

GEOTECHNICAL INVESTIGATION REPORT PROPOSED COMMERCIAL DEVELOPMENT 3850 CAMBRIAN ROAD NEPEAN, OTTAWA, ONTARIO

PREPARED FOR

SLR CONSULTING (CANADA) LTD. 300 TOWN CENTRE BLVD., SUITE 200 MARKHAM, ONTARIO L3R 5Z6

REVISION 2 - FINAL

AUGUST 14, 2023

GEOTERRE FILE NUMBER: TG22-045

1 DIGITAL COPY – SLR CONSULTING (CANADA) LTD. *1 COPY – GEOTERRE LIMITED*

GEOTERRE LIMITED 215 Advance Blvd., Unit 5/6, Brampton, Ontario L6T 4V9 Tel: (905) 455-5666 Fax: (905) 455-5639

TABLE OF CONTENTS

1.0 INTRODUCTION	
2.0 SITE AND PROJECT DESCRIPTION	3
3.0 INVESTIGATION METHODOLOGY AND RESULTS	4
4.0 SUBSURFACE CONDITIONS	8
<u>4.1 Summary</u>	
<u>4.2 Stratigraphic Units</u>	9
<u>4.2.1 Surface Materials</u>	9
<u>4.2.2 Silty Clay</u>	
4.2.3 Deep Cohesionless Glacial Till Materials	
4.3 GROUNDWATER	
5.0 ENGINEERING ASSESSMENT AND RECOMMENDATIONS	13
<u>5.1 General</u>	
5.2 SITE PREPARATION AND GRADING	14
5.3 BUILDING FOUNDATION CONSIDERATIONS	16
5.3.1 Building Foundations	
5.3.2 Seismic Design	
5.4 Buried Site Services	
5.5 PAVEMENT CONSIDERATIONS	
5.6 GENERAL DESIGN AND CONSTRUCTION CONSIDERATIONS	
5.6.1 Frost Penetration	
5.6.2 Concrete Sulphate Requirements	21
5.6.3 Import and Export of Site Soil	21
5.6.4 Borehole Abandonment	
5.6.5 Construction Supervision	21
6.0 CLOSURE	
REFERENCES	

LIST OF TABLES

Table 1	Summary of Borehole Information
Table 2	Borehole Monitoring Well Details & Groundwater Measurements up to December 6,
	2021
Table 3	Summary of Oedometer Soil Compression Test Data

LIST OF FIGURES

- Figure 1 Site Location Plan
- Figure 2 Borehole Location Plan
- Figure 3 Field Vane Data Versus Elevation

APPENDICES

APPENDIX A	Statement of Limitations
APPENDIX B	GeoTerre 2022 Borehole Logs
APPENDIX C	Laboratory Grain Size Data
APPENDIX D	Soil Plasticity Data
APPENDIX E	2022 Oedometer Consolidation Test Data
APPENDIX F	MASW Site Evaluation Report
APPENDIX G	Proposed Site Development Plan

August 14, 2023

1.0 INTRODUCTION

GEOTERRE FILE NO.: TG22-045

This report presents the results of a geotechnical investigation that was completed by GeoTerre Limited (GeoTerre) in relation to a proposed commercial development located at 3850 Cambrian Road, Nepean, Ottawa, Ontario as located as shown on attached Figure 1 to the general development details of attached Appendix G. The purpose of the investigation was to establish the prevalent soil and groundwater conditions within the limits of the site and, based on that information provide geotechnical design recommendations for the proposed development, especially site grading and foundation support.

This report is subject to the *Limitations and Information Regarding Use of Report* of attached Appendix A.

2.0 SITE AND PROJECT DESCRIPTION

The site of the proposed commercial development is located at 3850 Cambrian Road, Nepean, Ottawa as shown on attached Figure 1. The proposed site is almost square with an overall area of approximately 1.36 hectares and while not shown on attached Figure 1, will be located on the northwest corner of the future intersection of Cambrian Road and the proposed realigned Greenbank Road. This site forms part of the overall Half Moon Bay development, and as such, is generally known to be underlain by 15 m to 20 m thick deposits of weak, compressible Leda Clay. As indicated on the site plan of attached Appendix E, a total of four (4) low rise (maximum of two stories), CRU's (commercial retail units) are proposed, i.e., two (2) within the north limits of the site, two (2) within the south limits of site with development access roads and parking areas located in between.

Based on review of historical area photos for the site, a series of various activities have taken place within the site boundaries, including the apparent removal and partial replacement of up to as much as 3 m of organic materials that was once present and infilling of a former south flowing open ditch as originally located along the approximate alignment shown on attached Figure 2. Apart from a 10 to 15 m wide strip along the east limit of the site with existing grades that vary from approximate elevation 93.5 m at the south end of site to 94.5 m at the north end of the site, elevations within the remaining westerly portions of the site vary from approximate elevation 92.2 m at the south end of the site to 93.0 m at the north end of the site. Based on preliminary site grading information provided by SLR (Canada) Ltd. (SLR), anticipated site top of pavement grades are as follows:

Northwest Corner: 93.2 m	Northeast Corner: 93.9 m
Southwest Corner: 93.2 m	Southeast Corner: 94.0 m

3.0 INVESTIGATION METHODOLOGY AND RESULTS

Based on review of available site surficial geology information and borehole information presented in various geotechnical summary reports prepared by Paterson Group for the overall proposed Half Moon Bay development as available through the City of Ottawa database, soil conditions within the general site area are known to consist of between 15 and 20 m of weak silty clay "Leda Clay" deposits overlying competent glacial till materials at depth. Hence, by way of confirming actual conditions within the site, GeoTerre undertook a project specific borehole investigation program consisting of the completion of fourteen (14) boreholes to depths of between 5.9 m and 21.3 m at the approximate locations shown on attached Figure 2. More specifically, the project specific borehole investigation program consisted of drilling the following boreholes at the approximate locations shown on attached Figure 2:

- Deep boreholes BH22-3 and 11 to respective total investigated depths of 18.7 m and 21.3 m to confirm total depth of weak silty clay soils and nature of underlying competent soils.
- Shallow boreholes BH22-1, 2, 4 to 10 and 12 to 14 to depths of between 5.8 m (BH22-7) and 7.5 m (BH22-13 and 14) to better confirm the near surface soil conditions.

The as drilled location of each borehole shown on attached Figure 2 was established by GeoTerre relative to available site features and as such, are considered accurate to about plus/minus 1 m. The geodetic ground surface elevations of each as-drilled borehole location as presented in attached Table 1 and the borehole logs of attached Appendix B, were established by SLR relative to a reported Geodetic elevation of 93.55 m for the top of an existing circular sanitary sewer manhole located in the southeast corner of the site by Annis, O'Sullivan, Vollebekk Ltd., Ontario Land Surveyors, Ottawa.

Boreholes were drilled between November 21 and 25, 2022 using a track mounted drill rig supplied and operated by CCC Drilling, Ottawa, Ontario turning 200 mm diameter hollow stem augers, with all field drilling investigation works completed under the supervision of a GeoTerre supervisor. During drilling of each borehole, Standard Penetration Tests (SPT) and associated split spoon soil sampling as advanced using an automatic drop hammer near surface and generally by hand below depths of approximately 3 m were completed at 0.76 m intervals to 3 m. Thereafter, and in anticipation of significant depths of weak silty clay, each borehole was advanced using the following generic approach over each successive 1.5 m (5 feet) interval:

- 1. Complete SPT through upper 0.46 m (18 inches).
- 2. Advance MTO sized Field Vane to a tip depth of 0.92 m (3 feet) prior to completing a field vane test in accordance with ASTM D2573/D2573M-18, including remoulded strength assessment.
- 3. Advance MTO sized Field Vane to a tip depth of 1.22 m (4 feet) prior to completing a field vane test to similar details noted above.

In addition to the foregoing SPT and insitu field vane testing, 0.6 m long, 70 mm diameter thin-wall steel Shelby tube samples were retrieved from with boreholes BH22-3 and 11 at top depths of 4.6 m, 6.0 m and 9.1 m (total of 6 samples) with a view to undertaking soil consolidation tests to the details provided later. Upon retrieval, each Shelby tube sample was sealed in such a fashion that the sample was both airtight and restrained from moving and delivered to the testing laboratory the same day they were retrieved.

Upon reaching competent materials at an approximate depth of 16.2 m in deep borehole BH22-3, the nature of the competent soils was confirmed by completing two (2) SPT's at 1.5 m intervals for a final investigated total depth of 18.7 m. In comparison, after confirming that weak silty clay materials extended beyond a depth of 16.5 m at the location of BH22-11, the nature of the underlying soils were investigated by undertaking a Dynamic Cone Penetration Test (DCPT)¹ from 18.5 m until refusal to further DCPT advance was encountered at a depth of 21.3 m.

The SPT 'N' values and DCPT values were completed using an automatic drop hammer that is generally considered to have an 80% energy efficiency rating and hence, field SPT 'N' values are referred to as SPT 'N₈₀' values or DCPT 'N₈₀' values. The SPT hammer type is important because most empirical geotechnical relationships between SPT 'N' values and strength and/or expected soil performance were based primarily on SPT 'N₆₀' values obtained before the year 2000, i.e., those obtained using what was referred to as the Rope and Cathead SPT hammer system.

Groundwater conditions were noted during and upon completion of drilling of each borehole with five (5) 50 mm diameter monitoring wells being installed as per the following to permit monitoring of longer term water levels:

- 50 mm diameter Monitoring Well in deep borehole BH22-3 to a tip depth of 18.3 m with the primary objective of confirming water pressures within the deep soils below the surface silty clay layer.
- 50 mm diameter Monitoring Wells in boreholes BH22-1, 4, 12 & 14 to tip depths of 4.6 m with primary objective of confirming the near surface water levels.

Available water levels within the various installed monitoring wells up to December 6, 2022 are summarized in attached Table 2.

¹ DCPT consists of advancing a 60 degree, 50 mm diameter inverted cone using blows from the SPT hammer with number of blows for each 0.3 m of advance being recorded as the DCPT value for that depth interval. DCPT values are generally taken as being 150 % greater than the equivalent SPT N values.

Boreholes with monitoring well installations were backfilled with low permeability bentonite from just above the top of the well screen to ground surface whereas boreholes with no installations were backfilled with a combination of drill cuttings and low permeability bentonite.

Soil samples retrieved from the boreholes were returned to the GeoTerre CCIL (Canadian Council of Independent Laboratories) certified soil testing laboratory for review by a senior engineer and completion of the following geotechnical laboratory soil index testing on select borehole samples:

- Water content on each retrieved intact sample
- Twelve (12) sieve and hydrometer grain size analyses on fine grained samples
- Four (4) Atterberg Limit Soil Plasticity test determinations
- Three (3) Soluble Sulphate Content Tests

A log of encountered soil conditions within each borehole as determined by GeoTerre based on the above noted senior engineer sample review and associated geotechnical soil index tests are presented on the borehole logs of attached Appendix B that also include the results and locations of all in-situ tests, groundwater observations and borehole backfill details. The results of the water content and Atterberg Limit Soil Plasticity tests and a summary of the grain size data are also presented on the borehole logs of attached Appendix B, with complete grain size distribution data presented in attached Appendix C. The Atterberg Limits soil plasticity data is also presented on the soil plasticity charts of attached Appendix D.

In addition to the laboratory soil index testing, a total of three (3) samples were submitted to AGAT Laboratories Ltd., Mississauga, Ontario for soluble sulphate content testing the results of which were as follows:

•	BH22-4-Sample 4 (silty clay crust materials at depth of 2.6 m)	0.05 %
•	BH22-5-Sample 2 (silty clay crust materials at depth of 1.1 m)	0.03 %

• BH22-13-Sample 3 (near surface sandy silt at depth of 1.8 m) 0.03 %

Pursuant to the retrieval of the aforementioned Shelby Tube samples from within the silty clay materials at depths of between 4.6 and 9.1 m during drilling of boreholes BH22-3 and 11, they were submitted to the Golder Associates (Golder), Ottawa soil testing laboratory for the completion of a total four (4) Oedometer Soil Compression tests. These tests consist of loading an approximately 20 mm thick, 63 mm diameter circular test sample as obtained from a location that was deemed by Golder to be representative of the overall thin wall Shelby tube sample and thereafter, subsequently loaded in a series of small increasing loads (5 kPa to 317 kPa) as deemed appropriate based on the past experience of Golder for samples obtained from locations with field measured undrained shear strengths of between 20 and 40 kPa. The results of these four (4) tests as reported by Golder Associates are presented in attached Appendix F, which includes the results of a grain size analysis and Atterberg Limit Soil Plasticity test for each test sample. The soil index test data obtained on the Oedometer test samples are also presented on the borehole logs of attached Appendix B and within the summary grain size figures of Appendix C and summary soil plasticity test result figures of the attached Appendix D.

In addition to the foregoing borehole investigation and soil testing works, the field investigation works also included the completion of a Shear Wave Velocity Sounding investigation to determine the applicable Seismic Site Class as per the requirements of the 2012 version of the Ontario Building Code and, to satisfy a City of Ottawa design requirement for the approval of proposed developments underlain by weak "Leda Clay" materials. The results of this study as completed on December 8, 2022 by the Montreal office of Geophysics GPR International Inc., using MASW (Multi-channel Analysis of Surface Waves) and SPAC (Spatial Auto Correlation) seismic refraction methods are presented in attached Appendix C. In summary, the MASW/SPAC report concludes that the site can be classified as Seismic Class D under the 2012 Ontario Building Code.

4.0 SUBSURFACE CONDITIONS

4.1 Summary

Based on information obtained at the borehole locations as detailed on the logs of attached Appendix B and summarized in attached Table 1, the soil conditions within the limits of the site appear to consist primarily of the following:

- Somewhat discontinuous layer of peat or topsoil that is either at surface or buried under a thin layer of surface fill with total combined thickness of these materials that varies from 0.2 m (BH22-12) to 2.2 m (BH22-14) with typically thicknesses in the order of just less than 1 m except along the easterly 10 to 15 m of the site where fill thicknesses are greater. These materials are believed to be a result of various general work activities undertaken on this site since 2004, including preparation of a construction access road along the easterly 10 to 15 m of the site.
- Extensive layer of intermediate plasticity Silty Clay materials from immediately below the surface fill and/or organic materials to confirmed total depths of 16.2 m (underside elevation of 76.7 m) at the location of BH22-3 and 18.3 m (underside elevation of 74.9 m) at the location of BH22-11. This layer has a near surface upper crust that is comprised of interbedded cohesionless fine grained sandy silt materials and silty clay materials with estimated average undrained shear strengths in the order of 50 kPa.
- Deep layer of underlying cohesionless glacial till materials of unconfirmed total thickness.

Available water levels within the various installed groundwater monitoring wells as summarized in attached Table 2, indicate that on December 6, 2022, i.e., 11 days after the completion of all drilling works, water levels in the four shallow wells of BH22-1, 4, 12 and 14 varied from elevation 92.314 m (BH22-1) and 91.649 m (BH22.4). In comparison the water level within the deep well of BH22-3 on December 6, 2022 was 92.100 m. The data suggests that the water levels within the surface silty clay materials are more or less consistent with the water level of underlying deep soils. The data also suggests that on an overall basis, groundwater flows seem to be predominantly northwest to southeast. However, please note that the attached summary water level data of attached Table 2 represent measurements over a quite limited period of time and as such, may not represent fully stabilized values, especially in the near surface silty clay materials. In addition, some seasonal variation should be expected.

A more detailed assessment of the foregoing conditions is presented in the following sections. However, for specific information, the reader should consult the attached factual data presented in attached Appendix B to F. In addition, it should be noted that the following summary is based on soil and groundwater conditions that were only confirmed at the borehole locations and variations between and beyond those locations should be expected.

4.2 Stratigraphic Units

4.2.1 Surface Materials

As detailed in attached Table 1, these materials refer to a somewhat discontinuous layer of peat or topsoil that is either at surface or buried under a thin layer of surface fill with total combined thickness of these materials varying from 0.2 m (BH22-12) to 2.2 m (BH22-14) with typically thicknesses in the order of just less than 1 m except along the east side of the site where fill thicknesses of between 1.8 m and 3.0 m were confirmed at the locations of BH22-4, 10 and 14. Underside elevations of the foregoing materials as detailed in attached Table 1 vary from 91.3 m at the location of BH22-10 to 92.4 m at the location of BH22-7 with most underside elevations being in the order of 92.2 to 92.3 m except for BH22-10. While the peat and possibly the surface topsoil materials are presumed native to the site, in general these materials are believed to be a result of the various general work activities undertaken on this site since 2004. Review of available air photographs for the site indicate the following general works have occurred within the site limits since it was positively confirmed to be a green field site in 2004:

- Removal and/or partial removal of surface peat materials from the site in 2008 in conjunction with placement of a layer of surface sand materials.
- Establishment of a construction access road in 2013 along the easterly 10 to 15 m of the site and various minor widening and/or realignment upgrades through to 2018.
- Preservation of a former south flowing drainage drain noted on attached Figure 2 through to its total backfill in 2020.

In general, the foregoing activities are believed to be the primary reason why most of the fill materials that form part of this layer have a trace of organic materials present. In particular, the fine grained near surface fill materials of BH22-4, 10 and 14 are specifically believed to be related to the above noted east side construction access road. While attempts were made through the completion of BH22-6, 9, 12 and 13 to assess the materials of the backfilled former drainage ditch, localized deeper pockets of fill than indicated in the aforementioned boreholes should be expected along this feature.

In keeping with the variable nature of how these various materials were generated, SPT 'N₈₀' values are also highly variable and as such, no conclusion on the apparent degree of compactness and/or consistency of these fill materials is presented.

4.2.2 Silty Clay

GEOTERRE FILE NO.: TG22-045

Silty Clay of the Ottawa Valley Clay Plain as commonly referred to as "Leda Clay" was encountered below the surface topsoil/organics/fill materials and thereafter to the maximum depth of each borehole except BH22-3 and 11 where the silty clay was confirmed to have respective underside depths of 16.2 m (elevation 76.7 m) and 18.3 m (elevation 74.9 m). In keeping with other deep silty clay deposits not exposed to major post-deposition loading through other geological processes, they are considered normally consolidated and as such, exhibit a stronger upper crust overlying lying weaker materials at depth as detailed in attached Table 1. More specifically, the upper crust materials as comprised of a combination of fine grained cohesionless and low plasticity silty clay materials have combined total thicknesses of between 2.1 m (BH22-12) and 1.1 m (BH22-1 and 8) and associated underside elevations that vary from a high of 91.1 m (BH22-1) and a low of 90.1 m (BH22-10) for an overall average of 90.7 m. The summary undrained shear strength data of attached Figure 3 however suggest that the underside of this layer is at or just slightly below elevation 90.0 m. The results of three (3) grain size distribution analysis on samples of the fine grained cohesionless "crust" materials are presented on Figure C1 of attached Appendix C with similar data from one (1) grain size distribution analysis obtained on a sample of the silty clay "crust" materials presented on Figure C2 of attached Appendix C.

SPT 'N₈₀' data obtained within the fine grained cohesionless materials varied from 15 to zero, i.e., SPT advance using manual push, with most values being less than 10. Hence, based on this data, the fine grained cohesionless materials are considered to have a very loose to loose degree of compactness with a strength profile that reduces with depth. SPT 'N₈₀' data obtained fully within the silty clay crust materials varied from 4 to zero as defined above. Hence, based on this data and the results of in-situ field vane undrained shear strength determinations within the lower reaches of the upper crust silty clay materials, the silty clay portions of the crust are adjudged to have a firm to marginally stiff consistency, i.e., undrained shear strengths of between 25 and 50 kPa between approximate elevation 90 to 91 m and presumed slightly higher values above elevation 91 m.

As noted above, and detailed in the attached Table 1, significant depths of weaker silty clay materials are present below the upper crust, i.e., confirmed total depth of 16.2 m (underside elevation of 76.7 m) at the location of BH22-3 and estimated total depth of 18.3 m (underside elevation of 74.9 m) at the location of BH22-11. The results of ten (10) grain size distribution analyses and six (6) Atterberg Limit soil plasticity determinations are presented respectively on Figure C3 and D1 of attached Appendices C and D. Hence, based on this data these materials are described as silty clay of intermediate plasticity.

In terms of strength, attached Figure 3 presents a summary compilation of undrained shear strength determinations obtained within each borehole using an MTO Field Vane. The compiled field vane undrained shear strength data exhibits a trend of decreasing shear strength from just below the underside of the surface crust at approximate elevation 90 m to achieve minimum values in the order of 22 kPa at or about approximate elevation 89.5 m. Hence, based on this data, the silty clay materials below the surface crust are described as having a soft consistency between approximate elevation 89.5 and 82 m, before becoming firm below this depth, i.e., undrained shear strengths of between 25 and 50 kPa. In terms of sensitivity, i.e., ratio of peak to remolded undrained shear strengths, this ratio for this set of borehole test data varied from 4 to 38 with most values being in the 5 to 25 range and as such, these materials are described as having a low to medium sensitivity.

With respect to compression characteristics of the silty clay materials, the results of four (4) soil consolidation (Oedometer) tests completed on test samples from within deep boreholes BH22-3 and 11, are presented in attached Appendix E. Summary Oedometer test parameters derived by GeoTerre are presented in attached Table 3, including estimates of the maximum previous Pre-Consolidation (loading) pressures experienced by the test samples using methods proposed by Casagrande (1936), Okiwawa, 1987, Becker et al, (1987) and Boone, (2010). Based on this summary data, the following conclusions are deemed appropriate:

- Materials immediately below the upper crust appear to typically have an OCR (defined in attached Table 3) values in the order of 2.2 within the upper reaches of the soft silty clay zone, i.e., BH22-3: Test Sample 6 and BH22-11: Test Sample 9, reducing to approximately 1.3 (range 1.3 to 1.4) within the lower reaches of the soft silty clay zone. i.e., BH22-3: Test Sample 6 and BH22-11: Test Sample 9.
- Virgin Consolidation Compression Index (C_c) values 0.85 and 0.87 obtained respectively for BH22-3: Test Samples 6 and 9, whereas respective values of 1.31 and 1.16 were obtained for BH22-11: Test Samples 6 and 9.
- Coefficient of Reloading (C_r) values as determined from the first unload/reload test cycle undertaken at 40 kPa were respectively 0.007 and 0.005 for BH22-3: Test Samples 6 and 9 whereas respective values of 0.008 and 0.009 were obtained for BH22-11: Test Samples 6 and 9.
- Coefficients of consolidation up to an approximate stress of 60 kPa are typically equal to 0.01 cm²/cm reducing considerably to about 0.00005 cm²/sec at stress levels greater than 60 kPa.

<u>4.2.3 Deep Cohesionless Glacial Till Materials</u> This layer refers to deposits of cohesionless glacial till materials with a trace of clay that were confirmed within BH22-3 to be present between a depth of 16.2 m (Elevation 76.7 m) and the terminal depth of this borehole of 18.7 m (Elevation 74.2 m) and suspected of being present within BH22-11 between a depth of 18.3 m (Elevation 74.9 m) and the terminal investigation depth of BH22-11 of 21.3 m (Elevation 71.8 m). The results of two (2) grain size distribution analyses obtained on samples of these materials are presented on Figure E3 of attached Appendix E.

Field SPT ' N_{80} ' values of 6 and 39 were obtained within these materials at BH22-3 whereas DCPT values within the same layer within BH22-1 varied from a low of 8 to 86, with both boreholes displaying increasing values with depth. Hence, based on the foregoing data, these materials are described as having a loose degree of compactness becoming dense to very dense at depth.

4.3 Groundwater

Available water levels within the various installed groundwater monitoring wells as summarized in attached Table 2, indicate that on December 6, 2022, i.e., 11 days after the completion of all drilling works, water levels in the four shallow wells of BH22-1, 4, 12 and 14 varied from elevation 92.314 m (BH22-1) and 91.649 m (BH22.4). In comparison the water level within the deep well of BH22-3 on December 6, 2022 was 92.100 m. The data suggests that the water levels within the surface silty clay materials are more or less consistent with the water level within the underlying deep soils. The data also suggests that on an overall basis, groundwater flows seem to be predominantly northwest to southeast. However, please note that the attached summary water level data of attached Table 2 represent measurements over a quite limited period of time and as such, may not represent fully stabilized values, especially in the near surface silty clay materials. In addition, some seasonal variation should be expected.

5.0 ENGINEERING ASSESSMENT AND RECOMMENDATIONS

5.1 General

As indicated on the site plan of attached Appendix E, a total of four (4) low rise (maximum of two stories) CRU's (commercial retail units) without basements are proposed, i.e., two (2) within the north limits of the site, two (2) within the south limits of site with development access roads and parking areas located between and around. Apart from a 10 to 15 m wide strip along the east limit of the site with existing grades that vary from approximate elevation 93.5 m at the south end of site to 94.5 m at the north end of the site, elevations within the remaining westerly portions of the site vary from approximate elevation 92.2 m at the south end of the site to 93.0 m at the north end of the site. Based on SLR preliminary grading information, top of pavement and retail unit finished floor elevations (FFE) are anticipated to be as follows, with approximate existing site grades provided for comparison:

Northwest Corner Pavement: 93.2 m	Northeast Corner Pavement: 93.9 m
Proposed Building B FFE: 93.9 m	Proposed Building A FFE: 93.9 m
(Existing Approx Grade: 92.6 m)	(Existing Approx Grade: 94.5 m)
Southwest Corner Pavement: 93.2 m	Southeast Corner Pavement: 94.0 m
Proposed Building C FFE: 94.0 m	Proposed Building D FFE: 94.2 m
(Existing Approx Grade: 93.5 m)	(Existing Approx Grade: 93.6 m)

As detailed within, achieving the above noted site grades are estimated to result in settlements in the order of 75 mm and more importantly, the required site grading works detailed in Section 5.2 will result in the underlying weak silty clay soils reaching a point where additional surface loadings, including in particular those related to the proposed buildings, will result in unacceptably high settlements, i.e., in the order of 80 to 100 mm even at very modest SLS (Serviceability Limit State) foundation bearing pressures of 60 kPa. Hence, to address foundation support aspects of the proposed buildings, Section 5.3 presents a recommended approach that features a combination of vertical wick drains and/or "Controlled Modulus Columns/Rigid Inclusions", delivered through a design/build platform, to support the proposed buildings. In addition to the foregoing site grading and foundation support assessments of Section 5.2 and 5.3, Sections 5.4 and 5.5 respectively address buried site services and pavement design works with Section 5.6 addressing some general design and construction considerations.

Please note that the engineering assessment and design recommendations provided in the following sections are intended for guidance and sole use of the designers and planners associated with the proposed development. In addition, it should be further noted that the soil and groundwater conditions were only confirmed at the borehole locations and will vary between these locations.

5.2 Site Preparation and Grading

As noted in Sections 2 and 4.2.1 of this report, various construction activities were undertaken within the site limits between 2004 and 2018, the net result of which is a somewhat discontinuous layer of peat or topsoil that is either at surface or buried under a thin layer of surface fill. The total combined thickness of these materials varies from 0.2 m (BH22-12) to 2.2 m (BH22-14) with typically thicknesses in the order of just less than 1 m except along the east side of the site where fill thicknesses of between 1.8 m and 3.0 m were confirmed at the locations of BH22-4, 10 and 14. Underside elevation of the foregoing materials as detailed in attached Table 1 vary from 91.3 m at the location of BH22-10 to 92.4 m at the location of BH22-7 with most underside elevations being in the order of 92.2 to 92.3 m except for BH22-10. However, some of the upper reaches of the underlying native materials have random organic contents and, locally deeper buried organic materials are expected along the alignment of the former drainage ditch shown on attached Figure 2.

