

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

Trinity Apartments 4200 Innes Road

Servicing and Stormwater Management Report

Prepared for: Broadstreet Properties Inc.

Trinity Apartments

4200 Innes Road

City of Ottawa

Servicing and Stormwater Management Report

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> May / 24/ 2023 September/15/2023

Novatech File: 122179 Ref: R-2023-090

September 15,2023

City of Ottawa Planning, Infrastructure and Economic Development Department Planning and Infrastructure Approvals Branch 110 Laurier Avenue West, 4th Floor Ottawa ON, K1P 1J1

Attention: Geraldine Wildman, Manager, Development Review East Branch

Reference: 4200 Innes Road (Trinity Apartments) Servicing and Stormwater Management Report Our File No.: 122179

Please find enclosed the 'Servicing and Stormwater Management Report' for the above noted development located in the City of Ottawa. This report is being submitted in support of the site plan application for the proposed development.

Should you have any questions or require additional information, please contact the undersigned.

Yours truly,

NOVATECH 7 Marconchi

Greg MacDonald, P. Eng. Director, Land Development and Public Sector Infrastructure

M:\2022\122179\DATA\Reports\Servicing & SWM\2023---Sub 2\122179 - Serv-SWM.docx

Table of Contents

1.0	INTRO		1
1.1	Exis	sting Conditions	1
1.2	Pro	posed Development	1
2.0	SITE	CONSTRAINTS	2
3.0	WATE	ER SERVICING	3
3.1	Sys	tem Pressure Modeling and Results	4
4.0	SANI	TARY SERVICING	5
5.0	STOR		6
6.0	STOR	RM DRAINAGE AND STORMWATER MANAGEMENT	7
6.1	Des	sign Criteria	7
6.2	Qua	antity Control	7
6.3	Qua	ality Control	7
6.4	Hyc	Irologic & Hydraulic Modeling	8
6.5	Min	or System Design and Analysis	11
6	.5.1	Orifice Controls	11
6	.5.2	Cistern Storage	11
6	.5.3	Underground Storage	13
6	.5.4	Roof Drains	13
6	.5.5	Hydraulic Grade Line	15
6.6	Maj	or System Design and Analysis	16
6.7	Pea	ak Flows	18
7.0	EROS	SION AND SEDIMENT CONTROL19	9
8.0	CONC	CLUSIONS AND RECOMMENDATIONS	0
9.0	CLOS	SURE2	1
Appei			22
	Арр	pendix B Water Servicing	23
	Арр	pendix C Sanitary Servicing	24
	Арр	pendix D Storm Servicing	25
	App	pendix E Stormwater Management	26

Tables

Table 3.1: Domestic Water Demand Summary	3
Table 3.2: Water Boundary Conditions	4
Table 3.3: Water Analysis Summary	
Table 5.1: Storm Sewer Design Parameters	6
Table 6.1: Subcatchment Model Parameters	9
Table 6.2: Inlet Control Devices & Design Flows	11
Table 6.3: Cistern Summary	13
Table 6.4: Underground Storage	13
Table 6.5: Roof Drain Rating Curve	
Table 6.6: 5-year Roof Storage & Peak Flows	14
Table 6.7: 100-year Roof Storage & Peak Flows	14
Table 6.8: 100-year HGL Elevations (m)	
Table 6.9: Ponding Volumes (m ³)	
Table 6.10: 100-year Event Ponding Depths	
Table 6.11: Peak Flows (L/s)	

Figures

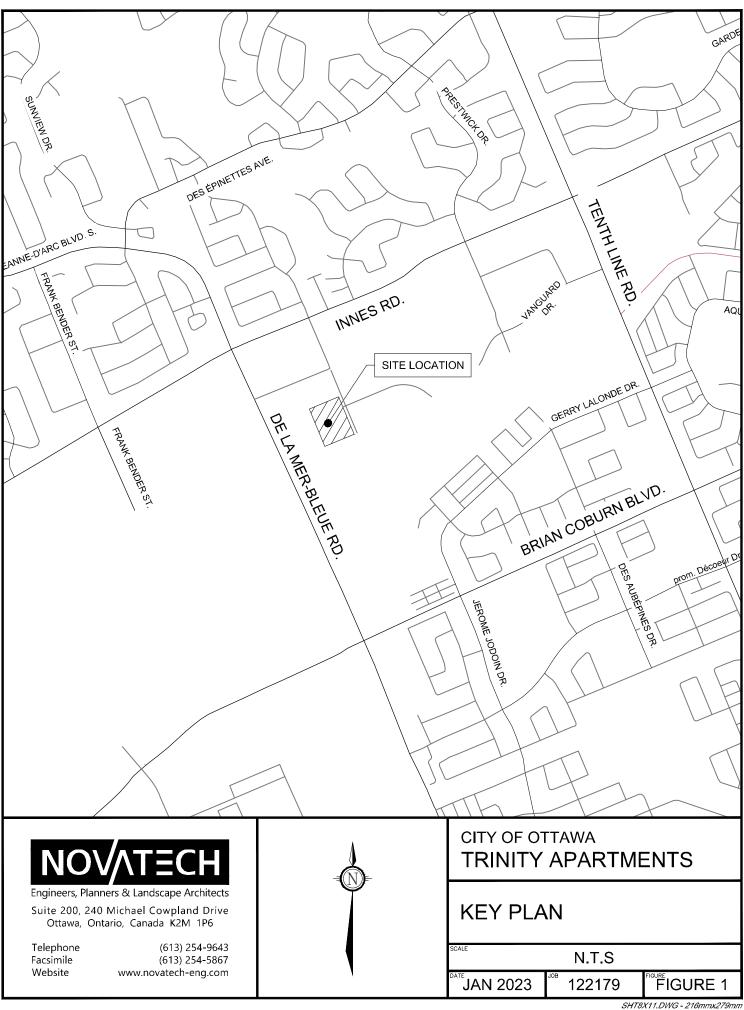
Figure 1	Key Plan
Figure 2	Existing Conditions
Figure 3	Proposed Site Plan

1.0 INTRODUCTION

Novatech has been retained to prepare a Servicing and Stormwater Management Report for the proposed site plan located at 4200 Innes Road within the City of Ottawa. The proposed site is denoted as Block 1 of the Orleans II Subdivision and is presently named Trinity Apartments. The purpose of this report is to support the site plan application for the subject development. **Figure 1 Key Plan** shows the site location.

1.1 Existing Conditions

The subject site is approximately 1.92 hectares (ha.) in size and is denoted as Block 1 of the Orleans II Subdivision. Presently the site is vacant. Historically the site consisted of an agricultural field.


The site is bound by a future Seniors Residence to the north, Noella Leclair Way to the east, existing agricultural fields to the south, and existing car dealerships (Orleans Toyota, Kia, and Honda) to the west. The site is relatively flat and primarily drains from the north-east to the southwest with a +/- 1.4m grade differential across the site. **Figure 2** shows the existing site conditions.

The Orleans II subdivision was designed by Stantec Consulting Ltd. (Stantec) and design information is provided in the following report:

• 'Site Servicing and Stormwater Management Report – Orleans II Subdivision, 4200 Innes Road prepared By Stantec dated September 23, 2023 (Referenced as Stantec Report).

1.2 Proposed Development

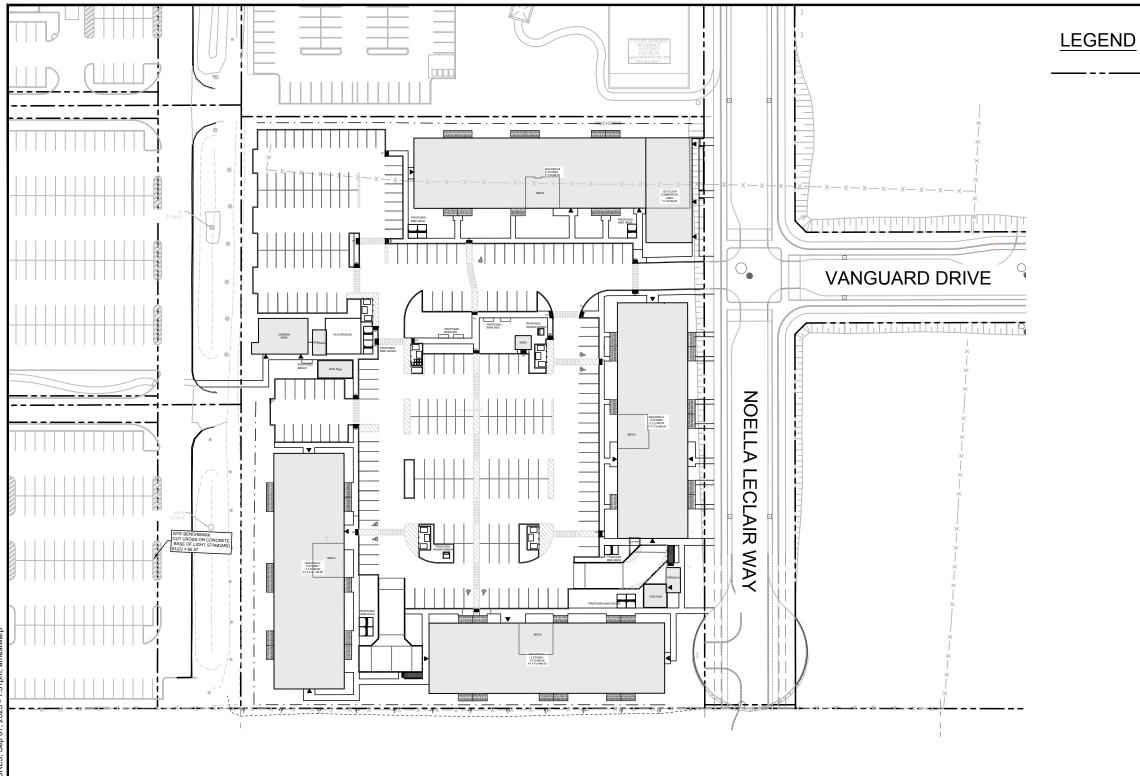
It is proposed to develop the site with a four (4) six (6) storey apartment buildings complete with a central above ground parking area. The three (3) southern buildings (A, C, &D) will each have one (1) level of underground parking beneath the proposed building footprints, with individual accesses. The northern building (B) will be slab on grade construction due to the high bedrock elevations in the northern end of the subject property. The site will provide a total of 293 residential units, and a 339.5m² medical office area on the ground floor of Building B. Vehicular access to the site will be provided from Noella Leclair Way while pedestrian access will be provided from both Noella Leclair Way and the adjacent commercial area to the West. **Figure 3** shows the concept plan for the proposed development. Correspondence from the City preconsultation meeting is also included in **Appendix A** for reference.

Ν Engineers, Planners &

Suite 200, 240 Micha Ottawa, Ontario, C

Telephone Facsimile Website

LEGEND


SHT11X17.DWG - 279mmX432mm

NTECH	TRINITY AP	PARTMENTS	
s & Landscape Architects ichael Cowpland Drive o, Canada K2M 1P6	EXISTING C	CONDITIONS	
(613) 254-9643 (613) 254-5867	^{SCALE} 1:2000	0 20 40	60 80
www.novatech-eng.com	JAN 2023	^{JOB} 122179	FIGURE2

CITY OF OTTAWA

PROPOSED DEVELOPMENT BOUNDARY

Suite 200, 240 Michae Ottawa, Ontario, Ca

Telephone Facsimile Website

SHT11X17.DWG - 279mmX432mm

ΛΤΞϹΗ	TRINITY APARTMENTS	
s & Landscape Architects		
lichael Cowpland Drive io, Canada K2M 1P6	PROPOSED SITE PLAN	
(613) 254-9643 (613) 254-5867	SCALE 1:1000 10 20 30 4	40]
www.novatech-eng.com	SEPT 2023 JOB 122179 FIGURE FIGURE	RE3

CITY OF OTTAWA

PROPOSED DEVELOPMENT BOUNDARY

 (\geq)

2.0 SITE CONSTRAINTS

A geotechnical investigation was completed for the proposed development, and a report prepared entitled 'Geotechnical Investigation', Proposed Multi-Building Development, 4200 Innes Road, Ottawa, Ontario, prepared by Paterson Group Inc. dated March 22, 2023 (PG6528-1). The following is a summary of the findings of the reports:

- The long-term groundwater table can be expected to be below the bedrock surface throughout the northern portion of the site where the bedrock surface is within 2 m from ground surface. The groundwater table is expected to be within the clay deposit at a depth of approximately 2.5 to 3.5 m throughout the southern portion of the site where the overburden is greater than approximately 3 m. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater levels could vary at the time of construction.
- Horizontal rock anchors, shotcrete and/or chain link fencing connected to the excavation face may be required at specific locations to prevent bedrock pop-outs, especially in areas where bedrock fractures are conducive to the failure of the bedrock surface.
- A permissible grade raise restriction of 2.0 m is recommended in the immediate area of settlement sensitive structures and where silty clay is encountered at underside of footing elevations. If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill and/or other measures should be investigated to reduce the risks of unacceptable long-term post construction total and differential settlements.
- The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly a Type 2 and Type 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects. Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides.
- A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.
- For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.
- Tree planting setbacks are recommended for the low to medium sensitivity silty clay deposit and where trees are located near buildings founded on cohesive soils. It should be noted that footings bearing upon a compact glacial till or surface sounded bedrock will not be subject to tree planting setbacks restrictions. (Refer to the geotechnical report for details).

Novatech

Ξ.

3.0 WATER SERVICING

The proposed site is located within the City of Ottawa pressure Zone 2E. There are proposed City watermains in the Noella Leclair Way right-of-way fronting the proposed site, that are presently being constructed as part of the Orleans II subdivision. There is a 300mm diameter (dia.) watermain within Noella Leclair Way north of the intersection with Lady Pellatt Street, and a 200mm dia. watermain within Noella Leclair Way south of the intersection.

It is proposed to service the proposed development with an onsite private watermain which will connect to the watermain within Noella Leclair Way in two (2) locations to provide redundancy. The first connection will be to the existing 300mm watermain at the intersection of Noella Leclair Way and Lady Pellatt Street. The second connection will be to the 200mm watermain within Noella Leclair Way near the south-east corner of the site. The proposed buildings are to be sprinklered and will be equipped with Siamese connections located near the front entrance of each building, within 45m of a fire hydrant. Three (3) private fire Hydrants are proposed to ensure adequate fire flows will be provided on site. Refer to the General Plan of Services drawing (122179-GP) for servicing details.

Water demand calculations have been calculated using criteria from Section 4 of the City of Ottawa Water Distribution Guidelines and the Ontario Building Code. The required fire demand was calculated using the Fire Underwriters Survey (FUS) Guidelines. As the proposed buildings are to be six (6) storeys in height and of wood frame construction, which is atypical in the Ottawa area a Fire consultant was retained to review the fire flow requirements for the site. The fire consultant prepared a memo outlining the Fire flow methodology utilized for the subject site and is included within **Appendix B** for reference. The water demand and fire flow calculations are also provided in **Appendix B** for reference. A summary of the water demand and fire flows are provided in **Table 3.1**.

Building	Population	Commercial Area (m²)	Ave. Daily Demand (L/s)	Max. Daily Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
Building A	151		0.49	1.22	2.67	233
Building B	173	339.5	0.68	1.57	3.29	250
Building C	152		0.49	1.23	2.71	267
Building D	152		0.49	1.23	2.71	267
Total	628	339.5	2.15	5.25	11.38	

Table 3.1: Domestic Water Demand Summary

The above water demand information was submitted to the City of Ottawa for boundary conditions from the City's water model. Refer to **Table 3.2** for a summary of the boundary conditions.

Criteria	Head (m)			
Connection 1 (Noella Leclair W	ay North)			
Max HGL	130.3			
Min HGL	126.6			
Max Day + Fire Flow (267L/s)	123.3			
Connection 2 (Noella Leclair Way South)				
Max HGL	130.3			
Min HGL	126.5			
Max Day + Fire Flow (267L/s)	123.3			

Table 3.2: Water Boundary Conditions

3.1 System Pressure Modeling and Results

The above boundary conditions were used to create a hydraulic model using EPANET for analyzing the performance of the proposed watermain system for three theoretical conditions: 1) High Pressure check under Average Day conditions, 2) Peak Hour Demand, 3) Maximum Day + Fire Flow Demand. The following **Table 3.3** provides a summary of the results from the hydraulic water model.

Condition	Demand (L/s)	Min/Max Allowable Operating Pressures (psi)	Limits of Design Operating Pressures (psi)	Age (hrs)
High Pressure	2.15L/s	80psi (Max)	59.30psi	3.62
Maximum Daily Demand and Fire Flow	272.25 L/s	20psi (Min)	26.68psi	N/A
Peak Hour	11.38 L/s	40psi (Min)	52.63psi	N/A

The above table lists the worst-case pressures from the water model analysis. The water age was calculated with a boundary Age of 0.00hrs

The hydraulic analysis indicates that the system can provide adequate pressures and flow to meet the domestic and fire flow requirements for the site. Refer to **Appendix B** for detailed water demand calculations, model schematic, and City of Ottawa boundary conditions.

4.0 SANITARY SERVICING

There is an existing 375mm diameter sanitary sewer, within the Noella Leclair Way right-of-way that was installed as part of the Orleans II Subdivision. It is proposed to service the proposed development with a private 200mm sanitary sewer which will connect to the existing 375mm sanitary sewer at the intersection of Noella Leclair Way and Lady Pellatt Street.

Sanitary flows for the proposed development were calculated using criteria from Section 4 of the City of Ottawa Sewer Design Guidelines and the Ontario Building Code as follows:

- Residential Average Flow = 280 L/capita/day
- 1 Bed apartment = 1.4 Person/unit
- 2 Bed apartment = 2.1 Person/unit
- 3 Bed Apartment = 3.1 Person/unit
- Medical Office Flow = 275 L/9.3m³/day
- Residential Peaking Factor = Harmon Equation (max peaking factor = 4.0)
- Commercial Peaking Factor = 1.0
- Peak Extraneous Flows (Infiltration) = 0.33L/s/ha

The peak sanitary flow including infiltration for the development was calculated to be **7.54 L/s**. Detailed sanitary flow calculations are provided in **Appendix C** for reference.

As noted previously, the detailed design of the Orleans II subdivision was completed by Stantec with details provided within the Stantec Report. The Subdivision design assumed that Block 1 was to be a residential development with an area of 1.92ha, 365 units, and no commercial area for a total assumed population of 657. The design criteria are summarized below, and excerpts from the report are included within **Appendix C** for reference.

- Average Daily Flow = 280 L/capita/day
- 1.8 Person/unit
- Residential Peaking Factor = Harmon Equation (max peaking factor = 4.0)
- Commercial/ Institutional Peaking Factor = 1.0
- Peak Extraneous Flows (Infiltration) = 0.33L/s/ha

The resultant assumed flow for Block 1 was **7.72L/s.** The assumed design flow was higher than currently proposed, thus the existing infrastructure within the Orleans II Subdivision has capacity to service the proposed development.

5.0 STORM SERVICING

There are 825mm, and 1200mm diameter storm sewers located within the Noella Leclair Way right-of-way fronting the proposed development. There is also a 1050mm diameter storm sewer within Lady Pellatt Street.

It is proposed to service the proposed development by connecting to the manhole at the junction of Noella Leclair Way and Lady Pellatt Street. From the existing manhole a private storm system will be installed that will provide both free flowing connections for the foundation drains of the proposed buildings, and a storage system to mitigate the post development site flows to the allowable release rate. It is proposed to provide storage during storm events utilizing stormtech chambers under the central parking area. Refer to the General Plan of Services drawing (122179-GP) for more details.

The design criteria used in sizing the storm sewers are summarized below in Table 5.1.

Parameter	Design Criteria		
Local Roads	2 Year Return Period		
Storm Sewer Design	Rational Method		
IDF Rainfall Data	Ottawa Sewer Design Guidelines		
Initial Time of Concentration (Tc)	10 min		
Minimum Velocity	0.8 m/s		
Maximum Velocity	3.0 m/s		
Minimum Diameter	250 mm		

 Table 5.1: Storm Sewer Design Parameters

Refer to Appendix D for detailed storm drainage area plans and storm sewer design sheets.

6.0 STORM DRAINAGE AND STORMWATER MANAGEMENT

The stormwater management strategy for the site is based on the established criteria from the City of Ottawa, and the Stantec Report.

6.1 Design Criteria

The following stormwater management criteria for the proposed development were prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012), Technical Bulletins, correspondence with the City of Ottawa, the Stantec Report and our knowledge of development requirements in the area.

Minor System (Storm Sewers)

 Control proposed development flows, up to and including the 100-year storm event, to an allowable release rate of 40 L/s/ha;

<u>Major System</u>

- Provide on-site storage for storm runoff which exceeds the allowable minor system release rate from the site up to and including the 100-year design event;
- Ponding depths are not to exceed 0.35m (static + dynamic) and are not to be within 0.30m (vertical) to the nearest building opening;
- Limit ponding to 0.15 m for all rooftop storage areas;
- No surface ponding for storms up to and including the 2-year event.

Quality Control

- Provide an Enhanced level (80% long-term TSS removal) of water quality control;
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

6.2 Quantity Control

Peak flows from the site are to be controlled to 40 L/s/ha, as per the Stantec Report. The allowable release rate for the 1.921 ha site was calculated to be 76.8 L/s. The design approach for stormwater quantity control is to calculate the flows from the uncontrolled areas and provide sufficient on-site storage in the controlled areas to attenuate the total post-development runoff (controlled and uncontrolled) to the allowable release rate prior to being discharged into the storm sewers within Noella Leclair Way.

6.3 Quality Control

The proposed development is located within the jurisdiction of the Rideau Valley Conservation Authority (RVCA) and is tributary to Bilberry Creek. Based on the Stantec Report, an 'Enhanced' Level of Protection (80% TSS removal) is required. Storm runoff from landscaped areas and roof tops are considered clean for the purposes of water quality and aquatic habitat protection and should not require treatment beyond typical best management practices.

To achieve an Enhanced level of quality control protection, a new oil-grit separator unit (CDS PMSU 2020-5) will be installed downstream of MH 201 on the storm sewer outlet pipe from the site. Stormwater runoff collected by the on-site storm sewer system (1.886 ha tributary area with a percent impervious of 81.3%) will be directed through the proposed treatment unit. The

contributing area includes the proposed paved parking lot areas, controlled building roofs and loading dock areas.

The CDS PMSU 2020-5 will provide 86.4% long-term TSS removal and will treat 99.6% of the average annual rainfall volume from the proposed development. The OGS unit has a treatment capacity of approximately 31 L/s, a sediment storage capacity of 1.1 m^3 and an oil storage capacity of 376 L.

6.4 Hydrologic & Hydraulic Modeling

The City of Ottawa Sewer Design Guidelines (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for the site was evaluated using the *PCWMM* hydrologic/hydraulic modeling software.

Design Storms

The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the Sewer Design Guidelines (October 2012).

<u>Chicago Storms</u> 25mm 4hr Chicago storm 2-year 3hr Chicago storm 5-year 3hr Chicago storm 100-year 3hr Chicago storm <u>12 Hour SCS Storms</u> 2-year 12-hr SCS storm 5-year 12hr Chicago storm 100-year 12hr Chicago storm

The 3-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 3-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

Model Development

The PCSWMM model accounts for both minor and major system flows (*dual drainage*), including the routing of flows through the storm sewer network (*minor system*), and overland along the parking lot (*major system*). The results of the analysis were used to:

- Determine the total major and minor system runoff from the site;
- Size the ICDs to ensure the allowable release rate from the site is not exceeded;
- Calculate the storm sewer hydraulic grade line for the 100-year storm event; and
- Evaluate the overland flow depths and ponding volumes during the 100-year event.

The model is capable of accounting for both static and dynamic storage within the private roadways and parking areas, including the overland flow across all high points. The 100-year flow depths computed by the model represent the total (static + dynamic) ponding depths at low points for areas in road and parking sags.

Storm Drainage Area Plan & Subcatchment Parameters

The development has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The catchment areas are shown on the Stormwater Management Plan (**122179-SWM**) in **Appendix D**.

The hydrologic parameters for each subcatchment were developed based on the Proposed Site Plan (**Figure 3**) and the Storm Drainage Area Plan specified above. Subcatchment parameters are outlined in **Table 6.1**.

			arametere				
Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	No Depression	Flow Path Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A-01a	0.012	0.31	15.7%	0%	2	60	2.0%
A-01b	0.026	0.31	15.7%	0%	3	87	1.5%
A-01c	0.020	0.31	15.7%	0%	3	67	2.0%
A-02	0.096	0.81	87.1%	0%	15	64	2.0%
A-03	0.086	0.76	80.0%	0%	15	57	2.0%
A-04	0.030	0.85	92.9%	0%	9	33	2.0%
A-05	0.099	0.72	74.3%	0%	17	58	2.5%
A-06	0.134	0.72	74.3%	0%	19	71	2.5%
A-07	0.026	0.69	70.0%	0%	7	37	2.0%
A-08	0.018	0.23	4.3%	0%	4	45	1.0%
A-09	0.074	0.77	81.4%	0%	13	57	2.0%
A-10	0.069	0.86	94.3%	0%	14	49	2.0%
A-11	0.080	0.80	85.7%	0%	15	53	2.0%
A-12	0.101	0.87	95.7%	0%	16	63	2.0%
A-13	0.118	0.87	95.7%	0%	17	69	2.0%
A-14	0.037	0.31	15.7%	0%	4	93	1.0%
A-15	0.079	0.82	88.6%	0%	15	53	2.0%
A-16	0.061	0.85	92.9%	0%	13	47	3.0%
A-17	0.023	0.28	11.4%	0%	3	77	1.5%
A-18a	0.033	0.41	30.0%	0%	3	110	1.5%
A-18b	0.017	0.41	30.0%	0%	2	85	1.5%
A-19a	0.004	0.47	38.6%	0%	4	11	5.5%
A-19b	0.003	0.47	38.6%	0%	3	9	6.0%
A-19c	0.005	0.47	38.6%	0%	4	12	4.0%
A-19d	0.003	0.47	38.6%	0%	3	9	4.5%
A-19e	0.004	0.47	38.6%	0%	3	13	3.5%
A-19f	0.002	0.47	38.6%	0%	2	12	5.0%
A-19g	0.003	0.47	38.6%	0%	3	9	5.5%
A-19h	0.004	0.47	38.6%	0%	3	12	3.5%
A-19i	0.017	0.47	38.6%	0%	7	24	1.5%
D-01	0.007	0.49	41.4%	0%	2	35	6.5%
D-02	0.029	0.69	70.0%	0%	32	9	7.0%
D-03	0.013	0.90	100.0%	0%	29	4	7.5%
D-04	0.050	0.73	75.7%	0%	26	19	10.0%
D-05	0.028	0.40	28.6%	0%	11	25	3.0%

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	No Depression	Flow Path Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
R-01	0.039	0.90	100.0%	0%	19	21	0.5%
R-02	0.037	0.90	100.0%	0%	19	19	0.5%
R-03	0.037	0.90	100.0%	0%	19	19	0.5%
R-04	0.025	0.90	100.0%	0%	16	16	0.5%
R-05	0.015	0.90	100.0%	0%	12	13	0.5%
R-06	0.004	0.90	100.0%	0%	11	4	0.5%
R-07	0.039	0.90	100.0%	0%	19	21	0.5%
R-08	0.037	0.90	100.0%	0%	19	19	0.5%
R-09	0.042	0.90	100.0%	0%	20	21	0.5%
R-10	0.042	0.90	100.0%	0%	20	21	0.5%
R-11	0.037	0.90	100.0%	0%	19	19	0.5%
R-12	0.039	0.90	100.0%	0%	19	21	0.5%
R-13	0.039	0.90	100.0%	0%	19	21	0.5%
R-14	0.037	0.90	100.0%	0%	19	19	0.5%
R-15	0.042	0.90	100.0%	0%	20	21	0.5%
Total	1.921	0.76	80.4%	-	-	-	-

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the City of Ottawa were used for all catchments.

Horton's Equation:	Initial infiltration rate: $f_0 = 76.2 \text{ mm/h}$	r
$f(t) = f_c + (f_o - f_c)e^{-k(t)}$	Final infiltration rate: $f_c = 13.2 \text{ mm/h}$	r
	Decay Coefficient: k = 4.14/hr	

Depression Storage

The default values for depression storage in the City of Ottawa were used for all catchments. Residential rooftops were assumed to provide no depression storage.

- Depression Storage (pervious areas): 4.67 mm
- Depression Storage (impervious areas): 1.57 mm

Equivalent Width

Equivalent Width refers to the width of the sub-catchment flow path. This parameter is calculated as described in the Sewer Design Guidelines (October 2012), Section 5.4.5.6. The flow paths used to calculate the equivalent widths are shown on the PCSWMM schematics provided in **Appendix E**.

Impervious Values

Runoff coefficients for each subcatchment area were calculated based on the Proposed Site Plan (**Figure 3**). Refer to the Stormwater Management Plan (**122179-SWM**) for details. The runoff coefficients are used for Rational Method calculations in the storm sewer design sheet. PCSWMM

used percent impervious values, so the percent impervious values were calculated using the following equation:

$$\% imp = \frac{C - 0.2}{0.7}$$

6.5 Minor System Design and Analysis

The following sections outline the model parameters and results of the PCSWMM model pertaining to the minor system (storm sewers).

