND 0.02 ug/g ND NC 40 Averaphthylene ND 0.02 ug/g ND NC 40 <td></td>										
Lead 21,3 1 ug'g 19.0 11.5 30 Lead 271 1.0 ug'g ND										
Lead 271 1.0 ug/g 246 9.9 30 Mercury ND 0.1 ug/g ND 30 Mokybdenum 4.2 1.0 ug/g 3.7 11.9 30 Nickel 18.7 5.0 ug/g ND NC 30 Silver ND 0.3 ug/g ND NC 30 Silver ND 0.3 ug/g ND NC 30 Vanadium ND 1.0 ug/g ND 30 30 Vanadium 7.8 10.0 ug/g 17.3 3.0 30 Zinc 33.0 20.0 ug/g ND .5 <td></td>										
Mercury ND 0.1 ug/g ND NC 30 Mohydenum 4.2 1.0 ug/g 3.7.1 9.0 30 Nickel 18.7 5.0 ug/g ND .0 30 Selenium ND 1.0 ug/g ND .0 30 Selenium ND 1.0 ug/g ND .0 30 Uranium ND 1.0 ug/g ND .0 30 Vanadum 17.8 10.0 ug/g ND .0 30 Vanadum 17.8 10.0 ug/g ND .0 30 Vanadum 17.8 10.0 ug/g ND .0 30 Vanadum 80.5 0.1 % by Wt 78.8 2.1 25 Semi-Volatiles										
Motyoderum 4.2 1.0 ug/g 3.7 11.9 30 Nickel 18.7 5.0 ug/g ND 30 Selernium ND 1.0 ug/g ND NC 30 Silver ND 0.3 ug/g ND NC 30 Silver ND 1.0 ug/g ND NC 30 Uranium ND 1.0 ug/g ND NC 30 Vanadum 17.8 10.0 ug/g 27.2 19.3 30 Zinc 33.0 20.0 ug/g 77.2 19.3 30 Solids 80.5 20.0 ug/g ND NC 40 Acenaphthere ND 0.02 ug/g ND NC 40 Anthrasene ND 0.02 ug/g ND NC 40 Benzo [g] prene ND 0.02 ug/g ND NC 40 Benzo [g] prene ND 0.02 ug/g ND NC 40										
Nickel 18.7 5.0 ug/g 17.1 9.0 30 Selenium ND 1.0 ug/g ND NC 30 Silver ND 0.3 ug/g ND NC 30 Thallum ND 1.0 ug/g ND NC 30 Vanadum 17.8 10.0 ug/g ND 3.0 30 Vanadum 17.8 10.0 ug/g 17.3 3.0 30 Physical Characteristics 30 27.2 19.3 30 Selids 80.5 0.1 % byWt. 78.8 2.1 25 Semi-Volatiles ND 0.02 ug/g ND NC 40 Acenaphthylene ND 0.02 ug/g ND NC 40 Benzo [a] antracene ND 0.02 ug/g ND NC 40 Benzo [a] antracene ND 0.02 ug/g ND NC <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-									
Selenium ND 1.0 ug/g ND ND ND ND Silver ND 0.3 ug/g ND NC 30 Silver ND 1.0 ug/g ND NC 30 Uranium ND 1.0 ug/g ND NC 30 Zinc 33.0 20.0 ug/g 27.2 19.3 30 Physical Characteristics 30 20.0 ug/g ND NC 40 Solids 8.0.5 0.1 % by Wt. 78.8 2.1 25 Semi-Volatiles ND 0.02 ug/g ND NC 40 Acenaphthylene ND 0.02 ug/g ND NC 40 Benzo [a] prene ND 0.02 ug/g ND NC 40 Benzo [a] prene ND 0.02 ug/g ND NC 40 Benzo [a] prene ND 0.02 ug/g ND NC 40 Benzo [a], hiloranthene 0.022 ug/g ND										
Silver ND 0.3 ug/g ND Ug/g ND										
Thallum ND 1.0 ug/g ND NC 30 Uranium ND 1.0 ug/g ND NC 30 Vanadium 17.8 10.0 ug/g 17.3 3.0 30 Zinc 33.0 20.0 ug/g 27.2 19.3 30 Physical Characteristics Solids 80.5 0.1 % by Wt. 78.8 2.1 25 Solids 80.5 0.1 % by Wt. 78.8 2.1 25 Solids 80.5 0.1 % by Wt. 78.8 2.1 25 Solids 80.5 0.1 % by Wt. 78.8 2.1 25 Solids 80.5 0.1 % by Wt. 78.8 2.1 25 Solids ND 0.02 ug/g ND NC 40 Acenaphthylene ND 0.02 ug/g ND NC 40 Benzo [6] fuoranthene ND 0.02 ug/g										
Uranium ND 1.0 ug/gr ND NC 30 Vanadium 17.8 10.0 ug/g 17.3 3.0 30 Zinc 33.0 20.0 ug/g 27.2 19.3 30 Physical Characteristics										
Vanadium 17.8 10.0 ug/g 17.3 3.0 30 Zine 33.0 20.0 ug/g 27.2 19.3 30 Physical Characteristics 19.3 30 Solids 80.5 0.1 % by Wt. 78.8 2.1 25 Semi-Volatiles ug/g ND ND ND NC 40 Acenaphthylen ND 0.02 ug/g ND NC 40 Antriacene ND 0.02 ug/g ND NC 40 Benzo [a] anthracene ND 0.02 ug/g ND NC 40 Benzo [s] fluoranthene 0.026 0.02 ug/g ND NC 40 Benzo [s] fluoranthene ND 0.02 ug/g ND NC 40 Benzo [s] fluoranthene ND 0.02 ug/g ND NC 40 Benzo [s] fluoranthene<										
Zinc 33.0 20.0 ug/g 27.2 19.3 30 Physical Characteristics	Vanadium	17.8						3.0	30	
Physical Characteristics 80.5 0.1 % by Wt. 78.8 2.1 25 Semi-Volatiles	Zinc	33.0								
Semi-Volatiles Acenaphthene ND 0.02 ug/g ND NC 40 Acenaphthylene ND 0.02 ug/g ND NC 40 Anthracene ND 0.02 ug/g ND NC 40 Benzo [a] anthracene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [g], hi] perylene ND 0.02 ug/g ND NC 40 Benzo [g], hil perylene ND 0.02 ug/g ND NC 40 Benzo [g], hil antracene ND 0.02 ug/g ND NC 40 Dibenzo [a, h] antracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40	Physical Characteristics									
Acenaphthene ND 0.02 ug/g ND NC 40 Acenaphthylene ND 0.02 ug/g ND NC 40 Anthracene ND 0.02 ug/g ND NC 40 Benzo [a] anthracene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [b] fluoranthene 0.026 0.02 ug/g ND NC 40 Benzo [s,h.j] perylene ND 0.02 ug/g ND NC 40 Benzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02	% Solids	80.5	0.1	% by Wt.	78.8			2.1	25	
Acenaphthylene ND 0.02 ug/g ND NC 40 Anthracene ND 0.02 ug/g ND NC 40 Benzo [a] anthracene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 </td <td>Semi-Volatiles</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Semi-Volatiles									