The foregoing fill and otherwise organic impacted materials are unsuitable for support of building foundations and paved areas, and as such, these materials need to be removed and replaced with suitable inorganic materials, with the most obvious materials in this case being OPSS.MUNI 1010 Granular A materials given that almost all of the site will be developed or paved. For design purposes, an approximate underside elevation of 92.0 m should be anticipated for the required removal and replacement works that should be undertaken as per the following:

- 1) All existing topsoil and other obviously weak or deleterious materials are removed from the entire footprint area of the proposed site to expose the top surface of the underlying inorganic native soils as expected to consist of a combination of fine grained cohesionless materials and low plasticity silty clay at elevations no deeper than approximate elevation 92.0 m.
- 2) Exposed top surface from 1) is nominally compacted with at least 5 passes of a large ride-on compactor, preferably in vibration mode although it is very possible that it will be required to adopt a zero vibrations mode within areas that are occupied by fine grained cohesionless materials at or a short distance above the ambient water table. During this work, particular emphasis should be given to the identification and remediation of any soft/weak spots that may be present, i.e., sub-excavate and replace with inorganic fill compacted to at least 95 % of its Standard Proctor Maximum Dry Density (SPMDD) or, 98 % if practical.
- 3) Regrade entire site to a constant general elevation in the order of 94.0 m with due consideration being given to the proposed ground improvement works outlined in Section 5.3 to enable design of the proposed buildings to be undertaken using conventional buildings materials to maximum SLS design bearing capacities of 150 kPa and related maximum ULS (Ultimate Limit State) design bearing capacities of 225 kPa.

At variance to the above general site grading approach, fine grained, low permeability local native materials is preferred for backfill of the former drainage ditch up to approximate elevation 92.0 m, which may require continuous sump and pump operations along the length of the former drainage ditch to achieve. However, if required, Granular A materials can be used for backfill of the entire former drainage ditch.

It is recommended that all site preparation works outlined in the foregoing page be undertaken while temperatures, including those overnight, are above zero and under the full-time direction of suitably qualified geotechnical personnel.

Based on the summary consolidation test data presented in attached Table 3, total settlements in response to the foregoing site preparation and grading works are estimated by GeoTerre to be somewhere in the order of 75 mm for an assumed average final site grade of approximate elevation 94.0 m. It is however recommended that a suitable settlement monitoring plan be instigated during completion of the foregoing site grading works by way of developing a better understanding of how the soils of the site respond under full scale loadings. In the interim however, it should be assumed that no site servicing works can be undertaken until all soil settlements related to general site grading works and related proposed ground improvement works of Section 5.3 have taken place or, until the rate of settlement and/or projected final settlements are deemed acceptable.

The first 75 % of the estimated total settlements related to grading are expected to develop in a roughly linear fashion with time, whereas as the latter 25 % are expected to develop in and ever reducing fashion as settlement rates approach "zero" in an exponential, i.e., ever decreasing, fashion. To that end, settlements can be assumed to have "finished" when total settlements over a 100 day period are less than 3 mm and exhibit an ever decreasing trend. In consideration of the foregoing expected settlement trends, monitoring of settlement relative to a stable benchmark, i.e., metal rod grouted at 1.5 m in the underlying deep glacial till soils should be undertaken at weekly intervals for the first 4 weeks and thereafter, no less than once per 30 days/month until settlements are deemed to have finished.

5.3 Building Foundation Considerations

5.3.1 Building Foundations

Based on the summary grading information of Section 5.2, the "typical" design stratigraphy for the

building foundations is estimated to be as follows:

- Elevation 94.0 to 92.0 m: Compacted OPSS.MUNI Granular A Materials
- Elevation 92.0 to 90.0 m: Upper Soil Crust (Silty Clay and Fine Grained Cohesionless Materials)
- Elevation 90.0 to 81.0 m: Soft Silty Clay (average undrained shear strength of 22 kPa)
- Elevation 81.0 to 75.0 m: Firm Silty Clay (average undrained shear strength of 40 kPa)

Based on the above noted soil design stratigraphy and assumed foundation underside of elevation 92.5 m, a design bearing capacity at the ULS (Ultimate Limit State) of 100 kPa is deemed appropriate for strip foundations up to 2 m wide and pad footings up to 4 m by 4 m in size. However, in terms of estimating settlement to assess a suitable SLS (Serviceability Limit State) allowable bearing capacity, analyses completing by GeoTerre indicate that 2 m wide strip foundation with 60 kPa uniform load will generate some 80 to 100 mm of settlement which is unacceptable. This high settlement estimate for a relative small applied foundation load is largely a result of the 44 kPa of additional surface loads generated as a result of the required site grading works detailed in Section 5.2, i.e., the site grading additional surface loads has resulted in a significant portion of the deep silty clay layer being loaded close to, or very slightly beyond the maximum load the soil has previously experienced which in geotechnical terms is known as the maximum past pre-consolidation effective pressure (σ '_p). The maximum past pre-consolidation between relatively flat portion of the Oedometer Voids Ratio (e) versus Log₁₀ Applied Stress (e-Log P) plots of attached Appendix E, at pressures greater than σ '_p.

In terms of potential solutions, the conventional approach to limit post construction settlements is to apply a pre-load, i.e., place materials (usually granular) over the surface of the site with the objective of increasing the σ'_p value and thereby reduce building settlements by removing the pre-load and replacing it with a building of lighter total loads than the pre-load. For this site, the following pre-load values are estimated to result in the following total maximum settlements below the center of the pre-loaded area.

Height of Grade Raise Granular Fill	Estimated Maximum Settlement (approx.)
1 m (22 kPa)	225 mm
2 m (44 kPa)	425 mm
3 m (66 kPa)	650 mm

The major downside of the foregoing approach is the amount of time required for the settlements to occur, i.e., outrageously long times (> 100 years) based on the coefficient of consolidation test data of attached Appendix E.

Other possible realistic approaches to address the above noted very long times for settlements related to pre-loading to develop are considered to be as follows:

- 1) Installation of pre-fabricated vertical wick drains on a regular grid pattern to accelerate the development of problematic settlements by shortening the drainage path for excess pore-water pressures within the silty clay matrix.
- 2) Installation of "Controlled Modulus Columns/Rigid Inclusions", i.e., essentially deep piles, to directly support the foundations of the proposed various buildings.
- 3) Combination of 1) and 2).

In terms of actual design, given the significant interaction between the above noted approaches, it is industry norm for ground improvement such as these to be realized through a design/build approach. Accordingly, with the exception of monitoring of site settlements, it is recommended that the services of a suitably experienced ground improvement specialist with extensive experience with sites underlain by Leda Clay be engaged to fully design and implement a suitable system to satisfactorily support the proposed buildings. As a minimum, this should include the following:

- Produce building footprint areas capable of supporting conventional strip or pad foundations in such a fashion that foundation loads and associated SLS and ULS design requirements are suitably balanced. To that end, minimum design allowable bearing capacities of 150 kPa for the SLS condition (total settlement not greater than 25 mm; differential settlements not greater than 50% of total) and 225 kPa at the ULS condition are considered to represent the target allowable foundation design pressures that would be deemed suitable for support of the proposed two storey commercial buildings designed and constructed using traditional building materials.
- Zero or very minimal off-site settlement impacts, i.e., off-site settlements not greater than 10 mm.
- Seamless integration of anticipated settlements related to general site grading and improvement of proposed building footprint areas such that the site servicing works and building construction works can be undertaken without concern for potential differential settlements, or other similarly negative impacts.

On the more general design front, please note that all exterior footings or interior footings of unheated buildings should be provided with soil or equivalent soil cover as per the recommendations of Section 5.6.1 for the purposes of frost protection. Finally, please note that excavations for footings must be completed in accordance with the Occupational Health and Safety Act (and Regulations for Construction Projects).

5.3.2 Seismic Design

GEOTERRE FILE NO.: TG22-045

As noted in Section 3.0, a Shear Wave Velocity Sounding to determine the applicable Seismic Site Class as per the requirements of the 2012 version of the Ontario Building Code and, to satisfy a City of Ottawa design requirement for the approval of proposed development known to be underlain by weak "Leda Silty Clay" materials was undertaken. The results of this study as completed on December 8, 2022 by the Montreal office of Geophysics GPR International Inc., using MASW (Multi-channel Analysis of Surface Waves) and SPAC (Spatial Auto Correlation) seismic refraction methods are presented in attached Appendix F. In summary, the MASW/SPAC report concludes that the site can be classified as Seismic Class D under the 2012 Ontario Building Code.

Additional analyses completed by GeoTerre indicate that the soils at the site are not susceptible to liquefaction.

5.4 Buried Site Services

It is understood that the depth of required site services has not yet been determined, although it is generally expected that they will not exceed 3 m in depth below final grades given that primary storm and sanitary sewer connections have been established in the southeast corner of the site and, the design frost penetration depth for the site as detailed in Section 5.6.1 is 1.8 m. As previously recommended in Section 5.2, no buried service installations should be undertaken until site settlements related to general site grading have been deemed to be essentially complete. A similar delay should also be enacted until any building footprint pre-loading works have reached a similar status.

Subsequent to the effective completion of site settlements related to grading and the like, it is anticipated that required site service trenching works within areas scheduled for paving will be undertaken through approximately 2 m of OPSS-MUNI 1010 Granular A into the underlying native soils located below the estimated approximate water table level of 92.0 m. Trench excavations to these depths are expected to remain largely stable if excavated with side slopes that are inclined no steeper than 1 Vertical to 1 Horizontal (1V:1H). However, some water seepage from within the native fine grained cohesionless materials below approximate elevation 92 m should be expected and as such, will likely lead to sidewall instability below elevation 92 m and associated ravelling of the overlying Granular A materials. However, it should be possible to accommodate the water inflow issues using appropriately spaced and properly functioning sump and pump installations along the length of the required trenches in advance of excavating below elevation 92 m.

Notwithstanding the foregoing trench stability assessments, where workmen must enter any excavation deeper than 1.2 m, the sidewalls should be suitably sloped and/or braced in accordance with the Occupational Health and Safety Act (and Regulations for Construction Projects) in Ontario. Specifically, as of April 8, 2013, sub-section 226 of the Occupational Health and Safety Act recognize four (4) broad classifications of soils, which are summarized as follows:

TYPE 1 SOIL

- a) is hard, very dense and only able to be penetrated with difficulty by a small sharp object;
- **b**) has a low natural moisture content and a high degree of internal strength;
- c) has no signs of water seepage; and
- d) can be excavated only by mechanical equipment

TYPE 2 SOIL

- a) is very stiff, dense and can be penetrated with moderate difficulty by a small sharp object;
- b) has a low to medium natural moisture content and a medium degree of internal strength; and
- c) has a damp appearance after it is excavated

TYPE 3 SOIL

- a) is stiff to firm and compact to loose in consistency or is previously-excavated soil;
- b) exhibits signs of surface cracking;
- c) exhibits signs of water seepage;
- d) if it is dry, may run easily into a well-defined conical pile; and
- e) has a low degree of internal strength

TYPE 4 SOIL

- a) is soft to very soft and very loose in consistency, very sensitive and upon disturbance is significantly reduced in natural strength;
- b) runs easily or flows, unless it is completely supported before excavating procedures;
- c) has almost no internal strength;
- d) is wet or muddy; and
- e) exerts substantial fluid pressure on its supporting system

The expected near surface Granular A materials are expected to behave as Type 2 soil whereas the native soils over the 91 to 92 m horizon are expected to behave as Type 3 soil. While excavations below elevation 91 m are not expected, please note that soils below elevation 90 m will behave as Type 4 soil.

Based on the foregoing anticipated trench conditions above approximate elevation 91 m, the design of the various site services may be completed in accordance with their various applicable OPSD's. Bedding material and backfill within the various pipe zones should consist of OPSS.MUNI Granular 'A' compacted to at least 95 % of its SPMDD. Trench backfill should consist of locally excavated "clean" OPSS.MUNI 1010 Granular A material compacted in lifts not exceeding 300 mm in thickness to achieve at least 95 % of its SPMDD throughout and 98 % in the upper 300 mm under paved areas. All site servicing elements prone to freezing should be provided with soil (or equivalent) cover for frost protection purposes in accordance with the recommendations of Section 5.6.1.

In addition to foregoing general buried services installation requirements within a trench, the following additional requirements should be enacted to help avoid lowering of the groundwater table and related potential negative hydrogeological impacts and possible ground settlements, especially for services installed below the estimated "average" groundwater table level for the site of elevation 92.0 m:

- Watertight pipes and related joints.
- Provision of clay seals around the pipes up to at least elevation 93 m to prevent lateral flow within/along the pipe bedding. At a minimum, clay seals should be placed as close as possible to the property line for all services that exit the site and at least every 20 m within the site.

Finally, the invert of elevation of proposed stormwater infiltration chambers should be carefully assessed with the project hydrogeological consultant to help avoid potential negative hydrogeological impacts. In this regard, potential settlements related to water storage within the proposed stormwater infiltration chambers are not considered to be a concern given that the base of stormwater infiltration chambers are open to the underlying soils and as such, loads on the infiltration chambers will not increase.

5.5 Pavement Considerations

In anticipation of site paving works being completing on a subgrade consisting of at least 1.5 m of compacted OPSS.MUNI Granular A materials as per the site preparation works outlined in Section 5.2, the following pavement structures are recommended provided the upper 300 mm of granular materials related to site grading are removed below required final grades or as required to ensure no contaminated granular materials are present within the total recommended pavement depths provided below:

Entranceways/	Entranceways/Fire Routes/Main Throughways											
Asphalt	Surface Course (HL3)	40 mm										
-	Basecourse (HL8)	<u>60 mm</u>										
		100 mm	100 mm									
New Granular	Base (OPSS.MUNI 1010 Granular A)		200 mm (minimum)									
Existing "Site	Grading" Granular Base		<u>350 mm (minimum)</u>									
-	-		650 mm									
Car Parking A	reas											
Asphalt	Surface Course (HL3)	40 mm										
	Basecourse (HL8)	<u>40 mm</u>										
		80 mm	80 mm									
New Granular	Base (OPSS.MUNI 1010 Granular A)		200 mm (minimum)									
Existing "Site	Grading" Granular Base		<u>350 mm (minimum)</u>									
_			630 mm									

Asphalt materials to be in accordance with the appropriate OPSS and compacted in accordance with OPSS 310. Granular base materials to be compacted to at least 100 % of their SPMDD. Given the expected presence of quite deep Granular A materials below all expected paved areas, a system of sub-drains to promote water drainage from the underlying granular materials is not considered necessary.

5.6 General Design and Construction Considerations

5.6.1 Frost Penetration

The estimated depth of frost penetration for the site is 1.8 m and the underside of all exterior footings and/or elements that are prone to freezing should be provided with this amount of soil or equivalent cover.

5.6.2 Concrete Sulphate Requirements

Based on the results of the soluble sulphate content testing presented in Section 3.0, the soils at the site pose no risk of soluble sulphate attack on buried concrete. Accordingly, no special sulphate protection provisions for buried concrete are required for the site and therefore regular "general use" Portland cement may be used.

5.6.3 Import and Export of Site Soil

Environmental issues related to the proposed works were beyond the scope of this GeoTerre report and the intent of this section is to highlight that the disposal of excess soils from the site and/or the import of required grade raise fill materials must be undertaken in accordance with applicable environmental legislation.

5.6.4 Borehole Abandonment

It is recommended that prior to the damage of any existing boreholes with installed piezometers that the installed piezometer pipes be abandoned in accordance with MOE Regulation 903.

5.6.5 Construction Supervision

It is recommended that the works outlined within be completed under the under the direct observation of GeoTerre who have the best familiarity with the soil conditions within the site boundaries and the rationale behind the development of the various geotechnical design recommendations presented within. In addition, and as detailed in the "*Limitations and Information Regarding Use of Report*" of attached Appendix A, retaining GeoTerre to undertake the foregoing observations during construction is considered to be an integral and vital part of the implementation of the various recommendations, opinions and suggestions contained in this report.

6.0 CLOSURE

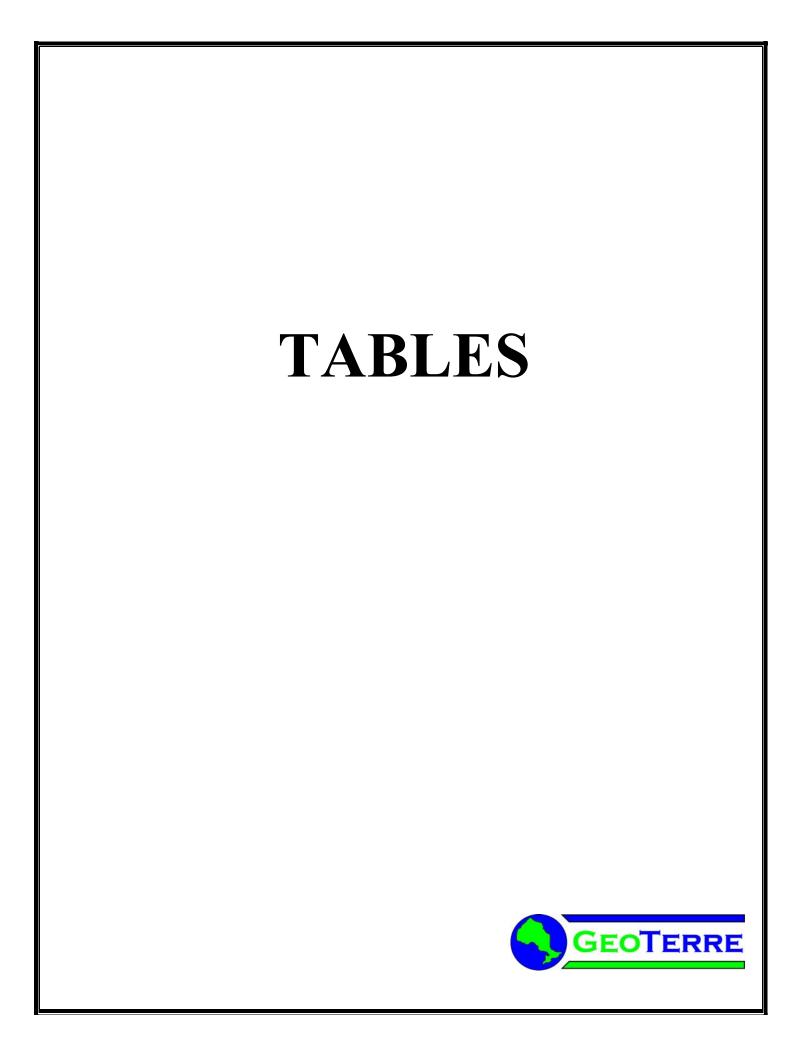
We trust this report is sufficient for your present requirements and adequately details the significant challenges that need to be addressed as part of implementing a suitable geotechnical design strategy for the proposed development. Please do not hesitate to contact GeoTerre should you have any questions or require clarification on any matter.

As previously noted, we wish to highlight that the contents of this report are subject to the attached Statement of Limitations of Appendix A.

GEOTERRE LIMITED

Ivan Corbett, M.Sc., P.Eng. President

REFERENCES


Becker, D.B., Crooks, J.H.A., Been, K., and Jefferies, M.G. 1987. "Work as a criterion for determining in situ and yield stresses in clays". Canadian Geotechnical Journal, 24(4): 549-564.

Casagrande, A. 1936. "The determination of the preconsolidation load and its practical significance." *In* Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass., 22-26 June 1936. Harvard Printing Office, Cambridge, Mass., Vol. 3 pp. 60-64.

Oikawa, H. 1987. "Compression curve of soft soils." Journal of the Japanese Geotechnical Society, Soils and Foundations, 27(3): 99-104.

Boone, S.J. 2010. "A critical reappraisal of 'preconsolidation pressure' interpretations using the oedometer test." Canadian Geotechnical Journal, 47, 281–296.

TABLE 1PROPOSED COMMERCIAL DEVELOPMENT3850 CAMBRIAN ROAD, NEPEAN, OTTAWAGEOTECHNICAL INVESTIGATION REPORT - REVISION 2 - FINAL

SUMMARY OF BOREHOLE INFORMATION

		Ground Surface	Stratigraphic Summary (m) Layer Thickness/ Investigated Depth (Underside Elevation)							
Borehole No.	Borehole Depth			Fine Grained	Silty Cla	Deep Soils				
	(m)	(m)	Surface Peat/ Topsoil/Fill	Cohesionless Materials	Upper Crust ⁽²⁾	Below Crust	(Cohesionless Till Materials)			
BH22-1	5.9	92.506	0.3 (92.2)	1.1 (91.1)	None	4.5 (86.6)	Not Reached			
BH22-2	7.3	92.582	0.4 (92.2)	1.7 (90.4)	None	5.2 (85.3)	Not Reached			
BH22-3	18.7	92.952	0.8 (92.1)	None	1.3 (90.8)	14.1 (76.7)	2.5 (74.2)			
BH22-4	5.9	93.682	1.8 (91.9)	None	1.4 (90.5)	2.7 (87.7)	Not Reached			
BH22-5	5.9	92.456	None	None	1.8 (90.6)	4.1 (86.5)	Not Reached			
BH22-6	7.5	93.015	0.8 (92.2)	1.4 (90.8)	None	5.3 (85.5)	Not Reached			
BH22-7	5.8	93.115	0.7 (92.4)	1.4 (91.0)	None	3.7 (87.3)	Not Reached			
BH22-8	7.3	93.154	1.0 (92.2)	1.1 (91.0)	None	5.2 (85.8)	Not Reached			
BH22-9	5.9	93.215	0.9 (92.3)	1.3 (91.0)	None	5.7 (87.3)	Not Reached			
BH22-10	7.5	94.233	3.0 (91.3)	1.1 (90.1)	None	3.4 (86.8)	Not Reached			
BH22-11	21.3	93.164	0.9 (92.2)	1.2 (91.0) ⁽³⁾	0.8 (90.3)	?? (74.9)	3.0 (71.8)			
BH22-12	5.9	92.547	0.2 (92.3)	2.1 (90.3) ⁽³⁾	None	3.6 (86.6)	Not Reached			
BH22-13	7.5	92.949	0.7 (92.3)	1.5 (90.7)	None	5.3 (85.5)	Not Reached			
BH22-14	7.5	94.394	2.2 (92.2)	0.7 (91.5)	0.8 (90.7)	3.8 (86.9)	Not Reached			

Notes: (1) Borehole survey data obtained by SLR (Canada) Ltd. relative to the top of an existing Round Sanitary Sewer manhole located in the south east corner of the site with a Geodetic Elevation of 93.55 m as confimed by a Registered Ontario Land Surveyor.

(2) Based on Midpoint of SPT Values of greater than 1 and 0 (Manual Push)

(3) Includes overlying thin layer of silty clay.

TABLE 2PROPOSED COMMERCIAL DEVELOPMENT3850 CAMBRIAN ROAD, NEPEAN, OTTAWAGEOTECHNICAL INVESTIGATION REPORT - REVISION 2 - FINAL

Borehole Monitoring Well Details & Groundwater Level Measurements up to December 6, 2022

				Monitoring Well Details					Measured Groundwater Levels in metres ⁽²⁾				2)
Borehole No.	Borehole Depth (m)	Ground Elevation (m) ⁽¹⁾	Type	Tip Depth	Screen	Tip Formation	Installation	28-N	ov-22	06-Dec-22			
	2 op ()		Туре	(m)	Length (m)	TIP I Officiation	Date	Depth ⁽²⁾	Elevation	Depth	Elevation	Depth	Elevation
BH22-1	5.9	92.506	50 mm PVC Pipe	4.6	3.0	Silty Clay	24-Nov-22	0.589	91.917	0.192	92.314		
BH22-2	7.3	92.582				No M	Ionitoring Well In	stalled					
BH22-3	18.7	92.952	50 mm PVC Pipe	18.3	1.5	Cohesionless Glacial Till	22-Nov-22	1.232	91.720	0.852	92.100		
BH22-4	5.9	93.682	50 mm PVC Pipe	4.6	3.0	Silty Clay	23-Nov-22	2.539	91.143	2.033	91.649		
BH22-5	5.9	92.456				No M	Ionitoring Well In	stalled					
BH22-6	7.5	93.015				No M	Ionitoring Well In	stalled					
BH22-7	5.8	93.115				No M	Ionitoring Well In	stalled					
BH22-8	7.3	93.154				No M	Ionitoring Well In	stalled					
BH22-9	5.9	93.215				No M	Ionitoring Well In	stalled					
BH22-10	7.5	94.233				No M	Ionitoring Well In	stalled					
BH22-11	21.3	93.164		No Monitoring Well Installed									
BH22-12	5.9	92.547	50 mm PVC Pipe	50 mm PVC Pipe 4.6 3.0 Silty Clay 24-Nov-22 0.535 92.012 0.274 92.273									
BH22-13	7.5	92.949	No Monitoring Well Installed										
BH22-14	7.5	94.394	50 mm PVC Pipe	4.6	3.0	Silty Clay	23-Nov-22	2.846	91.458	2.396	91.998		

Notes: (1) Borehole survey data obtained by SLR (Canada) Ltd. relative to the top of an existing Round Sanitary Sewer manhole located in the south east corner of the site with a Geodetic Elevation of 93.55 m as confimed by a Registered Ontario Land Surveyor.
(2) Water depth relative to ground surface.

