

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

Mattino Developments Inc. Block 1 – 285 Mountshannon Dr.

Servicing Design Brief

Servicing Design Brief MATTINO DEVELOPMENTS INC. BLOCK 1 – 285 MOUNTSHANNON DR.

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

February 24, 2023

Novatech File: 112021-04 Ref: R-2023-021

February 24, 2023

City of Ottawa Infrastructure Services and Community Sustainability 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1

Attention: Mr. Derek Unrau, Project Manager

Dear Mr. Derek Unrau:

Reference: Mattino Developments Inc. Block 1 – 285 Mountshannon Drive Servicing Design Brief Our File No.: 112021-04

Enclosed for your review and approval is the Servicing Design Brief for the proposed Block 1 development at 285 Mountshannon Drive.

If you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

Illi

Lucas Wilson, P.Eng. Project Manager

M:\2012\112021\BLOCK 1\DATA\REPORTS\SERVICING\20230224-BLOCK 1, SITE SERVICING.DOCX

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	ROADWAYS	3
2.1 2.2 2.3	EXISTING CONDITIONS PROPOSED CONDITIONS ROADWAY DESIGN	3
3.0	GRADING	3
3.1 3.2	EXISTING CONDITIONS	
4.0	EROSION AND SEDIMENT CONTROL	4
5.0	SANITARY SEWERS	4
5.1 5.2 5.3	EXISTING CONDITIONS PROPOSED CONDITIONS OFFSITE REQUIREMENTS	4
6.0	WATER	5
6.1 6.2	EXISTING CONDITIONS PROPOSED CONDITIONS	
7.0	STORMWATER MANAGEMENT	7
7.2 7.3 7. 7. 7.4 7.5 7. 7. 7. 7.	STORMWATER MANAGEMENT CRITERIA 1.1 Allowable Release Rate EXISTING CONDITIONS PROPOSED CONDITIONS 3.1 Quality Control 3.2 Minor System Design 3.3 Major System Design HYDROLOGIC & HYDRAULIC MODELING RESULTS OF HYDROLOGIC / HYDRAULIC ANALYSIS 5.1 Minor System 5.2 Major System 1 5.3 Hydraulic Grade Line 5.4 Peak Flows	7 7 7 7 8 8 9 1 1 1 2
8.0	CONCLUSIONS AND RECOMMENDATIONS1	3
9.0	CLOSURE1	4

LIST OF TABLES

Table 2-1: Roadway Structure	3
Table 5-1: Sanitary Sewer Design Parameters	5
Table 6-1: Watermain Design Criteria	6
Table 6-2: Water Flow Summary	6
Table 7-1: Storm Sewer Design Parameters	8
Table 7-2: Subcatchment Model Parameters	10
Table 7-3: Inlet Control Devices & Design Flows	11
Table 7-4: Overland Flow Results (100-year, 3-hour Chicago storm event)	12
Table 7-5: 100-year HGL Elevations	12
Table 7-6: Summary of Peak Flows	13

LIST OF FIGURES

Figure 1-1: Key Plan Figure 1-2: Site Plan

APPENDICES

Appendix A: Design Sheets Appendix B: SWM Calculations / Modeling Appendix C: Drawings Appendix D: Geotechnical Memorandums

1.0 INTRODUCTION

The subject site is located within the Longfields community and is municipally known as 285 Mountshannon Drive. The site is approximately 0.21 hectares and is bounded by the existing Longfields Central subdivision to the north, Pierre Elliott Trudeau Elementary School to the west, Mountshannon Drive to the east, and Longfields Drive to the south. A key plan of the area is presented below in **Figure 1-1**.

Figure 1-1: Key Plan

The site is currently vacant. The proposed development will consist of 20 units in a three-storey apartment building. The proposed site plan is shown in **Figure 1-2**.

This Servicing Design Brief provides information on the considerations and approach by which Novatech has analyzed the existing site information for the subject site, and details how the development lands will be serviced while meeting the City requirements and all other relevant regulations. This report should be read in conjunction with the following:

- Geotechnical Investigation, 'Proposed Residential Development, Mountshannon Drive, Ottawa, Ontario' prepared by Paterson dated January 31, 2013.
- Geotechnical Memorandum, prepared by Paterson dated September 6, 2019 (PG2306-MEMO.07).

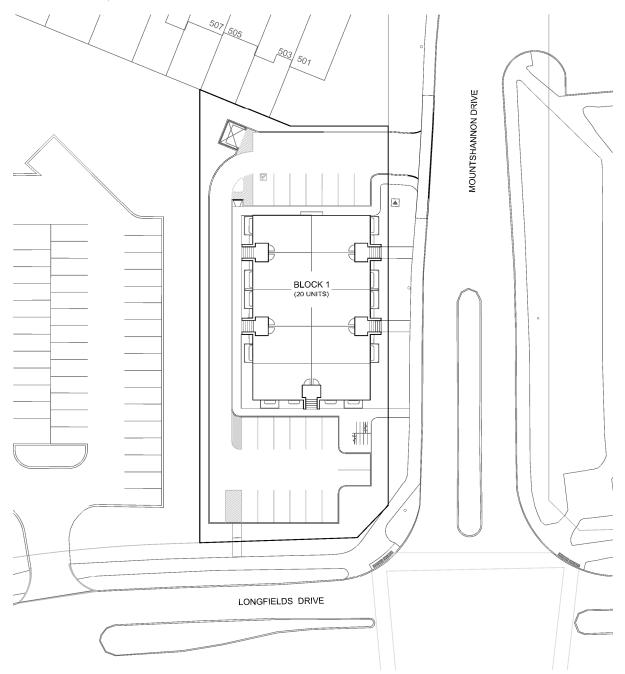


Figure 1-2: Site Plan

2.0 ROADWAYS

2.1 Existing Conditions

Currently there is access to the site through Mountshannon Drive.

2.2 **Proposed Conditions**

The development will be accessed from a single entrance along Mountshannon Drive.

All roads within the development are 3.6m (minimum) private roads with at-grade parking.

2.3 Roadway Design

Paterson has prepared a Geotechnical Investigation report for the development (January 2013) that provides recommendations for roadway structure, servicing and foundations. The site consists of private roads and at-grade parking; the recommended roadway structure is as follows:

Table 2-1: Roadway Structure

Roadway Material Description	Pavement Structure Layer Thickness (mm) Private Road
Asphalt Wear Course: Superpave 12.5 (Class B)	40
Asphalt Binder Course: Superpave 19.0 (Class B)	50
Base: Granular A	150
Sub-Base: Granular B – Type II	<u>400</u>
Total	640

3.0 GRADING

3.1 Existing Conditions

The site slopes approximately 2.5% to the northeast towards Mountshannon Drive.

A Geotechnical investigation was carried out by Paterson which included 10 test pits within the Longfields Central subdivision. Test pits were dug at depths ranging from 6.10m to 6.70m below existing grade with no bedrock encountered. Each test pit was dry upon completion; therefore, groundwater levels were estimated based on moisture levels and colour of the recovered soil samples and expected to be between 2m to 3m below existing ground.

3.2 **Proposed Conditions**

The design grades will tie into existing elevations along the north and west property lines and the back of existing sidewalks along the east and south sides. For detailed grading refer to drawing 112021-04-GR.

The proposed grading will fall within these ranges:

- Landscaped Area: Minimum 1% Maximum 7%
- Roadway and Parking: Minimum 1.0%
- Maximum Terracing Grade of 3H:1V

4.0 EROSION AND SEDIMENT CONTROL

The following erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987).

- A qualified inspector should conduct regular visits to ensure the contractor is working in accord with the drawings and that mitigation measures are implemented as specified;
- Filter socks are to be placed under all new and existing catchbasins and storm manhole covers;
- Silt fences around the area under construction to be placed per OPSS 577 and OPSD 219.110;
- Application of topsoil and sod to disturbed areas; and,
- After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.

The proposed erosion and sediment control measures will be implemented prior to construction and will remain in place during construction until vegetation is established. There will be regular inspection and maintenance of the sediment control measures. It is important that precautions be taken during construction to prevent sediment from entering the proposed stormwater management systems. The erosion and sediment control plan is provided in **Appendix C**.

5.0 SANITARY SEWERS

5.1 Existing Conditions

An existing 250mm diameter sanitary sewer is located within Mountshannon Drive.

5.2 **Proposed Conditions**

The peak design flow parameters in **Table 5-1** have been used in the sewer capacity analysis.

Unit and population densities and all other design parameters are specified in the City of Ottawa Sewer Design Guidelines (October 2012) and Technical bulletin ISTB-2018-01.

Sanitary flow from Block 1 is proposed to connect into the existing 250mm diameter sanitary sewer in Mountshannon Drive. The sanitary sewer layout is shown on 112021-04-GP (**Appendix C**), and the design sheet is attached in **Appendix A**. The site (approx. 0.21ha) will outlet downstream of existing sanitary maintenance hole MS1 with a peak design flow of 0.6 L/s. The wastewater flow is routed through the Mountshannon Drive sanitary sewer, directing flow to the East Barrhaven Trunk (EBHT) sanitary sewer. The EBHT drains into the West Rideau Collector

Sewer (WRCS) on Merivale Road and eventually makes its way to the Robert O. Pickard Environmental Centre to be treated before being released to the Ottawa River.

Parameter	Design Parameter
Apartment (2 bedroom) Unit Population	2.1 people/unit
Apartment Unit Density	20 Units (per Site Plan)
Residential Flow Rate, Average Daily	280 L/cap/day
Residential Peaking Factor	Harmon Equation (min=2.0, max=4.0)
Total Infiltration Rate	0.33 L/s/ha
Minimum Pipe Size	200 mm
Minimum Velocity	0.6 m/s
Maximum Velocity	3.0 m/s

5.3 Offsite Requirements

For the design of Longfields Central, a peak design flow of 0.81 L/s was calculated from MS1 to MS3, accounting for future flows from Block 1 (Longfields Central sanitary design sheet excerpt included in **Appendix A**). With the detailed design of Block 1 being complete, the peak design flow calculated from MS1 to MS3 is now 0.60 L/s. Since the proposed flows are lower than previously accounted for in the Longfields Central Site Servicing and Stormwater Management Study, there will be sufficient capacity offsite to service the proposed development.

6.0 WATER

6.1 Existing Conditions

The proposed development is located inside the 2W2C Pressure Zone. An existing 400mm diameter watermain runs along Mountshannon Drive.

6.2 **Proposed Conditions**

Block 1 will be connected to the existing 400mm watermain located at the site entrance off Mountshannon Drive.

The development will be serviced by a single 100mm diameter water service and will provide sufficient capacity to maintain appropriate pressures. The proposed building is located within 75m of two existing class AA (blue top) hydrants on Mountshannon Drive and Longfields Drive and within 75m to 150m of an existing class AA (blue top) hydrants located near the intersection of Via Mattino Way and Mountshannon Drive. These three hydrants provide a maximum fire flow capacity of 253 L/s (15,200 L/min).

The watermain boundary condition below was obtained from the City of Ottawa and has been included in **Appendix A**:

<u>Boundary Condition #1</u> – Located at Mountshannon Drive Future 100mm x 400mm diameter watermain connection (Shown in **Appendix A**)

	Existing Zone 2W2C		Future Z	one SUC
Demand Scenario	Head (m)	Pressure (psi)	Head (m)	Pressure (psi)
Maximum HGL	133.1	57.9	146.9	77.6
Peak Hour	125.0	46.4	144.4	74.0
Max Day + FF of 200 L/s	126.4	48.5	144.4	74.0

City of Ottawa watermain design Parameters are outlined in Table 6-1.

 Table 6-1: Watermain Design Criteria

Design Parameter	Design Criteria
Apartment (2 bedroom) Unit Population	2.1 people/unit
Density	20 units
Residential Demand	280 L/c/d
Maximum Day Demand	2.5 x Average Day
Peak Hour Demand	2.2 x Maximum Day
Fire Demand	200 L/s
Maximum Pressure	690 kPa (100psi) unoccupied areas
Maximum Pressure	552 kPa (80psi) occupied areas outside of ROW
Minimum Pressure	275 kPa (40 psi) except during fire flow
Minimum Pressure	140 kPa (20 psi) fire flow conditions

Table 6-2: Water Flow Summary

Unit Type	Units	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Apartments	20	42	0.136	0.340	0.749
Total	20	42	0.136	0.340	0.749

Based on the fire underwriters survey, the fire flow was calculated as 200 L/s. Hydrant spacing and locations per City of Ottawa guidelines are illustrated on the Hydrant Location Plan in **Appendix A**. Fire flow calculations are provided in **Appendix A**.

The boundary conditions above highlight the maximum and minimum system pressures, for both existing and future pressure zones, during Peak Hour/Maximum Pressure conditions, and the minimum system pressures during the Maximum Day + Fire conditions. Since the Maximum Day + Fire Flow pressures are above the minimum 20 psi and the Peak Hour/Maximum Pressures fall within the normal operating pressure range (40 psi to 80 psi) we conclude the proposed development will be adequately serviced for both domestic and firefighting conditions.

7.0 STORMWATER MANAGEMENT

7.1 Stormwater Management Criteria

The following stormwater management criteria for the proposed development was prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012) and the Longfields Central Site Servicing and Stormwater Management Study (Novatech, 2014). This report was prepared in accordance with the Longfields Davidson Heights Serviceability Study Update Report (1998).

- Provide a dual drainage system (i.e. minor and major system flows);
- Maximize the use of surface storage available on site;
- Control the runoff to existing 525mm storm sewer in Mountshannon Drive to the allowable release rates Specified in **Section 7.1.1** using on-site storage;
- Ensure that no surface ponding will occur on the paved surfaces (i.e., private drive aisles or parking lots) during the 2-year storm event;
- Ensure that ponding is confined within the parking areas at a maximum depth of 0.35 m for both static ponding and dynamic flow; and,
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

For the approval of the Longfields Central Subdivision, the following assumptions were made for the future development of Block 1 (see **Appendix B** for Longfields Central report excerpts):

- Restricted minor system flow of 28.8 L/s/ha;
- On-Site storage of 20.8 m³ (100 m³/ha);
- Major System flow of 94.3 L/s.

7.1.1 Allowable Release Rate

The allowable release rate for Block 1 (0.21 ha) was established based on the restricted minor system flow of 28.8 L/s/ha (6.0 L/s) for all storms up-to and including the 100-year storm event.

7.2 Existing Conditions

An existing 525mm diameter storm sewer runs along Mountshannon Drive adjacent to the proposed development.

7.3 **Proposed Conditions**

Runoff from Block 1 will be routed to the existing storm sewer system in Mountshannon Drive at the private entrance. The existing storm system is directed to the 1350mm diameter trunk storm sewer within Mountshannon Drive and ultimately outlets to the Longfields Davidson Heights Stormwater Management Facility located southwest of the Leikin Drive and Bill Leathem Drive intersection. This existing facility provides water quality control prior to discharging to the Rideau River via Barrhaven Creek. As such, on-site stormwater quality controls are not required.

7.3.1 Quality Control

As previously discussed, the Longfields Davidson Heights SWM Facility provides the Quality Control for the site. The proposed site has a drainage area of approximately 0.21 ha and a runoff

coefficient of 0.74. The site was previously referred to as area 29 in the Longfields Central Design, which had a drainage area of 0.21 ha and runoff coefficient of 0.80 ha (refer to excerpt provided in **Appendix B**). When comparing the area x runoff coefficient values the proposed site has the same area, but a lower runoff coefficient than what was previously allocated, as shown below:

<u>Parameter</u>	Longfields Central Design	<u>Current Design</u>
Drainage Area Runoff Coefficient	0.21 ha 0.80	0.21 ha 0.74
Area x Runoff Coefficient	0.17	0.16

7.3.2 Minor System Design

Storm Sewers

The storm sewers comprising the minor system have been designed based on the criteria outlined in the Ottawa Sewer Design Guidelines using the principals of dual drainage. The design criteria used in sizing the storm sewers are summarized in **Table 6.1**.

The proposed storm sewers have been designed using the rational method to convey peak flows associated with a 2-year rainfall event. The storm sewer design sheets are provided in **Appendix A**. The corresponding Storm Drainage Area Plan (Drawing 112021-04-STM) is provided in **Appendix C**.

Parameter	Design Criteria
Private Roads	2 Year Return Period
Storm Sewer Design	Rational Method
IDF Rainfall Data	Ottawa Sewer Design Guidelines
Initial Time of Concentration (T _c)	10 min
Minimum Velocity	0.8 m/s
Maximum Velocity	3.0 m/s
Minimum Diameter	250 mm

Table 7-1: Storm Sewer Design Parameters

Underground Storage

The allowable release rate is quite restrictive, as such underground storage will be required to attenuate runoff from the site. Underground storage will be provided using a series of 300mm and 375mm diameter storm sewers and 1200mm diameter structures providing approximately 14 m³ of storage. Refer to the proposed General Plan of Services (112021-04-GP) for storage pipe layout.

7.3.3 Major System Design

The site has been designed to convey runoff from storms that exceed the minor system capacity to Mountshannon Drive. The roadway and parking areas have been graded to ensure that the 100-year peak overland flows are limited to 94.3 L/s.

The site has been graded to provide an overland flow route that spills along the roadway and outlets to Mountshannon Drive at the entrance to the site (CBMH1).

Surface Storage

The stage-storage curves for each inlet were calculated based on the proposed Grading Plan (drawing 112021-04-GR). The total surface storage shown in the stage-storage curves at each inlet is provided in **Appendix B**. Approximately 21 m³ of total surface storage is available within the low-points of the parking areas below the major system spill elevation of 92.70m.

The total storage provided underground and on the surface is as follows (provided surface storage refers to maximum available surface storage below the major system spill elevation of 92.70m):

Structure ID	Underground Storage (m ³)		Surface Storage (m³)		Total Storage (m³)	
	Required (2-YR)Provided (100-YR)Required Provided		Provided	Required	Provided	
CBMH1*	14.0	14.0		20.5		34.5
CB1	-	-	20.8	0.30	34.5	0.30
CB3	-	-		0.10		0.10
TOTAL	14.0	14.0	20.8	20.9	34.5	34.9

*Structure with ICD.

7.4 Hydrologic & Hydraulic Modeling

The *City of Ottawa Sewer Design Guidelines* (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for Block 1 was evaluated using the *PCSWMM* hydrologic/hydraulic modeling software.

Design Storms

The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the Sewer Design Guidelines (October 2012).

<u>3-Hour Chicago Storms:</u>

25mm 3-hr Chicago storm 2-year 3-hr Chicago storm 5-year 3-hr Chicago storm 100-year 3-hr Chicago storm 100-year (+20%) 3-hr Chicago storm 12-Hour SCS Storms:

2-year 12-hr SCS storm 5-year 12-hr Chicago storm 100-year 12-hr Chicago storm 100-year (+20%) 12-hour SCS storm

The 3-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 3-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

Model Development

The PCSWMM model accounts for both minor and major system flows (*dual drainage*), including the routing of flows through the storm sewer network (*minor system*), and overland along the road network (*major system*). The results of the analysis were used to:

- Ensure no ponding in the paved areas following a 2-year event;
- Calculate the storm sewer hydraulic grade line for the 100-year storm event;
- Evaluate overland flow depths and ponding volumes in the paved areas during the 100year event; and
- Determine the total major and minor system runoff from the site to Mountshannon Drive.

