

Site Servicing & Stormwater Management Report

Commercial Development 3850 Cambrian Road Ottawa, Ontario

Table of Contents

1.0	INTRODU	CTION		. 2
2.0	PURPOSE			. 2
3.0	EXISTING	CONDITIO	DNS	. 3
4.0	PROPOSE	D DEVEL	OPMENT	. 3
5.0	STORMW	ATER MAI	NAGEMENT PLAN	. 3
	5.1		elopment Conditions	
	5.2	Post-Dev	elopment Conditions	.4
			100-year Site Storage Requirements	
6.0	STORM S	EWERS A	ND STORMWATER MANAGEMENT SYSTEM	. 5
	6.1		ewers	
	6.2	Stormwa	iter Management System	. 6
8.0	WATER S	ERVICING		. 6
9.0	EROSION	AND SED	IMENT CONTROL DURING CONSTRUCTION	. 7
10.0	CONCLUS	SIONS		. 7

List of Tables

Table 1 - ICD Schedule	5
Table 2 - Building Water Demands and Fire Flow	

List of Figures

Figure 1 – Site Context	2
-------------------------	---

List of Appendices

Appendix A: Stormwater Management Calculations Appendix B: Storm and Sanitary Sewer Computation Forms Appendix C: Sanitary Load and Fire Flow Appendix D: WaterCad Model Results Appendix E: Stormwater Storage Chambers Specifications Appendix F: City Correspondance

Drawings

Drawing C101 | Erosion/Sediment Control & Existing Conditions Plan Drawing C102 | Site Servicing Plan Drawing C103 | Grading Plan Drawing C104 | Detail Page 1 Drawing C105 | Detail Page 2 Drawing C106 | Post Development Drainage Plan

1.0 INTRODUCTION

Parsons Inc. was retained by Choice Properties Limited Partnership to provide engineering services for a new commercial development located at 3850 Cambrian Road in Ottawa, Ontario.

The site encompasses a total area of approximately 1.36 ha and is bordered by residential developments to the north and west, Cambrian Road to the south and the future re-aligned Greenbank Road to the east as shown on the following figure.

The proposed development includes the addition of a retail store and three other commercial rental units on the same lot. Servicing of the buildings will be provided by the new on-site storm sewers, sanitary services, and new water services from Cambrian Road. New fire hydrants will be added on-site to provide exterior fire protection.

Figure 1 – Site Context

2.0 PURPOSE

This report summarizes the proposed site servicing, grading and drainage design, documents the proposed method of attenuating stormwater runoff from the subject site, and deals with erosion and sediment control measures to be undertaken during construction.

Stormwater management items addressed include the following:

- establishing the allowable post-development release rate from the site;
- calculating the post-development runoff from the site;
- determining the required on-site stormwater storage volume and storage areas.

3.0 EXISTING CONDITIONS

The subject site is currently vacant. The proposed commercial development is part of the Half Moon Bay West Subdivision. As mentioned earlier, on the east site of the proposed development, will be the future re-aligned Greenbank Road. Currently, there is no access to the subject site from Greenbank Road. Cambrian Road is currently the only access to the subject site. Cambrian Road will be widened as part of the new Greenbank Road project. Addition of sidewalks and bike lanes is also proposed as part of this future project. A new 1500mm storm sewer, 500mm sanitary sewer and 400mm watermain have been installed in 2019 along Cambrian Road and will be used to provide services to the proposed commercial development. There is also a 400mm watermain and 2550mm storm sewer installed within the future Greenbank Road right-of-way. A 750mm storm service, 200mm sanitary service and a 200mm water service have also been installed in 2019 up to the property line to service this future development from Cambrian Road. Refer to **Drawing C101** for more details.

According to the geotechnical investigation report for this development, by GeoTerre Limited dated February 17, 2023, soil condition on this site consists of up to 3m of organic material fill with an underlayer of between 15m and 20m of weak silty clay "Leda Clay". Also, the groundwater table is estimated at an elevation of 92.0m. Existing site surface elevation varies between 92.19m and 95.11m.

4.0 PROPOSED DEVELOPMENT

As shown on the Architectural Site Plan, the proposed development will consist of a new 1576 m² retail store (Building A) and three commercial rental units of 576 m² (Building B), 799 m² (Building C) and 418 m² (Building D). Building A and Building B are considered as two different units, however they do share the same foundation and finished floor elevation. The finished floor elevation of Building A and B is set at 93.92m, Building C at 94.0m and Building D at 94.20m. Each building is considerably higher than the estimated groundwater table elevation. The proposal will also include parking spaces, concrete sidewalks, concrete curbs, a new entrance from Cambrian Road and two entrances from the future Greenbank Road.

The site grading will match the existing conditions along the residential properties on the north and west side of the subject site. Grading along Cambrian Road and future Greenbank Road will be coordinated with the future project to plan a smooth transition in the future, however at this time the grading will tie-in to existing conditions.

5.0 STORMWATER MANAGEMENT PLAN

Drawing C106, appended to this report, depicts the boundaries of the post-development drainage areas, and should be read in conjunction with this report.

The design approach for the stormwater management is to ensure that the post-development peak flows do not exceed the allowable release rate to mitigate the risk of flooding and against erosion. The City of Ottawa indicated that the allowable release rate for this site was determined in the *Design Brief for the Half Moon Bay West Phase 1, prepared by DSEL, dated September 5, 2018.* Correspondence with the City can be found in **Appendix F**. The storm sewers installed as part of this new subdivision project are sized to allow a flow of **316.1 L/s** for the proposed commercial development. Parameters used to calculate the allowable release rate are from the DSEL report.

- Runoff Coefficient (C) = 0.80
- Drainage Area (A) = 1.36 ha
- Time of Concentration (Tc) = 10min

The Rational Method formula has been used to calculate stormwater runoff and rainfall data is based on the IDF curve equations from the Ottawa Sewer Design Guidelines, Second Edition, October 2012.

Rainfall intensity: $I_5 = 998.071 / (Tc + 6.053)^{0.814}$

Using the Rational Method formula and the above parameters, the allowable post-development release rate for this site is **316.1 L/s**.

5.1 **Pre-Development Conditions**

As mentioned earlier, the subject site is currently vacant. Based on the topographical survey received, the site grading is higher on the edge of the future Greenbank Road and the lowest point is located on the south-west border of the site near Cambrian Road. A drainage ditch used to flow through this site, however this ditch was abandoned as part of the construction of new infrastructure along Cambrian Rd and future Greenbank Rd. Existing roadside ditch along Cambrian Rd is currently collecting runoff from the road and is intercepted by a temporary ditch inlet connected to the existing 1500mm storm sewer. Services for this property were installed in 2019. A Storm catch basin maintenance hole (CBMH) with a 750m pipe was installed at the property line along Cambrian Rd and collects stormwater runoff from this site.

5.2 Post-Development Conditions

As mentioned earlier, proposed building A and B are considered as two different unit, thus separate services for each unit will be provided. All roof areas will be controlled with roof drain systems. Each building will have a separate roof drain outlet.

The following is a description of each drainage areas through the site, refer to Drawing C106 attached to this report.

- Areas WS-01 to WS-04 consist of the controlled roof areas;
- Area WS-05 is the entrance from Cambrian Rd as well as the patio of building C;
- Areas WS-06 to WS-10 consist of the main parking lot area;
- Areas WS-11 and WS-12 are the grassed area and garbage disposal area between building C and D;
- Area WS-13 is the proposed swale on the corner the Cambrian and future Greenbank intersection, located behind the future Greenbank sidewalk;
- Area WS-14 consist of the proposed swale/grassed area between the building A and the future Greenbank sidewalk;
- Areas WS-15 to WS-17 consist of the area behind building A and B including the loading dock and proposed entrance from future Greenbank Rd.

Since this project will be constructed before the new re-aligned Greenbank Rd, the grading of the site must match existing surface elevations at the property line while also considering the future Greenbank Rd project proposed sidewalk and road profile. Due to the important variation in grades between existing conditions and future conditions along Cambrian Rd and Greenbank Rd, grading along the property lines of the residential homes, Cambrian Rd and future Greenbank will match existing condition with a maximum slope of 3H:1V. This means that a small portion of this site will drain uncontrolled towards the public right of way. The uncontrolled area of this site is estimated at 0.046 ha and generates a flow of 4.7 L/s and 10.0 L/s for the 5-year and 100-year storm event respectively.

All other areas on-site will be captured though a new on-site storm sewer system.

For the purpose of calculating the average runoff coefficients for the post-development areas, the following guidelines were used:

- Landscaped surfaces (grass, trees, shrubs, etc.) C = 0.20
- Impervious surfaces (asphalt, concrete, pavers, rooftops, etc.) C = 0.90
- The runoff coefficient for 100-year event is increased by 25% based on the Ottawa Sewer Design Guidelines.

Appendix A "Stormwater Management Calculations" provides a summary of the post-development areas and average runoff coefficients.

An inlet control device (ICD) is required to control the flows from the site to the allowable release rate of **316.1 L/s** for the 100-year post development storm event. The equivalent storage to attenuate the 100-year post-development flow has been calculated to be **112.2 m³** in addition to the rooftop storage provided on each building. The required storage will be provided by the storm pipes, the structures and by new proposed underground storage chambers. The calculations are shown in **Appendix A**.

Storage requirements to attenuate the 100-year post-development flow rate are given below:

5.2.1 100-year Site Storage Requirements

The 100-year post-development flow will be captured within the subsurface storage system. Below grade storage will be provided by storm structures, pipes, and mainly underground storm chambers. All roof areas will also be controlled to provide additional storage. The design will utilize 112.2 m^3 of storage in the underground storage system. The proposed system is the StormTech SC-310 or equivalent, see **Appendix E** for specifications. The bottom of the proposed chambers is set above the estimated groundwater table elevation (92.0m). Perforated subdrains will be placed on the perimeter of the storm chambers, directly above the elevation 92.0m to collect infiltration from the chambers and redirect it to the storm outlet.

As the uncontrolled area of the site generates a flow of 10.0 L/s for the 100-year storm event, the allowable discharge at the proposed ICD located in the existing CMBH is limited at **306.0 L/s**. The design head was calculated as the delta in height between the centre of the orifice and the hydraulic grade line (HGL) for the 100-year event within the underground storage chambers which is equivalent to the 100-year storage elevation. The orifice outlet flow has been calculated based on the MTO Drainage Management Manual, Part 3, Chapter 8, p.127:

Qorifice (m³/s) = C_dA(2gH)^{0.5}

where:

 C_d = coefficient of discharge (0.62)

- A = Area of orifice opening in m^2
- g = acceleration due to gravity (9.81 m/s^2)
- H = difference in height between 2y HGL and centre of the orifice in metres

See Appendix A for detailed pipe outlet calculations and Drawing C104 for ICD detail.

The Table 1 lists all the requirements for the manufacturer to design the appropriate ICD.

Table	1-	ICD	Schedule
-------	----	-----	----------

					Equivalent Diameter	
ICD ID	D Location	Outlet Diameter (mm)	Flow 5y/100y (L/s)	Head 5y/ 100y (m)	(mm)	Model
1	EX. CBMH	750	274.6/306.0	2.05/2.55	300	FRAME & PLATE

6.0 STORM SEWERS AND STORMWATER MANAGEMENT SYSTEM

6.1 Storm Sewers

Calculations showing the storm sewer capacities are appended to this report under **Appendix B** "Storm Sewer Computation Forms". The storm sewer design spreadsheet is based on the Rational Method and Manning formula and was used to calculate the design flow and required pipe sizes. Capacity required for proposed storm sewers is based on the 5-year rainfall intensity obtained from the Ottawa Sewer Design Guidelines, where T_c is the time of concentration:

• $I_5 (mm/hr) = 998.071/(T_c+6.053)^{0.814}$

Drawing C106 shows the proposed drainage areas. Details including pipe lengths, sizes, materials, inverts elevations and structure types are shown on Drawing C102.

6.2 Stormwater Management System

As mentioned above, the Stormwater Management system includes an ICD in existing CBMH that will control the flow to a maximum of **306.0 L/s**. The total allowable discharge from the site is **316.1 L/s** including uncontrolled areas. Any additional flow will be store on-site using underground storage chambers and the piping system. The site stormwater runoff ultimately discharges to the Jock River. There is no on-site stormwater quality treatment required as the runoff from the site is conveyed to the Clarke Pond before discharging in the Jock River. The Clarke Pond was designed and constructed to provide a minimum of 80% TSS removal for all stormwater generated from the Half Moon Bay West Subdivision.

7.0 SANITARY SEWER

The new commercial units within the proposed development will be served with a new on-site sanitary system. Each building will have its own sanitary service. The on-site sanitary system will be connected to the existing sanitary maintenance hole previously installed for this future development located at the property line along Cambrian Road. The peak sanitary flow for the proposed commercial development is calculated to be **0.61 L/s**, including infiltration. The sanitary load calculations can be found in **Appendix C**. The additional flow from the commercial development to the municipal sanitary sewer was accounted for in the Half Moon Bay Subdivision design. Thus, the capacity of the downstream sanitary sewer is considered adequate. The Sanitary Sewer Computation Sheet is included in **Appendix B**. Details concerning the existing and proposed pipe lengths and locations are shown on the site servicing plan.

8.0 WATER SERVICING

Water servicing and fire protection for the proposed commercial development will be provided by a new on-site 200mm watermain connected to the existing 400mm watermain on Cambrian Road. Two new fire hydrants will be installed on-site to provide exterior fire protection, as a fire hydrant located within 75m of a bulding can provide a maximum fire flow of 95 L/s and the maximum fire flow required on-site is **100 L/s**. Details regarding the new and existing watermain service connection pipe size and location are shown on **Drawing C102**. Buildings A and B are exepcted to have interior sprinklers systems, thus the water services for these building will be a 200mm diameter. Buildings C and D are not expected to have sprinkler systems, only 50mm services will be provided.

The water demands for the proposed development are listed in **Table 2.** The fire flow was calculated using the Fire Underwriters Survey (FUS, 2020) method. Calculation details can be found in **Appendix C.**

	Average Daily Demand (L/s)	Max Daily Demand (L/s)	Peak Hourly Demand (L/s)	Fire Flow Demand (L/s)	Max Daily + Fire Flow Demand (L/s)
Building A	0.05	0.08	0.14	100	100.08
Building B	0.02	0.03	0.05	50	50.03
Building C	0.03	0.04	0.07	100	100.04
Building D	0.01	0.02	0.04	83	83.02

Table 2 - Building Wate	er Demands and Fire Flow
Tublo z Dullang Hate	bollianao ana rito rion

Boundary conditions were obtained from the City on March 27, 2023, and are presented in **Appendix F**. Based on the information received, a water model was created using WaterCad to confirm that the proposed watermain and fire hydrants were able to provide domestic and fire flow demands while maintaining adequate pressure in the system. The water model shows that the proposed system has the required capacity to provide domestic and fire protection demands. However, for the average day demand, the pressure in the system is over 550 kPa (80 psi) meaning that every building water connection will require water pressure reducing valve installed directly downstream of the water meter inside the building. Water model results are shown in **Appendix D**.

9.0 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

To mitigate the impacts due to erosion and sedimentation during construction, erosion and sediment control measures shall be installed and maintained throughout the duration of construction.

Measures shall only be removed once the construction activities are complete, and the site has stabilized.

The measures will include but are not limited to:

- Siltsack® shall be installed between the frame and cover of existing and new catchbasins and maintenance holes, to minimize sediments entering the storm drainage system.
- All grassed areas must be completed prior to the removal of the Siltsack® in catch basins and maintenance holes.
- Light Duty Silt Fence Barriers placed around the perimeter of the site where necessary, installed and maintained according to OPSS 577 and OPSD 219.110.
- Construction mud mat at site entrance along Cambrian Rd to minimize the amount of mud carried out of the site.

Refer to Drawing C101 notes for more details.

10.0 CONCLUSIONS

The 100-year storm event peak flow will be controlled to an allowable discharge of **316.1 L/s**. Stormwater storage is provided up to and including the 100-year storm in underground chambers and on building rooftops prior to discharging to the municipal storm sewer system. On-site stormwater quality treatment is not required as this site is part of the area serviced by the Clarke Pond.

The water servicing of the building addition will be provided by a new on-site 200mm watermain with two new fire hydrants. The maximum fire flow of the four proposed building was estimated at **100 L/s**. A water model was used to confirm that adequate pressure in the system could be maintained during a fire flow demand. However, pressure in the City system during average day demands is too high and will trigger the addition of pressure reducing valves inside the buildings.

The sanitary servicing of the site will be provided by an on-site sanitary sewer connected to the existing 500mm sanitary along Cambrian Rd. The peak sanitary flow for the proposed development, including infiltration, is calculated to be 0.61 L/s.

Grading and drainage measures will ensure proper drainage of the site, while erosion and sediment control measures will minimize downstream impacts due to construction activities.

We look forward to receiving approval of this report and the appended plans from the City of Ottawa in order to proceed with construction of the site.

Prepared by:

Benoit Villeneuve, P.Eng., ing.

Reviewed by:

Mathew Theiner, P.Eng., ing.