Wells Believed to be Sensing Near Surface Silty Clay Water Table Pressures/Levels

Wells Believed to be Sensing Underlying Cohesionless Glacial Till Water Table Pressures/Levels

TABLE 3 PROPOSED COMMERCIAL DEVELOPMENT - 3850 CAMBRIAN ROAD, NEPEAN, OTTAWA GEOTECHNICAL INVESTIGATION REPORT - REVISION 2 - FINAL SUMMARY OF OEDOMETER SOIL COMPRESSION TEST DATA

	Test Sample Information							Estimated Test Key Parameters									
	Ground Water Table Borehole				Insitu Effective		Estimated P	reconsolidation	n Pressure ⁽⁵⁾			Settlement Key Parameters (7)					
Borehole	Elevation	Elevation ⁽¹⁾	Sample# &(Type) ⁽²⁾	Strength Data	Depth	Elevation	Unit Weight	Stress ⁽⁴⁾	Method A	Method B	Method C	Method D	Average	OCR ⁽⁶⁾	eo	Cc	Cr
	(m)	(m)			(m)	(m)	(kN/m ³)	(kPa)			(kPa)	•					
BH22-3	92.952	92.100	6 (Type B)	29	5.05	87.902	17.51	48.1	105	98	104	103	104	2.2	1.204	0.850	0.007
			9 (Type C)	27	9.70	83.252	17.39	83.6	115	112	118	115	116	1.4	1.237	0.870	0.005
BH22-11	93.164	92.273	6 (Type B)	28	5.13	88.034	16.85	48.1	108	98	103	100	104	2.2	1.428	1.310	0.008
			9 (Type C)	22	9.65	83.514	16.80	79.8	105	98	105	102	104	1.3	1.454	1.160	0.009

NOTES 1) BH22-3 Water Levels based on that recorded on December 6, 2022, whereas BH22-11 Water Level is based on that recorded in BH22-12 on December 6, 2022

2) Type A: Upper Crust Sample; Type B: Sample from Weak Silty Clay just below Upper Crust; Type C: Sample from lower reaches of Weak Silty Clay

3) Value quoted is Average Field Vane Undrained Shear Strength (C_u) Measured above and below test sample in kPa

4) Based on Assumed Unit Weight of 18.0 kN/m³ above Elevation 90.8 m in BH22-3 and 90.3 m in BH22-11 and Average of Oedometer Test Samples below the foregoing Elevations

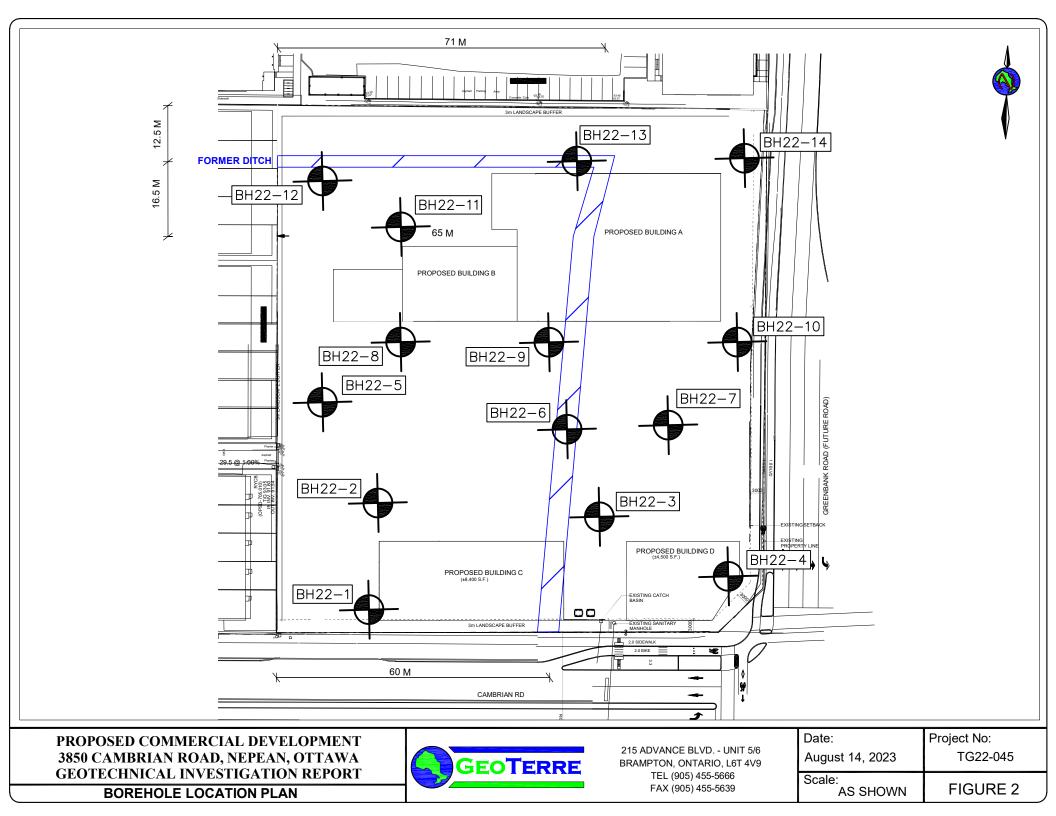
5) Method A (Casagrande, 1936); Method B (Oikawa, 1987); Method C (Becker et al, 1987); Method D (Boone, 2010). Average excludes Method C values.

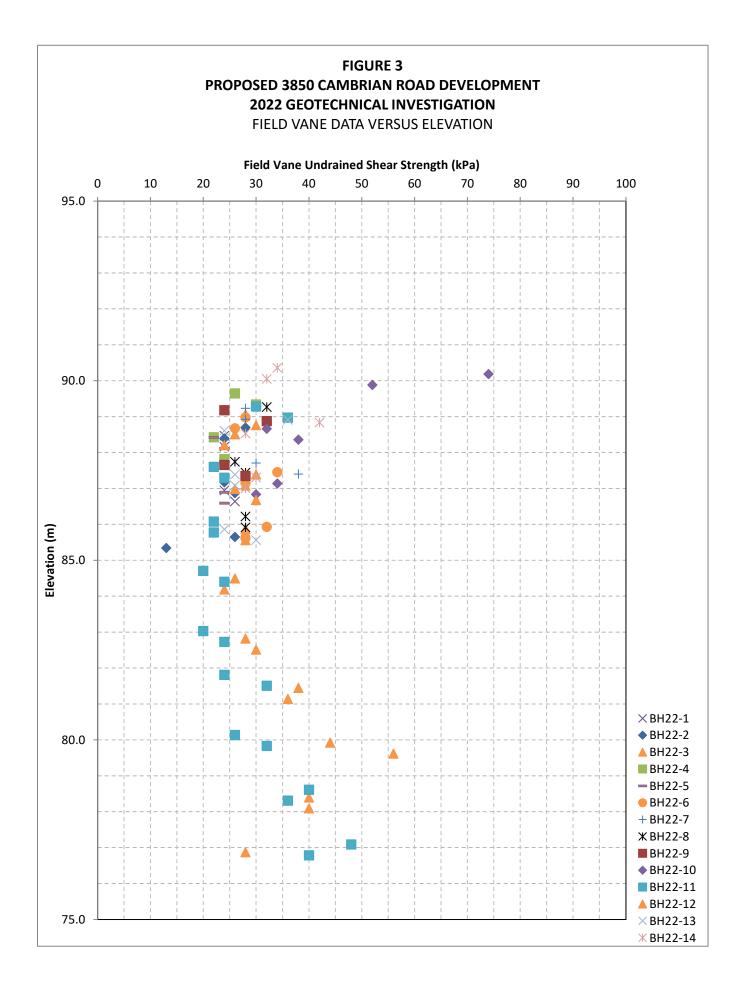
6) OCR - Over Consolidation Ratio (ratio of average past-preconsolidation pressure/existing insitu effective stress)

7) eo - initial void ratio as estimated at existing vertical effective stress of test sample; Cc - Coefficient of Virgin Compresion;

Cr - Coefficient of Reloading values obtained over the first increment of unloading after achieving appied maximum test load

FIGURES


PROPOSED COMMERCIAL DEVELOPMENT 3850 CAMBRIAN ROAD, NEPEAN, OTTAWA GEOTECHNICAL INVESTIGATION REPORT



215 ADVANCE BLVD. - UNIT 5/6 BRAMPTON, ONTARIO, L6T 4V9 TEL (905) 455-5666 FAX (905) 455-5639

Date:	Project No:	
August 14, 2023	TG22-045	
Scale: AS SHOWN	FIGURE 1	

SITE LOCATION PLAN

APPENDIX A

LIMITATIONS AND INFORMATION REGARDING USE OF REPORT

LIMITATIONS AND INFORMATION REGARDING USE OF REPORT

This report was prepared by GeoTerre Limited (GeoTerre) in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently working under similar conditions in the jurisdiction in which the services were provided. No other warranty, expressed or implied is made

This report was prepared by GeoTerre Limited (GeoTerre) for the sole use of the named client and for review and use by its designated consultants and government agencies during realization of the project. Any use by a third party of this report other than those named in the preceding sentence, or any reliance on, or decisions to be made based on it, are the responsibility of such third parties. GeoTerre accepts no responsibility for damages, if any, suffered by any third party as of a result of decisions made or actions based on this report.

The conclusions and recommendations presented in this report are based on information determined at the borehole locations. Subsurface and groundwater conditions between and beyond the boreholes may differ from those encountered at the specific locations tested, and conditions may become apparent during construction which were not detected and could not be anticipated at the time of the site investigation. Unless otherwise noted, the information contained herein in no way reflects on environmental aspects of either the site or the subsurface conditions.

The design recommendations given in this report are applicable only to the project described in the text and then only if constructed substantially in accordance with details stated in this report. Since all details of the design may not be known, we recommend that we be retained during the final stage to verify that the design is consistent with our recommendations, and that assumptions made in our analysis are valid.

During construction, we recommend that GeoTerre be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those considered by GeoTerre in the preparation of this report and to confirm and document that construction activities do not adversely affect the recommendations, opinions and suggestions contained in the GeoTerre report. Adequate field review, observation and testing during construction are necessary for GeoTerre to be able to provide letters of assurance in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, the GeoTerre responsibility is limited to the accurate interpretation of the information encountered at the borehole locations at the time of their initial measurement, determination or estimation during the preparation of this report.

The comments given in this report on potential construction problems and possible methods are intended only for the guidance of the designer. The number of boreholes may not be sufficient to determine all the factors that may affect construction methods and costs, e.g. the thickness of surficial topsoil or fill layers may vary markedly and unpredictably. Contractors bidding on this project or undertaking the construction should therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work.

GEOTERRE LIMITED

APPENDIX B

GEOTERRE 2022 BOREHOLE LOGS

GEOTERRE SYMBOLS AND TERMS FOR BOREHOLE LOG SOIL DESCRIPTION

BASIC SOIL SYMBOLS									
	Gravel		Sand		Silt		Clay		
\bigotimes	Fill		Topsoil		Bedrock				
EXAMPLI	EXAMPLE SOIL REPRESENTATIONS								
	Sandy Gravel		Sand and Silt		Silty Clay		Silty Clay Till		
	Sand and Gravel		Silty Sand		Clayey Silt	0	Sand and Silt Till		
• • •	Gravelly Sand		Sandy Silt			0	Sandy Silt Till		
CLAS	SIFICATION BY	PARTICL	E SIZE	Р	ROPORTION O	F MINOR CO	MPONENTS BY		

CLASIFICATION BY PARTICLE SIZE								
(UN	IFIED SO	IL CLASSIFICATION SYSTEM)						
		PARTICLE SIZE RANGE						
NA	ME	мм	U. S. STANDARD Sieve Size					
			RETAINED	PASSING				
Bou	lders	>200	8 inch	-				
Cobbles		75 to 200	3 inch	8 inch				
Gravel	coarse	19 to 75	0.75 inch	3 inch				
Giavei	fine	4.75 to 19	No. 4	0.75 inch				
	coarse	2 to 4.75	No. 10	No. 4				
Sand	medium	0.425 to 2	No. 40	No. 10				
	fine	0.075 to 0.425	No. 200	No. 40				
-	t and Clay icles)	<0.075	-	No. 200				

PROPORTION OF MINOR COMPONENTS BY WEIGHT						
noun	gravel, sand, silt, day	>35 % and main fraction				
"and"	and gravel, and silt, etc.	35 to 50 %				
adjective	gravelly, sandy, silty, dayey, etc.	20 to 35 %				
"some"	some sand, some silt, etc.	10 to 20 %				
"trace"	trace sand, trace silt, etc.	0 to 10%				

DEGREE OF PLASTICITY							
DEFINITION	CATEGORY						
W _L <30	Low						
30 <w<sub>L<50</w<sub>	Medium						
W _L >50	High						

COMPACTNESS OF GRANULAR SOILS BASE							
on SPT							
UNCORRECTED FIELD							
COMPACTNESS	SPT N-VALUES						
CONDITION	(BLOWS/300 MM)						
Very Loose	0 to 4						
Loose	4 to 10						
Loose Compact	4 to 10 10 to 30						

CONSISTENCY AND UNDRAINED SHEAR STRENGTH OF COHESIVE SOILS							
CONSISTENCY OF COHESIVE SOILS	UNDRAINED SHEAR STRENGTH (KPA)	UNCORRECTED FIELD SPT N-VALUES (BLOWS/300 MM)					
Very Soft	<12	2					
Soft	12 to 25	2to4					
Firm	25 to 50	5to8					
Stiff	50 to 100	9to 15					
Very Stiff	100 to 200	16 to 30					
Hard	>200	>30					

LOG OF BOREHOLE BH22-1

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.506 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm APPR. BY: IC

PREP. BY: VTM

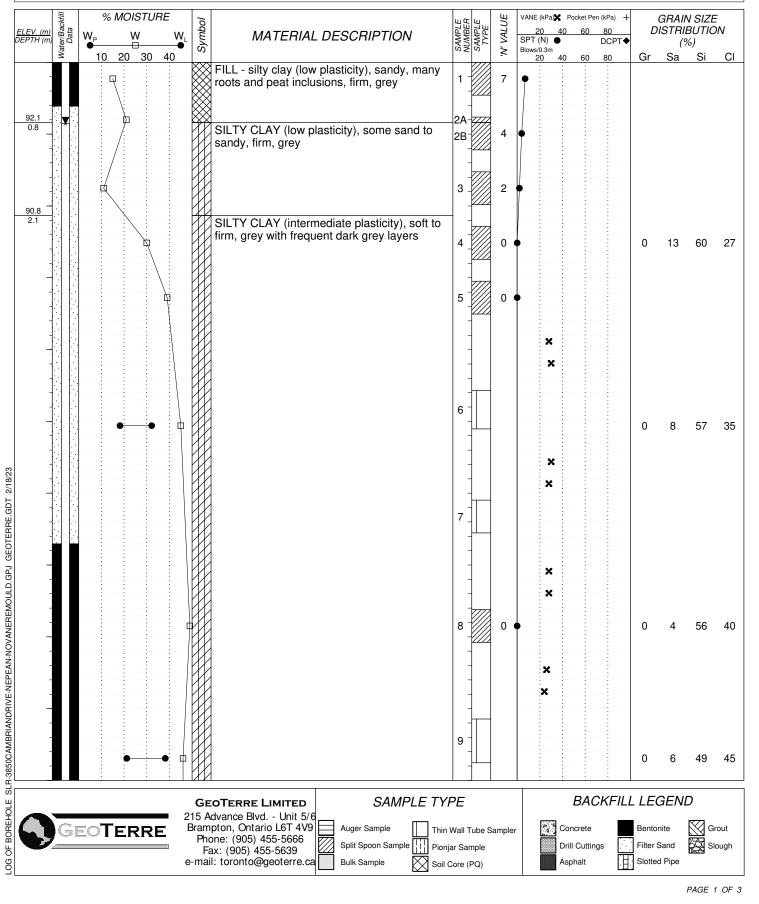
DATE: November 24 2022

ſ		skfill		% M	OIST	URE		10		щ	τш	υE	VANE (kPa)X Pocket Pen (kPa) + GRAIN SIZE
4	<u>ELEV. (m)</u> DEPTH (m)	ter/Backfill Data	W _P		W		W_{L}	Symbol	MATERIAL DESCRIPTION	AMPL	SAMPLE TYPE	N' VALUE	20 40 60 80 SPT (N) ● DCPT ● (%)
		Wate	1	0 2	0 3	04	0	S		Ś	No.	'N'	Blows/0.3m 20 40 60 80 Gr Sa Si Cl
	02.2 -	Ţ						<u></u>	PEAT, amorphous to woody, firm, black	1A			
ł	92.2 ⁻ 0.3 ₋							ÍП	SANDY SILT, trace to some clay, loose, grey	1B	-	5	P
	-												
	-											_	
	-									2	-///	3	P
	91.1 - 1.4								CILTY CLAY (intermediate plasticity) trace to				
					_				SILTY CLAY (intermediate plasticity), trace to some sand, soft to firm, grey with dark grey		-		
	_				4				zones	3	¥//	0	¶
	-												
											-	0	
]					٢				4	¥//	0	
	_						ļ						
	-						n 			5	-\//	0	
							Ţ	H				U	T
	-							H			-		·····
	-							Ĥ			-		
								H					×
	4	」 日						H			-777		
	-						6			6	-\//	0	• • • • • • • • • • • • • • • • • • •
								H					
	-	685						H			-		
23	-0	фб.						H			-		× · · · · · · · · · · · · · · · · · · ·
2/18/	86.6 5.9 -	662						μı	END OF BOREHOLE AT TARGET DEPTH	_			×
LOG OF BOREHOLE SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREMOULD.GPJ GEOTERRE.GDT 2/18/23	-								OF 5.94 M.				
OTERF	-								BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING.		-		
2 GE	_								MONITORING WELL (50 mm diameter)		_		
D.GF	-								INSTALLED TO A TIP DEPTH OF 4.6 M (3.0		-		·····
MOUI	1								M LONG SCREEN) UPON COMPLETION OF DRILLING.				
ERE ERE	-										-		·····
OVA	-								PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m)		-		
AN-N	-								Nov 28'22 0.589 91.917				
NEPE	-								Dec 6'22 0.192 92.314		-		
3IVE-	-								REPORTED SPT 'N' VALUES OBTAINED				
ANDF	-								USING AN AUTOMATIC DROP HAMMER.		_		
MBRI	-										-		
50CA	-												
SLR-35													
JOLE							2		COTERRE LIMITED SAMPLE TY dvance Blvd Unit 5/6	ΡE			BACKFILL LEGEND
ORE	61	G	EO	ΤĒ	RF	۶E		Bram	pton, Ontario L6T 4V9 Auger Sample	Wall	Tube S	Sample	
OFE	T.							F			ample		Drill Cuttings Filter Sand Slough
Fog							e	-ma	I: toronto@geoterre.ca Bulk Sample Soil	Core	(PQ)		Asphalt Slotted Pipe

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.582 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

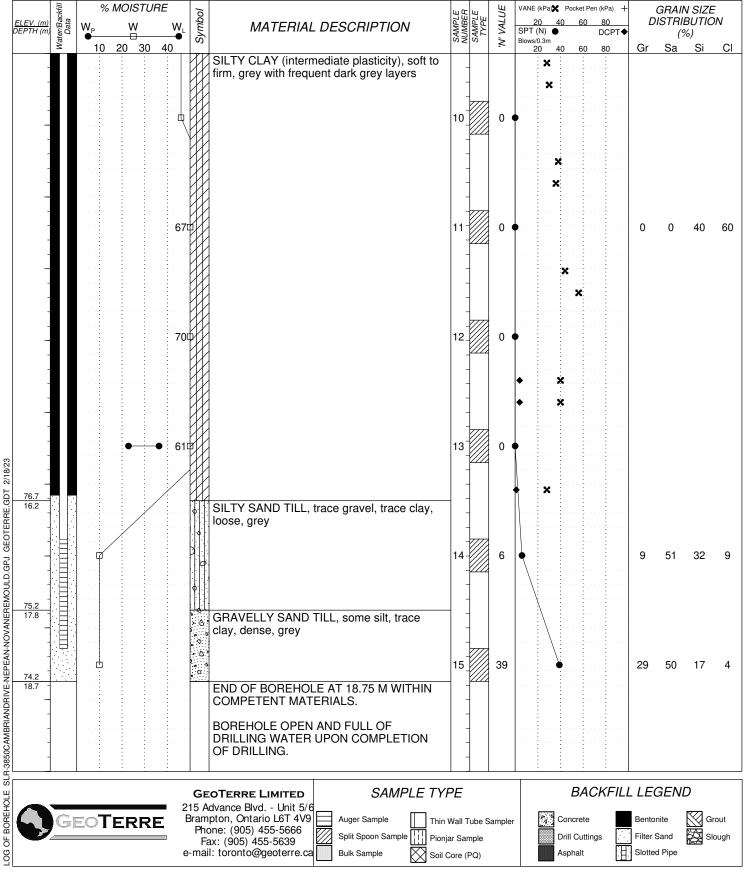
PREP. BY: VTM AP DATE: November 25 2022


Water/Backfill Data % MOISTURE VALUE VANE (kPa) Pocket Pen (kPa) GRAIN SIZE Symbol SAMPLI DISTRIBUTION <u>ELEV. (m)</u> DEPTH (m) 20 40 60 80 W, w W, MATERIAL DESCRIPTION SAMP SPT (N) DCPT (%) Ż vs/0.3m 10 20 30 40 Gr Sa Si CI 80 40 60 20 <u>. 17</u> TOPSOIL (360mm), dark brown 1A 92.2 8 0.4 SAND AND SILT TO SANDY SILT, some 1B clay to clayey, loose to very loose, grey 3 40 36 20 2 7 3 0 0 30 53 17 TT. 90.4 2.1 SILTY CLAY (intermediate plasticity), trace to some sand, soft to firm, grey with dark grey 4 0 zones 5 0 X × 0 6 X x 2/18/23 SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREMOULD.GPJ GEOTERRE.GDT 51 7 0 X X 85.3 END OF BOREHOLE AT TARGET DEPTH OF 7.31 M. BOREHOLE OPEN WITH WATER AT A DEPTH OF 4.0 M UPON COMPLETION OF DRILLING. REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. BACKFILL LEGEND SAMPLE TYPE **GEOTERRE LIMITED** BOREHOLE 215 Advance Blvd. - Unit 5/6 Brampton, Ontario L6T 4V9 Auger Sample P 0 Concrete Bentonite 4 Grout TERRE Thin Wall Tube Sampler Phone: (905) 455-5666 Split Spoon Sample Drill Cuttings Filter Sand Slough Pioniar Sample Ь Fax: (905) 455-5639 e-mail: toronto@geoterre.ca Asphalt Slotted Pipe g Bulk Sample Soil Core (PQ)

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.952 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm

PREP. BY: VTM APPR. BY: IC


DATE: November 22 2022

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.952 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: November 22 2022

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.952 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm APPR. BY: IC PREP. BY: VTM

DATE: November 22 2022

Γ		skfill	% MOISTURE		7		щαш	ЭE	VANE (kPa) YOCket Pen (kPa) +	GRAIN SIZE
ł	<u>ELEV. (m)</u> DEPTH (m)	Water/Backfill Data	W _P W	WL	Symbol	MATERIAL DESCRIPTION	SAMPLE NUMBER SAMPLE TYPE	'N' VALUE	20 40 60 80 SPT (N) ● DCPT◆	DISTRIBUTION
ſ		Wate I	10 20 30 40		ŝ		SA NU SA		Blows/0.3m 20 40 60 80	(%) Gr Sa Si Cl
F	_			,		MONITORING WELL (50 mm diameter)				
						INSTALLED TO A TIP DEPTH OF 18.3 M				
	-					(1.5 M LONG SCREEN) UPON COMPLETION OF DRILLING.				
	-						-			
	-					PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m)	-			
	-					DATE Depth(m) Elevation(m) Nov 28'22 1.232 91.720	-			
	-					Dec 6'22 0.852 92.100				
	-									
	_					REPORTED SPT 'N' VALUES OBTAINED	-			
	-					USING AN AUTOMATIC DROP HAMMER.	-			
	-									
	-									
	_									
	-									
	-									
	-									
	-						-			
	-						-			
	-									
	-									
	_									
	-						-			
	-						-			
/33	-									
2/18	_									
Ц	-									
E E	-									
Ë	-						-			
B	-									
ß	-									
). LD.			;							
MO	-									
	-									
VAN	-									
N-N	-									
PEAI	-									
۳ ۳										
N	_									
AND	-									
MBR	-									
OCAI	-									
385	-									
I.S.F					<u> </u>	OTERRE LIMITED SAMPLE TY	DE		RACKEIII	LEGEND
ЧСЕ				2		OTERRE LIMITED SAMPLE TYI	Ľ		DAUNFILL	
OREI	(7)	G	EOTERRE		Bram	pton, Ontario L6T 4V9 Auger Sample Thin	Wall Tube	Sample	Concrete	Bentonite Grout
ВЧ					Pho Fa	one: (905) 455-5666 ax: (905) 455-5639 Split Spoon Sample Pionj	ar Sample		Drill Cuttings	Filter Sand
LOG OF BOREHOLE SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREMOULD.GPJ GEOTERRE.GDT 2/18/23				е	-mai		Core (PQ)		Asphalt	Slotted Pipe

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 93.682 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: November 23 2022

	ELEV. (m)	Water/Backfill Data		MOIS			Symbol	MATERIAL DESCRIPTION	IPLE IBER	SAMPLE TYPE	'N' VALUE	VANE (kPa)X Pocket Pen (kPa) + GRAIN SIZE 20 40 60 80 DISTRIBUTION	
Ċ	ELEV. (m) EPTH (m)	Water/I Da	₩ _P ● 10	20		 40	Syn	MATERIAL DESCRIPTION	SAM	SAM	N. V	SPT (N) ● DCPT◆ (%) Blows/0.3m 20 40 60 80 Gr Sa Si Cl	
					00			FILL - sandy silt, trace to some clay, trace organics, occasional fine sand layers and pieces of gravel, compact, grey	1		13		
	-			þ					2		12		
	- 91.9 _								3A				
	1.8			₽				SILTY CLAY (low plasticity), some sand to sandy, firm, grey with dark grey zones	3B-		14		
	-			þ	\ \				4		3		
	90.5				/: /:	:			5A				
	3.2				Ţ			SILTY CLAY (low to intermediate plasticity), some sand, soft to firm, grey with dark grey	5B		0		
	-							zones	-			×	
	-											×	
	-	Ш							6		0		
	-	200										× · · · · · · · · · · · · · · · · · · ·	
3/23	-					•							
.GDT 2/18	87.7 5.9 -	1002					ГИ. I	END OF BOREHOLE AT TARGET DEPTH OF 5.94 M.		-		X	
GEOTERRE	-					· · · · · · · · · · · · · · · · · · ·		BOREHOLE DRY AND OPEN TO 5.18M UPON COMPLETION OF DRILLING.		-			
REMOULD.GPJ	-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING.		-			
EPEAN-NOVANEI	-							PIEZOMETER WATER LEVEL READINGSDATEDepth(m)Nov 28'222.53991.143Dec 6'222.03391.649		-			
SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREMOULD.GPJ GEOTERRE.GDT 2/18/23	-							REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER.		-			
3850C/	_												
DLE SLF								OTERRE LIMITED SAMPLE TY	PE			BACKFILL LEGEND]
LOG OF BOREHOLE		G	EOT	'ER	RE	•	Bram Ph Fi	one: (905) 455-5666 ax: (905) 455-5639	Wall ⊺ jar Sa Core (ample	r Concrete Bentonite Grout	

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.456 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: Nevember 04 04