6.5.1 Orifice Controls

Inflows to the storm sewer were modeled based on the characteristics of each inlet. All the catchbasins in the parking areas and roadway are located at low points. Inflows to the storm sewer are based on the ICD specified for the inlet and the maximum depth of ponding. ICDs have been sized to limit the ultimate outlet peak flows to the allowable release rate of 76.8 L/s.

Per the Storm Sewer Design Guidelines (October 2012), "ICDs shall not be used in series (i.e. where the backwater from one device affect the next upstream device) unless a dynamic model is used to assess their performance and to compute the corresponding upstream water elevation and storage requirements". As such, ICDs have been installed in the downstream catchbasin maintenance hole to limit peak flows from the upstream series of inlets, as well as take advantage of the storage provided by the upstream storm sewers. Details are outlined as follows in **Table 6.2**. ICD information is provided in **Appendix E** and indicated on the General Plan of Services (**122179-GP**, **Appendix F**).

Structure	Tempest LMF ICD Size	ICD Invert	T/G	100-yr HGL*	100-yr Head*	100-year Release Rate*
	0.20	(m)	(m)	(m)	(m)	(L/s)
CB01	Vortex 78	87.50	88.70	88.80	1.30	6.0
CB02	Vortex 64	86.10	88.60	88.88	2.78	6.0
CB12	Vortex 66	85.33	88.75	87.87	2.54	6.0
CBMH208	Vortex 64	86.10	88.65	88.98	2.88	6.1
Cistern	Vortex 72	86.39	89.21	88.20	1.81	6.0

 Table 6.2: Inlet Control Devices & Design Flows

* From PCSWMM 100-year 3-hour Chicago Storm event

6.5.2 Cistern Storage

Due to the restrictive release rate for the site, it is proposed to install a stormwater cistern within the parking garage level of Building A to control the stormwater flows of the access ramp area (Denoted as drainage area D-04 on drawing 122179-SWM). The proposed cistern will have a footprint of 7.68m² and a height of 2.21m, for a total available volume of 16.97m³.

Table 6.3Error! No bookmark name given. provides details on the cistern. Refer to **Appendix E** for the storage curves used in the PCSWMM model. Refer to the General Plan of Services drawing (122179-GP) for details on the Cistern.

Name	Invert	T/G		Max. HGL* (m)					
Name	(m)	(m)	2-year	5-year	100-year				
Cistern	86.39	89.21	86.93	87.23	88.20				
* Erom DCS	* From PCSW/MM 100 year 2 hour Chicago Storm event								

Table 6.3: Cistern Summary

* From PCSWMM 100-year 3-hour Chicago Storm event

6.5.3 Underground Storage

The allowable release rate of 76.8 L/s is smaller than the 2-year peak flows from the proposed development. Consequently, underground storage is required to ensure no surface ponding during the 2-year storm event. Underground storage will be provided using Stormtech SC-740 and MC-3500 arch-type chambers (or approved equivalent) surrounded by 50mm dia. clearstone.

- The SC-740 chambers will be installed upstream of the ICD on CB02.
- The MC-3500 chambers will connect into MH 210. To provide additional storage upstream of the ICD on CBMH 208.

The inverts of the storage chambers are above the anticipated groundwater elevations noted within the geotechnical investigation report (Paterson Group Inc, 2023). **Table 6.4** provide details on the storage chambers. Refer to **Appendix E** for the storage curves used in the PCSWMM model and details on the Stormtech chambers.

Table 6.4: Underground Storage

Location	Chamber Model	No. of Chambers	Available Storage (m ³)
CB02	SC-740	6	18.3
Upstream MH 210	MC-3500	13	86.7

6.5.4 Roof Drains

It has been assumed that drainage for the roof areas (R-01 to R-15) will be provided by fifteen (15) Watts Flow Control Roof Drains, each set to half ($\frac{1}{2}$) open or a quarter ($\frac{1}{4}$) open, based on the flow rates outlined in **Table 6.5** for a single drain. For modelling purposes, flows from each building were simulated using a single flow vs. depth rating curve to represent the total flow from all proposed roof drains and a single storage node to represent the total storage provided by each building roof. Refer to the Stormwater Management Plan (**122179-SWM**) for details.

Table 6.5: Roof Drain Rating Curve

Head	Single Drain - Controlled Flow Rate* (L/s)								
(m)	Fully Open	3/4 Open	1/2 Open	1/4 Open	Fully Closed				
0.000	0.00	0.00	0.00	0.00	0.00				
0.025	0.32	0.32	0.32	0.32	0.32				
0.051	0.63	0.63	0.63	0.63	0.63				
0.076	0.95	0.87	0.79	0.71	0.63				
0.102	1.26	1.10	0.95	0.79	0.63				
0.127	1.58	1.34	1.10	0.87	0.63				
0.152	1.89	1.58	1.26	0.95	0.63				

*Watts Flow Control Roof Drains Rating Curve (single drain), Converted to Metric from Imperial Units

Table 6.6 and **Table 6.7** summarize the controlled post-development design flows from the building rooftop, the maximum anticipated ponding depths, storage volumes required, and the storage volumes provided for the 5-year and 100-year storm events.

Area ID	Static Ponding Area	Drainage Area	Uncontrolled Peak Flow	Controlled Peak Flow	Flow Depth	Storage Required	Storage Available	
	(m²)	(ha)	(L/s)	(L/s)	(m)	(m³)	(m³)	
			Buildin	g A				
R-01	378	0.039	3.0	0.82	0.11	8.52	19.17	
R-02	359	0.037	3.0	0.82	0.11	7.99	18.15	
R-03	359	0.037	3.0	0.82	0.11	7.94	18.29	
R-04	244	0.025	2.8	0.81	0.11	4.76	12.48	
R-05	149	0.015	2.3	0.78	0.10	2.34	7.51	
R-06	32	0.004	1.1	0.68	0.07	0.23	1.76	
			Buildin	g B				
R-07	378	0.039	3.2	0.82	0.11	8.53	19.19	
R-08	359	0.037	3.0	0.82	0.11	7.99	18.11	
R-09	406	0.042	3.7	1.01	0.11	8.82	20.69	
			Buildin	g C				
R-10	406	0.042	3.7	1.01	0.11	8.81	20.69	
R-11	359	0.037	3.0	0.82	0.11	8.01	18.29	
R-12	378	0.039	3.2	0.82	0.11	8.53	19.19	
	Building D							
R-13	378	0.039	3.2	0.82	0.11	8.54	19.21	
R-14	359	0.037	3.0	0.83	0.11	7.94	17.58	
R-15	205	0.023	3.7	1.01	0.11	8.85	20.57	
TOTAL	-	0.509	45.0	12.7	-	107.81	250.86	

Table 6.6: 5-year Roof Storage & Peak Flows

Table 6.7: 100-year Roof Storage & Peak Flows

Area ID	Static Ponding Area	Drainage Area	Uncontrolled Peak Flow	Controlled Peak Flow	Flow Depth	Storage Required	Storage Available	
	(m²)	(ha)	(L/s)	(L/s)	(m)	(m ³)	(m³)	
			Buildin	g A				
R-01	378	0.039	4.1	0.94	0.15	18.84	19.17	
R-02	359	0.037	4.2	0.94	0.15	17.72	18.15	
R-03	359	0.037	4.0	0.93	0.15	17.61	18.29	
R-04	244	0.025	3.7	0.91	0.14	10.83	12.48	
R-05	149	0.015	3.2	0.89	0.13	5.58	7.51	
R-06	32	0.004	1.6	0.81	0.11	0.73	1.76	
	Building B							
R-07	378	0.039	4.1	0.94	0.15	18.85	19.19	
R-08	359	0.037	4.2	0.94	0.15	17.72	18.11	
R-09	406	0.042	5.2	1.23	0.15	19.23	20.69	

Area ID	Static Ponding Area	Drainage Area	Uncontrolled Peak Flow	Controlled Peak Flow	Flow Depth	Storage Required	Storage Available
	(m²)	(ha)	(L/s)	(L/s)	(m)	(m³)	(m³)
			Buildin	g C			
R-10	406	0.042	5.2	1.22	0.15	19.24	20.69
R-11	359	0.037	4.1	0.93	0.15	17.77	18.29
R-12	378	0.039	4.1	0.94	0.15	18.87	19.19
			Buildin	g D			
R-13	378	0.039	4.1	0.94	0.15	18.88	19.21
R-14	359	0.037	4.2	0.95	0.15	17.58	17.58
R-15	406	0.023	5.0	1.22	0.15	19.32	20.57
TOTAL	-	0.509	61.0	14.7	-	238.76	250.86

As shown in the above tables, the building roofs will provide sufficient storage for all storm events up to the 100-year event. It should be noted that the PCSWMM model shows similar results to the roof storage calculations, but there is a small amount of overflow through the scuppers during the 100-year event and larger. Flows exceeding the available storage will overflow through the scuppers and onto the ground surface below and will be conveyed to storm sewer inlets via the major system flow routes. Detailed calculations are provided in **Appendix E**.

6.5.5 Hydraulic Grade Line

The results of the analysis were used to determine if there would be any surcharging from the storm sewer system during the 100-year storm event. **Table 6.8** provides a summary of the 100-year HGL elevation at each storm maintenance hole within the proposed development, as well as a summary of the HGL elevations for a 20% increase (rainfall intensity and total precipitation) in the 100-year design event.

	МН	MH T/O		evation ⁽¹⁾	Clearanc	e from T/G
Maintenance Hole ID	Invert Elevation	T/G Elevation	100-year	100-year + 20%	100-year	100-year +20%
	(m)	(m)	(m)	(m)	(m)	(m)
MH201	83.80	88.82	84.01	84.02	4.81	4.80
MH202	83.99	88.65	84.14	84.15	4.51	4.50
MH203	84.19	88.71	84.33	84.34	4.38	4.37
MH204	84.41	88.92	84.54	84.55	4.38	4.37
MH205	84.54	88.79	84.68	84.69	4.11	4.10
MH205B	84.65	88.97	84.80	84.81	4.17	4.16
MH206	84.72	88.84	84.85	84.86	3.99	3.98
MH207	84.96	89.18	85.07	85.09	4.11	4.09
MH210 ⁽²⁾	86.20	88.78	88.98	89.01	-0.20	-0.23
MH215	84.89	89.08	84.94	84.95	4.14	4.13

Table 6.8: 100-year HGL Elevations (m)

⁽¹⁾ HGL information is from the PCSWMM model for a 3-hour Chicago Storm distribution.

⁽²⁾ MH 210 is located upstream of the ICD at CBMH 208 and will backup conditions.

There is sufficient clearance to the T/G for all manholes except for MH 210, which is located upstream of the ICD located at CBMH 208 and within the ponding limits of CBMH 208. This manhole serves to connect the underground storages chambers upstream of the ICD at CBMH 208 to the storm sewer network upstream of the ICD. Since this manhole is upstream of the ICD within the ponding limits of CBMH 208 it will surcharge based on the capacity of the ICD and the HGL will match that of CBMH 208, which experiences ponding in the 100-year and 100-year + 20% event. The ponding depth above MH 210 will be less than 0.3m for all events including the stress test.

6.6 Major System Design and Analysis

Catchbasins and catchbasin maintenance holes were modeled as storage nodes to account for the surface storage provided by the parking areas of the proposed development, and the storage provided within the structure itself. For modeling purposes, the storage nodes are interconnected using short rectangular open channels to simulate flows cascading over high points when the available static storage is exceeded. A total volume of approximately 435 m³ is provided by the low points in the parking areas and roadway, as shown in **Table 6.9**. Storage curves for each of the catchbasins and catchbasin manholes is provided in **Appendix E**.

The landscape catchbasins along the north and south limits of the proposed development (LD 1000 to LD 1003) were modeled as triangular swales with a depth of 0.35m and 3H:1V side slopes. Storage nodes were not used to model the ponding in these areas.

STM Area	CB ID	Ponding Area	Available Static Ponding Volume
		(m²)	(m³)
A-07	CB01	87	4.5
A-06	CB02	498	53.2
A-12	CB03	425	42.1
A-16	CB04	233	19.3
A-15	CB05	162	9.7
A-04	CB09	118	11.5
A-02	CB10	515	50.4
A-19a	CB12	17	0.9
A-11	CBMH208	418	43.7
A-13	CBMH209	524	49.3
A-10	CBMH211	384	37.7
A-09	CBMH212	254	20.9
A-05	CBMH213	438	50.7
A-03	CBMH214	410	43.7
A-19b	LD1004	6	0.3
A-19c	LD1005	15	0.6
A-19d	LD1006	7	0.2
A-19e	LD1007	10	0.3
A-19f	LD1008	6	0.2

Table 6.9: Ponding Volumes (m³)

STM Area ID	CB ID	Ponding Area (m²)	Available Static Ponding Volume (m ³)		
A-19g	LD1009	6	0.2		
A-19h	LD1010	8	0.2		
A-19i	LD1011	18	0.5		

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to City standards. A summary of ponding depths at each inlet for the 100-year event is provided in **Table 6.10**. There will be no ponding during the 2-year event, and ponding which occurs for larger storm events will be less than 0.35m.

Structure	T/G		ic Ponding Depth)	100-yr Event ⁽¹⁾				
Structure		Elev.	Depth	Elev.	Depth	Cascading	Cascade	
	(m)	(m)	(m)	(m)	(m)	Flow?	Depth (m)	
CB01	88.70	88.83	0.13	88.80	0.10	N	0.00	
CB02	88.60	88.90	0.30	88.88	0.28	N	0.00	
CB03	88.75	89.05	0.30	88.98	0.23	Ν	0.00	
CB04	88.75	89.00	0.25	88.98	0.23	N	0.00	
CB05	88.85	89.03	0.18	89.00	0.15	Ν	0.00	
CB06	89.00	89.15	0.15	89.00	0.00	Ν	0.00	
CB07	88.95	89.18	0.23	89.03	0.08	Ν	0.00	
CB08	89.00	89.20	0.20	89.05	0.05	Ν	0.00	
CB09	88.85	89.00	0.15	88.98	0.13	Ν	0.00	
CB10	88.75	89.00	0.25	88.98	0.23	Ν	0.00	
CB11	88.85	89.14	0.29	88.98	0.13	Ν	0.00	
CB12	88.75	88.89	0.14	87.87	0.00	Ν	0.00	
CBMH208	88.65	88.95	0.30	88.98	0.33	Y	0.03	
CBMH209	88.70	88.97	0.27	88.98	0.28	Y	0.01	
CBMH211	88.75	89.05	0.30	88.98	0.23	Ν	0.00	
CBMH212	88.90	89.10	0.20	88.99	0.09	Ν	0.00	
CBMH213	88.65	88.97	0.32	88.98	0.33	Y	0.01	
CBMH214	88.75	88.97	0.22	88.98	0.23	Y	0.01	
LD1000	88.90	89.15	0.25	89.05	0.15	Ν	0.00	
LD1001	88.80	89.10	0.30	89.05	0.25	Ν	0.00	
LD1002	88.80	89.10	0.30	88.98	0.18	N	0.00	
LD1003	88.75	89.05	0.30	88.98	0.23	N	0.00	
LD1004	88.75	88.85	0.10	87.87	0.00	N	0.00	
LD1005	88.65	88.75	0.10	87.87	0.00	N	0.00	
LD1006	88.65	88.73	0.08	87.87	0.00	N	0.00	
LD1007	88.60	88.67	0.07	87.87	0.00	Ν	0.00	

 Table 6.10: 100-year Event Ponding Depths

Othersetung	T/G	Max. Static Ponding (Spill Depth)		100-yr Event ⁽¹⁾			
Structure		Elev.	Depth	Elev.	Depth	Cascading	Cascade
	(m)	(m)	(m)	(m)	(m)	Flow?	Depth (m)
LD1008	88.60	88.67	0.07	87.87	0.00	Ν	0.00
LD1009	88.60	88.68	0.08	87.87	0.00	Ν	0.00
LD1010	88.60	88.65	0.05	87.87	0.00	Ν	0.00
LD1011	88.60	88.66	0.06	87.87	0.00	Ν	0.00

⁽¹⁾ HGL information is from the PCSWMM model for a 3-hour Chicago Storm distribution.

An expanded table of the ponding depths at low points in the parking lots (including the stress-test event) is provided in **Appendix E**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

6.7 Peak Flows

For all storm events, the allowable release rate is 78.6 L/s. Peak flows for each storm event are outlined in the following table:

Storm Distribution->	3hr Chicago					12hr SCS		
Return Period->	25mm	2yr	5yr	100yr	100yr +20%	2yr	5yr	100yr
Minor System to Noella Leclair Way (STM sewer)	31.2	36.4	45.3	62.0	67.9	30.4	38.4	51.4
Major System to Noella Leclair Way (Major Spills)	0.0	0.0	0.0	0.0	20.5	0.0	0.0	0.0
Uncontrolled Noella Leclair Way (D-01 and D-05)	1.7	2.6	6.1	14.8	18.7	1.2	3.4	6.9
	32.4	38.1	49.2	74.7	84.6	31.3	41.3	58.0

Table 6.11: Peak Flows (L/s)

⁽¹⁾ Total flow based on the system flow from the PCSWMM model

As outlined in the above table, peak flows for all storm events up to and including the 100-year event will be controlled to the allowable release rate of 76.8 L/s. There will be no major overland flow directed to Merivale Road for all storm events up to and including the stress test event (100-year + 20%).

7.0 EROSION AND SEDIMENT CONTROL

Temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter socks (catchbasin inserts) will be placed in existing and proposed catchbasins and catchbasin manholes, and will remain in place until vegetation has been established and construction is completed;
- Silt fencing will be placed along the surrounding construction limits;
- Mud mats will be installed at the site entrances;
- Strawbale or rock check dams will be installed in swales and ditches;
- The contractor will be required to perform regular street sweeping and cleaning as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site;

Erosion and sediment control measures should be inspected daily and after every rain event to determine maintenance, repair or replacement requirements. Sediments or granulars that enter site sewers shall be removed immediately by the contractor. These measures will be implemented prior to the commencement of construction and maintained in good order until vegetation has been established. Refer to the Erosion and Sediment Control Plan (drawing 122179-ESC) for additional information.

8.0 CONCLUSIONS AND RECOMMENDATIONS

<u>Watermain</u>

The analysis of the existing and proposed watermain network confirms the following:

- The proposed 200mm dia. private watermain which connects to the existing watermain within Noella Leclair Way can service the proposed development.
- There are adequate pressures in the existing watermain infrastructure to meet the required domestic demands for the development.
- There is adequate flow to service the proposed fire protections system.

Sanitary Servicing

The analysis of the existing and proposed sanitary system confirms the following:

- It is proposed to service the development with a private Sanitary sewer ranging in size from 200-250mm in diameter. The proposed sewer will connect to existing sewers within the Noella Leclair Way right-of-way.
- It is anticipated there is adequate capacity within the existing sanitary infrastructure to service.

Stormwater Management

The following provides a summary of the storm sewer and stormwater management system:

- The proposed storm sewer system is to connect to the 1200mm diameter storm sewer in the Noella Leclair Way right-of-way.
- Stormwater control is to be provided through the use of rooftop storage, underground storage (Stormtech Chambers MC-3500), surface ponding, and a cistern.
- Storm flows will be attenuated through the implementation of inlet control devices.
- Quality control with be provided with a CDS OGS unit (CDS PMSU 2020-5) which will provide over 80% long-term TSS removal.

Erosion and Sediment control

• Erosion and sediment control measures (i.e. filter fabric, catchbasin inserts, silt fences, etc.) will be implemented prior to construction and are to remain in place until vegetation is established.

9.0 CLOSURE

The preceding report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Anthony Mestwarp, P.Eng Project Manager Land Development Engineering

Stormwater Modeling by:

Melanie Schroeder, P.Eng Water Resources

Reviewed by:

67 Maderel

Greg MacDonald, P.Eng Director, Land Development and Public Sector Infrastructure

Appendix A Pre - Consultation Meeting Minutes These Pre- App Comments came from an email sent on Fri 07/15/2022 11:29 AM

Hello,

Please refer to the below and/or attached notes regarding the Pre-Application Consultation (pre-con) Meeting held on July 5, 2022 for the property at 4200 Innes Road (Block 1 only) for Lift of a Holding Zone Designation, Minor Variance Application and Complex Site Plan in order to allow the development of a 4 building retail complex consisting of 6-storey buildings with a total of 295 units with a mix of surface and underground parking by Broadstreet. I have also attached the required Plans & Study List for application submission.

Below or attached are staff's preliminary comments based on the information available at the time of pre-con meeting:

Planning

- Policies and provisions (PPS, OP, CDP, Secondary Plan, etc.)
 - The existing Official Plan designation is Employment
 - New Official Plan is Neighbourhood/Evolving Neighbourhood overlay. To the east and south is the HUB designation.(I feel this should have been included)
 - The site is within the EUC Mixed Use Centre CDP. Designated as Mixed-use.
 - There are design criteria for mid-rise buildings and landscaping
- o Committee of Adjustment / variances required
 - At the time of the meeting only relief from the parking requirement is requested
 - On other Broad Street Sites they indicated that 1 parking space is sufficient along with 0.2 visitor parking spaces per unit.
 - 1.2 combined parking has been approved elsewhere
 - Want to ensure that as many spaces are located below grade to free up open space
 - As the plan matures, if there are any other required Variance, contact Cass Sclauzero at <u>Cass.Sclauzero@ottawa.ca</u>
- Existing Zoning
 - The property is zoned AM [2414] H(40)-h
 - The exception lists the criteria for lifting the -h
 - The criteria will be satisfied once the Subdivision is Draft Approved and an application to lift the -h can be submitted.
- o Wind

Windy Study - to be confirmed

- Landscape requirements
 - Would like space made available for street trees in front of a portion of building
 - Have a pedestrian connection (if possible) through the site from existing path to the west to the intersection
 - Try and provide different landscaped area around the site.
- \circ Try and locate garbage rooms in the basements and show snow storage on the site plan

Urban Design

- A Design Brief will be required. A Terms of Reference is attached. All of the sections highlighted in yellow must be addressed with appropriate graphics and explanatory text.
- Please be aware that the application is subject to the Urban Design Review Panel (UDRP) review. The site is zoned AM and within 400m of Innes Road which is a Design Priority Area. It is important for the UDRP timeline to be align with the application review. UDRP review meeting schedules can be found from this link. Please contact Sole Carvajal sole.carvajal@ottawa.ca if you need assistance related to UDRP.
- The site is part of the East Urban Community Community Design Plan Phase 3. The application must meet any applicable policies and design guidelines in the CDP. In particular, "the frontage of lands along public streets will feature buildings with active frontages regardless of the land uses contained therein".
- 3m side-yard setbacks are permitted by zoning. However, the applicant is asked to reconsider the adequacy of a 3m setback on the south property line given that the abutting property could develop with mid or high-rise buildings, which could have similarly small or zero side-yard setbacks.
- The applicant is asked to confirm and make sure that the site meets zoning requirements for minimum width of a landscaped area around a parking lot.
- Urban Design supports any reduction in parking in favour of additional above-grade communal amenity space
- Urban Design supports the possibility of a pedestrian connection from the properties to the west, through the site, to the street
- Tree planting on the site is important. The area between building façade and property line must include tree species that are suitable for urban environments. Given the limited setbacks, small and medium sized species and / or columnar trees are likely most appropriate. Underground parking should not extend beyond the building façade, in order to provide as much growing space as possible for trees.
- Individual entrances to ground floor units, are appropriate as shown in the concept plan. All other residents and visitors will enter the building from a main door. The architecture and landscape should highlight the main entrance to each of the buildings.

Engineering

The attached "Pre-application consultation servicing memo – 4200 Innes" summarizes engineering design considerations as per our discussion.

Transportation

- Transportation Impact memo (TIA) consult with Mike Giampa (mike.giampa@ottawa.ca)
- More comments to be confirmed

Parkland

 Parkland dedication /Cash-in-lieu of parkland requirements have been satisfied through the subdivision

City Surveyor

• The determination of property boundaries, minimum setbacks and other regulatory constraints are a critical component of development. An Ontario Land Surveyor (O.L.S.)

needs to be consulted at the outset of a project to ensure properties are properly defined and can be used as the geospatial framework for the development.

 Topographic details may also be required for a project and should be either carried out by the O.L.S. that has provided the Legal Survey or done in consultation with the O.L.S. to ensure that the project is integrated to the appropriate control network.

Questions regarding the above requirements can be directed to the City's Surveyor, Bill Harper, at <u>Bill.Harper@ottawa.ca</u>

Waste Services

New multi-unit residential development, defined as containing six (6) or more units, intending to receive City waste collection services will be required, as of June 1, 2022, to participate in the City's Green Bin program in accordance with Council's approval of the <u>multi-residential waste</u> <u>diversion strategy</u>. The development must include adequate facilities for the proper storage of allocated garbage, recycling, and green bin containers and such facilities built in accordance with the approved site design. Questions regarding this change and requirements can be directed to <u>Andre.Laplante@ottawa.ca</u>.

<u>Other</u>

- Plans are to be standard A1 size (594 mm x 841 mm) or Arch D size (609.6 mm x 914.4 mm) sheets, dimensioned in metric and utilizing an appropriate Metric scale (1:200, 1:250, 1:300, 1:400 or 1:500).
- All PDF submitted documents are to be unlocked and flattened.
- [For sites containing one or more buildings with a total GFA greater than 2000 square metres OR retail shopping complexes with a total GFA greater than 10,000 square metres OR sites containing office buildings with total GFA greater than 10,000 square metres hotels and motels with more than 75 units OR (human) hospitals OR educational institutions with more than 350 students OR manufacturing establishments working more than 16,000 person-hours in a month]
 - A Waste Reduction Workplan Summary is required for the construction project as required by O.Reg. 102/94, being "Waste Audits and Waste Reduction Work Plans" made under the Environmental Protection Act, RSO 1990, c E.19, as amended.
- [Optional] You are encouraged to contact the Ward Councillor, Councillor Catherine Kitts, at [Catherine.Kitts@ottawa.ca] about the proposal.
- [Optional, where private roads are proposed]
 - advises/reminds Applicant, to submit a Private Roadway Street Naming application to Building Code Services Branch for any internal private road network.
 - applications are available at all Client Service Centres (the private roadway approval process takes three months).

Please refer to the links to <u>Guide to preparing studies and plans</u> and <u>fees</u> for further information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>geoinformation@ottawa.ca</u>. These pre-con comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please do not hesitate to contact me if you have any questions.

Regards,

Zyan Khan

Student Planner | Étudiant en Urbanisme Development Review East | Examen des projects d'aménagement - Est Planning, Real Estate and Economic Development Department | Direction générale de la planification, des biens immobiliers et du développement économique

Planning, Infrastructure and Economic Development Department Services de la planification, de l'infrastructure et du développement économique

Site Plan Pre-Application Consultation Notes

Infrastructure

Nater			

Watermain Frontage Fees to be paid (\$190.00 per metre) 🛛 Yes

Boundary conditions:

Civil consultant must request boundary conditions from the City's assigned Project Manager prior to first submission. Water boundary conditions should be requested once the new watermain is operational.

- Water boundary condition requests must include the location of the service(s) and the expected loads required by the proposed developments. Please provide all the following information:
 - Location of service(s)
 - Type of development and the amount of fire flow required (as per FUS, 1999)
 - Average daily demand: ____ L/s
 - Maximum daily demand: ____ L/s
 - Maximum hourly daily demand: ____ L/s
 - Fire protection (Fire demand, Hydrant Locations)
- Please submit sanitary demands with the water boundary conditions.

General comments

- Service areas with a basic demand greater than 50 m³/day shall be connected with a minimum of two water services, separated by an isolation valve, to avoid creation of vulnerable service area.
 - A District Metering Area Chamber (DMA) is required for services 150mm or greater in diameter.
- FUS 2020 calculations must be provided for each building. The maximum FUS should be used for the water boundary conditions.
- A hydrant must be provided within 45m of a Siamese connection, if applicable.
- Hydrant spacing and number of hydrants should be checked for each building.

Sanitary Sewer

Is a monitoring manhole required on private property? 🛛 Yes

General comments

• The servicing report is required to demonstrate that the proposed development is within the allocated sanitary capacity established in the detail design of subdivision. The servicing report should clearly compare total wet-weather sanitary demand to allocated capacity.

Storm Sewer

General comments

- Consult the approved detail subdivision design for allowable release rates and additional quality control requirements.
- When both underground and above ground storage is utilized, the release rate from the system will
 significantly differ than when solely one level storage is being used (i.e. greater range of head vs smaller
 change of head during storm event). If both levels of storage are to be accounted for then there are two
 options for SWM calculations: 1) use a dynamic computer model or 2) use an assumed average flow rate of
 half (50%) of the controlled peak flow rate of the area(s) utilizing two levels of storage.
- In order to minimize number of storm sewer connections the foundation drain, the drive ramp drain, and building rooftop, may connect to site sewer under free-flow conditions. The system must be designed to ensure that drainage does not back-up into the building drain or drive ramp.
- Ensure that the proposed drive ramp entrance to the underground parking garage is protected from the major overland flow route.
 - A minimum freeboard elevation of 350mm from highpoint of the ramp to the street spill elevation.