Appendix A: Stormwater Management Calculations

TABLE I - ALLOWABLE RUNOFF CALCULATIONS BASED ON EXISTING CONDITIONS

			Minor Storm				
		Time of Conc,					
Area Description	Area (ha)	Tc (min)		l₅ (mm/hr)	C _{AVG}	Q _{ALLOW} (L/s)	
EWS-01	1.36	10	Storm = 5 yr	104.19	0.80	316.1	
TOTAL	1.36					316.1	

Allowable Capture Rate is based the Design Brief for the Half Moon Bay West Phase 1, prepared by DSEL, Project #16-888, dated September 5, 2018

5-year Storm	C _{ASPH/ROOF/CONC} =	<u>0.90</u>	C _{GRASS} =	0.20
100-year Storm	C _{ASPH/ROOF/CONC} =	<u>1.00</u>	C _{GRASS} =	0.25

TABLE II - POST-DEVELOPMENT AVERAGE RUNOFF COEFFICIENTS

Watershed Area No.	Impervious Areas (m²)	A * C _{ASPH}	Pervious Areas (m ²)	A * C _{GRASS}	Sum AC	Total Area (m ²)	C _{AVG (5yr)}	C _{AVG(100yr)}
WS-01*	1576.00	1418	0.00	0	1418	1576	0.90	1.00
WS-02*	594.00	535	0.00	0	535	594	0.90	1.00
WS-03*	800.00	720	0.00	0	720	800	0.90	1.00
WS-04*	418.00	376	0.00	0	376	418	0.90	1.00
WS-05	330.00	297	112.00	22	319	442	0.72	0.90
WS-06	1000.00	900	102.00	20	920	1102	0.84	1.00
WS-07	1809.00	1628	75.00	15	1643	1884	0.87	1.00
WS-08	868.00	781	75.00	15	796	943	0.84	1.00
WS-09	916.00	824	47.00	9	834	963	0.87	1.00
WS-10	710.00	639	32.00	6	645	742	0.87	1.00
WS-11	186.00	167	70.00	14	181	256	0.71	0.89
WS-12	17.00	15	63.00	13	28	80	0.35	0.44
WS-13	0.00	0	88.00	18	18	88	0.20	0.25
WS-14	0.00	0	346.00	69	69	346	0.20	0.25
WS-15	850.00	765	463.00	93	858	1313	0.65	0.82
WS-16	1173.00	1056	228.00	46	1101	1401	0.79	0.98
WS-17	232.00	209	0.00	0	209	232	0.90	1.00
WS-Unc**	100.00	90	359.00	72	162	459	0.35	0.44
Total	11247		1701		10463	13639		

* Roof top storage Areas **Uncontrolled Areas

TABLE III - TOTAL RUNOFF COEFFICIENT FOR CONTROLLED AREAS (EXCLUDING ROOF TOP AREAS)

	C _{AVG(5yr)} =	<u>Sum AC</u> Total Area	=	<u>7 622</u> 9 792	=	0.78	C _{AVG(100yr)} = 0.97
--	-------------------------	-----------------------------	---	-----------------------	---	------	--------------------------------

TABLE IV - SUMMARY OF POST-DEVELOPMENT RUNOFF

			Storm = 5 yr				Storm =	100 yr	
Area No	Area (ha)	l ₅ (mm/hr)	C _{AVG(5yr)}	Q _{GEN} (L/s)	Q _{CONT} (L/s)	I ₁₀₀ (mm/hr)	C _{AVG(100yr)}	Q _{GEN} (L/s)	Q _{CONT} (L/s)
		- ()			CONT (L/3)				CONT (L/3)
WS-01*	0.158	104.19	0.90	41.1		178.56	1.00	78.2	
WS-02*	0.059	104.19	0.90	15.5		178.56	1.00	29.5	
WS-03*	0.080	104.19	0.90	20.9		178.56	1.00	39.7	
WS-04*	0.042	104.19	0.90	10.9		178.56	1.00	20.7	
WS-05	0.044	104.19	0.72	9.3		178.56	0.90	19.8	
WS-06	0.110	104.19	0.84	26.7		178.56	1.00	54.7	
WS-07	0.188	104.19	0.87	47.6		178.56	1.00	93.5	
WS-08	0.094	104.19	0.84	23.1		178.56	1.00	46.8	
WS-09	0.096	104.19	0.87	24.2	274.6	178.56	1.00	47.8	306.0
WS-10	0.074	104.19	0.87	18.7		178.56	1.00	36.8	
WS-11	0.026	104.19	0.71	5.3		178.56	0.89	11.3	
WS-12	0.008	104.19	0.35	0.8		178.56	0.44	1.7	
WS-13	0.009	104.19	0.20	0.5		178.56	0.25	1.1	
WS-14	0.035	104.19	0.20	2.0		178.56	0.25	4.3	
WS-15	0.131	104.19	0.65	24.8		178.56	0.82	53.2	-
WS-16	0.140	104.19	0.79	31.9		178.56	0.98	68.3	
WS-17	0.023	104.19	0.90	6.0		178.56	1.00	11.5	
WS-Unc**	0.046	104.19	0.35	4.7	4.7	178.56	0.44	10.0	10.0
Total	1.364			313.8	279.3			629.142	316.1

* Roof top storage Areas $I_5 = 998.071 / (Tc+6.053)^{0.814}$

 $I_{100} = 1735.688 / (Tc+6.014)^{0.820}$

Time of concentration (min), Tc = 10 mins

			Table V -	Storage V	•	5-Year ar age Require		ear Storm	Events)			
	C _{AVG} =	0.78	(5-year)		Sile Stor	age Require	ement					
			,									
T :	C _{AVG} =	0.97	(100-year)									
	e Interval =	5	(mins)									
Drair	age Area =	0.979	(hectares)									
	Re	lease Rate =		274.6	(L/sec)		Rel	ease Rate =		306.0	(L/sec)	
	Re	turn Period =		5	(years)		Ret	urn Period =		100	(years)	
	IDF Par	ameters, A =		998.071	, B =	0.814	IDF Para	ameters, A =		1735.688	, B =	0.820
		I = A/	(T _c +6.199) [^]	В				I = A	V(T _c +6.014		-	
	Rainfall		Peak Flow		Storage		Rainfall		Peak Flow	Release	Storage	
Duration	Intensity, I	Peak Flow	from Roof	Release	Rate	Storage	Intensity, I	Peak Flow	from Roof	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	-	-	-	-	-	-	-	-	-	-	-	-
5	141.2	299.1	15.3	274.6	39.8	11.9	242.7	642.8	20.0	306.0	356.8	107.1
10	104.2	220.8	15.3	274.6	-38.6	-23.1	178.6	472.9	20.0	306.0	186.9	112.2
15	83.6	177.1	15.3	274.6	-82.3	-74.1	142.9	378.5	20.0	306.0	92.5	83.2
20	70.3	148.9	15.3	274.6	-110.5	-132.6	120.0	317.7	20.0	306.0	31.7	38.0
25	60.9	129.0	15.3	274.6	-130.3	-195.5	103.8	275.1	20.0	306.0	-10.9	-16.4
30	53.9	114.3	15.3	274.6	-145.1	-261.1	91.9	243.3	20.0	306.0	-42.7	-76.8
35	48.5	102.8	15.3	274.6	-156.5	-328.7	82.6	218.7	20.0	306.0	-67.3	-141.3
40	44.2	93.6	15.3	274.6	-165.7	-397.7	75.1	199.0	20.0	306.0	-87.0	-208.7
45	40.6	86.1	15.3	274.6	-173.3	-467.8	69.1	182.9	20.0	306.0	-103.1	-278.4
50	37.7	79.8	15.3	274.6	-179.6	-538.7	64.0	169.4	20.0	306.0	-116.6	-349.8
55	35.1	74.4	15.3	274.6	-184.9	-610.2	59.6	157.9	20.0	306.0	-128.1	-422.7
60	32.9	69.8	15.3	274.6	-189.5	-682.3	55.9	148.0	20.0	306.0	-138.0	-496.6
65	31.0	65.8	15.3	274.6	-193.6	-754.9	52.6	139.4	20.0	306.0	-146.6	-571.6
70	29.4	62.2	15.3	274.6	-197.1	-827.8	49.8	131.9	20.0	306.0	-154.1	-647.3
75	27.9	59.1	15.3	274.6	-200.2	-901.1	47.3	125.2	20.0	306.0	-160.8	-723.8
80	26.6	56.3	15.3	274.6	-203.1	-974.7	45.0	119.2	20.0	306.0	-166.8	-800.8
85	25.4	53.8	15.3	274.6	-205.6	-1048.5	43.0	113.8	20.0	306.0	-172.2	-878.4
90	24.3	51.5	15.3	274.6	-207.9	-1122.5	41.1	108.9	20.0	306.0	-177.1	-956.4
95	23.3	49.4	15.3	274.6	-210.0	-1196.8	39.4	104.4	20.0	306.0	-181.6	-1034.9
100 105	22.4 21.6	47.5 45.7	15.3 15.3	274.6	-211.9	-1271.2 -1345.7	37.9 36.5	100.4 96.7	20.0 20.0	306.0 306.0	-185.6 -189.3	-1113.7 -1192.8
				274.6	-213.6							
110 115	20.8 20.1	44.1 42.6	15.3 15.3	274.6 274.6	-215.2 -216.7	-1420.4 -1495.3	35.2 34.0	93.2 90.1	20.0 20.0	306.0 306.0	-192.8 -195.9	-1272.3 -1352.0
115	20.1	42.0	15.3	274.6	-216.7	-1495.3	34.0	90.1 87.1	20.0	306.0	-195.9 -198.9	-1352.0
Max =	19.0	41.5	10.0	214.0	-210.1	-1570.2 11.9	52.3	07.1	20.0	500.0	-190.9	-1431.8 112.2
lviax –						11.9						112.2
	v is equal to	the product (of 2.78 x C x I	хА								
			$^{B} \& I_{100} = A/($									
			Release Rate,									

5) Storage = Duration x Storage Rate
6) Maximium Storage = Max Storage Over Duration

		Table VI -			5-Year ar			Events)		
	C _{AVG} =	0.90	(5-year)							
	C _{AVG} =		(100-year)			7um 7105 (Control-Flo S	inale Notch		
Tim	e Interval =		(mins)				r of Drains =	0	I	
	nage Area =	0.039	(hectares) pe	r drain	Tot		ate 5 year =	6.28		
Diali	lage Alea –	394	(sqm) per dra				a = 0 year = a 100 year =	8.18		
	r						ease Rate =			drain
		Release Rate = Return Period =		(L/sec) per (urain		urn Period =	2.04 100	(L/sec) per	urain
		arameters, A =		(years) , B =	0.914		ameters, A =		_(years) ,B =	0.820
	IDF F			, D –	0.814	IDF Faid				0.020
		I = A/(I	_c +6.053)^B				I = A	/(T _c +6.014)^B	
	Rainfall			Storage		Rainfall		Release	Storage	
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	-	-	-	-	-	-	-	-	-	-
5	141.2	13.9	1.6	12.3	3.7	242.7	26.6	2.0	24.5	7.4
10	104.2	10.3	1.6	8.7	5.2	178.6	19.6	2.0	17.5	10.5
15	83.6	8.2	1.6	6.7	6.0	142.9	15.7	2.0	13.6	12.2
20	70.3	6.9	1.6	5.4	6.4	120.0	13.1	2.0	11.1	13.3
25	60.9	6.0	1.6	4.4	6.6	103.8	11.4	2.0	9.3	14.0
30	53.9	5.3	1.6	3.7	6.7	91.9	10.1	2.0	8.0	14.4
35	48.5	4.8	1.6	3.2	6.7	82.6	9.0	2.0	7.0	14.7
40	44.2	4.4	1.6	2.8	6.7	75.1	8.2	2.0	6.2	14.8
45	40.6	4.0	1.6	2.4	6.6	69.1	7.6	2.0	5.5	14.9
50	37.7	3.7	1.6	2.1	6.4	64.0	7.0	2.0	5.0	14.9
55	35.1	3.5	1.6	1.9	6.2	59.6	6.5	2.0	4.5	14.8
60	32.9	3.2	1.6	1.7	6.0	55.9	6.1	2.0	4.1	14.7
65	31.0	3.1	1.6	1.5	5.8	52.6	5.8	2.0	3.7	14.5
70	29.4	2.9	1.6	1.3	5.6	49.8	5.5	2.0	3.4	14.3
75	27.9	2.7	1.6	1.2	5.3	47.3	5.2	2.0	3.1	14.1
80	26.6	2.6	1.6	1.0	5.0	45.0	4.9	2.0	2.9	13.8
85	25.4	2.5	1.6	0.9	4.7	43.0	4.7	2.0	2.7	13.6
90	24.3	2.4	1.6	0.8	4.5	41.1	4.5	2.0	2.5	13.3
95	23.3	2.3	1.6	0.7	4.1	39.4	4.3	2.0	2.3	13.0
100	22.4	2.2	1.6	0.6	3.8	37.9	4.2	2.0	2.1	12.6
105	21.6	2.1	1.6	0.6	3.5	36.5	4.0	2.0	2.0	12.3
110	20.8	2.1	1.6	0.5	3.2	35.2	3.9	2.0	1.8	12.0
115	20.1	2.0	1.6	0.4	2.9	34.0	3.7	2.0	1.7	11.6
120	19.5	1.9	1.6	0.3	2.5	32.9	3.6	2.0	1.6	11.2
-	e (m³) per dra				6.7					14.9
0	nding Depth	()			17.1					37.8
Maximum P Notes	onding Dept	n (mm)			104.9					136.7

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I₅ = A/(Tc+6.053)^B & I₁₀₀ = A/(Tc+6.014)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

		Table VII -		/olumes (Requireme				Events)		
	C _{AVG} =	0.90	(5-year)	Requireme						
	C _{AVG} =	1.00				Zurn 7105 (Control-Flo S	ingle Notch		
T :			(100-year)					8	т	
	ne Interval =	5	(mins)	r drain	Tat		r of Drains =		4	
Drail	nage Area =	0.030	(hectares) per				ate 5 year =	3.02		
		297	(sqm) per dra			T	e 100 year =	3.96		
		Release Rate =		(L/sec) per (drain		ease Rate =	1.98	(L/sec) per	drain
		Return Period =		(years)	0.044		urn Period =		_(years)	0.000
	IDF P	arameters, A =		, B =	0.814	IDF Para	ameters, A =		, B =	0.820
		I = A/(T	_c +6.053)^B				I = A	/(T _c +6.014)^B	
	Rainfall			Storage		Rainfall		Release	Storage	
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	-	-	-	-	-	-	-	-	-	-
5	141.2	10.5	1.5	9.0	2.7	242.7	20.0	2.0	18.1	5.4
10	104.2	7.7	1.5	6.2	3.7	178.6	14.7	2.0	12.8	7.7
15	83.6	6.2	1.5	4.7	4.2	142.9	11.8	2.0	9.8	8.8
20	70.3	5.2	1.5	3.7	4.5	120.0	9.9	2.0	7.9	9.5
25	60.9	4.5	1.5	3.0	4.5	103.8	8.6	2.0	6.6	9.9
30	53.9	4.0	1.5	2.5	4.5	91.9	7.6	2.0	5.6	10.1
35	48.5	3.6	1.5	2.1	4.4	82.6	6.8	2.0	4.8	10.2
40 45	44.2	3.3 3.0	1.5 1.5	1.8	4.3 4.1	75.1	6.2 5.7	2.0	4.2 3.7	10.1
45 50	40.6 37.7	2.8	1.5	1.5 1.3	4.1 3.9	69.1 64.0	5.7	2.0	3.7	10.1 9.9
55	35.1	2.6	1.5	1.3	3.9	59.6	4.9	2.0	2.9	9.9
60	32.9	2.0	1.5	0.9	3.4	55.9	4.9	2.0	2.9	9.7
65	31.0	2.4	1.5	0.9	3.1	52.6	4.0	2.0	2.0	9.2
70	29.4	2.2	1.5	0.7	2.8	49.8	4.1	2.0	2.4	9.0
75	27.9	2.1	1.5	0.6	2.5	47.3	3.9	2.0	1.9	8.7
80	26.6	2.0	1.5	0.5	2.2	45.0	3.7	2.0	1.7	8.3
85	25.4	1.9	1.5	0.4	1.9	43.0	3.5	2.0	1.6	8.0
90	24.3	1.8	1.5	0.3	1.6	41.1	3.4	2.0	1.4	7.6
95	23.3	1.7	1.5	0.2	1.3	39.4	3.3	2.0	1.3	7.3
100	22.4	1.7	1.5	0.2	0.9	37.9	3.1	2.0	1.2	6.9
105	21.6	1.6	1.5	0.1	0.6	36.5	3.0	2.0	1.0	6.5
110	20.8	1.5	1.5	0.0	0.2	35.2	2.9	2.0	0.9	6.1
115	20.1	1.5	1.5	0.0	0.0	34.0	2.8	2.0	0.8	5.7
120	19.5	1.4	1.4	0.0	0.0	32.9	2.7	2.0	0.7	5.3
Max Storag	e (m ³) per dr	ain=			4.5	-				10.2
-	nding Depth				15.2					34.2
0	onding Deptl	()			100.9					132.2
Notes	5 1	. ,								