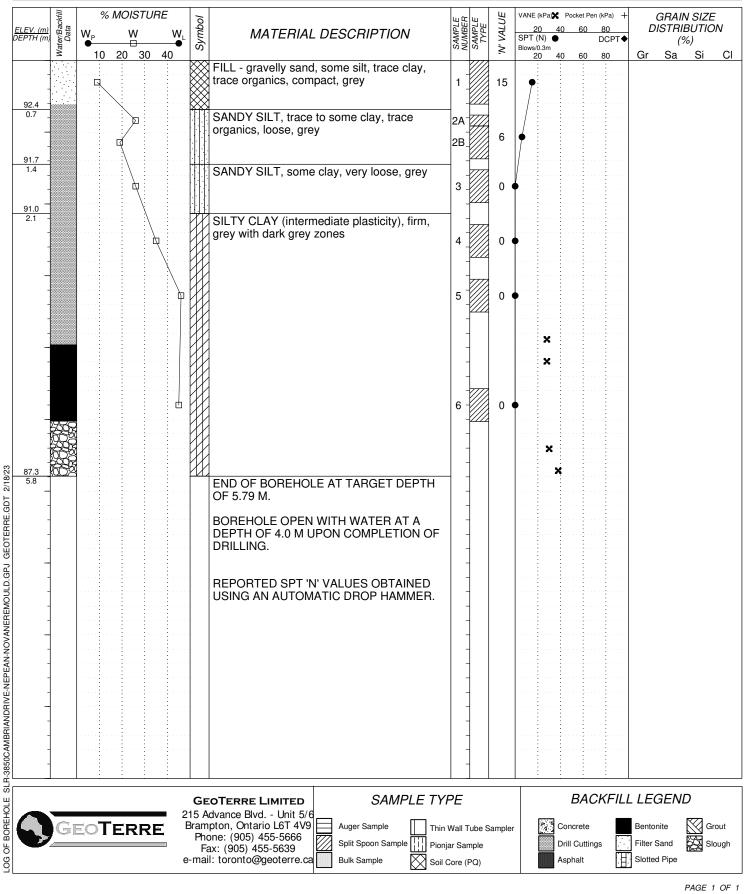
DATE: November 24 2022

[skfill		% MC	DISTL	JRE	7	5			щα	Е	JЕ	VANE (kPa) Y Pocket Pen (kPa) +	GRAIN SIZ	Έ
	<u>ELEV. (m)</u> DEPTH (m)	Water/Backfill Data	W _P		W	W	Sumbol	Ĩ	MATERIAL DESCRIPTION		MPL	SAMPLE TYPE	N' VALUE	20 40 60 80 SPT (N) ● DCPT◆	DISTRIBUTI	ON
ľ	5E1 111 (III)	Vate. L					1	5			SA	SA	N. 1	Blows/0.3m	<i>(%)</i> Gr Sa Si	
ł		2		0 20	30	<u>40</u>	\mathbf{T}	1	SILTY CLAY (low plasticity), some sand to	_			-	20 40 60 80	<u>Gr Sa Si</u>	CI
	-			:: : :[····:		1	sandy, trace organics, soft, grey		1 -		2			
	-			1	Ţ	÷	ľ	1					-			
ł	91.8 ⁻ 0.7					÷	Ĥ	╢	SILTY CLAY (low plasticity), some sand to		-					
				-		÷	K	7	sandy, firm, grey							
	_			:	ф÷		R	1			2		4	•		
	-						ľ	1			-	ĮЩ				
	-				. <u>/</u> :		ľ	7			_ م					
	90.6 _ 1.8				ų,			1			3A_	<u> </u>				
	1.0					9		1	SILTY CLAY (intermediate plasticity), soft t firm, grey with dark grey zones	5	3B-		0			
	-				···· :			1	nini, grey with dark grey zones		-					
	-						ľ	7			-		_			
	-				÷		R	Й			4 -		0			
	-						ľ	1			-	14				
	_			:	÷	÷\	K	7								
							Ъľ	1			5_		0			
	_						IK	N			_					
	-						IK	1			-					
	-						H	1			-			×		
	-						K	7			-					
	-						R	Й			-			X		
	-						ł	1			-					
	-						ł	1			6		0			
	-			::-:-: :::	····:			1			-					
	-		2	:	:	÷	ľ	N			-			· · · · · · · · · · · · · · · · · · ·		
	-			:	:	:	X	1			-			×		
3/23	_		2			÷	I	1								
2/18	86.5 5.9 -	1002	5				, K	4			- 1			X		
101	0.0								END OF BOREHOLE AT TARGET DEPTH OF 5.94 M.		-					
Ë	-										-					
띮	-								BOREHOLE OPEN WITH WATER AT A	_	-					
ÖEO	-								DEPTH OF 3.8 M UPON COMPLETION O DRILLING.	F	-					
R	-					÷			DRILLING.		-					
D.D	-			:	÷	÷					-					
	-			: :		÷			REPORTED SPT 'N' VALUES OBTAINED		-					
MEN	-			:	:	:			USING AN AUTOMATIC DROP HAMMER		-	1				
ANE	-				:]				
Š	_															
A-N-P	-					.					_					
ШШ	-										_					
ň	-										-					
2 R C	-										-					
ANC	-										-					
MBR	-										-					
NCA	-										-					
385(-					÷					-					
SLP.							_									
LOG OF BOREHOLE SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREMOULD.GPJ GEOTERRE.GDT 2/18/23									DTERRE LIMITED SAMPLE 7	YF	ΡE			BACKFILL	LEGEND	
EHC		\sim							Ivance Blvd Unit 5/6							
BOR		G	EO	TE	RR	E	ьrа Р	nn¢ hoi					ample			Grout
Ъ								Fax	x: (905) 455-5639		ar San			Drill Cuttings		Slough
g							e-m	ail	: toronto@geoterre.ca Bulk Sample 🛛 🗧	oil C	ore (F	PQ)		Asphalt	Slotted Pipe	
														·	PAGE	

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 93.015 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

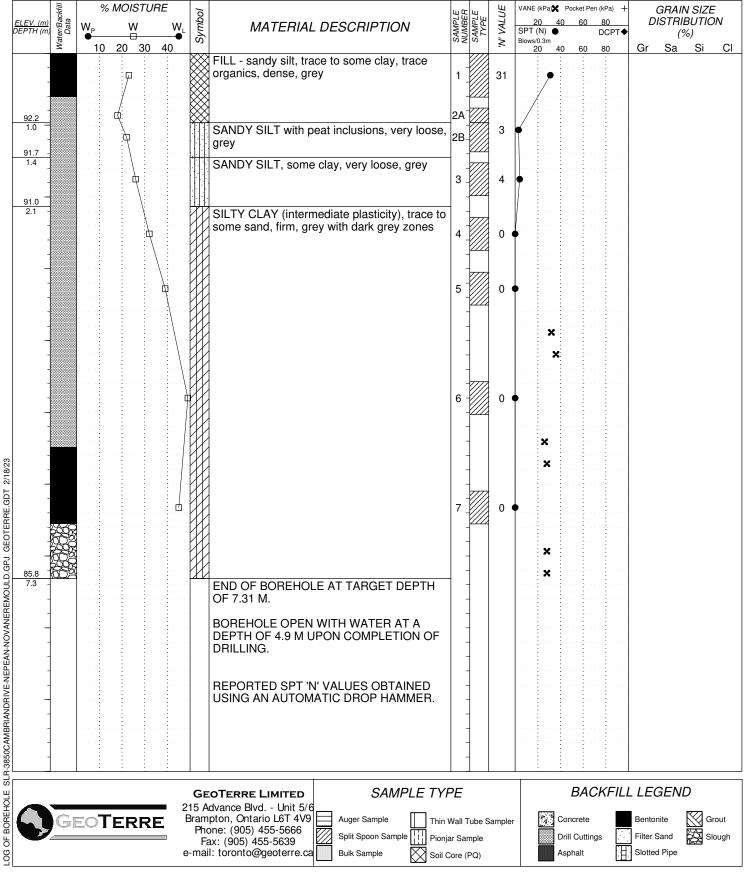
DATE: November 24 2022


Water/Backfill Data % MOISTURE 'N' VALUE VANE (kPa) Pocket Pen (kPa) GRAIN SIZE Symbol DISTRIBUTION <u>ELEV. (m)</u> DEPTH (m) 20 40 60 80 W w W, MATERIAL DESCRIPTION SPT (N) DCPT (%) vs/0.3m 10 20 30 40 Gr Sa Si CI 80 40 60 20 FILL - sandy silt, trace to some clay, trace organics, loose, grey 9 1 8 92.3 PEAT, amorphous, firm, dark brown 52 2A 92.2 SANDY SILT, trace to some clay, very loose 0.8 5 2B to loose, grey 3 2 90.8 2.2 SILTY CLAY (intermediate plasticity), firm, grey with dark grey zones 4 0 5 0 X x 0 6 SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREMOULD.GPJ GEOTERRE.GDT 2/18/23 X 0 × × 85.5 7.5 END OF BOREHOLE AT TARGET DEPTH OF 7.47 M. BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. BACKFILL LEGEND SAMPLE TYPE **GEOTERRE LIMITED** BOREHOLE 215 Advance Blvd. - Unit 5/6 Brampton, Ontario L6T 4V9 Concrete Auger Sample P 6 Bentonite Grout TERRE Thin Wall Tube Sampler Phone: (905) 455-5666 Split Spoon Sample Drill Cuttings Filter Sand Slough Pioniar Sample Fax: (905) 455-5639 Ь Slotted Pipe Asphalt g e-mail: toronto@geoterre.ca Bulk Sample Soil Core (PQ)

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV .: 93.115 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm APPR. BY: IC

PREP. BY: VTM


DATE: November 25 2022

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 93.154 metres (Geodetic)

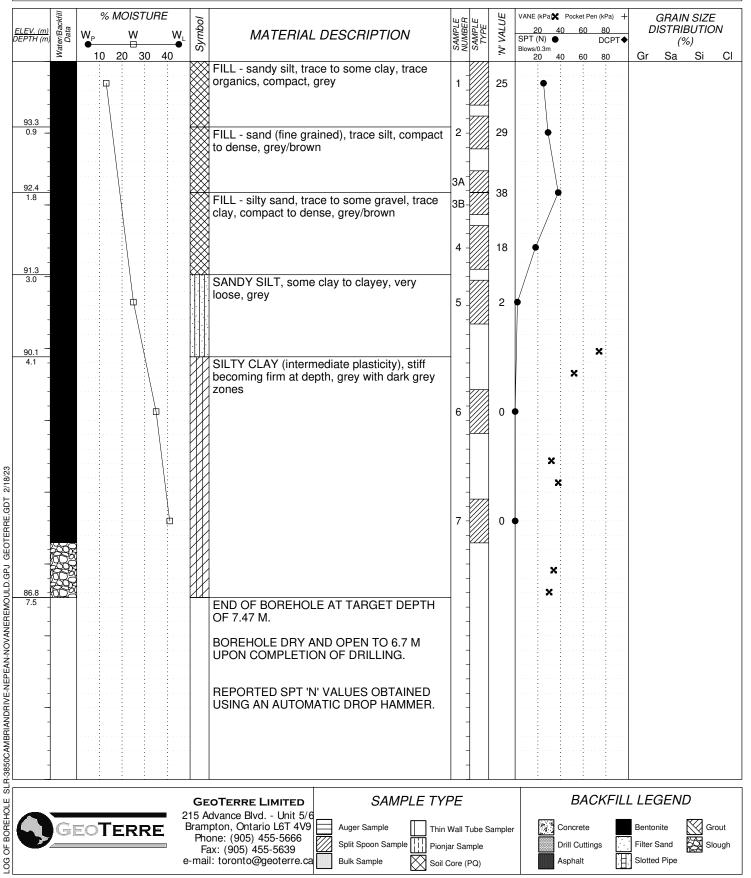
Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm

PREP. BY: VTM APPR. BY: IC DATE: November 25 2022

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 93.215 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm APPR. BY: IC

PREP. BY: VTM

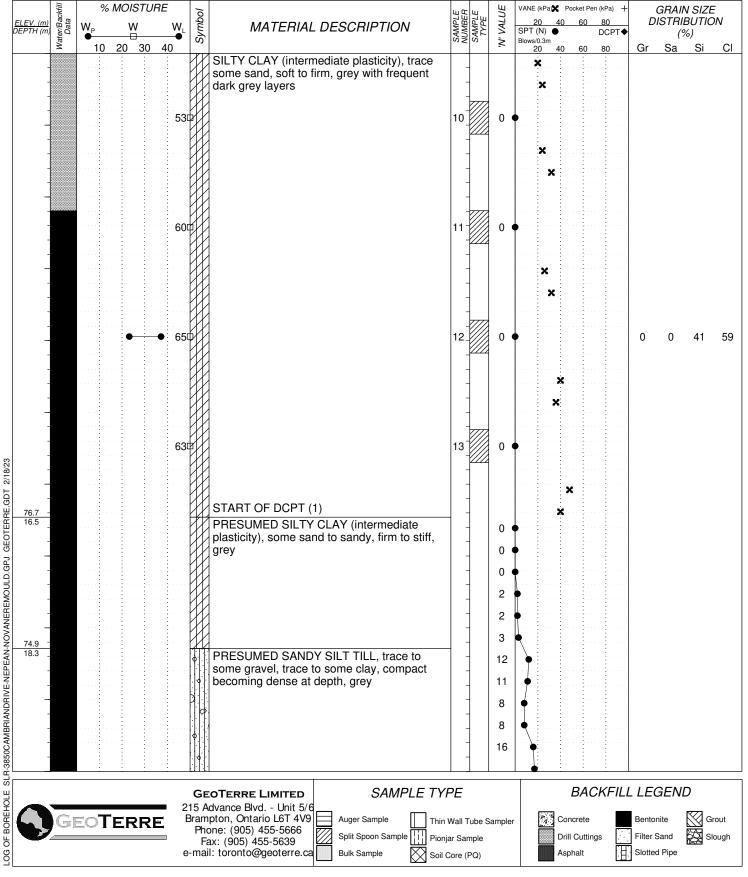

DATE: November 24 2022

	ckfill	% MOISTURE		Ы		ще	сщ.	Ы	VANE (kPa) X Pocket Pen (kPa) +	GRAIN SIZE
<u>ELEV. (m)</u> DEPTH (m)	Water/Backfill Data	W _P W	W,	Symbol	MATERIAL DESCRIPTION	MPL	SAMPLE TYPE	'N' VALUE	20 40 60 80 SPT (N) ● DCPT◆	DISTRIBUTION
	Vate L		•	Sy		SA	SA	N' /	Blows/0.3m	<i>(%)</i> Gr Sa Si Cl
		10 20 30 40	,	$\times\!\!\!\times$	FILL - sandy silt, some clay, some organics,				20 40 60 80	<u>Gr Sa Si Cl</u>
-		E C		\bigotimes	loose, grey	1		9	•	
-				\bigotimes				-		
92.5				\bigotimes	PEAT, amorphous, dark brown	-				
92.3			56			2A	¥#A			
0.9 -		R			SANDY SILT, some clay, loose to very loose, grey	2B		8	•	
-					9.09					
-							-777			
-						3	-///	2	↓	
							-///			
<u>91.0</u> 2.2					SILTY CLAY (intermediate plasticity), trace to	-	-			
-					some sand, soft to firm, grey with dark grey		-///	_		
-		T			zones	4		0		
-							-414			
		, in the second s				5		0		
-				K						
-							_			
							_		x	
			1				-			
-							-		×	
							-777			
-						6	-///	0	•	
-							-///	•		
-										
-	200						-		×	
	<u> 286</u>									
87.3 5.9 -	1002			XХ		-	_		×	
-					END OF BOREHOLE AT TARGET DEPTH OF 5.94 M.		_			
-							_			
-					BOREHOLE OPEN WITH WATER AT A		-			
					DEPTH OF 3.6 M UPON COMPLETION OF DRILLING.		-			
-					DRILLING.		-			
-							-			
-					REPORTED SPT 'N' VALUES OBTAINED		-			
-					USING AN AUTOMATIC DROP HAMMER.		-			
_							_			
-							_			
-							_			
-							-			
-							-			
-							-			
-							-			
-							-			
]			
					OTERRE LIMITED SAMPLE TYP	PE			BACKFILL	LEGEND
	<u> </u>				dvance Blvd Unit 5/6 pton, Ontario L6T 4V9 🔲 Auger Sample 🛛 🅅 Thin \	Mall	Tube S	omele	Concrete	Bentonite Grout
		EOTERRE	2	Pho	one: (905) 455-5666			ampiel	Drill Cuttings	Filter Sand
	/		~	Fa					000000	Slotted Pipe
			e	-mai	I: toronto@geoterre.ca Bulk Sample Soil C	Core	(PQ)		Asphalt	Siotted Pipe
										PAGE 1 OF 1

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 94.223 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: November 23 2022



PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 93.164 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: November 21 2022

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 93.164 metres (Geodetic)

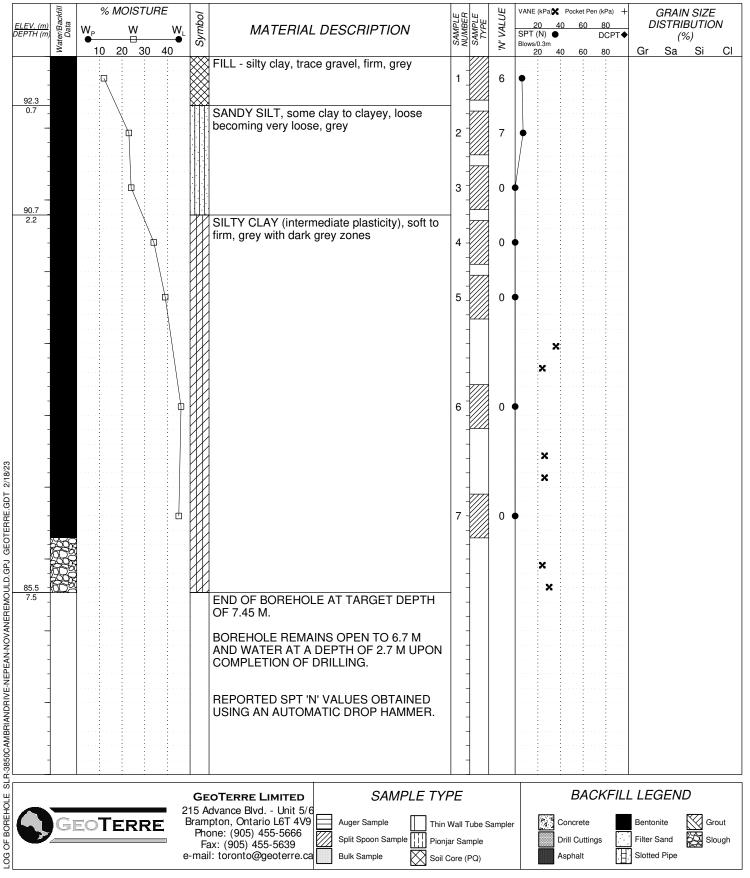
Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: November 21 2022

ſ		ckfill	%	MOISTU	RE	10			щщ	щ	UE	VANE (kPa)				GRAIN SIZ	E
4	<u>ELEV. (m)</u> DEPTH (m)	Water/Backfill Data	W _P	W	WL	Symbol	MATERIAL D	ESCRIPTION	AMPI	SAMPLE TYPE	'N' VALUE	20 4 SPT (N) ●	0 60	80 DCPT◆		STRIBUTI (%)	ON
		Wat	10	20 30	40	<i>ω</i> ,			ωĘ	Ś		Blows/0.3m 20 4	0 60	80	Gr	<u>Sa Si</u>	CI
	-					ø	PRESUMED SANDY S some gravel, trace to s	SILT TILL, trace to	-	-	17 20						
	-			- i - i -			becoming dense at der	oth, grey	-	-							
	-								-	1	86						
	_					þ			_]	41		\leq	/			
	71.8 -					\$			-	-	>99			121			
t	21.3 -					111	END OF DCPT (1) AT	21.33 M DUE TO	-	1							
	-						REFUSAL.			1							
	_						BOREHOLE REMAIN	OPEN AND AND	-	-							
	-						FULL OF DRILLING W UPON COMPLETION		-								
	_			: :													
	-						DCPT - Dynamic Cone	Penetration Test	-								
	_								-	-							
	-								-								
]																
	-				:				-	-				:			
	-								-	1							
	_								_								
	-								-	-							
	-								-	1							
	-								-								
	-								-	-							
123	_								-								
2/18	_								-	-							
GDT	-								-	-							
ERRE	-			· · · · · · · · · · · · · · · · · · ·						1							
EOT	-								-	-							
Ъ.	-								-	1							
JLD.O										1							
NOM	-								-	-							
NER	-								-	1							
NOV	_]							
EAN-I	-								-	-							
-NEP	-				· · · :				-	1							
RIVE	_								-]							
IAND	-								-	-							
AMBR	_		:		:				-	1				÷			
-3850C/	-			· · ·					-								
LOG OF BOREHOLE SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREMOULD.GPJ GEOTERRE.GDT 2/18/23						GE	OTERRE LIMITED	SAMPLE TYP	ΡE				BAC	CKFILI	LLEC	GEND	
REHC		<u>C</u> r		ERRI			dvance Blvd Unit 5/6 pton, Ontario L6T 4V9 🗮	Auger Sample	Nall T	Fuhe 9	Sampler	2 C	Concrete		Benton	ite 🕅 (Grout
JF BO						Pho	one: (905) 455-5666 ax: (905) 455-5639	Split Spoon Sample			ampion		Drill Cuttin	igs	Filter S		
0 0 C					e	mai	l: toronto@geoterre.ca	Bulk Sample Soil C				A	Asphalt	II	Slotted		
- [

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.547 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC


DATE: November 24 2022

$\begin{array}{c c} \hline DEPTH(m) \\ \hline B \\ \hline $			ckfill	% MOISTURE	10		щщ	ц.	UE	VANE (kPa) Pocket Pen (kPa) + GRAIN SIZE
02 02 02 04 0 03 02 02 0 0 03 0 0 0 0 03 0 0 0 0 03 0 0 0 0 03 0 0 0 0 03 0 0 0 0 04 0 0 0 0 05 0 0 0 0 05 0 0 0 0 05 0 0 0 0 05 0 0 0 0 05 0 0 0 0 05 0 0 0 0 05 0 0 0 0 0 05 0 0 0 0 0 05 0 0 0 0 0 05 0 0 0 0 0 05 0 0		<u>ELEV. (m)</u> DEPTH (m)	er/Ba Data	W _P W W	/up	MATERIAL DESCRIPTION	AMPL	AMPL	VAL	
02 02 0 02 0 FELT, amorphous, dark brown 1A 10 FELT, sime clay to clayey, loose 6 03 0 5 03 0 6 03 0 0 03 0 0 03 0 0 03 0 0 03 0 0 03 0 0 03 0 0 03 0 0 04 0 0 05 0 0 05 0 0 05 0 0 06 0 0 07 0 0 08 0 0 09 0 0 00 0 0 00 0 0 00 0 0 01 0 0 02 0 0 03 0 0 04 0 <th></th> <th></th> <th>Wat</th> <th>10 20 30 40</th> <th>_ S</th> <th></th> <th>ŚŽ</th> <th>S.</th> <th>Ņ</th> <th>Blows/0.3m</th>			Wat	10 20 30 40	_ S		ŚŽ	S.	Ņ	Blows/0.3m
910 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110 910 110 110 110 110		92.3 _			<u></u>		1A_			
903 2 6 903 2 6 2 6 4 903 0 4 2 0 4 0 0 5 <th></th> <th>0.2</th> <th></th> <th></th> <th></th> <th>FILL - silty clay (low plasticity), some sand,</th> <th>1B-</th> <th></th> <th>6</th> <th>· · · · · · · · · · · · · · · · · · ·</th>		0.2				FILL - silty clay (low plasticity), some sand,	1B-		6	· · · · · · · · · · · · · · · · · · ·
000 0 201 0 201 0 21 0 21 0 21 0 22 0 3 0 3 0 3 0 4 0 5 0 5 0 6 0 6 0 6 0 7 0 8 0 9 0 10 1 11 1 12 1 13 0 14 0 15 0 16 1 17 1 18 1 19 1 19 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 16 1		91.9 -								
90.3 2.3 9		0.7 _	·			SANDY SILT, some clay to clayey, loose	-			
903 23 0 0 23 0 0 0 10 10 10 10 11 10 10 10 12 10 10 10 15 0 10 10 16 10 10 10 17 10 10 10 18 10 10 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		-		ран (1995) Генералия Генералона Генералона Генералона Генералона Генералона Генералон			2		6	•
933 23 243 SILTY CLAY (intermediate plasticity), soft to firm, grey with dark grey zones 4 5 0 5 0 5 0 5 0 5 0 5 0 6 0 5 0 5 0 5 0 6 0 6 0 7.9 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. REPORTED SPT NV VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. MONITORING WELL [60 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE DATE Depth(m) NOV 2822 0.535 0.535 92.012 De 622 0.274 92.273 REPORTED SPT NV VALUES OBTAINED		-					-	44		
933 23 243 SILTY CLAY (intermediate plasticity), soft to firm, grey with dark grey zones 4 5 0 5 0 5 0 5 0 5 0 5 0 6 0 5 0 5 0 5 0 6 0 6 0 7.9 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. REPORTED SPT NV VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. MONITORING WELL [60 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE DATE Depth(m) NOV 2822 0.535 0.535 92.012 De 622 0.274 92.273 REPORTED SPT NV VALUES OBTAINED		-	H				-			[·····
23 The second secon		-		d d			3 -		0	•
23 The second secon		-					-			
886 0 5 0 5 0 6 0 6 0 6 0 6 0 7 0 8 0 6 0 7 0 8 0 6 0 7 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 <td< th=""><th></th><th>2.3</th><th>Ē</th><th></th><th></th><th>SILTY CLAY (intermediate plasticity), soft to</th><th></th><th></th><th></th><th></th></td<>		2.3	Ē			SILTY CLAY (intermediate plasticity), soft to				
866 6 0 896 6 0 59 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. 8 BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. 4 REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. 4 MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. 4 PIEZOMETER WATER LEVEL READINGS DATE DATE Depth(m) PIEZOMETER WATER LEVEL READINGS DATE DATE DATE PIEZOMETER WATER LEVEL READINGS DATE 92.012 1 REPORTED SPT 'N' VALUES OBTAINED 1 1 REPORTED SPT 'N' VALUES OBTAINED 1 1		-	: E	ļ		firm, grey with dark grey zones	4 -		0	•
866 6 0 896 6 0 59 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. 8 BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. 4 REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. 4 MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. 4 PIEZOMETER WATER LEVEL READINGS DATE DATE Depth(m) PIEZOMETER WATER LEVEL READINGS DATE DATE DATE PIEZOMETER WATER LEVEL READINGS DATE 92.012 1 REPORTED SPT 'N' VALUES OBTAINED 1 1 REPORTED SPT 'N' VALUES OBTAINED 1 1		-	E				-			·····
866 6 0 896 6 0 59 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. 8 BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. 4 REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. 4 MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. 4 PIEZOMETER WATER LEVEL READINGS DATE DATE Depth(m) PIEZOMETER WATER LEVEL READINGS DATE DATE DATE PIEZOMETER WATER LEVEL READINGS DATE 92.012 1 REPORTED SPT 'N' VALUES OBTAINED 1 1 REPORTED SPT 'N' VALUES OBTAINED 1 1		-	E.				-			
B B				Ь IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			5		0	•····
B B		-	· E				-			·····
B B		-	Ē				-			
Beed So		-	·				-			X
Beed So			E							
Beed So		-	.⊟:				-			
86.6 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. END OF BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 DATE Depth(m) Elevation(m) Nov 28'22 Dec 6'22 0.274 PIEZOMETED SPT 'N' VALUES OBTAINED		-					6		0	• • • • • • • • • • • • • • • • • • • •
86.6 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. END OF BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 DATE Depth(m) Elevation(m) Nov 28'22 Dec 6'22 0.274 PIEZOMETED SPT 'N' VALUES OBTAINED		-					-			
86.6 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. END OF BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 DATE Depth(m) Elevation(m) Nov 28'22 Dec 6'22 0.274 PIEZOMETED SPT 'N' VALUES OBTAINED										
5.9 END OF BOREHOLE AT TARGET DEPTH OF 5.94 M. - BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. - REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. - MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. - PIEZOMETER WATER LEVEL READINGS DATE PIEZOMETER WATER LEVEL READINGS DATE - PIEZOMETER WATER LEVEL READINGS - - Nov 28'22 0.535 92.012 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED -	,	-					-			····· X ·······························
OF 5.94 M. BOREHOLE OPEN AND DRY UPON COMPLETION OF DRILLING. - REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. - MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. - PIEZOMETER WATER LEVEL READINGS DATE - DATE Depth(m) Elevation(m) Nov 28'22 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED -	5	86.6	685				-			×
COMPLETION OF DRILLING. REPORTED SPT 'N' VALUES OBTAINED USING AN AUTOMATIC DROP HAMMER. MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 0.535 92.012 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED	2	5.9 -					-			
USING AN AUTOMATIC DROP HAMMER. MONITORING WELL (50 mm diameter) INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 0.535 92.012 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED		-					-			
INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 0.535 92.012 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED	, , ,, ,,	-					-	-		·····
INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION OF DRILLING. PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 0.535 92.012 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED						MONITORING WELL (50 mm diameter)				·····
OF DRILLING.		-				INSTALLED TO A TIP DEPTH OF 4.6 M (3.0	-			
PIEZOMETER WATER LEVEL READINGS DATE Depth(m) Elevation(m) Nov 28'22 0.535 92.012 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED		-					-			
DATE Depth(m) Elevation(m) Nov 28'22 0.535 92.012 Dec 6'22 0.274 92.273 REPORTED SPT 'N' VALUES OBTAINED		-								
- Nov 28'22 0.535 92.012 - - Dec 6'22 0.274 92.273 - - REPORTED SPT 'N' VALUES OBTAINED - -]	-					-			
REPORTED SPT 'N' VALUES OBTAINED		-				Nov 28'22 0.535 92.012	-			·····
		-				Dec 6'22 0.274 92.273	-			
	5	-					-			·····
		-					-			
GEOTERRE LIMITED SAMPLE TYPE BACKFILL LEGEND							PE	. 1		BACKFILL LEGEND
Concrete Brampton, Ontario L6T 4V9 Auger Sample Thin Wall Tube Sampler Concrete Bentonite 🕅 Grout	1		Gi		Bram	npton, Ontario L6T 4V9 Auger Sample 🛛 🕅 Thin	Wall T	Tube S	ample	r Concrete Bentonite 🔀 Grout
Filter Sand	i 5						ar Sar	nple		
e-mail: toronto@geoterre.ca Bulk Sample Soil Core (PQ)	5				e-ma	il: toronto@geoterre.ca Bulk Sample 🕅 Soil C	Core (PQ)		Asphalt Slotted Pipe

PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 92.949 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: November 23 2022

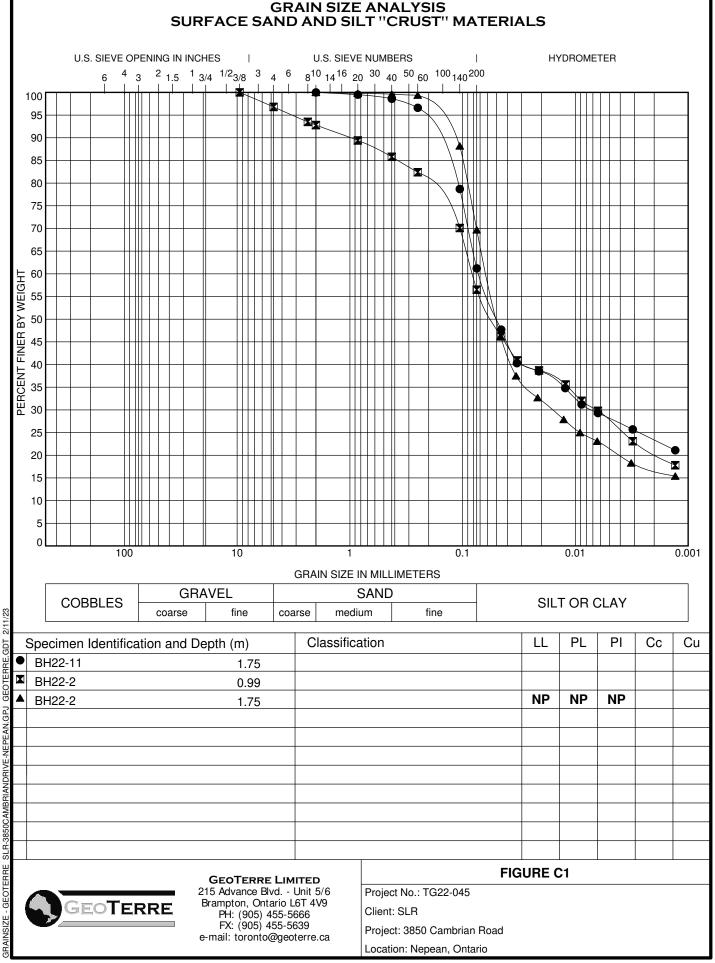
PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 94.394 metres (Geodetic)

Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC

DATE: November 23 2022

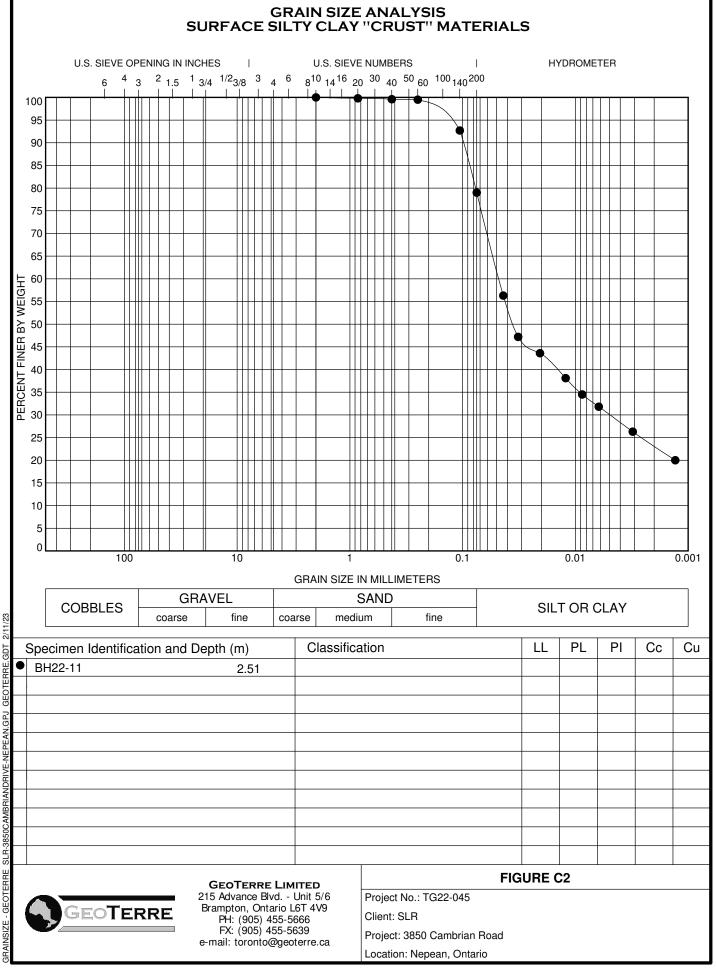
ELEV (m)	ter/Backfill Data	% MOISTUI		lod		oLE BER oLE	LUE	VANE (kPa) Pocket Pen (kPa) + 20 40 60 80	GRAIN SIZE DISTRIBUTION
<u>ELEV. (m)</u> DEPTH (m)	Water/B Dat	W _P W 10 20 30	40 WL	Symbol	MATERIAL DESCRIPTION	SAMPLE NUMBER SAMPLE TYPE	'N' VALUE	SPT (N) ● DCPT● Blows/0.3m	(%)
94.2			40	<u>\\ 1/</u>	TOPSOIL (150mm), sandy, brown	1A ///		<u>20 40 60 80</u>	Gr Sa Si Cl
0.2				\bigotimes	FILL - silty clay (low plasticity), trace	1B-	7	•	
-		·····		\bigotimes	organics, firm, grey				
-			· · · · · · · · ·	\bigotimes					
		Þ		\bigotimes		2	7	•	
<u>92.9</u> - 1.4				\bigotimes					
1.4			:	\bigotimes	FILL - silty sand, trace gravel, compact, grey				
-				\bigotimes		3	11	•	
92.2				\bigotimes					
2.2	T				SANDY SILT, trace to some clay, compact,	4A_			
-					grey	4B	12	•	
91.5 ⁻ 2.9 _					SILTY CLAY (low plasticity), stiff, grey with				
-					dark grey zones				
-		4				5_	2	•	
90.7 - 3.7				H	SILTY CLAY (low to intermediate plasticity),				
_	Ē		\ :		firm, grey with dark grey zones			×	
-						-		v	
-	E								
-			÷/			6	0	.	
-			1					T i i i i i i i i i i i i i i i i i i i	
							ĺ		
								×	
- 10								×	
		d	6 :			7	0	• • • • • • • • • • • • • • • • • • • •	
-								X	
86.9 -	602			12	END OF BOREHOLE AT TARGET DEPTH			×	
					OF 7.45 M.				
-					BOREHOLE OPEN AND DRY UPON				
					COMPLETION OF DRILLING.				
					REPORTED SPT 'N' VALUES OBTAINED			[·····	
					USING AN AUTOMATIC DROP HAMMER.				
					MONITORING WELL (50 mm diameter)				
					INSTALLED TO A TIP DEPTH OF 4.6 M (3.0 M LONG SCREEN) UPON COMPLETION				
					OF DRILLING.				
			:		1				
					OTERRE LIMITED SAMPLE TY	PE		BACKFIL	L LEGEND
	Gi			Bram	dvance Blvd Unit 5/6 pton, Ontario L6T 4/9 Auger Sample Thin	Wall Tube S	Sample	r Concrete	Bentonite Grout
					ne: (905) 455-5666 ax: (905) 455-5639 Split Spoon Sample Pionj	ar Sample	-	Drill Cuttings	Filter Sand
3			e			Core (PQ)		Asphalt	Slotted Pipe

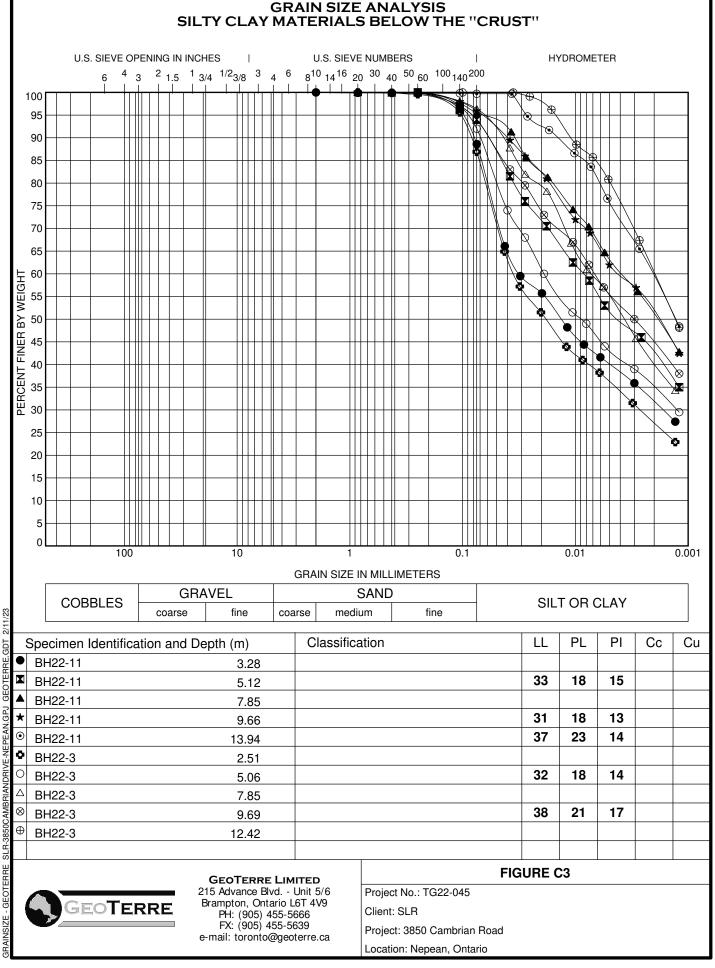
PROJECT No.: TG22-045 CLIENT: SLR PROJECT: 3850 Cambrian Road LOCATION: Nepean, Ontario SURFACE ELEV.: 94.394 metres (Geodetic)


Drilling Data METHOD: Hollow Stem Augers DIAMETER: 200 mm PREP. BY: VTM APPR. BY: IC DATE: November 23 2022

		ckfill	%	MOISTU	IRE	10				щ	н		UΕ	VANE (k	(Pa) X	Pocket F	Pen (kP	°a) +	(RAIN	SIZE	
<u>EI</u> DE	<u>.EV. (m)</u> PTH (m)	Water/Backfill Data	W _P	W	WL	Symbol	MA	TERIAL DES	SCRIPTION	AMPL	SAMPLE	TYPE	'N' VALUE	20 SPT (N	J) 🔴	60) CPT◆	DI	STRIBI (%)	JTIOI	N
		Wat	10	20 30	-	N.					ξú		, Ż	Blows/0. 20	.3m 40	60	80	b	Gr		Si	CI
	-						PIEZOMET DATE	ER WATER L Depth(m)	EVEL READINGS Elevation(m)		-											
	-						Nov 28'22	2.846	91.548		-											
	-						Dec 6'22	2.396	91.998		-											
	_																					
	-								UES OBTAINED		_											
	-						USING AN	AUTOMATIC	DROP HAMMER.		-											
	-		·····:	: :	:						-			:	÷	÷	÷					
	-														÷							
	-										-											
	-										-											
	-										-											
			:	: :	:]				÷	÷	÷					
	_										_											
	-										-											
	-										-											
	-										-											
					:]				:		į					
	-										-											
	-				· · · ÷ · · · ·						-					• • • • • • • •	÷					
	-										-											
	-																					
															÷							
8/23	-										-											
OULD.GPJ GEOTERRE.GDT 2/18/23	_										-											
B	-										-				÷							
ERR	-				÷]				:							
EOT	-										_											
20	_			·	·						-					÷	÷					
D.G	-										-											
	-			: : :	:						-				:	:	:					
REV]											
ANE	_										-											
NON-	-										-											
EAN	-		•••••	· : :	·						-				÷		:					
ЧЧ Ч	-										1											
RIVE N	_															÷						
ANDI	_										_											
ABRI	-			·	·						-					· · · :	÷					
OCAN	-				· · · :						-											
SLR-3850CAMBRIANDRIVE-NEPEAN-NOVANEREM	-																					
						C -			SAMPLE T	VDE						RA	CK	FIII	IFC	END		
LOG OF BOREHOLE					2	15 A	OTERRE LI dvance Blvd	- Unit 5/6		11 E				_							71	
SORE		G	EOT	ERR	E ^E	Bram	pton, Ontario one: (905) 455	L6T 4V9		nin Wall	Tube	e San	npler		C				Benton		Gro	
PF						Fa	ax: (905) 455-	·5639 🛛 🖾 🏻		onjar Sa	ample	Э				rill Cutti	ings		Filter S	_	Slo	ugh
LOG					e	-mai	I: toronto@ge	oterre.ca	Bulk Sample Sc	oil Core	(PQ)				As	sphalt			Slotted	Pipe		

APPENDIX C


GEOTERRE 2020 LABORATORY GRAIN SIZE DATA


GEOTERRE.GDT

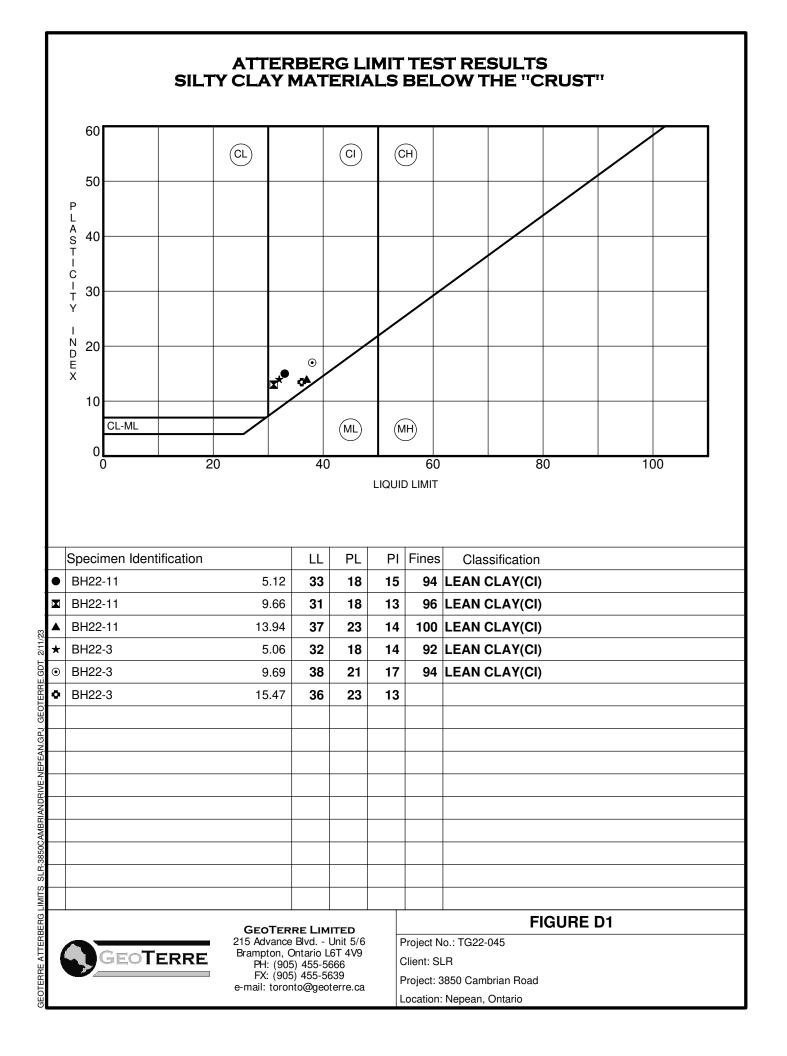
SLR-3850CAMBRIANDRIVE-NEPEAN.GPJ **GRAINSIZE - GEOTERRE**

GEOTERRE.GDT

SLR-3850CAMBRIANDRIVE-NEPEAN.GPJ **GRAINSIZE - GEOTERRE**

GEOTERRE.GDT SLR-3850CAMBRIANDRIVE-NEPEAN.GPJ

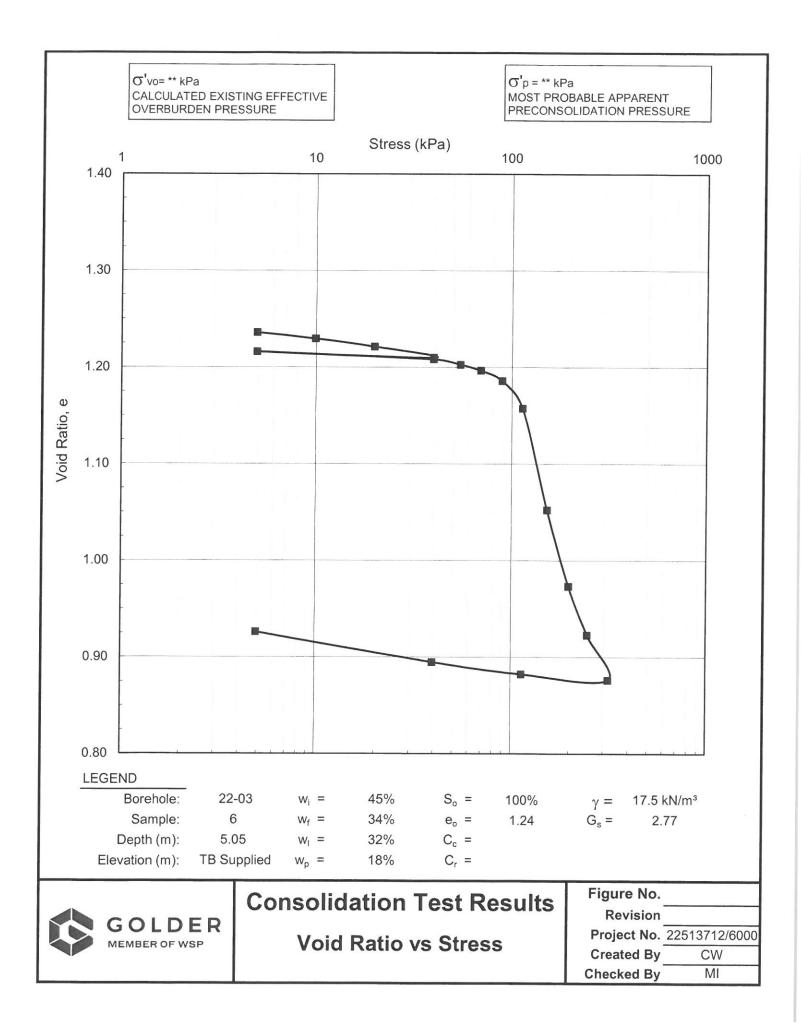
- GEOTERRE GRAINSIZE -

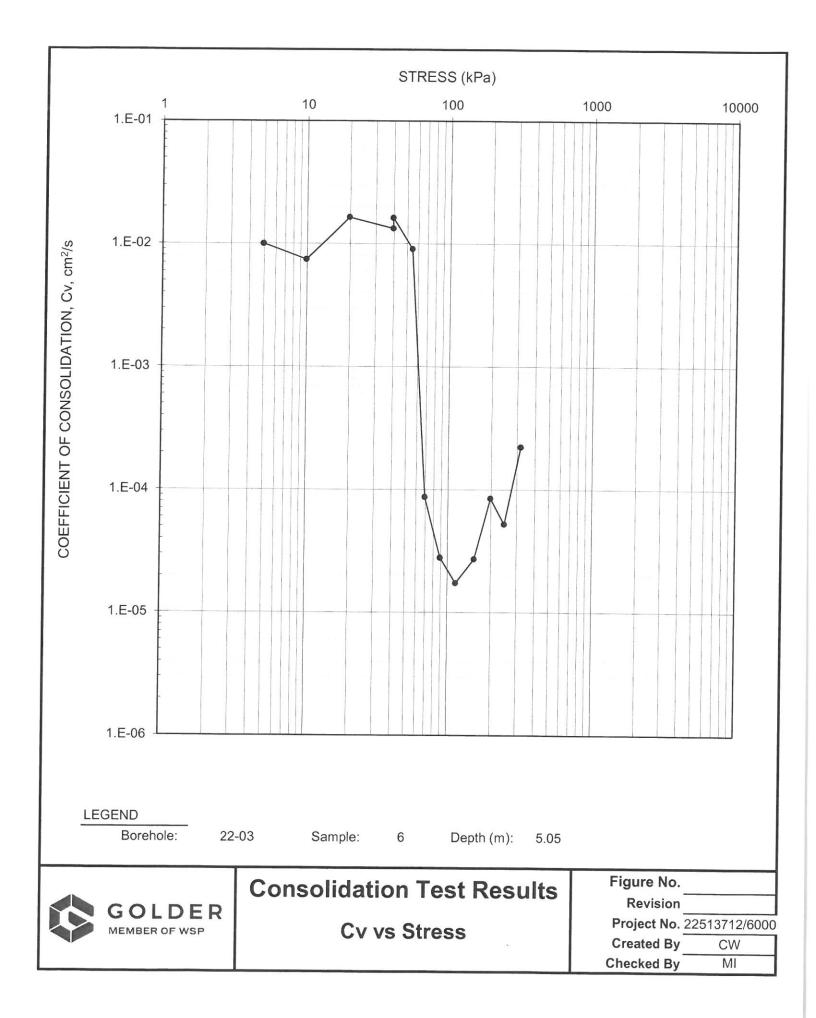

GRAIN SIZE ANALYSIS DEEP COHESIONLESS GLACIAL TILL

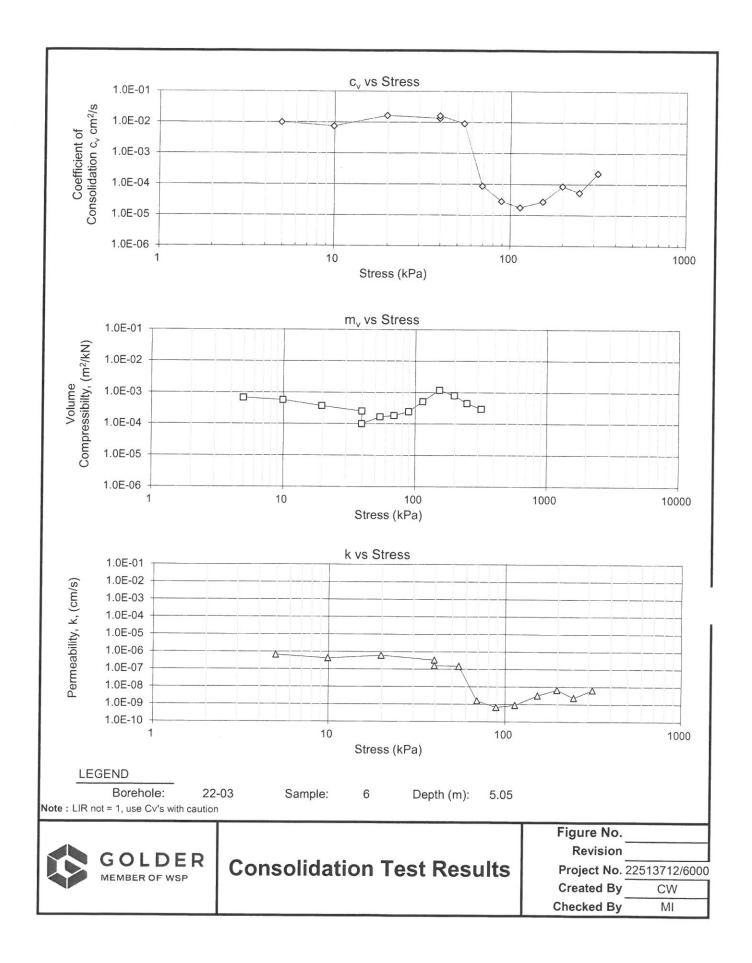
			U.	s. s	SIEV 6								IES 4 ¹	/2 ₃	 8/8	3	4	Ļ	6			S. S 14 ¹							0	100) 14	0 ²¹	 00					Н	YDF	1OF	ME	TE	R					
	100 95 - 90 - 85 -																																															
	80 - 75 - 70 - 65 -																																															
FINER BY WEIGHT	60 - 55 - 50 - 45 - 40 - 35 - 30 -																																															
PERCENT	35 30 25 20																																															
	15 - 10 - 5 - 0					10	0							1	0								1								0.	.1							0	.01							·	01
		(COE	3B	LE	S			С	oars		RA	VE		ne			СС		GR/		N SI			AN			ETE	ER								S	SIL	.т (ЭF	٦ (CL	_A	Y				
•	Spe B⊦ B⊦	122	-3	ld	ent	tifi	ca	tio	n	an	d	De	pth	1	n) 6.9 8.5	99				(Cla	ass	ific	at	ior	n											L	L		PL	-		Ρ	1	3	2	72)u .57 5.86
																			_																FI	GI	JR	E	C4									
			GI	EC		Ē	EF	RF	२ ।			21 E	GE I5 A Fam F mai	dva ipto H: X:	anc on, (90 (90	æl Or ()5) ()5)	Blv nta 45	d. rio 55- 55-	- L 56 56	Jnit 67 4 66 39	5/ 4V	9		C F	Clie Pro	ent: ojec	: SI :t: 3	lo.: LR 385(: Ne	0 C	Can	nbri	an		oa					<u> </u>									