Anthracene ND 0.02 ug/g ND NC 40 Benzo [a] anthracene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [g], h] pyrene 0.026 0.02 ug/g ND NC 40 Benzo [g, h] pyrene ND 0.02 ug/g ND NC 40 Benzo [g, h] pyrene ND 0.02 ug/g ND NC 40 Benzo [g, h] anthracene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 <tg< td=""><td>Acenaphthene</td><td>ND</td><td>0.02</td><td>ug/g</td><td>ND</td><td></td><td></td><td>NC</td><td></td><td></td></tg<>	Acenaphthene	ND	0.02	ug/g	ND			NC		
Benzo [a] anthracene ND 0.02 ug/g ND NC 40 Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [b] fluoranthene 0.026 0.02 ug/g 0.027 3.7 40 Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluorenthene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 Phenanthrene ND </td <td>Acenaphthylene</td> <td></td> <td></td> <td>ug/g</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Acenaphthylene			ug/g						
Benzo [a] pyrene ND 0.02 ug/g ND NC 40 Benzo [b] fluoranthene 0.026 0.02 ug/g 0.027 3.7 40 Benzo [g, h.] perylene ND 0.02 ug/g ND NC 40 Benzo [g, h.] perylene ND 0.02 ug/g ND NC 40 Benzo [k] fluoranthene ND 0.02 ug/g ND NC 40 Benzo [a, h] anthracene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 Phenanthrene ND <				ug/g						
Benzo [b] fluoranthene 0.026 0.02 ug/g 0.027 3.7 40 Benzo [g, h, i] perylene ND 0.02 ug/g ND NC 40 Benzo [k] fluoranthene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a, h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02										
Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Benzo [k] fluoranthene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g										
Benzo [k] fluoranthene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g 0.024 NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g										
Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g 0.024 NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.01 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6										
Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g 0.024 NC 40 Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 50-140 Surrogate: Terphenyl-d14 1.67 ug/g 101 <td></td>										
Fluoranthene ND 0.02 ug/g 0.024 NC 40 Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.01 ug/g ND NC 40 Phenanthrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 50-140 Surrogate: Terphenyl-d14 1.67 ug/g 101 50-140 40 Volatiles ND 0.02 ug/g 101 50-140 40										
Fluorene ND 0.02 ug/g ND NC 40 Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.01 ug/g ND NC 40 Phenanthrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g ND NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 50-140 Surrogate: Terphenyl-d14 1.67 ug/g 101 50-140 50-140 V Volatiles Volatig/g Volatig/g V										
Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40 1-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.01 ug/g ND NC 40 Phenanthrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g 0.022 NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 50-140 Surrogate: Terphenyl-d14 1.67 ug/g 101 50-140 V Volatiles V V V V V V V										
1-Methylnaphthalene ND 0.02 ug/g ND NC 40 2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.01 ug/g ND NC 40 Phenanthrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g 0.02 NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 50-140 Volatiles Volatiles ND 1.67 ug/g 101 50-140 101										
2-Methylnaphthalene ND 0.02 ug/g ND NC 40 Naphthalene ND 0.01 ug/g ND NC 40 Phenanthrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g 0.02 NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 50-140 Volatiles 1.67 ug/g 101 50-140 1										
Naphthalene ND 0.01 ug/g ND NC 40 Phenanthrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g 0.02 NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 50-140 Volatiles Volatiles Volatiles Volatiles Volatile V										
Phenanthrene ND 0.02 ug/g ND NC 40 Pyrene ND 0.02 ug/g 0.022 NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 Surrogate: Terphenyl-d14 1.67 ug/g 101 50-140										
Pyrene ND 0.02 ug/g 0.02 NC 40 Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140										
Surrogate: 2-Fluorobiphenyl 1.46 ug/g 88.6 50-140 Surrogate: Terphenyl-d14 1.67 ug/g 101 50-140 Volatiles Volatiles										
Surrogate: Terphenyl-d141.67ug/g10150-140Volatiles						88.6	50-140			
Volatiles										
				- 3' 5						
		ND	0.50	ua/a	ND			NC	50	
				3.3						