1) Peak flow is equal to the product of $2.78 \times C \times I \times A$

2) Rainfall Intensity, I₅ = A/(Tc+6.053)^B & I₁₀₀ = A/(Tc+6.014)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

		Table VIII -				nd 100-Yo Area Buildi		Events)		
	C _{AVG} =	0.90	(5-year)							
	C _{AVG} =		(100-year)			Zurn 7105 (Control-Flo S	inale Notch		
Tim	ne Interval =	5	(mins)				r of Drains =		I	
	nage Area =	0.040	(hectares) pe	r drain	Tot		ate 5 year =	∠ 3.15		
Diali	lage Alea –	400	(sqm) per dra				a = 5 year = a 100 year =	4.10		
	r	Release Rate =				1	ease Rate =	2.05	(L/sec) per	drain
		Return Period =		(L/sec) per ((years)	urain		urn Period =	2.05 100	(vears)	JIAIII
		arameters, A =		(years) , B =	0.814		ameters, $A =$		(years) , B =	0.820
	IDF F			, D –	0.014	IDF Faid				0.020
		I = A/(I	_с +6.053)^В				I = A	/(T _c +6.014)^B	
	Rainfall			Storage		Rainfall		Release	Storage	
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	-	-	-	-	-	-	-	-	-	-
5	141.2	14.1	1.6	12.6	3.8	242.7	27.0	2.0	24.9	7.5
10	104.2	10.4	1.6	8.9	5.3	178.6	19.9	2.0	17.8	10.7
15	83.6	8.4	1.6	6.8	6.1	142.9	15.9	2.0	13.8	12.5
20	70.3	7.0	1.6	5.5	6.5	120.0	13.3	2.0	11.3	13.5
25	60.9	6.1	1.6	4.5	6.8	103.8	11.5	2.0	9.5	14.2
30	53.9	5.4	1.6	3.8	6.9	91.9	10.2	2.0	8.2	14.7
35	48.5	4.9	1.6	3.3	6.9	82.6	9.2	2.0	7.1	15.0
40	44.2	4.4	1.6	2.8	6.8	75.1	8.4	2.0	6.3	15.1
45	40.6	4.1	1.6	2.5	6.7	69.1	7.7	2.0	5.6	15.2
50	37.7	3.8	1.6	2.2	6.6	64.0	7.1	2.0	5.1	15.2
55	35.1	3.5	1.6	1.9	6.4	59.6	6.6	2.0	4.6	15.1
60	32.9	3.3	1.6	1.7	6.2	55.9	6.2	2.0	4.2	15.0
65	31.0	3.1	1.6	1.5	6.0	52.6	5.9	2.0	3.8	14.8
70	29.4	2.9	1.6	1.4	5.7	49.8	5.5	2.0	3.5	14.7
75	27.9	2.8	1.6	1.2	5.5	47.3	5.3	2.0	3.2	14.4
80	26.6	2.7	1.6	1.1	5.2	45.0	5.0	2.0	3.0	14.2
85	25.4	2.5	1.6	1.0	4.9	43.0	4.8	2.0	2.7	13.9
90	24.3	2.4	1.6	0.9	4.6	41.1	4.6	2.0	2.5	13.6
95	23.3	2.3	1.6	0.8	4.3	39.4	4.4	2.0	2.3	13.3
100	22.4	2.2	1.6	0.7	4.0	37.9	4.2	2.0	2.2	13.0
105	21.6	2.2	1.6	0.6	3.7	36.5	4.1	2.0	2.0	12.7
110 115	20.8 20.1	2.1	1.6 1.6	0.5	3.4	35.2 34.0	3.9	2.0	1.9	12.3
115	20.1 19.5	2.0 1.9	1.6	0.4	3.0 2.7	34.0 32.9	3.8 3.7	2.0	1.7 1.6	12.0 11.6
	e (m ³) per dra		1.0	0.4		32.9	3.1	2.0	1.0	
_	nding Depth				6.9					15.2
	onding Depth	. ,			17.2 105.2					38.0
Notes					105.2					136.9

1) Peak flow is equal to the product of $2.78 \times C \times I \times A$

2) Rainfall Intensity, I₅ = A/(Tc+6.053)^B & I₁₀₀ = A/(Tc+6.014)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

		Table IX -			5-Year ar			Events)		
	C _{AVG} =	0.90	(5-year)	Requireme						
	C _{AVG} =	1.00	(100-year)			Zurn 7105 (Control-Flo S	ingle Notch		
Tim								5	т	
	ne Interval =	5	(mins)	r drain	Tet		r of Drains =		4	
Drair	nage Area =	0.021	(hectares) pe				ate 5 year =	2.86		
	-	209	(sqm) per dra			1	e 100 year =	3.78		
		Release Rate =		(L/sec) per (drain		ease Rate =	1.89	(L/sec) per	drain
		Return Period =		(years)	0.044		urn Period =		_(years)	0.000
	IDF P	arameters, A =		, B =	0.814	IDF Para	ameters, A =		, B =	0.820
		I = A/(T	_c +6.053)^B				I = A	/(T _c +6.014)^B	
	Rainfall			Storage		Rainfall		Release	Storage	
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	-	-	-	-	-	-	-	-	-	-
5	141.2	7.4	1.4	6.0	1.8	242.7	14.1	1.9	12.2	3.7
10	104.2	5.4	1.4	4.0	2.4	178.6	10.4	1.9	8.5	5.1
15	83.6	4.4	1.4	2.9	2.6	142.9	8.3	1.9	6.4	5.8
20	70.3	3.7	1.4	2.2	2.7	120.0	7.0	1.9	5.1	6.1
25	60.9	3.2	1.4	1.8	2.6	103.8	6.0	1.9	4.1	6.2
30	53.9	2.8	1.4	1.4	2.5	91.9	5.3	1.9	3.5	6.2
35	48.5	2.5	1.4	1.1	2.3	82.6	4.8	1.9	2.9	6.1
40	44.2	2.3	1.4	0.9	2.1	75.1	4.4	1.9	2.5	5.9
45	40.6	2.1	1.4	0.7	1.9	69.1	4.0	1.9	2.1	5.7
50	37.7	2.0	1.4	0.5	1.6	64.0	3.7	1.9	1.8	5.5
55	35.1	1.8	1.4	0.4	1.3	59.6	3.5	1.9	1.6	5.2
60	32.9	1.7	1.4	0.3	1.1	55.9	3.2	1.9	1.4	4.9
65	31.0	1.6	1.4	0.2	0.8	52.6	3.1	1.9	1.2	4.6
70 75	29.4 27.9	1.5 1.5	1.4 1.4	0.1	0.5 0.1	49.8 47.3	2.9 2.7	1.9 1.9	1.0 0.9	4.2 3.9
80	27.9	1.5	1.4	0.0	0.1	47.3	2.7	1.9	0.9	3.9
85	25.4	1.4	1.4	0.0	0.0	43.0	2.0	1.9	0.7	3.1
90	23.4	1.3	1.3	0.0	0.0	43.0	2.3	1.9	0.0	2.7
90 95	24.3	1.3	1.3	0.0	0.0	39.4	2.4	1.9	0.3	2.7
100	23.3	1.2	1.2	0.0	0.0	39.4	2.3	1.9	0.4	1.9
100	22.4	1.1	1.2	0.0	0.0	36.5	2.2	1.9	0.2	1.5
110	20.8	1.1	1.1	0.0	0.0	35.2	2.1	1.9	0.2	1.0
115	20.0	1.1	1.1	0.0	0.0	34.0	2.0	1.9	0.2	0.6
120	19.5	1.0	1.0	0.0	0.0	32.9	1.9	1.9	0.0	0.0
	e (m ³) per dra			0.0	2.7	02.0	1.0	1.0	0.0	6.2
-	nding Depth				12.9					29.8
0	onding Deptil	、			95.5					126.2
Notes										

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I₅ = A/(Tc+6.053)^B & I₁₀₀ = A/(Tc+6.014)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

ICD Design Table - X

 $Q = 0.62 \text{ x A x } [2gh]^{0.5}$ where:

Location	Pipe Outlet Diameter (mm)	Pipe Outlet Invert (m)	HGL 100-year event	. (m) 5-year event	Outlet fl 100-year event	,	Trial orifice size (mm)	Orifice size (mm)	Orifice Area (sqm)	Head 100-year event	i (m) 5-year event
EX CBMH	750	90.09	92.79	92.29	306.0	274.6	300	298.22	0.06985	2.55	2.05

g= 9.81

Appendix B: Storm and Sanitary Sewer Computation Forms

STORM SEWER COMPUTATION FORM

ational Method ! = 2.78*A*I*R	Q = Flow (L/sec) A = Area (ha) I = Rainfall Intens	ity (mm/h)		City of Ott I ₅ = 998.07																
	R = Ave. Runoff Co				Minim	um Time of	Conc. Tc =	10 min	Mar	ning's n =	0.013									
			Γ		Ru	noff Paramet	ers		Roof	Peak										
Drainage Area	From	То	Area	Runoff Coeff.	Indiv. 2.78AR	Accum. 2.78AR	Time of Conc.	Rainfall Intensity	Flow Q	Flow Q	nom.	pe Dia. actual	Slope		Capacity full	full	ocity actual	Time of Flow	Q(d) / Q(f)	REMARKS
			(ha)	R			(min)	(mm/hr)	(L/sec)	(L/sec)	(mm)	(mm)	(%)	(m)	(L/sec)	(m/sec)	(m/sec)	(min)		
WS-14	RY-CB-15 MHST-14	MHST-14 CBMH-13	0.035	0.20	0.02	0.02	10.00 10.31	104.19 102.58		2.00 1.97	250 250	254 254	0.50	16.2 22.5	43.87 43.87	0.87	0.40	0.31 0.43	0.05	
	MI101-14	ODMIT-10				0.02	10.01	102.00		1.07	200	204	0.00	22.0	40.07	0.07	0.00	0.40	0.04	
WS-01 & WS-02	MHST-17	CBMH-13					10.00		9.30	9.30	200	203	0.95	30.4	33.35	1.03	0.73	0.49	0.28	
WS-09 & WS-10	CBMH-13	MHST-9	0.171	0.87	0.41	0.43	10.74	100.44	9.30	52.53	375	381	0.25	26.7	91.46	0.80	0.71	0.55	0.57	
WS-13	RY-CB-11	MHST-10	0.009	0.20	0.005	0.005	10.00	104.19		0.51	250	254	0.50	14.6	43.87	0.87	0.28	0.28	0.01	
	MHST-10	MHST-9				0.005	10.28	102.74		0.50	250	254	0.50	24.0	43.87	0.87	0.28	0.46	0.01	
	MHST-9	MHST-8				0.44	11.29	97.84	9.30	51.89	300	305	0.50	7.6	71.33	0.98	0.94	0.13	0.73	
WS-15	CB-19	CBMH-16	0.131	0.65	0.238	0.238	10.00	104.19		24.84	200	203	2.00	20.7	48.39	1.49	1.27	0.23	0.51	
WS-17	TD-CB-25	CBMH-16	0.023	0.90	0.058	0.058	10.00	104.19		6.05	200	203	1.50	27.6	41.91	1.29	0.76	0.36	0.14	
WS-16	CBMH-16	MHST-18	0.140	0.79	0.306	0.603	10.36	102.33		61.67	375	381	0.30	20.2	100.18	0.88	0.80	0.38	0.62	
WS-06	MHST-18	MHST-3	0.110	0.84	0.256	0.858	10.74	100.44		86.23	450	457	0.27	51.3	154.55	0.94	0.83	0.91	0.56	
WS-05	MHST-3	MHST-8	0.044	0.72	0.089	0.947	11.65	96.22		91.14	450	457	0.20	63.0	133.02	0.81	0.76	1.30	0.69	
WS-07, WS-08 & WS-11	MHST-8	MHST-6	0.308	0.85	0.729	2.111	12.95	90.82	9.30	201.05	600	610	0.23	26.3	307.20	1.05	0.97	0.42	0.65	
WS-03, WS-04 & WS-12	MHST-6	EX. CBMH	0.008	0.35	0.008	2.119	13.37	89.22	15.30	204.36	600	610	0.45	4.4	429.70	1.47	1.24	0.05	0.48	
ote:		1	I	<u> </u>	<u> </u>	<u> </u>		<u> </u>			Check:	B. Villeneuve M. Theiner 2023-03-16	<u> </u>	<u> </u>		3850 Carr Commerc Choice Pr	ial Develop	ment		

STORM SEWER COMPUTATION FORM

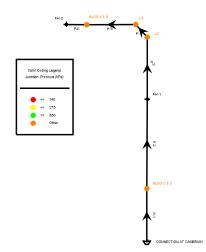
ational Method = 2.78*A*I*R	Q = Flow (L/sec) A = Area (ha) I = Rainfall Intens R = Ave. Runoff Co			City of Ott: I ₁₀₀ = 1735.	688/(Tc+6.0	14) ^ 0.820	Conc. Tc =	10 min	Ма	nning's n =	0.013									
Drainage Area	From	То	Area	Runoff Coeff.	Rur Indiv. 2.78AR	off Paramet Accum. 2.78AR	ers Time of Conc.	Rainfall Intensity	Roof Flow Q	Peak Flow Q	P nom.	ipe Dia. actual	Slope	Length	Capacity full	Vel full	ocity actual	Time of Flow	Q(d) / Q(f)	REMARKS
			(ha)	R			(min)	(mm/hr)	(L/sec)	(L/sec)	(mm)	(mm)	(%)	(m)	(L/sec)	(m/sec)	(m/sec)	(min)		
WS-14	RY-CB-15 MHST-14	MHST-14 CBMH-13	0.035	0.25	0.02	0.02	10.00 10.31	178.56 175.77		4.29 4.23	250 250	254 254	0.50 0.50	16.2 22.5	43.87 43.87	0.87 0.87	0.40 0.38	0.31 0.43	0.10 0.10	
WS-01 & WS-02	MHST-17	CBMH-13					10.00		12.13	12.13	200	203	0.95	30.4	33.35	1.03	0.73	0.49	0.36	
WS-09 & WS-10	CBMH-13	MHST-9	0.171	1.00	0.47	0.50	10.74	172.07	12.13	97.83	375	381	0.25	26.7	91.46	0.80	0.71	0.55	1.07	
WS-13	RY-CB-11 MHST-10	MHST-10 MHST-9	0.009	0.25	0.006	0.006	10.00 10.28	178.56 176.04		1.09 1.08	250 250	254 254	0.50	14.6 24.0	43.87 43.87	0.87 0.87	0.28 0.28	0.28 0.46	0.02	
	MHST-9	MHST-8				0.50	11.29	167.57	12.13	96.61	300	305	0.50	7.6	71.33	0.98	0.94	0.13	1.35	
WS-15	CB-19	CBMH-16	0.131	0.82	0.298	0.298	10.00	178.56		53.21	200	203	2.00	20.7	48.39	1.49	1.27	0.23	1.10	
WS-17	TD-CB-25	CBMH-16	0.023	1.00	0.064	0.064	10.00	178.56		11.52	200	203	1.50	27.6	41.91	1.29	0.76	0.36	0.27	
WS-16 WS-06	CBMH-16 MHST-18	MHST-18 MHST-3	0.140	0.98	0.383	0.745	10.36 10.74	175.33 172.07		130.66 180.94	375 450	381 457	0.30	20.2 51.3	100.18 154.55	0.88	0.80	0.38	1.30	
WS-05	MHST-3	MHST-8	0.044	0.90	0.111	1.163	11.65	164.76		191.55	450	457	0.20	63.0	133.02	0.81	0.76	1.30	1.44	
WS-07, WS-08 & WS-11 WS-03, WS-04 & WS-12	MHST-8 MHST-6	MHST-6 EX. CBMH	0.308	0.99 0.44	0.849 0.010	2.516 2.525	12.95 13.37	155.44 152.68	12.13 20.01	403.17 405.57	600 600	610 610	0.23 0.45	26.3 4.4	307.20 429.70	1.05 1.47	0.97 1.24	0.42	1.31 0.94	
lote:	1		<u> </u>					<u> </u>	<u> </u>		Check:	B. Villeneuve M. Theiner 2023-03-16	<u> </u>			3850 Cam Commerci Choice Pr	al Developr	ment		

SANITARY SEWER DESIGN SHEET

			Peak					Se	wer Data					
Drainage	From	То	Flow	Туре	Pipe	e Dia.	Slope	Length	Capacity	Vel	ocity	Time of	Q(d) / Q(f)	REMARKS
Area			Q	of	nom.	actual			full	full	actual	Flow		
			(L/sec)	Pipe	(mm)	(mm)	(%)	(m)	(L/sec)	(m/sec)	(m/sec)	(min)		
	MHSA-1	MHSA-2	0.56	PVC	150	152.4	1.06	22.9	16.4	0.90	0.41	0.93	0.03	Bldg A&B Connections + Infiltration
	MHSA-2	EX MH-S-1	0.62	PVC	150	152.4	1.50	55.3	19.5	1.07	0.49	1.88	0.03	Bldg C&D Connections
	EX MH-S-1	EX MH-S-2	0.62	PVC	200	203.2	2.20	25.3	50.8	1.56	0.64	0.66	0.01	
	EX MH-S-2	EX MH-S	97.94	CONC	500	500	0.13	167.5	136.1	0.69	0.67	4.19	0.72	*From DSEL Report
														·
Manning's n =	0.013									Design: Check: Date:	BV MT March 20	23	Project Namo Parsons Proj Client: Client Projec	ect #: 478356 Choice Properties