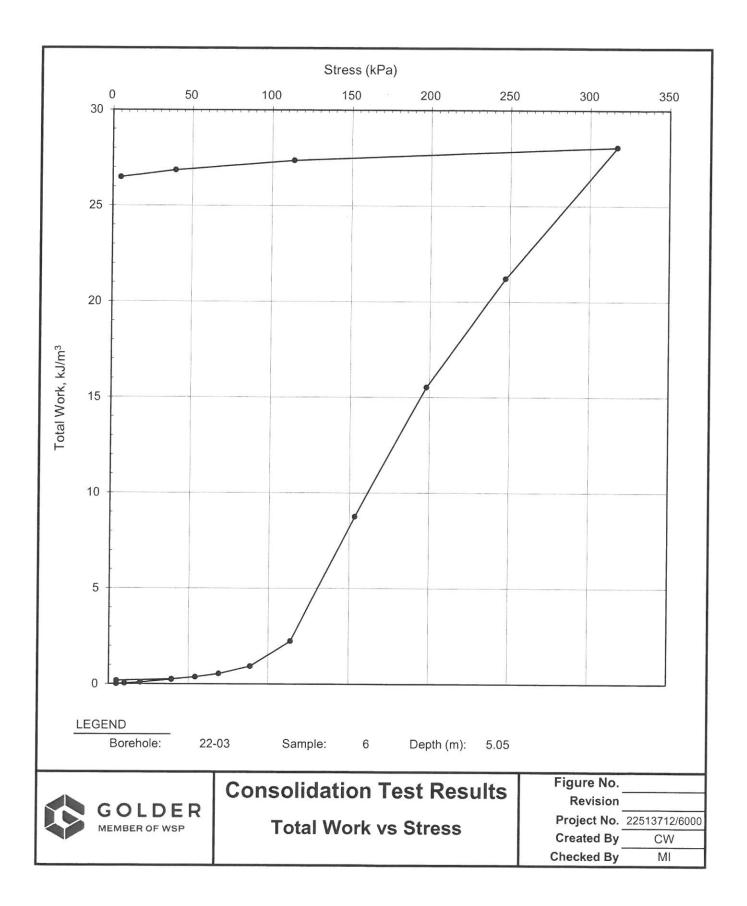
APPENDIX D

GEOTERRE 2020 SOIL PLASTICITY DATA




APPENDIX E


2022 ODOMETER CONSOLIDATION TEST DATA



BOREHOLE BH22-3 SAMPLE 6 DEPTH OF 5.05 M

WATER CONTENT DATA	WHOLE SAMPLE BEFORE TEST	WHOLE SAMPLE AFTER TEST	TOP TRIMMINGS	BOTTOM TRIMMINGS	SIDE TRIMMINGS	THEORETICAL
TARE NUMBER	3	3	168	175	461	
WEIGHT OF WET SOIL & TARE, g	198.07	262.66	47.77	48.36	49.81	198.07
WEIGHT OF DRY SOIL & TARE, g	161.97	235.25	39,11	40.00	41.70	NEW WESTWARDS
WEIGHT OF TARE, g	81.26	154.54	21.25	21.20	21.95	81.26
WEIGHT OF WATER, g	36.1	27.41	8.66	8.36	8.11	And the Market Party of
WEIGHT OF DRY SOIL, g	80.71	80.71	17.86	18.80	19.75	80.74
WATER CONTENT, %	44.73	33.96	48.5	44.5	41.1	44.7

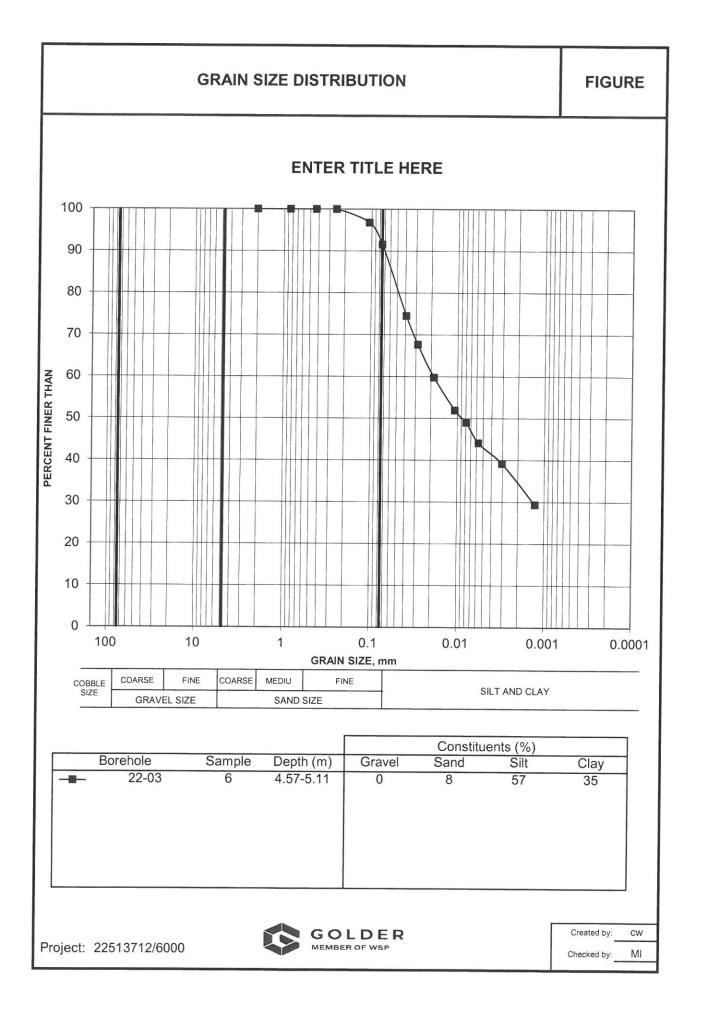
Dial Reading = 0.0001 inch = 0.00254 mm EQUIPEMEN

STEP	STRESS	TEST TYPE	INITIAL DIAL READING D _o	FINAL DIAL READING D ₁₀₀	EQUIPEMEN T DEFORMATI ON DHe (see note 1)	DEFORMATI ON ΔD (D ₁₀₀ -D _o ΔHe)	FINAL HEIGHT H (H0 - DD)	VOID RATIO e	AVERAGE SAMPLE HEIGHT	t ₉₀	COEFFICIENT OF CONSOLIDATI ON Cv	mv	PERMEABILI TY k	TOTAL WORK	AVERAG E STRESS
	kPa		10 ⁻⁴ in	10 ⁻⁴ in	10 ⁻⁴ in	mm	mm		mm	sec	cm ² /sec	m²/kN	cm/s	kJ/m ³	kPa
1	5	Consolidation	5546	5518	1.0	0.0686	20.541	1.2359	20.576	90	9.97E-03	6.71E-04	6.56E-07	0.01	2.5
2	10	Consolidation	5518	5490	5.0	0.0584	20.483	1.2295	20.512	120	7.43E-03	5.72E-04	4.17E-07	0.03	7.4
3	20	Consolidation	5490	5447	13.0	0.0762	20.407	1.2212	20.445	54	1.64E-02	3.74E-04	6.02E-07	0.08	14.9
4	40	Consolidation	5447	5390	16.0	0.1041	20.303	1.2099	20.355	66	1.33E-02	2.55E-04	3.32E-07	0.24	29.7
5	5	Rebound	5390	5436	-24.0	-0.0559	20.359	1.2159	20.331					0.17	22.3
6	40	Consolidation	5436	5383	25.0	0.0711	20.287	1.2082	20.323	54	1.62E-02	9.96E-05	1.58E-07	0.25	22.3
7	54	Consolidation	5383	5358	5.0	0.0508	20.237	1.2027	20.262	96	9.07E-03	1.66E-04	1.48E-07	0.37	47.0
8	69	Consolidation	5358	5328	8.0	0.0559	20.181	1.1966	20.209	9942	8.71E-05	1.83E-04	1.56E-09	0.54	61.9
9	89	Consolidation	5328	5282	7.0	0.0991	20.082	1.1858	20.131	30840	2.79E-05	2.43E-04	6.63E-10	0.93	79.2
10	114	Consolidation	5282	5171	8.0	0.2616	19.820	1.1573	19.951	48588	1.74E-05	5.13E-04	8.73E-10	2.25	101.4
11	153	Consolidation	5171	4776	15.0	0.9652	18.855	1.0523	19.337	29154	2.72E-05	1.18E-03	3.15E-09	8.76	133.6
12	198	Consolidation	4776	4486	4.0	0.7264	18.128	0.9732	18.492	8544	8.48E-05	7.91E-04	6.58E-09	15.53	175.7
13	247	Consolidation	4486	4298	6.0	0.4623	17.666	0.9229	17.897	12960	5.24E-05	4.53E-04	2.33E-09	21.20	222.7
14	317	Consolidation	4298	4115	14.0	0.4293	17.237	0.8762	17.452	2898	2.23E-04	2.99E-04	6.53E-09	28.06	282.2
15	114	Rebound	4115	4154	-17.0	-0.0559	17.293	0.8822	17.265				0.002.00	27.36	215.4
16	40	Rebound	4154	4215	-16.0	-0.1143	17.407	0.8947	17.350					26.86	76.7
17	5	Rebound	4215	4361	-33.0	-0.2870	17.694	0.9259	17.551					26.49	22.3
														20.45	

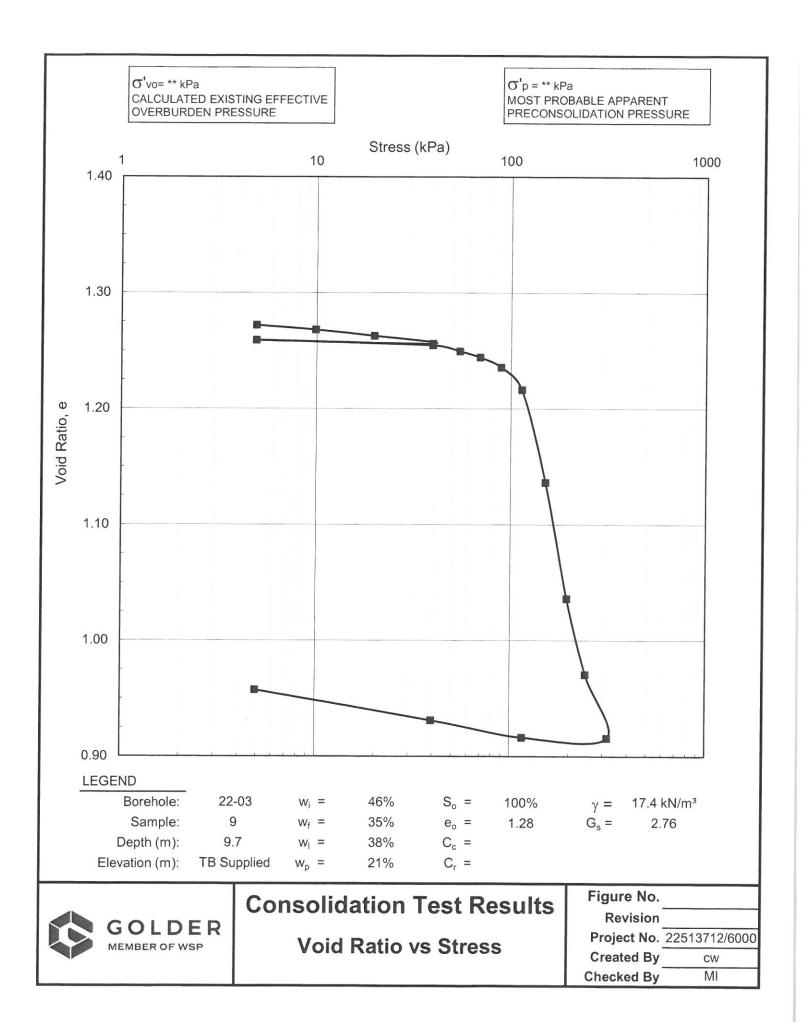
	ACTUAL	HEORETIC	AL.
INITIAL SAMPLE HEIGT Ho, mm	20.61	20.61	
SPECIFIC GRAVITY, Gs	2.767	2.767	
INITIAL SOLIDS HEIGHT, mm	9.19	9.19	
INITIAL VOID RATIO, eo	1.243	1.243	
INITIAL DEGREE OF SATURATION,	99.5	99.5	(100)
INITIAL WET DENSITY, kN/m ³	17.51		

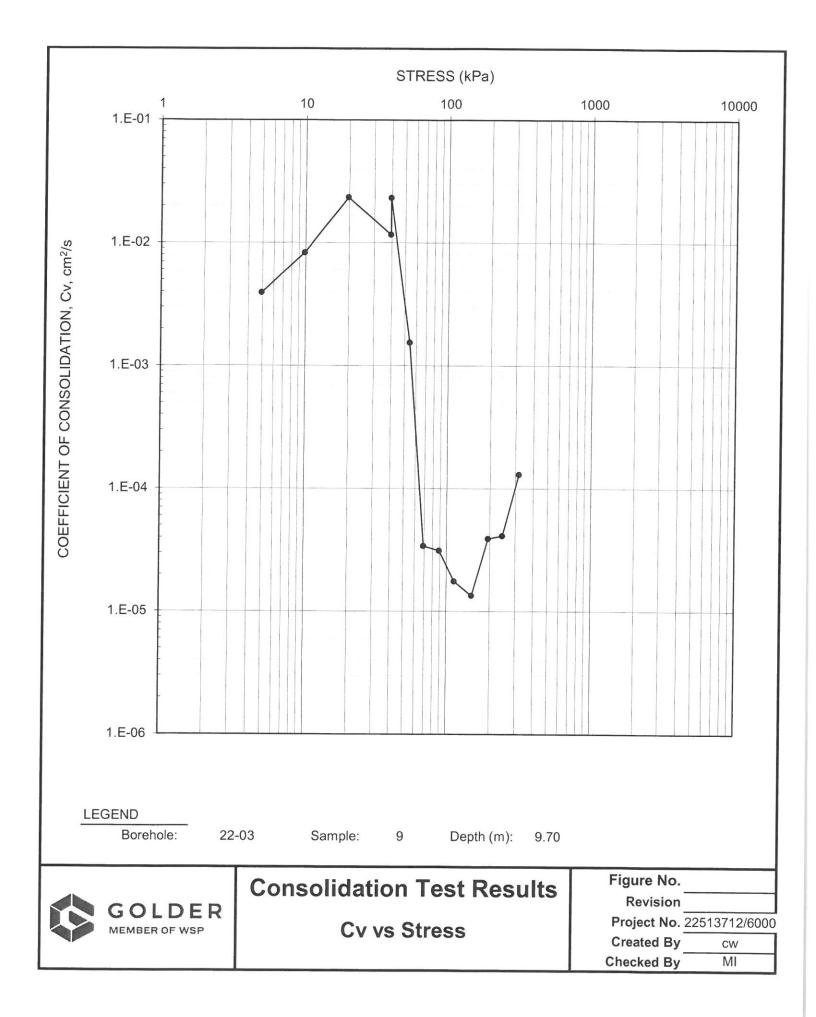
CONSOLIDATION TEST SUMMARY

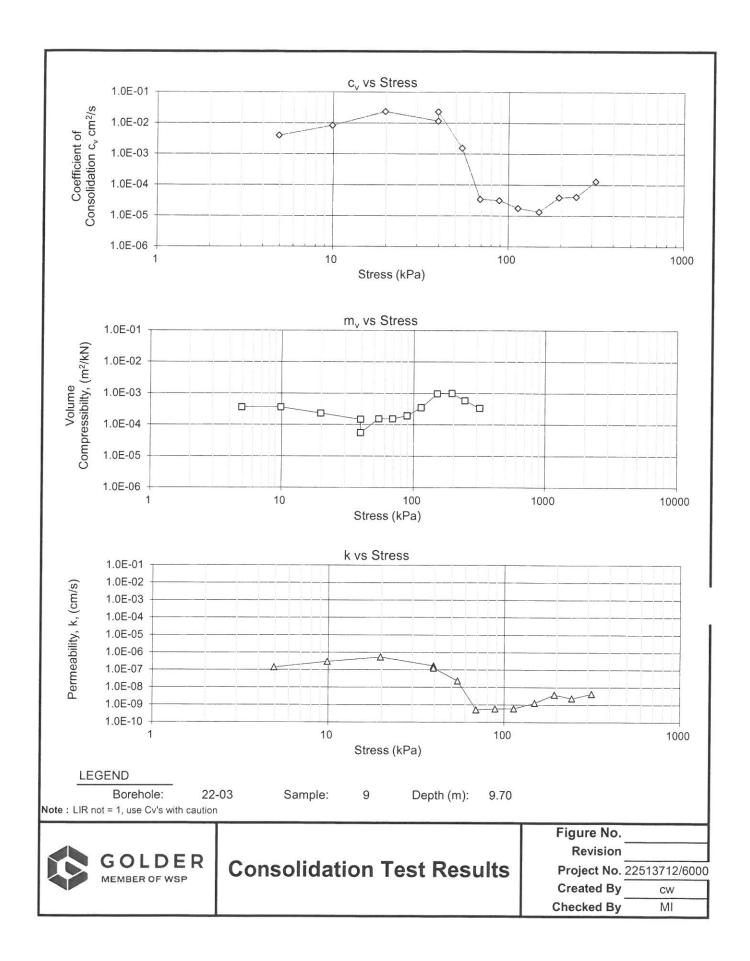
MACHINE NUMBER	3
RING NUMBER	3
RING HEIGHT, mm	20.61
RING DIAMETER, mm	63.58
RING AREA, cm ²	31.75

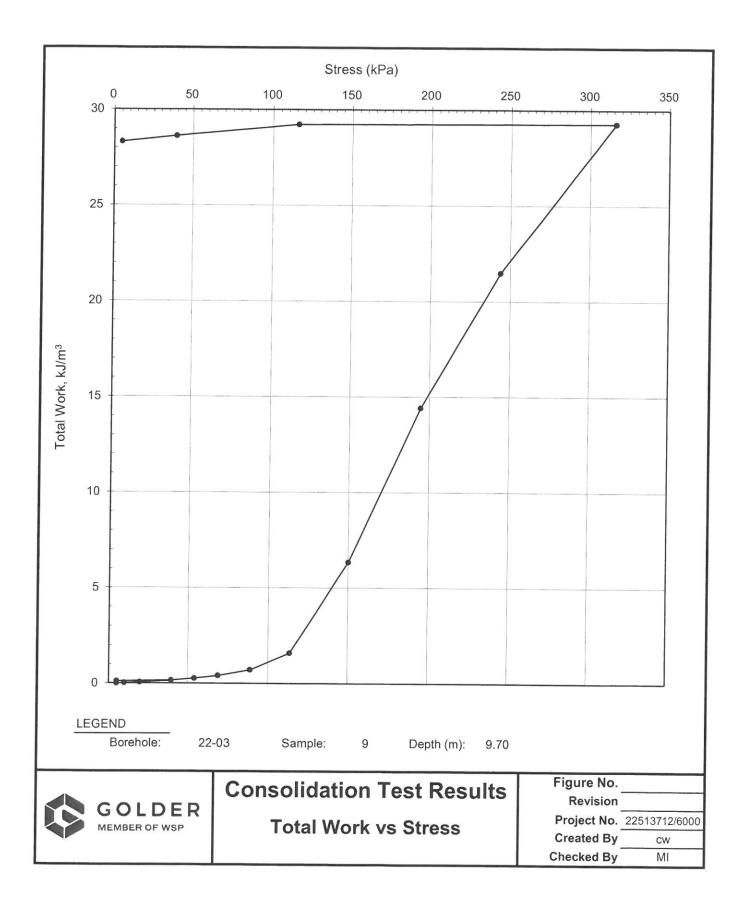

CALCULATED BY CW CHECKED BY MI DATE STARTED 23-NOV-22 DATE FINISHED 08-Dec-22 REMARKS

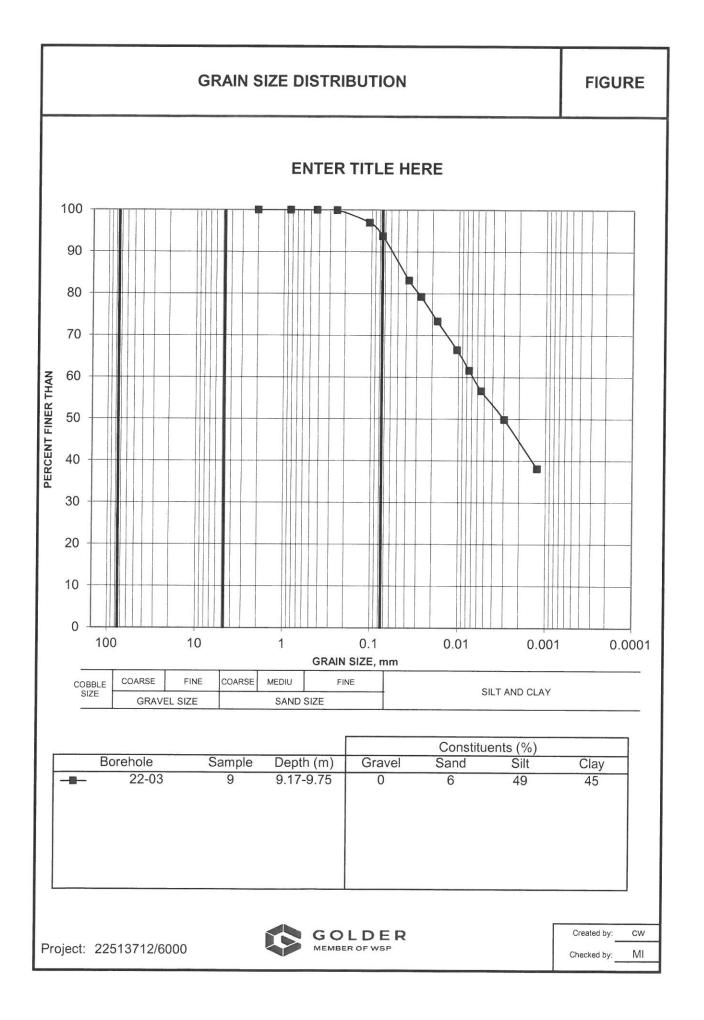
FINAL SAMPLE HEIGT H ₀ , mm =	17.694	
SPECIFIC GRAVITY, Gs =	2.767	
FINAL SOLIDS HEIGHT =	9.187	
FINAL VOID RATIO =	0.9259	
FINAL DEGREE OF SATURATION	101.5	
COMPUTED EXISITNG EFFECTIVE OVERBURDEN PRESSURE, o've kPa		
MOST PROBABLE APPARENT PRECONSOLIDATION PRESSURE, o', kPa		100000

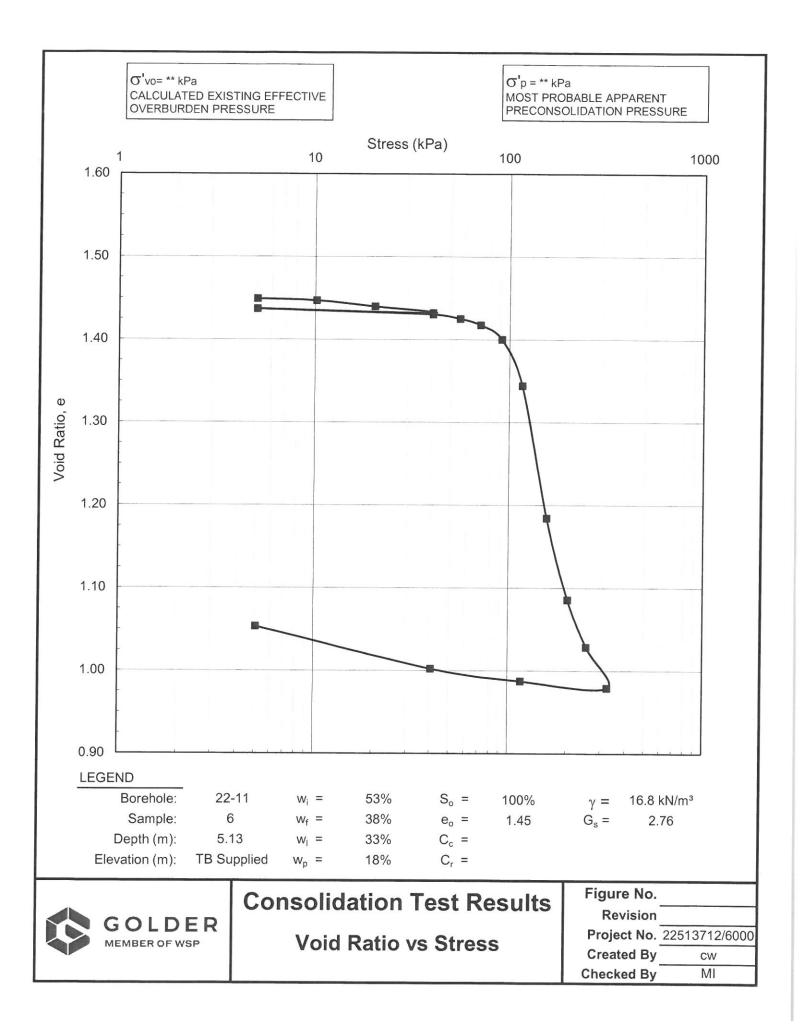

PROJECT NUMBER BOREHOLE NUMBER SAMPLE NUMBER SAMPLE DEPTH (m)