Method Quality Control: Duplicate

Report Date: 12-May-2022

Order Date: 5-May-2022

Project Description: PE5590

Analyte	Desult	Reporting Limit		Source		%REC		RPD	Nister.
	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Benzene	ND	0.02	ug/g	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	5.06		ug/g		128	50-140			
Surrogate: Dibromofluoromethane	5.20		ug/g		131	50-140			
Surrogate: Toluene-d8	3.73		ug/g		94.4	50-140			
-									

Report Date: 12-May-2022

Order Date: 5-May-2022

Project Description: PE5590

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	204	7	ug/g	ND	102	80-120			
F2 PHCs (C10-C16)	88	4	ug/g	6	82.0	60-140			
F3 PHCs (C16-C34)	280	8	ug/g	14	109	60-140			
F4 PHCs (C34-C50)	182	6	ug/g	ND	118	60-140			
Metals			0.0						
Antimony	44.8	1.0	ug/g	ND	89.2	70-130			
Arsenic	58.2	1.0	ug/g ug/g	3.0	110	70-130			
Barium	87.0	1.0	ug/g ug/g	31.7	110	70-130			
Beryllium	52.7	0.5	ug/g ug/g	ND	105	70-130			
Boron	54.2	5.0	ug/g ug/g	ND	103	70-130			
Cadmium	48.4	0.5	ug/g	ND	96.6	70-130			
Chromium (VI)	2.5	0.3	ug/g ug/g	ND	41.5	70-130		(QM-05
Chromium	58.1	5.0	ug/g ug/g	ND	109	70-130		·	
Cobalt	55.7	1.0	ug/g ug/g	3.5	103	70-130			
Copper	51.9	5.0	ug/g ug/g	ND	94.1	70-130			
Lead	61.7	1	ug/g	7.6	108	70-130			
Lead	153	1.0	ug/g ug/g	98.2	100	70-130			
Mercury	1.23	0.1	ug/g ug/g	ND	82.1	70-130			
Molybdenum	53.2	1.0	ug/g ug/g	1.5	103	70-130			
Nickel	58.0	5.0	ug/g ug/g	6.8	103	70-130			
Selenium	49.4	1.0	ug/g ug/g	ND	98.7	70-130			
Silver	47.4	0.3	ug/g ug/g	ND	94.6	70-130			
Thallium	50.9	1.0	ug/g ug/g	ND	94.0 102	70-130			
Uranium	54.3	1.0	ug/g ug/g	ND	102	70-130			
Vanadium	63.2	10.0	ug/g ug/g	ND	113	70-130			
Zinc	56.9	20.0	ug/g ug/g	ND	92.1	70-130			
Semi-Volatiles	00.0	20.0	~9,9		02.1	10 100			
	0 467	0.02	uala		91.2	50 140			
Acenaphthene	0.167	0.02	ug/g	ND	81.3	50-140			
Acenaphthylene	0.144	0.02	ug/g		69.9	50-140			
Anthracene Benzo [a] anthracene	0.141 0.144	0.02 0.02	ug/g	ND ND	68.3 69.7	50-140 50-140			
Benzo [a] anthracene			ug/g						
Benzo [a] pyrene Benzo [b] fluoranthene	0.151 0.228	0.02 0.02	ug/g	ND 0.027	73.4 97.7	50-140 50-140			
			ug/g						
Benzo [g,h,i] perylene	0.155	0.02	ug/g		75.0 80.4	50-140			
Benzo [k] fluoranthene	0.184	0.02	ug/g		89.4 82.1	50-140 50-140			
Chrysene	0.169	0.02	ug/g		82.1 76.0				
Dibenzo [a,h] anthracene	0.157	0.02	ug/g	ND	76.0	50-140			
Fluoranthene Fluorene	0.160	0.02	ug/g	0.024	66.0 76.6	50-140			
	0.158	0.02	ug/g	ND	76.6	50-140			
Indeno [1,2,3-cd] pyrene 1-Methylnaphthalene	0.161	0.02	ug/g		78.1 85 5	50-140			
	0.176	0.02	ug/g	ND	85.5	50-140			
2-Methylnaphthalene	0.185	0.02	ug/g		89.7 72.0	50-140			
Naphthalene	0.150	0.01	ug/g	ND	72.9	50-140			
Phenanthrene	0.153	0.02	ug/g	ND	74.2	50-140			
Pyrene	0.161	0.02	ug/g	0.022	67.1	50-140			
Surrogate: 2-Fluorobiphenyl	1.36		ug/g		82.4	50-140 50-140			
Surrogate: Terphenyl-d14	1.58		ug/g		95.9	50-140			

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: PE5590

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Acetone	8.97	0.50	ug/g	ND	89.7	50-140			
Benzene	3.19	0.02	ug/g	ND	79.7	60-130			
Bromodichloromethane	4.35	0.05	ug/g	ND	109	60-130			
Bromoform	2.68	0.05	ug/g	ND	66.9	60-130			
Bromomethane	4.10	0.05	ug/g	ND	102	50-140			
Carbon Tetrachloride	3.57	0.05	ug/g	ND	89.2	60-130			
Chlorobenzene	2.86	0.05	ug/g	ND	71.5	60-130			
Chloroform	4.35	0.05	ug/g	ND	109	60-130			
Dibromochloromethane	4.19	0.05	ug/g	ND	105	60-130			
Dichlorodifluoromethane	4.34	0.05	ug/g	ND	108	50-140			
1,2-Dichlorobenzene	2.64	0.05	ug/g	ND	66.0	60-130			
1,3-Dichlorobenzene	3.27	0.05	ug/g	ND	81.8	60-130			
1,4-Dichlorobenzene	3.88	0.05	ug/g	ND	97.0	60-130			
1,1-Dichloroethane	3.79	0.05	ug/g	ND	94.7	60-130			
1,2-Dichloroethane	3.45	0.05	ug/g	ND	86.2	60-130			
1,1-Dichloroethylene	4.08	0.05	ug/g	ND	102	60-130			
cis-1,2-Dichloroethylene	4.94	0.05	ug/g	ND	124	60-130			
trans-1,2-Dichloroethylene	3.94	0.05	ug/g	ND	98.5	60-130			
1,2-Dichloropropane	3.00	0.05	ug/g	ND	75.0	60-130			
cis-1,3-Dichloropropylene	2.90	0.05	ug/g	ND	72.6	60-130			
trans-1,3-Dichloropropylene	2.68	0.05	ug/g	ND	66.9	60-130			
Ethylbenzene	3.83	0.05	ug/g	ND	95.8	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.71	0.05	ug/g	ND	92.8	60-130			
Hexane	3.30	0.05	ug/g	ND	82.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	12.5	0.50	ug/g	ND	125	50-140			
Methyl Isobutyl Ketone	10.5	0.50	ug/g	ND	105	50-140			
Methyl tert-butyl ether	10.4	0.05	ug/g	ND	104	50-140			
Methylene Chloride	3.46	0.05	ug/g	ND	86.5	60-130			
Styrene	2.65	0.05	ug/g	ND	66.1	60-130			
1,1,1,2-Tetrachloroethane	2.83	0.05	ug/g	ND	70.6	60-130			
1,1,2,2-Tetrachloroethane	3.40	0.05	ug/g	ND	85.1	60-130			
Tetrachloroethylene	2.68	0.05	ug/g	ND	67.1	60-130			
Toluene	2.74	0.05	ug/g	ND	68.4	60-130			
1,1,1-Trichloroethane	3.88	0.05	ug/g	ND	97.0	60-130			
1,1,2-Trichloroethane	3.20	0.05	ug/g	ND	80.1	60-130			
Trichloroethylene	3.67	0.05	ug/g	ND	91.9	60-130			
Trichlorofluoromethane	4.65	0.05	ug/g	ND	116	50-140			
Vinyl chloride	4.59	0.02	ug/g	ND	115	50-140			
m,p-Xylenes	7.23	0.05	ug/g	ND	90.4	60-130			
o-Xylene	3.82	0.05	ug/g	ND	95.4	60-130			
Surrogate: 4-Bromofluorobenzene	3.25		ug/g		102	50-140			
Surrogate: Dibromofluoromethane	3.28		ug/g		103	50-140			
Surrogate: Toluene-d8	3.00		ug/g		93.9	50-140			