Appendix C: Sanitary Load and Fire Flow

SANITARY DESIGN FLOWS


		c	COMMERCIAL/R	ETAIL	TOTAL		INFILTRATION		Total
		Retail	Peak	Peak	Peak	Site	Infiltration	Infilt.	Total
Area		Area	Factor	Flow	Flow	Area	Allowance	Flow	Peak Flov
		(m ²)		(L/s)	(L/s)	(ha)	(L/s/ha)	(L/s)	(L/s)
Subject Site						1.36	0.33	0.45	0.45
Bldg A		1 576	1.5	0.08	0.08				0.08
Bldg B		576	1.5	0.03	0.03				0.03
Bldg C		798	1.5	0.04	0.04				0.04
Bldg D		418	1.5	0.02	0.02				0.02
								Total	0.61
					Design:	BV	Project:	Commercia	Dovolonmo
					Design.	BV	Flojeci.	Choice Prop	•
Average Daily Demands					Check :	MT	Location:	3850 Camb	
(Based on City of Ottawa Sewer Design (Guidelines 2012 and MO	E Water Design Guid	delines)					Ottawa, Ont	
Average Residential Daily Flow =	280 L/p/d	-	,		Dwg referer	nce:	Project # :	478356	
Institutional Flow =	28 000 L/ha/d				ů.		Date:	March 2023	
Commercial Flow =	28 000 L/ha/d						Sheet:	1 of 1	
Light Industrial Flow =	35 000 L/ha/d				B				
Heavy Industrial Flow =	55 000 L/ha/d								
Hotel Daily Flow =	225 L/bed/d								
Office/Warehouse Daily Flow =	75 L/empl/d								
Shopping Centres =	2 500 L/(1000m ² /	d)							
Population Densities	00								
Average suburban residential dev. Single family	60 p/ha 3.4 p./unit								
Single lamily Semi-detached	2.7 p./unit								
Duplex	2.3 p./unit								
Townhouse	2.7 p./unit								
Appartment average	1.8 p./unit								
Bachelor	1.4 p./unit								
1 Bedroom	1.4 p./um								
	1.4 p./unit								
2 Bedrooms	1.4 p./unit 2.1 p./unit								
2 Bedrooms 3 Bedrooms	1.4 p./unit 2.1 p./unit 3.1 p./unit								
2 Bedrooms 3 Bedrooms Hotel room, 18 m2	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit								
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit								
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m ²								
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m ² 1 p/90m ²	management)							
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m ²	management)							
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m ² 1 p/90m ² 1 p/bay (plus								
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay <u>Peak Factors</u> Commercial =	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m ² 1 p/90m ² 1 p/bay (plus	al contribution > 209							
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional =	 1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p./unit 1 p/25m² 1 p/90m² 1 p/bay (plus 1.5 if commerce 1.5 if institution 	al contribution > 20% al contribution > 20%							
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional = Industrial =	 1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p./unit 1 p/25m² 1 p/90m² 1 p/bay (plus) 1.5 if commerce 1.5 if commerce 1.5 if spender 	al contribution > 20% al contribution > 20% lix 4-B.0 Graph							
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional =	 1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p./25m² 1 p/90m² 1 p/bay (plus) 1.5 if commerconds in the structure of the structure	al contribution > 20% al contribution > 20% lix 4-B.0 Graph uation	%, otherwise						
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional = Industrial =	 1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p./25m² 1 p/90m² 1 p/bay (plus) 1.5 if commerconds in the structure of the structure	al contribution > 20% al contribution > 20% lix 4-B.0 Graph	%, otherwise						
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional = Institutional =	 1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m² 1 p/90m² 1 p/bay (plus) 1.5 if commerce 1.5 if institution per Appende Harmon Ec 1 + (14/(4+ 	al contribution > 20% al contribution > 20% lix 4-B.0 Graph uation	%, otherwise						
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional = Industrial = Residential :	 1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m² 1 p/90m² 1 p/bay (plus) 1.5 if commerce 1.5 if institution per Appenener Harmon Economic Harmon	al contribution > 20% al contribution > 20% lix 4-B.0 Graph uation	%, otherwise						
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional = Industrial = Residential : Infiltration allowance (dry weather)	1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./25m ² 1 p/90m ² 1 p/bay (plus 1.5 if commerc 1.5 if institution per Appenc Harmon Ec 1 + (14/(4+ min = 2 max = 4 0.05 L/s/ha	al contribution > 20% al contribution > 20% lix 4-B.0 Graph uation	%, otherwise						
2 Bedrooms 3 Bedrooms Hotel room, 18 m2 Restaurant, 1 m2 Office Warehouse Automotive Service Centre, per bay Peak Factors Commercial = Institutional = Industrial = Residential :	 1.4 p./unit 2.1 p./unit 3.1 p./unit 1 p./unit 1 p./unit 1 p/25m² 1 p/90m² 1 p/bay (plus) 1.5 if commerce 1.5 if institution per Appenener Harmon Economic Harmon	al contribution > 20% al contribution > 20% lix 4-B.0 Graph uation	%, otherwise						

Area	Units	Population	Gross Floor Area	Average Daily Demand (ADD)	Maximum Daily Demand (MDD)	Peak Hourly Demand (PHD)	Fire Flow (FF)	MDD + FF
			(m2)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)
Proposed Bldg A								
Commercial Unit			1576	0.05	0.08	0.14	100	100.08
Proposed Bldg B								
Commercial Unit			576	0.02	0.03	0.05	50	50.03
Proposed Bldg C								
Commercial Unit			798	0.03	0.04	0.07	100	100.04
Proposed Bldg D								
Commercial Unit			418	0.01	0.02	0.04	83	83.02
Average Daily Demand						· · · · ·	03	00.02
Based on Ottawa Design Guidelines - Water Distribut	-				Maximum Daily Deman	1		00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow =	350	L/p/d			Maximum Daily Deman	9 = 2.5 x Average Daily Dema	nd	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = Institutional Flow =	350 28 000	L/p/d L/gross ha/d			Maximum Daily Deman Residential =	9 = 2.5 x Average Daily Dema 4.9 x Average Daily Dem	nd nand **	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = nstitutional Flow = Commercial Flow =	350 28 000 28 000	L/p/d L/gross ha/d L/gross ha/d			Maximum Daily Deman Residential = Industrial =	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 	nd nand ** nd	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = nstitutional Flow = Commercial Flow = .ight Industrial Flow =	350 28 000 28 000 35 000	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d			Maximum Daily Deman Residential = Industrial = Commercial =	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 1.5 x Average Daily Dema 	nd nand ** nd nd	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = nstitutional Flow = Commercial Flow = Light Industrial Flow = Heavy Industrial Flow =	350 28 000 28 000 35 000 55 000	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d L/gross ha/d			Maximum Daily Deman Residential = Industrial = Commercial =	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 	nd nand ** nd nd	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = nstitutional Flow = Commercial Flow = Light Industrial Flow = Heavy Industrial Flow = Hotel Daily Flow =	350 28 000 28 000 35 000 55 000 225	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d L/gross ha/d L/bed/d		ms, 2008	Maximum Daily Deman Residential = Industrial = Commercial = Institutional =	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 1.5 x Average Daily Dema 	nd nand ** nd nd	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = Institutional Flow = Commercial Flow = Light Industrial Flow = Heavy Industrial Flow = Hotel Daily Flow = Office/Warehouse Daily Flow =	350 28 000 28 000 35 000 55 000 225 75	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d L/gross ha/d L/bed/d L/person/d		ms, 2008	Maximum Daily Deman Residential = Industrial = Commercial =	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 1.5 x Average Daily Dema 	nd nand ** nd nd	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = nstitutional Flow = Commercial Flow = Light Industrial Flow = Heavy Industrial Flow = Hotel Daily Flow = Office/Warehouse Daily Flow = Office/Warehouse Daily Flow =	350 28 000 28 000 35 000 55 000 225 75 8.06	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d L/gross ha/d L/bed/d		ms, 2008	Maximum Daily Deman Residential = Industrial = Commercial = Institutional = Peak Hourly Demand	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 1.5 x Average Daily Dema 1.5 x Average Daily Dema 	nd nand ** nd nd	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = Institutional Flow = Commercial Flow = Light Industrial Flow = Heavy Industrial Flow = Hotel Daily Flow = Office/Warehouse Daily Flow = Office/Warehouse Daily Flow = Restaurant (Ordinary not 24 Hours) =	350 28 000 28 000 35 000 55 000 225 75 8.06 125	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d L/gross ha/d L/bed/d L/person/d L/m2/day		ms, 2008	Maximum Daily Deman Residential = Industrial = Commercial = Institutional = Peak Hourly Demand	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 1.5 x Average Daily Dema 1.5 x Average Daily Dema 2.2 x Maximum Daily Dem 	nd hand ** nd nd hand	00.02
Average Daily Demand Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = Institutional Flow = Commercial Flow = Light Industrial Flow = Heavy Industrial Flow = Hotel Daily Flow = Office/Warehouse Daily Flow = Office/Warehouse Daily Flow = Restaurant (Ordinary not 24 Hours) = Restaurant (24 Hours) = Shopping Centres =	350 28 000 28 000 35 000 55 000 225 75 8.06 125 200	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d L/gross ha/d L/bed/d L/bed/d L/person/d L/m2/day L/seat/d		ms, 2008	Maximum Daily Deman Residential = Industrial = Commercial = Institutional = Peak Hourly Demand Residential =	 2.5 x Average Daily Dema 4.9 x Average Daily Dem 1.5 x Average Daily Dema 1.5 x Average Daily Dema 1.5 x Average Daily Dema 	nd hand ** nd nd nd hand	00.02
Based on Ottawa Design Guidelines - Water Distribut Average Residential Daily Flow = nstitutional Flow = Commercial Flow = Light Industrial Flow = Heavy Industrial Flow = Hotel Daily Flow = Office/Warehouse Daily Flow = Office/Warehouse Daily Flow = Restaurant (Ordinary not 24 Hours) = Restaurant (24 Hours) =	350 28 000 28 000 35 000 55 000 225 75 8.06 125 200 2 500	L/p/d L/gross ha/d L/gross ha/d L/gross ha/d L/gross ha/d L/bed/d L/bed/d L/person/d L/m2/day L/seat/d L/seat/d		ms, 2008	Maximum Daily Deman Residential = Industrial = Commercial = Institutional = Peak Hourly Demand Residential =	 2.5 x Average Daily Dema 4.9 x Average Daily Dema 1.5 x Average Daily Dema 1.5 x Average Daily Dema 1.5 x Average Daily Dema 2.2 x Maximum Daily Dem 7.4 x Maximum Daily Dem 	nd nand ** nd nd nd nand mand ** nand	00.02

					38	50 Cambria	an Road C	ommercial	Developme	ent				Paguirod F	ire Demand
Building	Type of Construction C	Total Floor Area (m2) A	Fire Flow (min. 2,000) (L/min) F	Adjusted (nearest 1,000) (L/min)	Occupancy Factor	Reduction / Increase due to Occupancy	Fire Flow with Occupancy (min. 2,000) (L/min)	Sprinklers Factor	Reduction due to Sprinklers (L/min)	Exposure Factor % E	Increase due to Exposure (L/min)	Fire Flow (L/min)	Roof Contribution (L/min) R	Adjusted to the nearest 1000 (min. 2,000, max. 45,000) (L/min) F	Minimum 33 (L/s)
Bldg A	0.8	1 576	6 987	7 000	0%	0	7 000	50%	3 500	40%	2 800	6 000	0	6 000	100
Bldg B	0.8	576	4 224	4 000	0%	0	4 000	50%	2 000	35%	1 400	3 000	0	3 000	50
Bidg C Bidg D	0.8	798 418	4 972 3 598	5 000 4 000	0%	0	5 000 4 000	0%	0	15% 15%	750 600	6 000 5 000	0	6 000 5 000	100 83
	Ottawa Design (Type of Constru Wood Frame (T) Mass Timber (T) Mass Timber (T) Mass Timber (T) Mass Timber (T) Ordinary Constr Non-Combustib Fire resistive Co	Guidelines - Water (ction) (pe V) ype IV-A) - Encaps ype IV-A) - Encaps ype IV-A) - Brated Pype IV-C) - Ordinar ype IV-C) - Ordinar ype IV-D) - Unrater uction (Type III als le Construction (Type I Coor Area (m2).	r Distribution, Jui Mass Timber y Mass Timber d Mass Timber d Mass Timber io known as joist ype II - minimum - minimum 2 ho	ed masonry) 1 hour fire resist ur fire resistance	equent Technica			Standard Water Full Supervision <u>Additional Redu</u> Buildings locate additional 25% r individual buildi <u>Adjustment of S</u>	ctions for Commu d within commun reduction in requ ng. prinkler Reductic	lards unity Level Auton ities or subdivisio ired fire flows be ons for Communit	mplete Coverage 30% 10% 10% hatic Sprinkler Prr. ons that are comp ons that are comp ond the normal r y Level Oversight	30% * x% 10% * x% 10% * x% (x%: percentage otection of Area pletely sprinkler p maximum of 50%	of total protected protected may app s reduction for spi intenance, Testing	ply up to a maxim rinkler protection	of an
	100% of all Floo <u>Buildings Classi</u> Vertical Opening	fied with a Constr	uction Coefficier Adjoining Floor A 6 (up to eight (8)) ted loor	n <u>t below 1.0</u> reas at 50%			E	The community inspected, teste The community flow rates and p of inadequate w Exposure	does not have a d, and maintaine does not mainta ressure levels tha ater supply for ef	Fire Prevention d in accordance ain the pressure a at were available fective sprinkler	and flow rate requ during sprinkler s	vides a system of nirements for fire system design to	f ensuring that the sprinkler installa significantly degr	tions, or otherwis rade, increasing t	e allows the he probability
	High One Store	Building						01	Distance (m) o 3	2	sure Adjustment 5%	N	E BidgB	S	W BidgA
				xceeding 3m in he					to 10 to 20		0% 5%	Distri	Dist-0		Dista
	made of the bui		the total effectiv	ve area depends i	upon the use bei	ng			to 30		5% 0%	BidgA	BldgC		BidgD BidgB
	Minimum two (2		nce rating and n	neets National Bu				L	r		% t Building Conside	ering Constructio	on Type of Expose	d Building Face	 T
	hazard conditio - An exposure cl	ns.		of fire on the expo if there are unpro				Distance to the Exposure (m)	Length-Height Factor of Exposing Building Face	Type V	Type III-IV ²	Type III-IV ³	Type I-II ²	Type I-II ³	
	Open Parking G	excluded when it <u>arages</u> the largest floor.	is at least 50% t	oelow grade.				0 to 3	0-20 21-40 41-60 61-80 81-100 Over 100	20% 21% 22% 23% 24% 25%	15% 16% 17% 18% 19% 20%	5% 6% 7% 8% 9% 10%	10% 11% 12% 13% 14% 15%	0% 1% 2% 3% 4% 5%	- - - -
C	Occupancy		05%						0-20	15%	10%	3%	6%	0%	
	Non-Combustib Limited Combus		-25% -15%					21+-10	21-40 41-60	16% 17%	11% 12%	4% 5%	7% 8%	0% 1%	
	Combustible		0% 15%					3.1 to 10	61-80	18%	13%	6% 7%	9%	2%	
	Free Burning Rapid Burning		15% 25%						81-100 Over 100	19% 20%	14% 15%	8%	10% 11%	4%	
	Table 3 provid	es recommended	Occupancy and	Contents Adjustm	ent Factors for F	yample Maior			0-20 21-40	10% 11%	5% 6%	0% 1%	3% 4%	0% 0%	
	Occupancies fro	om the National B	uilding Code of C	Canada.				10.1 to 20	41-60	12%	7%	2%	5%	0%	
	 Adjustment fail exists in the su 		djusted accordin	gly to the specific	tore loading and	situation that			61-80 81-100	13% 14%	8% 9%	3% 4%	6% 7%	1% 2%	
	- Values can be	interpolated from		iven considering f	ire loading and e	xpected			Over 100	15%	10%	5%	8%	3%	
		of contents if the s modified by up to		is not listed. Inding on the exte	nt to which the fi	ire loading is			0-20 21-40	0% 2%	0% 1%	0% 0%	0% 0%	0% 0%	
	unusual for the	building.						20.1 to 30	41-60	4%	2%	0%	1%	0%	
	 Buildings with 	multiple major of		ld use the most re its associated fin		r interpolate		20.1 (0 30	61-80 81-100	6% 8%	3% 4%	1% 2%	2% 3%	0% 0%	
	based on the p	ercentage of each	occupancy and	na associateu Tiñ	- loauing.				81-100 Over 100	8% 10%	4% 5%	2%	3%	0%	
		for Subject Buildir	1g					Over 30m	All Sizes	0%	0%	0%	0%	0%	I
	Group: Division:							² with unprotect	ed openings						
	Description of C							³ without unprot							
	Occupancy and Adjustment Fac		0%					Automatic Sprin	kler Protection in	Exposed Building	øs				
			0,0					- If the exposed	building is fully p	rotected with an	automatic sprinkle	er system (see n	ote Recognition o	of Automatic Sprin	ikler), the
F	R Roof Shake Roof Wood Shingle		2,000 to 4,000 2,000 to 4,000			d be added to the d be added to the		exposure adjust Automatic Sprin - If both the sub	ment charge dete kler Protection in ect building and	ermined from Tab both Subject an the exposed build	ele 6 may be redu d Exposed Buildin ding are fully prote	ced by up to 509 ags ected with auton	% of the value det	ermined.	
	F <u>Fire Flow (L/Mi</u> r	1)_ 220*C*(A^0.5)						Exposure Protect - If the exposed area between th <u>Reduction of Exp</u> - If the exposed	tion of Area Betw building is fully p e buildings is pro posure Charge fo building face of a	veen Subject and rotected with an a stected with an e r Type V Building Type V building	rge should be ap <u>Exposed Building</u> automatic sprinkle derior automatic s <u>S</u> nas an exterior cla IV building for the	<u>gs</u> er system (see n sprinkler system adding assembly	, no exposure adj with a minimum	ustment charge s 1 hour fire resisti	should be applied