The model is capable of accounting for both static and dynamic storage within the private roadways and parking areas, including the overland flow across all high points and capture/bypass curves for inlets on continuous grade. The 100-year flow depths computed by the model represent the total (static + dynamic) ponding depths at low points for areas in road sags.

Storm Drainage Area Plan & Subcatchment Parameters

The Block 1 development has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The catchment areas are shown on the Storm Drainage Area Plan provided as drawing **112021-04-STM** in **Appendix C**.

The hydrologic parameters for each subcatchment were developed based on the Site Plan (**Figure 1-2**) and the Storm Drainage Area Plan specified above. Subcatchment parameters are outlined in **Table 7-2**.

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	Zero Imperv.	Flow Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A01	0.073	0.81	87%	37%	25	29	2%
A02	0.095	0.75	79%	35%	25	38	2%
A03	0.011	0.35	22%	0%	4	28	2%
A04	0.029	0.66	66%	0%	16	18	1.5%
TOTAL	0.21 ha	0.74	77%	-	-	-	-

Table 7-2: Subcatchment Model Parameters

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines were used for all catchments.

Horton's Equation:	Initial infiltration rate:	f _o = 76.2 mm/hr
$f(t) = f_c + (f_o - f_c)e^{-k(t)}$	Final infiltration rate:	f _c = 13.2 mm/hr
	Decay Coefficient:	k = 4.14/hr

Depression Storage

The default values for depression storage in the Sewer Design Guidelines were used for all catchments. Rooftops were assumed to provide no depression storage (Zero Imperv. Parameter).

- Depression Storage (pervious areas): 4.67 mm
- Depression Storage (impervious areas): 1.57 mm

Equivalent Width

Equivalent Width' refers to the width of the sub-catchment flow path. This parameter is calculated as described in the Sewer Design Guidelines, Section 5.4.5.6.

Impervious Values

Impervious values for each subcatchment area were calculated based on the proposed Site Plan and correspond to the Runoff Coefficients using the following equation:

$$\% imp = \frac{C - 0.2}{0.7}$$

7.5 Results of Hydrologic / Hydraulic Analysis

The model was used to evaluate the performance of the proposed storm drainage system for Block 1.

7.5.1 Minor System

Inflows to the storm sewers were modeled based on the characteristics of each inlet. All the catchbasins in the parking areas are located at low points. Inflows to the storm sewers are based on the ICD specified for the inlet and the maximum depth of ponding. The ICD has been sized to limit the outlet peak flows to the allowable release rate. Details are outlined as follows in **Table 6.4**. ICD information is indicated on the General Plan of Services (drawing 112021-04-GP).

				ICD Size	& Inlet Rate		
Structure ID	ICD Type	T/G	Orifice Invert	100-year Head on Orifice	2-year Orifice Peak Flow*	5-year Orifice Peak Flow*	100-year Orifice Peak Flow*
		(m)	(m)	(m)	(L/s)	(L/s)	(L/s)
CBMH1	Tempest LMF (Vortex 50)	92.50	90.04	2.68	3.8	3.9	3.5

Table 7-3: Inlet Control Devices & Design Flows

*PCSWMM model results for a 3-hour Chicago storm distribution.

7.5.2 Major System

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to City standards. A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix B**. The maximum static and dynamic ponding depths are less than 0.35m during all events, thereby meeting the major system criteria.

	T/G	Max. Stati	ic Ponding		100-yr Event					
Structure	1/6	Elev.	Spill Depth	Elev.	Depth	Cascading	Cascade Depth			
	(m)	(m)	(m)	(m)	(m)	Flow?	(m)			
CB1	92.65	92.95	0.30	92.79	0.14	Ν	0.00			
CB3	92.65	92.85	0.20	92.75	0.10	Ν	0.00			
CBMH1	92.50	92.70	0.20	92.72	0.22	Y	0.02			

Table 7-4: Overland Flow Results (100-year, 3-hour Chicago storm event)

An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix B**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

7.5.3 Hydraulic Grade Line

The results of the HGL analysis were used to ensure that a minimum freeboard of 0.30m is provided between the 100-year HGL and the designed underside of footing elevations. The 100-year HGL elevation with respect to the underside of footing elevation is provided in **Table 7-5**.

MH Invert T/G HGL Clearance HGL Design Manhole ID Elevation USF (100yr+20%) Elevation (100yr) (100yr)(m) (m)(m) (m) (m) (m) HGL - Block 1 CBMH01 90.04 92.50 90.66 90.96 0.30 90.66 (Downstream of ICD)

Table 7-5: 100-year HGL Elevations

*Downstream 'fixed' outfall condition set at 100-year HGL within EX STM Sewer (90.66m). Initial depths based on fixed outfall elevation of 90.66m.

7.5.4 Peak Flows

The overall release rate from the ICD and the uncontrolled flow draining to Mountshannon Drive (Area A-03) were used to determine the overall release rate from the site. The results of this analysis indicate that the allowable release rates will be met for each storm event. Refer to **Table 7-6** for the modelled peak flows for each storm event.

The results of the PCSWMM analysis indicate that outflows from the proposed development will not exceed the allowable release rate for all storm events.

Design		vable se Rate		linor System Release Rate	Major System Release Rate						
Event	Minor	Major	Controlled	Uncontrolled	Total	Spill	Uncontrolled	Total			
	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)			
2-year		0.0	3.8	0.6	4.4	-	-	-			
5-year	6.0	0.0	3.9	2.0	5.9	-	-	-			
100-year		94.3	3.5	-	3.5	56.4	4.8	61.2			
100-year (+20%)	-	-	3.5	-	3.5	68.0	6.0	74.0			

Table 7-6: Summary of Peak Flows

*PCSWMM Model results for a 3-hr Chicago storm distribution; normal outfall condition.

During the 100yr and 100yr+20% storm events, the uncontrolled flow from subcatchment A-03 was included as part of the major system flow being directed to Mountshannon Drive. During the 2yr and 5yr storm events, the uncontrolled flow was included as part of the minor system release rate.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The report conclusions are as follows:

- The proposed storm system will control post-development flow to the allowable release rate of 28.8 L/s/ha. Runoff volume from the 100-year storm event is within the allowable release rate. Underground storage will be provided using a series of 300mm and 375mm diameter storm sewers and 1200mm diameter structures. The Longfields Davidson Heights Stormwater Management Facility provides water quality control.
- 2) The proposed sanitary sewer conforms to City design criteria and provides a gravity outlet for the development site. There is sufficient capacity in the downstream sanitary sewers to accommodate the flows outletting to the existing Mountshannon Drive sanitary sewers.
- 3) Connection to the existing watermain in Mountshannon Drive will provide municipal water service to the development.
- 4) There is adequate fire protection to the proposed development, in accordance with the Fire Underwriter's Survey.
- 5) The proposed infrastructure (sanitary, storm and water) complies with City of Ottawa design standards.

9.0 CLOSURE

This report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

Sincerely,

NOVATECH

Prepared By:

Lucas Wilson, P.Eng. Project Manager

Reviewed By:

Mark Bissett, P.Eng. Senior Project Manager

APPENDIX A: Design Sheets

Sanitary Sewer Design Sheets Excerpt from Longfields Central Site Servicing Report (Sanitary Design Sheet) Storm Sewer Design Sheet (Rational Method) Watermain Boundary Conditions Water Demand Fire Flow Calculations Figure 2: Hydrant Location Plan

Block 1, 285 Mountshannon Drive - Sanitary Sewer Design Sheet

	AREA	REA RESIDENTIAL INFILTRATION										PI	PE							
			Apartm	nents																
ID	From	То	Units	Pop.	Pop.	Accum. Pop.	Peak Factor	Peak Flow (l/s)	Total Area (ha)	Accum. Area (ha)	Infilt. Flow (l/s)	Total Flow (I/s)	Size (mm)	Slope (%)	Length (m)	Capacity (l/s)	Full Flow Vel. (m/s)	Actual Vel. (m/s)	Q/Q _{full} (%)	d/D
Ble	ock 1																			
	129	EX	20	42.0	42.0	42.0	3.7	0.5	0.21	0.21	0.1	0.6	200	1.00	16.9	34.2	1.06	0.32	1.7%	0.077
Mounts	nannon Dr.																			
	MS1	MS3	0	0.0	0.0	42.0	3.7	0.5	0.23	0.44	0.1	0.6	250	0.30	75.8	34.0	0.67	0.22	1.9%	0.077
Design Pa	arameters:					1	1	Population	Density:	1				1				Project	t: Block 1 (112021-04)
Avg Flow/I	⊃erson =		280	l/day					ppl/unit										Desi	igned: LRW
Comm./Ins	st. Flow =		35000	l/ha/da	у	A	partment	(2 Bedroom)	2.1										Che	ecked: MAB
Infiltration	=		0.33	l/s/ha														D	ate: Februa	ry 14, 2023
Pipe Fricti	on n =		0.013																	
Residentia	ll Peaking Fa	ctor = Ha	rmon Equa	tion (ma	ıx 4, miı	n 2)														

									SANIT	-	ifields C EWER D	entral ESIGN S	HEET										
	AREA RESIDENTIAL				ICI INFILTRATION					PIPE													
AREA ID	From	То	Towns	Stacked Towns	Java	Pop.	Accum. Pop.	Peak Factor	Peak Flow (I/s)	C/I Area (Ha)	Peak Flow (I/s)	Total Area (ha)	Accum. Area (ha)	Infilt. Flow (I/s)	Total Flow (I/s)	Size (mm)		Length (m)	Capacity (I/s)	Full Flow Vel. (m/s)	Q/Q _{full} (%)	d/D _{full}	v/V _{full} (%)
645 Longfield	-	10	101110	101110	oura	1 00.	1 00.	1 40101	("0)		(#0)	(110)	(10)	(#0)	. ,	()	(/0)	()	("0)		(70)		<u> </u>
C1	C32	109	16			43.2	43.2	4.00	0.70			0.52	0.52	0.15	0.85	200	2.60	65.2	55.17	1.70	1.5%	0.08	33.0%
A20	111	109	4			10.8	10.8	4.00	0.18			0.20	0.20	0.06	0.23	200	2.00	24.9	48.39	1.49	0.5%	0.00	0.0%
A1	109	107	10			27.0	81.0	4.00	1.31			0.29	1.01	0.28	1.60	200	0.50	55.8	24.19	0.75	6.6%	0.16	54.0%
A1 A2	109	107	10			27.0	108.0	4.00	1.31			0.29	1.01	0.28	1.60 2.11	200	0.50	35.4	25.38	0.75	8.3%	0.16	60.0%
A3	107	103	6			16.2	124.2	4.00	2.01			0.17	1.45	0.41	2.42	200	1.75	41.8	45.26	1.40	5.3%	0.19	54.0%
A5	121	119	25			67.5	67.5	4.00	1.09			0.70	0.70	0.20	1.29	200	1.00	84.1	34.22	1.06	3.8%	0.12	45.0%
A6,A7	119	117	2		80	149.4	216.9	4.00	3.51			1.10	1.80	0.50	4.02	200	0.35	18.2	20.24	0.62	19.9%	0.30	78.0%
A11,A21	117	115	1			2.7	219.6	4.00	3.56	0.20	0.17	0.28	2.08	0.58	4.31	200	0.35	28.5	20.24	0.62	21.3%	0.30	78.0%
A12	115	113	3			8.1	227.7	4.00	3.69			0.09	2.17	0.61	4.30	200	0.35	18.8	20.24	0.62	21.2%	0.30	78.0%
A4	113	103	21			56.7	284.4	4.00	4.61			0.57	2.74	0.77	5.38	200	0.35	75.5	20.24	0.62	26.6%	0.34	83.0%
A13,A14	103	101	11	10		56.7	465.3	3.99	7.52			0.52	4.71	1.32	8.84	200	0.35	67.9	20.24	0.62	43.7%	0.44	96.0%
l	101	MS3				0.0	465.3	3.99	7.52			0.00	4.71	1.32	8.84	200	0.35	13.8	20.24	0.62	43.7%	0.44	96.0%
Existing in Mo																							
A15 Connection to	MS1	MS3		16		43.2	43.2	4.00	0.70			0.38	0.38	0.11	0.81	250	0.30	75.8	33.98	0.67	2.4%	0.08	33.0%
A19	MS3	K2				0.0	508.5	3.97	8.18			0.08	5.17	1.45	9.63	300	0.32	15.5	57.07	0.78	16.9%	0.27	73.0%
Design Param Avg Flow/Perse Infiltration = Residential Pea	eters: on =		350 0.28 tion (max -	4, min 2)		l/day l/s/ha						Population I Towns Stacked Tow	Density:	2.7 2.7	ppl/unit ppl/unit							Proje Desi Che	ect: 112021 igned: LRW ecked: MAB ay 16, 2014
Pipe Friction n Comm./Inst. Fl Peaking Factor	= ow =		0.013	l/ha/day								Java		1.8	ppl/unit					ΕN	OV/ GINE SULTA	TEC E R I	H

Block 1, 285 Mountshannon Drive: Storm Sewer Design Sheet (Rational Method)

LO	CATION			AREA					FL	.OW								PROP	OSED SE	WER		
Location	From Node	To Node	Hard Surface	Soft Surface	Total Area	Weighted Runoff Coefficient	Indivi 2.78 AR	Accum 2.78 AR	Time of Concentration	R 2yr	ain Intensity (mm/hr) 5yr	/ 10yr	Peak Flow	Total Peak Flow (Q)	Pipe	Size	Grade	Length	Capacity	Full Flow Velocity	Time of Flow	Q/Qfull
			0.90	0.20	(ha)								(L/s)	(L/s)	Туре	(mm)	(%)	(m)	(l/s)	(m/s)	(min.)	(%)
lock 1																						
A-02, A-04	137	139	0.09	0.03	0.12	0.73	0.25	0.25	10.00 10.00	76.81			19.3 0.0	19.3	PVC	300	1.00	37.0	100.9	1.38	0.45	19.2%
7(02,7(04	107	100			0.00		0.00	0.00	10.00				0.0	10.0	1 3.3 FVC	000	1.00	07.0	100.0	1.00	0.40	10.270
					0.00		0.00	0.25	10.45	75.13			18.9									
A-01	139	CBMH1			0.00		0.00	0.00	10.45				0.0	18.9	PVC	375	1.00	16.7	182.9	1.60	0.17	10.3%
					0.00		0.00	0.00	10.45				0.0									
			0.06	0.01	0.07	0.81	0.17	0.42	10.62	74.51			31.1									
	CBMH1	EX			0.00		0.00	0.00	10.62				0.0	31.1	PVC	250	1.00	22.9	62.0	1.22	0.31	50.1%
					0.00		0.00	0.00	10.62				0.0									
= 2.78 AIR			Q = PEAK FLOW A = AREA IN HE	/ IN LITRES PER CTARES (ha)	SECOND (L/s)	Q = (1/n) /	A R^(2/3)So	^(1/2)	WHERE	Q = CAPA n = MANN	•		OF ROUGHNESS	6 (0.013)					Proje	ct: Block [·] De	1 (1120 esignec

I = RAINFALL INTENSITY IN MILLIMETERS PER HOUR (mm/hr) R = WEIGHTED RUNOFF COEFFICIENT

A = FLOW AREA (m^2)

Checked: MAB Date: February 15, 2023

Boundary Conditions 255 and 285 Mountshannon Drive

Provided Information

Block 1 - 285 Mountshannon Drive

Scenario	Demand							
Scenario	L/min	L/s						
Average Daily Demand	8	0.14						
Maximum Daily Demand	20	0.34						
Peak Hour	45	0.75						
Fire Flow Demand #1	12,000	200.00						

Block 2 - 255 Mountshannon Drive

Scenario	Demand							
Scenario	L/min	L/s						
Average Daily Demand	7	0.11						
Maximum Daily Demand	16	0.27						
Peak Hour	36	0.60						
Fire Flow Demand #1	10,980	183.00						

Location

Results

Existing Conditions (Pressure Zone 2W2C)

Block 1 Connection - Mountshannon Drive to 400 mm WM

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	133.1	57.9
Peak Hour	125.0	46.4
Max Day plus Fire Flow	126.4	48.5
¹ Ground Elevation =	92.3	m

Block 2 Connection - Mattino Way to 200 mm WM

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	133.1	58.2
Peak Hour	125.0	46.7
Max Day plus Fire Flow	124.3	45.7
¹ Ground Elevation =	92.1	m

Future Conditions (Pressure Zone SUC)

Block 1 Connection - Mountshannon Drive to 400 mm WM

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	146.9	77.6
Peak Hour	144.4	74.0
Max Day plus Fire Flow	144.4	74.0
¹ Ground Elevation =	92.3	m

Block 2 Connection - Mattino Way to 200 mm WM

Demand Scenario	Head (m)	Pressure¹ (psi)		
Maximum HGL	146.9	77.9		
Peak Hour	144.4	74.3		
Max Day plus Fire Flow	142.1	71.1		
¹ Ground Elevation =	92.1	m		

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions.