Sample Qualifiers :

1 : Complete separation of paint from substrate not possible for this sample and a small amount of substrate has been included in the paint digestion.

QC Qualifiers :

QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Page 15 of 15

Report Date: 12-May-2022 Order Date: 5-May-2022

	Para PARACEL LABORATORIES LTD						Paracel Order Number (Lab Use Only)				Chain Of Custody (Lab Use Only) Nº 64385				
Client Name: Paterson Contact Name: Nick Sullivan Address:	p v	Qu	ote #:	PE 5590							100	1		ge <u>)</u> round	of <u>L</u> Time
Address: 154 Colonnade Rd. S. Ottawa, ON Telephone: 613-226-7381	т.,	E-m	nail;	1500 NSUll:Van	e paterse	on Sr	our	~ C	0						□ 3 day Regula
REG 153/04 REG 406/19 Other Regulatie Table 1 Res/Park Med/Fine REG 558 P Table 2 Ind/Comm Coarse CCME N	WQO		Surface	S (Soil/Sed.) GW Water) SS (Storm/ (Paint) A (Air) O (C	Sanitary Sewer)					Re	quirea	d Anal	ysis		
Table 3 Agri/Other SU - Sani S Table Mun: For RSC: Yes No Other:	U - Storm	Matrix Air Volume	Containers	Samp	le Taken	VoCs	CS FI-FL			Cr VJ	PAHS	EC	SAR	Hd	
Sample ID/Location Name		Air Vol		Date	Time	- 4	PHCs	н	1	0	4			(- s	, este see
² BH1-22 - 558) 110	2	May 3/2:	2 AM	X	X	n er i		ly ar		Х	X	X	enti adotta Consectori
3 BH2-22-554A		1	1					Х	X	Х					
4 BH2-22-555		Chi Barri	2	te ne konjonačen	er bran en er 🖌 er	X	X		e de	dente a	- 43			en d	
⁵ Внз-22- 5 53 6 Внз-22-556			2		PM			Х	X	X	X	Х	Χ	Х	
7 DUP-1 8	N		1	V		X	X								
9		+	-					, .							
10		+	-		1.17						_			5.0	
Comments:								i					~		
N. Alman	ived By Driver,	/Depot:			Repeived at Lab:	ŴM		An.	ma	Verifie		R.			
Dick Sullivan	perature:			°c	Data Million	5,90		16.	51	Date/T pH Ver	10	y	60	to	2935

KI KI		t Name: Paterson Group Project Ref. PE5590					Par D	(Lab I	Use Or		r	Chain Of Custody (Lab Use Only)				1	
Client Name: Poterson Group Contact Name: Nick Sullivan			Quote	#:											ge <u>l</u> o round		
154 Colonnade Rd. S. Ottawa, ON Telephone: 613-226-7381			PO #: E-mail	54	1500 Nsullivan @	Paterson	Scon	р. с	0				1 day 2 day 2 Requ	1			3 day Regular
Table 1 A Res/Park Med/Fine REG 558	PWQO MISA	N	Aatrix T SW (Su	rface V	S (Soil/Sed.) GW (G Vater) SS (Storm/Sa vaint) A (Air) O (Oth	nitary Sewer)	×				Re	quire	d Ana	lysis			
□ Table Mun: For RSC: □ Yes □ No □ Other:	SU - Storm	trix	Air Volume	Containers	Sample	Taken	s F1-F4+BTEX	ŝ	s	Metals by ICP			NS)	21:02			
Sample ID/Location Name		V Matrix	Air	# #	Date May 3/22	Time	PHCs	VOCS	PAHs	Meta	ВН	CrVI	B (HWS)	×		+	+
3 > This is the missing 4 Soil jar which show 5 have some with the										2							
6 initial work orde 7 8	5																
10 Comments: Hease add this to	Wor	k	00	der	- # 221	9554	(o(#	643	85	X	Metho		livery:		Z U	1	
Relinquished By (Print): Niche Sullivan Da	eceived By Driv	ver/De	1.5	5/2	17. 3.01	Received at Lab:	10000 16,209	n 9	8	WA	Verifie Date/T	d By:	r (a	4	fu.	N	; 46

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Nick Sullivan

Client PO: 54648 Project: PE5590 Custody: 136598

Report Date: 19-May-2022 Order Date: 12-May-2022

Order #: 2220555

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2220555-01	BH1-22-GW1
2220555-02	MW21-02-GW2
2220555-03	BH2-22-GW1
2220555-04	BH3-22-GW1
2220555-05	MW21-04-GW2
2220555-06	Dup-1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 19-May-2022 Order Date: 12-May-2022

Order #: 2220555

Project Description: PE5590

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	16-May-22	17-May-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-May-22	18-May-22
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	16-May-22	17-May-22