Appendix D: WaterCad Model Results

Scenario: Base

3850 Cambrian Rd - WaterModel.wtg 2023-03-29

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

AVERAGE DAY RESULTS

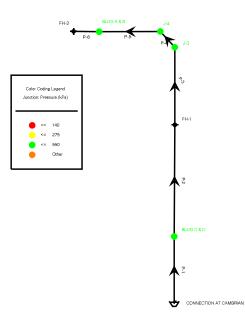
PIPE TABLE

Length (Scaled) (m)	Start Node	Stop Node	Diameter (mm)	Material	Hazen-Williams C	Flow (L/s)	Velocity (m/s)
19	CONNECTION AT CAMBRIAN	BLDG C & D	200.0	PVC	110.0	0.11	0.00
31	BLDG C & D	FH-1	200.0	PVC	110.0	0.07	0.00
21	FH-1	J-3	200.0	PVC	110.0	0.07	0.00
6	J-3	J-4	200.0	PVC	110.0	0.07	0.00
17	J-4	BLDG A & B	200.0	PVC	110.0	0.07	0.00
7	BLDG A & B	FH-2	200.0	PVC	110.0	0.00	0.00

JUNCTION TABLE

Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
BLDG C & D	94.10	0.04	156.50	611
J-3	93.60	0.00	156.50	616
]-4	93.60	0.00	156.50	616
BLDG A & B	93.92	0.07	156.50	612

RESERVOIR TABLE


Ľ

Label	Elevation (m)	Flow (Out net) (L/s)	Hydraulic Grade (m)
CONNECTION AT CAMBRIAN	156.50	0.11	156.50

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 2 [10.02.01.06] Page 1 of 1

L

Scenario: Peak Hour

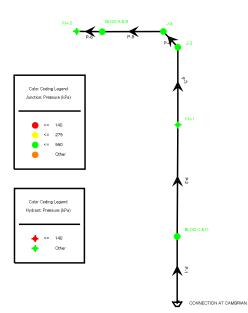
3850 Cambrian Rd - WaterModel.wtg 2023-03-29

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PIPE TABLE

Length (Scaled) (m)	Start Node	Stop Node	Diameter (mm)	Material	Hazen-Williams C	Flow (L/s)	Velocity (m/s)
19	CONNECTION AT CAMBRIAN	BLDG C & D	200.0	PVC	110.0	0.31	0.01
31	BLDG C & D	FH-1	200.0	PVC	110.0	0.20	0.01
21	FH-1	J-3	200.0	PVC	110.0	0.20	0.01
6	J-3	J-4	200.0	PVC	110.0	0.20	0.01
17]-4	BLDG A & B	200.0	PVC	110.0	0.20	0.01
7	BLDG A & B	FH-2	200.0	PVC	110.0	0.00	0.00

JUNCTION TABLE


Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
BLDG C & D	94.10	0.11	142.60	475
J-3	93.60	0.00	142.60	480
]-4	93.60	0.00	142.60	480
BLDG A & B	93.92	0.20	142.60	476

RESERVOIR TABLE

Label	Elevation (m)	Flow (Out net) (L/s)	Hydraulic Grade (m)
CONNECTION AT CAMBRIAN	142.60	0.31	142.60

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario: Max Day + FF

3850 Cambrian Rd - WaterModel.wtg 2023-03-29

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

MAX DAY + FIRE FLOW RESULTS

HYDRANT TABLE

Label	Label Length (Hydrant Eleva Lateral) (m (m)		Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)	
FH-2	6	93.60	95.00	131.31	369	
FH-1	6	93.85	5.00	135.77	410	

PIPE TABLE

Length (Scaled) (m)	Start Node	Stop Node	Diameter (mm)	Material	Hazen-Williams C	Flow (L/s)	Velocity (m/s)
19	CONNECTION AT CAMBRIAN	BLDG C & D	200.0	PVC	110.0	100	3.19
31	BLDG C & D	FH-1	200.0	PVC	110.0	100	3.19
21	FH-1	J-3	200.0	PVC	110.0	95	3.03
6	J-3	J-4	200.0	PVC	110.0	95	3.03
17	J-4	BLDG A & B	200.0	PVC	110.0	95	3.03
7	BLDG A & B	FH-2	200.0	PVC	110.0	95	3.02

JUNCTION TABLE

Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
BLDG C & D	94.10	0.06	137.72	427
J-3	93.60	0.00	134.54	401
]-4	93.60	0.00	134.20	397
BLDG A & B	93.92	0.11	133.23	385

RESERVOIR TABLE

Label	Elevation (m)	Flow (Out net) (L/s)	Hydraulic Grade (m)
CONNECTION AT CAMBRIAN	138.90	100.17	138.90

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Appendix E: Stormwater Storage Chambers Specifications

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

3850 CAMBRIAN RD REV1 OTTAWA, ON, CANADA

SC-310 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-310. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE OR 2. POLYETHYLENE COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

REQUIREMENTS FOR HANDLING AND INSTALLATION: 7

- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2").
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION. a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2922 SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2922 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-310 SYSTEM

- STORMTECH SC-310 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE". 2.
- 3 CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2"). 7.
- 8 THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1.
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.



STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE"

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

	PROPOSED LAYOUT	PROPOSED ELEVATIONS				
84	STORMTECH SC-310 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	95.215	PART TYPE	ITEM ON	DESCRIPTION
22 152	STORMTECH SC-310 END CAPS STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	93.386 93.234	PREFABRICATED EZ END CAP	Δ	300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310ECE BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS
<u> </u>	STONE BELOW (mm) STONE VOID	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	93.234 93.234		В	INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAMP (200 mm x 200 mm BOTTOM MANIFOLD, MOLDED FITTINGS
113.1	INSTALLED SYSTEM VOLUME (m ⁻) (PERIMETER STONE INCLUDED)	TOP OF STONE: TOP OF SC-310 CHAMBER:	02 776	MANIFOLD CONCRETE STRUCTURE	D	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)
113.1	(COVER STONE INCLUDED) (BASE STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT: 300 mm ISOLATOR ROW PLUS INVERT:		CONCRETE STRUCTURE	E	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)
	SYSTEM AREA (m ²) SYSTEM PERIMETER (m)	200 mm x 200 mm BOTTOM MANIFOLD INVERT: 200 mm BOTTOM CONNECTION INVERT:		CONCRETE STRUCTURE	F	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)
		BOTTOM OF SC-310 CHAMBER: BOTTOM OF STONE:	92.370 92.000		•	

PLACE MINIMUM 3.810 m OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

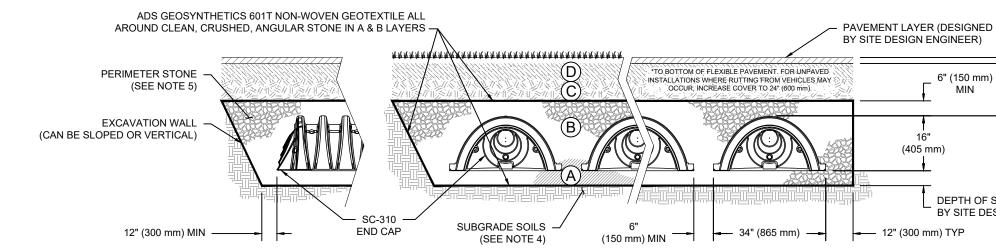
MOTES
 MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AN COMPONENTS IN THE FIELD.
 THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQ.
 THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DETERMINING
 THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OF PROVIDED.
 MOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAL

BED LIMITS

	BOVE BASI	E OF CHAMBER					ш
	INVERT*	MAX FLOW	~				LTIMATI
CEZ / TYP OF ALL 300 mm	23 mm		> Щ			Ă	THE U
P (TYP 3 PLACES)	15 mm		С И И	DA	BU	Z Z	N. IT IS
	15 mm	71 L/s IN	R R	ANA	DRAWN: BU	CHECKED: N/A	RUCTIO
		59 L/s IN	NAD	ON, O	DR/	В	ONSTF
		59 L/s IN	ABR	WA, O			OR TO C
			3850 CAMBRIAN RD REV1	OTTAWA, ON, CANADA	DATE: OLLAV	PROJECT #:	HALL REVIEW THIS DRAWING PRIC
						DESCRIPTION	ATIVE. THE SITE DESIGN ENGINEER S
						CHK	EPRESENT
					-	DRW 0	DUECT R
							ER PRO
						DATE	R OR OTH
E A B E 2533 m F		StormTech®		Chamber System	888-892-2694 WWW.STORMTECH.COM	VIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE	
ND COUPLE ADDITIONAL PIPE TO	9 STANDAR	D MANIFOLD	4640 TRUEMAN BLVD HILLIARD, OH 43026 1800-733-7473				HE SITE DESIGN ENGINEER BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE
QUIREMENTS ARE MET. TE DESIGN ENGINEER IS RESPON OR DECREASED ONCE THIS INFO				94	EET		THIS

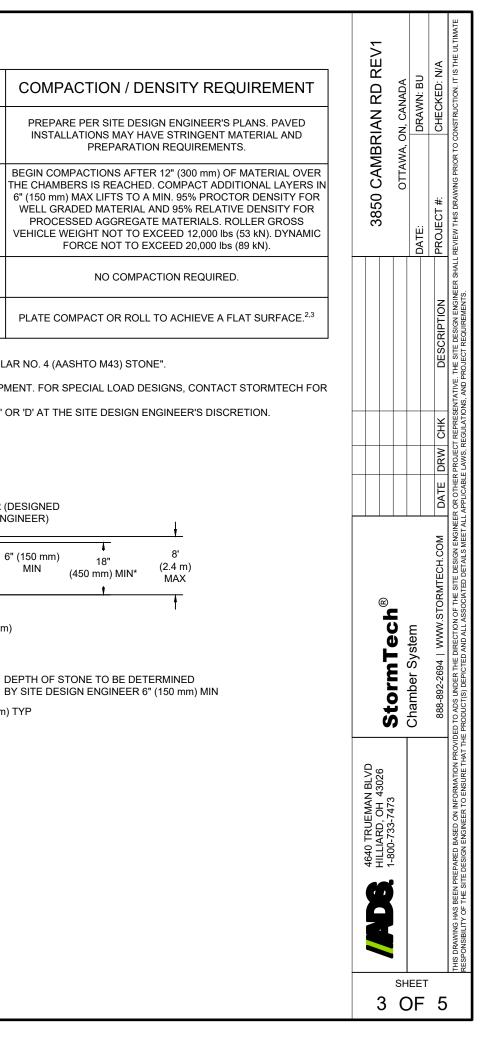
ACCEPTABLE FILL MATERIALS: STORMTECH SC-310 CHAMBER SYSTEMS

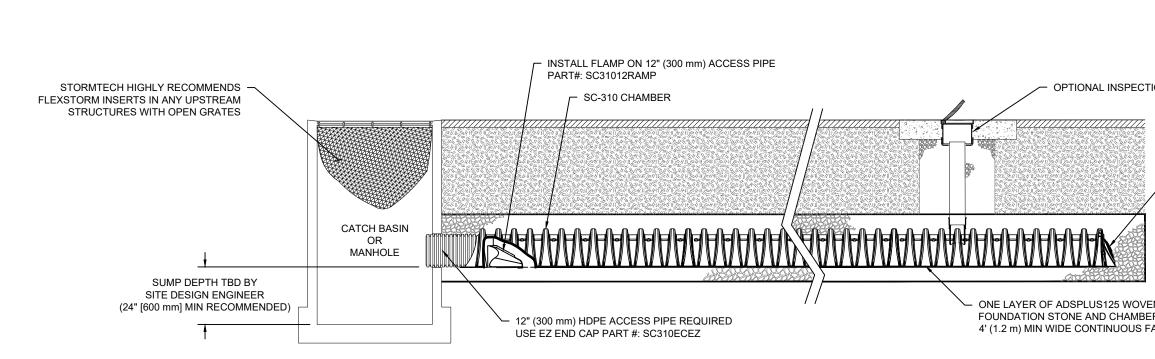
	MATERIAL LOCATION DESCRIPTION		AASHTO MATERIAL CLASSIFICATIONS	COMPA
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPAR INSTALL
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145' A-1, A-2-4, A-3 OR AASHTO M43' 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMBI 6" (150 mm) WELL GRA PROCES VEHICLE W F
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE CO


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.


3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.


4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-310 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. THE ASC IS DEFINED IN SECTION
 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

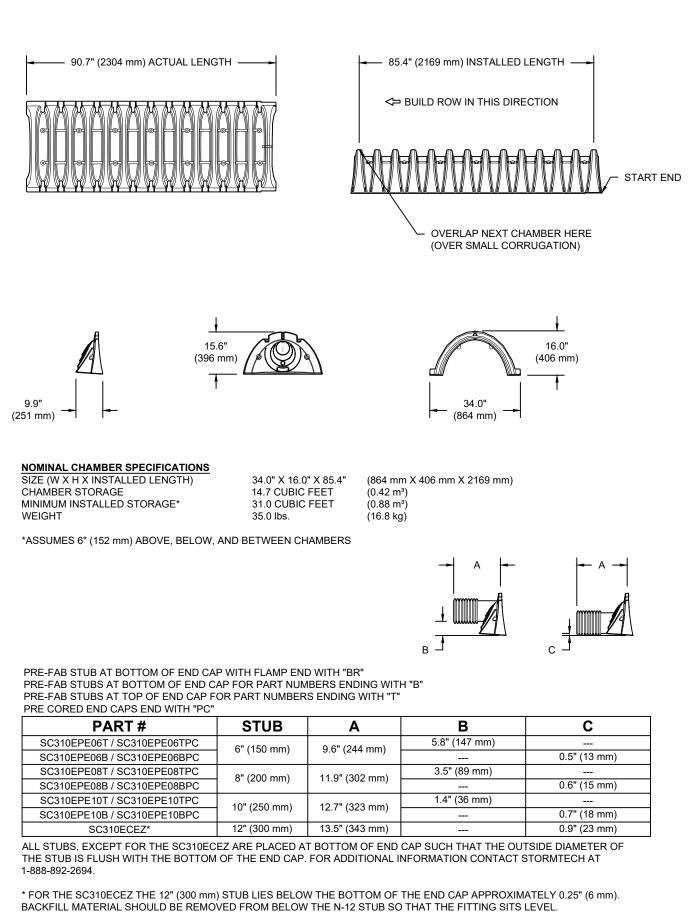
SC-310 ISOLATOR ROW PLUS DETAIL

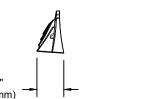
NTS

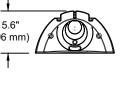
INSPECTION & MAINTENANCE

INSPECT ISOLATOR ROW PLUS FOR SEDIMENT STEP 1)

- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
- i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