The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Block 1 Water Demand								
				Average Day	Maximum Day	Peak Hour		
	Area			Demand	Demand	Demand		
	(ha)	Units	Population	(L/s)	(L/s)	(L/s)		
Apartments	N/A	20	42	0.136	0.340	0.749		
Total	0.00	20	42	0.136	0.340	0.749		

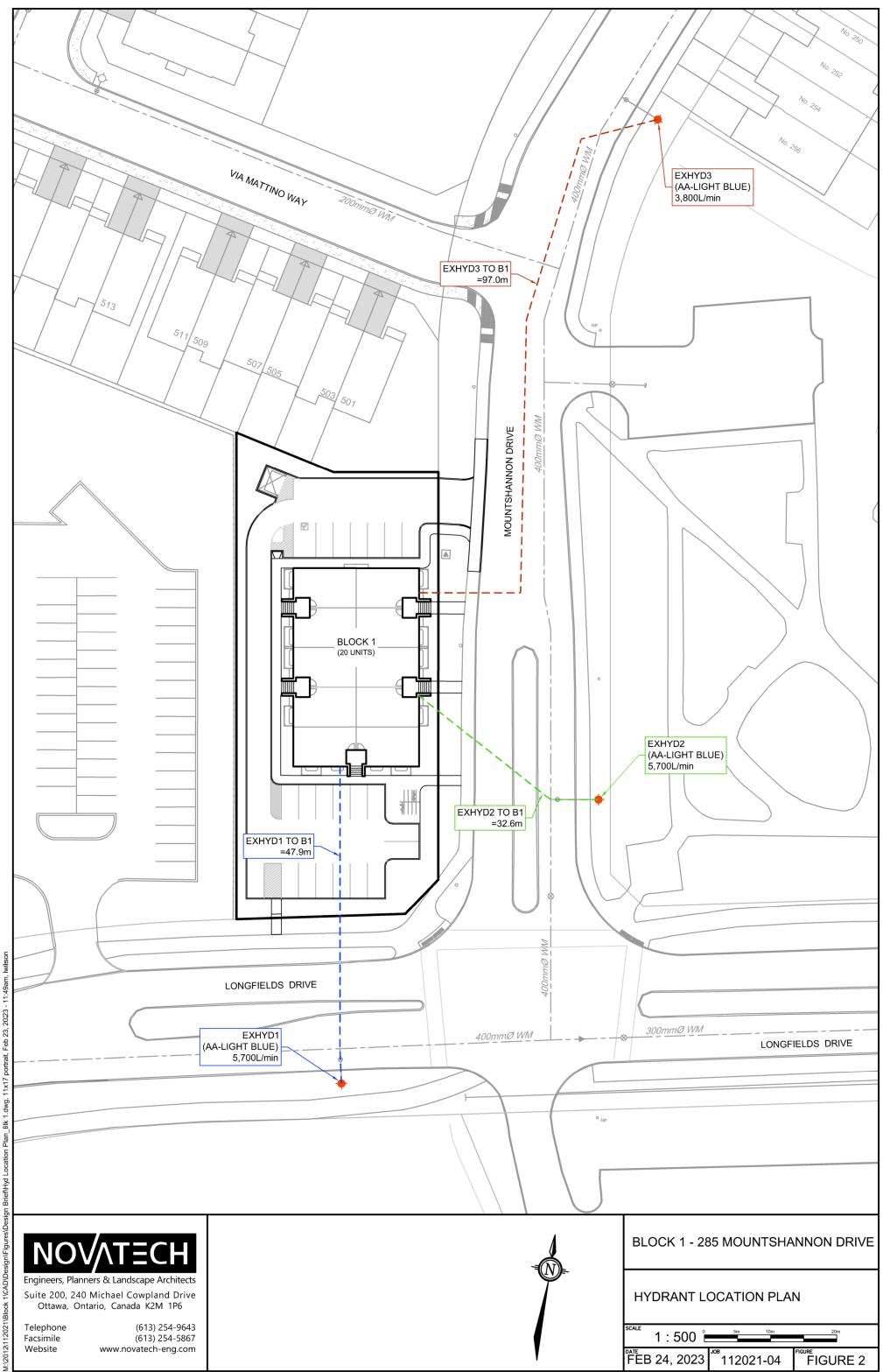
Water Demand Parameters

Apartments (2 Bedroom)	2.1	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	200	L/s

FUS - Fire Flow Calculations

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects


Legend

Novatech Project #: 112021-04 Project Name: Block 1 Date: 1/19/2023 Input By: Lucas Wilson Reviewed By: Mark Bissett

Building Description: 20 Unit Apartment

Type V - Wood frame

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			
	Construction Material			Mult	iplier	
1	Coefficient related to type of construction C	Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction Type I - Fire resistive construction (2 hrs)	Yes	1.5 Varies 1 0.8 0.6	1.5	
	Floor Area					
2	Α	Building Footprint (m ²) Number of Floors/Storeys Area of structure considered (m ²)	570 3		1,710	
	F	Bass firs flow without reductions				14,000
		Reductions or Sur	harges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
3 (1)		Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-25%	10,500
Sprinkler Reduction			FUS Table 4	-	ction	
4 (2)		Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System Area of Sprinklered Coverage (m ²)	Cumulati	-30% -10% -10% ve Sub-Total 0%	0%	0
				nulative Total	0%	
	Exposure Surch		FUS Table 5		Surcharge	
5	(3)	North Side East Side South Side West Side	20.1 - 30 m >30m >30m >30m		10% 0% 0% 0%	1,050
		Cumulative Total		10%		
		Results				
		Total Required Fire Flow, rounded to nea	arest 1000L/mi	n	L/min	12,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min) or			L/s USGPM	200 3,170

SHT11X17.DWG - 279mmX432mm

APPENDIX B

Excerpts from Longfields Central Site Servicing Report Stantec 2002 Update – HGL Excerpts PCSWMM Storage Node Curves PCSWMM Model Results (Ponding) PCSWMM Model Schematics PCSWMM Model Results (100-year output data) Tempest LMF Correspondence & Documentation

Longfields Central Site Servicing and Stormwater Management Study

Prepared for:

171 Claridge Drive Ottawa, ON K2J 5V8

Prepared by:

NOVATECH ENGINEERING CONSULTANTS LTD.

Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

> Issued: June 7, 2013 Revised: February 14, 2014 Revised: April 3, 2014 Revised: May 16, 2014 Revised: June 12, 2014 Revised: July 25, 2014

Ref: R-2014-073 Novatech File No. 112021 system will not experience any severe flooding even with a 20% increase during the 100-year event.

It was determined that overland flow within the rearyard swales will convey to a max depth of 0.37m under dynamic conditions during the 100 year event. This is due to maximizing the amount of storage area within the rearyards to meet the criteria set out for the development (40 m^3 /ha of storage within rearyard areas). A check of the clearance from the 100 year ponding elevation within the rearyards to the rear building terrace elevations indicate that there is sufficient space between the two elevations for the dynamic flows to not encroach the units. It has been determined that no rearyard ponding is occurring during the 5 year storm event, as all conveyance of flow is being maintained within the RYCB pipe interconnections. All dynamic ponding depths for both the 5 and 100 year storm events at each inlet have been added to the tables within drawing 112021-DET in **Appendix E**.

5.4.3 SWM Results

The constraints to the site were to restrict flows leaving the storm system to 64 L/s/ha and maintain an overall site storage of 100 m³/ha. Major system flow beyond the 64 L/s/ha entering the storm sewers are to be conveyed along Mountshannon Drive and into the existing SWM Park 959 as stated in the *Longfields Davidson Heights Serviceability Study Update Report* (1998).

The external Campanale Homes development to the South of the site is to be controlled to the design provided in the Longfields Subdivision Report (Stantec – 2013) prior to entering the Longfields Central Development.

As stated in Section 5.3.5, portions of the Campanale Homes adjacent areas are conveying uncontrolled (A-17, A-18) as well as the major system overland flow from a large amount of rearyard area (A-33) onto the Longfields road network as per the design for the Campanale Homes – Longfields Subdivision (Stantec Engineering, 2013). The Longfields Central Development will provide strictly conveyance for the flows contributed from the Campanale Homes adjacent areas as described in the following tables. **Table 5.4 and Table 5.5** provided below outline the SSA hydrologic model results for the Longfields Central Development and contributing flows from the adjacent Campanale Development.

Description	Area	Minor	System Flow	Total Static Ponding		Major System Flow	
	(ha)	(L/s)	(L/s/ha)	(m ³)	(m³/ha)	(L/s)	
High Density Residential							
Block 1 (A-29)	0.21	6.0	28.8	20.8	100.0	94.3	
Block 2 (A-30)	0.15	9.6	63.9	25.0	166.7	10.3	
Block 21(A-2a/b)	1.00	37.6	37.5	270.0	269.4	38.8	
Medium Density Residential							
Medium-Density	3.63	255.5	70.4	185.6	51.2	246.7	
Total	4.99	308.6	61.9	501.4	100.5	390.2	

Table 5-4: Longfields Central Development SWM Breakdown (100-year storm event)

November 22, 2013

- Longfields Development (by Campanale)
 - Revised Rearyard Areas: 0.34 ha + 0.29ha = 0.63 ha @ C = 0.54
 - Right-Of-Way Areas: 0.28 ha+ 0.09 ha = 0.37 ha @ C = 0.69

It is therefore noted that the revised areas contributing from the Campanale Development total to 1.0 ha and may cause an increase in major system flow contributing to SWM Park 959.

5.4.5 Future Development Blocks

During detailed design of the Longfields Development, it was determined that the medium density residential area is unable to provide the 64 L/s/ha and 100 m³/ha through surface storage within the roadway and rearyard areas as requested in the *Longfields Davidson Heights Serviceability Study Update Report (1998)*. To achieve the guidelines set out in the Longfields Davidson Heights Serviceability Study Update Report (1998). To achieve the guidelines set out in the Longfields Davidson Heights Serviceability Study Update Report (1998). To achieve the guidelines set out in the Longfields Davidson Heights Serviceability Study Update Report (1998) throughout the development, the following high unit residential blocks will be restricted to the design criteria provided below:

<u>Block 1 (0.21 ha)</u>

- Restricted minor system flow of 6.0 L/s (28.8 L/s/ha)
- On-Site storage of 20.8 m³ (100 m³/ha)

Block 2 (0.15 ha)

- Restricted minor system flow of 9.6 L/s (64 L/s/ha)
- On-Site storage of 25 m³ (167 m³/ha)

Block 21 (1.0 ha)

- Restricted minor system flow of 37.6 L/s (37.5 L/s/ha)
- On-Site storage of 270 m^3 (270 m^3 /ha)
 - \circ 100 m³ of surface storage
 - 170 m³ of underground storage using either:
 - Superpipe storage
 - Underground storage chambers

It has been determined that the storage suggested above for each future residential block is sufficient for each block and can be accommodated through both surface and subsurface storage. Conditions must be placed within the subdivision agreement and registered on title for the site plan for all future blocks for the on-site storage criteria and restrictive release rates provided above.

Conceptual calculations have been completed for Block 21 to ensure sufficient storage is available within the future block. Through conceptual grading, it was determined that 100 m³ of surface storage can be provided within storage sags throughout the parking lot areas. The additional 170 m³ of necessary storage will be provided beneath the parking lot areas throughout the block using underground storage chambers. The chambers will be installed to provide temporary subsurface storage of runoff from storms up to 1:100 year event. The chambers conceptually designed for this report are provided by Stormtech (or approved equivalent) and have been designed with the following system requirements:

Novatech Engineering Consultants Ltd.

August 12th , 2002

File: 634 00365

Jean Lachance, P.Eng. Program Manager, Infrastructure Approvals (South Ottawa) Development Services Department City of Ottawa 2 Constellation Drive, 5th floor Nepean, On, K2G 5J9

Dear Mr. Lachance

Reference: Update to Longfields / Davidson-Heights model

Further to our July 19th, 2002 memo to Larry Erion (DSD) and Chris Rogers (TUPW) regarding changes to the above noted model, please find herein a summary of the modifications that were undertaken as well as a revised drainage area map, SWM pond summary and HGL summary.

Changes to DDSWMM Model:

The latest DDSWMM version (LDJLY-15.dat) was obtained from the Infrastructure Branch of TUPW. The model was modified to reflect to following changes:

- The major flow from Area 85 now drains to Area 51 and eventually to pond 998 (along Beatrice Dr.) as opposed to draining to pond 198, which is also the culvert on Woodroffe Avenue.
- Area 78 now drains to Area 77 and eventually to pond 998 on Beatrice Drive. This area also used to drain to pond 198 on Woodroffe Avenue.
- It was noted that in the current DDSWMM version, pond 997 (at Beatrice and Claridge) was removed and all areas draining to it were re-routed to pond 998 (on Beatrice, north of Claridge). This change was confirmed by Larry Erion.
- The overland areas draining to pond 198 (Woodroffe culvert) consist of areas 50 and 87 for a total drainage area of 11.14 ha.
- Areas 943 and 944, that consists of Woodroffe avenue between Claridge Drive and Fallowfield Road, were halved since half of Woodroffe avenue will drain to roadside ditches (and eventually into a ravine). The area of Woodroffe that

drains to the minor system was modified to reflect the actual number of Catchbasins (as per the McCormick Ranking Drawings) and the catchbasins were modified to simulate actual CBs with a maximum capture of 50 L/s (as opposed to 19.8 L/s from regular CBs with ICDs).

All changes are documented in the model. The model has been saved as version 16 (LDJLY-16.txt). The revised drainage area map that was produced by TUPW has been revised to reflect the above noted changes. The map is appended herein.

Impact on Woodroffe Avenue Culvert:

э

ş

1

The proposed 600 mm dia concrete culvert on Woodroffe Avenue (between Claride Drive and Longfields Drive) was reviewed base on the revised analysis. The original DDSWMM analysis estimated the peak flow at this location to be approximately 3.34 cms. The modifications to the major system have reduced this peak flow to 1.55 cms.

Using the profile information provided by McCormick Ranking, the 600 mm dia culvert will have the following specifications:

- Culvert Dia = 600 mm
- Culvert length = 45 m
- Inlet at 90.48, outlet at 90.35, slope of 0.29%

The analysis was undertaken using the Environment Canada culvert program. In order to pass the 1.55 cms flow without overtopping the roadway, **twin 600 mm diameter concrete culverts will be required**. The maximum upstream WL will be 92.45 m.

Impact on Pond 998 (Beatrice Drive):

Since more flow is now being diverted to the Beatrice Drive Pond, we have reviewed the required volume for this pond. The total area draining to Pond 998 now consists of 46.05 ha as opposed to 29.73 ha outlined in Appendix J of the 1998 study. The new required volume for this facility is 3656 m3 with a corresponding area of 0.55 ha (assuming a depth of 0.7 m).

We have revised appendix J and have appended it to this letter for your information.

Impact on Minor System (Changes to XP-SWMM model):

The latest XP-SWMM version (LDHNOV15.XP) was obtained from the Infrastructure Branch of TUPW. The revised output from the modified DDSMMM model was interfaced with the XP-SWMM model and a new run was done to obtain new results.

The analysis shows that the HGL has not increased due to the changes to Woodroffe Avenue. Actually, the results show a slight decrease in HGL attributable most likely to the timing of the uncontrolled flow from Woodroffe Avenue.

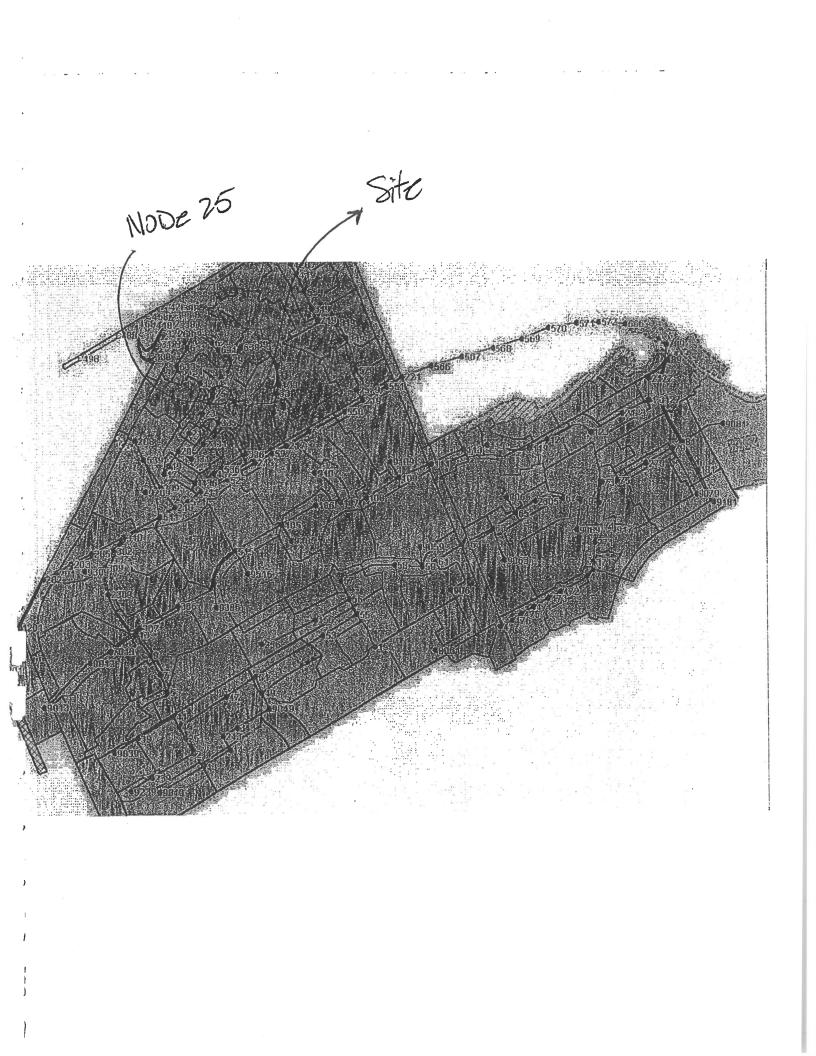
A new 100 year HGL table has been prepared and is appended to this letter. Please note that most of the changes to the HGL from the original table are due to changes in pipe inverts, lenghts and locations. <u>It is therefore critical that inverts (or obverts) or proposed or as-built drawings be checked against the model to ensure that HGL are realistic. It may be necessary to revise the model again to reflect what is being proposed.</u>

We have also included for your information a revised drainage area map that shows the latest drainage area boundaries.

If you have any questions regarding the above, please do not hesitate to contact the undersigned at 724-4085.

Yours very truly,

STANTEC CONSULTING LTD.