🗆 No

- $\circ~$ A minimum freeboard elevation of 300mm from the invert of the ramp drain to the 100 year HGL of the storm sewer.
- In general conformity of City of Ottawa Standard S17.
- Rideau Valley Conservation Authority to confirm quality control requirements.
- Site is located within the Billberry Creek Subwatershed Study Area.
- The subdivision grading and drainage plan must be followed.
- Easements are required for infrastructure crossing property lines, if applicable.

General Service Design Comments

- The City of Ottawa Standard Detail Drawings should be referenced where possible for all work within the Public Right-of-Way.
- The application should include legal easement or joint-use and maintenance agreements, if applicable.
- The City will not deem the application complete for circulation until after the servicing comments have been resolved for the detail design of subdivision.
- Site Plan Control will be issued after the in-service memos have been cleared and City obtains ownership of the infrastructure.

Other

Capital Works Projects within proximity to application? \Box Yes \boxtimes No

References and Resources

- As per section 53 of the Professional Engineers Act, O. Reg 941/40, R.S.O. 1990, all documents prepared by engineers must be signed and dated on the seal.
- All required plans & reports are to be provided in *.pdf format (at application submission and for any, and all, re-submissions)
- Please find relevant City of Ottawa Links to Preparing Studies and Plans below: https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development- application-review-process/development-application-submission/guide-preparing-studies-and-plans#standards-policies-and-guidelines
- To request City of Ottawa plan(s) or report information please contact the City of Ottawa Information Centre:

InformationCentre@ottawa.ca<mailto:InformationCentre@ottawa.ca</p>
(613) 580-2424 ext. 44455

 geoOttawa <u>http://maps.ottawa.ca/geoOttawa/</u>

PLANS & STUDIES LIST

For information on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans

s/z	Number of copies	EN	ENGINEERING		Number of copies
<mark>s</mark>		1. Site Servicing Plan	2. Site Servicing Brief	<mark>S</mark>	
<mark>S</mark>		 Grade Control and Drainage Plan 	4. Geotechnical Study	<mark>s</mark>	
		5. Composite Utility Plan	6. Groundwater Impact Study		
		7. Servicing Options Report	8. Wellhead Protection Study		
		 Community Transportation Study and/or Transportation Impact Study / Brief 	10. <mark>Erosion and Sediment Control Plan</mark> <mark>/ Brief</mark>	S	
<mark>S</mark>		11. Storm water Management Brief	12. Hydro-geological and Terrain Analysis		
		13. Water main Analysis	14. Noise / Vibration Study		
		15. Roadway Modification Design Plan	16. Confederation Line Proximity Study		

S – Required for Site Plan Control

Z – Required for Zoning By-Law Amendment

Appendix B Water Servicing

TRINITY APARTMENTS HYDRAULIC ANALYSIS

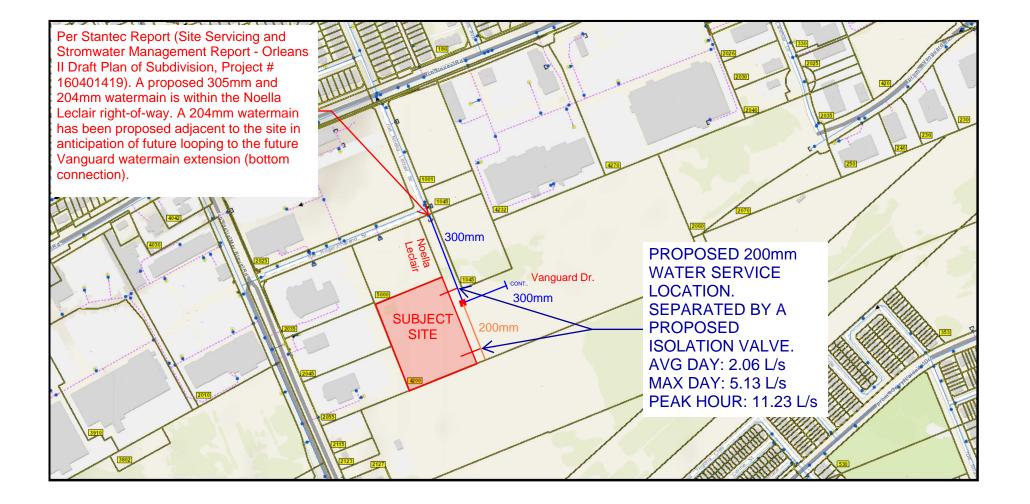
				Table 1 ater Dema	nd				
	Unit Type					Tota	l Demand	(L/s)	
Occuupancy	Commercial (Area m ²)	1 Bed Apartment	2 Bed Apartment	3 Bed Apartment	Total Units	Total Population	Avg Day	Max. Daily	Peak Hour
		•	Tri	inity Apartmer	nts				
Building A		12	46	12	70	151	0.49	1.22	2.68
Building B		19	46	16	81	173	0.56	1.40	3.08
Building C		13	46	12	71	152	0.49	1.23	2.71
Building D		13	46	12	71	152	0.49	1.23	2.71
Commercial B	339.5						0.12	0.17	0.21
Total	339.5	57	184	52	293	628	2.15	5.25	11.38
Design Parame	ters:								
- 1 Bed Apartment	t	1.4	persons/unit						
- 2 Bed Apartment	t	2.1	persons/unit						
- 3 Bed Apartment	t	3.1	persons/unit						

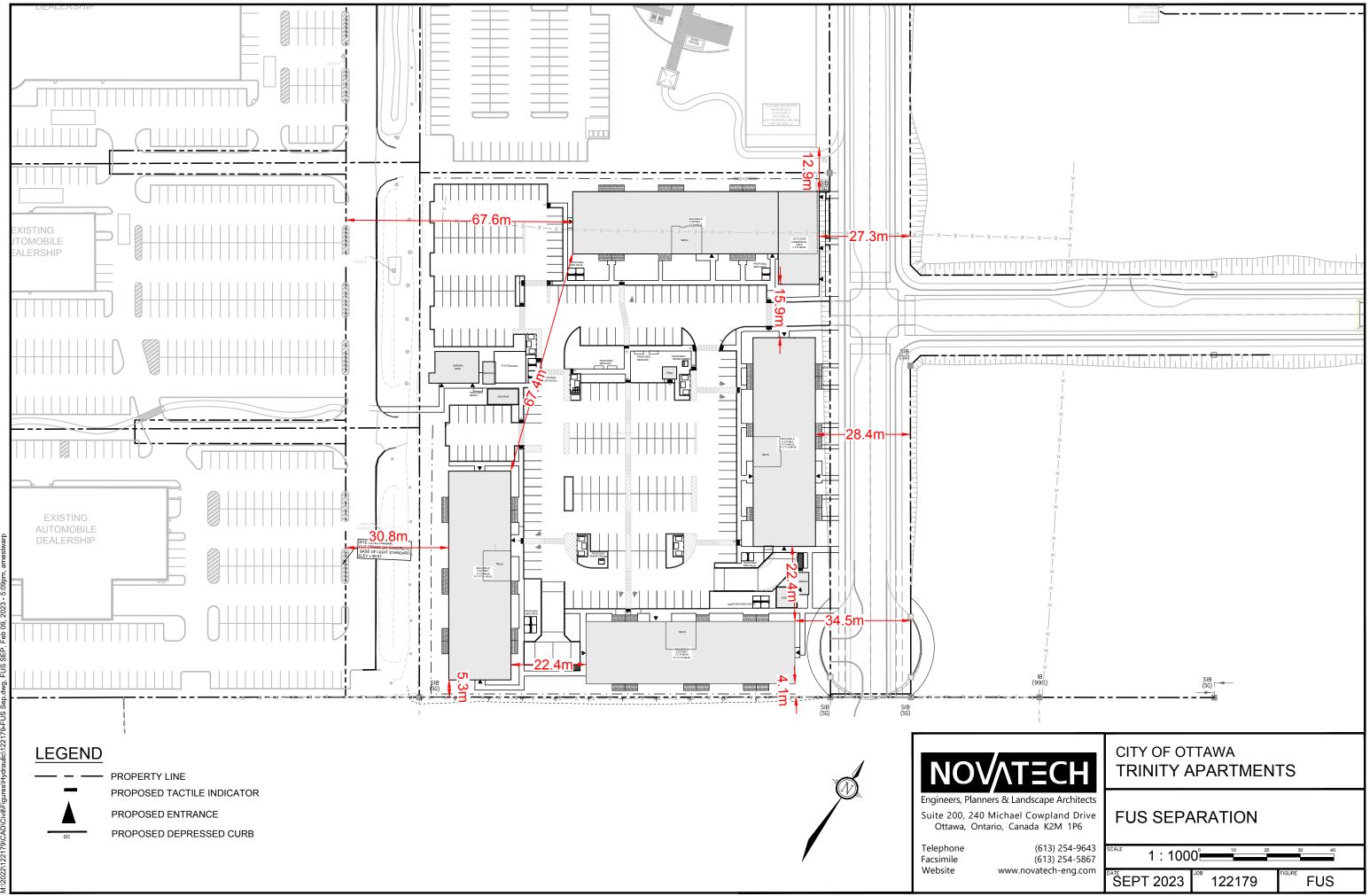
- Average Domestic Flow

280

Daily Demands from OBC Table 8.2.1.3 - Medical Space

275 L/9.3m²/day


L/c/day


Residential Peaking Factors City of Ottawa Water Distrubution Guidelines:

Conditions	Peaking Factor		Units
Maximum Day	2.5	x avg day	L/c/day
Peak Hour	2.2	x max day	L/c/day

Commercial Peaking Factors City of Ottawa Water Distribution Guidelines

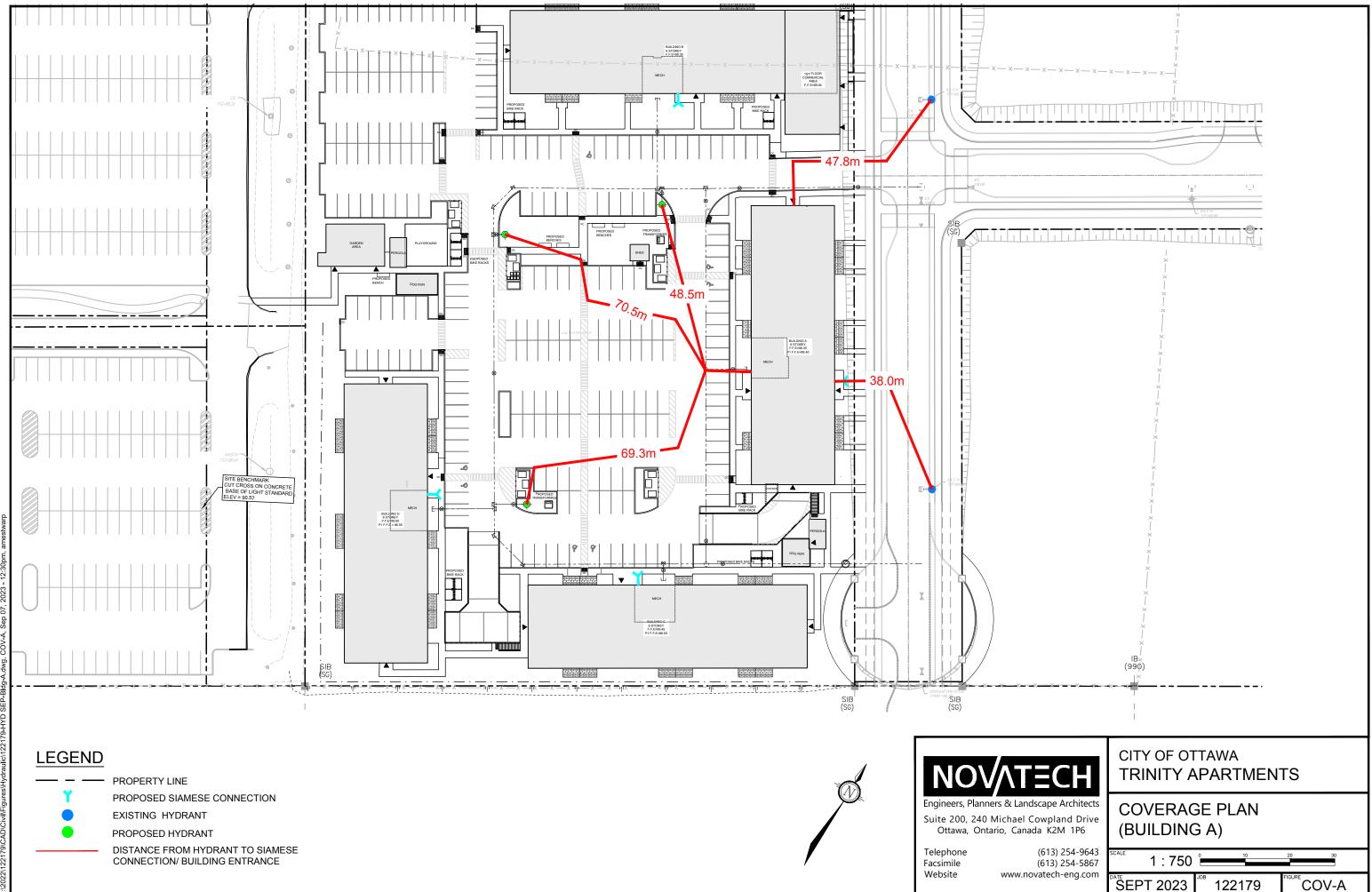
Conditions	Peaking Factor		Units
Maximum Day	1.5	x avg day	L/c/day
Peak Hour	1.8	x max day	L/c/day

SHT11X17.DWG - 279mmX432mm

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/9/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng


Legend

Input by User No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG A-South)

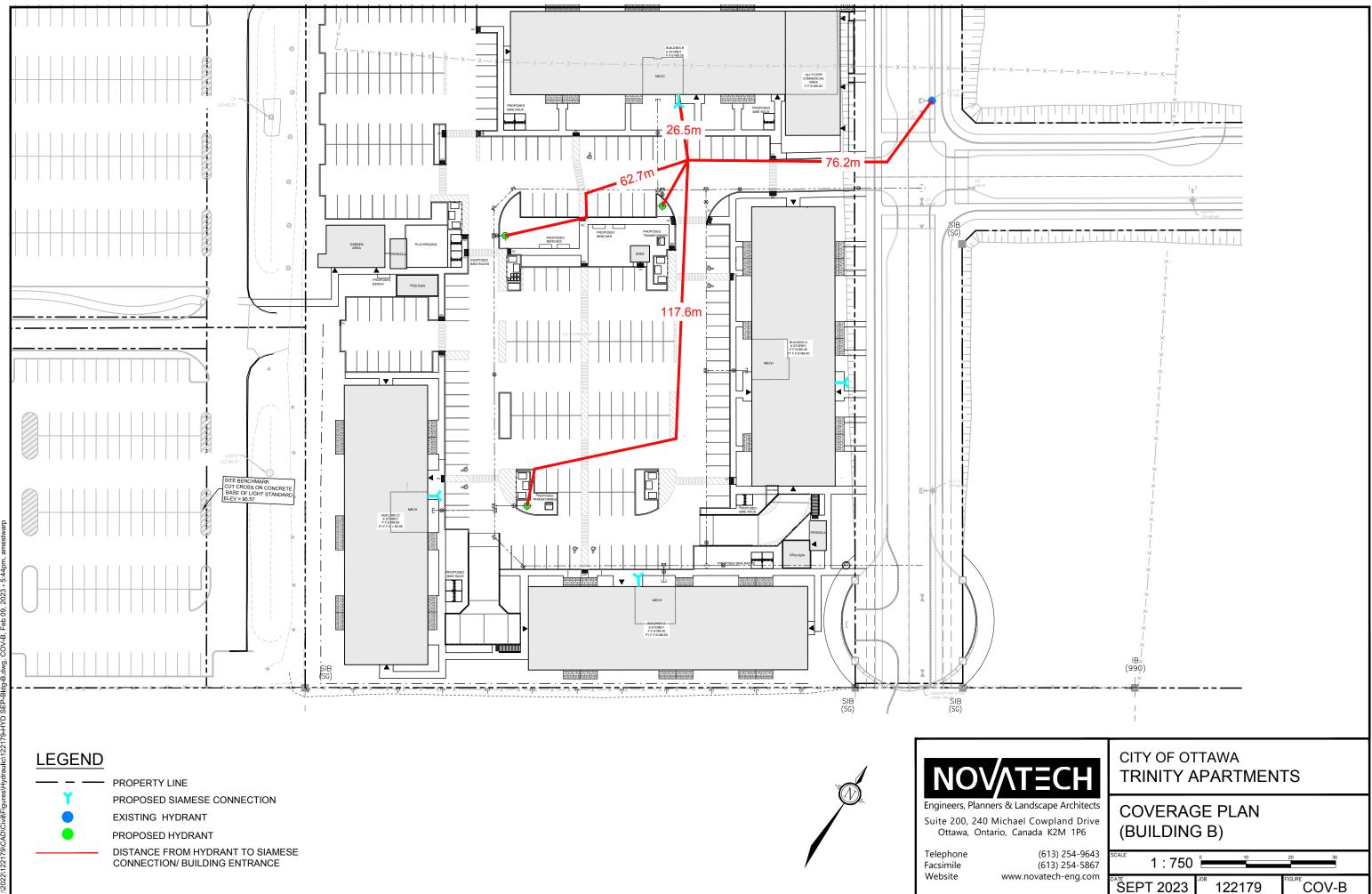
Step			Input		Value Used	Total Fire Flow
						(L/min)
		Base Fire Flo	w			
	Construction Ma	terial		Multi	iplier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	related to type	Type IV - Mass Timber		Varies		
	of construction	Type III - Ordinary construction		1	1.5	
	С	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area		4400			
		Building Footprint (m ²)	1138			
2	Α	Number of Floors/Storeys	6			
2		Area of structure considered (m ²)			6,828	
	F	Base fire flow without reductions				27,000
	F	$F = 220 C (A)^{0.5}$				27,000
	-	Reductions or Sur	charges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
Ũ	(1)	Combustible		0%	-15%	22,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	-11,475
	(2)		Cumulativ	ve Sub-Total	-50%	-11,475
		Area of Sprinklered Coverage (m ²)	6,828	100%		
			Cum	ulative Total	-50%	
	Exposure Surcha	arge	FUS Table 5		Surcharge	
		North Side	Sprinklered		0%	
		East Side	20.1 - 30 m		10%	
5	(3)	South Side	Sprinklered		0%	2 205
	(3)	West Side	>30m		0%	2,295
			Cum	ulative Total	10%	
		Results				
		Total Required Fire Flow, rounded to ne	arest 1000L/min	1	L/min	14,000
6	(1) + (2) + (3)	$(2,000 \mid min < Eire Elow < 45,000 \mid min)$		or	L/s	233
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	3,699

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/1/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend


Input by User

No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG B)

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			(=/)
	Construction Ma	terial		Multi	iplier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	related to type	Type IV - Mass Timber		Varies		
•	of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area		-			
		Podium Footprint (m ²)	1432.34			
		Total Floors/Storeys (Podium)	1			
•	Α	Tower Footprint (m ²)	1328.14			
2		Total Floors/Storeys (Tower)	5			
		Area of structure considered (m ²)			8,073	
	F	Base fire flow without reductions				30,000
	•	$F = 220 C (A)^{0.5}$,
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	/Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
5	(1)	Combustible		0%	-15%	25,500
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	tion	FUS Table 4	Redu	iction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	-12,750
	(2)		Cumulati	ve Sub-Total	-50%	-12,750
		Area of Sprinklered Coverage (m ²)	8073	100%		
			Cum	ulative Total	-50%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	Sprinklered		0%	
		East Side	20.1 - 30 m		10%	
5	(2)	South Side	Sprinklered		0%	2 550
	(3)	West Side	>30m		0%	2,550
			Cum	ulative Total	10%	
	<u>I</u>	Results		-		
		Total Required Fire Flow, rounded to nea	rest 1000L/mir	1	L/min	15,000
6	(1) + (2) + (3)			or	L/s	250
		(2,000 L/min < Fire Flow < 45,000 L/min)	-	or	USGPM	3,963
						,

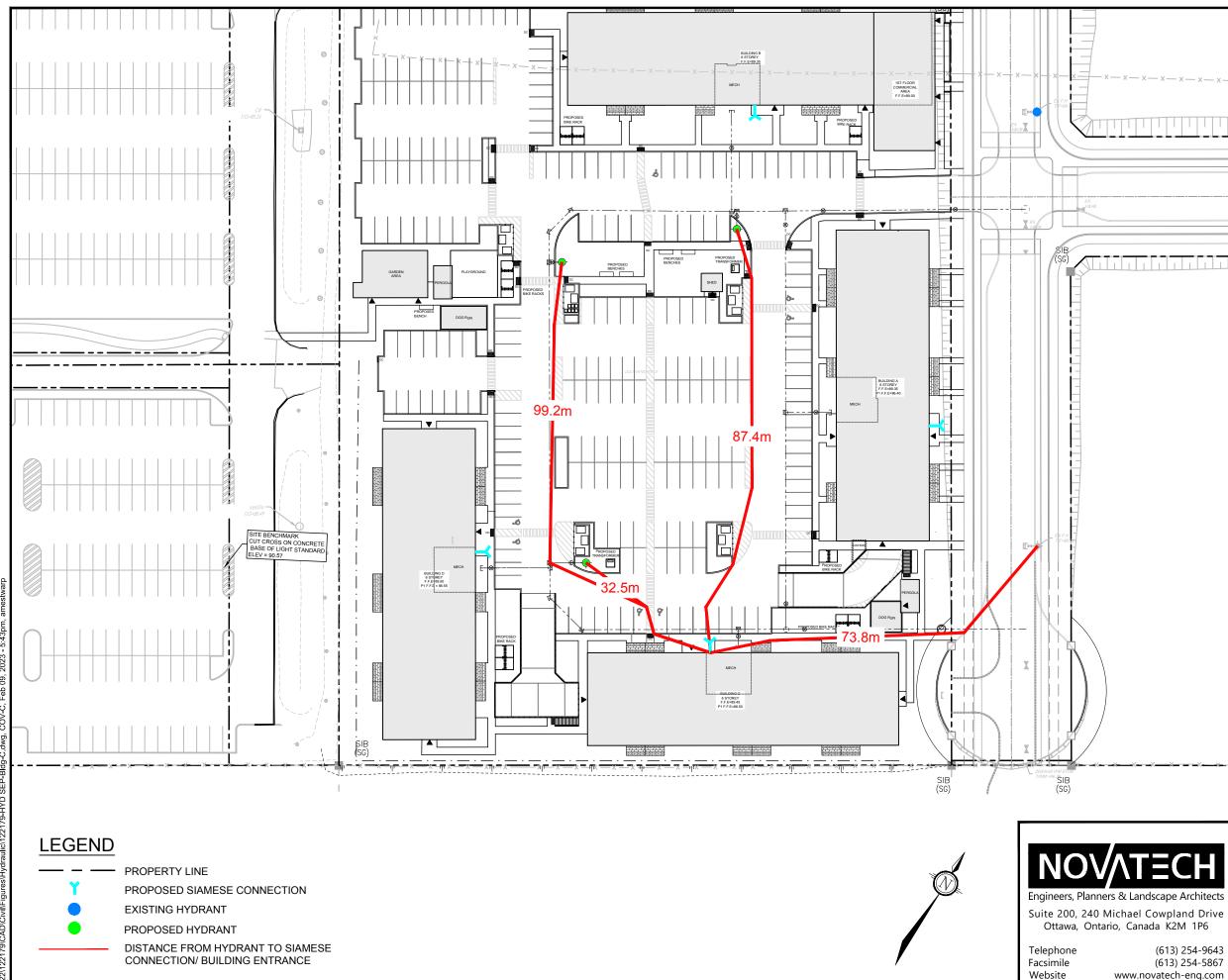
SHT11X17.DWG - 279mmX432mm

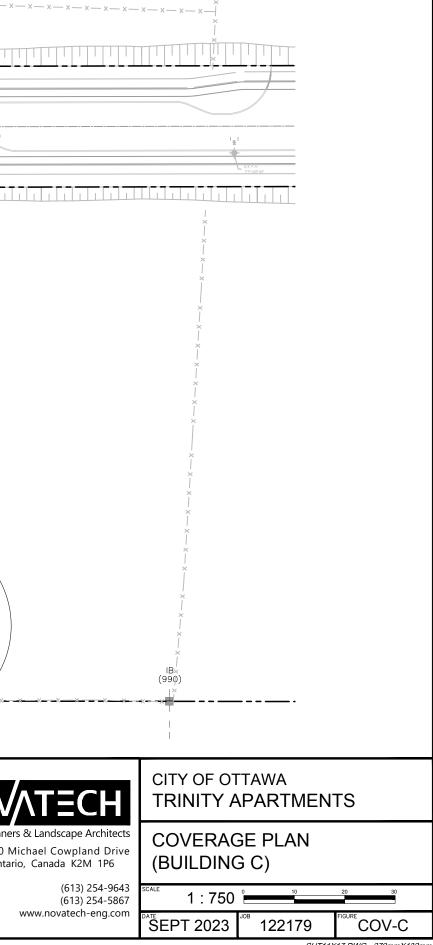
As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/9/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend


Input by User


No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG C)

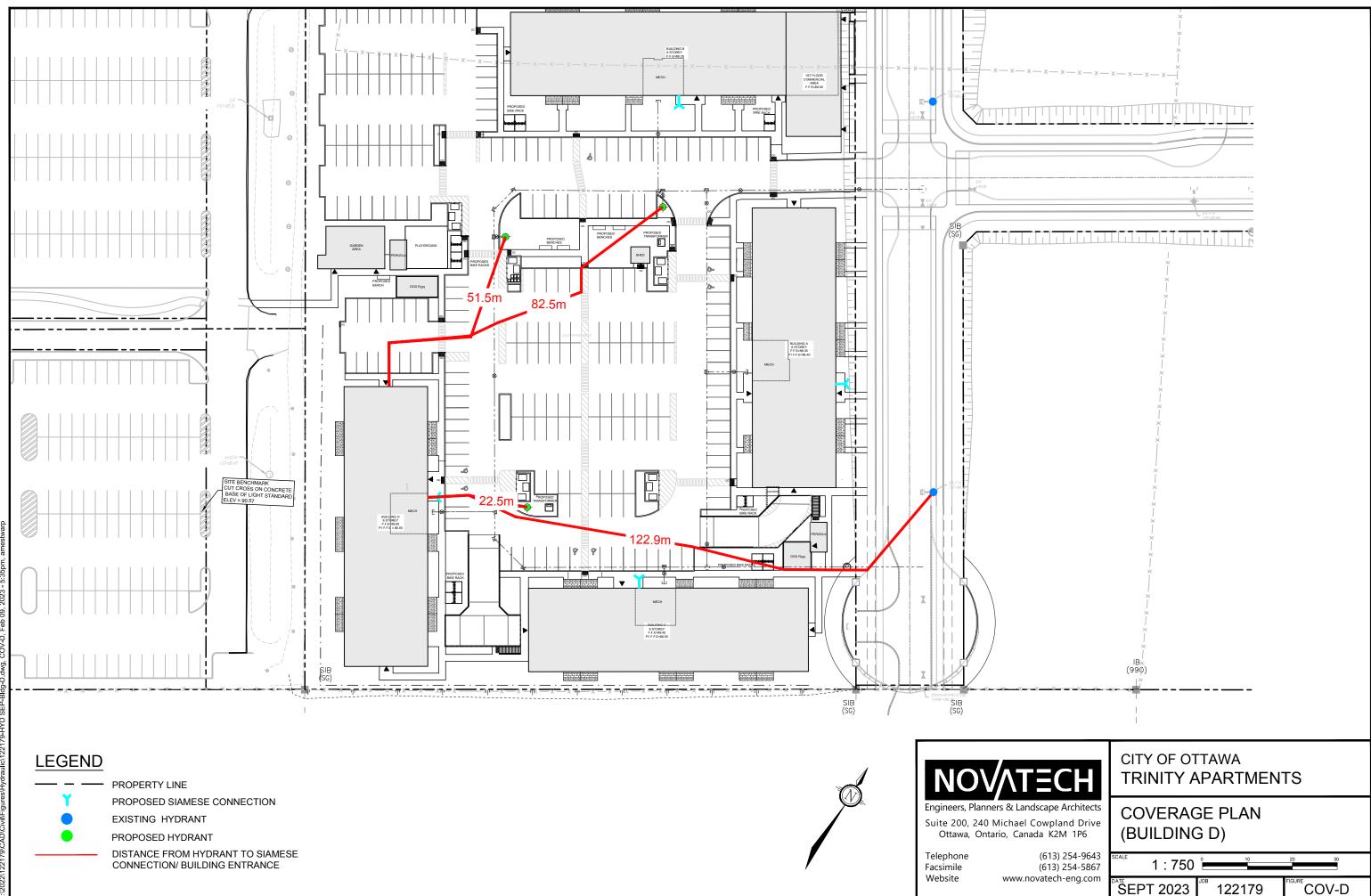
				Mal - 11 1	Total Fire
		Input		Value Used	Flow (L/min)
	Base Fire Flo				(L/mm)
		DW			
truction Ma	iterial		Multi	iplier	
efficient	Type V - Wood frame	Yes	1.5		
ed to type	Type IV - Mass Timber		Varies		
nstruction	Type III - Ordinary construction		1	1.5	
С	Type II - Non-combustible construction		0.8		
	Type I - Fire resistive construction (2 hrs)		0.6		
Area	2				
	Building Footprint (m ²)	1138			
Α	Number of Floors/Storeys	6			
	Area of structure considered (m ²)			6,828	
F	Base fire flow without reductions				27,000
•	$F = 220 C (A)^{0.5}$,
	Reductions or Sur	charges			
pancy haza	ard reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
	Non-combustible		-25%		
	Limited combustible	Yes	-15%		
(1)	Combustible		0%	-15%	22,950
	Free burning		15%		
	Rapid burning		25%		
kler Reduc		FUS Table 4	Redu	ction	
	Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
	Standard Water Supply	Yes	-10%	-10%	
(2)	Fully Supervised System	Yes	-10%	-10%	-11,475
(-)		Cumulativ	ve Sub-Total	-50%	11,470
	Area of Sprinklered Coverage (m ²)	6,828	100%		
			ulative Total	-50%	
sure Surch		FUS Table 5		Surcharge	
	North Side	Sprinklered		0%	
	East Side	>30m		0%	
(3)	South Side	3.1 - 10 m		20%	4,590
(0)	/est Side Sprinklered			0%	1,000
		Cum	ulative Total	20%	
	Results				
		arest 1000L/mir	ı	L/min	16,000
			or	L/s	267
+ (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	4,227
	(3)	Total Required Fire Flow, rounded to ne	 (3) (2 000 L/min < Fire Flow < 45 000 L/min) 	Total Required Fire Flow, rounded to nearest 1000L/min	Total Required Fire Flow, rounded to nearest 1000L/min L/min (3) (2 000 L/min < Fire Flow < 45 000 L/min)