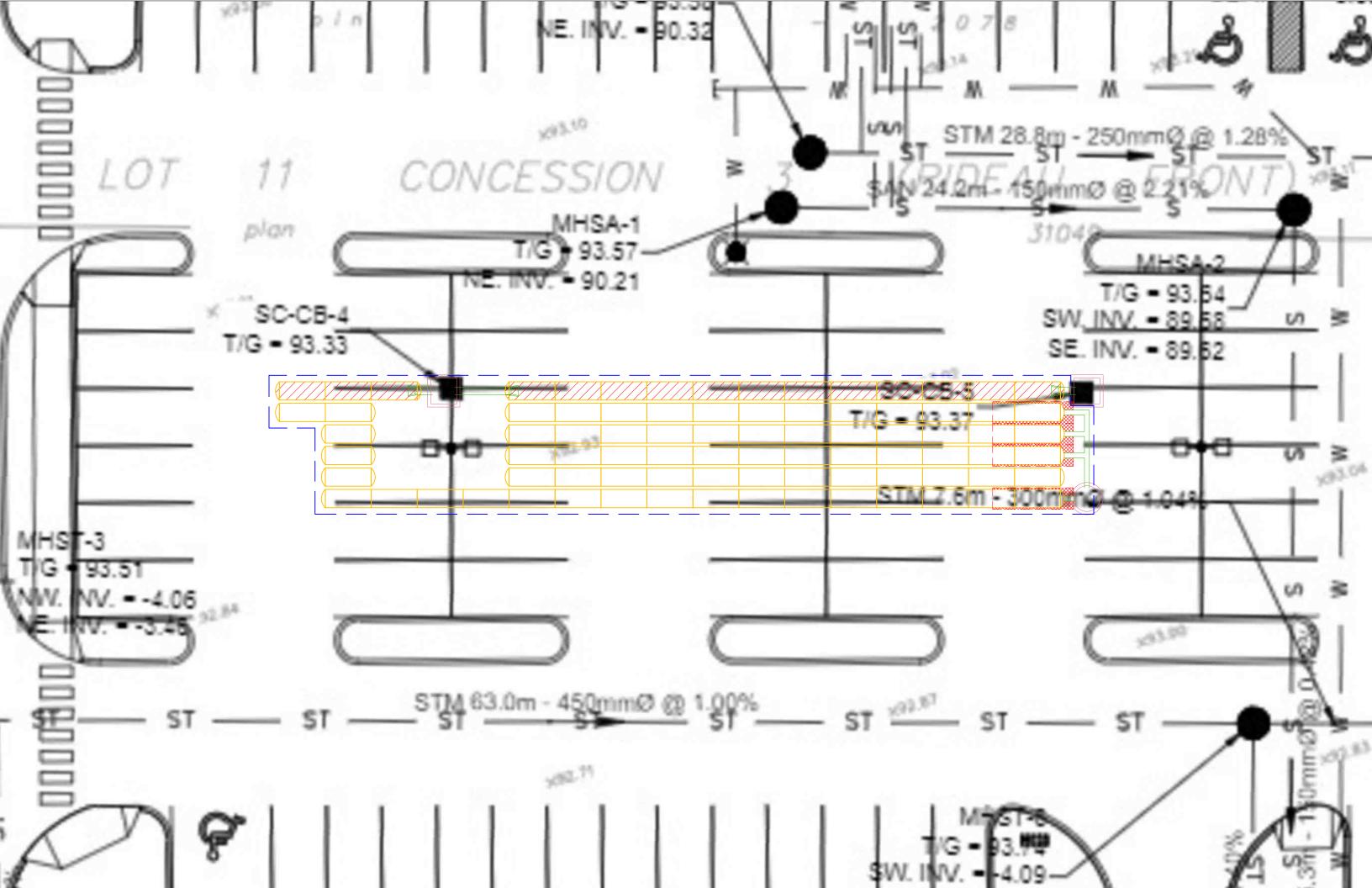

NOTES


- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.


					Щ
	3850 CAMBRIAN RD REV1	OTTAWA, ON, CANADA	DRAWN: BU	CHECKED: N/A	TO CONSTRUCTION. IT IS THE ULTIMAT
N PORT	3850 CAM	OTTAW	DATE:	PROJECT #:	L REVIEW THIS DRAWING PRIOR
				DESCRIPTION	IE SITE DESIGN ENGINEER SHAI
GEOTEXTILE BETWEEN S BRIC WITHOUT SEAMS					TATIVE. THI
RIC WITHOUT SEAMS				CHK	REPRESEN
				DRW CHK	PROJECT F
				DATE	
		StormTech	Chamber System	888-892-2694 WWW.STORMTECH.COM	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE
	4640 TRUEMAN BLVD HILLIARD, OH 43026	2			ARWING HAS BEEN PREPARED BASED ON INFORMATION PRC
	 4		EET DF	5	

SC-310 TECHNICAL SPECIFICATION

NTS

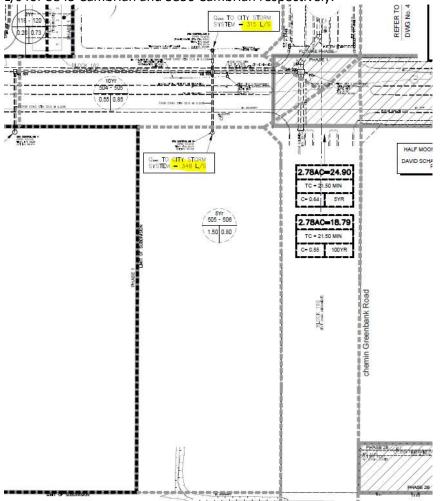

SIZE (W X H X INSTALLED LENGTH)	34.0" X 16.0" X 85.4"
CHAMBER STORAGE	14.7 CUBIC FEET
VINIMUM INSTALLED STORAGE*	31.0 CUBIC FEET
WEIGHT	35.0 lbs.

PART #	STUB	A	
SC310EPE06T / SC310EPE06TPC	6" (150 mm)	9.6" (244 mm)	
SC310EPE06B / SC310EPE06BPC	0 (100 mm)	3.0 (244 mm)	
SC310EPE08T / SC310EPE08TPC	8" (200 mm)	11.9" (302 mm)	
SC310EPE08B / SC310EPE08BPC	0 (200 mm)	11.9 (302 1111)	
SC310EPE10T / SC310EPE10TPC	10" (250 mm)	12.7" (323 mm)	
SC310EPE10B / SC310EPE10BPC	10 (230 mm)	12.7 (323 1111)	
SC310ECEZ*	12" (300 mm)	13.5" (343 mm)	

NOTE: ALL DIMENSIONS ARE NOMINAL

4640 TRUEMAN BLVD 4640 TRUEMAN BLVD 3850 TRUEMAN BLVD 1-800-733-7473 5100-733-7473 3850 CAMBRIAN RD REVI 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-733-7473 1-800-800-800-800-800-800-800-800-800-80				F				
Match Incleman BLVD 4640 Incleman BLVD 3850 CAMBRIAN RD RV MILLIARD, OH 43026 StormTech® Incleman BLVD 3850 CAMBRIAN RD RV Incleman BLVD OTTAWA, ON, CANADA Incleman BLVD Incleman BLVD Incleman BLVD Boon-733-7473 Boon-733-7473 Incleman BLVD Incleman BLD Incleman BLVD Incleman BLVD Incleman BLVD Incleman BLD Inclema BLD Incleman BLD Incle								
							3850 CAMBI	RIAN RD REV1
			1-800-733-7473	Storm Tach®				
Chamber System Date: DATE: DATE: DATW: BU B88-892-2694 WWW.STORMTECH.COM DATE DESCRIPTION PROJECT #: CHECKED: N/A THIS DRAWING HAS BEEN PREARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS. DESCRIPTION CHECKED: N/A			0				OTTAWA,	ON, CANADA
			_	Chamber System			DATE.	
888-892-2694 WWW.STORMTECH.COM DATE DRW CHK DESCRIPTION PROJECT #: CHECKED: N/A THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE BITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER NO FTHE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER NO FTHE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER NO FTHE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER NO FTHE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER NO FTHE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER NO FTHE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER NO FTHE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THE PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER OR OTHER PROJECTED AND AND AND AND AND AND AND AND AND AN			_					
THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THE DIREMATION PRIOR TO CONSTRUCTION. IT IS THE UIR SPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.				888-892-2694 WWW.STORMTECH.COM	DATE DRW CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
	THI	IS DRAWING HAS BEEN P SPONSIBILITY OF THE SIT	REPARED BASED ON INFORMATION PROVIN	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE IE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL	ER OR OTHER PROJECT REPRESENT. L APPLICABLE LAWS, REGULATIONS,	TIVE. THE SITE DESIGN ENGINEER SHA	ALL REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS THE ULTIMATE

Appendix F: City Correspondence


Villeneuve, Benoit [NN-CA]

From:	Bramah, Bruce <bruce.bramah@ottawa.ca></bruce.bramah@ottawa.ca>
Sent:	20 mars 2023 15:00
То:	Villeneuve, Benoit [NN-CA]
Cc:	Theiner, Mathew [NN-CA]; Harrold, Eric
Subject:	[EXTERNAL] RE: 3845 & 3850 Cambrian Rd Commercial Developments - Stormwater
	Management

Good afternoon Benoit,

Both properties shall comply with the servicing criteria from the final detailed design: Design Brief for the Half Moon Bay West Phase 1, Prepared by DSEL, Project #16-888, dated Sept 5, 2018.

The design brief notes a predevelopment C=0.8, Tc=10min. The resulting pre development flows are 348 L/s and 315 L/s for 3845 Cambrian and 3850 Cambrian respectively.

If you have any further questions, please feel free to call me or we can set up a meeting to discuss. Thank you,

Bruce Bramah, EIT

Project Manager

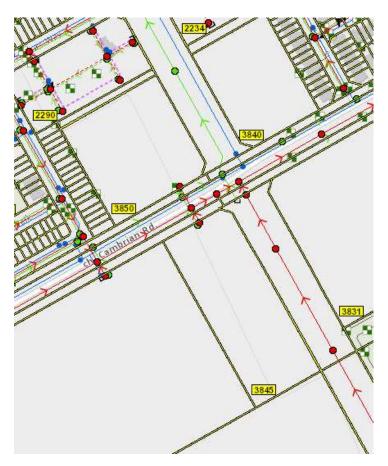
Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique Development Review - South Branch

Development Review - South Branch

City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste 29686, <u>Bruce.Bramah@ottawa.ca</u>

From: Benoit.Villeneuve@parsons.com <Benoit.Villeneuve@parsons.com>
Sent: March 10, 2023 1:24 PM
To: Bramah, Bruce <bruce.bramah@ottawa.ca>; Charie, Kelsey <kelsey.charie@ottawa.ca>; Harrold, Eric <eric.harrold@ottawa.ca>

Cc: Theiner, Mathew <mathew.theiner@parsons.com>; Moore, Sean <Sean.Moore@ottawa.ca>; O'Callaghan, Katie <katie.ocallaghan@ottawa.ca>


Subject: 3845 & 3850 Cambrian Rd Commercial Developments - Stormwater Management

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi,

Parsons is currently providing municipal engineering services for both commercial development located at 3845 Cambrian Rd and 3850 Cambrian Rd. These two sites are across from each other on Cambrian Rd and are serviced by the same storm sewer previously installed in 2019 for the future re-aligned Greenbank Rd. (see image below)

According to pre-consultation meeting notes for both projects (see attached), the allowable release rate for each site is determined using two different methods.

For 3850 Cambrian Rd the allowable release rate is calculated using the following parameters:

- Allowable runoff coefficient = lesser of existing pre-development to a maximum of 0.5 (in our case C=0.2 as this is a vacant land)
- Time of concentration = pre-development, maximum 10 min
- Allowable flowrate using Tc=10min, C=0.2 and an area of 1.4 ha, Qallowable = 81.1 L/s

For 3845 Cambrian Rd the allowable release rate is calculated using the following parameters:

- Allowable runoff coefficient = 0.8
- Time of concentration = 10 min
- Site area = 1.5 ha
- Allowable flowrate = 348 L/s

Furthermore, as these two properties are part of the Half Moon Bay West Subdivision, these two sites were taken into account in the design of the new storm sewer along future Greenbank Rd and the new Clarke Pond. Based on the *Functional Servicing and Stormwater Management Report for the Half Moon Bay West Subdivision, dated March 8, 2019 by Mattamy Homes and DSEL*, the storm sewer was designed using runoff coefficient of 0.8 for both properties and a time of concentration of 29.62 min and 31.23 min for 3845 Cambrian and 3850 Cambrian respectively. Appendix D of this report showing the storm drainage plan and storm design sheets is attached for your reference.

Using the time of concentration mentioned above and runoff coefficient of 0.8, the allowable release rate for 3845 Cambrian is 181.5 L/s and 163.4 L/s for 3850 Cambrian.

We would like you to discuss and let us know which method of calculations should be used for both of these commercial developments. We could also arrange a meeting in the middle of next week to discuss.

If you have any questions please let us know.

Thank you,

Benoit Villeneuve, EIT Junior Designer 100-1223 Michael St North, Ottawa, ON K1J 7T2 benoit.villeneuve@parsons.com P : +1 613.691.1596 Parsons [can01.safelinks.protection.outlook.com] / LinkedIn [can01.safelinks.protection.outlook.com] / Twitter [can01.safelinks.protection.outlook.com] / Eacebook [can01.safelinks.protection.outlook.com] / Instagram [can01.safelinks.protection.outlook.com]

'NOTICE: This email message and all attachments transmitted with it may contain privileged and confidential information, and information that is protected by, and proprietary to, Parsons Corporation, and is intended solely for the use of the addressee for the specific purpose set forth in this communication. If the reader of this message is not the intended recipient, you are hereby notified that any reading, dissemination, distribution, copying, or other use of this message or its attachments is strictly prohibited, and you should delete this message and all copies and backups thereof. The recipient may not further distribute or use any of the information contained herein without the express written authorization of the sender. If you have received this message in error, or if you have any questions regarding the use of the proprietary information contained therein, please contact the sender of this message immediately, and the sender will provide you with further instructions.'

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

ı

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Boundary Conditions 3850 Cambrian Rd

Provided Information

Scenario	Demand				
Scenario	L/min	L/s			
Average Daily Demand	7	0.11			
Maximum Daily Demand	10	0.17			
Peak Hour	19	0.31			
Fire Flow Demand #1	6,000	100.00			

Location

Results

Existing Conditions (Pressure Zone 3SW)

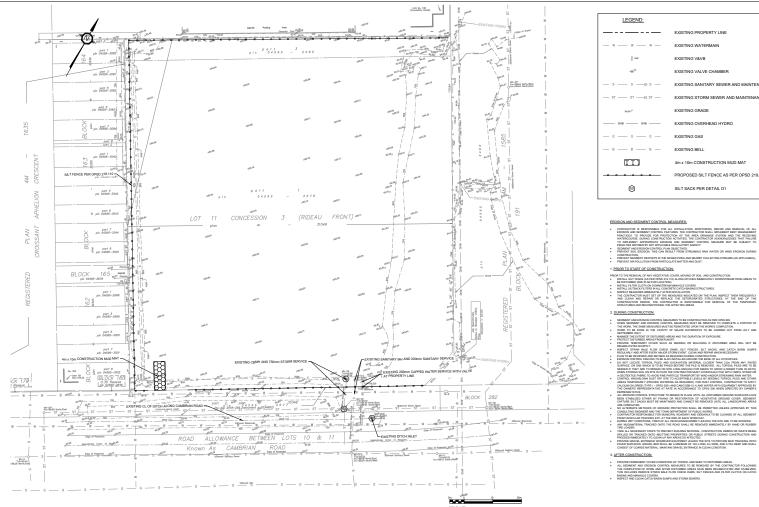
Connection 1 – Cambrian Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.5	89.9
Peak Hour	142.6	70.1
Max Day plus Fire Flow	138.9	64.9
¹ Ground Elevation =	93.3	m

Future Conditions (Pressure Zone SUC)

Connection 1 – Cambrian Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	146.8	76.0
Peak Hour	142.8	70.4
Max Day plus Fire Flow	143.8	71.8
¹ Ground Elevation =	93.3	m


<u>Notes</u>

- 1. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

DRAWINGS

LEGEND:				
	EXISTING PROPERTY LINE			
— w — w — w —	EXISTING WATERMAIN			
g van	EXISTING V&VB			
-@ ¹⁴	EXISTING VALVE CHAMBER			
— s — s —o s —	EXISTING SANITARY SEWER AND MAINTENANCE HOLE			
	EXISTING STORM SEWER AND MAINTENANCE HOLE			
98.89 st .	EXISTING GRADE			
OHW OHW	EXISTING OVERHEAD HYDRO			
_ c c c	EXISTING GAS			
— B — B — B —	EXISTING BELL			
m	4m x 10m CONSTRUCTION MUD MAT			
	PROPOSED SILT FENCE AS PER OPSD 219.110			
8	SILT SACK PER DETAIL D1			

EROSION AND SEDIMENT CONTROL MEASURES:

- CONTINUEND SECTION AND ADDRESS AND ADDRESS ADD
- SEDMENT AND EROSION CONTROL PLAN OBJECTIVES:
 PREVENT SOL EROSION THIS CAN RESULT FROM STREAMING RAIN WATER OR WIND EROSION DURING
- CONSTRUCTION. PREVENT SEDMENT DEPOSITS IN THE SEWER PIPES AND NEARBY COLLECTING STREAMS (AS APPLICABLE) PREVENT AIR POLLUTION FROM PARTICULATE MATTER AND DUST.