Eric M. Tousignant, P.Eng. Senior Environmental Engineer

	Visieol HC			21
	emoniekie	Lands with the sale Operational Low and Street Inc. and the of	Matelej î	A CONTRACTOR
	CHIGHTERE	Aurolah Shink and A	11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$(f, f_{i}) \in \{1, \dots, n\}$			5-1 <u>21037-1011</u>	
			NORIOUS	
	CIEROUINOP/			
The state in the second s	Haven(one)	Files Stillens,	A HIGE A	
In Natiest	Vontel@is / a	NUCRES -	<u>A UNEXCISATION AND A COMPANY A</u>	o interession
		00.004	00 4024	90.0813
638	92.14	88.631	90.1231 89.4739	89.391
419	92.06	89.63 89.47	89.4165	89.3237
559	91.98		89.3557	89.2663
319	91.88	89.13	89.3557	89.1854
719	91.96	88.989		89.9579
541	92.38	88.4	90.0002 89.9187	89.8761
31	91.56	88.299		89.8506
533	92.9	88.169	89.8934 89.8414	89.8506
33	91.8	87.972	89.8414	89.7986
35	92.19	87.802	89.7710	89.4701
217	92.1	88.276	88.9684	88.8981
819	and the second division of the second divisio	88.652	88.6794	88.6211
919	and the second se	88.304	88.5978	88.5399
579	And and an other statements of the statement of the state	88.164	and the second sec	88.3329
111	and the second se	87.803	88.3425	89.5398
463	the second se	88.761	89.5013	and the second se
525	and the second design of the	88.696	89.9692	the second se
215	the second data and the second	88.486	89.6761	89.6356
210	and the second se	89.273	90.2822	
209	the second s	89.12	And and an other statements of the second stat	and the same of th
539		89.24	and the second data and the se	and the second state of th
208	or other statements and the statement of t	89.42	And the state of the local division of the state of the s	and the second se
211	NAME AND ADDRESS OF TAXABLE PARTY.	the second se	and the second design of the s	the second se
17	the second distance of	No. of Concession, name of	and the second se	and the local data in the local data where the loca
19		and the second sec		and the second state of th
43		and the state of t	Card and the second s	the state of the s
43			and the second se	THE OWNER AND ADDRESS OF TAXABLE PARTY.
43		the local division of	and the second se	
2		and the second se	and the second se	
33		and the second se	and the second design of the s	the second
33	the second se	NAMES AND POST OFFICE ADDRESS OF TAXABLE PARTY.	And a second	and the same state of the same
53			the second se	
33		and the second design of the s	NAME OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.	
2	0 92.6	and the second design of the s	the set of	
2		The second se	and the second se	the second designed and the second designed as the second designed a
233		the same of the local division of the local	and the second se	
2	5 9:	and the second design of the s	and the second se	
2	.7 92.1	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	and the second se	The second
257	9 92.		and the second se	
21	9 92.	and the second se	states and the second states	the second se
55	and whether the second s		and the second se	other water water in the second se
54	the second data and the second second data and the second data and	the second se	states and the second se	
	21 91.	1 87.50	3 87.722	87.669

 \leftarrow

 $* \rightarrow$

4

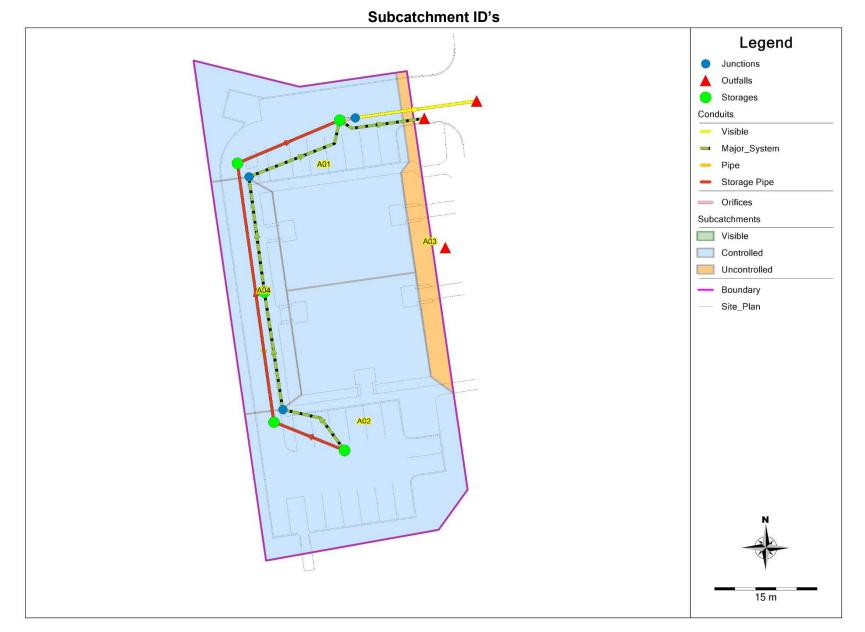
Block 1 - Longfields Central (112021-04) PCSWMM Storage Curves (surface storage)

CB1-Storage								
Depth (m)	Area (m ²)	Volume (m ³)						
0.00	0.36	0.00						
1.40	0.36	0.50						
1.70	297.64	45.20						
1.70	0.00	45.35						
2.40	0.00	45.35						

CBMH1-Storage							
Depth (m)	Volume (m ³)						
0.00	1.17	0.00					
2.46	1.17	2.88					
2.66	203.80	23.38					
2.661	0.00	23.48					
3.46	0.00	23.48					

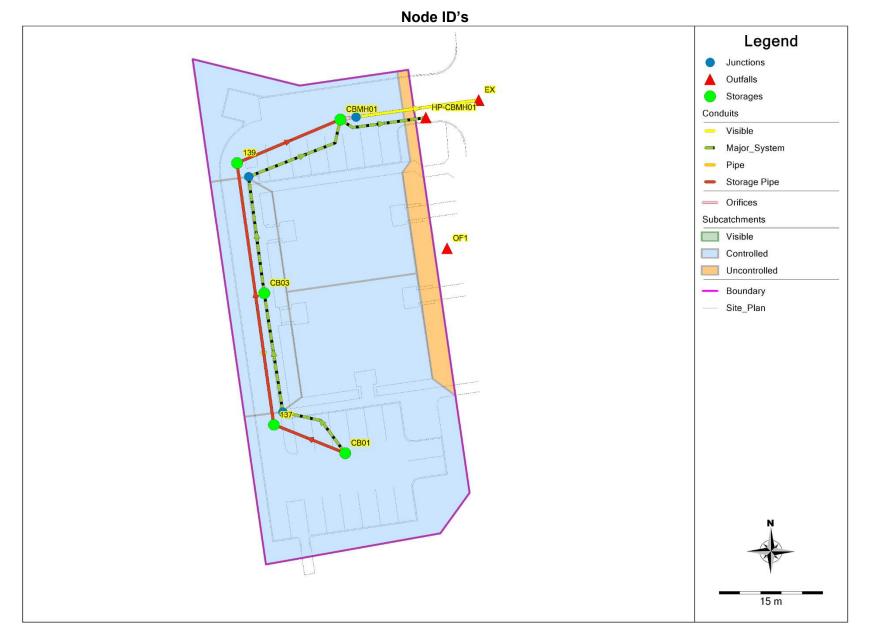
CB3-Storage							
Depth (m)	Area (m2)	Volume (m3)					
0.00	0.36	0.00					
1.40	0.36	0.50					
1.60	45.60	5.10					
1.60	0.00	5.12					
2.40	0.00	5.12					

Block 1 - Longfields Central (112021-04) PCSWMM Model Results (Ponding)



		Ponding	HGL Elev. (m) ¹			Ponding Depth (m)			Spill Depth (m)							
ID	Elev. (m)	Elev. (m)	Elev. (m)	Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)
CB01	91.25	92.65	92.95	0.30	92.50	92.65	92.79	92.83	0.00	0.00	0.14	0.18	0.00	0.00	0.00	0.00
CB03	91.25	92.65	92.85	0.20	92.50	92.65	92.75	92.78	0.00	0.00	0.10	0.13	0.00	0.00	0.00	0.00
CBMH01	90.04	92.50	92.70	0.20	92.50	92.65	92.72	92.73	0.00	0.15	0.22	0.23	0.00	0.00	0.02	0.03

¹ 3-hour Chicago Storm.


Block 1 – 285 Mountshannon Drive (112021-04) PCSWMM Model Schematic

Block 1 – 285 Mountshannon Drive (112021-04) PCSWMM Model Schematic

Block 1 – 285 Mountshannon Drive (112021-04) PCSWMM Model Output 100yr 3-hour Chicago Storm

NOV	ΛΤΞϹΗ
Engineers, Planner	s & Landscape Architects

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

Name	Data Source			Data Type	Recording Interval	
RG-1	C3hr-100yr			INTENSITY	10 min.	

Name	Area	Width	%Imperv	%Slope	Rain Gage	Outlet
	0.07	~~ ~~	07.00			000000

A01	0.07	29.20	87.00	2.0000 RG-1	CBMH01
A02	0.10	38.00	78.90	2.0000 RG-1	CB01
A03	0.01	27.50	21.80	2.0000 RG-1	OF1
A04	0.03	18.13	65.50	1.5000 RG-1	CB03

************ Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
Dummy_MH139 HP-CB01	JUNCTION	90.04 92.95	2.46	0.0	
HP-CB01 HP-CB03	JUNCTION JUNCTION	92.85	1.00	0.0	
EX HP-CBMH01	OUTFALL	89.81 92.70	0.25	0.0	
OF1 137	OUTFALL	92.62 90.64	0.00	0.0	
139	STORAGE	90.21	2.70	0.0	
CB01 CB03	STORAGE STORAGE	91.25 91.25	2.40 2.40	0.0	
CBMH01	STORAGE	90.04	3.46	0.0	

,	ł	*	*	*	*	*	*	*	*	*	*	*
Т	i.	i	n	k		s	11	m	m	а	r	v

Name	From Node	To Node	Type	Length	%Slope F	loughnes
139-CBMH01	139	CBMH01	CONDUIT	16.7	1.0180	0.013
CB01-MH137	CB01	137	CONDUIT	11.2	1.0715	0.013
CB03-137	CB03	137	CONDUIT	1.8	0.5556	0.013
CBMH01-EX	Dummy_MH139	EX	CONDUIT	22.9	1.0044	0.013
MH137-MH139	137	139	CONDUIT	37.0	0.9730	0.013
MS-CB01(1)	CB01	HP-CB01	CONDUIT	3.0	-10.0504	0.015
MS-CB01(2)	HP-CB01	CB03	CONDUIT	3.0	10.0504	0.015
MS-CB03(1)	CB03	HP-CB03	CONDUIT	3.0	-6.6815	0.015
MS-CB03(2)	HP-CB03	CBMH01	CONDUIT	3.0	11.7469	0.015
MS-CBMH01	CBMH01	HP-CBMH01	CONDUIT	3.0	-6.6815	0.015
O-CBMH01	CBMH01	Dummy_MH139	ORIFICE			

Cross Section Summary

***********	****						
Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
139-CBMH01	CIRCULAR	0.38	0.11	0.09	0.38	1	176.91
CB01-MH137	CIRCULAR	0.20	0.03	0.05	0.20	1	33.95
CB03-137	CIRCULAR	0.20	0.03	0.05	0.20	1	24.45

CBMH01-EX	CIRCULAR	0.25	0.05	0.06	0.25	1 59.60
MH137-MH139	CIRCULAR	0.30	0.07	0.07	0.30	1 95.39
MS-CB01(1)	RECT_OPEN	1.00	3.00	0.60	3.00	1 45107.44
MS-CB01(2)	RECT_OPEN	1.00	3.00	0.60	3.00	1 45107.44
MS-CB03(1)	RECT_OPEN	1.00	3.00	0.60	3.00	1 36778.58
MS-CB03(1) MS-CB03(2) MS-CBMH01	RECT_OPEN RECT_OPEN RECT_OPEN	1.00	3.00	0.60	3.00	1 48766.13 1 36778.58

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

***** Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date 12/05/2022 00:00:00 Ending Date 12/13/2022 00:00:00 Antecedent Dry Days 0.0
 Antecedent Dry Days
 0.0

 Report Time Step
 00:01:00

 Wet Time Step
 00:01:00

 Dry Time Step
 00:01:00

 Routing Time Step
 1.00 sec
 Variable Time Step YES Maximum Trials 8 Number of Threads 1 Head Tolerance 0.001500 m

*****	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Initial LID Storage	0.000	0.831
Total Precipitation	0.015	71.667
Evaporation Loss	0.000	0.000
Infiltration Loss	0.002	10.186
Surface Runoff	0.013	61.570
Final Storage	0.000	0.831
Continuity Error (%)	-0.123	

******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.013	0.128
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.015	0.149
External Outflow	0.028	0.277
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.001	0.006
Final Stored Volume	0.001	0.006
Continuity Error (%)	0.029	

Highest Flow Instability Indexes

Block 1 – 285 Mountshannon Drive (112021-04) **PCSWMM Model Output** 100yr 3-hour Chicago Storm

All links are stable.

Routing Time Step Summary			

Minimum Time Step	:	0.13	sec
Average Time Step	:	1.00	sec
Maximum Time Step	:	1.00	sec
Percent in Steady State	:	0.00	
Average Iterations per Step	:	2.00	
Percent Not Converging	:	0.00	
Time Step Frequencies	:		
1.000 - 0.871 sec	:	100.00	dр
0.871 - 0.758 sec	:	0.00	dр
0.758 - 0.660 sec	:	0.00	dр
0.660 - 0.574 sec	:	0.00	dр
0.574 - 0.500 sec	:	0.00	dр

*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Subcatchment Runoff Summary

			Total	Total	Total	Total	Imperv	Perv	Total	
Total	Peak	Runoff	IOCAL	IOCAL	IOCAL	IOLAL	Imperv	Perv	IOCAL	
			Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	
Runoff Subca 10^6 lt	Runof: atchment r !		mm	mm	mm	mm	mm	mm	mm	
A01			71.67	0.00	0.00	5.70	62.43	3.63	66.05	
0.05	35.47	0.922				0.00	5.6.60	5 04	60. A.C	
A02 0.06	45.20	0.871	71.67	0.00	0.00	9.30	56.62	5.84	62.46	
A03			71.67	0.00	0.00	34.29	15.63	21.83	37.46	
0.00	4.80	0.523								
A04 0.02	13.30	0.789	71.67	0.00	0.00	15.24	47.01	9.51	56.52	

***** Node Depth Summary *********

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	0cci	of Max urrence hr:min	Reported Max Depth Meters
Dummy_MH139	JUNCTION	0.62	0.62	90.66	0	01:09	0.62
HP-CB01	JUNCTION	0.00	0.00	92.95	0	00:00	0.00
HP-CB03	JUNCTION	0.00	0.00	92.85	0	00:00	0.00
EX	OUTFALL	0.85	0.85	90.66	0	00:00	0.85
HP-CBMH01	OUTFALL	0.00	0.02	92.72	0	01:10	0.02
OF1	OUTFALL	0.00	0.00	92.62	0	00:00	0.00
137	STORAGE	0.09	2.11	92.75	0	01:10	2.11
139	STORAGE	0.52	2.52	92.73	0	01:09	2.52
CB01	STORAGE	0.04	1.54	92.79	0	01:12	1.54
CB03	STORAGE	0.04	1.50	92.75	0	01:11	1.50
CBMH01	STORAGE	0.69	2.68	92.72	0	01:09	2.68

**** Node Inflow Summary

		Maximum	Maximum			Lateral	Total	Flow		
		Lateral	Total	Time	of Max	Inflow	Inflow	Balance		
		Inflow	Inflow	0ccu	rrence	Volume	Volume	Error		
Node	Type	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr	Percent		
Dummy_MH139	JUNCTION	0.00	3.52	0	01:09	0	0.228	0.000		
HP-CB01	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr	
HP-CB03	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr	
EX	OUTFALL	0.00	3.52	0	01:09	0	0.228	0.000		
HP-CBMH01	OUTFALL	0.00	56.40	0	01:10	0	0.194	0.000		
OF1	OUTFALL	4.80	4.80	0	01:10	0.00412	0.00412	0.000		

VATEC
anners & Landscape A

139 STC CB01 STC CB03 STC	RAGE 0.00 RAGE 0.00 RAGE 45.20 RAGE 13.30 RAGE 35.47	33.90 35.54 45.20 13.30 66.70	0 0 0 0	01:04 01:03 01:10 01:10 01:03	0 0.0593 0.0164 0.0482	0.077 0.0817 0.0593 0.0164 0.278	-0.028 -0.000 0.024 -0.018 -0.000
---------------------------------	--	---	------------------	---	---------------------------------	--	---

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
Dummy_MH139	JUNCTION	192.00	0.371	1.839

***** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow LPS
137	0.000	3	0	0	0.002	64	0 01:10	35.54
139	0.001	19	0	0	0.003	93	0 01:09	33.97
CB01	0.000	0	0	0	0.010	23	0 01:12	29.50
CB03	0.000	0	0	0	0.002	34	0 01:11	11.34
CBMH01	0.001	5	0	0	0.023	100	0 01:09	59.93

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
EX	100.00	0.33	3.52	0.228
HP-CBMH01	99.99	0.28	56.40	0.194
OF1	1.56	0.38	4.80	0.004
System	67.18	0.99	64.59	0.426

***** Link Flow Summary

Link	Туре	Maximum Flow LPS	0cci	of Max irrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
139-CBMH01	CONDUIT	33.97	0	01:03	0.31	0.19	1.00
CB01-MH137	CONDUIT	29.50	0	01:02	0.94	0.87	1.00
CB03-137	CONDUIT	11.34	0	01:03	0.36	0.46	1.00
CBMH01-EX	CONDUIT	3.52	0	01:09	0.07	0.06	1.00
MH137-MH139	CONDUIT	35.54	0	01:03	0.50	0.37	1.00
MS-CB01(1)	CONDUIT	0.00	0	00:00	0.00	0.00	0.07
MS-CB01(2)	CONDUIT	0.00	0	00:00	0.00	0.00	0.05
MS-CB03(1)	CONDUIT	0.00	0	00:00	0.00	0.00	0.05
MS-CB03(2)	CONDUIT	0.00	0	00:00	0.00	0.00	0.11
MS-CBMH01	CONDUIT	56.40	0	01:10	0.16	0.00	0.12
O-CBMH01	ORIFICE	3.52	0	01:09			1.00

Block 1 – 285 Mountshannon Drive (112021-04) PCSWMM Model Output 100yr 3-hour Chicago Storm

Flow Classification Summary

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
Conduit	/Actual Length	Dry	Up Dry	Down Dry	Sub Crit	Sup Crit	Up Crit	Down Crit	Norm Ltd	Inlet Ctrl
139-CBMH01	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
CB01-MH137	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.00	0.00
CB03-137	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.00	0.00
CBMH01-EX	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
MH137-MH139	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
MS-CB01(1)	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-CB01(2)	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-CB03(1)	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-CB03(2)	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-CBMH01	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.02	0.00

Conduit Surcharge Summary

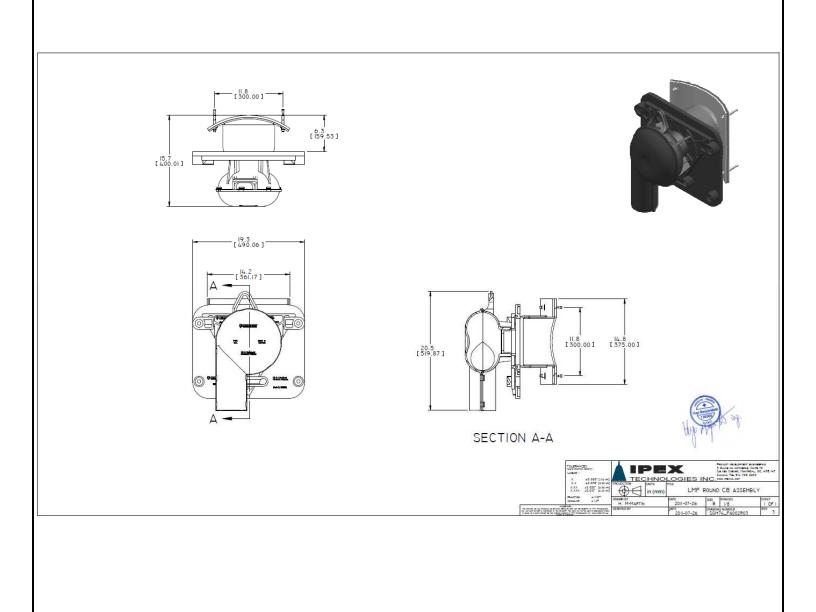
Conduit	 Both Ends	Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
Conduit	Docii Liius	opscream	Diiscream	NOTINGI FIOW	DIMICEU
139-CBMH01	192.00	192.00	192.00	0.01	0.01
CB01-MH137	6.26	6.26	6.53	0.01	0.01
CB03-137	6.25	6.25	6.28	0.01	0.01
CBMH01-EX	192.00	192.00	192.00	0.01	0.01
MH137-MH139	7.59	7.59	192.00	0.01	0.01