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54648

Order #: 2220555

Report Date: 19-May-2022 Order Date: 12-May-2022

Project Description: PE5590

Г	Client ID: Sample Date: Sample ID: MDL/Units	BH1-22-GW1 11-May-22 09:00 2220555-01 Water	MW21-02-GW2 11-May-22 09:00 2220555-02 Water	BH2-22-GW1 11-May-22 09:00 2220555-03 Water	BH3-22-GW1 11-May-22 09:00 2220555-04 Water
Volatiles			<u>I</u>	ļ	1
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 54648

Order #: 2220555

Report Date: 19-May-2022 Order Date: 12-May-2022

	-				
	Client ID:	BH1-22-GW1	MW21-02-GW2	BH2-22-GW1	BH3-22-GW1
	Sample Date:	11-May-22 09:00	11-May-22 09:00	11-May-22 09:00	11-May-22 09:00
	Sample ID:	2220555-01	2220555-02	2220555-03	2220555-04
	MDL/Units	Water	Water	Water	Water
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	111%	114%	110%	112%
Dibromofluoromethane	Surrogate	86.3%	83.7%	86.8%	83.1%
Toluene-d8	Surrogate	103%	104%	105%	104%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	-	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	-	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	-	<100	<100

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54648

Order #: 2220555

Report Date: 19-May-2022

Order Date: 12-May-2022

Project Description: PE5590

	Client ID: Sample Date: Sample ID: MDL/Units	MW21-04-GW2 11-May-22 09:00 2220555-05 Water	Dup-1 11-May-22 09:00 2220555-06 Water	- - - -	- - -
Volatiles					II
Acetone	5.0 ug/L	<5.0	<5.0	-	-
Benzene	0.5 ug/L	5.0	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	38.2	0.6	-	_
Ethylene dibromide (dibromoethane, 1	0.2 ug/L	<0.2	<0.2	-	_
Hexane	1.0 ug/L	<1.0	<1.0	-	_
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	_
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	1.1	0.5	-	-

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 54648

Order #: 2220555

Report Date: 19-May-2022 Order Date: 12-May-2022

	-				
	Client ID:	MW21-04-GW2	Dup-1	-	-
	Sample Date:	11-May-22 09:00	11-May-22 09:00	-	-
	Sample ID:	2220555-05	2220555-06	-	-
	MDL/Units	Water	Water	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	1.8	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	1.8	<0.5	-	-
4-Bromofluorobenzene	Surrogate	112%	111%	-	-
Dibromofluoromethane	Surrogate	83.9%	83.3%	-	-
Toluene-d8	Surrogate	104%	104%	-	-
Hydrocarbons	+ +				
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	_
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Method Quality Control: Blank

Report Date: 19-May-2022

Order Date: 12-May-2022

Project Description: PE5590

Hydrocarbons F1 PHCs (C6-C10) F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50) Volatiles Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Tetrachloride	ND ND ND ND ND ND ND ND	25 100 100 100 5.0 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L				
F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50) Volatiles Acetone Benzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND ND ND	100 100 100 5.0 0.5 0.5	ug/L ug/L ug/L ug/L				
F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50) Volatiles Acetone Benzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND ND ND	100 100 100 5.0 0.5 0.5	ug/L ug/L ug/L ug/L				
F3 PHCs (C16-C34) F4 PHCs (C34-C50) Volatiles Acetone Benzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND ND	100 100 5.0 0.5 0.5	ug/L ug/L ug/L				
F4 PHCs (C34-C50) Volatiles Acetone Benzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND	100 5.0 0.5 0.5	ug/L ug/L				
Volatiles Acetone Benzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	0.5 0.5	ug/L				
Benzene Bromodichloromethane Bromoform Bromomethane	ND ND ND	0.5 0.5					
Bromodichloromethane Bromoform Bromomethane	ND ND	0.5					
Bromoform Bromomethane	ND ND						
Bromomethane			ug/L				
	ND	0.5	ug/L				
Carbon Tatrachlarida		0.5	ug/L				
	ND	0.2	ug/L				
Chlorobenzene	ND	0.5	ug/L				
Chloroform	ND	0.5	ug/L				
Dibromochloromethane	ND	0.5	ug/L				
Dichlorodifluoromethane	ND	1.0	ug/L				
1,2-Dichlorobenzene	ND	0.5	ug/L				
1,3-Dichlorobenzene	ND	0.5	ug/L				
1,4-Dichlorobenzene	ND	0.5	ug/L				
1,1-Dichloroethane	ND	0.5	ug/L				
1,2-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethylene	ND	0.5	ug/L				
cis-1,2-Dichloroethylene	ND	0.5	ug/L				
trans-1,2-Dichloroethylene	ND	0.5	ug/L				
1,2-Dichloropropane	ND	0.5	ug/L				
cis-1,3-Dichloropropylene	ND	0.5	ug/L				
trans-1,3-Dichloropropylene	ND	0.5	ug/L				
1,3-Dichloropropene, total	ND	0.5	ug/L				
Ethylbenzene	ND	0.5	ug/L				
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L				
Hexane	ND	1.0	ug/L				
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L				
Methyl Isobutyl Ketone	ND	5.0	ug/L				
Methyl tert-butyl ether	ND	2.0	ug/L				
Methylene Chloride	ND	5.0	ug/L				
Styrene	ND	0.5	ug/L				
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L				
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L				
Tetrachloroethylene	ND	0.5	ug/L				
Toluene	ND	0.5	ug/L				
1,1,1-Trichloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	0.5	ug/L				
Trichloroethylene	ND	0.5	ug/L				
Trichlorofluoromethane	ND	1.0	ug/L				
Vinyl chloride	ND	0.5	ug/L				
m,p-Xylenes	ND	0.5	ug/L				
o-Xylene	ND	0.5	ug/L				
Xylenes, total	ND	0.5	ug/L				
Surrogate: 4-Bromofluorobenzene	85.8		ug/L	107	50-140		
Surrogate: Dibromofluoromethane	67.1		ug/L	83.8	50-140		
Surrogate: Toluene-d8	82.6		ug/L	103	50-140 50-140		

Client PO: 54648

Hydrocarbons F1 PHCs (C6-C10) F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50)