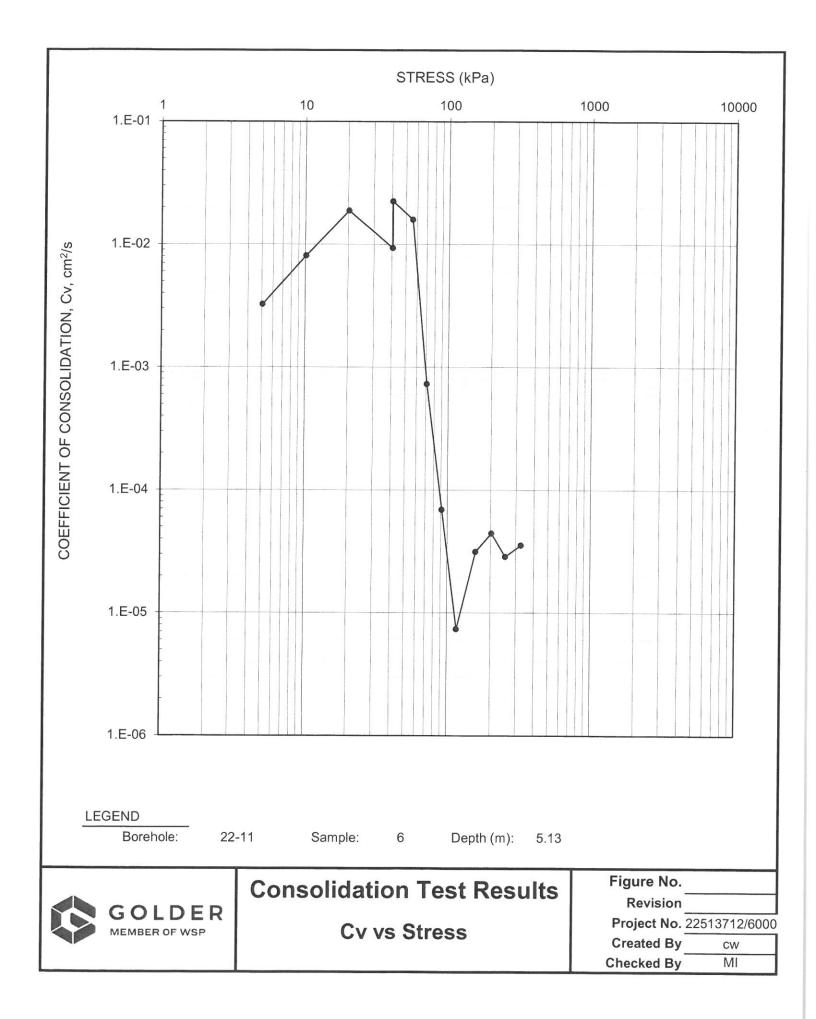

22513712/6000 22-03 6 5.05

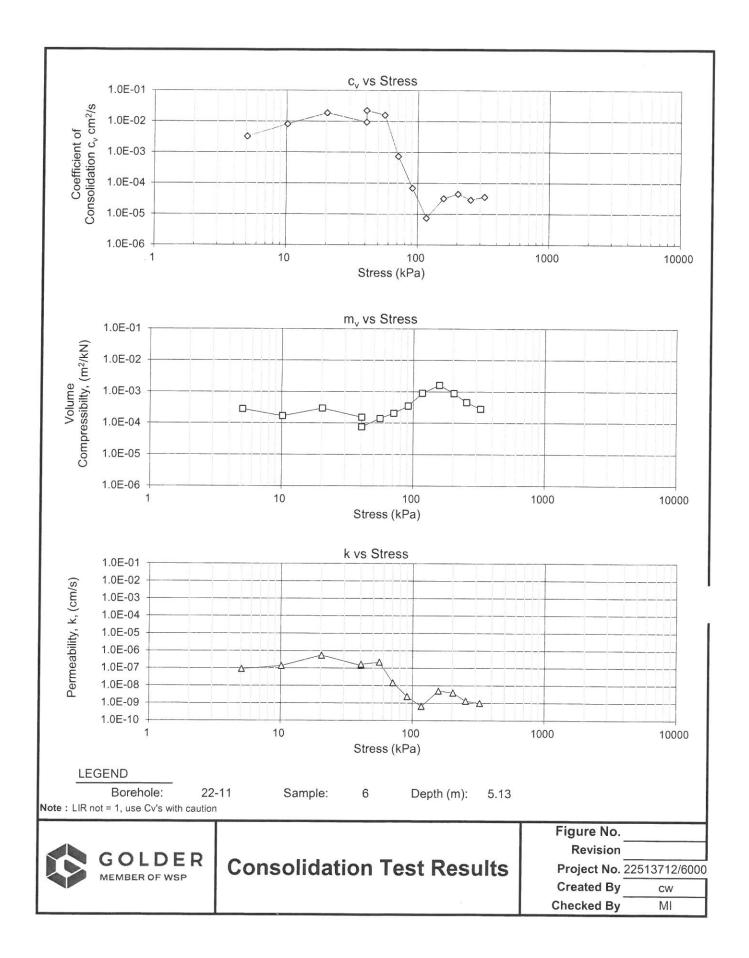

V2020

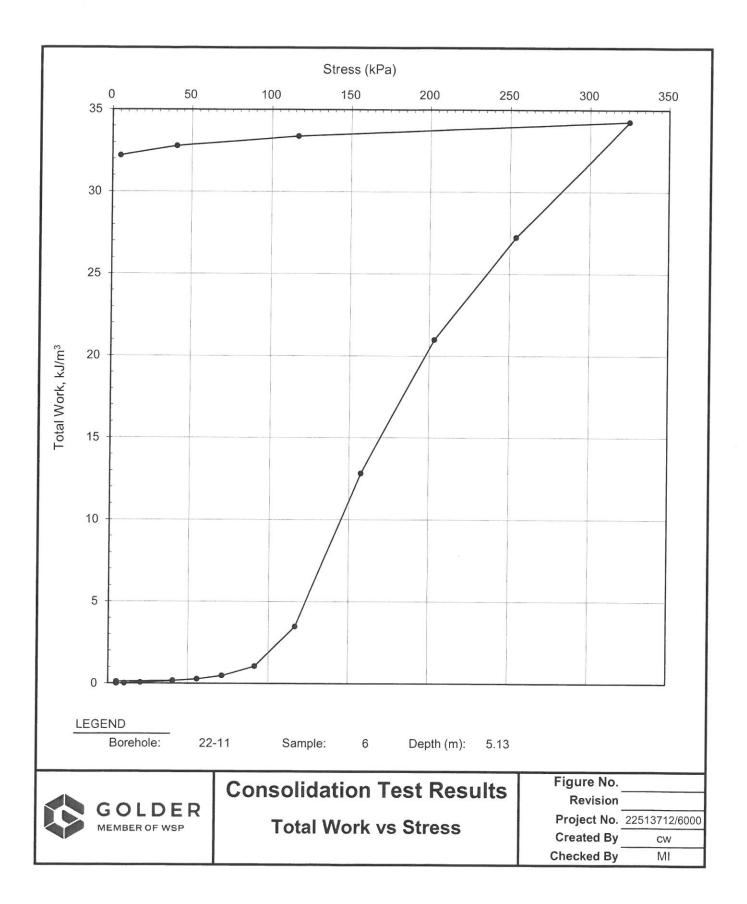



BOREHOLE BH22-3 SAMPLE 9 DEPTH OF 9.70 M









BOREHOLE BH22-11 SAMPLE 6 DEPTH OF 5.13 M

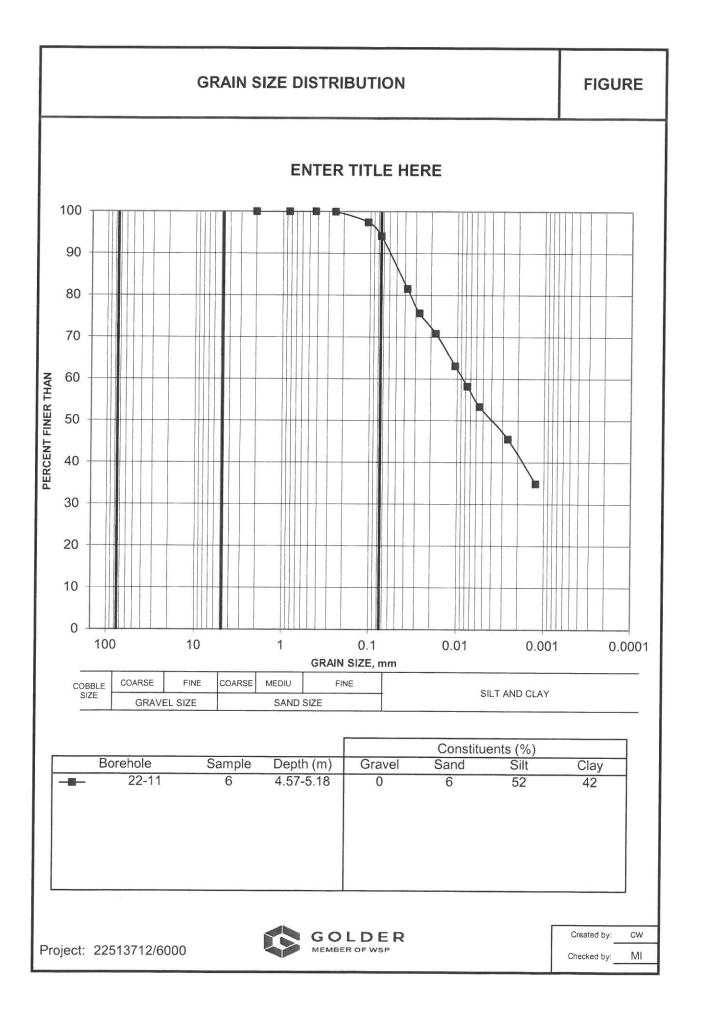
WATER CONTENT DATA	WHOLE SAMPLE BEFORE TEST	WHOLE SAMPLE AFTER TEST	TOP TRIMMINGS	BOTTOM TRIMMINGS	SIDE TRIMMINGS	THEORETICAL
TARE NUMBER	ring 1	ring 1	127	453	206	
WEIGHT OF WET SOIL & TARE, g	169.9	227.48	61.17	42.29	49.33	169.9
WEIGHT OF DRY SOIL & TARE, g	136.29	203.02	48.65	35.14	40.38	CONTRACTOR AND ADD
WEIGHT OF TARE, g	72.3	139.03	21,86	21.91	21.45	72.3
WEIGHT OF WATER, g	33.61	24.46	12.52	7.15	8.95	Ple this out the real
WEIGHT OF DRY SOIL, g	63.99	63.99	26.79	13.23	18.93	65.35
WATER CONTENT, %	52.52	38.22	46.7	54.0	47.3	49.4

16141, 70				50	0.22	46.7	54.0	47.3		49.4	1			
Dial Readi	ng = 0.0001 inc	h = 0.00254 r	nm											
STRESS	TEST TYPE	INITIAL DIAL READING D _o	FINAL DIAL READING D ₁₀₀	EQUIPEMEN T DEFORMATI ON DHe (see note 1)	DEFORMATI ON ∆D (D ₁₀₀ -D _o ∆He)	FINAL HEIGHT H (H0 - DD)	VOID RATIO e	AVERAGE SAMPLE HEIGHT	t ₉₀	COEFFICIENT OF CONSOLIDATI ON Cv	mν	PERMEABILI TY k	, TOTAL WORK	AVEF E STRE
kPa		10 ⁻⁴ in	10 ⁻⁴ in	10 ⁻⁴ in	mm	mm		mm	Sec	cm ² /sec	m ² /kN	cm/s	k l/m ³	kP.
5	Consolidation	5546	5535	1.0	0.0254	17.905	1.4491	17,917						2.5
10	Consolidation	5535	5521	8.0	0.0152	17.889	1.4470	17.897						7.6
20	Consolidation	5521	5490	10.0	0.0533	17.836	1.4397	17.863	36	1.88E-02				15.
41	Consolidation	5490	5451	17.0	0.0559	17.780	1.4321	17.808	72	9.34E-03				30.4
5	Rebound	5451	5484	-19.0	-0.0356	17.816	1.4369	17.798						22.
41	Consolidation	5484	5446	19.0	0.0483	17.767	1.4303	17.792	30	2.24E-02	7.58E-05	1.66E-07		22.
56	Consolidation	5446	5424	7.0	0.0381	17.729	1.4251	17.748	42	1.59E-02				48.
		-		6.0	0.0559	17.673	1.4175	17.701	912	7.28E-04	2.05E-04			63.4
	Consolidation	5396	5339	7.0	0.1270	17.546	1.4001	17.610	9522					81.
				8.0	0.4089	17.138	1.3442	17.342	86400	7.38E-06	8.99E-04	6.50E-10	3.48	104.
				18.0	1.1684	15.969	1.1844	16.553	18456	3.15E-05	1.60E-03	4.93E-09	12.83	137.
					0.7214	15.248	1.0857	15.608	11634	4.44E-05	8.81E-04	3.83E-09	20.97	180.
					0.4166	14.831	1.0287	15.039	16758	2.86E-05	4.58E-04	1.28E-09	27.22	228.
					0.3607	14.471	0.9794	14.651	12828	3.55E-05	2.82E-04	9.81E-10	34.26	289.
					-0.0584	14.529	0.9874	14.500					33.37	221.
	and the second se				-0.1092	14.638	1.0023	14.584					32.78	78.7
5	Rebound	4173	4344	-24.0	-0.3734	15.012	1.0534	14.825					32.20	22.8
	Dial Readi STRESS kPa 5 10 20 41 5 41	Dial Reading = 0.0001 inc STRESS TEST TYPE kPa 5 5 Consolidation 10 Consolidation 20 Consolidation 41 Consolidation 5 Rebound 41 Consolidation 56 Consolidation 71 Consolidation 91 Consolidation 158 Consolidation 203 Consolidation 204 Consolidation 205 Consolidation 205 Consolidation 205 Consolidation 205 Consolidation 205 Consolidation 205 Consolidation 207 Rebound 208 Consolidation	Dial Reading = 0.0001 inch = 0.00254 r STRESS TEST TYPE INITIAL DIAL READING D _o kPa 10 ⁻⁴ in 5 Consolidation 5546 10 Consolidation 5535 20 Consolidation 5521 41 Consolidation 5484 56 Consolidation 5484 56 Consolidation 5424 91 Consolidation 5339 117 Consolidation 5339 158 Consolidation 5462 203 Consolidation 5424 91 Consolidation 5439 158 Consolidation 4692 254 Consolidation 4692 254 Consolidation 4234 117 Rebound 4074 41 Rebound 4014	Dial Reading = 0.0001 inch = 0.00254 mm STRESS TEST TYPE INITIAL DIAL DIAL READING D ₀ FINAL DIAL DIAL DIAL DIAL DIAL DIAL DIAL DI	Dial Reading = 0.0001 inch = 0.00254 mm EQUIPEMEN STRESS TEST TYPE DIAL DIAL READING FINAL DIAL READING FINAL DIAL DEFORMATI DEFORMATI ON DHe kPa 10 ⁻⁴ in 10 ⁻⁴ in 10 ⁻⁴ in 10 ⁻⁴ in 5 Consolidation 5546 5535 1.0 10 Consolidation 5521 8.0 20 Consolidation 5521 5490 10.0 41 Consolidation 5451 17.0 5 56 Consolidation 5449 5451 17.0 51 Rebound 5442 5396 6.0 91 Consolidation 5424 5396 6.0 91 Consolidation 5170 8.0 18.0 170 Consolidation 5170 8.0 18.0 203 Consolidation 5170 4.0 18.0 203 Consolidation 4404 4234 6.0 254 Consolidation 4404 4234 6.0<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dial Reading = 0.0001 inch = 0.00254 mm FINAL FUNAL TOTAL FUNAL TOTAL OULL FUNAL FUNAL FUNAL TOTAL OULL FUNAL FUNAL TOTAL FUNAL FUNAL DEFORMATI FUNAL FUNAL DEFORMATI FUNAL FUNAL DEFORMATI ON ADD HEIGHT VOID RATIO e NTYPE DIAL DIAL READING ON AD H Height VOID RATIO e kPa 10 ⁻⁴ in 10 ⁻⁴ in DHe (broo-D_o, AHe) (HO - DD) H e e e Addition 5 1.4491 10 Consolidation 5521 5521 8.0 0.0152 17.836 1.4397 20 Consolidation 5451 5490 10.0 0.0559 17.780 1.4321 5 Rebound 5451 5484 -19.0 -0.0356 17.816 1.4369 41 Consolidation 5446 5424 7.0 0.0483	Dial Reading = 0.0001 inch = 0.00254 mm EQUIPEMEN T PPE DefORMATI DIAL DIAL READING D ₀ FINAL DIAL DIAL DEFORMATI DON DHe (see note 1) DEFORMATI ON DHe (be note 1) FINAL HEIGHT AVERAGE SAMPLE HEIGHT KPa 10 ⁻⁴ in 10 ⁻⁴ in Di ⁴ in Deformati ON ON DHe (be note 1) FINAL ON VOID RATIO H (H0 - DD) AVERAGE SAMPLE HEIGHT VOID RATIO B 5 Consolidation 5546 5535 1.0 0.0254 17.905 1.4491 17.917 10 Consolidation 5535 5521 8.0 0.0152 17.889 1.4470 17.897 20 Consolidation 5541 5490 10.0 0.0539 17.780 1.4397 17.808 5 Rebound 5451 5484 -19.0 -0.0356 17.816 1.4397 17.798 41 Consolidation 5424 5396 6.0 0.0559 17.767 1.4303 17.792 56 Consolidation 5446 19.0 0.0483 17.767 1.4175 17.701 91	Dial Reading = 0.0001 inch = 0.00254 mm EQUIPEMEN DEFORMATI FINAL FINAL AVERAGE STRESS TEST TYPE DIAL DIAL DIAL DIAL DEFORMATI ON AD AVERAGE SAMPLE too kPa 10 ⁻⁴ in DI-00 DHe (D-00-D_0.04He) (H0 - DD) (H0 - DD) AVERAGE SAMPLE HEIGHT HE	Dial Reading = 0.0001 inch = 0.00254 mm Total 10.7 134.0 17.3 143.4 STRESS TEST TYPE INITIAL DIAL DA DA D FINAL DIAL READING Do FINAL DIAL DIAL DIAL DIAL Do DEFORMATI ON DHe (see note 1) FINAL ON DHe (see note 1) VOID RATIO H (Droo-Do, ΔHe) AVERAGE SAMPLE HEIGHT too VOID AD AVERAGE HEIGHT too CONSOLIDATI OF CONSOLIDATI ON CV kPa 10 ⁻⁴ in 10 ⁻⁴ in 10 ⁻⁴ in 10 ⁻⁴ in 0.0254 17.905 1.4491 17.917 210 3.24E-03 20 Consolidation 5535 5521 8.0 0.0152 17.889 1.4470 17.897 84 8.08E-03 20 Consolidation 5521 5490 10.0 0.0559 17.780 1.4397 17.863 36 1.88E-02 41 Consolidation 5451 5484 -19.0 -0.0356 17.767 1.4303 17.792 30 2.24E-02 5 Rebound 5444 5446 19.0 0.0483 17.767 1.4303 17.792 30 <td< td=""><td>Dial Reading = 0.0001 inch = 0.00254 mm INITIAL FINAL DEFORMATI ON HEIGHT VOID RATIO AVERAGE SAMPLE INITIAL COEFFICIENT OF STRESS TEST DIAL DIAL DIAL DIAL DEFORMATI ON HEIGHT VOID RATIO AVERAGE SAMPLE Ivo OF CONSOLIDATI OF kPa 10⁴ in 10⁴ in 10⁴ in 10⁴ in 10⁴ in 0.0.0254 17.905 1.4491 17.917 210 3.24E-03 2.79E-04 10 Consolidation 5521 5490 10.0 0.02533 17.839 1.4470 17.897 84 8.08E-03 2.79E-04 41 Consolidation 5521 5490 10.0 0.0553 17.836 1.4391 17.788 2.93E-03 1.58E-04 41 Consolidation 5446 5446 19.0 0.0356 17.816 1.4391 17.788 2 9.34E-03 1.54E-04 5 Rebound 5444</td></td<> <td>Dial Reading = 0.0001 inch = 0.00254 mm FUNAL FUNAL FUNAL AVERAGE COEFFICIENT OF OF<</td> <td>Dial Reading = 0.0001 inch = 0.00254 mm INITIAL DIAL FINAL DIAL COUPE MEN TOTAL OUND H.N.T. VOID RATIO BEFORMATI ON AD VOID RATIO H AVERAGE SAMPLE COEFFICIENT OF CONSOLIDATI M PERMEABILI OF CONSOLIDATI N TOTAL WORK kPa 10⁻⁴ in <t< td=""></t<></td>	Dial Reading = 0.0001 inch = 0.00254 mm INITIAL FINAL DEFORMATI ON HEIGHT VOID RATIO AVERAGE SAMPLE INITIAL COEFFICIENT OF STRESS TEST DIAL DIAL DIAL DIAL DEFORMATI ON HEIGHT VOID RATIO AVERAGE SAMPLE Ivo OF CONSOLIDATI OF kPa 10 ⁴ in 0.0.0254 17.905 1.4491 17.917 210 3.24E-03 2.79E-04 10 Consolidation 5521 5490 10.0 0.02533 17.839 1.4470 17.897 84 8.08E-03 2.79E-04 41 Consolidation 5521 5490 10.0 0.0553 17.836 1.4391 17.788 2.93E-03 1.58E-04 41 Consolidation 5446 5446 19.0 0.0356 17.816 1.4391 17.788 2 9.34E-03 1.54E-04 5 Rebound 5444	Dial Reading = 0.0001 inch = 0.00254 mm FUNAL FUNAL FUNAL AVERAGE COEFFICIENT OF OF<	Dial Reading = 0.0001 inch = 0.00254 mm INITIAL DIAL FINAL DIAL COUPE MEN TOTAL OUND H.N.T. VOID RATIO BEFORMATI ON AD VOID RATIO H AVERAGE SAMPLE COEFFICIENT OF CONSOLIDATI M PERMEABILI OF CONSOLIDATI N TOTAL WORK kPa 10 ⁻⁴ in 10 ⁻⁴ in <t< td=""></t<>

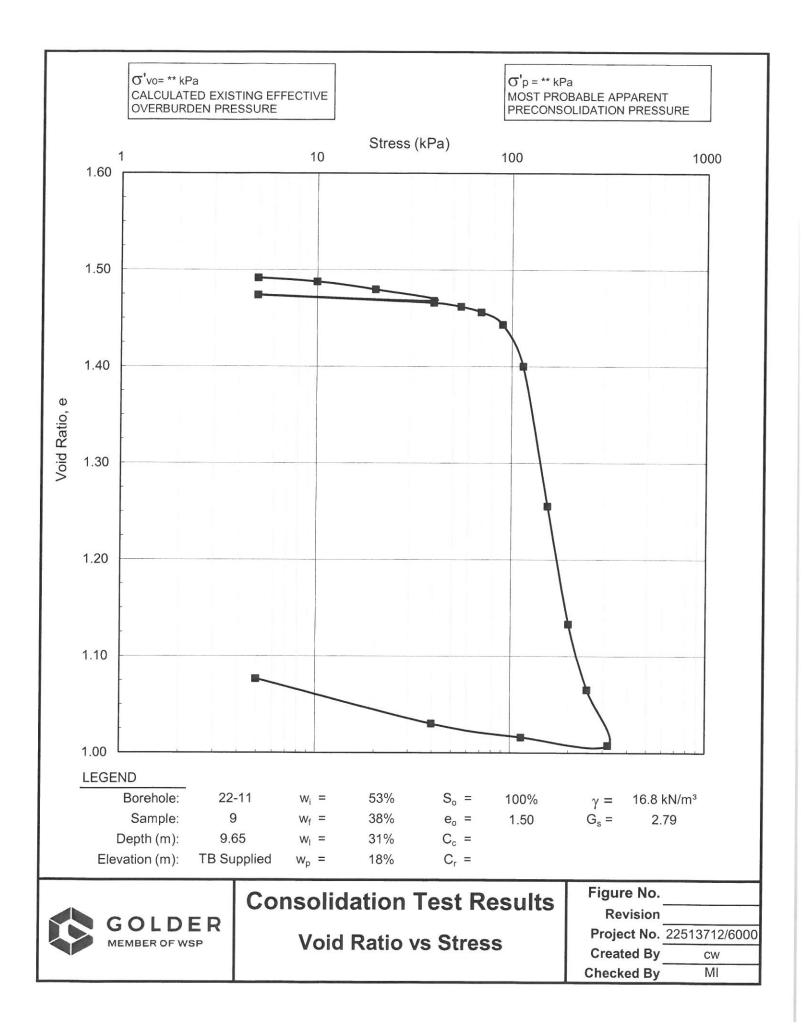
	ACTUAL	HEORETIC	AL
INITIAL SAMPLE HEIGT Ho, mm	17.93	17.93]
SPECIFIC GRAVITY, Gs	2.763	2.7	1
INITIAL SOLIDS HEIGHT, mm	7.31	7.64	1
INITIAL VOID RATIO, eo	1.453	1.347	1
INITIAL DEGREE OF SATURATION,	99.9	98.9	(100)
INITIAL WET DENSITY, kN/m3	16.85	1	1

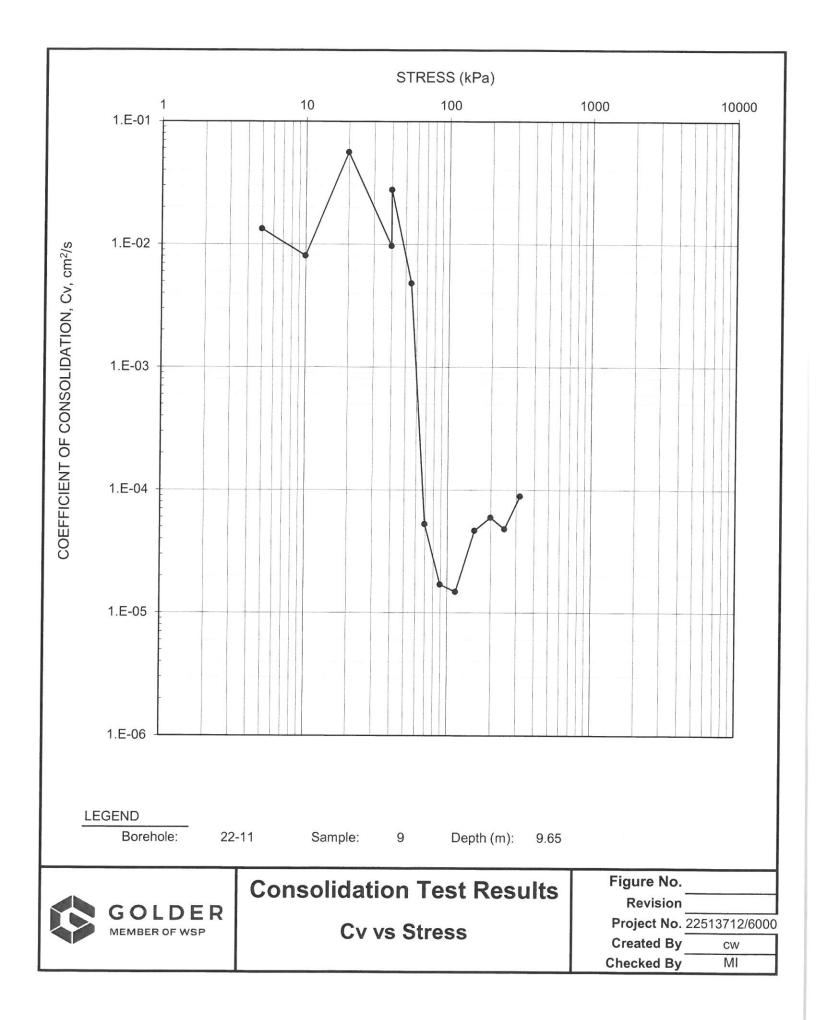
CONSOLIDATION TEST SUMMARY

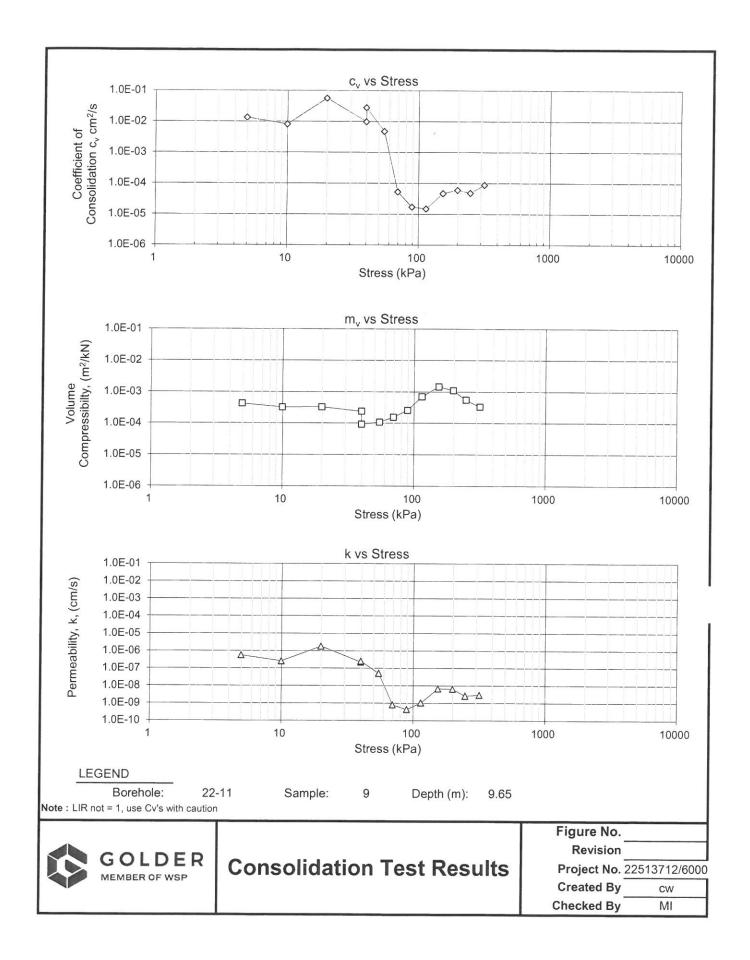
MACHINE NUMBER	1
RING NUMBER	1
RING HEIGHT, mm	17.93
RING DIAMETER, mm	63.51
RING AREA, cm ²	31.68