Analysis begun on: Wed Feb 15 13:15:20 2023 Analysis ended on: Wed Feb 15 13:15:25 2023 Total elapsed time: 00:00:05

TEMPEST Product Submittal Package

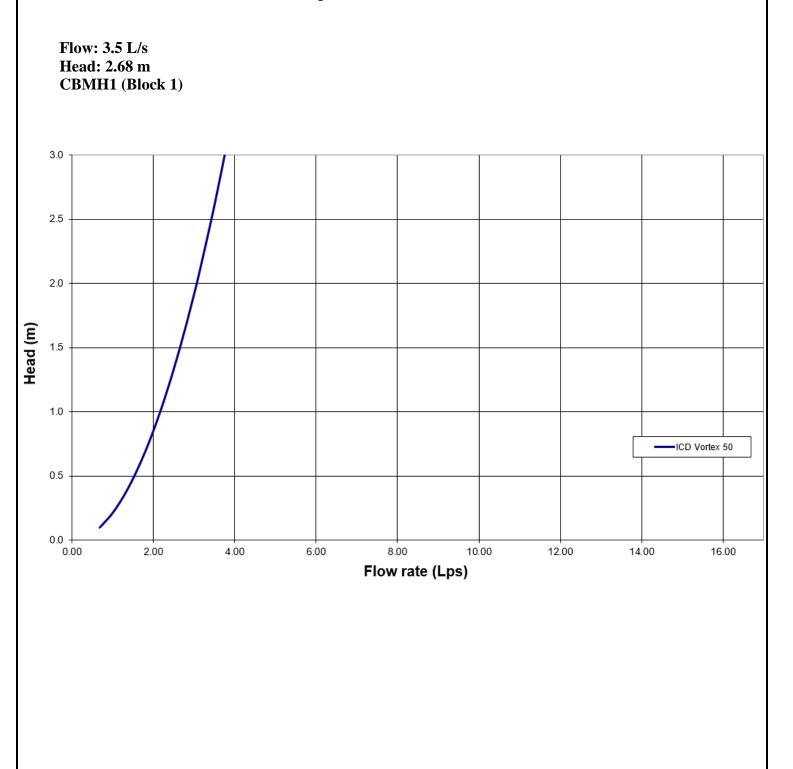
Date: February 22, 2023

<u>Customer</u>: Novatech


<u>Contact</u>: Lucas Wilson

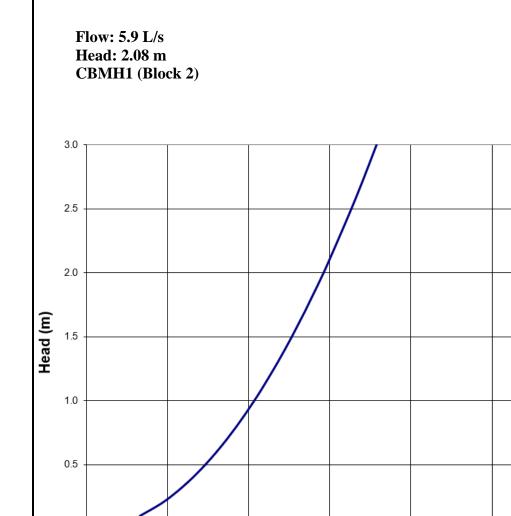
Location: - -

Project Name: 255 & 285 Mountshannon Dr



Tempest LMF ICD Rd Shop Drawing

Tempest LMF ICD Flow Curve



IPEX

-ICD Vortex 69

16.00

4.00

6.00

0.0

2.00

8.00

Flow rate (Lps)

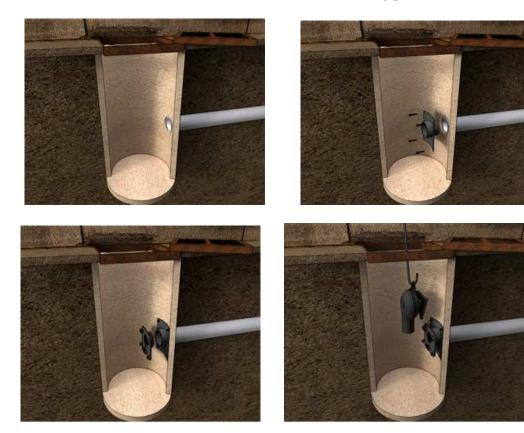
10.00


12.00

14.00

Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.



Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX <u>Online Solvent</u> <u>Cement Training Course</u>.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

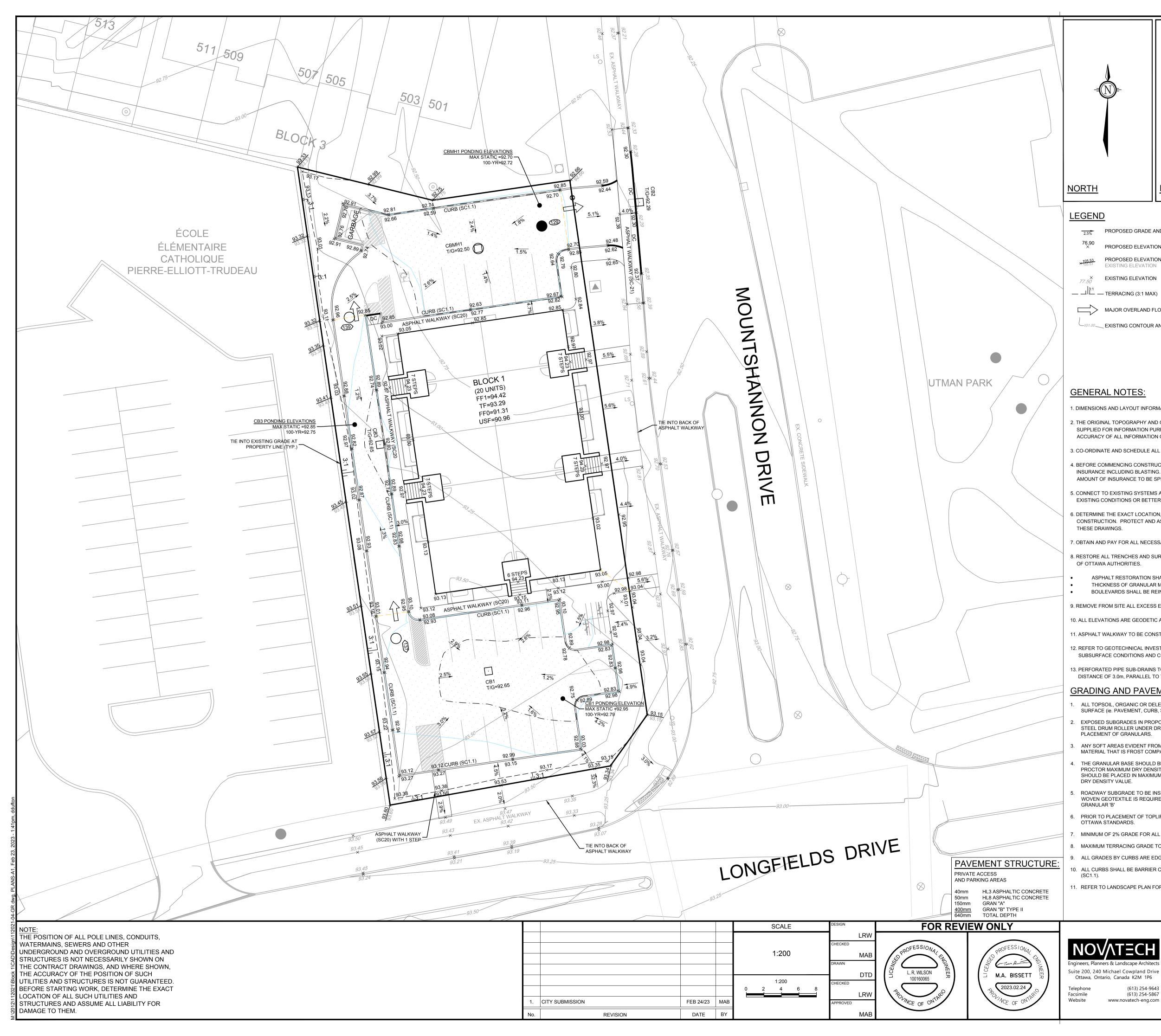
Installation

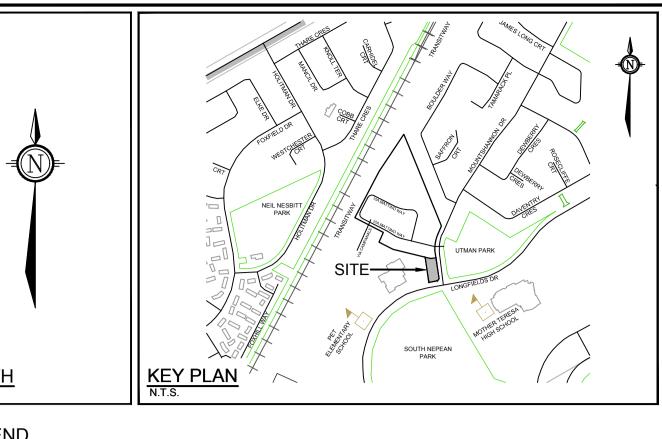
Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

APPENDIX C: Drawings

112021-04-GP 112021-04-GR 112021-04-STM 112021-04-ESC

513			
511 509			
507 505	PHALT W		a roverlad or roverlad or westories
503 501	75.81 75.41	77[.3m	
	n - 250mmØ W	69.4m - 40	
	RELOCATE EXISTING CB	omme SAT	
	RELOCATE EXISTING CB AND CONVERT TO SURFACE INLET PER S19 C C C C C C C C C C C C C C C C C C C	16% 	
	VB1 - a WM	ROAD REINSTATEMENT PER R10	NORTH KEY PLAN × ~
		CONNECT TO EX. PER S11.1 — LATERAL INV.=89(64 SAN MAIN OBV=88.24	4 SANITARY MANHOLE, SEWER & DIRECTION
ÉCOLE ÉLÉMENTAIRE	22.911 201 00% 0	CONNECTITO EX. PER S11.1 -LATERAL INV.=89.81 STM MAIN OBV=89.30	Image: Addition of Flow Image: Addition of Flow Image: Addition of Flow Image: Addition of Flow Image: Addition of Flow Image: Addition of Flow
CATHOLIQUE PIERRE-ELLIOTT-TRUDEAU	T.3m-15 SAN @ 1.0 STM @		<u></u> WATERMAIN AND DIAMETER
TE-TM-STAMPE DOMMING	1.00%		Source and the second s
	SPHALT WALKWAY	<u>S</u>	SITE LEGAL BOUNDARY EXISTING PROPERTY & ROW LINES
WTR: 1	ING SERVICES: 100mmØ INV=90.58 200mmØ INV=90.58	<u>8</u>	GENERAL NOTES:
STM: 1	150mmØ INV=90.58		1. DIMENSIONS AND LAYOUT INFORMATION SHALL BE CONFIRMED 2. THE ORIGINAL TOPOGRAPHY AND GROUND ELEVATIONS, SERVIC SUPPLIED FOR INFORMATION PURPOSES ONLY. IT SHALL BE TH
BLOCK (20 UNITS			ACCURACY OF ALL INFORMATION OBTAINED FROM THIS PLAN.
FF1=94.4 TF=93.2 FF0=91.4		A A	 4. BEFORE COMMENCING CONSTRUCTION, PROVIDE PROOF OF CONCLUDING BLASTING. INSURANCE POLICY TO NAME THE OWNER 5. CONNECT TO EXISTING SYSTEMS AS DETAILED, INCLUDING ALL INCLUDING AND ADDRESS AND ADDR
USF=90	.96	V CONC	 EXISTING CONDITIONS OR BETTER. 6. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVAT CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR
CATCHBASIN TABLE		N CRETE	DRAWINGS. 7. OBTAIN AND PAY FOR ALL NECESSARY PERMITS AND APPROVAL
CB No. T/G ELEVATION INVERT CB1 92.65 91.25			8. RESTORE ALL TRENCHES AND SURFACE FEATURES TO EXISTING MUNICIPAL AUTHORITIES.
CB2 92.29 90.81 CB3 92.65 91.57			9. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL UNLESS REMOVE FROM SITE ALL ORGANIC MATERIAL AND DEBRIS UNLES 10. ALL ELEVATIONS ARE GEODETIC AND UTILIZE METRIC UNITS.
SAN MANHOLE TABLE	X. ASPHA		11. REFER TO GEOTECHNICAL INVESTIGATION PROJECT: PG2306-1 SUBSURFACE CONDITIONS AND CONSTRUCTION RECOMMENDA
MANHOLE ID SIZE (mm) T/G ELEV INVERT (m) (m)	ALTWALKI		12. PERFORATED PIPE SUB-DRAINS TO BE PROVIDED AT SUBGRAD DISTANCE OF 3.0m, PARALLEL TO THE CURB IN TWO DIRECTION SEWER NOTES:
129 1200mmØ 92.63 S=90.49 E=89.81			1. SPECIFICATIONS: ITEM SPEC. No. CATCHBASIN (600x600mm) 705.010 STORM / SANITARY MANHOLE (1200Ø) 701.010
LOCATION ELEVATIONS CLEARANCE			ROADSIDE CB, FRAME & COVER S2 & S19 STORM / SANITARY MH FRAME & COVER S24.1 / S24 & S3 STORM SEWER PVC DR 35 / CC SANITARY SEWER PVC DR 35
C1 WM INV=89.91 SAN OBV=88.24 1.67m	(WAY	5m - 300m	CATCHBASIN LEAD PVC DR 35 2. INSULATE ALL PIPES (SAN/STM) THAT HAVE LESS THAN 1.5m CO CLEARANCE BETWEEN PIPE AND INSULATION.
C2 WM INV=89.87 STM OBV=89.29 0.58m C3 SAN INV=89.66 STM OBV=99.20 0.36m		mø stm	 SERVICES ARE TO BE CONSTRUCTED TO 1.0m FROM BUILDING PIPE BEDDING, COVER AND BACKFILL ARE TO BE COMPACTED
C3 STM OBV=89.30 0.30m C4 SAN INV=90.51 STM OBV=90.21 0.30m	0.10%	0.36%	DENSITY. THE USE OF CLEAR CRUSHED STONE AS A BEDDING5.5.SEWER SERVICE CONNECTIONS PER CITY OF OTTAWA DETAIL
C5 STM INV=90.06 WM OBV=89.47 0.59m	ommø stin @ 0.10%		 BACKWATER VALVES ARE TO BE INSTALLED ON SERVICES AS THE SITE SERVICING CONTRACTOR SHALL PERFORM FIELD TE LEAKAGE TESTING SHALL BE COMPLETED IN ACCORDANCE W
WATERMAIN TABLE 185.501 97.4 Optimized for the percention of	4m - 7500		COMPLETED ON ALL SANITARY SERVICES TO CONFIRM PROPE TESTS SHALL BE PERFORMED IN THE PRESENCE OF THE ENG 8. STORM MANHOLES AND CBMHS SHALL HAVE 300mm SUMPS U
Station ELEVATION WATERMAIN DESCRIPTION 0+000.00 92.33 89.93 CONNECT TO EXISTING			 9. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS, 2 SEWERS. UPON COMPLETION OF CONTRACT, THE CONTRACTO APPURTENANCES.
0+015.98 92.63 90.23 VB1 0+027.71 92.60 90.20 45° H. BEND 0+030.54 92.54 90.14 45° H. PEND			10. ALL CATCH BASIN LEADS SHALL BE 200mmØ @ 1.0% (MIN.) UNL 11. ALL CATCH BASINS SHALL HAVE 600mm SUMPS UNLESS INDIC/
0+030.54 92.54 90.14 45° H. BEND 0+032.32 92.54 90.14 V. BEND 0+033.01 92.56 89.47 V. BEND			WATERMAIN NOTES: 1. GENERAL: ITEM
0+034.11 92.56 89.47 V. BEND 0+034.80 92.56 90.16 V. BEND	62555666	4007771	THEM WATERMAIN TRENCHING THERMAL INSULATION IN SHALLOW TRENCHES WATERMAIN CROSSING BELOW SEWER / OVER SEWER THRUST BLOCK
0+040.06 92.79 90.58 CAP	T WALKWAY	mowi	THE WATERMAIN SHALL BE PVC DR 18 IN ACCORDANCE WITH I INDICATED, COMPLETE WITH TRACING WIRE AND CATHODIC PI
STM MANHOLE TABLE MANHOLE ID SIZE T/G ELEV INVERT 100YR 100YR HEAD % (m) (m) (m) (m) (m)			3. SUPPLY AND CONSTRUCT ALL WATERMAINS AND APPURTENAL AND SPECIFICATIONS. EXCAVATION, INSTALLATION, BACKFILL CONNECTIONS AND SHUT-OFFS AT THE MAIN AND CHLORINAT OFFICIALS.
MANHOLE ID (mm) (m) (m) ICD DESIGNT LOW (m) 137 1200mmØ 92.94 E=91.14 N=90.65 -	NGFIELDS DRIVE		OFFICIALS. 4. WATERMAIN SHALL BE MINIMUM 2.4m DEPTH BELOW GRADE U 5. PROVIDE MINIMUM 0.30m CLEARANCE BETWEEN OUTSIDE OF F
a 139 1200mm/ 92.90 NE=90.21 -			6. HORIZONTAL CLEARANCE BETWEEN WATERMAIN AND SEWER
CBMH1 1200mmØ 92.50 SW=90.04 E=90.04 TEMPEST LMF (VORTEX 50) 3.5 2.68		400mm@ WM	7. CONNECTION TO EXISTING WATERMAIN BY CITY FORCES. CIVI BACKFILL AND REINSTATE SURFACE TO EXISTING CONDITIONS
NOTE: THE POSITION OF ALL POLE LINES, CONDUITS, WATERMAINS, SEWERS AND OTHER		SCALE DESIGN FOR REVIE	
UNDERGROUND AND OVERGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN,		1:200 MAB	Engineers, Planners & Landscape Architects
THE ACCURACY OF THE POSITION OF SUCH Image: UTILITIES AND STRUCTURES IS NOT GUARANTEED. Image: Starting Work, Determine the Exact		DTD DTD U U U 1:200 CHECKED 100160065 100160065 0 2 4 6 8	Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Image: Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6
LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND ASSUME ALL LIABILITY FOR AMAGE TO THEM.	1. CITY SUBMISSION FEB 24/23 MAB No. REVISION DATE BY	APPROVED MAB	Facsimile (613) 254-5867 Website www.novatech-eng.com
	REVISION DATE BY	IVIAD	I