Bromodichloromethane

Analyte

Volatiles Acetone Benzene

> Bromoform Bromomethane

Method Quality Control: Duplicate

								Project	Description: PE559
ol: Duplicate									
		Reporting		Source		%REC		RPD	
	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
	ND	25	ug/L	ND			NC	30	
	1230	100	ug/L	1880			41.9	30	QR-04
	1110	100	ug/L	1760			45.8	30	QR-04
	ND	100	ug/L	ND			NC	30	
	ND	5.0	ug/L	ND			NC	30	
	ND	0.5	ug/L	ND			NC	30	
	ND	0.5	ug/L	ND			NC	30	
	ND	0.5	ug/L	ND			NC	30	
	ND	0.5	ug/L	ND			NC	30	
	ND	0.2	ug/L	ND			NC	30	

Diomonienane	ND	0.5	ug/L	ND			NO	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	
Chlorobenzene	ND	0.5	ug/L	ND			NC	
Chloroform	ND	0.5	ug/L	ND			NC	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	
Ethylbenzene	ND	0.5	ug/L	ND			NC	
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L	ND			NC	
Hexane	ND	1.0	ug/L	ND			NC	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	
Methylene Chloride	ND	5.0	ug/L	ND			NC	
Styrene	ND	0.5	ug/L	ND			NC	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	
Toluene	ND	0.5	ug/L	ND			NC	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	
Trichloroethylene	ND	0.5	ug/L	ND			NC	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	
Vinyl chloride	ND	0.5	ug/L	ND			NC	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	
o-Xylene	ND	0.5	ug/L	ND			NC	
Surrogate: 4-Bromofluorobenzene	89.2		ug/L		112	50-140		
Surrogate: Dibromofluoromethane	66.6		ug/L		83.2	50-140		
Surrogate: Toluene-d8	84.1		ug/L		105	50-140		

30

30

30 30

30

30 30

30

30

30

30

30

30

30

30

30

Report Date: 19-May-2022

Order Date: 12-May-2022

Project Description: PE5590

Method Quality Control: Spike

Report Date: 19-May-2022

Order Date: 12-May-2022

Project Description: PE5590

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1930	25	ug/L	ND	112	68-117			
F2 PHCs (C10-C16)	1640	100	ug/L	ND	103	60-140			
F3 PHCs (C16-C34)	3610	100	ug/L	ND	92.1	60-140			
F4 PHCs (C34-C50)	2460	100	ug/L	ND	99.2	60-140			
Volatiles			-						
Acetone	63.3	5.0	ug/L	ND	63.3	50-140			
Benzene	29.0	0.5	ug/L	ND	72.5	60-130			
Bromodichloromethane	34.6	0.5	ug/L	ND	86.6	60-130			
Bromoform	39.9	0.5	ug/L	ND	99.8	60-130			
Bromomethane	39.6	0.5	ug/L	ND	99.0	50-140			
Carbon Tetrachloride	30.5	0.2	ug/L	ND	76.3	60-130			
Chlorobenzene	38.5	0.5	ug/L	ND	96.3	60-130			
Chloroform	34.8	0.5	ug/L	ND	87.1	60-130			
Dibromochloromethane	35.4	0.5	ug/L	ND	88.4	60-130			
Dichlorodifluoromethane	32.7	1.0	ug/L	ND	81.8	50-140			
1.2-Dichlorobenzene	38.4	0.5	ug/L	ND	96.0	60-130			
1,3-Dichlorobenzene	39.3	0.5	ug/L	ND	98.2	60-130			
1,4-Dichlorobenzene	39.4	0.5	ug/L	ND	98.5	60-130			
1,1-Dichloroethane	35.6	0.5	ug/L	ND	89.0	60-130			
1,2-Dichloroethane	41.9	0.5	ug/L	ND	105	60-130			
1,1-Dichloroethylene	35.2	0.5	ug/L	ND	88.1	60-130			
cis-1,2-Dichloroethylene	33.2	0.5	ug/L	ND	83.0	60-130			
trans-1,2-Dichloroethylene	33.9	0.5	ug/L	ND	84.8	60-130			
1,2-Dichloropropane	33.6	0.5	ug/L	ND	83.9	60-130			
cis-1,3-Dichloropropylene	31.1	0.5	ug/L	ND	77.8	60-130			
trans-1,3-Dichloropropylene	39.5	0.5	ug/L	ND	98.8	60-130			
Ethylbenzene	38.5	0.5	ug/L	ND	96.3	60-130			
Ethylene dibromide (dibromoethane, 1,2	31.1	0.2	ug/L	ND	77.7	60-130			
Hexane	42.4	1.0	ug/L	ND	106	60-130			
Methyl Ethyl Ketone (2-Butanone)	80.8	5.0	ug/L	ND	80.8	50-140			
Methyl Isobutyl Ketone	72.6	5.0	ug/L	ND	72.6	50-140			
Methyl tert-butyl ether	73.4	2.0	ug/L	ND	73.4	50-140			
Methylene Chloride	31.2	5.0	ug/L	ND	78.1	60-130			
Styrene	41.5	0.5	ug/L	ND	104	60-130			
1,1,1,2-Tetrachloroethane	38.6	0.5	ug/L	ND	96.4	60-130			
1,1,2,2-Tetrachloroethane	32.3	0.5	ug/L	ND	80.8	60-130			
Tetrachloroethylene	41.2	0.5	ug/L	ND	103	60-130			
Toluene	40.0	0.5	ug/L	ND	99.9	60-130			
1,1,1-Trichloroethane	37.7	0.5	ug/L	ND	94.2	60-130			
1,1,2-Trichloroethane	40.3	0.5	ug/L	ND	101	60-130			
Trichloroethylene	42.1	0.5	ug/L	ND	105	60-130			
Trichlorofluoromethane	37.0	1.0	ug/L	ND	92.4	60-130			
Vinyl chloride	32.1	0.5	ug/L	ND	80.2	50-140			
m,p-Xylenes	75.5	0.5	ug/L	ND	94.4	60-130			
o-Xylene	36.8	0.5	ug/L	ND	92.0	60-130			

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 54648

Qualifier Notes:

QC Qualifiers :

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

CPARACEL	T R U S T R E S P (R E L I /					aracel ID:							· (L	ab Use On 1365	ly)	
Client Name: Patr Son	; 7		Project	t Ref:	PE 5590			Ĩ	2000 2000 2000	5		Page of				
Contact Name: NICK Sullivan			Quote	#:	No. of Contract of		2	Ya	3	- Ann	ŝ.	24	Turr	around 1	ime	
Address:	5 1		PO #: 54648									1 day		□ 3	day	
154 Colonnade Road S			E-mail: NSUllivan@ paterson group, ca									🗆 2 day 🗹 Regu			egular	
Telephone: 613 226 7381									Date Required:							
REG 153/04 REG 406/19 Other Regula	ation		latrix T	vno: 1	S (Soil/Sed.) GW (G	round Water)					Po	quirod	l Analysis			
Table 1 Res/Park Med/Fine REG 558] PWQO				Vater) SS (Storm/Sa						ĸe	quireu	Analysis			
Table 2 Ind/Comm Coarse CCME] misa			P (P	aint) A (Air) O (Ot	her)	X									1-0
Table 3 🗆 Agri/Other] SU - Storm			ers			4+B1			G				,		
Table Mun:		n Xi III A (M) O (Oule) A (M) (M) O (Oule) A (M) O (Oule) A (M) (M) O (Oule) A (M)					-	,	by ICP	· .,		6	, n ¹		1	
For RSC: Yes No Other:	-							vocs	PAHs	Metals	_	5	(SMH)			3
Sample ID/Location Name							_	Ş	PA	ž	ĥ	CrVI	ũ		_	
1 BH1 - 22 - GW1		96			11-May-2022		Х	X								>
2 MW21-02-GW2		GW		der	in a second	1 - 21 - 11	n.,	X	× 5					, u		
3 BH2-22-4W2	1 G	1		а.		15 - 19 A	X	X	1		, .					5
4 BH3 - 22 - GW 1		2.11			Sec.	a se e	X	X	·	- N		, .				
5									2110							
6 MW21-04 -GW2		V					X	X								1
7 DUP-1	5	t						Ŷ								1
8		·			V		+								-	1
9							+	-							+	
10		-						-						++		; ; ;
Comments:	1								L		Metho	od of De	livery:			
		-										TA	CACEL	. La	UDE	-
Relinquished By (Sign):	Received By D	river/D	epot:	1	-	Received at Lab:			107	(76	Werifie	ed By:	2Cm	M	ر	
Relinquished By (Sign): William Relinquished By (Print): Result OP	Date/Time:	1	1.0	- 1-	OUSE 27 7.54	Date	9 90	99				Time: Na		3123	15):3(a
Relinquished By (Print): Bryce Lee	Temperature	~/	10:	11	2 Z 54 ° PH.	Temperature	70	2 b °C	0.	1.0	pH Ve	rified:	y	the second s		1.70
Date/Time: 12-149-2022	. criperatorer	100	6924	107	·m.	10	11	Ĭ	6363	10.10			• 19 See	W: NIF)	

Chain of Custody (Env) xlsx

Revision 4.0

MW21-04-GW3

MW21-02-GW3

DUP

Certificate of Analysis

Paterson Group Consulting Engineers (Ottawa)	
9 Auriga Drive	
Ottawa, ON K2E 7T9	
Attn: Nick Sullivan	Report Date: 22-Mar-2024
Client PO: 59693	Order Date: 19-Mar-2024
Project: PE5590	Order #: 2412150
Custody:	
Custody: This Certificate of Analysis contains analytical data applicable to the following samples as submitted:	
Client ID	

Approved By:

2412150-01

2412150-02

2412150-03

Nos

Dale Robertson, BSc

Laboratory Director

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	20-Mar-24	21-Mar-24

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Order #: 2412150

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

		MW21-04-GW3	MW21-02-GW3	DUP	1		I
	Client ID:			DOP 19-Mar-24 09:00	-		
	Sample Date:	19-Mar-24 09:00 2412150-01	19-Mar-24 09:00 2412150-02	2412150-03	-	-	-
	Sample ID: Matrix:	Ground Water	Ground Water	Ground Water			
г	MDL/Units						
Volatiles	MDL/Onits						
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	-		1
						-	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Ethylene dibromide (dibromoethane,	0.2 ug/L	<0.2	<0.2	<0.2	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

	Client ID:	MW21-04-GW3	MW21-02-GW3	DUP	-		
	Sample Date:	19-Mar-24 09:00	19-Mar-24 09:00	19-Mar-24 09:00	-	-	-
	Sample ID:	2412150-01	2412150-02	2412150-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Volatiles							
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Toluene-d8	Surrogate	108%	107%	108%	-	-	-
Dibromofluoromethane	Surrogate	111%	107%	110%	-	-	-
4-Bromofluorobenzene	Surrogate	99.9%	98.4%	99.3%	-	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroform	ND	0.5	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	79.7		%	99.7	50-140			
Surrogate: Dibromofluoromethane	79.3		%	99.1	50-140			
Surrogate: Toluene-d8	86.5		%	108	50-140			

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Method Quality Control: Duplicate

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	3.46	0.5	ug/L	3.93			12.7	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	5.31	0.5	ug/L	6.14			14.5	30	
Dibromochloromethane	1.64	0.5	ug/L	2.56			43.8	30	QR-07
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	

Surrogate: Toluene-d8

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Analyte

Method Quality Control: Duplicate

	Order	#:	241	21	50
--	-------	----	-----	----	----

Notes

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	78.7		%		98.4	50-140			
Surrogate: Dibromofluoromethane	86.7		%		108	50-140			