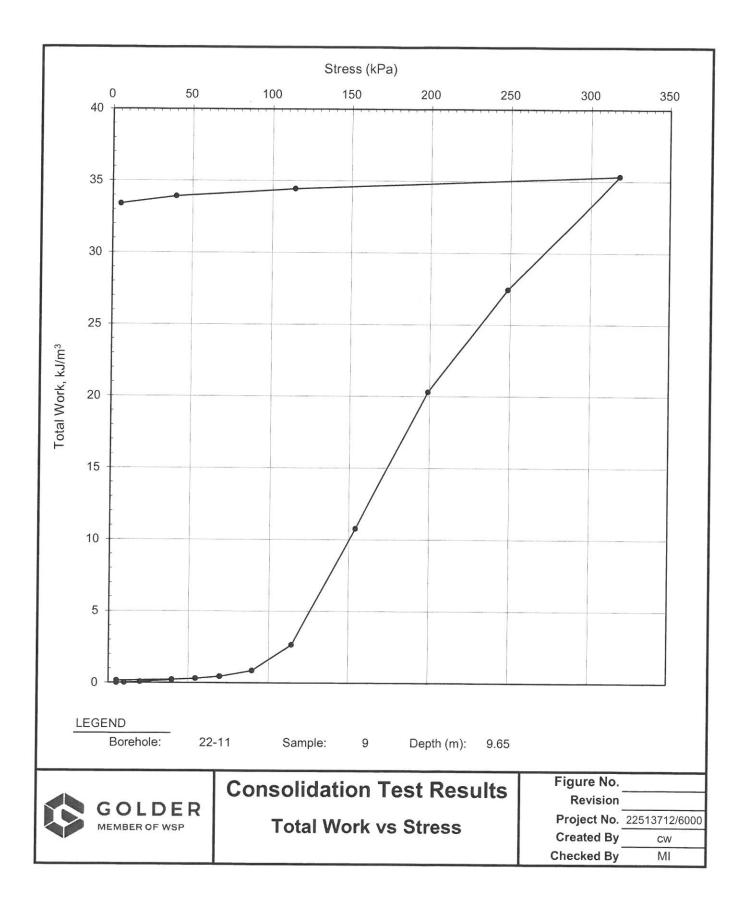

CALCULATED BY CW CHECKED BY MI DATE STARTED 22-Nov-22 DATE FINISHED 08-Dec-22 REMARKS

FINAL SAMPLE HEIGT Ho, mm =	15.012	
SPECIFIC GRAVITY, Gs =	2.763	
FINAL SOLIDS HEIGHT =	7.311	
FINAL VOID RATIO =	1.0534	
FINAL DEGREE OF SATURATION	100.3	
COMPUTED EXISITNG EFFECTIVE OVERBU	RDEN PRESSURE, o'vo kPa	100000
MOST PROBABLE APPARENT PRECONSOLI	DATION PRESSURE, o', kPa	100000


PROJECT NUMBER BOREHOLE NUMBER SAMPLE NUMBER SAMPLE DEPTH (m)


2<u>2513712/600</u>0 22-11 6 5.13


V2020



BOREHOLE BH22-11 SAMPLE 9 DEPTH OF 9.65 M

WATER CONTENT DATA	WHOLE SAMPLE BEFORE TEST	WHOLE SAMPLE AFTER TEST	TOP TRIMMINGS	BOTTOM TRIMMINGS	SIDE TRIMMINGS	THEORETICAL
TARE NUMBER	Ring 2	Ring 2	285	121	283	
WEIGHT OF WET SOIL & TARE, g	242.65	300.3	45.74	57.93	57.94	242.65
WEIGHT OF DRY SOIL & TARE, g	194.68	265.82	37.33	44.92	45.64	
WEIGHT OF TARE, g	104.89	176.03	21.83	22.07	21.36	104.89
WEIGHT OF WATER, g	47.97	34.48	8.41	13.01	12.30	CONSTRUCTOR STRUCTURE
WEIGHT OF DRY SOIL, g	89.79	89.79	15.50	22.85	24.28	89.48
WATER CONTENT, %	53.42	38.40	54.3	56.9	50.7	54.0

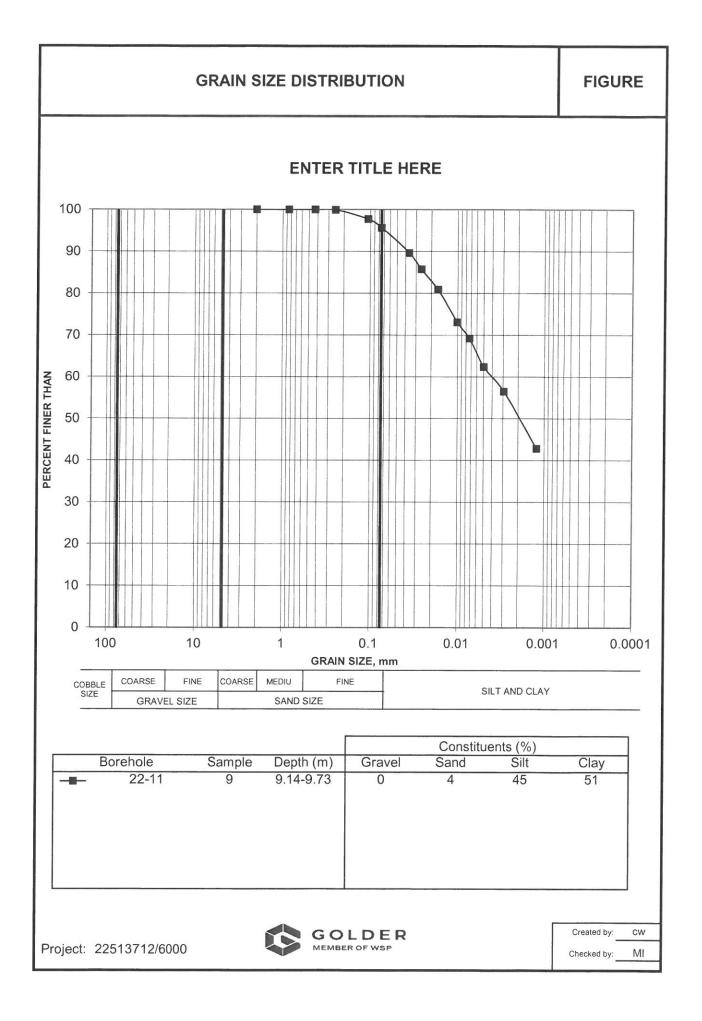
Dial Reading = 0.0001 inch = 0.00254 mm

	Dial Readin	ng = 0.0001 inc	h = 0.00254 r	nm											
STEP	STRESS	TEST TYPE	INITIAL DIAL READING D _o	FINAL DIAL READING D ₁₀₀	EQUIPEMEN T DEFORMATI ON DHe (see note 1)	DEFORMATI ON ∆D (D ₁₀₀ -D _o .∆He)	FINAL HEIGHT H (H0 - DD)	VOID RATIO e	AVERAGE SAMPLE HEIGHT	t _{eo}	COEFFICIENT OF CONSOLIDATI ON Cv	mv	PERMEABILI TY k	TOTAL WORK	AVERA E STRES
	kPa		10 ⁻⁴ in	10 ⁻⁴ in	10 ⁻⁴ in	mm	mm		mm	sec	cm ² /sec	m²/kN	cm/s	kJ/m ³	kPa
1	5	Consolidation	5524	5502	1.0	0.0533	25.307	1.4917	25.333	102	1.33E-02	4.23E-04	5.53E-07	0.01	2.5
2	10	Consolidation	5502	5478	8.0	0.0406	25.266	1.4877	25.286	168	8.07E-03	3.22E-04	2.54E-07	0.02	7.5
3	20	Consolidation	5478	5432	14.0	0.0813	25.185	1.4797	25.225	24	5.62E-02	3.24E-04	1.78E-06	0.07	14.9
4	40	Consolidation	5432	5368	17.0	0.1194	25.065	1.4680	25.125	138	9.70E-03	2.37E-04	2.25E-07	0.21	29.8
5	5	Rebound	5368	5411	-19.0	-0.0610	25.126	1.4740	25.096					0.15	22.3
6	40	Consolidation	5411	5360	19.0	0.0813	25.045	1.4660	25.086	48	2.78E-02	9.22E-05	2.51E-07	0.22	22.4
7	55	Consolidation	5360	5336	8.0	0.0406	25.004	1.4620	25.025	276	4.81E-03	1.08E-04	5.07E-08	0.30	47.2
8	70	Consolidation	5336	5306	7.0	0.0584	24.946	1.4562	24.975	25080	5.27E-05	1.55E-04	7.99E-10	0.45	62.1
9	89	Consolidation	5306	5247	8.0	0.1295	24.816	1.4435	24.881	77214	1.70E-05	2.57E-04	4.28E-10	0.86	79.5
10	114	Consolidation	5247	5066	8.0	0.4394	24.377	1.4002	24.597	86400	1.48E-05	6.98E-04	1.02E-09	2.66	101.8
11	154	Consolidation	5066	4470	17.0	1.4707	22.906	1.2554	23.642	25392	4.67E-05	1.45E-03	6.65E-09	10.76	134.2
12	199	Consolidation	4470	3977	5.0	1.2395	21.667	1.1334	22.287	17634	5.97E-05	1.09E-03	6.40E-09	20.31	176.5
13	249	Consolidation	3977	3697	8.0	0.6909	20.976	1.0653	21.321	19998	4.82E-05	5.48E-04	2.59E-09	27.44	223.7
14	318	Consolidation	3697	3451	16.0	0.5842	20.392	1.0078	20.684	10170	8.92E-05	3.30E-04	2.88E-09	35.34	283.4
15	114	Rebound	3451	3505	-21.0	-0.0838	20.476	1.0161	20.434					34.45	216.3
16	40	Rebound	3505	3578	-17.0	-0.1422	20.618	1.0301	20.547					33.91	77.0
17	5	Rebound	3578	3790	-26.0	-0.4724	21.090	1.0766	20.854					33.40	22.4
														00.10	6.6T

	ACTUAL	HEORETIC	AL
INITIAL SAMPLE HEIGT H ₀ , mm	25.36	25.36]
SPECIFIC GRAVITY, Gs	2.789	2.7	1
INITIAL SOLIDS HEIGHT, mm	10.16	10.46	1
INITIAL VOID RATIO, eo	1.497	1.424]
INITIAL DEGREE OF SATURATION,	99.5	102.3	(100)
INITIAL WET DENSITY, kN/m3	16.80		

CONSOLIDATION TEST SUMMARY

V2020


MACHINE NUMBER	2
RING NUMBER	2
RING HEIGHT, mm	25.36
RING DIAMETER, mm	63.53
RING AREA, cm ²	31.70

CALCULATED BY CHECKED BY DATE STARTED DATE FINISHED REMARKS

FINAL SAMPLE HEIGT Ho, mm =	21.090	
SPECIFIC GRAVITY, Gs =	2.789	
FINAL SOLIDS HEIGHT =	10.156	
FINAL VOID RATIO =	1.0766	
FINAL DEGREE OF SATURATION	99.5	
COMPUTED EXISITNG EFFECTIVE OVERBU	RDEN PRESSURE, o'vo kPa	100000
MOST PROBABLE APPARENT PRECONSOLI	DATION PRESSURE, o', kPa	100000

PROJECT NUMBER BOREHOLE NUMBER SAMPLE NUMBER SAMPLE DEPTH (m)

2<u>2513712/600</u>0 22-11 9 9.65

APPENDIX F

MASW SITE EVALUATION REPORT

100 – 2545 Delorimier StreetTel. : (450) 679-2400Longueuil (Québec)Fax : (514) 521-4128Canada J4K 3P7info@geophysicsgpr.comwww.geophysicsgpr.com

December 23rd, 2022

Transmitted by email: <u>icorbett@geoterre.ca</u> Our Ref.: GPR-22-04020

Mr. Ivan Corbett, P.Eng. GeoTerre Limited 215 Advance Blvd., Unit 5/6 Brampton ON L6T 4V9

Subject: <u>Shear Wave Velocity Sounding for the Site Class Determination</u> 3850 Cambrian Road, Nepean, Ottawa (ON)

Dear Sir,

Geophysics GPR International inc. has been mandated by GeoTerre Limited to carry out seismic shear wave surveys at 3850 Cambrian Road, Nepean, in Ottawa (ON). The geophysical investigation used the Multi-channel Analysis of Surface Waves (MASW), the Spatial AutoCorrelation (SPAC), and the seismic refraction methods. From the subsequent results, the seismic shear wave velocity values were calculated for the soil and the rock, to determine the Site Class.

The surveys were carried out on December 8th, 2022, by Mr. Louis-Emmanuel Warnock, B.Sc. and Ewen Pasdeloup, trainee. Figure 1 shows the regional location of the site and Figure 2 illustrates the location of the seismic spreads. Both figures are presented in the Appendix.

The following paragraphs briefly describe the survey design, the principles of the testing methods, and the results presented in table and graph.

MASW PRINCIPLE

The *Multi-channel Analysis of Surface Waves* (MASW) and the *SPatial AutoCorrelation* (SPAC or MAM for *Microtremors Array Method*) are seismic methods used to evaluate the shear wave velocities of subsurface materials through the analysis of the dispersion properties of the Rayleigh surface wave. The MASW is considered an "active" method, as the seismic signal is induced at known location and time in the geophones' spread axis. Conversely, the SPAC is considered a "passive" method, using the low frequency "signals" produced far away. The method can also be used with "active" seismic source records. The SPAC method generally allows deeper Vs soundings. Its dispersion curve can then be merged with the one of higher frequency from the MASW to calculate a more complete inversion. The dispersion properties are expressed as a change of velocities with respect to frequencies. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. The inversion of the Rayleigh wave dispersion curve yields a shear wave (V_S) velocity depth profile (sounding).

Figure 3 schematically outlines the basic operating procedure for the MASW method. Figure 4 illustrates an example of one of the MASW/SPAC records, the corresponding spectrogram analysis and resulting 1D V_s model.

INTERPRETATION

The main processing sequence involved data inspection and edition when required; spectral analysis ("phase shift" for MASW, and "cross-correlation" for SPAC); picking the fundamental mode; and 1D inversion of the MASW and SPAC shot records using the SeisImagerSW[™] software. The data inversions used a nonlinear least squares algorithm.

In theory, all the shot records for a given seismic spread should produce a similar shearwave velocity profile. In practice, however, differences can arise due to energy dissipation, local surface seismic velocities variations, and/or dipping of overburden layers or rock. In general, the precision of the calculated seismic shear wave velocities (V_s) is around 15% or better.

More detailed descriptions of these methods are presented in *Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock*, Hunter, J.A., Crow, H.L., et al., Geological Surveys of Canada, General Information Product 110, 2015.

SURVEY DESIGN

The seismic acquisition spreads were located on a vacant lot (Figure 2). The geophone spacing was of 3.0 metres for the main spread, using 24 geophones. A shorter seismic spread, with geophone spacing of 1.0 metre, was dedicated to the near surface materials. The seismic records were produced with a seismograph Terraloc Pro 2 (from ABEM Instrument), and the geophones were 4.5 Hz. The seismic records counted 4096 data, sampled at 1000 μ s for the MASW surveys, and 40 μ s for the seismic refraction. The records included a pre-trigged portion of 10 ms. An 8 kg sledgehammer was used as the energy source, with impacts being recorded off both ends of the seismic spreads. A stacking procedure was also used to improve the Signal / Noise ratio for the seismic records.

The shear wave depth sounding can be considered as the average of the bulk area within the geophone spread, especially for its central half-length.

RESULTS

The MASW calculated V_s results are illustrated in Figure 5. Some low seismic velocities were calculated from the surface to 7 metres deep.

The \overline{V}_{S30} value results from the harmonic mean of the shear wave velocities, from the surface to 30 metres deep. It is calculated by dividing the total depth of interest (30 metres) by the sum of the time spent in each velocity layer from the surface down to 30 metres, as:

$$\overline{V}_{S30} = \frac{\sum_{i=1}^{N} H_i}{\sum_{i=1}^{N} H_i / V_i} \mid \sum_{i=1}^{N} H_i = 30 \text{ m}$$
(N: number of layers; H_i : thickness of layer "*i*"; V_i : V_s of layer "*i*")

Thus, the \overline{V}_{S30} value represents the seismic shear wave velocity of an equivalent homogeneous single layer response, between the surface and 30 metres deep.

The calculated \overline{V}_{S30} value of the actual site is 302.2 m/s (Table 1), corresponding to the Site Class "D".

CONCLUSION

Geophysical surveys were carried out to identify the Site Class at 3850 Cambrian Road, Nepean, in Ottawa (ON). The seismic surveys used the MASW and the SPAC analysis, and the seismic refraction to calculate the \overline{V}_{S30} value. Its calculation is presented at Table 1.

The \overline{V}_{S30} value of the actual site is 302 m/s, corresponding to the Site Class "D" (180 < $\overline{V}_{S30} \leq 360$ m/s), as determined through the MASW and SPAC methods, Table 4.1.8.4.-A of the NBC, and the Building Code, O. Reg. 332/12. It must be noted that some low seismic velocities were calculated from the surface to 7 metres deep. A geotechnical assessment could be required for the potential of liquefaction, the clay sensitivity, and other critical parameters.

It must also be noted that other geotechnical information gleaned on site; including the presence of liquefiable soils, very soft clays, high moisture content etc. (cf. Table 4.1.8.4.-A of the NBC) can supersede the Site classification provided in this report based on the \overline{V}_{S30} value.

The V_s values calculated are representative of the in situ materials and are not corrected for the total and effective stresses.

Hoping the whole to your satisfaction, we remain yours truly,

Jean-Luc Arsenault, M.A.Sc., P.Eng. Senior Project Manager 4

Figure 1: Regional location of the Site (source: OpenStreetMap©)

Figure 2: Location of the seismic spreads (source: geoOttawa)

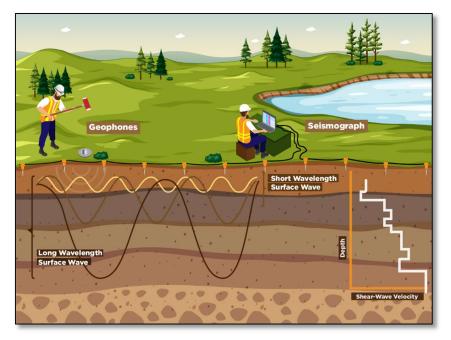


Figure 3: MASW Operating Principle

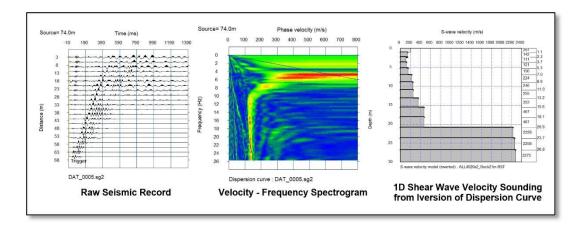


Figure 4: Example of a MASW/SPAC record, Phase Velocity - Frequency curve of the Rayleigh wave and resulting 1D Shear Wave Velocity Model

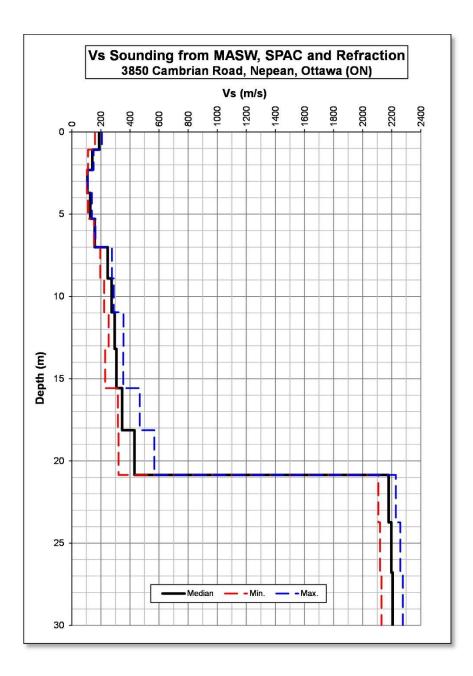
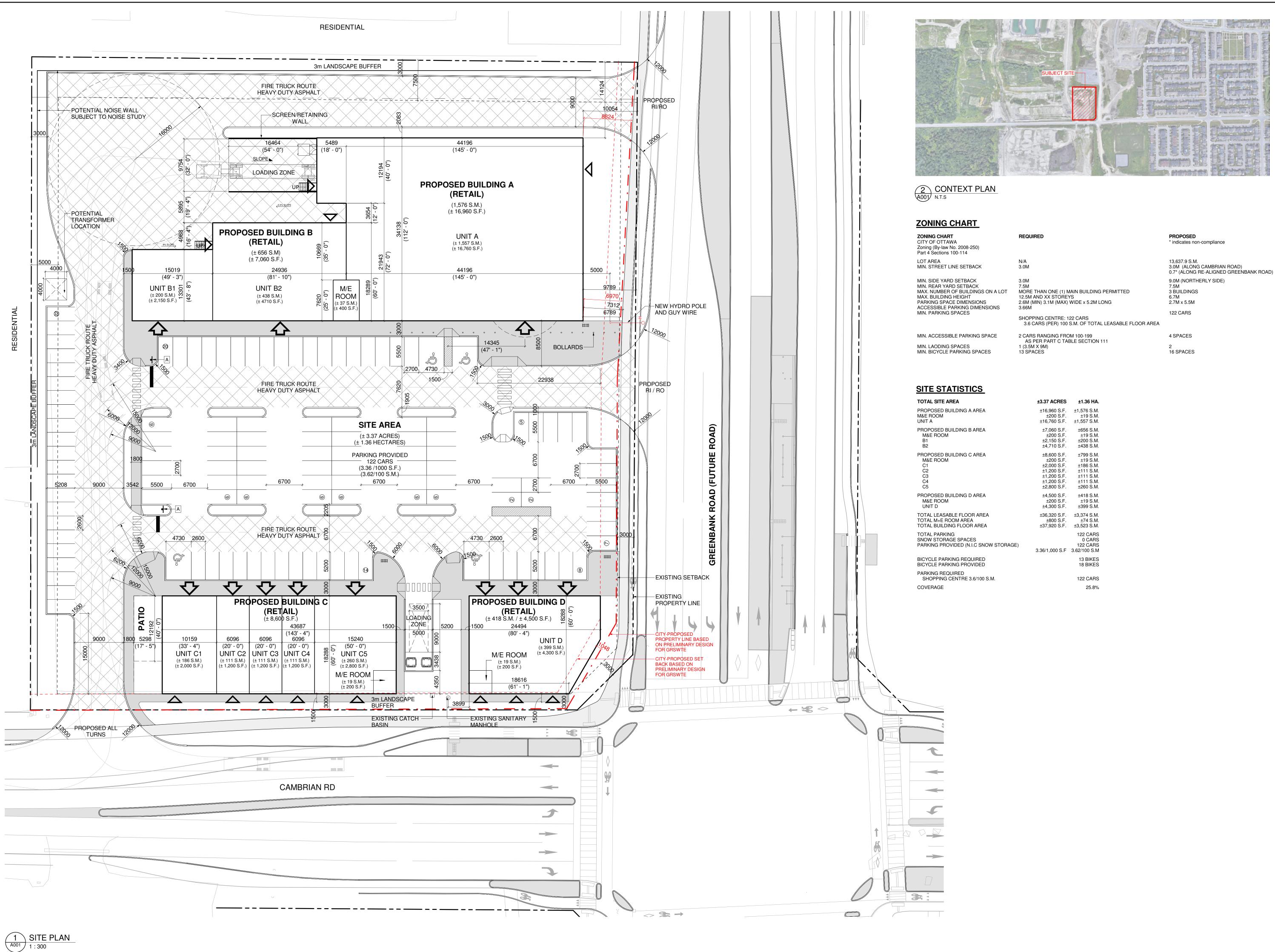


Figure 5: MASW Shear-Wave Velocity Sounding

Donth		Vs		Thickness	Cumulative	Delay for	Cumulative	Vs at given
Depth	Min.	Median	Max.	THICKNESS	Thickness	med. Vs	Delay	Depth
(m)	(m/s)	(m/s)	(m/s)	(m)	(m)	(s)	(s)	(m/s)
0	159.5	187.6	206.6		Grade Le	vel (Decembe	er 8th, 2022)	
1.07	111.6	141.5	150.2	1.07	1.07	0.005711	0.005711	187.6
2.31	105.2	107.4	110.7	1.24	2.31	0.008739	0.014451	159.7
3.71	110.7	126.8	138.7	1.40	3.71	0.013047	0.027497	134.9
5.27	152.3	157.4	162.6	1.57	5.27	0.012348	0.039845	132.4
7.01	195.7	246.5	275.4	1.73	7.01	0.010995	0.050841	137.8
8.90	222.4	273.8	289.0	1.90	8.90	0.007689	0.058530	152.1
10.96	252.9	294.8	355.1	2.06	10.96	0.007526	0.066056	165.9
13.19	229.0	307.0	353.5	2.23	13.19	0.007549	0.073605	179.2
15.58	317.1	346.0	467.4	2.39	15.58	0.007786	0.081390	191.4
18.13	321.7	430.9	567.2	2.55	18.13	0.007385	0.088775	204.2
20.85	2107.8	2178.1	2228.7	2.72	20.85	0.006311	0.095087	219.3
23.74	2119.6	2197.2	2258.7	2.88	23.74	0.001324	0.096411	246.2
26.79	2130.0	2206.1	2276.0	3.05	26.79	0.001388	0.097799	273.9
30				3.21	30.00	0.001457	0.099256	302.2
							Vs30 (m/s)	302.2
							Class	D ⁽¹⁾

 $\frac{\mbox{TABLE 1}}{V_{\rm S30}} \mbox{ Calculation for the Site Class (actual site)}$


(1) Some low seismic velocities were calculated from the surface to 7 metres deep. A geotechnical assessment could be required for the potential of liquefaction, the clay sensitivity, and other critical parameters.

APPENDIX G

PROPOSED SITE DEVELOPMENT PLAN

	±3.37 ACRES	±1.36 HA.
	±16,960 S.F. ±200 S.F. ±16,760 S.F.	±19 S.M.
	±7,060 S.F. ±200 S.F. ±2,150 S.F. ±4,710 S.F.	±656 S.M. ±19 S.M. ±200 S.M. ±438 S.M.
	±8,600 S.F. ±200 S.F. ±2,000 S.F. ±1,200 S.F. ±1,200 S.F. ±1,200 S.F. ±2,800 S.F.	±799 S.M. ±19 S.M. ±186 S.M. ±111 S.M. ±111 S.M. ±111 S.M. ±260 S.M.
	±4,500 S.F. ±200 S.F. ±4,300 S.F.	±418 S.M. ±19 S.M. ±399 S.M.
	±36,320 S.F. ±800 S.F. ±37,920 S.F.	±3,374 S.M. ±74 S.M. ±3,523 S.M.
DRAGE)	3.36/1,000 S.F	122 CARS 0 CARS 122 CARS 3.62/100 S.M
		13 BIKES 18 BIKES

This drawing, as an instrument of service, is provided by and is the property of Turner Fleischer Architects Inc. The contractor must verify and accept responsibility for all dimensions and conditions on site and must notify Turner Fleischer Architects Inc. of any variations from the supplied information. This drawing is not to be scaled. The architect is not responsible for the accuracy of survey, structural, mechanical, electrical, etc., information shown on this drawing. Refer to the appricable codes and requirements of authorities having jurisdiction. The contractor working from drawings not specifically marked 'For Construction' must assume full responsibility and bear costs for any corrections or damages resulting from his work.

turnerfleischer.com

PROPOSED ENTRANCE ARROW

PROPOSED EXIT ARROW

LEGEND

PROPOSED FIRE HYDRANT

PROPOSED SIAMESE CONNECTION

PROPOSED SIGN

PROPOSED FIRE & TRUCK ROUTE (HEAVY DUTY ASPHALT)

PROPOSED CONCRETE SIDEWALK

 4
 2023-03-09
 ISSUED FOR COORDINATION

 3
 2023-03-07
 ISSUED FOR COORDINATION

 2
 2022-12-21
 ISSUED FOR COORDINATION

 1
 2022-10-26
 ISSUED FOR REVIEW

 #
 DATE
 DESCRIPTION

DEM BSH NFP NFP

CAMBRIAN RD (N. PARCEL)

BARRHAVEN, ONTARIO

DRAWING

SITE PLAN

A001

REV.

4

PROJECT NO. 21.327SD PROJECT DATE 2022-08-19 DRAWN BY BSH CHECKED BY DEM SCALE As indicated