	The second secon
72.3m - 1350mm@ STM @ 0.16%	NELL NESBITT & AND ARK DARK SITE SITE SUMMER AND ARK SITE SUMMER AND ARK SITE SUMMER AND ARK SITE SUMMER AND ARK SUMMER AND ARK
	NORTH KEY PLAN
	Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image: Sever & Direction Image:
	S VALVE & VALVE BOX CATCH BASIN MANHOLE
	SITE LEGAL BOUNDARY CB1 ROAD CATCHBASIN EXISTING PROPERTY & ROW LINES
	GENERAL NOTES:
E Company	 DIMENSIONS AND LAYOUT INFORMATION SHALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION. THE ORIGINAL TOPOGRAPHY AND GROUND ELEVATIONS, SERVICING AND SURVEY INFORMATION SHOWN ON THIS PLAN ARE SUPPLIED FOR INFORMATION PURPOSES ONLY. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY THE ACCURACY OF ALL INFORMATION OBTAINED FROM THIS PLAN.
UTMAN PARK	 CO-ORDINATE AND SCHEDULE ALL WORK WITH OTHER TRADES AND CONTRACTORS. BEFORE COMMENCING CONSTRUCTION, PROVIDE PROOF OF COMPREHENSIVE ALL RISK AND OPERATIONAL LIABILITY INSURANCE INCLUDING BLASTING. INSURANCE POLICY TO NAME THE OWNER, ENGINEER AND THE CITY AS CO-INSURED.
7453	5. CONNECT TO EXISTING SYSTEMS AS DETAILED, INCLUDING ALL RESTORATION WORK NECESSARY TO REINSTATE SURFACES TO EXISTING CONDITIONS OR BETTER.
	6. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS.
	7. OBTAIN AND PAY FOR ALL NECESSARY PERMITS AND APPROVALS BEFORE COMMENCING CONSTRUCTION.8. RESTORE ALL TRENCHES AND SURFACE FEATURES TO EXISTING CONDITIONS OR BETTER AND TO THE SATISFACTION OF
	MUNICIPAL AUTHORITIES. 9. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL UNLESS OTHERWISE INSTRUCTED BY THE ENGINEER. EXCAVATE AND REMOVE FROM SITE ALL ORGANIC MATERIAL AND DEBRIS UNLESS OTHERWISE INSTRUCTED BY THE ENGINEER.
	10. ALL ELEVATIONS ARE GEODETIC AND UTILIZE METRIC UNITS. 11. REFER TO GEOTECHNICAL INVESTIGATION PROJECT: PG2306-1 (JANUARY 31, 2013), PREPARED BY PATERSON GROUP FOR
	SUBSURFACE CONDITIONS AND CONSTRUCTION RECOMMENDATIONS. 12. PERFORATED PIPE SUB-DRAINS TO BE PROVIDED AT SUBGRADE LEVEL EXTENDING FROM THE ROADSIDE CATCHBASIN FOR A DISTANCE OF 3.0m, PARALLEL TO THE CURB IN TWO DIRECTIONS. SEWER NOTES:
	1. SPECIFICATIONS: ITEM SPEC. No. CATCHBASIN (600x600mm) 705.010 STORM / SANITARY MANHOLE (1200Ø) 701.010 OPSD ROADSIDE CB, FRAME & COVER S2 & S19 CITY of OTTAWA STORM / SANITARY MH FRAME & COVER S24.1 / S24 & S25 STORM SEWER PVC DR 35 / CONC SANITARY SEWER PVC DR 35 CATCHBASIN LEAD PVC DR 35
	 INSULATE ALL PIPES (SAN/STM) THAT HAVE LESS THAN 1.5m COVER WITH 50mmX1200mm HI-40 INSULATION. PROVIDE 150mm CLEARANCE BETWEEN PIPE AND INSULATION.
	 SERVICES ARE TO BE CONSTRUCTED TO 1.0m FROM BUILDING FACE AT MINIMUM SLOPE OF 1.0% (2.0% IS PREFERRED). PIPE BEDDING, COVER AND BACKFILL ARE TO BE COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY. THE USE OF CLEAR CRUSHED STONE AS A BEDDING LAYER SHALL NOT BE PERMITTED.
	 SEWER SERVICE CONNECTIONS PER CITY OF OTTAWA DETAILS S11 AND S11.1. BACKWATER VALVES ARE TO BE INSTALLED ON SERVICES AS PER CITY STANDARDS (S14, S14.1, S14.2).
	7. THE SITE SERVICING CONTRACTOR SHALL PERFORM FIELD TESTS FOR QUALITY CONTROL OF ALL SANITARY SEWERS. LEAKAGE TESTING SHALL BE COMPLETED IN ACCORDANCE WITH OPSS 410.07.16 AND 407.07.24. DYE TESTING IS TO BE COMPLETED ON ALL SANITARY SERVICES TO CONFIRM PROPER CONNECTION TO THE SANITARY SEWER MAIN. THE FIELD TESTS SHALL BE PERFORMED IN THE PRESENCE OF THE ENGINEER.
	 STORM MANHOLES AND CBMHS SHALL HAVE 300mm SUMPS UNLESS OTHERWISE INDICATED. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS, 200mmØ OR GREATER PRIOR TO CONNECTING THE PROPOSED SEWERS. UPON COMPLETION OF CONTRACT, THE CONTRACTOR IS RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS &
	APPURTENANCES. 10. ALL CATCH BASIN LEADS SHALL BE 200mmØ @ 1.0% (MIN.) UNLESS SHOWN OTHERWISE.
	11. ALL CATCH BASINS SHALL HAVE 600mm SUMPS UNLESS INDICATED OTHERWISE. WATERMAIN NOTES: 1. GENERAL:
	ITEM DETAIL. No. REFERENCE WATERMAIN TRENCHING W17 CITY OF OTTAWA THERMAL INSULATION IN SHALLOW TRENCHES W22 CITY OF OTTAWA WATERMAIN CROSSING BELOW SEWER / OVER SEWER W25 / W25.2 CITY OF OTTAWA THRUST BLOCK W25.3 CITY OF OTTAWA
	 THE WATERMAIN SHALL BE PVC DR 18 IN ACCORDANCE WITH MATERIAL SPECIFICATION MW-18.1, UNLESS OTHERWISE INDICATED, COMPLETE WITH TRACING WIRE AND CATHODIC PROTECTION.
	 SUPPLY AND CONSTRUCT ALL WATERMAINS AND APPURTENANCES IN ACCORDANCE WITH THE CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. EXCAVATION, INSTALLATION, BACKFILL AND RESTORATION OF ALL WATERMAINS BY THE CONTRACTOR. CONNECTIONS AND SHUT-OFFS AT THE MAIN AND CHLORINATION OF THE WATER SYSTEM SHALL BE PERFORMED BY CITY OFFICIALS.
300mmØ_WM	 WATERMAIN SHALL BE MINIMUM 2.4m DEPTH BELOW GRADE UNLESS OTHERWISE INDICATED. PROVIDE MINIMUM 0.30m CLEARANCE BETWEEN OUTSIDE OF PIPES AT ALL CROSSINGS.
	 HORIZONTAL CLEARANCE BETWEEN WATERMAIN AND SEWERS IS 2.5m (MIN.). CONNECTION TO EXISTING WATERMAIN BY CITY FORCES. CIVIL CONTRACTOR TO EXCAVATE TRENCH, PLACE BEDDING,
	BACKFILL AND REINSTATE SURFACE TO EXISTING CONDITIONS OR BETTER.
FOR REVIEW ONLY	CITY OF OTTAWA 285 MOUNTSHANNON DRIVE - BLOCK 1
L. R. WILSON 100160065 R. 2023.02.24	Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Telephone (613) 254-9643


(6
(6
www.novat

REV # 1

112021-04-GP

NG No.

NORTH

LEGEND

2.5%	PROPOSED GRADE AND DIRECTION OF FLOW	TF	TOP OF FOUNDATION
76.90 ×	PROPOSED ELEVATION	FF	FINISHED FLOOR ELEVATION
× 105.53	PROPOSED ELEVATION EXISTING ELEVATION	USF	UNDERSIDE OF FOUNDATION
×	EXISTING ELEVATION	DC	DEPRESSED CURB
]3:1	- TERRACING (3:1 MAX)		MAX STATIC PONDING LIMITS
	MAJOR OVERLAND FLOW DIRECTION	· _ · _ ·]	100-YR PONDING LIMITS
_101.00	EXISTING CONTOUR AND ELEVATION		

GENERAL NOTES:

- 1. DIMENSIONS AND LAYOUT INFORMATION SHALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION.
- 2. THE ORIGINAL TOPOGRAPHY AND GROUND ELEVATIONS, SERVICING AND SURVEY INFORMATION SHOWN ON THIS PLAN ARE SUPPLIED FOR INFORMATION PURPOSES ONLY. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY THE ACCURACY OF ALL INFORMATION OBTAINED FROM THIS PLAN.
- 3. CO-ORDINATE AND SCHEDULE ALL WORK WITH OTHER TRADES AND CONTRACTORS.
- 4. BEFORE COMMENCING CONSTRUCTION, PROVIDE PROOF OF COMPREHENSIVE ALL RISK AND OPERATIONAL LIABILITY INSURANCE INCLUDING BLASTING. INSURANCE POLICY TO NAME THE OWNER, ENGINEER AND THE CITY AS CO-INSURED. AMOUNT OF INSURANCE TO BE SPECIFIED BY OWNER'S AGENT.
- 5. CONNECT TO EXISTING SYSTEMS AS DETAILED, INCLUDING ALL RESTORATION WORK NECESSARY TO REINSTATE SURFACES TO EXISTING CONDITIONS OR BETTER.
- 6. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME ALL RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS.
- 7. OBTAIN AND PAY FOR ALL NECESSARY PERMITS AND APPROVALS BEFORE COMMENCING CONSTRUCTION.
- 8. RESTORE ALL TRENCHES AND SURFACE FEATURES TO EXISTING CONDITIONS OR BETTER AND TO THE SATISFACTION OF CITY OF OTTAWA AUTHORITIES.
- ASPHALT RESTORATION SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA DETAIL R-10. THICKNESS OF GRANULAR MATERIAL AND ASPHALT LAYERS TO MATCH EXISTING. BOULEVARDS SHALL BE REINSTATED WITH 100mm OF TOPSOIL, SEED AND MULCH. •
- 9. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL UNLESS OTHERWISE INSTRUCTED BY ENGINEER.
- 10. ALL ELEVATIONS ARE GEODETIC AND UTILIZE METRIC UNITS.
- 11. ASPHALT WALKWAY TO BE CONSTRUCTED PER CITY STANDARD SC.20
- 12. REFER TO GEOTECHNICAL INVESTIGATION PG2306-1 (DATED JANUARY 31, 2013), PREPARED BY PATERSON GROUP FOR SUBSURFACE CONDITIONS AND CONSTRUCTION RECOMMENDATIONS.
- 13. PERFORATED PIPE SUB-DRAINS TO BE PROVIDED AT SUBGRADE LEVEL EXTENDING FROM THE ROADSIDE CATCHBASIN FOR A DISTANCE OF 3.0m, PARALLEL TO THE CURB IN TWO DIRECTIONS.

GRADING AND PAVEMENT NOTES:

- 1. ALL TOPSOIL, ORGANIC OR DELETERIOUS MATERIAL MUST BE ENTIRELY REMOVED FROM BENEATH THE PROPOSED HARD SURFACE (ie. PAVEMENT, CURB, SIDEWALK, ETC.) AREAS AS DIRECTED BY THE SITE ENGINEER OR GEOTECHNICAL ENGINEER. EXPOSED SUBGRADES IN PROPOSED PAVED AREAS SHOULD BE HEAVILY PROOF ROLLED WITH A LARGE (10 TON) VIBRATORY STEEL DRUM ROLLER UNDER DRY CONDITIONS AND INSPECTED BY THE GEOTECHNICAL ENGINEER PRIOR TO THE PLACEMENT OF GRANULARS.
- ANY SOFT AREAS EVIDENT FROM THE PROOF ROLLING SHOULD BE SUB-EXCAVATED AND REPLACED WITH SUITABLE MATERIAL THAT IS FROST COMPATIBLE WITH THE EXISTING SOILS AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER.
- THE GRANULAR BASE SHOULD BE PLACED IN MAXIMUM 300mm LIFTS AND COMPACTED TO AT LEAST 98% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE. ANY ADDITIONAL GRANULAR FILL USED BELOW THE PROPOSED PAVEMENT SHOULD BE PLACED IN MAXIMUM 300mm LIFTS AND COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE.
- ROADWAY SUBGRADE TO BE INSPECTED BY THE GEOTECHNICAL ENGINEER AT THE TIME OF CONSTRUCTION TO REVIEW IF A WOVEN GEOTEXTILE IS REQUIRED BELOW THE GRANULAR MATERIALS; AND TO CONFIRM THE DEPTH AND COMPACTION OF GRANULAR 'B'
- 6. PRIOR TO PLACEMENT OF TOPLIFT, THE CONTRACTOR SHALL ADJUST ALL STRUCTURES TO FINAL GRADE PER CITY OF OTTAWA STANDARDS.
- MINIMUM OF 2% GRADE FOR ALL GRASS AREAS UNLESS OTHERWISE NOTED.
- 8. MAXIMUM TERRACING GRADE TO BE 3:1 UNLESS OTHERWISE NOTED.
- ALL GRADES BY CURBS ARE EDGE OF PAVEMENT GRADES UNLESS OTHERWISE INDICATED.
- ALL CURBS SHALL BE BARRIER CURB UNLESS OTHERWISE NOTED AND CONSTRUCTED PER CITY OF OTTAWA STANDARD (SC1.1).
- 11. REFER TO LANDSCAPE PLAN FOR PLANTING AND OTHER LANDSCAPE FEATURE DETAILS.

NOVATECH ineers, Planners & Landscape Architects

Ottawa, Ontario, Canada K2M 1P6

(613) 254-9643

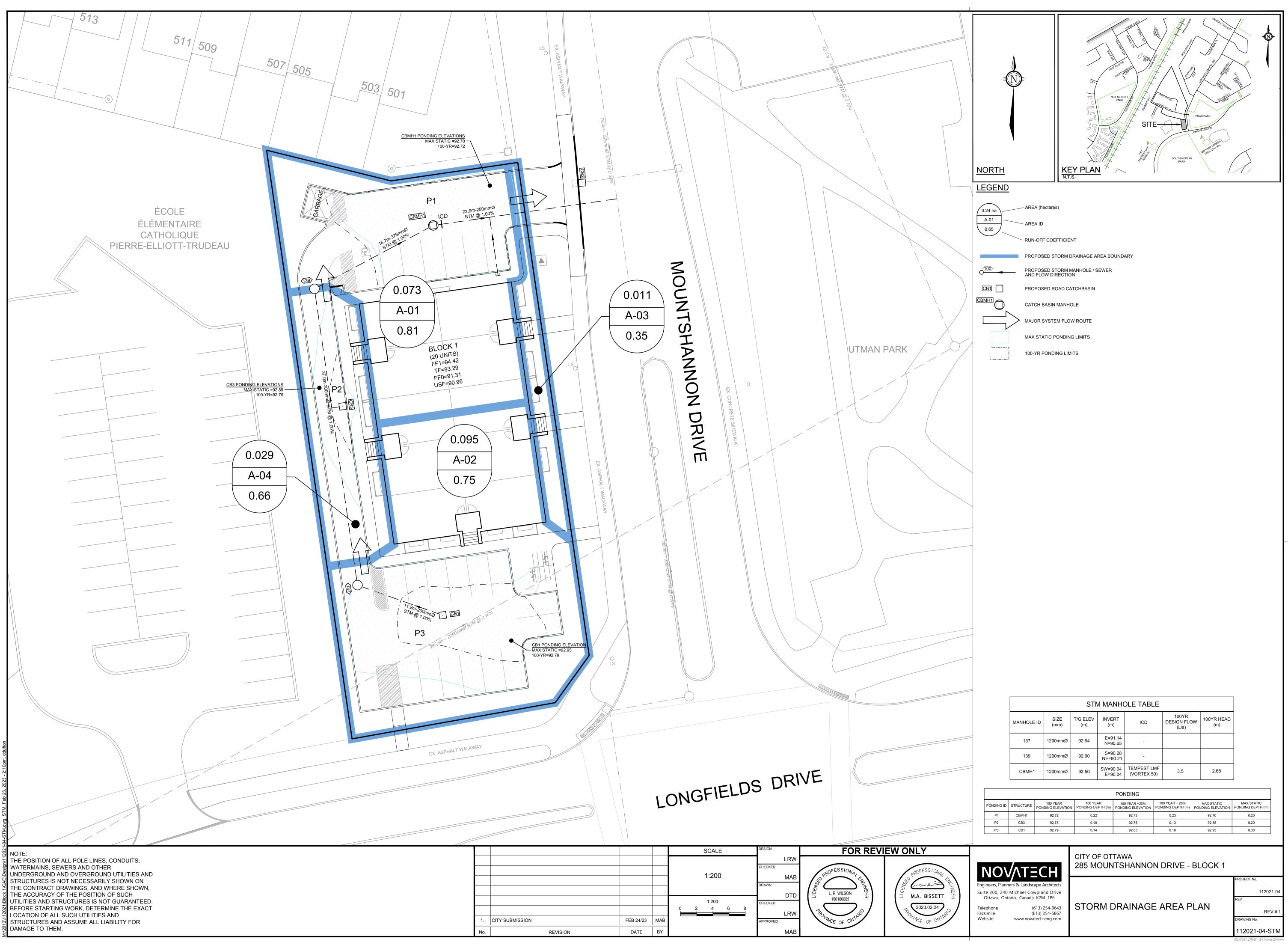
(613) 254-5867

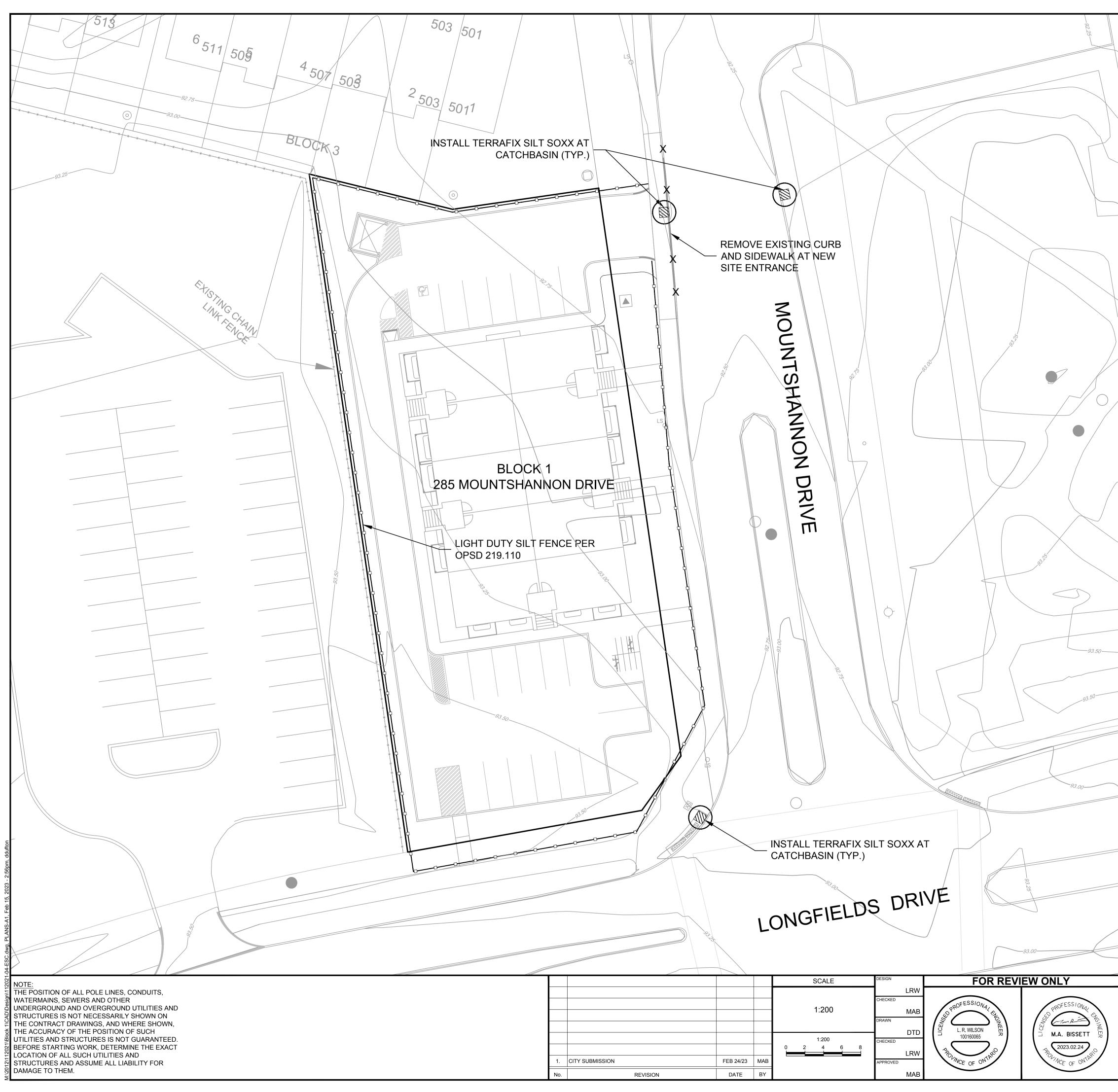
www.novatech-eng.com

CITY OF OTTAWA 285 MOUNTSHANNON DRIVE - BLOCK 1

GRADING PLAN

112021-04


REV # '


Telephone Facsimile Website

12021-04-GR

/ING No.