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/9/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend


Input by User

No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG D)

01						Total Fire	
Step			Input		Value Used	Flow (L/min)	
		Base Fire Flo				(Ľ/ШП)	
			w				
	Construction Ma	terial		Mult	iplier		
	Coefficient	Type V - Wood frame	Yes	1.5			
1	related to type	Type IV - Mass Timber		Varies			
	of construction	Type III - Ordinary construction		1	1.5		
	С	Type II - Non-combustible construction		0.8			
		Type I - Fire resistive construction (2 hrs)		0.6			
	Floor Area						
		Building Footprint (m ²)	1138				
2	Α	Number of Floors/Storeys	6				
2		Area of structure considered (m ²)			6,828		
	F	Base fire flow without reductions				27,000	
	•	$F = 220 C (A)^{0.5}$				21,000	
		Reductions or Sur	charges				
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge		
		Non-combustible		-25%			
3		Limited combustible	Yes	-15%			
Ŭ	(1)	Combustible		0%	-15%	22,950	
		Free burning		15%			
		Rapid burning		25%			
	Sprinkler Reduct	tion	FUS Table 4	Redu	ction		
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%		
		Standard Water Supply	Yes	-10%	-10%		
4	(2)	Fully Supervised System	Yes	-10%	-10%	-11,475	
	(2)		Cumulati	ve Sub-Total	-50%	-11,475	
		Area of Sprinklered Coverage (m ²)	6,828	100%			
			Cum	ulative Total	-50%		
	Exposure Surcha	arge	FUS Table 5		Surcharge		
		North Side	>30m		0%		
		East Side	Sprinklered		0%		
5	(3)	South Side	3.1 - 10 m		20%	4,590	
	(3)	West Side	>30m		0%	4,550	
			Cum	Cumulative Total			
	8	Results					
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	ı	L/min	16,000	
6	(1) + (2) + (3)			or	L/s	267	
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	4,227	
	<u>.</u>						

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401451 Project Name: Reseau Selection - Orleans Date: 22/11/2018 Fire Flow Calculation #: 1 Description: Retirement Building

Notes: 2hr fire separations at each floor per OBC 3.2.2.48A

Step	Task	Notes						Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			1	0.8	-			
2	Determine Ground Floor Area of One Unit				-			3810	-
2	Determine Number of Adjoining Units				-			1	-
3	Determine Height in Storeys		Does not	include floo	ors >50% belo	w grade or c	open attic space	1	-
4	Determine Required Fire Flow		(F	= = 220 x C x	A ^{1/2}). Round	to nearest 10	000 L/min	-	11000
5	Determine Occupancy Charge			0%	11000				
					Conforms to	NFPA 13		-30%	
,	Determine Sprinkler Reduction	Standard Water Supply						-10%	-5500
6	Delemine spinker keducion				Fully Supe	rvised		-10%	-3300
		% Coverage of Sprinkler System					100%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	20.1 to 30	107	2	> 120	Wood Frame or Non-Combustible	10%	
7	Determine Increase for Exposures (Max. 75%)	East	30.1 to 45	94.7	9	> 120	Wood Frame or Non-Combustible	5%	3850
		South	3.1 to 10	21	9	> 120	Wood Frame or Non-Combustible	20%	3630
		West	> 45	19	2	31-60	Wood Frame or Non-Combustible	0%	
		Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min							9000
8	Determine Final Required Fire Flow	Total Required Fire Flow in L/s						150.0	
					Required D	uration of Fire	Flow (hrs)		2.00
					Required V	olume of Fire	Flow (m ³)		1080

103-858 Bank Street Ottawa, ON, K1S 3W3 P 613 567 8889 www.chmfire.ca

February 16, 2023

Seymour Pacific Developments Ltd. 100 St. Ann's Road Campbell River, BC V9W 4C4 Attn: Rachel Ricard

Re: Fire Water Flow Requirements for Trinity Crossing Apartments, located at 4200 Innes Road in Ottawa, Ontario

Dear Ms. Ricard,

As requested, CHM Fire Consultants (CHM) has developed an engineering opinion related to the application of the fire water flow calculation methodology for the proposed development at 4200 Innes Road in Ottawa, ON. The development includes four 6-storey residential buildings of combustible construction, called Buildings A, B, C, and D.

This letter is based on information provided to CHM by Seymour Pacific Developments Ltd., including drawings, calculations, and correspondence. The following documents were provided to CHM:

- Novatech. FUS Fire Flow Calculations. Buildings A, B, C, and D. February 9, 2023. See Attachment A.
- Seymour Pacific Developments. Trinity Crossing Apartments. Architectural Plans and Elevations Concept. Rev. A. January 27, 2023.
- Novatech. NFPA 13 Sprinkler Water Supply Requirements. February 13, 2023. See Attachment A.

We understand that the City of Ottawa is requesting that an available fire water flow be provided for the building in accordance with the Fire Underwriters Survey (FUS) methodology¹. This letter discusses the fire water supply requirements and methodology for the buildings.

Background

The 2012 Ontario Building Code (OBC) is the applicable building code for the development at 4200 Innes Road. Unless otherwise noted, references to the OBC in this letter are to Division B.

This development includes four 6-storey residential buildings. The building areas are as follows (based on Drawing A1.00):

- Building A: 1,159 m²
- Building B: 1,481 m²
- Building C: 1,159 m²
- Building D: 1,159 m²

¹ Fire Underwriters Survey. Water Supply for Public Fire Protection. 1999.

The buildings are designed in accordance with the OBC Article 3.2.2.43A, *Group C, up to 6 storeys, combustible construction*. The general construction requirements are as follows:

- A sprinkler system is required,
- Combustible or noncombustible construction is permitted,
- Floor assemblies are required to be fire separations with a fire-resistance rating not less than 1 hour.
- Roof assemblies and mezzanines require a fire-resistance rating not less than 1 hour.
- Exits fire separations are required to be of noncombustible construction.
- Loadbearing walls, columns and arches require a fire-resistance rating not less than that of the supported assembly.

Novatech has calculated the fire water flow in accordance with the FUS methodology as well as the methodology of NFPA 13, *Standard for the Installation of Sprinkler Systems*. Their calculations resulted in the following fire flows:

- FUS Building A: 233 L/s
- FUS Building B: 250 L/s
- FUS Building C: 267 L/s
- FUS Building D: 267 L/s
- NFPA 13 All buildings: 16 L/s

We understand that the available water supply is sufficient to provide a minimum of 267 L/s, as calculated using the FUS methodology.

It is CHM's opinion that the NFPA 13 methodology is applicable to these sprinklered buildings and a minimum fire water flow of 948 L/min (16 L/s) is applicable. However, in applying the FUS methodology, CHM agrees with the assumptions and methodology employed by Novatech in their calculations. This is discussed further in this letter.

Ontario Building Code (OBC) Requirements

Part 3 of the OBC applies to these buildings. The OBC Sentence 3.2.5.7.(1) requires that an adequate water supply for firefighting shall be provided for every building. The main text of the OBC, which makes up the required provisions, does not further define an adequate water supply. However, the Appendix note to this provision in Appendix A, which provides additional context and information, provides detailed information on application of the requirement, including provisions for buildings not requiring an on-site water supply, sprinklered buildings, and an equation used to calculate an adequate water supply for buildings that are not sprinklered and require an adequate water supply. For sprinklered buildings, the Appendix note states:

For sprinklered buildings, water supply additional to that required by the sprinkler systems should be provided for firefighting using fire hoses in accordance with the hose stream demands and water supply durations for different hazard classifications as specified in NFPA 13, "Installation of Sprinkler Systems".

This clearly indicates that the water supply for sprinklered buildings should be based on the methodology of NFPA 13. NFPA 13's water supply calculations include hose stream demands for firefighters in addition to the water usage of the sprinkler system.

Ontario Fire Marshal Guideline

The Ontario Office of the Fire Marshal (OFM) has published a guideline for determining adequate fire water supply for buildings in Ontario². This Guideline provides more information and context for fire water supply. For sprinklered buildings, the OFM also refers to NFPA 13 to obtain sprinkler and hose stream water requirements.

The OFM Guideline discusses the FUS methodology in two locations:

- Under Section 9.6, it indicates "For new buildings that present a special hazard to a community as a result of their size, occupancy or economic importance, the Fire Underwriters Survey Guide should be used to determine suitable water supply and hydrant siting."
- Section 5.0 addresses buildings in which a fire may have a significant adverse environmental impact. This section specifically cites buildings used for the storage or processing of chemicals or materials. If such a building is unsprinklered, the Guideline notes that other recognized fire protection guidelines (such as FUS) may be used to determine the fire water supply needs and that the Chief Building Official or Chief Fire Official should evaluate these cases on an individual basis.

Based on this, it is clear that the use of a methodology outside of the NFPA 13 for sprinklered buildings should be saved for special conditions that either create a special hazard to the community or the environment.

CHM agrees with the OFM's guidance. It is considered appropriate to use the NFPA 13 methodology for these sprinklered buildings. It is not considered necessary or appropriate to apply the FUS methodology on this site.

FUS Methodology

The FUS methodology contains a process to obtain the required fire water flow. The methodology takes into account various factors, including construction type, building size, combustible contents, sprinkler protection, and exposure to adjacent buildings.

In addition, FUS has authored a document titled *Fire Underwriters Survey: A Guide to Recommended Practice in Canada*³. This document provides additional guidance on how the methodology is intended to be applied in the context of Canadian building codes and provides various clarifications that more closely align to Codes in Canada. The Preface of this document indicates the following:

Part 2 of the document provides guidance in calculating Required Fire Flows for buildings in a community that are then used in the community risk assessment and corresponding review of the fire department and water distribution system for fire insurance grading purposes.

² Office of the Fire Marshal. Fire Protection Water Supply Guideline for Part 3 in the Ontario Building Code. OFM-TG-03-1999. October 1999.

³ Fire Underwriters Survey. Water Supply for Public Fire Protection: A Guide to Recommended Practice in Canada. 2020. Available online:

https://fireunderwriters.ca/assets/img/Water%20Supply%20for%20Public%20Fire%20Protection%20in%20Canada %202020.pdf

Based on this, the FUS methodology is intended for use in planning for a community/development rather than for use on an individual building basis. Although it can be used for an individual building, as the OFM Guideline infers, this should be only in cases where there are special hazards.

The OBC does not reference the FUS methodology for fire flow for buildings. The FUS methodology is generally understood to result in very high fire water flow requirements, resulting in much more onerous requirements when compared to all other codes and standards including the OBC and NFPA 13, which applies to sprinklered buildings.

Nevertheless, Novatech has calculated fire water flow in accordance with the FUS methodology for these buildings. Novatech used the 2020 FUS guide for practice in Canada, which is considered appropriate. The following discussion is with respect to the specific use of the FUS methodology.

The first step in the FUS methodology is to calculate the initial fire flow in Litres per minute, as follows:

 $F = 220C\sqrt{A}$

Where:

F = the required fire flow in Litre per minute.

C = coefficient related to the type of construction, and

A = total floor area in square metres

The fire flow is then modified by three factors, as follows:

- 1. The Contents Adjustment Factor,
- 2. The Automatic Sprinkler Protection Factor, and
- 3. The Exposure Adjustment Charge.

Each of these elements is discussed below.

Construction Coefficient, C

A construction coefficient, C, is to be applied to the building. FUS provides a number of construction coefficients for various construction types. The highest value is 1.5 for wood-frame construction. Novatech has used 1.5 for their calculations, which is considered appropriate.

Total Effective Area

For a building with a construction coefficient of 1.5, the FUS guide requires the Total Effective Area of the building to include 100% of all Floor Areas, except for basements.

The FUS methodology does not define Floor Area. The OBC defines floor area as follows:

Floor area means the space on any storey of a building between exterior walls and required firewalls, including the space occupied by interior walls and partitions, but not including exits, vertical service spaces and their enclosing assemblies.

This definition is considered appropriate to use for the FUS calculations. Novatech has applied this definition in determination of the Total Effective Areas for the buildings.

Occupancy and Contents Adjustment Factor

For the Occupancy and Contents Adjustment Factor, the FUS guide identifies a reduction of 15% for residential occupancies. Novatech has applied this value in their calculations.

Automatic Sprinkler Protection Factor

The FUS methodology allows for up to a 50% reduction in water supply for automatic sprinkler protection. This is split up as follows:

- 30% for a system designed in accordance with NFPA 13.
- 10% if the water supply is standard for both the sprinkler system and the fire department hose lines.
- 10% for a fully supervised system.

The sprinkler system will be designed in accordance with NFPA 13, as required by the OBC. The system design will include an allowance for fire department hose lines and the system will be fully supervised. As such, the full 50% reduction for the sprinkler system applies to this building.

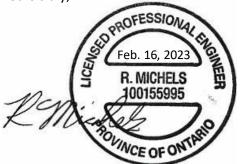
Exposure Adjustment Charge

This factor is intended to address the risk of fire spread between buildings in consideration of the locations and features of adjacent buildings up to 30 m from the building. A factor is to be applied on each side depending on various details of the adjacent building such as height, area, construction, openings, sprinklering, and occupancy, up to a total maximum of 75% for the entire building. Refer to Attachment B for a site plan indicating exposure distances.

In accordance with the FUS Guidelines, if both the subject building and the exposed building are sprinklered, no Exposure Adjustment Charge should be applied between buildings. As such, as all buildings on site are sprinklered, no Exposure Adjustment Charge is applied between them.

On the sides of buildings where they abut a property line, in the case where information on the adjacent buildings is unavailable, it is logical to use the property line as the exposure distance, although this approach is considered conservative for this site as no buildings, particularly unsprinklered buildings, would be constructed directly on the property line. Nevertheless, this approach has been taken on the west, south, and east sides of the site, and is considered appropriate for the site.

On the north side of this site is a future retirement home. The 10-storey retirement home, known as Reseau Selections (City of Ottawa No. D07-12-18-0179), will be Phase 2 of construction on the site. The OBC requires any retirement home to be sprinklered, as well as any 10-storey building. As such, it is reasonable to assume the building will be sprinklered, and as such, Novatech has not applied an Exposure Adjustment Charge to the north side. This approach is considered appropriate.


Conclusion

Based on the discussion in this letter, it is our opinion that the application of the FUS methodology for required fire flow is not appropriate to apply to the Trinity Crossing Apartments site as all buildings are sprinklered. In our opinion, the NFPA 13 required fire flow of 16 L/s applies. Nevertheless, Novatech has carried out FUS calculations and has calculated a fire flow using this methodology of 267 L/s. We understand that the available infrastructure is sufficient to provide 267 L/s. As such, the available fire water flow to the site is considered adequate.

If you have any questions or comments, please do not hesitate to contact the undersigned.

Yours truly,

Richard Michels, P.Eng. Fire Safety Engineer Reviewed by:

Steven Craft, Ph.D., P.Eng. Principal

Disclaimer

This letter is issued only to Doyle Homes Ltd. (client) to be used as supporting documentation in deliberations with the City of Ottawa for the application of fire flow calculations to the Trinity Crossing Apartments, located at 4200 Innes Road in Ottawa, Ontario, and shall not be relied upon, without prior written authorization from CHM, by any other party or in conjunction with any other project. CHM Fire Consultants Ltd. does not assume the responsibility of a designer and does not assume responsibility for any latent inaccuracies in documentation provided by others.

Trinity Crossing Apartments Fire Water Flow Requirements

Attachment A Fire Water Flow Calculations (by Novatech)

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/9/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend

Input by User

No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG A-South)

Step			Input		Value Used	Total Fire Flow (L/min)	
		Base Fire Flo	w		4		
	Construction Ma	terial		Mult	plier		
1	Coefficient related to type of construction C	Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction	Yes	1.5 Varies 1 0.8	1.5		
		Type I - Fire resistive construction (2 hrs)		0.6			
2	Floor Area	Building Footprint (m ²) Number of Floors/Storeys Area of structure considered (m ²)	1138 6		6,828		
	F	Base fire flow without reductions $F = 220 C (A)^{0.5}$				27,000	
		Reductions or Sur	charges				
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	Surcharge		
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	22,950	
	Sprinkler Reduct		FUS Table 4		ction		
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Yes Yes Yes	-30% -10% -10% ve Sub-Total	-30% -10% -10% -50%	-11,475	
		Area of Sprinklered Coverage (m ²)	6,828	100%			
	Evenenume Currele		Cum FUS Table 5	ulative Total	-50%		
5	Exposure Surch	North Side East Side South Side West Side	Sprinklered 20.1 - 30 m Sprinklered >30m		Surcharge 0% 10% 0% 0%	2,295	
				Cumulative Total			
		Results					
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	1	L/min	14,000	
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	233 3,699	

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/1/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend

Input by User

No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG B)

Step			Input		Value Used	Total Fire Flow
		Base Fire Flo	w/			(L/min)
	Construction Ma		vv	NA14	nline	
	Construction Ma		X	Multi	plier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	related to type	Type IV - Mass Timber		Varies	4.5	
	of construction	Type III - Ordinary construction		1	1.5	
	С	Type II - Non-combustible construction		0.8		
	Floor Area	Type I - Fire resistive construction (2 hrs)		0.6		
	FIGOR Area		1400.04			
		Podium Footprint (m ²)	1432.34 1			
		Total Floors/Storeys (Podium)	•			
2	Α	Tower Footprint (m ²) Total Floors/Storeys (Tower)	1328.14 5			
-			5		0.070	
		Area of structure considered (m ²)			8,073	
	F	Base fire flow without reductions				30,000
	-	$F = 220 C (A)^{0.5}$,
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
3		Non-combustible		-25%		
		Limited combustible	Yes	-15%		
Ŭ	(1)	Combustible		0%	-15%	25,500
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	40 750
	(2)		Cumulati	ve Sub-Total	-50%	-12,750
		Area of Sprinklered Coverage (m ²)	8073	100%		
		iv ,			-50%	
			Curr	nulative Total	-50%	
	Exposure Surch	arge	Cum FUS Table 5	ulative Total	-50% Surcharge	
	Exposure Surch	arge North Side		ulative Total		
	Exposure Surch		FUS Table 5	nulative Total	Surcharge	
5		North Side	FUS Table 5 Sprinklered	nulative Total	Surcharge 0%	0.550
5	Exposure Surcha	North Side East Side	FUS Table 5 Sprinklered 20.1 - 30 m	nulative Total	Surcharge 0% 10%	2,550
5		North Side East Side South Side	FUS Table 5Sprinklered20.1 - 30 mSprinklered>30m	nulative Total	Surcharge 0% 10% 0%	2,550
5		North Side East Side South Side West Side	FUS Table 5Sprinklered20.1 - 30 mSprinklered>30m		Surcharge 0% 10% 0% 0%	2,550
5		North Side East Side South Side West Side Results	FUS Table 5 Sprinklered 20.1 - 30 m Sprinklered >30m Cum	nulative Total	Surcharge 0% 10% 0% 0%	
5		North Side East Side South Side West Side	FUS Table 5 Sprinklered 20.1 - 30 m Sprinklered >30m Cum	nulative Total	Surcharge 0% 10% 0% 0% 10%	2,550 15,000 250

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/9/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend

Input by User

No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG C)

_						Total Fire
Step			Input		Value Used	Flow
		Base Fire Flo	w			(L/min)
	Construction Ma			Mult	iplier	
		Type V - Wood frame	Yes	1.5		
1	Coefficient	Type IV - Mass Timber	105	Varies		
1	related to type	Type III - Ordinary construction		1	1.5	
	of construction	Type II - Non-combustible construction		0.8		
	С	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	1138			
-	Α	Number of Floors/Storeys	6			
2		Area of structure considered (m ²)			6,828	
	F	Base fire flow without reductions				27,000
	•	$F = 220 C (A)^{0.5}$				21,000
		Reductions or Sure	charges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
	(1)	Combustible		0%	-15%	22,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct		FUS Table 4		ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	-11,475
	()			ve Sub-Total	-50%	, -
		Area of Sprinklered Coverage (m ²)	6,828	100%		
				ulative Total	-50%	
	Exposure Surch		FUS Table 5		Surcharge	
		North Side	Sprinklered		0%	
_		East Side	>30m		0%	
5	(3)	South Side	3.1 - 10 m		20%	4,590
		West Side	Sprinklered		0%	
			Cum	ulative Total	20%	
		Results				
		Results Total Required Fire Flow, rounded to ne	arest 1000L/mi	n	L/min	16,000
6	(1) + (2) + (3)		arest 1000L/mii	n or	L/min L/s USGPM	16,000 267

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 122179 Project Name: Trinity Apartments Date: 2/9/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend

Input by User

No Information or Input Required

Building Description:

6 Storey Residential Apartment (BLDG D)

Step			Input		Value Used	Total Fire Flow
		Base Fire Flo				(L/min)
			w			
	Construction Ma	Iterial		Multi	iplier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	related to type	ype IV - Mass Timber Varies				
	of construction	Type III - Ordinary construction		1	1.5	
	С	Type II - Non-combustible construction		0.8		
	_	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area	2				
		Building Footprint (m ²)	1138			
2	Α	Number of Floors/Storeys	6			
2		Area of structure considered (m ²)			6,828	
	F	Base fire flow without reductions			27,000	
	•	$F = 220 C (A)^{0.5}$				27,000
		Reductions or Sur	charges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	/Surcharge	
	(1)	Non-combustible		-25%	-15%	22,950
3		Limited combustible	Yes	-15%		
•		Combustible		0%		
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduction		FUS Table 4	Reduction		
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	44 477
	(2)		Cumulative Sub-Total		-50%	-11,475
		Area of Sprinklered Coverage (m ²)	6,828	100%		
			Cumulative Total		-50%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	>30m		0%	
		East Side	Sprinklered		0%	
5	(2)	South Side	3.1 - 10 m		20%	4 500
	(3)	West Side	>30m	>30m 0%		4,590
			Cumulative Total		20%	
	8	Results			I	
6		Total Required Fire Flow, rounded to nea	arest 1000L/min	1	L/min	16,000
	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)	1	or	L/s	267
		$(2,000 L/11111 \le FILE FIOW \le 43,000 L/1111)$		or	USGPM	4,227

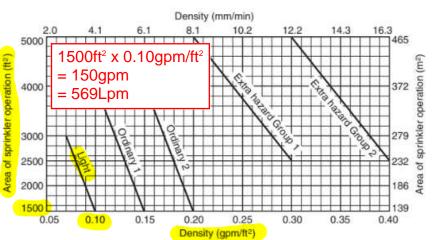
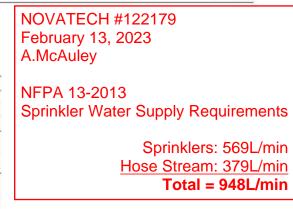


FIGURE 11.2.3.1.1 Density/Area Curves.

- (2) The room that creates the greatest demand in accordance with the room design method of 11.2.3.3
- (3) Special design areas in accordance with 11.2.3.4

11.2.3.1.2 The minimum water supply shall be available for the minimum duration specified in Table 11.2.3.1.2.


11.2.3.1.3 The lower duration values in Table 11.2.3.1.2 shall be permitted where the sprinkler system waterflow alarm device(s) and supervisory device(s) are electrically supervised and such supervision is monitored at an approved, constantly attended location.

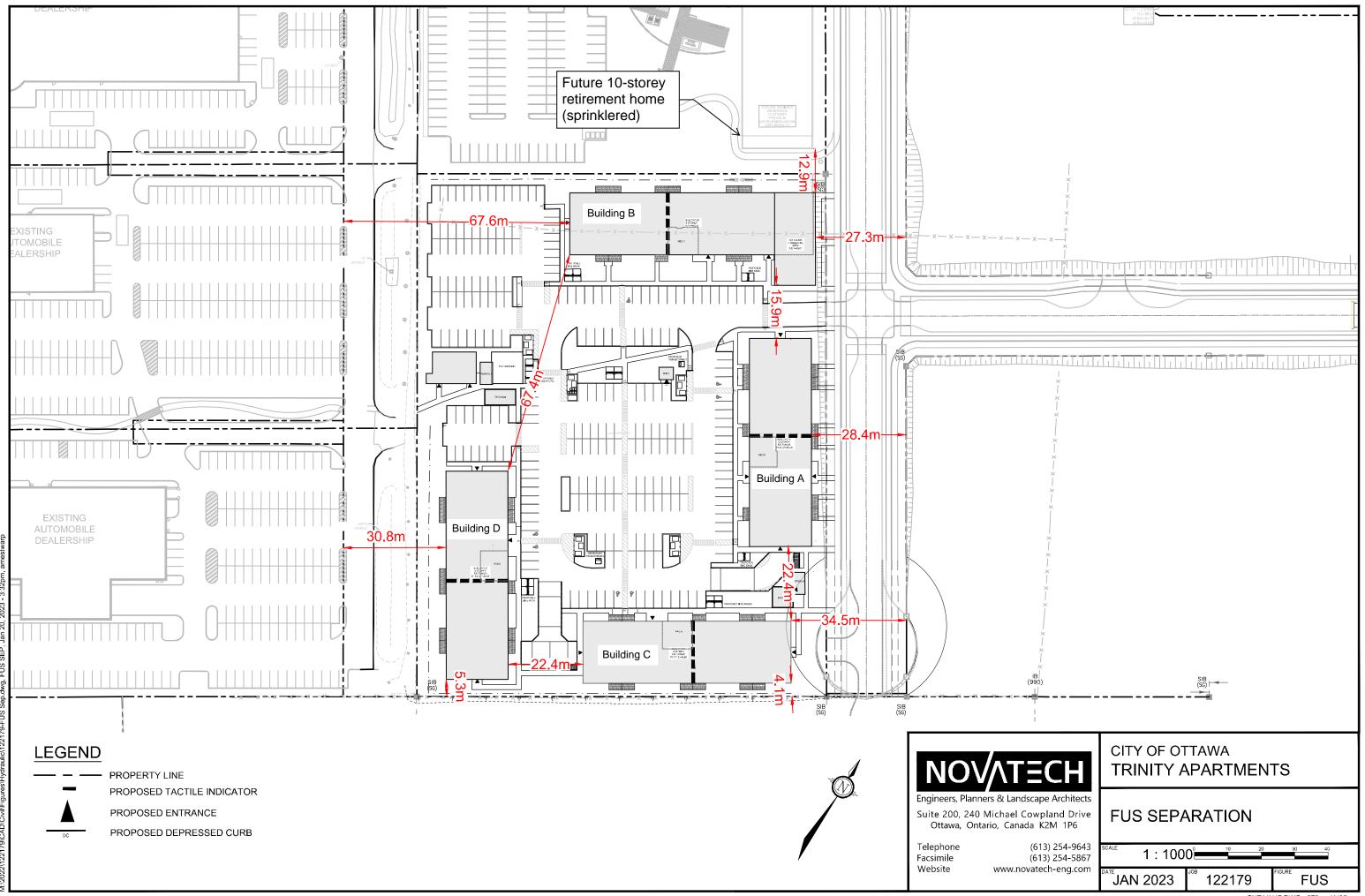
11.2.3.1.4 Restrictions. When either the density/area method or room design method is used, the following shall apply:

- (1)*For areas of sprinkler operation less than 1500 ft² (139 m²) used for light and ordinary hazard occupancies, the density for 1500 ft² (139 m²) shall be used.
- (2) For areas of sprinkler operation less than 2500 ft² (232 m²) for extra hazard occupancies, the density for 2500 ft² (232 m²) shall be used.
- (3)*Unless the requirements of 11.2.3.1.4(4) are met for buildings having unsprinklered combustible concealed spaces, as described in 8.15.1.2 and 8.15.6, the minimum area of sprinkler operation for that portion of the build-

Table 11.2.3.1.2 Hose Stream Allowance and Water Supply	¥
Duration Requirements for Hydraulically Calculated Syste	ms

	Inside Hose		Com Insid Outsid		
Occupancy	gpm	L/min	gpm	L/min	Duration (minutes)
Light hazard	0, 50, or 100	0, 189, or 379	100	379	30
Ordinary hazard	0, 50, or 100	0, 189, or 379	250	946	60-90
Extra hazard	0, 50, or 100	0, 189, or 379	500	1893	90-120

ing shall be $3000 \text{ ft}^2 (279 \text{ m}^2)$. The design area of $3000 \text{ ft}^2 (279 \text{ m}^2)$ shall be applied only to the sprinkler system or portions of the sprinkler system that are adjacent to the qualifying combustible concealed space. The term *adjacent* shall apply to any sprinkler system protecting a space above, below, or next to the qualifying concealed space except where a barrier with a fire resistance rating at least equivalent to the water supply duration completely separates the concealed space from the sprinklered area.