%REC

108

Source

Units

%

Reporting

Result

86.3

%REC

50-140

RPD

RPD

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	91.2	5.0	ug/L	ND	91.2	50-140			
Benzene	44.4	0.5	ug/L	ND	111	60-130			
Bromodichloromethane	39.5	0.5	ug/L	ND	98.8	60-130			
Bromoform	31.2	0.5	ug/L	ND	78.1	60-130			
Bromomethane	47.7	0.5	ug/L	ND	119	50-140			
Carbon Tetrachloride	34.0	0.2	ug/L	ND	85.1	60-130			
Chlorobenzene	42.7	0.5	ug/L	ND	107	60-130			
Chloroform	44.4	0.5	ug/L	ND	111	60-130			
Dibromochloromethane	33.3	0.5	ug/L	ND	83.3	60-130			
Dichlorodifluoromethane	44.8	1.0	ug/L	ND	112	50-140			
1,2-Dichlorobenzene	38.4	0.5	ug/L	ND	96.0	60-130			
1,3-Dichlorobenzene	37.8	0.5	ug/L	ND	94.6	60-130			
1,4-Dichlorobenzene	37.2	0.5	ug/L	ND	93.0	60-130			
1,1-Dichloroethane	45.7	0.5	ug/L	ND	114	60-130			
1,2-Dichloroethane	48.3	0.5	ug/L	ND	121	60-130			
1,1-Dichloroethylene	39.8	0.5	ug/L	ND	99.4	60-130			
cis-1,2-Dichloroethylene	41.6	0.5	ug/L	ND	104	60-130			
trans-1,2-Dichloroethylene	34.7	0.5	ug/L	ND	86.7	60-130			
1,2-Dichloropropane	45.0	0.5	ug/L	ND	112	60-130			
cis-1,3-Dichloropropylene	36.8	0.5	ug/L	ND	92.1	60-130			
trans-1,3-Dichloropropylene	36.6	0.5	ug/L	ND	91.6	60-130			
Ethylbenzene	43.2	0.5	ug/L	ND	108	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	32.5	0.2	ug/L	ND	81.2	60-130			
Hexane	39.4	1.0	ug/L	ND	98.6	60-130			
Methyl Ethyl Ketone (2-Butanone)	93.3	5.0	ug/L	ND	93.3	50-140			
Methyl Isobutyl Ketone	99.0	5.0	ug/L	ND	99.0	50-140			
Methyl tert-butyl ether	73.7	2.0	ug/L	ND	73.7	50-140			
Methylene Chloride	41.8	5.0	ug/L	ND	105	60-130			
Styrene	40.8	0.5	ug/L	ND	102	60-130			
1,1,1,2-Tetrachloroethane	36.2	0.5	ug/L	ND	90.4	60-130			

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,2,2-Tetrachloroethane	38.8	0.5	ug/L	ND	97.0	60-130			
Tetrachloroethylene	34.6	0.5	ug/L	ND	86.6	60-130			
Toluene	44.6	0.5	ug/L	ND	111	60-130			
1,1,1-Trichloroethane	36.8	0.5	ug/L	ND	92.0	60-130			
1,1,2-Trichloroethane	44.6	0.5	ug/L	ND	111	60-130			
Trichloroethylene	37.4	0.5	ug/L	ND	93.5	60-130			
Trichlorofluoromethane	36.4	1.0	ug/L	ND	91.1	60-130			
Vinyl chloride	33.4	0.5	ug/L	ND	83.6	50-140			
m,p-Xylenes	81.1	0.5	ug/L	ND	101	60-130			
o-Xylene	42.4	0.5	ug/L	ND	106	60-130			
Surrogate: 4-Bromofluorobenzene	82.4		%		103	50-140			
Surrogate: Dibromofluoromethane	89.9		%		112	50-140			
Surrogate: Toluene-d8	83.9		%		105	50-140			

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Qualifier Notes:

QC Qualifiers:

QR-07 Duplicate result exceeds RPD limits due to non-homogeneity between multiple sample vials. Remainder of QA/QC is acceptable.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

GPARACEL						D: 2412150			Paracel Order Number (Lab Use Only) 2 412150		Chain Of Custody (Lab Use Only)				
Client Name: Portorson				Project Ref: PE SS9 0							Page 🚺 of 📕				
Contact Name: Nick Sullivan				Quote #:							Turnaround Time				
Address: 9 Aurisa Drive, ottawy				PO#: 59693							🗆 1 da	/		🗆 3 day	
,				E-mail: NSultivan@ putasongroup.ca							🗆 2 da	/	N	Regular	
Telephone: 613 - 225 - 7381				Email: NSultivan@putasongroup.ca kpanch/ (a) patersongroup.ca							Date Required:				
REG 153/04 REG 406/19	REG 153/04 REG 406/19 Other Regulation				Matrix Times & (Soll/Sod) CHM (Cound Mater)										
Table 1 Res/Park Med/Fine	//Fine 🗆 REG 558 🔹 PWQO			SW (Surface Water) SS (Storm/Sanitary Sewe				23		Req	equired Analysis				
Table 2 Ind/Comm Coarse	CCME	□ misa			P (Pa	aint) A (Air) O ()ther)					TT			
Table 3 🛛 Agri/Other	🗆 SU - Sani	SU - Storm			SIS			1							
Table	Mun:		taine			Sam	ole Taken	V							
For RSC: Yes No Other:		Matrix Air Volume	Volur	# of Containers			0								
Sample ID/Location Name			Air	to #	Date	Time	С								
1 MW21-04-GW3		GW		2	03/19		1								
2 MW21-02 - GW3			1		2	1						++	+		
3 DUP		4		2	ł				+		++	-			
4								+++		++		++	-	+	
5				-						++		++	+	+	
6								++		++		+		+	
7			-					++		+		++	+	+	
8			-					++		++		++	+		
9			-	-			_	++		++		+	_		
										\vdash		+	_		
10 Comments:															
comments:										Method		K-	6		
Relinquished By (Sign):			pot:		22	and the states	Received a Lab:	Received at Lab:			erified By: Hinal				
Relinquished By (Print): Kuldeep Porch Date/Time:			12	100	34.2	1.10	Daterfime:	Datoffime: 19 2014 16:07 Dat				re/Time: May 19, 24) 16:16			
Date/Time: 03/19/2024		Temperature:	1.17	161	1725	°C	Temperature	E.	1	pH Veri	fied: 🗆	By:	2,24	110110	
Chain of Custody (Blank).xlsx		1	-			Revision 5.0	0				A CARDINE REPORT		100 C		