ECT No.

		RELINESBITT REPART NELLNESBITT R	
	<u>NORTH</u>	KEY PLAN N.T.S.	Â.
$\overline{)}$	LEGEND		
	<u> </u>	D MATS (100mm GRANULAR B. TYPE II) T FENCE PER OPSD 219.110	
	1		
_	EXI	STING CONTOUR AND ELEVATION	
	1. ALL EROSION AND SEDIMENT CON AND THE CONSERVATION AUTHOR SITE ALTERATIONS (FILLING, GRAD CONSTRUCTION. THESE PRACTICE PRACTICES FOR EROSION AND SE THE PLAN.	ENT CONTROL NOTES : TROLS SHALL BE INSTALLED TO THE SATISFACTION OF THE ENGINEER, THE N RITY. THEY SHALL BE APPROPRIATE TO THE SITE CONDITIONS, PRIOR TO UND DING, REMOVAL OF VEGETATION, ETC.) AND DURING ALL PHASES OF SITE PR S SHALL BE IMPLEMENTED IN ACCORDANCE WITH THE CURRENT BEST MAN EDIMENT CONTROL AND SHOULD INCLUDE AS A MINIMUM THOSE MEASURES I	ERTAKING ANY EPARATION AND AGEMENT NDICATED ON
	 FENCE BARRIER WILL ALSO BE INS INSTALLED ON ALL PROPOSED CAT BEEN ESTABLISHED AND CONSTRU- 3. THE SEDIMENT CONTROL MEASUR NO LONGER REQUIRED. NO CONTR THE ENGINEER. 4. THE CONTRACTOR SHALL IMMEDIA INTO ANY DITCH OR STORM SEWE CONTROL MEASURES OR THE IMP CONTRACTOR WITHOUT DELAY. 5. THE CONTRACTOR ACKNOWLEDGING 	ROM ENTERING THE DITCH OR STORM SYSTEM DURING CONSTRUCTION, A L TALLED IN SELECTED LOCATIONS SHOWN ON THIS PLAN. TERRAFIX SILT SO TCHBASINS. THESE CONTROL MEASURES WILL REMAIN IN PLACE UNTIL VEGE JCTION COMPLETE. RES SHALL ONLY BE REMOVED WHEN, IN THE OPINION OF THE ENGINEER, THE ROL MEASURES MAY BE PERMANENTLY REMOVED WITHOUT PRIOR AUTHORIZ ATELY REPORT TO THE ENGINEER ANY ACCIDENTAL DISCHARGES OF SEDIME RES SYSTEM. APPROPRIATE RESPONSE MEASURES, INCLUDING ANY REPAIRS PLEMENTATION OF ADDITIONAL CONTROL MEASURES, SHALL BE CARRIED OU ES THAT FAILURE TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASU D BY ANY APPLICABLE REGULATORY AGENCY.	IX ARE TO BE TATION HAS E MEASURES ARE ZATION FROM INT MATERIAL TO EXISTING T BY THE
/		E DUST CONTROL WITH THE APPLICATION OF WATER AND/OR CALCIUM CHLC	DRIDE AS
	7. THE CONTRACTOR SHALL PROTEC	CT ALL SURVEY MONUMENTS.	
/			
			Ļ
1			
_			
1			
		CITY OF OTTAWA	
	ΝΟΛΤΞΟΗ		
	Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive	5	PROJECT No. 112021-04
	Ottawa, Ontario, Canada K2M 1P6 Telephone (613) 254-9643 Facsimile (613) 254-5867	REMOVALS, AND EROSION AND	REV REV # 1
	Website www.novatech-eng.com	SEDIMENT CONTROL PLAN	DRAWING No. 112021-04-ESC

APPENDIX D: Geotechnical Memorandums

Geotechnical Investigation – Longfields Central (Jan. 31/13) Geotechnical Response to City Comments – Block 1 & 2 (Sep. 6/19)

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Studies

Geotechnical Investigation

Proposed Residential Development Mountshannon Drive Ottawa, Ontario

Prepared For

Mattino Developments

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

January 31, 2013

Report: PG2306-1

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION					
2.0	PROPOSED PROJECT 1					
3.0	METHOD OF INVESTIGATION3.1Field Investigation.3.2Field Survey.3.3Laboratory Testing.3.4Analytical Testing.					
4.0	OBSERVATIONS4.1Surface Conditions.44.2Subsurface Profile.44.3Groundwater.4					
5.0	DISCUSSION5.1Geotechnical Assessment.55.2Site Grading and Preparation.55.3Foundation Design.65.4Design for Earthquakes.75.5Basement Slab.75.6Pavement Design.7					
6.0	DESIGN AND CONSTRUCTION PRECAUTIONS6.1Foundation Drainage and Backfill.6.2Protection of Footings.96.36.3Excavation Side Slopes.96.4Pipe Bedding and Backfill.6.5Groundwater Control.106.6Winter Construction.6.7Corrosion Potential and Sulphate.6.8Landscaping Concerns.12					
7.0	RECOMMENDATIONS					
8.0	STATEMENT OF LIMITATIONS					

Ottawa

Kingston North Bay

APPENDICES

- Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Analytical Test Results
- Appendix 2 Figure 1 Key Plan Drawing PG2306-1 - Test Hole Location Plan

1.0 INTRODUCTION

Paterson Group (Paterson) was commissioned by Mattino Developments to conduct a geotechnical investigation for the proposed residential development to be located at 591 Longfields Drive, west of Mountshannon Drive, in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2 of this report). The objectives of the current investigation were:

- Determine the subsoil and groundwater conditions at this site by means of test pits.
- Provide geotechnical recommendations pertaining to design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating the presence or potential presence of contamination on the subject property was not part of the scope of work of this present investigation.

2.0 **PROPOSED DEVELOPMENT**

It is understood that the proposed development will consist of several blocks of townhouse style and multi-unit residential buildings along with associated at grade parking areas and access lanes. It is further understood that this development will be municipally serviced.

patersongroup Kingston

Ottawa

3.0 **METHOD OF INVESTIGATION**

3.1 Field Investigation

The field program for the investigation was carried out on December 7, 2012. At that time, ten (10) test pits were advanced to a maximum depth of 6.7 m. The test pits locations were distributed in a manner to provide general coverage of the proposed development. The locations of the test pits are shown on Drawing PG2306-1 - Test Hole Location Plan included in Appendix 2.

The test pits were put down using a track mounted hydraulic shovel. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The test pitting procedure consisted of excavating to the required depths at the selected locations, sampling and testing the overburden.

Groundwater

Water infiltration levels observed at the time of investigation were noted and are provided on the Soil Profile and Test Data sheets presented in Appendix 1.

Sampling

Soil samples were recovered from the sidewalls of the excavation, classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the grab samples were recovered from the test pits are shown as G on the Soil Profile and Test Data sheets in Appendix 1.

Undrained shear strength testing was carried out in cohesive soils using a field vane apparatus.

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test pit locations were selected by Paterson in a manner to provide general coverage of the subject site. The test pits were located in the field and surveyed by Stantec Geomatics. The locations and ground surface elevations at the test pits are presented in Drawing PG2306-1 - Test Hole Location Plan in Appendix 2.

3.3 <u>Laboratory Testing</u>

The soil samples recovered from the subject site were examined in our laboratory to review the results of the field logging.

3.4 <u>Analytical Testing</u>

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the soil. The analytical test results are presented in Appendix 1 and discussed in Subsection 6.7 of this report.

4.0 OBSERVATIONS

4.1 <u>Surface Conditions</u>

At the time of the field program, the site was covered in snow. A large fill pile was noted at the northern portion of the site. A patch of dense trees were noted in the southern portion of the site, with a fill pile directly north of the patch of dense trees.

4.2 <u>Subsurface Profile</u>

The subsurface profile at the test hole locations consists of topsoil or fill overlying a very stiff to stiff silty clay crust overlying a firm grey silty clay. Compact glacial till or clayey silt were encountered below the silty clay. Practical refusal to excavation was encountered at depths of 5.6 and 5.8 m, in TP 7 and TP 9, respectively. Specific details of the soil profile at each test pit location are presented in the Soil Profile and Test Data sheets in Appendix 1.

Based on geological mapping, the bedrock underlying the subject site consists of interbedded sandstone and dolomite of the March formation, and the bedrock surface is expected to be between 5 and 10 m depth.

4.3 Groundwater

All test pits were noted to by dry upon completion. However, the groundwater level can also be estimated based on moisture levels and colour of the recovered soil samples. Based on these observations at the test pit locations, the groundwater table is expected between a 2 to 3 m depth. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

5.0 DISCUSSION

5.1 <u>Geotechnical Assessment</u>

From a geotechnical perspective, the subject site is adequate for the proposed residential development.

The above and other considerations are discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings and other settlement sensitive structures.

Fill Placement

Fill used for grading beneath the proposed buildings, unless otherwise specified, should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The fill should be tested and approved prior to delivery to the site. It should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of their respective SPMDD. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless used in conjunction with a geocomposite drainage membrane, such as Miradrain G100N or Delta Drain 6000.

5.3 Foundation Design

Strip footings, up to 3 m wide, and pad footings, up to 4 m wide, can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa** placed on an undisturbed stiff silty clay. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

The bearing resistance value at SLS will be subjected to potential post-construction total and differential settlements of 25 and 15 mm, respectively.

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the native soils above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Permissible Grade Raise Recommendations

Based on the silty clay layer depth and stiffness of the deposit, the following permissible grade raises are recommended for the subject site:

- □ A permissible grade raise restriction of 1.2 m is recommended for the proposed buildings across the subject site.
- A permissible grade raise restriction of 2 m is recommended for parking areas and access roadways.

Generally, the potential long term settlement is evaluated based on the compressibility characteristics of the silty clay. These characteristics have been conservatively estimated based on the shear strength of the clay and the subsoil conditions observed at the test pit locations.

5.4 Design for Earthquakes

Foundations constructed at the subject site can be designed using a seismic site response **Class D** as defined in the Ontario Building Code 2006 (OBC 2006; Table 4.1.8.4.A). The soils underlying the site are not susceptible to liquefaction.

5.5 Basement Slab

With the removal of all topsoil and deleterious fill, such as those containing organic matter, within the footprints of the proposed buildings, the native soil surface will be considered to be an acceptable subgrade surface on which to commence backfilling for floor slab construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular B Type II is recommended for backfilling below the floor slab. It is recommended that the upper 200 mm of sub-slab fill consist of 19 mm clear crushed stone. All backfill materials within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

5.6 Pavement Design

Residential driveways and local roadways are anticipated for the proposed development. The proposed pavement structures are shown in Tables 1 and 2 below.

Table 1 - Recommended Pavement Structure - Residential Driveways	
Thickness mm	Material Description
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
300	SUBBASE - OPSS Granular B Type II
	SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill

Table 2 - Recommended Pavement Structure - Local Roadways	
Thickness mm	Material Description
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
400	SUBBASE - OPSS Granular B Type II
	SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing the load bearing capacity.

Due to the impervious nature of the subgrade materials consideration should be given to installing subdrains during the pavement construction as per City of Ottawa standards. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be shaped to promote water flow to the drainage lines.

patersongroup Kingston

Ottawa

6.0 **DESIGN AND CONSTRUCTION PRECAUTIONS**

6.1 Foundation Drainage and Backfill

It is recommended that a perimeter foundation drainage system be provided for the proposed structures. The system should consist of a 100 to 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Miradrain G100N or Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for exterior unheated footings, not thermally connected to a heated space, such as exterior columns and/or wing walls.

6.3 **Excavation Side Slopes**

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

At least 150 mm of OPSS Granular A should be used for pipe bedding for sewer and water pipes. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A. The bedding and cover materials should be placed in maximum 300 mm thick lifts compacted to a minimum of 95% of the material's SPMDD.

Generally, it should be possible to re-use the silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

6.5 Groundwater Control

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

It is anticipated that pumping from open sumps will be sufficient to control the groundwater influx through the sides of the excavations.

A temporary MOE permit to take water (PTTW) will be required for this project if more than 50,000 L/day are to be pumped during the construction phase. At least 4 months should be allowed for completion of the application and issuance of the permit by the MOE.

6.6 <u>Winter Construction</u>

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions.

6.7 <u>Corrosion Potential and Sulphate</u>

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a non-aggressive to slightly aggressive corrosive environment.

patersongroup Ottawa Kingston

North Bay

6.8 Landscaping Considerations

Tree Planting Restrictions

The proposed residential dwellings are located in a low sensitivity area with respect to tree plantings over a silty clay deposit. It is recommended that trees placed within 4 m of the foundation wall shall consist of low water demanding trees with shallow roots systems that extend less than 1.5 m below ground surface. Trees placed greater than 4 m from the foundation wall may consist of typical street trees, which are typically moderate water demand species with roots extending to a maximum depth of 2 m below ground surface.

It is well documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils that shrink on drying can result in long-term differential settlements of the structures. Tree varieties that have the most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and, as such, they should not be considered in the landscaping design.

Swimming Pools

The in-situ soils are considered to be acceptable for in-ground swimming pools. Above ground swimming pools must be placed at least 3 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's requirements.

Ōttawa

7.0 RECOMMENDATIONS

It is a requirement for the foundation design data provided herein to be applicable that a materials testing and observation services program including the following aspects be performed by the geotechnical consultant.

- Review of the grading plan.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

patersongroup Ōttawa Kingston

North Bay

8.0 STATEMENT OF LIMITATIONS

The recommendations made in this report are in accordance with our present understanding of the project. The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Mattino Developments or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Stephanie Boisvenue, B.Eng.

David J. Gilbert, P.Eng.