- (4) The following unsprinklered concealed spaces shall not require a minimum area of sprinkler operation of 3000 ft² (279 m²):
 - (a) Noncombustible and limited-combustible concealed spaces with minimal combustible loading having no access. The space shall be considered a concealed space even with small openings such as those used as return air for a plenum.
 - (b) Noncombustible and limited-combustible concealed spaces with limited access and not permitting occupancy or storage of combustibles. The space shall be considered a concealed space even with small openings such as those used as return air for a plenum.
 - (c) Combustible concealed spaces filled entirely with noncombustible insulation.
 - (d)*Light or ordinary hazard occupancies where noncombustible or limited-combustible ceilings are directly attached to the bottom of solid wood joists or solid limited-combustible construction or noncombustible construction so as to create enclosed joist spaces 160 ft³ (4.5 m³) or less in volume, including space below insulation that is laid directly on top or within the ceiling joists in an otherwise sprinklered concealed space.
 - (e) Concealed spaces where rigid materials are used and the exposed surfaces have a flame spread index of 25 or less and the materials have been demonstrated to not propagate fire more than 10.5 ft (3.2 m) when tested in accordance with ASTM E 84, Standard Test Method of Surface Burning Characteristics of Building Materials, or ANSI/UL 723, Standard for Test for Surface Burning Characteristics of Building Materials, extended for an additional 20 minutes in the form in which they are installed in the space.

13-123

Trinity Crossing Apartments Fire Water Flow Requirements

> Attachment B Site Plan

SHT11X17.DWG - 279mmX432mm

From: Polyak, Alex <alex.polyak@ottawa.ca>
Sent: Wednesday, September 6, 2023 5:12 PM
To: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Cc: Curtis Ferguson <c.ferguson@novatech-eng.com>
Subject: RE: 4200 Innes Road- Boundary Conditions Trinity Crossing (122179)

Hello Anthony,

Please see the attached Boundary Conditions for your site at 4200 Innes Road.

Regards,

Oleksandr (Alex) Polyak, B.Eng., P.Eng

Project Manager, Infrastructure Approvals, Development Review East Branch | Gestionnaire de projet, Direction de l'examen des projets d'aménagement – Est. Planning, Real Estate and Economic Development Department | Direction générale de la planification, des biens immobiliers et du développement économique

City of Ottawa | Ville d'Ottawa 110 Laurier Ave., 4th Fl East, Ottawa ON K1P 1J1 Email: <u>alex.polyak@ottawa.ca</u> Cell : 613-857-4380 <u>www.Ottawa.ca</u>

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this email or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite

From: Polyak, Alex <alex.polyak@ottawa.ca>
Sent: Wednesday, August 23, 2023 12:29 PM
To: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Cc: Curtis Ferguson <c.ferguson@novatech-eng.com>
Subject: RE: 4200 Innes Road- Boundary Conditions Trinity Crossing (122179)

Good afternoon Anthony,

Your request has been forwarded to staff for processing.

Regards,

Oleksandr (Alex) Polyak, B.Eng., P.Eng Project Manager, Infrastructure Approvals, Development Review East Branch | Gestionnaire de projet, Direction de l'examen des projets d'aménagement – Est. Planning, Real Estate and Economic Development Department | Direction générale de la planification, des biens immobiliers et du développement économique

City of Ottawa | Ville d'Ottawa 110 Laurier Ave., 4th FI East, Ottawa ON K1P 1J1 Email: <u>alex.polyak@ottawa.ca</u> Cell : 613-857-4380 <u>www.Ottawa.ca</u>

From: Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>>
Sent: August 22, 2023 3:56 PM
To: Polyak, Alex <<u>alex.polyak@ottawa.ca</u>>
Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>
Subject: 4200 Innes Road- Boundary Conditions Trinity Crossing (122179)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Alex,

I understand that the City is now able to provide boundary condition information for the 4200 Innes Road project.

Can you please provide Boundary Conditions for the proposed development's water demand (details below, and associated files for request attached")

The proposed development will have a total of 293 units (58×1 bed, 183×2 -bed, and 52×3 -bed units) and $339.5m^2$ of commercial area (currently accounted for as a medical office).

Total demands and fire flow are; Average Day Demand = **2.15L/s** Max Day Demand = **5.25L/s** Peak Hour Demand = **11.38L/s** Fire Flow (FUS 2020) = **267L/s**

Please let me know if you require anything further.

Regards,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering NOVATECH

Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this email or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Boundary Conditions 4200 Innes Road

Provided Information

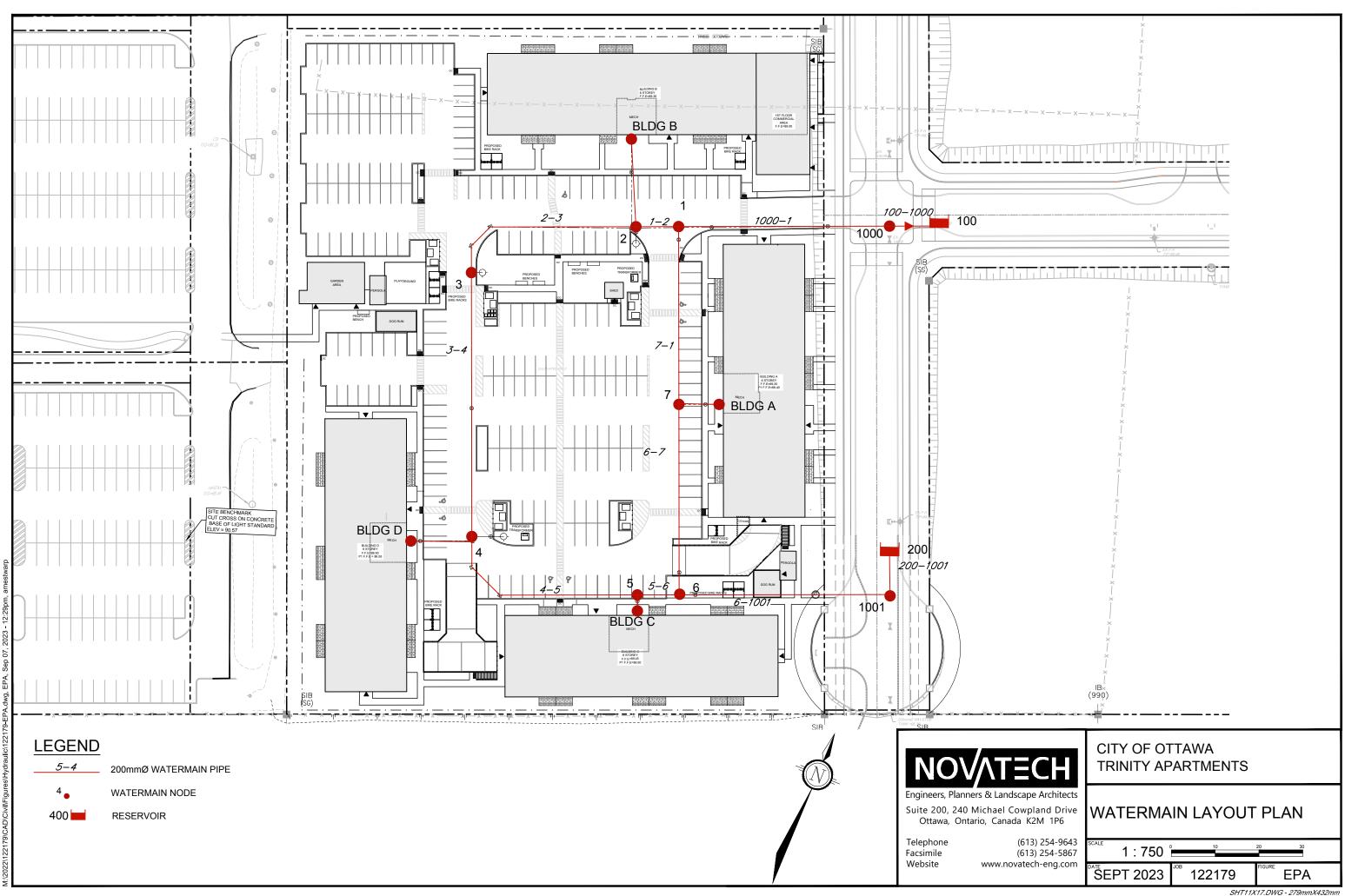
Scenario	Demand			
Scenario	L/min	L/s		
Average Daily Demand	129	2.15		
Maximum Daily Demand	315	5.25		
Peak Hour	683	11.38		
Fire Flow Demand #1	16,020	267.00		

Location

<u>Results</u>

Connection 1 – Noella Leclair St. North

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	57.8
Peak Hour	126.6	52.6
Max Day plus Fire Flow	123.3	47.8
¹ Ground Elevation =	89.6	m


Connection 2 – Noella Leclair St. South

Demand Scenario	Head (m)	Pressure ¹ (psi)	
Maximum HGL	130.3	58.7	

Peak Hour	126.5	53.4
Max Day plus Fire Flow	123.3	48.8
¹ Ground Elevation =	89.0	m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Pipe Data							
Pipe	Length	Diameter	Roughness Coefficient				
	(m)	(mm)					
1000-1	48.13	204	110				
1-2	9.75	204	110				
2-3	45.44	204	110				
3-4	60.26	204	110				
4-5	47.59	204	110				
5-6 9.35		204	110				
6-7	43.49	204	110				
7-1	40.6	204	110				
6-1001	48.13	204	110				
BLDGB-2	20.12	204	110				
BLDGA-7	9.17	204	110				
BLDGC-5	3.81	204	110				
BLDGD-4	13.91	204	110				
100-100	1	204	110				
200-1001	1	204	110				

High Pressure Check							
Node	Node Elevation Demand Head Pressure Age*						
	(m)	(LPS)	(m)	(m)	(PSI)	(hrs)	
1000	88.61	0	130.3	41.69	59.28	0.01	
1001	88.60	0.00	130.30	41.70	59.30	0.01	Maximum Pressure
1	88.72	0.00	130.30	41.58	59.13	0.41	
2	88.77	0.00	130.30	41.53	59.05	0.52	
3	89.00	0.00	130.30	41.30	58.73	3.10	
4	89.08	0.00	130.30	41.22	58.61	3.36	
5	89.12	0.00	130.30	41.18	58.56	0.52	
6	89.29	0.00	130.30	41.01	58.31	0.42	
7	88.87	0.00	130.30	41.43	58.91	1.97	
BLDGA	89.35	0.49	130.30	40.95	58.23	2.14	
BLDGB	89.35	0.68	130.30	40.95	58.23	0.79	
BLDGC	89.45	0.49	130.30	40.85	58.09	0.59	
BLDGD	89.50	0.49	130.30	40.80	58.02	3.62	Maximum Age
100 Reservoir	130.30	-1.08	130.30	0.00	0.00	0.00	
200 Reservoir	130.30	-1.07	130.30	0.00	0.00	0.00]

* Age is based on a boundary age of 0 hrs

1m of head = 1.42197 PSI

2.15

Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1000	85.17	0	123.21	34.6	49.20	
1001	85.59	0.00	123.23	34.63	49.24	
1	86.05	0.00	118.39	29.67	42.19	
2	86.75	233.00	115.54	26.77	38.07	
3	86.31	0.00	116.63	27.63	39.29	
4	86.50	0.00	117.99	28.91	41.11	
5	86.67	0.00	119.48	30.36	43.17	
6	86.68	0.00	119.70	30.41	43.24	
7	86.37	0.00	119.06	30.19	42.93	
BLDGA	86.10	1.22	119.06	29.71	42.25	
BLDGB	86.01	1.57	115.54	26.19	37.24	Minimum Pressur
BLDGC	85.21	1.23	119.48	30.03	42.70	
BLDGD	85.18	1.23	117.99	28.49	40.51	
100 Reservoir	86.56	-129.02	123.30	0.00	0.00	
200 Reservoir	86.19	-109.23	123.30	0.00	0.00	
Notes	4 40407					-

Im of head =1.42197Fire demand based on FUS 2020

PSI

Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1000	85.17	0	123.2	34.59	49.19	
1001	85.59	0.00	123.22	34.62	49.23	
1	86.05	0.00	117.72	29.00	41.24	
2	86.75	250.00	114.46	25.69	36.53	
3	86.31	0.00	115.70	26.70	37.97	
4	86.50	0.00	117.25	28.17	40.06	
5	86.67	0.00	118.95	29.83	42.42	
6	86.68	0.00	119.21	29.92	42.55	
7	86.37	0.00	118.48	29.61	42.10	
BLDGA	86.10	1.22	118.48	29.13	41.42	
BLDGB	86.01	1.57	114.46	25.11	35.71	Minimum Pressur
BLDGC	85.21	1.23	118.95	29.50	41.95	
BLDGD	85.18	1.23	117.25	27.75	39.46	
100 Reservoir	86.56	-138.24	123.30	0.00	0.00	
200 Reservoir	86.19	-117.01	123.30	0.00	0.00	
100 Reservoir	86.56				0	.00

Im of head =1.42197Fire demand based on FUS 2020

PSI

Maximum Daily Demand and Fire Flow						
	Building C	/D (node 4) -	267L/s Fire	Demand		
Node	Elevation	Demand	Head	Pres	ssure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1000	85.17	0	123.2	34.59	49.19	
1001	85.59	0.00	123.20	34.60	49.20	
1	86.05	0.00	117.97	29.25	41.59	
2	86.75	0.00	116.63	27.86	39.62	
3	86.31	0.00	112.90	23.90	33.99	
4	86.50	267.00	108.26	19.18	27.27	
5	86.67	0.00	116.60	27.48	39.08	
6	86.68	0.00	117.78	28.49	40.51	
7	86.37	0.00	117.86	28.99	41.22	
BLDGA	86.10	1.22	117.86	28.51	40.54	
BLDGB	86.01	1.57	116.63	27.28	38.79	
BLDGC	85.21	1.23	116.60	27.15	38.61	
BLDGD	85.18	1.23	108.26	18.76	26.68	Minimum
100 Reservoir	86.56	-134.85	123.30	0.00	0.00	
200 Reservoir	86.19	-137.40	123.30	0.00	0.00	

<u>Notes</u> 1m of head =

PSI

1m of head = 1.42197 Fire demand based on FUS 2020

PEAK HOUR						
Node	Elevation Demand Head Pressure					1
	(m)	(LPS)	(m)	(m)	(PSI)	
1000	85.17	0	126.6	37.99	54.02	1
1001	85.59	0.00	126.50	37.90	53.89	1
1	86.05	0.00	126.53	37.81	53.76	
2	86.75	0.00	126.52	37.75	53.68	
3	86.31	0.00	126.52	37.52	53.35	
4	86.50	0.00	126.51	37.43	53.22	
5	86.67	0.00	126.51	37.39	53.17	
6	86.68	0.00	126.51	37.22	52.93	
7	86.37	0.00	126.51	37.64	53.52	
BLDGA	86.10	2.67	126.51	37.16	52.84	
BLDGB	86.01	3.29	126.52	37.17	52.85	1
BLDGC	85.21	2.71	126.51	37.06	52.70	
BLDGD	85.18	2.71	126.51	37.01	52.63	
100 Reservoir	86.56	-13.37	126.60	0.00	0.00	1
200 Reservoir	86.19	1.99	126.50	0.00	0.00	

Minimum Pressure

<u>Notes</u>

1m of head = 1.42197 PSI

********	***************************************	*******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
********	*******	*****

Input File: AD.net

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
1000-1	1000	1	48.13	204
1-2	1	2	9.75	204
2-3	2	3	45.44	204
3-4	3	4	60.26	204
4-5	4	5	47.59	204
5-6	5	6	9.35	204
6-7	6	7	43.49	204
7-1	7	1	40.60	204
6-1001	6	1001	48.13	204
BLDGB-2	BLDGB	2	20.12	204
BLDGA-7	BLDGA	7	9.17	204
BLDGC-5	5	BLDGC	3.81	204
BLDGD-4	BLDGD	4	13.91	204
100-100	100	1000	1	204
200-1001	200	1001	1	204

Node Results (Average Day):

Node ID	Demand LPS	Head m	Pressure m	Quality hours	
1000	0.00	130.30	41.69	0.01	
1001	0.00	130.30	41.70	0.01	
1	0.00	130.30	41.58	0.41	
2	0.00	130.30	41.53	0.52	
3	0.00	130.30	41.30	3.10	
4	0.00	130.30	41.22	3.36	
5	0.00	130.30	41.18	0.52	
6	0.00	130.30	41.01	0.42	
7	0.00	130.30	41.43	1.97	
BLDGA	0.49	130.30	40.95	2.14	
BLDGB	0.68	130.30	40.95	0.79	
BLDGC	0.49	130.30	40.85	0.59	
BLDGD	0.49	130.30	40.80	3.62	
100	-1.08	130.30	0.00	0.00	Reservoir
200	-1.07	130.30	0.00	0.00	Reservoir

**********	<*************************************	******
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
**********	· * * * * * * * * * * * * * * * * * * *	******

```
Link Results (Average Day):
```

Link	Flow	VelocityUnit	Headloss	Status
ID	LPS	m/s	m/km	
1000-1	1.08	0.03	0.01	Open
1-2	0.84	0.03	0.01	Open
2-3	0.16	0.00	0.00	Open
3-4	0.16	0.00	0.00	Open
4-5	0.33	0.01	0.00	Open
5-6	0.82	0.03	0.01	Open
6-7	0.25	0.01	0.00	Open
7-1	0.24	0.01	0.00	Open
6-1001	1.07	0.03	0.01	Open
BLDGB-2	0.68	0.02	0.01	Open
BLDGA-7	0.49	0.01	0.00	Open
BLDGC-5	0.49	0.01	0.00	Open
BLDGD-4	0.49	0.01	0.00	Open
100-100	1.08	0.03	0.01	Open
200-1001	1.07	0.03	0.01	Open

********	***************************************	******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
*******	***************************************	********

Node Results (Max Day + Fire Flow Building A):

Node ID	Demand LPS	Head m	Pressure m	Quality
1000	0.00	123.21	34.60	0.00
1001	0.00	123.23	34.63	0.00
1	0.00	118.39	29.67	0.00
2	233.00	115.54	26.77	0.00
3	0.00	116.63	27.63	0.00
4	0.00	117.99	28.91	0.00
5	0.00	119.48	30.36	0.00
6	0.00	119.70	30.41	0.00
7	0.00	119.06	30.19	0.00
BLDGA	1.22	119.06	29.71	0.00
BLDGB	1.57	115.54	26.19	0.00
BLDGC	1.23	119.48	30.03	0.00
BLDGD	1.23	117.99	28.49	0.00
100	-129.02	123.30	0.00	0.00 Reservoir
200	-109.23	123.30	0.00	0.00 Reservoir

Link Results (Max Day + Fire Flow Building A):

	 Г]ан			
Link	Flow		it Headloss	Status
ID	LPS	m/s	m/km	
1000-1	129.02	3.95	100.10	Open
1-2	174.61	5.34	292.08	Open
2-3	-59.96	1.83	23.88	Open
3-4	-59.96	1.83	22.53	Open
4-5	-61.19	1.87	31.32	Open
5-6	-62.42	1.91	23.94	Open
6-7	46.82	1.43	14.72	Open
7-1	45.60	1.39	16.48	Open
6-1001	-109.23	3.34	73.39	Open
BLDGB-2	-1.57	0.05	0.03	Open
BLDGA-7	-1.22	0.04	0.02	Open
BLDGC-5	1.23	0.04	0.02	Open
BLDGD-4	-1.23	0.04	0.02	Open
100-1000	129.02	3.95	91.85	Open
200-1001	109.23	3.34	67.48	Open

********	***************************************	*****
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
********	***************************************	*****

Node Results (Max Day + Fire Flow Building B):

Node ID	Demand LPS	Head m	Pressure m	Quality
1000	0.00	123.20	34.59	0.00
1001	0.00	123.22	34.62	0.00
1	0.00	117.72	29.00	0.00
2	250.00	114.46	25.69	0.00
3	0.00	115.70	26.70	0.00
4	0.00	117.25	28.17	0.00
5	0.00	118.95	29.83	0.00
6	0.00	119.21	29.92	0.00
7	0.00	118.48	29.61	0.00
BLDGA	1.22	118.48	29.13	0.00
BLDGB	1.57	114.46	25.11	0.00
BLDGC	1.23	118.95	29.50	0.00
BLDGD	1.23	117.25	27.75	0.00
100	-138.24	123.30	0.00	0.00 Reservoir
200	-117.01	123.30	0.00	0.00 Reservoir

Link Results (Max Day + Fire Flow Building B):

Link	Flow	Velocitylln	it Headloss	Status
ID	LPS	m/s	m/km	
1000-1	138.24	4.23	113.85	Open
1-2	187.17	5.73	333.72	Open
2-3	-64.40	1.97	27.28	Open
3-4	-64.40	1.97	25.72	Open
4-5	-65.63	2.01	35.76	Open
5-6	-66.86	2.05	27.19	Open
6-7	50.15	1.53	16.73	Open
7-1	48.93	1.50	18.82	Open
6-1001	-117.01	3.58	83.43	Open
BLDGB-2	-1.57	0.05	0.03	Open
BLDGA-7	-1.22	0.04	0.02	Open
BLDGC-5	1.23	0.04	0.02	Open
BLDGD-4	-1.23	0.04	0.02	Open
100-1000	138.24	4.23	104.38	Open
200-1001	117.01	3.58	76.65	Open

*******	***************************************	*******
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
*******	***************************************	*******

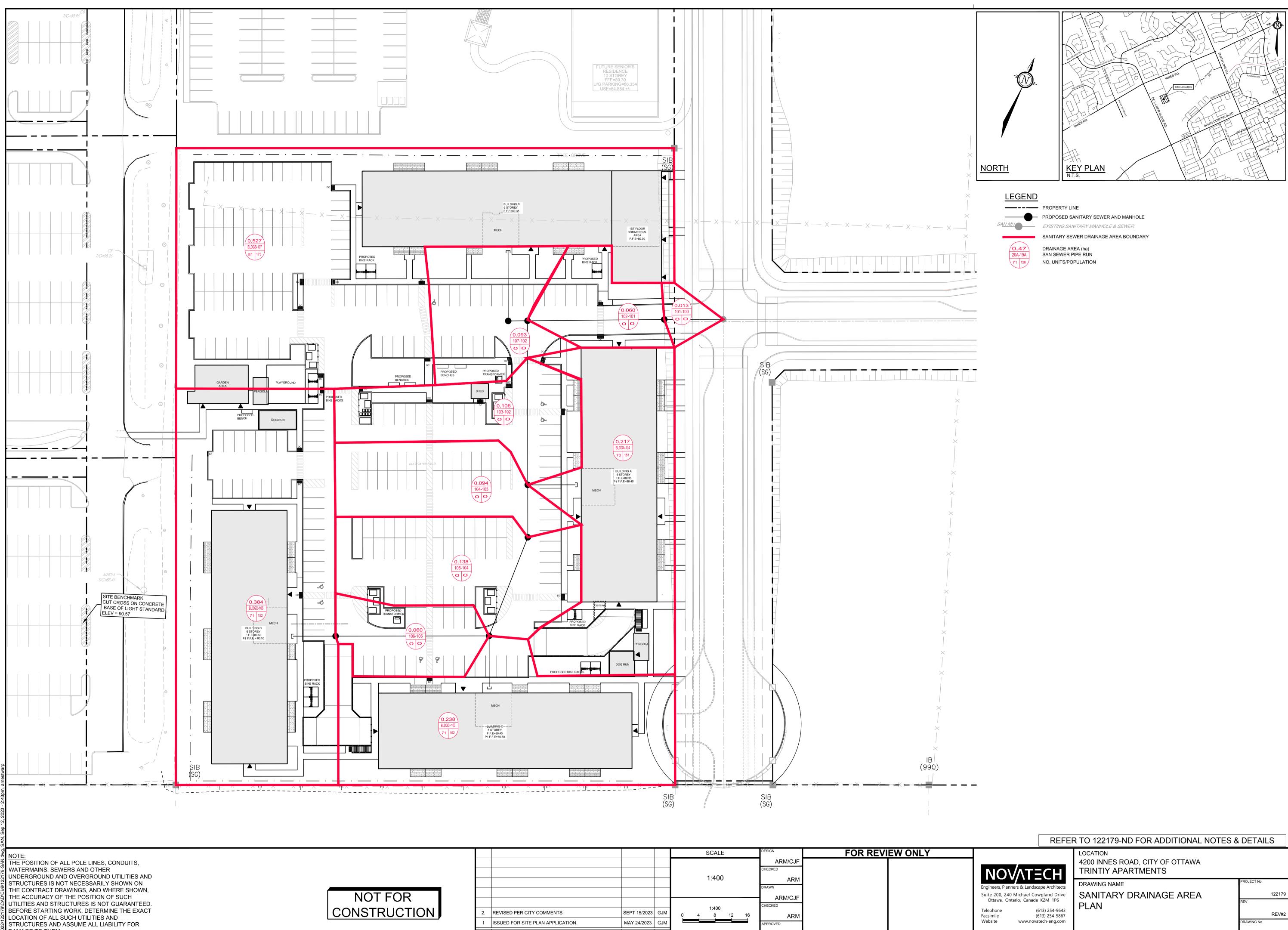
Node Results (Max Day + Fire Flow Building C/D):

Node ID	Demand LPS	Head m	Pressure m	Quality
1000	0.00	123.20	34.59	0.00
1001	0.00	123.20	34.60	0.00
1	0.00	117.97	29.25	0.00
2	0.00	116.63	27.86	0.00
3	0.00	112.90	23.90	0.00
4	267.00	108.26	19.18	0.00
5	0.00	116.60	27.48	0.00
6	0.00	117.78	28.49	0.00
7	0.00	117.86	28.99	0.00
BLDGA	1.22	117.86	28.51	0.00
BLDGB	1.57	116.63	27.28	0.00
BLDGC	1.23	116.60	27.15	0.00
BLDGD	1.23	108.26	18.76	0.00
100	-134.85	123.30	0.00	0.00 Reservoir
200	-137.40	123.30	0.00	0.00 Reservoir

Link Results (Max Day + Fire Flow Building C/D):

Link	Flow	VelocityUr	it Headloss	Status	
ID	LPS	m/s	m/km		
1000-1	134.85	4.13	108.70	Open	
1-2	117.87	3.61	137.49	Open	
2-3	116.30	3.56	82.04	Open	
3-4	116.30	3.56	76.97	Open	
4-5	-151.93	4.65	175.20	Open	
5-6	-153.16	4.69	126.19	Open	
6-7	-15.76	0.48	1.95	Open	
7-1	-16.98	0.52	2.58	Open	
6-1001	-137.40	4.20	112.56	Open	
BLDGB-2	-1.57	0.05	0.03	Open	
BLDGA-7	-1.22	0.04	0.02	Open	
BLDGC-5	1.23	0.04	0.02	Open	
BLDGD-4	-1.23 0.04 0.02 Open		Open		
100-1000	134.85	4.13	99.69	Open	
200-1001	137.40	4.20	103.20	Open	
				•	

******	***************************************	*******
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
******	***************************************	*******


Node	Results	(Peak	Hour):	

Node	Demand	Head	Pressure	Quality	
ID	LPS	m	m		
1000	0.00	126.60	37.99	0.00	
1001	0.00	126.50	37.90	0.00	
1	0.00	126.53	37.81	0.00	
2	0.00	126.52	37.75	0.00	
3	0.00	126.52	37.52	0.00	
4	0.00	126.51	37.43	0.00	
5	0.00	126.51	37.39	0.00	
6	0.00	126.51	37.22	0.00	
7	0.00	126.51	37.64	0.00	
BLDGA	2.67	126.51	37.16	0.00	
BLDGB	3.29	126.52	37.17	0.00	
BLDGC	2.71	126.51	37.06	0.00	
BLDGD	2.71	126.51	37.01	0.00	
100	-13.37	126.60	0.00	0.00 Reservoir	
200	1.99	126.50	0.00	0.00 Reservoir	

Link Results (Peak Hour):

Link ID	Flow LPS	VelocityUnit H m/s	Headloss m/km	Status
1000-1 1-2 2-3 3-4 4-5 5-6 6-7 7-1 6-1001 BLDGB-2 BLDGA-7 BLDGC-5 BLDGD-4 100-1000	13.37 7.11 3.82 3.82 1.11 -1.60 -3.59 -6.26 1.99 -3.29 -2.67 2.71 -2.71 13.37	0.41 0.22 0.12 0.12 0.03 0.05 0.11 0.19 0.06 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.08	1.47 0.64 0.14 0.12 0.03 0.12 0.40 0.04 0.04 0.13 0.08 0.10 0.08 1.39	Open Open Open Open Open Open Open Open
200-1001	-1.99	0.06	0.04	Open

Appendix C Sanitary Servicing

DAMAGE TO THEM.