2. DURING CONSTRUCTION:

- SEDIMENT AND EROSION CONTROL MEASURES TO BE CONSTRUCTED AS PER OPSS 805.
 WIEN SEDIMENT AND EROSION CONTROL MEASURES MUST BE REMOVED TO COMPLETE THE WORK, THE SAME MEASURES MUST BE REMOVED TO MEMORY COMPLETON.
 WORK TO BE DONE IN THE VICINITY OF MAJOR WATERWAYS TO BE CARRED OUT FR SEPTEMBER ONLY.
- SEPTEMBER ON Y. MINIMEET ENE EXTENT OF DISTURBED AREAS AND THE DURATION OF EXPOSURE. PROTECT DISTURBED AREAS FROM RUNOFF. PROVINCE TEMPOARY COVER SUCH AS SEEDING OR MULDING IF DISTURBED AREA WILL NOT BE
- REHABILITATED SHORTLY. INSPECT STRAW BALE FLOW CHECK DAMS, SLT FENCES, SLT SACKS, AND CATCH BASIN SUMPS REGULARLY AND AFTER EVERY MAJOR STORM EVENT. CLEAN AND REPAR WHEN NECESSARY.
- FLAK TO BE REVIENDE AND REVIEED AS REQUERED DURING CANETULCTION. EROSISIN CONTROL REVIEND AS LAD INSTALLED ANDUNE THE BASE OF ALL STOCKPILES. DO NOT LOCATE TOPICILE FILES AND EXCAVATION MATERIAL CLOSER THAN 25M. FROM ANY PAVED SUBFACE, OR CAN WINNE IS TO BE ANDE BECAVE THE FILE IS REAVOURD. ALL TOPICIEL PARE TO BE SEEDED IN THEY ARE TO REMAIN ON SITE LONG INDUIN FOR SEEDS TO GROW, LONGER THAN 20 ANYS WIENS ATORING SUL ON SITE IN DURING INDUIN FOR SEEDS TO GROW, LONGER THAN 20 ANYS
- A GEOTEXTILE FABRIC TO AVOID FINE PARTICLE TRANSPORT BY WIND AND/OR STREAMING RAIN WATER CONTROL WIND-BLOWN DUST OFF SITE TO ACCEPTABLE LEVELS BY SEEDING TOPSOL PLES AND OT
- AREAS TEMPORARELY (PROVIDE WATERING AS REQUIRED), FOR DIST CONTROL, LON INGULAR SO STATE OCCULIN CHILDRORE (TYPE I DOPS 201 AND CANCESSA 1-5). NAD WATER WITH DEUTINEL TAPROVIDE DY THE OWNERS REPRESENTATIVE AT RATE IN ACCORDANCE TO OPSS 506 WHEN DIRECTED BY OWNERS
- THE DWILE'S REPEALENT AT ANY AT ANY AND ADDRESS TO BE WILE DISCUSSED IN TOWARD SECTION AND ADDRESS AND

- PROVIDE GRAVEL INTERVICE WHEREVER EQUIVARIANCE AND THE OPPOVIDE MUST TRACKING CONTO PROVIDE GRAVEL INTERVICE WHEREVER EQUIVARIANCE HAS THE STREET OP PROVIDE MUST TRACKING CONTO PAUSE SUFFACES GRAVEL BEST SHALL BE A MINIMAN OF THIS LONG, HAN UNCE, MOD GRAVEL DATE AND SHALL CONSIST OF COARSE MATERIAL. MAINTAIN GRAVEL ENTRACE IN CLEAN CONDITION.

- PROVINE PREMAMENT COVER CONSISTING OF TORSICI, MAS SEED TO DETUNERE AREAS.
 ALL SEDMENT AND ERDORISON CONTROL MARANEES TO BE REMOVED BY THE CONTRACTOR FOLLOWING THE COMPLETION OF WORK AND AFTER DISTURBED AREAS HIVE BEEN REMAILTATED AND STRALED. THE INCLUDES REMOVE STRAM BULK F. FON CHECK DAMS, SLIT FENCES AND FILTER CLOTHS ON CATCHING THE STRATUCES REMOVE STRAM BULK F. FON CHECK DAMS, SLIT FENCES AND FILTER CLOTHS ON CATCHING THE STRATE CLOTHER DISTURDED AND AFTER DISTURDED AND AFTER CLOTHS ON CATCHING THE STRATE CLOTHER DISTURDED AND AFTER DISTURDED AND
- BASING AND MANHOLE COVERS. INSPECT AND CLEAN CATCH BASIN SUMPS AND STORM SEWERS.

Choice Properties

BV BV

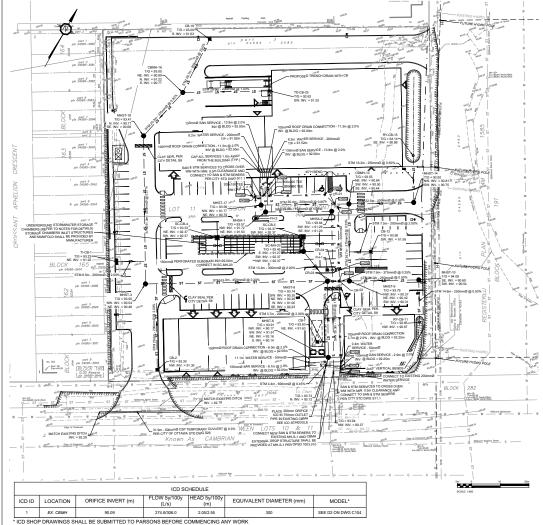
2023-54-35 SSUED FOR SPA
 DATE DESCRIPTION

TURNER FLEISCHER

PARSONS

1223 MICHAEL STREET, SLITE 100, OTTAINA, ONTARIO KU 7T2 Tel: 613-738-4160 Fax: 613-729-7105

TOPOGRAPHIC INFORMATION & BENCHMARK SURVEY COMPLETED BY ANNIS, O'SULLIVAN, VOLLEBERK LTD. ON OCTOBER 21, 2022. ELEVATIONS SHOWN ARE GEODETIC AND ARE REFERED TO THE COV028 GEODETI DATUM, DERIVED FROM CONTROL MONUMENT NO. 019880 HAVING AN ELEVATION OF 99.742m.


67 Lesmil Road romo, ON, MSB 278 T 416 425 2222 tumer leischer.com

3850 CAMBRIAN RD

BARRHAVEN, ONTARIO

EROSION/SEDIMENT CONTROL & EXISTING CONDITIONS PLAN

NOTES	UNDERG	ROUND	STORM	WATER	STOR	AGE

NOTES: UNDERGROUND STORMWATER STORAGE							WATERMAIN T	ABLE		
TORAGE REQUIREMENT	112.2m ³ .		OR EQUIVALENT	STATION	SURFACE ELEVATION	W/M DEPTH	TOP OF W/M ELEV.	INV. OF W/M ELEV.	NOTES	
CHAMBER TYPE: STORMTECH 5C-310 OR EQUIVALENT EQTION GRANLLAR PROLEVATION RECOVERED SUBDRAIN INVERT: 32.00m. TOP OF CHAMBER ELEVATION: 92.78m. TOP OF CHAMBER ELEVATION: 92.78m. TOP OF SYSTEM TO BE A MINIMUM OF SASISM BELOW PARKING LOT PAVEMENT					94.10	3.79m	90.31	90.11	CONNECTION TO EXISTING WATERMAIN	
					94.10	2.40m	91.70	91.50	2 x 45° VERTICAL BENDS	
					94.05	2.40m	91.65	91.45	2 x 50mm WATER SERVICE CONNECTIONS	
				0+032	93.80	2.40m	91.40	91.20	CR-02 REFER TO CROSSING TABLE	
AT CROSSING	AT CROSSING			0+036	93.70	2.40m	91.30	91.10	200x150 TEE FOR FIRE HYDRANT LATERAL, CR-04 REFER TO CROSSING TABLE	
				0+057	93.60	2.40m	91.20	91.00	45° HORIZONTAL BEND	
				0+059	93.60	2.40m	91.20	91.00	CR-01 REFER TO CROSSING TABLE	
CR-03 STM, TOP. 90.68 SAN, INV. 90.84 0.16m CR-04 SAN, TOP. 91.05 FH LAT., INV. 91.30 0.25m				0+064	93.60	2.40m	91.20	91.00	45° HORIZONTAL BEND	
				0+083	93.60	2.40m	91.20	91.00	200x200 TEE, 200mmWATER SERVICE CONNECTION	
				0+085	93.60	2.40m	91.20	91.00	200x200 TEE, 200mmWATER SERVICE CONNECTION	
				0+088	93.60	2.40m	91.20	91.00	200x150 TEE FOR FIRE HYDRANT LATERAL	
				0+089	93.60	2.40m	91.20	91.00	WATER CAP WITH CONCRETE THRUST BLOCK	
	NDERGROUND STORMM TORAGE REQUIREMENT TOM OF CHAMEER TYPE: STORM OTTOM OF CHAMEER LEVX OP OF CHAMEER LEVX OP OF SYSTEM TO BE A CROSS PIPE ELEV. AT CROSSING STM, TOP: 90.75 STM, TOP: 90.68	NOTIGINAL TOTAL THE TOTAL STATE NUMBER TOTAL STATE NUMBER TOTAL STATE NUMBER TOTAL STATE STATE STATE CROSSING TABLE PIPE ELVX PIPE ELVX PIPE ELVX STATE STATE	NUMBER DIAL <	BIORDEDUCID TOMMUTES STRAUG SYSTEM CHAMBER TYPE OF EQUIVALENT DIGWERREN EDUCATION IS-30 OF EQUIVALENT DIGWERREN EDUCATION IS-30 OF EQUIVALENT DIGWERREN EDUCATION IS 75 MIL OP OF DIREGRES ELENTION IS 75 MIL OP OF	Disclosed of Lineawart the IS model SHITLEN CHARGER TYPE OR EQUIVALENT STATION Swades Three, STORATION 62-100 EQUIVALENT 0-000 Swades Three, STORATION 62-100 EQUIVALENT 0-000 OPTION OF OWNERS HAVEN FOR EQUIVALENT 0-000 OPTION OF OWNERS HAVEN FOR EQUIVALENT 0-001 OPTION OF OWNERS HAVEN FOR EQUIVALENT 0-001 DP OF DISTEM TO SEA. MARKANGE SONTER 0-003 STIN, TOP, 007, PUPE FLEX, VAIL, NV, 90, 0 0.25m STIN, TOP, 90, 8 VAIL, NV, 90, 00 SAA, TOP, 91, 65 PH LAT, RV, 91, 20 0-003 0-0054 0-0044 0-0036 0-0055 0-0056	STATION ED IONNEED STITU DAMEET TYPE OF ECUIVALENT SWARET TYPE TOWTED 16 JAN DE EDUALENT SWARET TYPE TOWTED 16 JAN DE EDUALENT DO OF STATION E STATION E STATION ET EDUALENT DO OF STATION E STATION E STATION E STATION E EDUALENT DO OF STATION E STATION E STATION E STATION E STATION E STATION E STATION STATION E STATION E STAT	SUMPLICATION SUMPLICATION <th colspan<="" td=""><td>STATICH SUBPRICE 0+050 0+051 0+051 0+051 0+051 0+050 0+051 0+051 0+051 0+051 0+051 0+050 0+051</td><td>STATION SUBJECT VICE VICE VICE VICE VICE VICE VICE VICE</td></th>	<td>STATICH SUBPRICE 0+050 0+051 0+051 0+051 0+051 0+050 0+051 0+051 0+051 0+051 0+051 0+050 0+051</td> <td>STATION SUBJECT VICE VICE VICE VICE VICE VICE VICE VICE</td>	STATICH SUBPRICE 0+050 0+051 0+051 0+051 0+051 0+050 0+051 0+051 0+051 0+051 0+051 0+050 0+051	STATION SUBJECT VICE VICE VICE VICE VICE VICE VICE VICE

		NO	TES: WATER
	EXISTING PROPERTY LINE		
		1.	ALL WATERMA
	PROPOSED PROPERTY LINE AS PART OF THE		GRADE. WHEP
_ · _ · _ · _	GREENBANK RD RE-ALIGNMENT PROJECT		INSULATION IS
	GREENBANK RU RE-ALIGNMENT PROJECT	2	WATERMAIN F
			WATERMAIN T
W W	EXISTING WATERMAIN	3.	BEDDING AND
			LIMESTONE C
			A CONTINUOL
X van	EXISTING V&VB		WATERMAINS
		5.	INSTALLATION
			CITY OF OTTA
***	EXISTING VALVE CHAMBER	6.	IF WATERMAIN
			AMOUNT OF D
			MANUFACTUR
	PROPOSED WATERMAIN		CATHODIC PR
			THRUST BLOC
		9.	HYDRANT INS
₩	PROPOSED FIRE HYDRANT PER CITY STD DWG W19		COMPLY WITH HYDRAN
		а.	OF STAIL
-			SUCH TH
X ***	PROPOSED V&VB		SERVICE
			LOCATE
		h	
— s — s — o s —	EXISTING SANITARY SEWER AND MAINTENANCE HOLE		NEPA-29
			THE WO
— s— s — 6 —	PROPOSED SANITARY SEWER AND MAINTENANCE HOLE	10.	WATERMAIN A
	PROPOSED SANITARY SEWER AND MAINTENANCE HOLE		RESILIENT SE
			CONNECTION
— st — st — e st —	EXISTING STORM SEWER AND MAINTENANCE HOLE		NON-RISING S
- si si	EXISTING STORM SEWER AND MAINTENANCE HOLE		OPERATING N PIPE FITTINGS
		11.	JOINT (AWWA
— st — st — ft —	PROPOSED STORM SEWER AND MAINTENANCE HOLE	+2	COUPLERS MI
	PROPOSED STORM SEWER AND MAINTERVINGE HOLE	14.	kPa. COUPLER
		13	VALVE BOXES
	PROPOSED REAR YARD CATCH BASIN		GUIDE PLATES
•	AS PER CITY STD DWG S31	14.	WATERMAINS
			AND DEBRIS F
-	PROPOSED CATCH BASIN	15.	ALL WATERMA
-			AS PER PROV
			RESPONSIBILI
	PROPOSED TWIN INLET CATCH BASIN	16.	THE DISINFEC
•	AS PER OPSD 705.020		DISINFECTION
			APPROVED BY
PEPPEPPPPPPPPPPPPPPPPPPP	TERRACE (3:1 MAX)		AND CLIMATE
eccencere contraction of the second s			RESIDUAL OF
			CONTRACTOR
	PROPOSED CENTERLINE SWALE		WITNESSED B
		17.	ALL DISINFEC
			REPLACED WI
0+0 +0	PROPOSED LIGHT STANDARD		THE WATERM
1		18.	PRESSURE TE

CLAY SEAL PER CITY STD DETAIL S8

LEGEND:

3232323

TES: WATERMAIN

- WAIN TO BE INSTALLED AT MINIMUM COVER OF 2.4m BELOW FINISHED ERE THE MINIMUM COVER OF 2.4m IS NOT REACHED, THERMAL THE MINIMUM COVER OF 24M TO NOT REACHED, THENNAL IS REQUIRED AS PER CITY OF OTTAWA DETAIL W22. I PIPE MATERIALS TO BE CLASS PVC DR-18, OR APPROVED EQUIVALENT ICATED OTHERWISE
- - ICATED OTHERWISE: TO BE CONSTRUCTED AS PER OPSS 441 AND OPSD 802.010. WATERMAIN ID COVER MATERIAL TO BE OPSS 1010 GRANULAR 'A' CRUSHER-RUN COMPACTED TO 36% SPMDD. UIS 12 ADAUGE COPPER TRACER WIRE MUST BE INSTALLED OVER ALL
- UIS 12 GAUGE COPPER TRACER WITE MUST BE INSTALLED OVER ALL IS. TRACER WIRE SHALL BE TED TO ALL FIRE HYDRATS. IN OF A WATERMAIN PIPE CROSSING A SEWER PIPE SHALL BE AS PER YANA DETALS WATERMAIN PIPE CROSSING A SEWER PIPE SHALL BE AS PER YANA DETALS WATERMAIN PIPE CROSSING A SEWER PIPE SHALL BE AS PER YANA DETALS WATERMAIN PIPE CROSSING A SEWER PIPE SHALL BE AS PER YANA DETALS WATERMAIN PIPE SHALL SHAL
- IRER. IROTECTION REQUIRED FOR ALL IRON FITTINGS AS PER OPSD 1103.011 OCKS AND RESTRAINING AS PER OPSD 1103.010 AND OPSD 1103.020. ISTALLATION AS PER OPSD 1105.010 AND OPSS 441. HYDRANT TO
- IN ALLAIN OR A PER UTSU IN AULUTSU IN AULUTS
- CORE AND HYDRANT CONTROL VALVES IN THE 100 300 mm RANGE WILL BE SEATING GATE VALVES (AWWA C500 WITH MECHANICAL JOHT SEATING GATE VALVES (AWWA C500 WITH MECHANICAL JOHT SA VALVES WILL BE COMPLETE WITH THE STANDARD AWWA 50 mm INJT VALVES VEILL BE COMPLETE WITH THE STANDARD AWWA 50 mm INJT VALVES DE INSTALLED AS PERF OR59A 41. GG (BENDS, TESS, CROSSES, REDUCERS, ETC.) WILL BE WECHANICAL ING, CTHINGTE CONSERVATIONERS, MEDIAL CONS. (AWWA 700 MM)
- IS (BENDS, TEES, CROSSES, REDUCERS, ETC.) WILL BE MECHANICAL A C-111) WITH CEMENT MORTAR LINING (AWWA C-104). MUST BE COMPRESSION TYPE WITH MINIMUM PRESSURE RATING OF 1035 ERS MUST BE MUELLER 11-12940.
- MUST BE COMPLETE (FULLY METALLIC) 3 PIECE SLIDING TYPE WITH
- 5. I MUST BE THOROUGHLY FLUSHED AND CLEANED TO REMOVE ALL DIRT PRIOR TO THE DISINFECTION PROCESS.
- 25 ppm AFTER 24 HOURS. DISINFECTANT MUST BE SUPPLIED BY THE AND MUST BE ANSI APPROVED. TESTING AND TEST RESULTS MUST BE
- BY CITY PERSONNEL. CTANT WATER IS TO BE REMOVED FROM THE NEW WATERMAINS AND WITH DISTRIBUTION SYSTEM WATER PRIOR TO PRESSURE TESTING OF ING OF ALL WATERMAINS AND APPLIRTENANCES INSTALLED BY THE
- CONTRACTOR MUST BE PERFORMED BY THE CONTRACTOR USING METHODS MEETING THE APPROVAL OF THE CITY. TESTING AND RESULTS MUST BE WITNESSED IY CITY PERSONNEL. MAINS AND SERVICES MUST BE PRESSURE TESTED AT 1035 kPa (150 pai) IN
- ACCORDANCE WITH AWWA C-60-82 (MINIMUM REQUIREMENT). 20. LEAKAGE TESTS MUST BE CONDUCTED AS PER AWWA C-600-82 (MINIMUM
- REQUIREMENT). ONCE THE DISINFECTION AND PRESSURE TESTING RESULTS HAVE BEEN APPROVED THE CONTRACTOR MUST ENSURE THAT ALL WATERMAIN PIPES ARE FLUSHED UNTIL
- ONCE THE DIBINETCHONA WAD PRESSURE TESTION DESULTS HAVE BEEN APPROVED. THE CONTRACTOR MUST BESURE THAT ALL INITIATIONAL PRESS ARE FLUGGED WITH MINISTRATISTICS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRES

NOTES: SEWER

- CONTRACTOR TO CONFIRM ELEVATION OF EXISTING STORM AND SANITARY SEWERS AT PROPOSED CONNECTION POINTS AND REPORT ANY DISCREPANCIES TO THE ENGINEER BEFORE COMMENCING ANY WORK. ALL WORK SHALL BE PERFORMED, AS APPLICABLE IN ACCORDANCE WITH OPSS 407,
- 3.
- ALL UNDER USALL DE FERFORMEL AL APPLICABLE IN ALCUMANCE INTITUTION AL LA LISTORIA MON ANTIMAT SPECIES STATISTICO DE ELCON DE ROCONNERTE TALLE ELENTION INZUÑI SPALL EN VICENTION AN INTITUTION TETT SPALL E ELENTION INZUÑI SPALL EN VICENTION AN INTITUTION TETT SPALL EL EL ECONTRO DI OTRO DE ALCONTRA DI OTRO TALLE ELEVATION ELTRIDEO AL LAST Les ADORE THE GROUNDANTET RALE ELEVATION ELTRIDEO AL LAST Les ADORE THE GROUNDANTET ALLE ELEVATION ELTRIDEO AL LAST LES ADORES DE LOTORIS DI OTRA EL ELEVATION ELTRIDEO AL LAST LES ADORES DE LOTORIS DE LAST DE CONSTRUCTORES DE LAS MONOFENDI ELEMENTA DE LOTORIS DE LOTORIS DE LASTORI MONOFENDI ELEMENTA DE LASTERIA DE LOTORIS DE LASTORI MONOFENDI ELEMENTA DE LASTERIA DE LOTORIS DE LOTORIS DE LASTORI MONOFENDI ELEMENTA DE LASTERIA DE LOTORIS DE LASTORI MONOFENDI ELEMENTA DE LOTORIS DE LOTORIS DE LASTORI MONOFENDI ELEMENTA DE LASTERIA DE LOTORIS DE LASTORIO DE LASTORI MONOFENDI ELEMENTA DE LOTORIS DE LASTORIZONES LOTORIS DE LASTERIA DE LASTORIZONES DE LASTORIZONES LASTORIZONES DE LASTORIZONES DE LASTORIZONES DE LASTORIZONES LASTORIZONES DE LASTORIZONES DE LASTORIZONES DE LASTORIZONES DE LASTORIZONES LASTORIZONES DE LASTORIZONES DE LASTORIZONES DE LASTORIZONES LASTORIZONES DE LASTORIZONES DE LASTORIZONES DE LAS

- 8
- CONTRACT. ENDER THE A GENTION MAINTENANCE HOLE COVER AS PER OPSD 401.010 TYPE 'A'.
- 12.
- ADUDITIFE A. FOR STORM STRUCTURES: CAST IRON CATCH BASIN MAINTENANCE HOLE COVER AS PER OPBD 401.010 TYPE '8' AND CAST IRON CATCH BASIN COVER AS PER OPSD 400.020. SANITARY MAINTENANCE HOLES REQUIRE BENCHING AS PER OPSD 701.021. THE CONTRACTOR IS RESPONSIBLE FOR MAKING OR ARRANGING ALL CONNECTIONS TO THE EXISTING SEWERS AS PER MUNICIPAL REQUIREMENTS. PRIOR TO CONNECTION, THE CONTRACTOR MUST PROVIDE, TO THE CONSULTANT / ENGINEER AND THE CITY FOR APPROVAL, ALL TEST RESULTS PERFORMED ON THE INTERNAL
- SERVICES. ADVISE THE CITY PUBLIC WORKS AT LEAST 72 HOURS IN ADVANCE BEFORE ANY
- 16
- CONNECTION TO THE CITY SERVICES. COJORINATE WITH CITY AS REQUIRED. TERMINATE AND PULG ALL SERVICE CONNECTIONS AT 1.0 m FROM EDGE OF THE BULDING. ALL SEWERS TO BE C.C.T.V. INSPECTION BY THE CONTRACTOR AS FER OPS 400. TWO COPIES OF THE INSPECTION REPORT MUST BE FROWLED TO THE CONSULTANT AND THE C.C.T. INSPECTION IN DUFORMAT COLV.

3850 CAMBRIAN RD

Properties

BV BV

TURNER

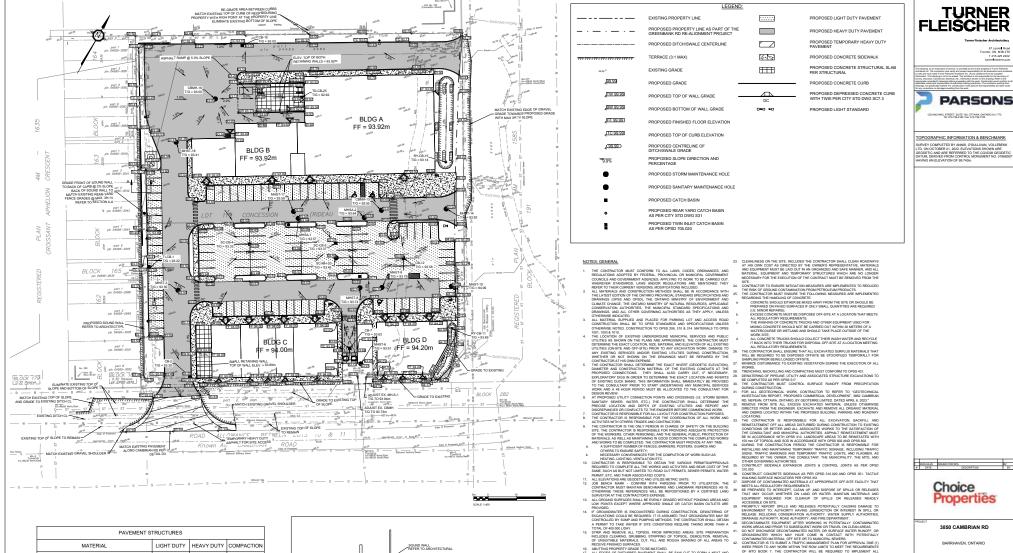
PARSONS

1223 MICHAEL STREET, SLITE 100, OTTAINA, ONTARIO K1J 772 Tel: 613-728-4190, Fax: 613-729-7105

TOPOGRAPHIC INFORMATION & BENCHMARK

SURVEY COMPLETED BY ANNIS, O'SULLIVAN, VOLLEBEKK LTD. ON OCTOBER 21, 2022. ELEVATIONS SHOWN ARE GEODETIC AND ARE REFERED TO THE COV028 GEODETI DATUM, DERIVED FROM CONTROL MONUMENT NO. 019880 HAVING AN ELEVATION OF 99.742m.

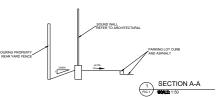
67 Lesmil Road T 416 425 2222 tumer eischer oor


FLEISCHER

BARRHAVEN, ONTARIO SITE SERVICING PLAN

1 2023-04-36 ISSUED FOR SPA

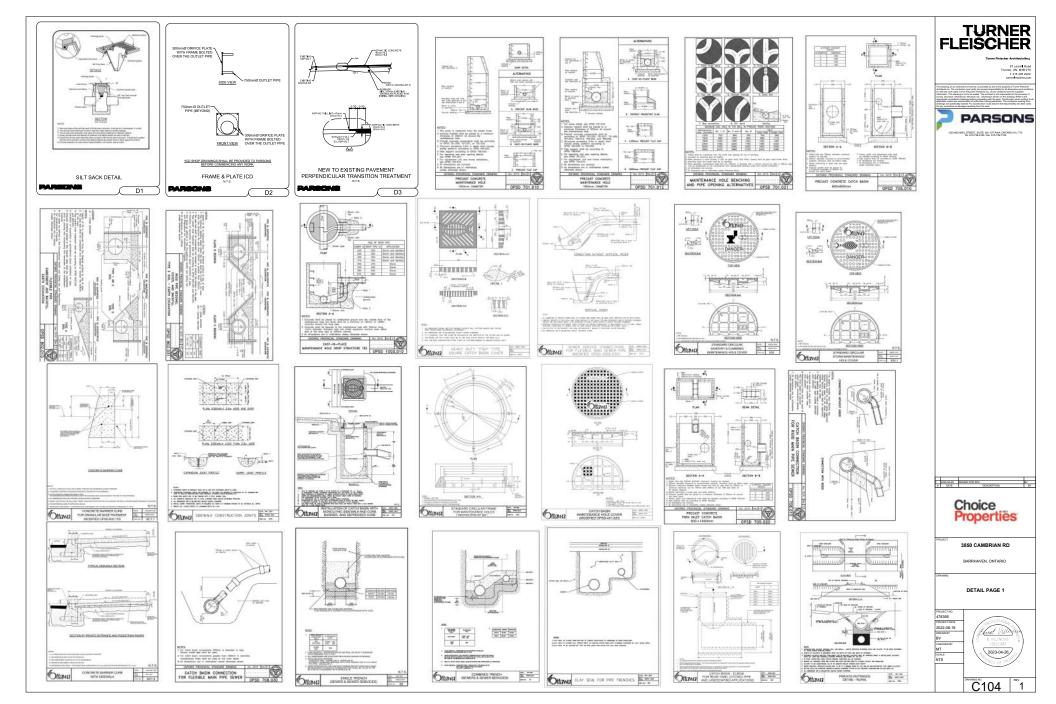
Choice

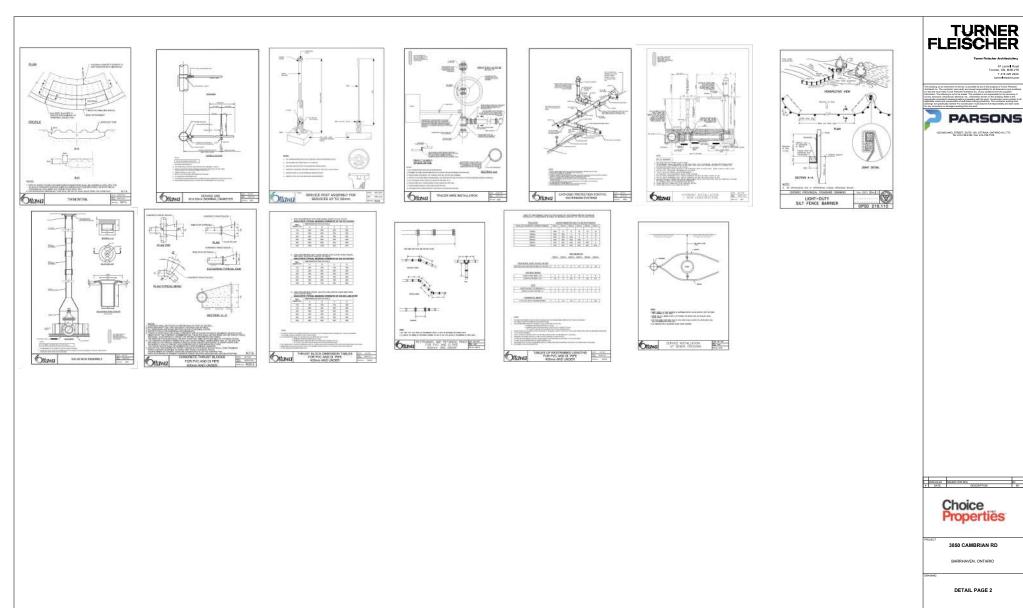

479356 2022-08-19 Y<u>linet</u> Vil DRAWN BY 2023-04-26 C102 1

PAVEMENT STRUCTURES							
MATERIAL	LIGHT DUTY	HEAVY DUTY	COMPACTION				
SURFACE LAYER : HL3 40 mm 40 mm ≥ 92%*							
BASE LAYER : HL8	40 mm	60 mm	≥ 92%*				
GRANULAR BASE : OPSS.MUNI 1010 GRANULAR A 200 mm 200 mm 100%**							
GRANULAR SUB-BASE : EXISTING GRANULAR BASE PLACED DURING INITIAL SITE GRADING	min. 350 mm	100%**					
MINIMUM PAVEMENT COMPACTION BASED ON MAXIMUM	RELATIVE DENSITY	PER OPSS MUNU	310				

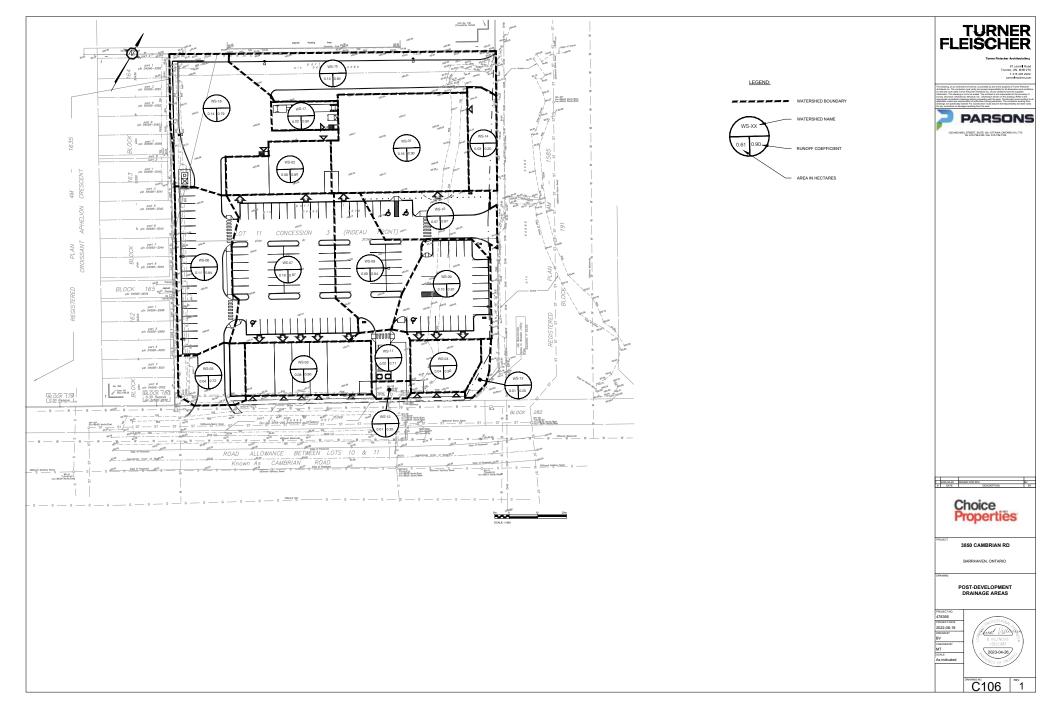
"OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY

SOURCE: GEOTECHNICAL INVESTIGATION REPORT. PROPOSED COMMERCIAL DEVELOPMENT, 3850 CAMBRIAN RD. NEPEAN, OTTAWA, ONTARIO, BY GEOTERRE LIMITED, DATED APRIL 6, 2023


WEEK PROR TO ANY WORK WITHIN THE ROW LIMIT'S TO WEET THE REQUREMENTS OF INTO BOOK 7, THE CONTRACTOR NUL ES RESUBRED TO MULEMENT ALL CONTRACTOR PARAMENTS AND A CONTRACTOR AND A CONTRACT AND A CONTRACT


478356 2022-08-19 DRAWN BY 2023-04-C103 1

GRADING PLAN


67 Losmil Road

T 416 425 222