Report Distribution:

- □ Mattino Developments (3 copies)
- □ Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TEST RESULTS

patersongro		Consulting			SOIL PROFILE AND TEST DATA						
154 Colonnade Road South, Ottawa, Or		-		ineers	Geotechnical Investigation Prop. Residential Development - Mountshannon Drive Ottawa, Ontario						
DATUM Ground surface elevations p				c Georr			itario	FILE NO. PG2306			
REMARKS											
BORINGS BY Hydraulic Shovel				DA	TE D	ecembe	r 7, 2012	TP 1			
SOIL DESCRIPTION	PLOT		SAM	IPLE		DEPTH		Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	VALUE Dr RQD	(m)	(m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Water Content %			
GROUND SURFACE	ST	Ĥ	ĺΩΝ	REC	N O H O			20 40 60 80			
TOPSOIL		G	1			0-	-92.23				
0.36		G	2					108			
						1-	-91.23				
		_ G	3					110			
Very stiff to stiff, brown SILTY CLAY						2-	-90.23				
		G	4								
						3-	-89.23				
- firm and grey by 3.2m depth		G	5								
		⊑ G	6			4-	-88.23				
		_ U	0								
		-	7			5-	-87.23				
		_ G	/			5	07.20				
GLACIAL TILL: Grey silty clay with		– G	8								
sand, gravel, cobbles, boulders			0			6-	-86.23				
End of Test Pit											
(TP dry upon completion)											
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded			

natersonard		in	Con	sulting		SOI	L PRO	FILE AN	ND TES	T DATA		
patersongro 154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation Prop. Residential Development - Mountshannon Drive Ottawa, Ontario							
DATUM Ground surface elevations p	rovide	ed by	Stante	c Geon					FILE NO.	PG2306		
REMARKS									HOLE NO.			
BORINGS BY Hydraulic Shovel				DA	TE [Decembe	r 7, 2012			TP 2		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blo 60 mm Dia.		eter ction	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE E ROD	(11)	(11)	• v	Vater Cont	ent %	Piezometer Construction	
GROUND SURFACE	Ω.	L .	ŭ	REC	N O L O L	0-	92.04	20	40 60	80		
TOPSOIL0.38						0-	-92.04					
		G	1			1-	-91.04					
		G	2									
Very stiff to stiff, brown SILTY CLAY		G	3			2-	-90.04					
						3-	-89.04					
- firm and grey by 3.4m depth		G	4									
		G	5			4-	-88.04					
		G	6			5-	-87.04					
6.00		-				6-	-86.04					
Grey CLAYEY SILT with sand		G	7									
End of Test Pit												
(TP dry upon completion)												
								20 Shea ▲ Undist	40 60 ar Strengti turbed △		1 00	

patersongro		In	Con	sulting	1	SOI	l pro	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, Or		-		lineers	Pr	eotechnic op. Resic tawa, Or	dential D		nt - Mount	shannon D	rive
DATUM Ground surface elevations p	orovide	ed by a	Stante	ec Geor			Italio		FILE NO.	PG2306	
REMARKS									HOLE NO.		
BORINGS BY Hydraulic Shovel				DA	TE [Decembe	r 7, 2012	1		TP 3	
	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blov		er on
SOIL DESCRIPTION			R	IRY	ВQ	(m)	(m)	• 5	0 mm Dia.	Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD			• w	later Cont	ent %	Piez Cons
GROUND SURFACE				R	z ^o	0-	-92.30	20	40 60	80	-
TOPSOIL0.20		-					02.00				
FILL: Brown silty clay with gravel, cobbles, boulders		_ G	1								
1.14		- - - -				1-	-91.30				
		G	2			2-	-90.30			1 	30
Very stiff to stiff, brown SILTY CLAY									· · · · · · · · · · · · · · · · · · ·		X
		G	3			3-	-89.30		×		4
- firm and grey by 3.8m depth		G	4			4-	-88.30				
						5-	-87.30				· · · · · · · · · · · · · · · · · · ·
Grey CLAYEY SILT	VXX	G	5			6-	-86.30				
End of Test Pit	<u> YYX</u>	1					00.00				
(TP dry upon completion)											
								20 Shea ▲ Undistu	40 60 ar Strengti urbed △		⊣ 00

patersongro		in	Con	sulting		SOI	L PRO	FILE AN	ID TES	F DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	Pro				nt - Mount	shannon Di	rive
DATUM Ground surface elevations p	provide	ed by	Stante	c Georr					FILE NO.	PG2306	
REMARKS								-	HOLE NO.		
BORINGS BY Hydraulic Shovel				DA	TE D	ecembe	r 7, 2012			TP 4	1
SOIL DESCRIPTION	PLOT		SAN	IPLE	I	DEPTH	ELEV.		esist. Blov) mm Dia.		ter tion
	1	되	ER	TERY	VALUE r ROD	(m)	(m)				Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VA. OF F			• W	ater Cont	ent %	Con
GROUND SURFACE				2	2	0-	-92.15	20	40 60	80	-
_ TOPSOIL 0.15		G	1								
Very stiff to stiff, brown SILTY CLAY						1-	-91.15			12	25
- rootlets noted to 1.2m depth							00.45				
		G	2			2-	-90.15				
- firm and grey by 2.7m depth		G	3								
						3-	-89.15				
		G	4			4 -	-88.15				
5.20		G	5			5-	-87.15				
Grey CLAYEY SILT						6-	-86.15				•
End of Test Pit											
(TP dry upon completion)								20 Shea ▲ Undistu	40 60 r Strengti ⊮bed △		00

patersongro		in	Con	sulting		SOI	L PRO	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers		Resid			nt - Mount	shannon Di	rive
DATUM Ground surface elevations p	provide	ed by a	Stante	c Geom					FILE NO.	PG2306	
REMARKS									HOLE NO.		
BORINGS BY Hydraulic Shovel				DA	TE Dec	embe	r 7, 2012				
SOIL DESCRIPTION	PLOT		SAN			EPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia.		leter ction
	STRATA	ТҮРЕ	NUMBER	RECOVERY	ROD	(111)	(11)	• N	later Cont	tent %	Piezometer Construction
GROUND SURFACE	LS		RC	REC	N O H O	0	01.00	20	40 60	80	шО
TOPSOIL0.25						0-	-91.89				
		G	1								
Very stiff to stiff, brown SILTY CLAY						1-	-90.89			18	9
- roots noted to 1.3m depth											
		G	2			2-	-89.89				
- firm and grey by 2.8m depth		G	3			3-	-88.89				
<u>4.3</u> 0						4-	-87.89				
		G	4			5-	-86.89				
Grey CLAYEY SILT with sand		G	5			0	00.00				
6.10		1 				6-	-85.89			······································	
(TP dry upon completion)											
								20 Shea ▲ Undistu	40 60 ur Strengt urbed △		00

patersongro		in	Con	sulting		SOI	L PRO	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	Pr		lential D		nt - Mouni	tshannon D	rive
DATUM Ground surface elevations p				c Geon		tawa, Or s Limited.	itario		FILE NO.	PG2306	
REMARKS									HOLE NO.		
BORINGS BY Hydraulic Shovel	1			DA	TE I	Decembe	r 7, 2012	1		TP 6	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blo 0 mm Dia		tion
	STRATA P	ТҮРЕ	NUMBER	°% RECOVERY	VALUE Dr RQD	(m)	(m)		Vater Con		Piezometer Construction
GROUND SURFACE	STF	f	NUN	RECO	N O			20	40 60		ĒÖ
TOPSOIL 0.20						0-	-93.31				
FILL: Brown silty clay, trace sand,											
gravel, cobbles, brick						1-	-92.31				
<u>1.52</u>		_ G _	1								
		_				2-	-91.31				
		G _	2								
		G	3			0	00.21		· · · · · · · · · · · · · · · · · · ·		
Very stiff to stiff, brown SILTY CLAY						3-	-90.31		/		- - - - - - -
- firm and grey by 3.8m depth										· · · · · · · · · · · · · · · · · · ·	· •
		G	4			4-	-89.31				1
											•
						5-	-88.31				
		_ G	5								
6.10		-				6-	-87.31				
(TP dry upon completion)											
								20 Shea ▲ Undist	40 60 ar Strengt urbed △		00

patersongro		n	Con	sulting		SOI	L PRO	FILE AN	ND TE	ST DATA			
154 Colonnade Road South, Ottawa, Or		-		ineers	 Geotechnical Investigation Prop. Residential Development - Mountshannon Drive Ottawa, Ontario 								
DATUM Ground surface elevations p	rovide	ed by \$	Stante	ec Georr	1				FILE NO	PG2306			
REMARKS									HOLE N	n			
BORINGS BY Hydraulic Shovel				DA	TE [Decembe	r 7, 2012			⁵ TP 7			
SOIL DESCRIPTION	PLOT .			IPLE 거		DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Di	lows/0.3m a. Cone	Piezometer Construction		
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			• v	Vater Co	ntent %	Piezor		
GROUND SURFACE	S		Z	RE	z ^o	0-	-92.14	20	40	60 80			
TOPSOIL0.36		G	1										
Very stiff to stiff, brown SILTY CLAY - rootlets noted to 1.2m depth						1-	-91.14			11	3		
		G	2			2-	-90.14						
- firm and grey by 3.2m depth		G	3			3-	-89.14						
4.30		G 	4			4-	-88.14						
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		G	5			5-	-87.14						
End of Test Pit	<u>`^^^</u> ^	-											
Practical refusal to excavation at 5.59m depth.													
(TP dry upon completion)								20 Shea ▲ Undist	ar Streng	60 80 1 j th (kPa) ∆ Remoulded	00		

patersongro		n	Con	sulting	S	50 1	l pro	FILE AN	ND TES	T DATA		
154 Colonnade Road South, Ottawa, Or		—		ineers	 Geotechnical Investigation Prop. Residential Development - Mountshannon Drive Ottawa, Ontario 							
DATUM Ground surface elevations p	rovide	ed by S	Stante	c Geom					FILE NO.	PG2306		
REMARKS									HOLE NO.			
BORINGS BY Hydraulic Shovel				DA	TE Decer	mbe	er 7, 2012					
SOIL DESCRIPTION	РГОТ		SAN	IPLE	DEP		ELEV. (m)		esist. Blo [.] 0 mm Dia.		leter ction	
	STRATA	ТҮРЕ	NUMBER	RECOVERY	ROD	•,	(,	• v	later Cont	tent %	Piezometer Construction	
GROUND SURFACE	LS I	н		REC	N N N N N N N N N N N N N N N N N N N			20	40 60	80	шO	
TOPSOIL0.18						0-	-92.20					
		G	1			1-	-91.20				19	
		_				2.	-90.20					
Very stiff to stiff, brown SILTY CLAY		G	2			2-	-90.20					
- firm and grey by 2.9m depth												
						3-	-89.20					
						4-	-88.20					
4. <u>90</u>		G	3			5-	-87.20					
Grey CLAYEY SILT						6-	-86.20					
End of Test Pit	<u>Y Y A A</u>	-				Ū	00.20					
(TP dry upon completion)								20 Shea ▲ Undistr	40 60 ar Strengti		00	

patersongro				SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, Or		-		ineers	Prop				nt - Mount	shannon D	rive
DATUM Ground surface elevations p	orovide	ed by s	Stante	c Geor		-			FILE NO.	PG2306	
REMARKS									HOLE NO.	TP 9	
BORINGS BY Hydraulic Shovel				DA	TE De	cembe	r 7, 2012				
SOIL DESCRIPTION	PLOT		SAN			EPTH (m)	ELEV. (m)		esist. Blo [:] 0 mm Dia.		eter ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE Sr RQD	(11)	(11)	• V	Vater Cont	ent %	Piezometer Construction
GROUND SURFACE	เร		ŭ	REC	N U N O N	0	00.15	20	40 60	80	10
TOPSOIL0.23		_				0-	-92.15				
Very stiff to stiff, brown SILTY CLAY		G	1			1-	-91.15				30
- rootlets noted to 1.2m depth											
		G	2			2-	-90.15				
- firm and grey by 3.2m depth		G	3			3-	-89.15				
		G	5			4-	-88.15				
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		G	6			5-	-87.15				
5.79 End of Test Pit	<u>`^^^^</u>										
Practical refusal to excavation at 5.79m depth											
(TP dry upon completion)											
								20 Shea ▲ Undist	40 60 ar Strengti urbed △		00

patersongro)	n	Con	sulting					ND TE	ST DATA		
154 Colonnade Road South, Ottawa, O		-		lineers	 Geotechnical Investigation Prop. Residential Development - Mountshannon Drive Ottawa, Ontario 							
DATUM Ground surface elevations p	orovide	ed by S	Stante	ec Geon	1				FILE NO	PG2306		
REMARKS									HOLE N	^{o.} TP10		
BORINGS BY Hydraulic Shovel				DA	TE Decem	ber 7,	2012			IFIU		
SOIL DESCRIPTION	PLOT		SAN		DEPT		LEV. (m)			lows/0.3m ia. Cone	leter ction	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD		(,	• v	later Co	ntent %	Piezometer Construction	
GROUND SURFACE	5		Ы	REC	z ⁰			20	40	60 80		
		L				0+92	2.45					
FILL: Brown silty clay		G	1									
		G	2			1-91	.45			1	30 14	
						2-90).45					
Very stiff to stiff, brown SILTY CLAY		G	3									
						3-89	9.45				•	
						4-88	8.45					
- firm and grey by 4.3m depth		G	4									
5.50						5-87	'.45					
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		G	5			6-86	6.45					
6.27 End of Test Pit		}							······································			
(TP dry upon completion)												
								20 Shea ▲ Undist	ar Streng	60 80 1 gth (kPa) ∆ Remoulded	⊣ IOO	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value	
Very Soft	<12	<2	
Soft	12-25	2-4	
Firm	25-50	4-8	
Stiff	50-100	8-15	
Very Stiff	100-200	15-30	
Hard	>200	>30	

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)	
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size	
D10	-	Grain size at which 10% of the soil is finer (effective grain size)	
D60	-	Grain size at which 60% of the soil is finer	
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$	
Cu	-	Uniformity coefficient = D60 / D10	
Cc and Cu are used to assess the grading of sands and gravels:			

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 24-Jan-2013 Order Date:21-Jan-2013

Client PO: 13707		Project Description:	PG2306		
	Client ID:	BH1-G4	-	-	-
	Sample Date:	07-Dec-12	-	-	-
	Sample ID:	1304050-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	63.2	-	-	-
General Inorganics					
рН	0.05 pH Units	7.14 [1]	-	-	-
Resistivity	0.10 Ohm.m	40.7	-	-	-
Anions					
Chloride	5 ug/g dry	<5 [1]	-	-	-
Sulphate	5 ug/g dry	53 [1]	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

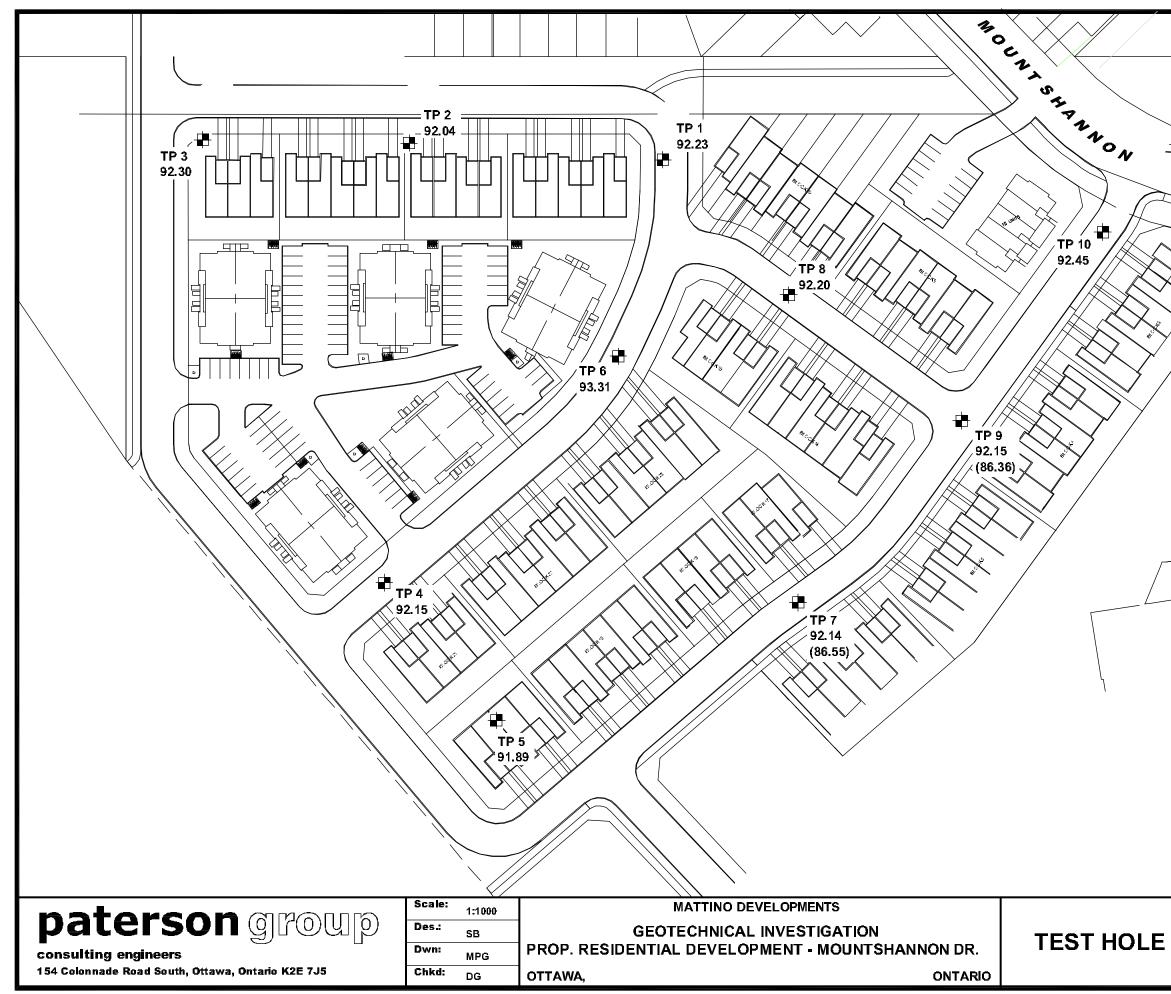

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PG2306-1 - TEST HOLE LOCATION PLAN

FIGURE 1 KEY PLAN

DRI	VE	
		TONGEIELDS DRIVE
	LEGEND:	
	TEST PIT LO	
		RFACE ELEVATION (m) REFUSAL TO EXCAVATION
	ELEVATION	
	BASE PLAN, TEST PIT LO SURFACE ELEVATIONS A PROVIDED BY STANTEC	AT TEST PIT LOCATIONS
	SCALE -1 1000	
	C 6 1C 16 26	60m
		Dwg. No.
LOCATION PLAN		PG2306-1 Report No.: PG2306-1
		Date: 01/2013

patersongroup

consulting engineers

re:	Geotechnical Responses to City Comments
	Proposed Residential Development
	Blocks 1 and 2 - 255 and 285 Mountshannon Drive - Ottawa
to:	Mattino Homes - Mr. Pino Mattino - mattino.ca@gmail.com
date:	September 6, 2019
file:	PG2306-MEMO.07

Further to the request of the City of Ottawa, Paterson Group (Paterson) can provide the following respond to the comments provided by the City for the proposed blocks at the aforementioned site.

City Comments

The Geotechnical Report identifies Sensitive Marine Clay soil. Show distance between trees and foundations and please provide the information required as per the Tree Planting in Sensitive Marine Clay Soils - 2017 Guidelines; link.

These guidelines have 6 conditions that need to be met to permit a 4.5 m separation distance from trees to foundations. I received confirmation from Forestry Services that the following conditions of the above guidelines are respected: Condition 1 - low sensitivity (plasticity), Condition 3 - soil volumes, Condition 4 - tree species and Condition 6 - grading to trees. There are still two more conditions that need to be respected:

Condition 2 - Foundation Depth (the underside of footing must be 2.1m or greater below the lowest finished grade); and

Condition 5 - Reinforced Foundations (the foundation walls are to be reinforced at least nominally to provide ductility, with a minimum of two upper and two lower 15M bars in the foundation wall).

Paterson Response

Regarding Condition 2, the subject site has subsoil conditions that consist of a very stiff to stiff silty clay deposit (weathered clay crust) extending to a depth of 4 to 5 m below the existing grade. Below the clay crust is a firm silty clay deposit. For this type of residential construction with partial basement units, the foundation will have a minimum frost cover of 1.5 m. Since there will be between 2.5 to 3.5 m of weathered clay crust below the founding depth, in our opinion, any tree planting with a separation of 4.5 m will not affect the foundations at this proposed founding elevation. Therefore, extending the foundations to 2.1 m is not required in this case.

Regarding Condition 5, the foundation walls will be reinforced using two upper and two lower 15M bars.

Mr. Pino Mattino Page 2 File: PG2306-MEMO.07

We trust that this information satisfies your requirements.

Best Regards,

Paterson Group Inc.

Carlos P. Da Silva, P.Eng., ing., QP_{ESA}

Paterson Group Inc.

Head Office and Laboratory 154 Colonnade Road South Ottawa - Ontario - K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344 Northern Office and Laboratory 63 Gibson Street North Bay - Ontario - P1B 8Z4 Tel: (705) 472-5331 Fax: (705) 472-2334 **St. Lawrence Office** 993 Princess Street Kingston - Ontario - K7L 1H3 Tel: (613) 542-7381