				SCALE	DESIGN	FOR REVIEW ONLY
				- 1:400	ARM/CJF CHECKED ARM	
				- 1:400	DRAWN ARM/CJF	
2.	REVISED PER CITY COMMENTS	SEPT 15/2023	GJM		ARM	
1	ISSUED FOR SITE PLAN APPLICATION	MAY 24/2023	GJM		APPROVED	1
No.	REVISION	DATE	BY		GJM	

122179 REV#2 Ш 122179-SAN

-Medical Office

3. Q Avg capita flow

6. Commercial Peak Factor

7. Peak Extraneous Flow =

4. M = Harmon Formula (maximum of 4.0) 5. K = 0.8

275 L/9.3m²/day

0.33 L/sec/ha

L/capita/day

280

1.0

Novatech Project #: 122179 Project Name: Trinity Apartments Date Prepared: 5/12/2023 Date Revised: 9/7/2023 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng Drawing Reference: 122179- SAN

As per OBC Section 8.2 As per City of Ottawa -Technical Bulletin ISTB-2018-01

As per Harmon Formula As per City of Ottawa -Technical Bulletin ISTB-2018-01

Legend:

PROJECT SPECIFIC INFO USER DESIGN INPUT CUMULATIVE CELL CALCULATED DESIGN CELL OUTPUT

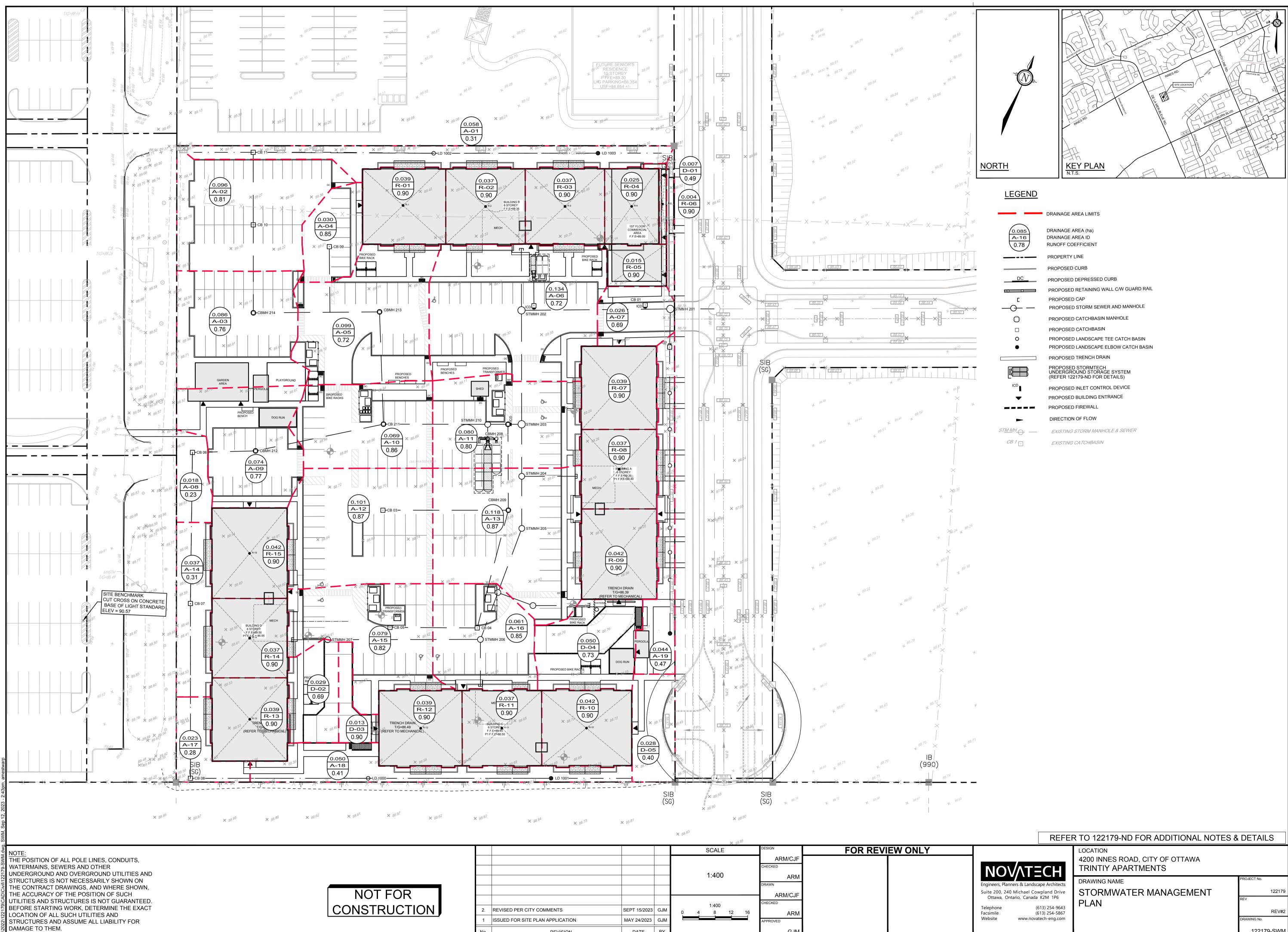
	PROPOSED DEVELOPMENT FLOWS (TRINITY APARTMENTS)																										
LOCATI	FION									DE	MAND												DESIGN	N CAPACITY			
						RE	ESIDENTIAL FLOW	ENTIAL FLOW				COMMERCIAL FLOW						XTRANEOUS	5 FLOW								
AREA	FROM MH	то мн	1 Bed Apartment	2 Bed t Apartment	3 Bed nt Apartment		CUMULATIVE POPULATION (in 1000's)		AVG POPULATION FLOW (L/s)	PEAKED DESIGN POP FLOW (L/s)	AREA (m²)	²) CUMULATIVE AREA (m ²)	E DESIGN COMMERICAL FLOW (L/s)	COMMERICAL PEAK FACTOR	PEAKED	L Total Area (ha.)	Accum. Area (ha.)	EXTRAN.	I. DESIGN	PIPE LENGTH (m)	H PIPE SIZE (mm) AND MATERIAL	ACTUAL		DESIGN GRADE (%)	CAPACITY	FULL FLOW VELOCITY (m/s)	Qpeak Design / Qcap
	BLDG C	105	13	46	12	0.152	0.152	3.55	0.49	1.75		0.000	0.00	1.00	0.00	0.24	0.24	0.08	1.83	13.0	200 PVC	0.203	0.013	2.00	48.4	1.49	3.8%
																				j							
	BLDG D		13	46	12	0.152	0.152	3.55	0.49	1.75	4	0.000	0.00	0.33	0.00	0.38	0.38		1.88	10.9	200 PVC			1.00	34.2	1.06	5.5%
	106	105	'			0.000	0.152	3.55	0.49	1.75	4	0.000	0.00	0.00	0.00	0.06	0.44	0.15	1.90	37.8	200 PVC	0.203	0.013	0.45	23.0	0.71	8.3%
	105	104	_ _ '			0.000	0.304	3.46	0.99	3.41		0.000	0.00	0.00	0.00	0.14	0.82	0.27	3.68	26.0	200 PVC	0.203	0.013	0.45	23.0	0.71	16.0%
	105	104	·'	+		0.000	0.304	3.46	0.99	3.41		0.000	0.00	0.00	0.00	0.14	0.82		3.68	26.0	200 PVC 200 PVC			0.45	23.0	0.71	16.2%
			·'	+	+	0.000	0.004	0.10	0.00	0.+.	1	0.000	0.00	0.00	0.00	0.00	0.01	0.00	0			0.200	0.010		20.0		10.270
	BLDG A	103	12	46	12	0.151	0.151	3.55	0.49	1.73		0.000	0.00	1.00	0.00	0.22	0.22	0.07	1.81	12.2	200 PVC	0.203	0.013	2.00	48.4	1.49	3.7%
							'		'																	·	
	103	102	_ _ '			0.000	0.455	3.40	1.47	5.00		0.000	0.00	0.33	0.00	0.11	1.24	0.41	5.41	40.3	200 PVC	0.203	0.013	0.45	23.0	0.71	23.6%
			'	<u> </u>	<u> </u>		'		'	<u></u>															+	<u> </u>	
	BLDG B	107	19	46	16	0.173	0.173	3.54	0.56	1.98	339.500		0.12	1.00	0.12	0.53	0.53		2.27	17.3	200 PVC			2.00	48.4	1.49	4.7%
	107	102	·'	+		0.000	0.173	3.54	0.56	1.98	4	339.500	0.12	0.00	0.00	0.09	0.62	0.20	2.18	4.7	200 PVC	0.203	0.013	1.00	34.2	1.06	6.4%
	102	101	·	+	+	0.000	0.627	3.34	2.03	6.79		339.500	0.12	1.00	0.12	0.06	1.92	0.63	7.53	33.6	250 PVC	0.254	0.013	0.35	36.7	0.72	20.5%
	101	EX	·	+	+	0.000	0.627	3.34	2.03	6.79		339.500	0.12	1.00	0.12	0.00	1.93		7.54	14.5	250 PVC			0.35	36.7	0.72	20.5%
							·		*																	+	
							_	<u> </u>					<u> </u>	<u> </u>	<u></u>						Y EQUATION					······	
Design Parameters:																				Q full= (1/r	/n) A R^(2/3)S _o ′	ം^(1/2)					
1. Residential Flows	1.4		\top				-																				
-1 Bed Apartment	F	Person/ Unit				sign Guidelines,																					
-2 Bed Apartment		Person/ Unit			2012															Where	e:Q full = Cap	pacity (L/s)					
-3 Bed Apartment	3.1 F	Person/ Unit					_																				
2. Commercial Flow																											

n = Manning coefficient of roughness (0.013) A = Flow area (m²) R = Wetter perimenter (m) So = Pipe Slope/gradient

Novatech Project #: 122179 Project Name: Trinity Date Prepared: 1/17/2023 Date Revised: Input By: Anthony Mestwarp, P.Eng Reviewed By: Greg MacDonald, P.Eng Drawing Reference: 122179- SAN

Legend:

PROJECT SPECIFIC INFO USER DESIGN INPUT CUMULATIVE CELL CALCULATED DESIGN CELL OUTPUT


			(Assumed flow from: Site	Servicing and St	formwator Manag		EANS II SUBDIVIS			ntombor	23 2022 Dr	oparod By 9	tantoc Cons	ulting I to)								
LOCATIO	N		(Assumed now nom. Site	Servicing and S	tormwater Manag	DEMAND		131011, 4200 11116	es Noau, Dateu Se	ptember	25, 2022, FT	epared by c		uning Ltd.)		DESIGN	CAPACIT	Y				
					RESIDENTIA	L FLOW				EX	TRANEOUS	FLOW	PROPOSED SEWER PIPE SIZING / DESIGN									
AREA	FROM MH	то мн	Apartment	POPULATION (in 1000's)	CUMULATIVE POPULATION (in 1000's)	PEAK FACTOR M	AVG POPULATION FLOW (L/s)	PEAKED DESIGN POP FLOW (L/s)	Total Area (ha.)	Accum. Area (ha.)	DESIGN EXTRAN. FLOW (L/s)	TOTAL DESIGN FLOW (L/s)	LENGTH	PIPE SIZE (mm) AND MATERIAL	PIPE ID ACTUAL (m)	ROUGH. (n)	DESIGN GRADE (%)	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak Design / Qcap		
	25	24	365	0.657	0.657	3.33	2.13	7.09	1.92	1.92	0.63	7.72	12.0	200 PVC	0.203	0.013	1.00	34.2	1.06	22.6%		
			••••	0.001	0.007	0.00	2110	1100			0.00		CAPACITY		0.200	0.010		• •••=				
<u>Design Parameters:</u>													Q full= (1/n)) A R^(2/3)S _o ʻ	^(1/2)							
1. Residential Flows																						
Average Apartment	1.8	Person/ Unit	As per City of Ottawa Sewer Desig																			
3. Q Avg capita flow	280	L/capita/day	As per City of Ottawa Technical Bulletin ISTB-20											n = Manning	coefficien	t of rough	ness (0.01	3)				
4. M = Harmon Formula (maximum	of 4.0)		As per Harmon Formu	ula										A = Flow are		•						
5. K =	0.8		As per Harmon Formu	lla										R = Wetter p								
6. Commercial Peak Factor	1.0		As per City of Ottawa Technical Bulletin ISTB-20											So = Pipe SI	ope/gradie	nt						
7. Peak Extraneous Flow =	0.33	L/sec/ha	Technical Bulletin ISTB-20	018-01																		

ulting Lte	d.)
	u.,

		SUBDIVISION:						(SANIT	ARY S	EWER	2											DESIGN PA	RAMETERS											
96		INNES SH	IOPPING	ROAD				•	DES	IGN SH	IEET	•				ACTOR (RES.	,	4.0			FLOW / PERS	ON	280	l/p/day		MINIMUM VE				m/s					
		DATE:		9/21/2	2022											ACTOR (RES.)		2.0		COMMERCI				l/ha/day		MAXIMUM VE			3.00						
		REVISION: DESIGNED B	NZ.	1 MJ		FILE NUM	DED.	160401419	`							CTOR (INDUS CTOR (ICI >20	,	2.4 1.5		INDUSTRIAL	. ,			l/ha/day l/ha/day		MANNINGS r			0.013						
Stantec		CHECKED B		IVIJ KS			DER:	160401418	9						PERSONS /		<i>17</i> 0).	3.4		INSTITUTIO			28,000	-		BEDDING CL			В						
		ONEORED D		n.	5										PERSONS /			2.7		INFILTRATIO				l/s/Ha			RRECTION FA		2.50 0.8						
																		1.8					0.00	V3/110		HARMON CC	RRECTION F	ACTOR	0.0						
LOCATION						RESIDENTIA	AL AREA AND	POPULATION	1			COMM	IERCIAL	INDUS	TRIAL (L)	INDUST	RIAL (H)		JTIONAL	GREEN	/ UNUSED	C+I+I		INFILTRATION		TOTAL				PIP	E				
AREA ID	FROM	TO	AREA		UNITS		POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.		SINGLE	TOWN	APT		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							· · ·	PEAK FLOW	· · ·	(ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
FUTURE COMMERCIAL	11	EX SAN 14	0.00	0	0	0	0	0.00	0	3.80	0.0	1.44	1.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.7	1.44	1.44	0.5	1.2	43.0	250	PVC	SDR 35	0.40	38.3	3.06%	0.77	0.29
	••	2,10,111	0.00	<u> </u>				0.00	<u> </u>	0.00	0.0			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1			0.0		10.0	200			0.10	00.0	0.0070	0.11	0.20
EXISTING COMM / RES	EX SAN 15	EX SAN 14	0.00	0	0	0	583	0.00	583	3.35	6.3	7.60	7.60	0.00	0.00	0.00	0.00	0.00	0.00	3.73	3.73	3.7	11.33	11.33	3.7	13.8	118.8	250	PVC	SDR 35	0.27	31.5	43.69%	0.63	0.52
		10	0.00	0	0	0	0	0.00	500	2.25	6.0	0.00	9.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70	4.4	0.00	12.77	4.0	14.9	19.0	375	PVC	SDR 35	0.42	105.4	44409/	1.00	0.59
G10A	EX SAN 14 10	9	0.00 0.00	0	0	0	0	0.00	583 583	3.35 3.35	6.3 6.3	0.00	9.04	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.07	3.73 3.80	4.4 4.4	0.00 0.07	12.84	4.2 4.2	14.9	18.5	375	PVC	SDR 35	0.42 0.40	105.4	14.18% 14.58%	1.00 0.97	0.58 0.58
C.C.		0	0.00		, in the second se		Ū	0.00	000	0.00	0.0	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00		0.01	12.01		10.0	10.0	0.0			0.10	102.1		0.01	0.00
R91A*	91	9	1.62	0	0	0	411	1.62	411	3.41	4.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.62	1.62	0.5	5.1	13.0	250	PVC	SDR 35	0.40	38.3	13.25%	0.77	0.44
G9A	9	8	0.00	0	0	0	٥	1.62	994	3.24	10.4	0.00	9.04	0.00	0.00	0.00	0.00	0.00	0.00	0.28	4.08	4.4	0.28	14.74	4.9	19.7	120.0	375	PVC	SDR 35	0.20	72.6	27.14%	0.69	0.49
GSA	9	0	0.00	U	U	U	0	1.02	994	3.24	10.4	0.00	9.04	0.00	0.00	0.00	0.00	0.00	0.00	0.20	4.00	4.4	0.20	14.74	4.9	19.7	120.0	375	FVC	3DK 33	0.20	72.0	27.14%	0.09	0.49
R81A	81	8	1.92	0	0	0	657	1.92	657	3.33	7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.92	1.92	0.6	7.7	14.5	200	PVC	SDR 35	0.40	21.1	36.50%	0.67	0.52
000 000	0	7	0.00	•	•	•	0	0.54	4054	0.40	40.7	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.40	4.54	4.4	0.40	47.00	5.0	00.7	70.4	075	51/0	000.05	0.00	70.0	00.04%	0.00	0.54
G8A, G8B	8	/	0.00	U	U	U	U	3.54	1651	3.12	16.7	0.00	9.04	0.00	0.00	0.00	0.00	0.00	0.00	0.43	4.51	4.4	0.43	17.09	5.6	26.7	73.4	375	PVC	SDR 35	0.20	72.6	36.81%	0.69	0.54
R71A	71	7	0.93	0	0	0	540	0.93	540	3.37	5.9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.93	0.93	0.3	6.2	15.0	200	PVC	SDR 35	0.40	21.1	29.29%	0.67	0.49
	_																																		
G7A	7	6	0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	0.00	0.00	0.00	0.00	0.00	0.29	4.80	4.4	0.29	18.30	6.0	32.0	119.2	375	PVC	SDR 35	0.20	72.6	44.15%	0.69	0.57
L61A	61	6	0.00	0	0	0	0	0.00	0	3.80	0.0	0.00	0.00	1.06	1.06	0.00	0.00	0.00	0.00	0.00	0.00	1.0	1.06	1.06	0.4	1.4	15.3	250	PVC	SDR 35	0.40	38.3	3.61%	0.77	0.31
																																		-	
G6A	6	5	0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	1.06	0.00	0.00	0.00	0.00	0.08	4.87	5.4	0.08	19.44	6.4	33.5	32.5	375	PVC	SDR 35	0.20	72.6	46.09%	0.69	0.57
G5A	5	4	0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	1.06	0.00	0.00	0.00	0.00	0.09	4.96	5.4	0.09	19.53	6.4	33.5	36.0	375	PVC	SDR 35	0.20	72.6	46.13%	0.69	0.57
L41A	41	4	0.00	0	0	0	0	0.00	0	3.80	0.0	0.00	0.00	3.45	3.45	0.00	0.00	0.00	0.00	0.00	0.00	3.4	3.45	3.45	1.1	4.5	14.1	250	PVC	SDR 35	0.40	38.3	11.71%	0.77	0.43
G42A	42	4	0.00	0	0	0	0	0.00	0	3.80	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.61	0.61	0.0	0.61	0.61	0.2	0.2	14.6	150	PVC	DR 28	1.00	15.3	1.31%	0.86	0.25
G4A	4	3	0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	4.51	0.00	0.00	0.00	0.00	0.10	5.67	8.8	0.10	23.68	7.8	38.2	41.1	375	PVC	SDR 35	0.20	72.6	52.64%	0.69	0.60
G3A	3	2	0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	4.51	0.00	0.00	0.00	0.00	0.22	5.89	8.8	0.22	23.90	7.9	38.3	42.9	375	PVC	SDR 35	0.20	72.6	52.74%	0.69	0.60
G12A, G12B, L12A, L12B, L12C	12	2	0.00	0	0	0	0	0.00	0	3.80	0.0	0.00	0.00	11.17	11.17	0.00	0.00	0.00	0.00	5.26	5.26	10.9	16.43	16.43	5.4	16.3	20.3	250	PVC	SDR 35	0.30	33.2	49.03%	0.67	0.57
L2A	2	1	0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.39	16.07	0.00	0.00	0.00	0.00	0.00	11.15	20.0	0.39	40.72	13.4	55.1	37.1	375	PVC	SDR 35	0.20	72.6	75.87%	0.69	0.67
G1A	1	EX SAN 6	0.00	0	0	Ō	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	16.07	0.00	0.00	0.00	0.00	0.15	11.30	20.0	0.15	40.88	13.5	55.1	60.5	375	PVC	SDR 35	0.20	72.6	75.94%	0.69	0.67
	EX SAN 6	EX SAN 5	0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	16.07	0.00	0.00	0.00	0.00	0.00	11.30	20.0	0.00	40.88	13.5	55.1	71.7	375	PVC	SDR 35	0.20	72.6	75.94%	0.69	0.67
	EX SAN 5 EX SAN 4		0.00	0	0	0	0	4.46 4.46	2191 2191	3.04 3.04	21.6 21.6	0.00	9.04 9.04	0.00	16.07 16.07	0.00	0.00	0.00	0.00 0.00	0.00	11.30 11.30	20.0 20.0	0.00 0.00	40.88 40.88	13.5 13.5	55.1 55.1	71.6 61.8	375 375	PVC PVC	SDR 35 SDR 35	0.17 0.23	66.4 77.3	82.98% 71.35%	0.63 0.73	0.63 0.70
			0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	16.07	0.00	0.00	0.00	0.00	0.00	11.30	20.0	0.00	40.88	13.5	55.1	61.6	375	PVC	SDR 35 SDR 35	0.23	68.5	80.45%	0.73	0.70
	EX SAN 2		0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	16.07	0.00	0.00	0.00	0.00	0.00	11.30	20.0	0.00	40.88	13.5	55.1	7.2	375	PVC	SDR 35	0.28	85.9	64.18%	0.81	0.75
	EX SAN 1		0.00	0	0	0	0	4.46	2191	3.04	21.6	0.00	9.04	0.00	16.07	0.00	0.00	0.00	0.00	0.00	11.30	20.0	0.00	40.88	13.5	55.1	113.1	525	CONCRETE	SDR 35	0.20	202.8	27.18%	0.91	0.64
Residential population of 411 used as design flo	nu in nauivalt	to 256 long to	ore hed for-104	wat 450 l/ba d/d																								525							
vesidential population of 411 used as design no	ow is equivalent	to 200 long term c	are beu tacilit	y at 400 1/080/0.				1		L				1						1		1				1	L								

Appendix D Storm Servicing

				SCALE	DESIGN	FOR REVIEW ONLY
				1:400	ARM/CJF CHECKED ARM DRAWN	
	REVISED PER CITY COMMENTS ISSUED FOR SITE PLAN APPLICATION	SEPT 15/2023 MAY 24/2023			ARM/CJF CHECKED ARM	
No.	REVISION	DATE	BY		GJM	

0.085 A-16 0.78
DC
<u>с</u>
0
•
•
st <u>m M</u> H
CB 1 =

PROJECT No.
122179
REV
REV#2
DRAWING No.
122179-SWM
PLANA1.DWG - 841mmx594mm

- Novatech Project #: 122179 Project Name: Trinity Apartments Date Prepared: 5/12/2023
 - Date Revised: 9/6/2023
- Input By: Anthony Mestwarp, P.Eng Reviewed By: Greg MacDonald, P.Eng
- Drawing Reference: 122179-SWM

PROJECT SPECIFIC INFO USER DESIGN INPUT CUMILATIVE CELL CALCULATED DESIGN CELL OUTPUT

USER AS-BUILT INPUT

Legend:

DEMAND LOCATION AREA FLOW Rain Intensity TOTAL Time of PIPE PROPE Weighted Runoff То Indivi Accum (mm/hr) Peak UNRESTRICTED From MH Area ID Hardscape Landscaping Total Area Concentratio ΜН 2.78 AR 2.78 AR Flow PEAK FLOW SIZE / n 100yr LENGTH ID ACTU/ 2yr 5yr MATERIAL Coefficient (QDesign) (L/s) 0.90 0.20 (ha) (min.) (L/s) (m) (mm / type) (m) TRINITY APARTMENTS 0.156 0.90 0.39 10.00 76.81 0.156 0.000 0.39 30.00 BLDG B STMMH 202 R-01-06 30.0 250 PVC 0.254 15.3 0.000 0.00 0.00 0.00 10.00 0.035 0.050 0.41 0.015 0.06 A-18 0.000 CB 08 CB 07 0.003 0.020 0.023 0.28 0.02 0.08 10.00 76.81 5.84 A-17 5.8 43.0 250 PVC 0.254 0.00 0.00 10.00 0.00 0.000 0.037 0.31 10.83 73.77 0.03 0.006 0.031 0.11 7.93 CB 06 37.2 CB 07 A-14 0.000 0.00 0.00 10.83 0.00 7.9 250 PVC 0.254 0.018 0.23 0.01 11.54 71.35 0.12 0.001 0.017 8.4 CB 06 CBMH 212 A-08 0.000 0.00 0.00 11.54 0.00 8.5 15.5 250 PVC 0.254 0.013 0.074 0.77 0.16 0.28 11.84 70.39 0.060 19.52 CBMH 211 32.2 CBMH 212 A-09 0.00 19.5 250 PVC 0.254 0.000 0.00 0.00 11.84 0.058 0.31 10.00 76.81 0.05 0.05 0.049 3.79 0.009 CB 11 CB 10 3.8 17.8 0.254 A-01 0.000 0.00 0.00 10.00 0.00 250 PVC 0.81 75.51 0.096 0.22 0.27 10.34 0.012 20.09 0.084 CB 10 CBMH 214 20.1 21.7 250 PVC 0.254 A-02 0.000 0.00 0.00 10.34 0.00 0.002 0.030 0.85 0.07 0.027 A-04 0.000 0.00 CBMH 214 CBMH 213 0.086 0.76 0.18 0.52 10.76 74.00 38.20 0.068 0.018 A-03 38.2 31.1 375 PVC 0.381 0.00 0.00 0.00 10.76 0.000 0.099 0.20 11.35 71.98 0.025 0.72 0.72 51.47 0.074 STMMH 211 CBMH 213 A-05 11.35 0.00 51.5 27.6 375 PVC 0.381 0.000 0.00 0.00 0.069 0.86 12.46 68.49 79.29 0.065 0.004 0.17 1.16 CBMH 211 STMMH 210 A-10 79.3 25.6 375 PVC 0.381 0.000 0.00 12.46 0.00 0.00 0.00 1 16 12.95 67.08 77.66 0.000 5.0 STMMH 210 CBMH 208 0.000 0.00 0.00 12.95 0.00 77.7 375 PVC 0.381 0.009 0.079 0.82 0.18 0.070 A-15 0.000 0.00 CB 04 CBMH 209 0.061 0.85 0.14 0.32 10.00 76.81 24.87 0.004 0.057 A-16 0.000 0.00 0.00 10.00 0.00 24.9 29.9 250 PVC 0.254 0.101 0.87 0.24 0.004 0.096 A-12 0.000 0.00 CBMH 209 CBMH 208 0.005 0.118 0.87 0.28 0.85 10.41 75.28 64.07 0.112 64.1 375 PVC A-13 21.1 0.000 0.00 10.41 0.00

0.00

			CAPAC	ITY		
		PROPOSED	SEWER PIP	PE SIZING / D	ESIGN	
PROPERTIE	ES ROUGHNESS	DESIGN	CAPACITY	FULL FLOW VELOCITY	TIME OF FLOW	QPEAK DESIGN / QFULL
(m)		GRADE (%)	(L/s)	(m/s)	(min.)	(%)
0.254	0.013	2.00	87.7	1.73	0.15	34.2%
0.254	0.013	0.50	43.9	0.87	0.83	13.3%
0.254	0.013	0.50	43.9	0.87	0.72	18.1%
0.254	0.013	0.50	43.9	0.87	0.30	19.3%
0.254	0.013	0.50	43.9	0.87	0.62	44.5%
0.254	0.013	0.50	43.9	0.87	0.34	8.6%
0.254	0.013	0.50	43.9	0.87	0.42	45.8%
0.381	0.013	0.30	100.2	0.88	0.59	38.1%
0.381	0.013	0.30	100.2	0.88	0.52	51.4%
0.381	0.013	0.30	100.2	0.88	0.49	79.1%
0.381	0.013	0.50	129.3	1.13	0.07	60.0%
0.254	0.013	1.00	62.0	1.22	0.41	40.1%
0.381	0.013	0.50	129.3	1.13	0.31	49.5%

STORM SEWER DESIGN SHEET

	LOCATION			DEMAND FLOW										CAPACI	ITY								
	LOCATION					AREA								FLOW					PROPOSE	D SEWER PIP	PE SIZING / D	ESIGN	
	То					Malada a	Indivi	A	Time of	R	ain Intensity (mm/hr)		Peak	TOTAL UNRESTRICTED		P		ES			FULL	TIME OF	QPEAK
From MH	То МН	Area ID	Hardscape	Landscaping	Total Area	Weighted Runoff Coefficient	2.78 AR	Accum 2.78 AR	Concentratio n	2yr	5yr	100yr	Flow	PEAK FLOW (QDesign)	LENGTH	SIZE / MATERIAL	ID ACTUAL	ROUGHNESS	DESIGN GRADE	CAPACITY	FLOW VELOCITY	FLOW	DESIGN / QFULL
			0.90	0.20	(ha)				(min.)				(L/s)	(L/s)	(m)	(mm / type)	(m)		(%)	(L/s)	(m/s)	(min.)	(%)
CBMH 208	STMMH 203	A-11	0.068 0.000 0.000	0.012	0.080	0.80	0.18 0.00 0.00	2.19 0.00 0.00	13.02 13.02 13.02	66.87			146.14 0.00 0.00	146.1	3.4	450 PVC	0.4572	0.013	0.50	210.3	1.28	0.04	69.5%
			0.020	0.009	0.029	0.69	0.05																
		D-02	0.000				0.00																
BLDG D	STMMH 207	R-13-15	0.117	0.000	0.117	0.90	0.29	0.35	10.00	76.81			26.80	26.8	8.9	250 PVC	0.254	0.012	2.00	87.7	1.73	0.09	30.5%
		K-13-13	0.000				0.00 0.00	0.00	10.00 10.00				0.00	20.0	0.9	250 FVC	0.234	0.013	2.00	07.7	1.73	0.09	30.3%
STMMH 207	STMMH 206		0.000	0.000	0.000		0.00 0.00	0.35	10.09 10.09	76.48			26.69 0.00	26.7	37.6	250 PVC	0.254	0.013	0.50	43.9	0.87	0.72	60.8%
			0.000				0.00	0.00	10.09				0.00										
		D-03	0.013	0.000	0.013	0.90	0.03																
BLDG C	STMMH 206	D-00	0.000	0.000	0.447	0.90	0.00	0.22	10.00	70.04			05.40										
		R10-12	0.117 0.000	0.000	0.117	0.90	0.29	0.33	10.00 10.00	76.81			25.13 0.00	25.1	11.5	250 PVC	0.254	0.013	2.00	87.7	1.73	0.11	28.6%
			0.000				0.00	0.00	10.00				0.00										
STMMH 206	STMMH 205		0.000	0.000	0.000		0.00	0.68	10.81 10.81	73.83			49.92 0.00	49.9	12.3	300 PVC	0.3048	0.013	0.50	71.3	0.98	0.21	70.0%
			0.000	0.000	0.000		0.00	0.00	10.81 11.02	73.10			0.00 49.43										<u> </u>
STMMH 205	STMMH 205B		0.000	0.000	0.000		0.00	0.00	11.02 11.02				0.00	49.4	16.8	300 PVC	0.3048	0.013	0.50	71.3	0.98	0.29	69.3%
			0.000	0.000	0.000		0.00	0.68	11.31	72.13			48.77										
STMMH 205B	STMMH 204		0.000				0.00	0.00	11.31 11.31				0.00	48.8	12.8	300 PVC	0.3048	0.013	0.50	71.3	0.98	0.22	68.4%
			0.038	0.012	0.050	0.73	0.10																
		D-04	0.000				0.00																
BLDG A	STMMH 203	R-07-09	0.117	0.000	0.117	0.90	0.29	0.40	10.00 10.00	76.81			30.35 0.00	30.3	13.7	250 PVC	0.254	0.013	2.00	87.7	1.73	0.13	34.6%
		12-07-09	0.000				0.00	0.00	10.00				0.00	50.5	13.7	230 F VC	0.234	0.013	2.00	07.7	1.75	0.13	54.0 %
			0.000	0.000	0.000		0.00	1.07	11.52	71.41			76.50										
STMMH 204	STMMH 203		0.000				0.00	0.00	11.52 11.52				0.00	76.5	12.8	375 PVC	0.381	0.013	0.50	129.3	1.13	0.19	59.2%
			0.000				0.00	3.26	13.07	66.75			217.37										
STMMH 203	STMMH 202		0.000				0.00	0.00	13.07 13.07				0.00	217.4	28.0	525 CONC	0.5334	0.013	0.50	317.2	1.42	0.33	68.5%
					0.404	0.70		0.00	10.07				0.00				1						
		A-06	0.100	0.034	0.134	0.72	0.27																
STMMH 202	STMMH 201		0.000 0.018	0.008	0.026	0.69	0.00 0.05	3.97	13.39	65.84			261.18										
		A-07	0.000				0.00 0.00	0.00	13.39 13.39				0.00	261.2	36.6	525 CONC	0.5334	0.013	0.50	317.2	1.42	0.43	82.3%
STMMH 201	EXSTMMH		0.000	0.000	0.000		0.00	3.97 0.00	13.82 13.82	64.69			256.63 0.00	256.6	10.8	525 CONC	0.5334	0.013	0.50	317.2	1.42	0.13	80.9%
			0.000				0.00	0.00	13.82				0.00	200.0	10.0	JZJ CUNC	0.0004	0.013	0.30	517.2	1.42	0.13	00.9%

DEMAND EQUATION Q = 2.78 AIR

Where : Q = Peak flow in litres per second (L/s) A = Area in hectares (ha)

R = Weighted runoff coefficient (increased by 25% for 100-year) I = Rainfall intensity in millimeters per hour (mm/hr)

Rainfall Intensity (I) is based on City of Ottawa IDF data presented in the City of Ottawa Sewer Design Guidelines (Oct. 2012)

CAPACITY EQUATION Q full= (1/n) A R^(2/3)So^(1/2)

- Where : Q full = Capacity (L/s) n = Manning coefficient of roughness (0.013)

 - A = Flow area (m²) R = Wetter perimenter (m) So = Pipe Slope/gradient

Appendix E Stormwater Management

Trinity Apartments (122179) Post-Development Model Parameters

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	No Depression	Flow Path Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A-01a	0.012	0.31	15.7%	0%	2	60	2.0%
A-01b	0.026	0.31	15.7%	0%	3	87	1.5%
A-01c	0.020	0.31	15.7%	0%	3	67	2.0%
A-02	0.096	0.81	87.1%	0%	15	64	2.0%
A-03	0.086	0.76	80.0%	0%	15	57	2.0%
A-04	0.030	0.85	92.9%	0%	9	33	2.0%
A-05	0.099	0.72	74.3%	0%	17	58	2.5%
A-06	0.134	0.72	74.3%	0%	19	71	2.5%
A-07	0.026	0.69	70.0%	0%	7	37	2.0%
A-08	0.018	0.23	4.3%	0%	4	45	1.0%
A-09	0.074	0.77	81.4%	0%	13	57	2.0%
A-10	0.069	0.86	94.3%	0%	14	49	2.0%
A-11	0.080	0.80	85.7%	0%	15	53	2.0%
A-12	0.101	0.87	95.7%	0%	16	63	2.0%
A-13	0.118	0.87	95.7%	0%	17	69	2.0%
A-14	0.037	0.31	15.7%	0%	4	93	1.0%
A-15	0.079	0.82	88.6%	0%	15	53	2.0%
A-16	0.061	0.85	92.9%	0%	13	47	3.0%
A-17	0.023	0.28	11.4%	0%	3	77	1.5%
A-18a	0.033	0.41	30.0%	0%	3	110	1.5%
A-18b	0.017	0.41	30.0%	0%	2	85	1.5%
A-19a	0.004	0.47	38.6%	0%	4	11	5.5%
A-19b	0.003	0.47	38.6%	0%	3	9	6.0%
A-19c	0.005	0.47	38.6%	0%	4	12	4.0%
A-19d	0.003	0.47	38.6%	0%	3	9	4.5%
A-19e	0.004	0.47	38.6%	0%	3	13	3.5%
A-19f	0.002	0.47	38.6%	0%	2	12	5.0%
A-19g	0.003	0.47	38.6%	0%	3	9	5.5%
A-19h	0.004	0.47	38.6%	0%	3	12	3.5%
A-19i	0.017	0.47	38.6%	0%	7	24	1.5%
D-01	0.007	0.49	41.4%	0%	2	35	6.5%
D-02	0.029	0.69	70.0%	0%	32	9	7.0%
D-03	0.013	0.90	100.0%	0%	29	4	7.5%
D-04	0.050	0.73	75.7%	0%	26	19	10.0%
D-05	0.028	0.40	28.6%	0%	11	25	3.0%
R-01	0.039	0.90	100.0%	0%	19	21	0.5%
R-02	0.037	0.90	100.0%	0%	19	19	0.5%
R-03	0.037	0.90	100.0%	0%	19	19	0.5%
R-04	0.025	0.90	100.0%	0%	16	16	0.5%
R-05	0.015	0.90	100.0%	0%	12	13	0.5%
R-06	0.004	0.90	100.0%	0%	11	4	0.5%
R-07	0.039	0.90	100.0%	0%	19	21	0.5%
R-08	0.037	0.90	100.0%	0%	19	19	0.5%
R-09	0.042	0.90	100.0%	0%	20	21	0.5%
R-10	0.042	0.90	100.0%	0%	20	21	0.5%
R-11	0.037	0.90	100.0%	0%	19	19	0.5%
R-12	0.039	0.90	100.0%	0%	19	21	0.5%
R-13	0.039	0.90	100.0%	0%	19	21	0.5%
R-14	0.037	0.90	100.0%	0%	19	19	0.5%
R-15	0.042	0.90	100.0%	0%	20	21	0.5%

Storage Curves for Surface Ponding

CB ID	STM Area ID		Storage	e Curve	
CB01	A-07	Elevation	Depth	Area	Volume
Note	es	(m)	(m)	(m ²)	(m ³)
Inve	ert	87.50	0.000	0.36	0.0
CBMH	T/G	88.70	1.200	0.36	0.4
5cm Po	nding	88.75	1.250	19.79	0.9
10cm Po	onding	88.80	1.300	59.40	2.9
Max Static	Ponding ⁽¹⁾	88.83	1.330	87.00	5.1
Top of Stora	ge Node ⁽²⁾	89.05	1.550	87.00	24.3

⁽¹⁾ Based on lowest high point between CBs

(2) Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID		Storage	e Curve	
CB02	A-06	Elevation	Depth	Area	Volume
Note	es	(m)	(m)	(m ²)	(m ³)
Inve	ert	86.10	0.000	0.36	0.0
CBMH	T/G	88.60	2.500	0.36	0.9
5cm Po	nding	88.65	2.550	21.37	1.4
10cm Po	onding	88.70	2.600	68.12	3.7
15cm Po	onding	88.75	2.650	141.25	8.9
20cm Po	onding	88.80	2.700	240.79	18.5
25cm Pc	onding	88.85	2.750	361.45	33.5
Max Static F	Ponding ⁽²⁾	88.90	2.800	497.68	55.0
Top of Stora	ge Node ⁽³⁾	88.95	2.850	497.68	79.9

⁽¹⁾ Used 2x MC-3500 underground storage chambers for a total volume of 20.8 m³

⁽²⁾ Based on lowest high point between CBs

⁽³⁾ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID		Storage	e Curve	
CB03	A-12	Elevation	Depth	Area	Volume
Note	es	(m)	(m)	(m ²)	(m ³)
Inve	rt	87.55	0.000	0.36	0.0
CBMH	T/G	88.75	1.200	0.36	0.4
5cm Po	nding	88.80	1.250	17.63	0.9
10cm Pc	onding	88.85	1.300	52.98	2.6
15cm Pc	onding	88.90	1.350	105.91	6.6
20cm Pc	onding	88.95	1.400	182.15	13.8
25cm Pc	onding	89.00	1.450	288.34	25.6
Max Static F	Ponding ⁽¹⁾	89.05	1.500	424.73	43.4
Top of Stora	ge Node ⁽²⁾	89.10	1.550	424.73	64.6

⁽¹⁾ Based on lowest high point between CBs

CB ID	STM Area ID	Storage Curve				
CB04	A-16	Elevation	Depth	Area	Volume	
Note	es	(m)	(m)	(m ²)	(m ³)	
Inve	ert	87.38	0.000	0.36	0.0	
CBMH	T/G	88.75	1.370	0.36	0.5	
5cm Po	nding	88.80	1.420	12.51	0.8	
10cm Po	onding	88.85	1.470	37.23	2.1	
15cm Pc	onding	88.90	1.520	78.33	4.9	
20cm Po	onding	88.95	1.570	145.84	10.6	
Max Static F	Ponding ⁽¹⁾	89.00	1.620	233.14	20.0	
Top of Stora	ge Node ⁽²⁾	89.10	1.720	233.14	43.3	

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve				
CB05	A-15	Elevation	Depth	Area	Volume	
Note	es	(m)	(m)	(m ²)	(m ³)	
Inve	ert	87.65	0.000	0.36	0.0	
CBMH T/G		88.85	1.200	0.36	0.4	
5cm Po	nding	88.90	1.250	16.42	0.9	
10cm Po	onding	88.95	1.300	48.70	2.5	
15cm Po	onding	89.00	1.350	109.69	6.4	
Max Static I	Ponding ⁽¹⁾	89.03	1.380	162.46	10.5	
Top of Stora	ge Node ⁽²⁾	89.20	1.550	162.46	38.1	

⁽¹⁾ Based on lowest high point between CBs

⁽²⁾ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve				
CB09	A-04	Elevation	Depth	Area	Volume	
Not	es	(m)	(m)	(m ²)	(m ³)	
Invert		87.65	0.000	0.36	0.0	
CBMH	I T/G	88.85	1.200	0.36	0.4	
5cm Pc	onding	88.90	1.250	20.51	1.0	
10cm P	onding	88.95	1.300	62.52	3.0	
Max Static	Ponding ⁽¹⁾	89.00	1.350	117.50	7.5	
Top of Stora	ge Node ⁽²⁾	89.20	1.550	117.50	31.0	

⁽¹⁾ Based on lowest high point between CBs

CB ID	STM Area ID	Storage Curve			
CB10	A-02	Elevation	Depth	Area	Volume
Note	es	(m)	(m)	(m²)	(m ³)
Inve	ert	86.81	0.000	0.36	0.0
CBMH	T/G	88.75	1.940	0.36	0.7
5cm Po	nding	88.80	1.990	29.65	1.4
10cm Po	onding	88.85	2.040	95.86	4.6
15cm Po	onding	88.90	2.090	199.75	12.0
20cm Po	onding	88.95	2.140	341.39	25.5
Max Static F	Ponding ⁽¹⁾	89.00	2.190	514.66	46.9
Top of Stora	ge Node ⁽²⁾	89.10	2.290	514.66	98.4

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve				
CB12	A-19a	Elevation	Depth	Area	Volume	
Note	Notes		(m)	(m ²)	(m ³)	
Invert		85.33	0.000	0.36	0.0	
CBMH	CBMH T/G		3.420	0.36	1.2	
5cm Po	nding	88.80	3.470	3.61	1.3	
10cm Po	onding	88.85	3.520	9.84	1.7	
Max Static I	Ponding ⁽¹⁾	88.89	3.560	16.76	2.2	
Top of Stora	ge Node ⁽²⁾	89.10	3.770	16.76	5.7	

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID		Storage Curve				
CBMH208	A-11	Elevation	Depth	Area	Volume		
Note	es	(m)	(m)	(m ²)	(m ³)		
Inve	ert	86.10	0.000	1.13	0.0		
CBMH	T/G	88.65	2.550	1.13	2.9		
5cm Po	5cm Ponding		2.600	17.62	3.4		
10cm Po	onding	88.75	2.650	55.21	5.2		
15cm Po	onding	88.80	2.700	112.62	9.4		
20cm Po	onding	88.85	2.750	192.72	17.0		
25cm Pc	onding	88.90	2.800	299.60	29.3		
Max Static F	Ponding ⁽¹⁾	88.95	2.850	418.39	47.3		
Top of Stora	ge Node ⁽²⁾	89.00	2.900	418.39	68.2		

⁽¹⁾ Based on lowest high point between CBs

CB ID	STM Area ID		Storage Curve			
CBMH209	A-13	Elevation	Depth	Area	Volume	
Note	es	(m)	(m)	(m ²)	(m ³)	
Inve	ert	86.28	0.000	1.13	0.0	
CBMH	T/G	88.70	2.420	1.13	2.7	
5cm Po	nding	88.75	2.470	26.61	3.4	
10cm Po	onding	88.80	2.520	85.09	6.2	
15cm Pc	onding	88.85	2.570	176.45	12.8	
20cm Po	onding	88.90	2.620	300.69	24.7	
25cm Pc	onding	88.95	2.670	457.83	43.7	
Max Static F	Ponding ⁽¹⁾	88.97	2.690	524.41	53.5	
Top of Stora	ge Node ⁽²⁾	89.05	2.770	524.41	95.4	

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve				
CBMH211	A-10	Elevation	Depth	Area	Volume	
Note	es	(m)	(m)	(m ²)	(m ³)	
Inve	ert	86.29	0.000	1.13	0.0	
CBMH	T/G	88.75	2.460	1.13	2.8	
5cm Po	nding	88.80	2.510	16.09	3.2	
10cm Pc	onding	88.85	2.560	44.54	4.7	
15cm Pc	onding	88.90	2.610	89.36	8.1	
20cm Pc	onding	88.95	2.660	163.46	14.4	
25cm Pc	onding	89.00	2.710	263.21	25.1	
Max Static F	Ponding ⁽¹⁾	89.05	2.760	383.86	41.2	
Top of Stora	ge Node ⁽²⁾	89.10	2.810	383.86	60.4	

⁽¹⁾ Based on lowest high point between CBs

 $^{\scriptscriptstyle (2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve				
CBMH212	A-09	Elevation	Depth	Area	Volume	
Note	es	(m)	(m)	(m ²)	(m ³)	
Inve	ert	86.58	0.000	1.13	0.0	
CBMH	CBMH T/G		2.320	1.13	2.6	
5cm Po	nding	88.95	2.370	26.95	3.3	
10cm Po	onding	89.00	2.420	88.88	6.2	
15cm Po	onding	89.05	2.470	172.41	12.8	
Max Static I	Ponding ⁽¹⁾	89.10	2.520	253.79	23.4	
Top of Stora	ge Node ⁽²⁾	89.25	2.670	253.79	61.5	

⁽¹⁾ Based on lowest high point between CBs

CB ID	STM Area ID		Storage Curve				
CBMH213	A-05	Elevation	Depth	Area	Volume		
Note	es	(m)	(m)	(m ²)	(m ³)		
Inve	ert	86.43	0.000	1.13	0.0		
CBMH	T/G	88.65	2.220	1.13	2.5		
5cm Po	nding	88.70	2.270	16.29	2.9		
10cm Po	onding	88.75	2.320	48.37	4.6		
15cm Po	onding	88.80	2.370	96.04	8.2		
20cm Po	onding	88.85	2.420	163.77	14.7		
25cm Po	onding	88.90	2.470	256.61	25.2		
30cm Po	onding	88.95	2.520	374.41	41.0		
Max Static I	Ponding ⁽¹⁾	88.97	2.540	437.83	49.1		
Top of Stora	ge Node ⁽²⁾	89.00	2.570	437.83	62.2		

⁽¹⁾ Based on lowest high point between CBs

⁽²⁾ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve				
CBMH214	A-03	Elevation	Depth	Area	Volume	
Note	es	(m)	(m)	(m ²)	(m ³)	
Inve	ert	86.58	0.000	1.13	0.0	
CBMH T/G		88.75	2.170	1.13	2.5	
5cm Ponding		88.80	2.220	29.86	3.2	
10cm Po	onding	88.85	2.270	96.78	6.4	
15cm Po	onding	88.90	2.320	201.59	13.9	
20cm Po	onding	88.95	2.370	338.00	27.3	
Max Static F	Ponding ⁽¹⁾	88.97	2.390	409.57	34.8	
Top of Stora	ge Node ⁽²⁾	89.10	2.520	409.57	88.1	

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve			
LD1004	A-19b	Elevation	Depth	Area	Volume
Note	es	(m) (m ²)		(m ²)	(m ³)
Invert		87.24	0.000	0.07	0.0
CBMH	CBMH T/G 88.75 1.5		1.510	0.07	0.1
5cm Po	nding	88.80	1.560	2.34	0.2
Max Static I	Ponding ⁽¹⁾	88.85	1.610	6.23	0.4
Top of Stora	ge Node ⁽²⁾	89.10	1.860	6.23	1.9

⁽¹⁾ Based on lowest high point between CBs

CB ID	STM Area ID	Storage Curve					
LD1005	A-19c	Elevation	Depth	Area	Volume		
Note	es	(m)	(m)	(m ²)	(m ³)		
Inve	Invert		0.000	0.07	0.0		
CBMH	T/G	88.65	1.360	0.07	0.1		
5cm Po	nding	88.70	1.410	5.25	0.2		
Max Static Ponding ⁽¹⁾		88.75	1.460	14.81	0.7		
Top of Storage Node ⁽²⁾		89.00	1.710	14.81	4.4		

⁽¹⁾ Based on lowest high point between CBs

 $^{\scriptscriptstyle (2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve					
LD1006	A-19d	Elevation Depth Area Volu					
Note	es	(m)	(m)	(m ²)	(m ³)		
Invert		87.34	0.000	0.07	0.0		
CBMH	T/G	88.65	1.310	0.07	0.1		
5cm Po	nding	88.70	1.360	3.24	0.2		
Max Static Ponding ⁽¹⁾		88.73	1.390	6.57	0.3		
Top of Storage Node ⁽²⁾		89.00	1.660	6.57	2.1		

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve					
LD1007	A-19e	Elevation	Volume				
Note	es	(m)	(m)	(m ²)	(m ³)		
Inve	Invert		0.000	0.07	0.0		
CBMH	T/G	88.60	1.210	0.07	0.1		
5cm Po	nding	88.65	1.260	5.89	0.2		
Max Static Ponding ⁽¹⁾		88.67	1.280	10.16	0.4		
Top of Storage Node ⁽²⁾		88.95	1.560	10.16	3.2		

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve					
LD1008	A-19f	Elevation	Volume				
Note	es	(m)	(m)	(m ²)	(m ³)		
Inve	Invert		0.000	0.07	0.0		
CBMH	T/G	88.60	1.160	0.07	0.1		
5cm Po	nding	88.65	1.210	3.91	0.2		
Max Static Ponding ⁽¹⁾		88.67	1.230	6.17	0.3		
Top of Storage Node ⁽²⁾		88.95	1.510	6.17	2.0		

⁽¹⁾ Based on lowest high point between CBs

CB ID	STM Area ID	Storage Curve					
LD1009	A-19g	Elevation	Depth	Area	Volume		
Note	Notes		(m)	(m²)	(m ³)		
Invert		87.48	0.000	0.07	0.0		
CBMH	T/G	88.60	1.120	0.07	0.1		
5cm Po	nding	88.65	1.170	2.78	0.1		
Max Static Ponding ⁽¹⁾		88.68	1.200	5.80	0.3		
Top of Storage Node ⁽²⁾		88.95	1.470	5.80	1.8		

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve					
LD1010	A-19h	Elevation	Volume				
Notes		(m)	(m)	(m ²)	(m ³)		
Inve	Invert		0.000	0.07	0.0		
CBMH	CBMH T/G		1.080	0.07	0.1		
Max Static Ponding ⁽¹⁾		88.65	1.130	8.38	0.3		
Top of Storage Node ⁽²⁾		88.95	1.430	8.38	2.8		

⁽¹⁾ Based on lowest high point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID	Storage Curve					
LD1011	A-19i	Elevation Depth Area Volu					
Note	es	(m)	(m)	(m ²)	(m ³)		
Inve	Invert		0.000	0.07	0.0		
CBMH	T/G	88.60	1.000	0.07	0.1		
5cm Po	nding	88.65	1.050	13.26	0.4		
Max Static Ponding ⁽¹⁾		88.66	1.060	18.04	0.6		
Top of Storage Node ⁽²⁾		88.95	1.350	18.04	5.8		

⁽¹⁾ Based on lowest high point between CBs

Storage Curves Underground Storage Chambers / Cistern

CB ID	STM Area ID	Storage Curve				
STORE	-	Elevation	Elevation Depth Area			
Notes		(m)	(m)	(m ²)	(m ³)	
Inve	Invert		0.000	0.00	0.0	
Top of Storm	Top of Storm Chambers ⁽¹⁾		1.140	152.12	86.7	
Offset Above Chambers		87.631	1.141	0.00	86.8	
Top of Storage Node		89.13	2.640	0.00	86.8	

⁽¹⁾ Used 13x MC-3500 underground storage chambers for a total volume of 86.7 m³

CB ID	STM Area ID	Storage Curve					
CB02-STORE	-	Elevation	Depth	Area	Volume		
Notes		(m)	(m)	(m ²)	(m ³)		
Inve	ert	86.90	0.000	0.00	0.0		
Top of Storm Chambers ⁽¹⁾		87.66	0.760	48.08	18.3		
Offset Above Chambers		87.661	0.761	0.00	18.3		
Top of Storage Node		88.95	2.050	0.00	18.3		

 $^{(1)}$ Used 6x SC-740 underground storage chambers for a total volume of 18.3 m 3

CB ID	STM Area ID	Storage Curve					
Cistern	-	Elevation	Volume				
Notes		(m)	(m)	(m ²)	(m ³)		
Inve	ert	86.39	0.000	7.68	0.0		
Top of Cister	n Storage ⁽¹⁾	88.60	2.210	7.68	17.0		
Offset Above Storage		88.601	2.211	0.00	17.0		
Top of Storage Node		89.56	3.170	0.00	17.0		

 $^{(1)}$ Used footprint of cistern (7.67 m²) for a total volume of 15.3 m³

	MH Information		HGL Info	ormation ¹	Clearance from T/G	
Manhole ID	MH Invert Elev. (m)	MH T/G Elev. (m)	100-year (m)	100-year (+20%) (m)	100-year (m)	100-year (+20%) (m)
MH201	83.80	88.82	84.01	84.02	4.81	4.80
MH202	83.99	88.65	84.14	84.15	4.51	4.50
MH202	84.19	88.71	84.33	84.34	4.38	4.37
MH204	84.41	88.92	84.54	84.55	4.38	4.37
MH205	84.54	88.79	84.68	84.69	4.11	4.10
MH205B	84.65	88.97	84.80	84.81	4.17	4.16
MH206	84.72	88.84	84.85	84.86	3.99	3.98
MH207	84.96	89.18	85.07	85.09	4.11	4.09
MH210	86.20	88.78	88.98	89.01	-0.20	-0.23
MH215	84.89	89.08	84.94	84.95	4.14	4.13

⁽¹⁾ HGL information is for a 3-hour Chicago Storm Distribution

88.60

88.60

88.60

88.68

88.65

88.66

LD1009

LD1010

LD1011

0.08

0.05

0.06

87.52

87.56

87.63

0.00

0.00

0.00

Ν

Ν

Ν

0.00

0.00

0.00

87.53

87.57

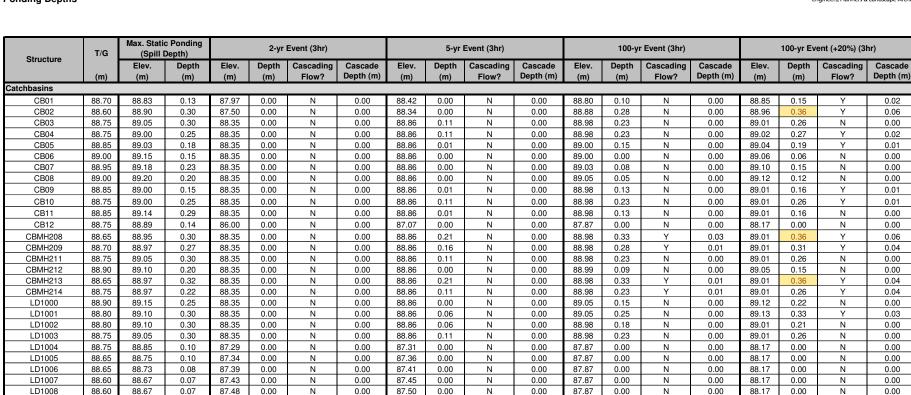
87.65

0.00

0.00

0.00

Ν


Ν

Ν

0.00

0.00

0.00

0.00

0.00

0.00

Ν

Ν

Ν

0.00

0.00

0.00

88.17

88.17

88.17

0.00

0.00

0.00

Ν

Ν

Ν

0.00

0.00

0.00

87.87

87.87

87.87

Trinity Apartments (122179) Design Storm Time Series Data Chicago Design Storms

C25mi	m-4.stm	C2-	3.stm	C5-3	3.stm
Duration	Intensity	Duration	Intensity	Duration	Intensity
min	mm/hr	min	mm/hr	min	mm/hr
0:00	0	0:00	0	0:00	0
0:10	1.51	0:10	2.81	0:10	3.68
0:20	1.75	0:20	3.5	0:20	4.58
0:30	2.07	0:30	4.69	0:30	6.15
0:40	2.58	0:40	7.3	0:40	9.61
0:50	3.46	0:50	18.21	0:50	24.17
1:00	5.39	1:00	76.81	1:00	104.19
1:10	13.44	1:10	24.08	1:10	32.04
1:20	56.67	1:20	12.36	1:20	16.34
1:30	17.77	1:30	8.32	1:30	10.96
1:40	9.12	1:40	6.3	1:40	8.29
1:50	6.14	1:50	5.09	1:50	6.69
2:00	4.65	2:00	4.29	2:00	5.63
2:10	3.76	2:10	3.72	2:10	4.87
2:20	3.17	2:20	3.29	2:20	4.3
2:30	2.74	2:30	2.95	2:30	3.86
2:40	2.43	2:40	2.68	2:40	3.51
2:50	2.18	2:50	2.46	2:50	3.22
3:00	1.98	3:00	2.28	3:00	2.98
3:10	1.81				
3:20	1.68				
3:30	1.56				
3:40	1.47				
3:50	1.38				
4:00	1.31				

Trinity Apartments (122179) Design Storm Time Series Data Chicago Design Storms

C100-3.stm		C100-3+	20%.stm
Duration	Intensity	Duration	Intensity
min	mm/hr	min	mm/hr
0:00	0	0:00	0
0:10	6.05	0:10	6:14
0:20	7.54	0:20	9.05
0:30	10.16	0:30	12.19
0:40	15.97	0:40	19.16
0:50	40.65	0:50	48.78
1:00	178.56	1:00	214.27
1:10	54.05	1:10	64.86
1:20	27.32	1:20	32.78
1:30	18.24	1:30	21.89
1:40	13.74	1:40	16.49
1:50	11.06	1:50	13.27
2:00	9.29	2:00	11.15
2:10	8.02	2:10	9.62
2:20	7.08	2:20	8.5
2:30	6.35	2:30	7.62
2:40	5.76	2:40	6.91
2:50	5.28	2:50	6.34
3:00	4.88	3:00	5.86

Trinity Apartments (122179) Design Storm Time Series Data SCS Design Storms

S2-12	2.stm	S5-1	2.stm	S100-	12.stm
Duration	Intensity	Duration	Intensity	Duration	Intensity
min	mm/hr	min	mm/hr	min	mm/hr
0:00	0.00	0:00	0	0:00	0
0:30	1.27	0:30	1.69	0:30	2.82
1:00	0.59	1:00	0.79	1:00	1.31
1:30	1.10	1:30	1.46	1:30	2.44
2:00	1.10	2:00	1.46	2:00	2.44
2:30	1.44	2:30	1.91	2:30	3.19
3:00	1.27	3:00	1.69	3:00	2.82
3:30	1.69	3:30	2.25	3:30	3.76
4:00	1.69	4:00	2.25	4:00	3.76
4:30	2.29	4:30	3.03	4:30	5.07
5:00	2.88	5:00	3.82	5:00	6.39
5:30	4.57	5:30	6.07	5:30	10.14
6:00	36.24	6:00	48.08	6:00	80.38
6:30	9.23	6:30	12.25	6:30	20.47
7:00	4.06	7:00	5.39	7:00	9.01
7:30	2.71	7:30	3.59	7:30	6.01
8:00	2.37	8:00	3.15	8:00	5.26
8:30	1.86	8:30	2.47	8:30	4.13
9:00	1.95	9:00	2.58	9:00	4.32
9:30	1.27	9:30	1.69	9:30	2.82
10:00	1.02	10:00	1.35	10:00	2.25
10:30	1.44	10:30	1.91	10:30	3.19
11:00	0.93	11:00	1.24	11:00	2.07
11:30	0.85	11:30	1.12	11:30	1.88
12:00	0.85	12:00	1.12	12:00	1.88

TABLE 7A: Post-Development Runoff Coefficient "C" - R-01

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.020	Roof	0.039	0.90	0.90	1.00	1.00
0.039	Soft	0.000	0.20		0.25	

TABLE 7B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-01

0.039 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	40	32.86	3.18	0.782	2.40	5.76
	45	30.24	2.93	0.782	2.14	5.79
2 YEAR	50	28.04	2.71	0.782	1.93	5.80
	55	26.17	2.53	0.782	1.75	5.78
	60	24.56	2.38	0.782	1.60	5.74

TABLE 7C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-01

0.0386867 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	55	35.12	3.40	0.821	2.58	8.51
	60	32.94	3.19	0.821	2.37	8.52
5 YEAR	65	31.04	3.00	0.821	2.18	8.52
	70	29.37	2.84	0.821	2.02	8.49
	75	27.89	2.70	0.821	1.88	8.45

TABLE 7D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-01

0.0386867 =Area (ha) 1.00 = C

				Allowable	Net Flow	
Return	Time	Intensity	Flow	Runoff	to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	90	41.11	4.42	0.936	3.49	18.82
	95	39.43	4.24	0.94	3.31	18.84
100 YEAR	100	37.90	4.08	0.94	3.14	18.84
	105	36.50	3.93	0.94	2.99	18.83
	110	35.20	3.79	0.94	2.85	18.81

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area $\begin{aligned} & \text{Runoff Coefficient Equation} \\ & \text{C}_{\text{s}} = (\text{A}_{\text{hard}} \times 0.9 + \text{A}_{\text{soft}} \times 0.2)/\text{A}_{\text{Tot}} \\ & \text{C}_{\text{100}} = (\text{A}_{\text{hard}} \times 1.0 + \text{A}_{\text{soft}} \times 0.25)/\text{A}_{\text{Tot}} \end{aligned}$

TABLE 7E: Storage Provided - R-01

Area R-01: Storage Table						
		Storage				
Head	Area*	Volume				
(m)	(m ²)	(m ³)				
0.000	0.063	0.00				
0.025	11.669	0.15				
0.050	43.465	0.84				
0.075	95.450	2.57				
0.100	167.624	5.86				
0.125	259.988	11.21				
0.150	377.522	19.17				

Table 7F: Roof Drain Flows					
Ro	of Drains				
Roof Area	386.867	m²			
Qty	1				
Туре		Accutrol RD-100-A-ADJ			
Setting	1/4 Open				
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.71	L/s (ea)			
Design Flow 4" of head	0.79	L/s (ea)			
Design Flow 5" of head	0.87	L/s (ea)			
Design Flow 6" of head	0.95	L/s (ea)			

Stage Storage Curve

Table 7G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.782	0.100	5.80
5 Year	R-01	0.821	0.112	8.52
100 Year		0.936	0.149	18.84

TABLE 8A: Post-Development Runoff Coefficient "C" - R-02

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.037	Roof	0.037	0.90	0.90	1.00	1.00
0.037	Soft	0.000	0.20		0.25	

TABLE 8B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-02

0.037 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	35	36.06	3.33	0.781	2.55	5.35
	40	32.86	3.03	0.781	2.25	5.41
2 YEAR	45	30.24	2.79	0.781	2.01	5.43
	50	28.04	2.59	0.781	1.81	5.42
	55	26.17	2.42	0.781	1.63	5.40

TABLE 8C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-02

0.0368963 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.48	0.821	2.65	7.96
	55	35.12	3.24	0.821	2.42	7.99
5 YEAR	60	32.94	3.04	0.821	2.22	7.99
	65	31.04	2.87	0.821	2.04	7.97
	70	29.37	2.71	0.821	1.89	7.94

TABLE 8D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-02

0.0368963 =Area (ha) 1.00 = C

				Allowable	Net Flow	
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Runoff (L/s)	to be Stored (L/s)	Storage Req'd (m ³)
	80	44.99	4.61	0.936	3.68	17.66
	85	42.95	4.41	0.94	3.47	17.70
100 YEAR	90	41.11	4.22	0.94	3.28	17.72
	95	39.43	4.04	0.94	3.11	17.72
	100	37.90	3.89	0.94	2.95	17.71

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 8E: Storage Provided - R-02

Area R-02: Storage Table									
		Storage							
Head	Area*	Volume							
(m)	(m ²)	(m ³)							
0.000	0.063	0.00							
0.025	11.104	0.14							
0.050	41.163	0.79							
0.075	90.240	2.44							
0.100	158.335	5.54							
0.125	245.447	10.59							
0.150	359.147	18.15							

Table 8F: Roof Drain Flows							
Ro	of Drains						
Roof Area	368.963	m²					
Qty	1						
Type Setting							
Design Head	0.05-0.15	m					
Design Flow 1" of head	0.32	L/s (ea)					
Design Flow 2" of head	0.63	L/s (ea)					
Design Flow 3" of head	0.71	L/s (ea)					
Design Flow 4" of head	0.79	L/s (ea)					
Design Flow 5" of head	0.87	L/s (ea)					
Design Flow 6" of head	0.95	L/s (ea)					

Stage Storage Curve

Table 8G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.781	0.099	5.43
5 Year	R-02	0.821	0.112	7.99
100 Year		0.936	0.149	17.72

TABLE 9A: Post-Development Runoff Coefficient "C" - R-03

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.037	Roof	0.037	0.90	0.90	1.00	1.00
0.037	Soft	0.000	0.20		0.25	

TABLE 9B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-03

0.037 =Area (ha)

0.90 = C

				Allowable	Net Flow	
Return	Time	Intensity	Flow	Runoff	to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	35	36.06	3.31	0.780	2.53	5.31
	40	32.86	3.02	0.780	2.24	5.37
2 YEAR	45	30.24	2.78	0.780	2.00	5.39
	50	28.04	2.57	0.780	1.79	5.38
	55	26.17	2.40	0.780	1.62	5.35

TABLE 9C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-03

0.0366892 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.46	0.818	2.64	7.92
	55	35.12	3.22	0.818	2.41	7.94
5 YEAR	60	32.94	3.02	0.818	2.21	7.94
	65	31.04	2.85	0.818	2.03	7.92
	70	29.37	2.70	0.818	1.88	7.89

TABLE 9D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-03

0.0366892 =Area (ha) 1 00 = C

1.00	=0					
.			-	Allowable	Net Flow	Storago
Return	Time	Intensity	Flow	Runoff	to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	85	42.95	4.38	0.933	3.45	17.59
	90	41.11	4.19	0.93	3.26	17.60
100 YEAR	95	39.43	4.02	0.93	3.09	17.61
	100	37.90	3.87	0.93	2.93	17.60
	105	36.50	3.72	0.93	2.79	17.57

Equations:

Flow Equation $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 9E: Storage Provided - R-03

Area R-03: Storage Table									
		Storage							
Head	Area*	Volume							
(m)	(m ²)	(m ³)							
0.000	0.063	0.00							
0.025	11.206	0.14							
0.050	41.572	0.80							
0.075	91.161	2.46							
0.100	159.972	5.60							
0.125	248.006	10.70							
0.150	359.001	18.29							

Table 9F: Roof Drain Flows						
Ro	of Drains					
Roof Area	366.892	m²				
Qty	1					
Type Setting	Accutrol RD- 1/4 Open	100-A-ADJ				
Design Head	0.05-0.15	m				
Design Flow 1" of head	0.32	L/s (ea)				
Design Flow 2" of head	0.63	L/s (ea)				
Design Flow 3" of head	0.71	L/s (ea)				
Design Flow 4" of head	0.79	L/s (ea)				
Design Flow 5" of head	0.87	L/s (ea)				
Design Flow 6" of head	0.95	L/s (ea)				

Stage Storage Curve

Table 9G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.78	0.099	5.39
5 Year	R-03	0.818	0.111	7.94
100 Year		0.933	0.148	17.61

TABLE 10A: Post-Development Runoff Coefficient "C" - R-04

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.005	Roof	0.025	0.90	0.90	1.00	1.00
0.025	Soft	0.000	0.20		0.25	

TABLE 10B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-04

0.025 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	25	45.17	2.85	0.759	2.09	3.14
	30	40.04	2.53	0.759	1.77	3.18
2 YEAR	35	36.06	2.27	0.759	1.52	3.18
	40	32.86	2.07	0.759	1.31	3.15
	45	30.24	1.91	0.759	1.15	3.10

TABLE 10C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-04

0.0252125 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	30	53.93	3.40	0.805	2.60	4.67
	35	48.52	3.06	0.805	2.26	4.74
5 YEAR	40	44.18	2.79	0.805	1.98	4.76
	45	40.63	2.56	0.805	1.76	4.75
	50	37.65	2.38	0.805	1.57	4.71

TABLE 10D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-04

0.0252125 =Area (ha) 1.00 = C

1.00	-0					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	55	59.62	4.18	0.914	3.27	10.77
	60	55.89	3.92	0.91	3.00	10.81
100 YEAR	65	52.65	3.69	0.91	2.78	10.83
	70	49.79	3.49	0.91	2.58	10.82
	75	47.26	3.31	0.91	2.40	10.79

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 10E: Storage Provided - R-04

Area R-04: Storage Table								
		Storage						
Head	Area*	Volume						
(m)	(m ²)	(m ³)						
0.000	0.063	0.00						
0.025	7.849	0.10						
0.050	28.627	0.55						
0.075	62.397	1.69						
0.100	109.157	3.84						
0.125	168.909	7.31						
0.150	244.134	12.48						

Table 10F: Roof Drain Flows						
Ro	of Drains					
Roof Area	252.125	m²				
Qty	1					
Type Setting	Accutrol RD- 1/4 Open	100-A-ADJ				
Design Head	0.05-0.15	m				
Design Flow 1" of head	0.32	L/s (ea)				
Design Flow 2" of head	0.63	L/s (ea)				
Design Flow 3" of head	0.71	L/s (ea)				
Design Flow 4" of head	0.79	L/s (ea)				
Design Flow 5" of head	0.87	L/s (ea)				
Design Flow 6" of head	0.95	L/s (ea)				

Stage Storage Curve

Table 10G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.759	0.092	3.18
5 Year	R-04	0.805	0.107	4.76
100 Year		0.914	0.142	10.83

TABLE 11A: Post-Development Runoff Coefficient "C" - R-05

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.015	Roof	0.015	0.90	0.90	1.00	1.00
0.015	Soft	0.000	0.20		0.25	

TABLE 11B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-05

0.015 =Area (ha)

0.90 = C

				Allowable	Net Flow	
Return	Time	Intensity	Flow	Runoff	to be Stored	
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	10	76.81	2.96	0.734	2.22	1.33
	15	61.77	2.38	0.734	1.64	1.48
2 YEAR	20	52.03	2.00	0.734	1.27	1.52
	25	45.17	1.74	0.734	1.00	1.51
	30	40.04	1.54	0.734	0.81	1.45

TABLE 11D: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-05

0.0153883 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	15	83.56	3.22	0.784	2.43	2.19
	20	70.25	2.70	0.784	1.92	2.30
5 YEAR	25	60.90	2.34	0.784	1.56	2.34
	30	53.93	2.08	0.784	1.29	2.33
	35	48.52	1.87	0.784	1.08	2.28

TABLE 11E: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-05

0.0153883 =Area (ha) 1.00 = C

	-			Allowable	Net Flow	
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Runoff (L/s)	to be Stored (L/s)	Storage Req'd (m ³)
	30	91.87	3.93	0.889	3.04	5.47
	35	82.58	3.53	0.89	2.64	5.55
100 YEAR	40	75.15	3.21	0.89	2.33	5.58
	45	69.05	2.95	0.89	2.06	5.58
	50	63.95	2.74	0.89	1.85	5.54

Equations:

Flow Equation $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 11F: Storage Provided - R-05

Area R-05: Storage Table						
		Storage				
Head	Area*	Volume				
(m)	(m ²)	(m ³)				
0.000	0.063	0.00				
0.025	4.889	0.06				
0.050	17.389	0.34				
0.075	37.561	1.03				
0.100	65.406	2.31				
0.125	100.923	4.39				
0.150	148.769	7.51				

Table 11G: Roof Drain Fl				
Ro	of Drains			
Roof Area	153.883	m²		
Qty	1			
Type Accutrol RD-100-A-ADJ				
Setting	1/4 Open			
Design Head	0.05-0.15	m		
Design Flow 1" of head	0.32	L/s (ea)		
Design Flow 2" of head	0.63	L/s (ea)		
Design Flow 3" of head	0.71	L/s (ea)		
Design Flow 4" of head	0.79	L/s (ea)		
Design Flow 5" of head	0.87	L/s (ea)		
Design Flow 6" of head	0.95	L/s (ea)		

Stage Storage Curve

Table 11G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.734	0.084	1.52
5 Year	R-05	0.784	0.100	2.34
100 Year		0.889	0.134	5.58

TABLE 12A: Post-Development Runoff Coefficient "C" - R-06

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.004	Roof	0.004	0.90	0.90	1.00	1.00
0.004	Soft	0.000	0.20		0.25	5

TABLE 12B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-06

0.004 =Area (ha)

0.90 = C

				Allowable	Net Flow	
Return	Time	Intensity	Flow	Runoff	to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	-5	632.75	6.44	0.632	5.81	-1.74
	0	167.22	1.70	0.632	1.07	0.00
2 YEAR	5	103.57	1.05	0.632	0.42	0.13
	10	76.81	0.78	0.632	0.15	0.09
	15	61.77	0.63	0.632	0.00	0.00

TABLE 12C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-06

0.0040704 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	0	230.48	2.35	0.684	1.66	0.00
	5	141.18	1.44	0.684	0.75	0.23
5 YEAR	10	104.19	1.06	0.684	0.38	0.23
	15	83.56	0.85	0.684	0.17	0.15
	20	70.25	0.72	0.684	0.03	0.04

TABLE 12D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-06

0.0040704 =Area (ha) 1.00 = C

1.00	= 0					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	5	242.70	2.75	0.805	1.94	0.58
	10	178.56	2.02	0.81	1.22	0.73
100 YEAR	15	142.89	1.62	0.81	0.81	0.73
	20	119.95	1.36	0.81	0.55	0.66
	25	103.85	1.18	0.81	0.37	0.56

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 12E: Storage Provided - R-06

Area R-06: Storage Table						
		Storage				
Head	Area*	Volume				
(m)	(m²)	(m ³)				
0.000	0.063	0.00				
0.025	1.641	0.02				
0.050	4.726	0.10				
0.075	9.316	0.28				
0.100	15.413	0.59				
0.125	23.015	1.07				
0.150	32.123	1.76				

Table 12F: Roof Drain Flows					
Root	Drains				
Roof Area	40.704	m²			
Qty	1				
Type Setting	Accutrol RD-100-A-ADJ 1/4 Open				
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.71	L/s (ea)			
Design Flow 4" of head	0.79	L/s (ea)			
Design Flow 5" of head	0.87	L/s (ea)			
Design Flow 6" of head	0.95	L/s (ea)			

Stage Storage Curve

Table 12G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.632	0.054	0.13
5 Year	R-06	0.684	0.068	0.23
100 Year		0.805	0.107	0.73

TABLE 13A: Post-Development Runoff Coefficient "C" - R-07

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.020	Roof	0.039	0.90	0.90	1.00	1.00
0.039	Soft	0.000	0.20		0.25	

TABLE 13B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-07

0.039 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	40	32.86	3.18	0.781	2.40	5.76
	45	30.24	2.93	0.781	2.15	5.80
2 YEAR	50	28.04	2.72	0.781	1.93	5.80
	55	26.17	2.53	0.781	1.75	5.79
	60	24.56	2.38	0.781	1.60	5.75

TABLE 13C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-07

0.0387013 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.65	0.821	2.82	8.47
	55	35.12	3.40	0.821	2.58	8.51
5 YEAR	60	32.94	3.19	0.821	2.37	8.53
	65	31.04	3.01	0.821	2.18	8.52
	70	29.37	2.84	0.821	2.02	8.50

TABLE 13D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-07

0.0387013 =Area (ha) 1.00 = C

1.00	= 0					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	90	41.11	4.42	0.936	3.49	18.83
	95	39.43	4.24	0.94	3.31	18.85
100 YEAR	100	37.90	4.08	0.94	3.14	18.85
	105	36.50	3.93	0.94	2.99	18.84
	110	35.20	3.79	0.94	2.85	18.82

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area $\begin{array}{l} \text{Runoff Coefficient Equation} \\ \text{C}_{5} = (\text{A}_{\text{hard}} \ x \ 0.9 + \text{A}_{\text{soft}} \ x \ 0.2)/\text{A}_{\text{Tot}} \\ \text{C}_{100} = (\text{A}_{\text{hard}} \ x \ 1.0 + \text{A}_{\text{soft}} \ x \ 0.25)/\text{A}_{\text{Tot}} \end{array}$

TABLE 13E: Storage Provided - R-07

Area R-07: Storage Table						
		Storage				
Head	Area*	Volume				
(m)	(m²)	(m ³)				
0.000	0.063	0.00				
0.025	11.735	0.15				
0.050	43.572	0.84				
0.075	95.572	2.58				
0.100	167.736	5.87				
0.125	260.064	11.22				
0.150	377.552	19.19				

Table 13F: Roof Drain Flows					
Ro	of Drains				
Roof Area	387.013	m²			
Qty	1				
Туре	Accutrol RD-	100-A-ADJ			
Setting	1/4 Open				
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.71	L/s (ea)			
Design Flow 4" of head	0.79	L/s (ea)			
Design Flow 5" of head	0.87	L/s (ea)			
Design Flow 6" of head	0.95	L/s (ea)			

Stage Storage Curve

Table 13G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.781	0.099	5.80
5 Year	R-07	0.821	0.112	8.53
100 Year		0.936	0.149	18.85

TABLE 14A: Post-Development Runoff Coefficient "C" - R-08

_			5 Year Event		100 Year Event	
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.027	Roof	0.037	0.90	0.90	1.00	1.00
0.037	Soft	0.000	0.20		0.25	

TABLE 14B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-08

0.037 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	35	36.06	3.33	0.781	2.55	5.35
	40	32.86	3.03	0.781	2.25	5.41
2 YEAR	45	30.24	2.79	0.781	2.01	5.43
	50	28.04	2.59	0.781	1.81	5.42
	55	26.17	2.42	0.781	1.64	5.40

TABLE 14C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-08

0.0369013 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.48	0.821	2.66	7.97
	55	35.12	3.24	0.821	2.42	7.99
5 YEAR	60	32.94	3.04	0.821	2.22	7.99
	65	31.04	2.87	0.821	2.05	7.98
	70	29.37	2.71	0.821	1.89	7.94

TABLE 14D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-08

0.0369013 =Area (ha) 1.00 = C

1.00	= 0					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	80	44.99	4.62	0.936	3.68	17.66
	85	42.95	4.41	0.94	3.47	17.70
100 YEAR	90	41.11	4.22	0.94	3.28	17.72
	95	39.43	4.05	0.94	3.11	17.72
	100	37.90	3.89	0.94	2.95	17.71

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 14E: Storage Provided - R-08

Area R-08: Storage Table						
		Storage				
Head	Area*	Volume				
(m)	(m ²)	(m ³)				
0.000	0.063	0.00				
0.025	11.077	0.14				
0.050	41.053	0.79				
0.075	89.992	2.43				
0.100	157.893	5.53				
0.125	244.756	10.56				
0.150	359.349	18.11				

Table 13F: Roof Drain Flows					
Ro	of Drains				
Roof Area	369.013	m²			
Qty	1				
Type Setting	Accutrol RD- 1/4 Open	100-A-ADJ			
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.71	L/s (ea)			
Design Flow 4" of head	0.79	L/s (ea)			
Design Flow 5" of head	0.87	L/s (ea)			
Design Flow 6" of head	0.95	L/s (ea)			

Table 13G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.781	0.099	5.43
5 Year	R-08	0.821	0.112	7.99
100 Year		0.936	0.149	17.72

TABLE 15A: Post-Development Runoff Coefficient "C" - R-09

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.040	Roof	0.042	0.90	0.90	1.00	1.00
0.042	Soft	0.000	0.20		0.25	

TABLE 15B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-09

0.042 =Area (ha)

0.90 = C

				Allowable	Net Flow	
Return	Time	Intensity	Flow	Runoff	to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	35	36.06	3.78	0.924	2.85	5.99
	40	32.86	3.44	0.924	2.52	6.04
2 YEAR	45	30.24	3.17	0.924	2.24	6.06
	50	28.04	2.94	0.924	2.01	6.04
	55	26.17	2.74	0.924	1.82	6.00

TABLE 15C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-09

0.0418618 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	45	40.63	4.26	1.005	3.25	8.78
	50	37.65	3.94	1.005	2.94	8.82
5 YEAR	55	35.12	3.68	1.005	2.67	8.82
	60	32.94	3.45	1.005	2.45	8.80
	65	31.04	3.25	1.005	2.25	8.76

TABLE 15D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-09

0.0418618 =Area (ha) 1.00 = C

1.00	-					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	70	49.79	5.79	1.229	4.57	19.17
	75	47.26	5.50	1.23	4.27	19.22
100 YEAR	80	44.99	5.24	1.23	4.01	19.23
	85	42.95	5.00	1.23	3.77	19.23
	90	41.11	4.78	1.23	3.56	19.20

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 14E: Storage Provided - R-08

Area R-09: Storage Table									
		Storage							
Head	Area*	Volume							
(m)	(m ²)	(m ³)							
0.000	0.063	0.00							
0.025	12.609	0.16							
0.050	46.959	0.90							
0.075	103.114	2.78							
0.100	181.073	6.33							
0.125	280.836	12.11							
0.150	405.786	20.69							

Table 14F: Roof Drain Flows										
Roc	Roof Drains									
Roof Area	418.618	m²								
Qty	1									
Туре	Accutrol RD-	-100-A-ADJ								
Setting	1/2 Open									
Design Head	0.05-0.15	m								
Design Flow 1" of head	0.32	L/s (ea)								
Design Flow 2" of head	0.63	L/s (ea)								
Design Flow 3" of head	0.79	L/s (ea)								
Design Flow 4" of head	0.95	L/s (ea)								
Design Flow 5" of head	1.10	L/s (ea)								
Design Flow 6" of head	1.26	L/s (ea)								

Stage Storage Curve

Table 14G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.924	0.098	6.06
5 Year	R-09	1.005	0.111	8.82
100 Year		1.229	0.146	19.23

TABLE 16A: Post-Development Runoff Coefficient "C" - R-10

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.040	Roof	0.042	0.90	0.90	1.00	1.00
0.042	Soft	0.000	0.20		0.25	

TABLE 16B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-10

0.042 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	35	36.06	3.77	0.924	2.85	5.98
	40	32.86	3.44	0.924	2.51	6.03
2 YEAR	45	30.24	3.16	0.924	2.24	6.05
	50	28.04	2.93	0.924	2.01	6.03
	55	26.17	2.74	0.924	1.81	5.99

TABLE 16C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-10

0.0418155 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	45	40.63	4.25	1.005	3.25	8.76
	50	37.65	3.94	1.005	2.93	8.80
5 YEAR	55	35.12	3.67	1.005	2.67	8.81
	60	32.94	3.45	1.005	2.44	8.79
	65	31.04	3.25	1.005	2.24	8.75

TABLE 16D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-10

0.0418155 =Area (ha) 1.00 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	70	49.79	5.79	1.222	4.57	19.18
	75	47.26	5.49	1.22	4.27	19.22
100 YEAR	80	44.99	5.23	1.22	4.01	19.24
	85	42.95	4.99	1.22	3.77	19.23
	90	41.11	4.78	1.22	3.56	19.21

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 16E: Storage Provided - R-10

Area R-10: Storage Table							
		Storage					
Head	Area*	Volume					
(m)	(m ²)	(m ³)					
0.000	0.063	0.00					
0.025	12.608	0.16					
0.050	46.956	0.90					
0.075	103.106	2.78					
0.100	181.060	6.33					
0.125	280.815	12.10					
0.150	405.764	20.69					

Table 16F: Roof Drain Flows					
Roc	of Drains				
Roof Area	418.155	m²			
Qty	1				
Туре	De Accutrol RD-100-A-ADJ				
Setting	1/2 Open				
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.79	L/s (ea)			
Design Flow 4" of head	0.95	L/s (ea)			
Design Flow 5" of head	1.10	L/s (ea)			
Design Flow 6" of head	1.26	L/s (ea)			

Stage Storage Curve

Table 16G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.924	0.098	6.05
5 Year	R-16	1.005	0.111	8.81
100 Year		1.222	0.146	19.24

TABLE 16A: Post-Development Runoff Coefficient "C" - R-11

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.027	Roof	0.037	0.90	0.90	1.00	1.00
0.037	Soft	0.000	0.20		0.25	

TABLE 16B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-11

0.037 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	35	36.06	3.33	0.781	2.55	5.36
	40	32.86	3.04	0.781	2.26	5.42
2 YEAR	45	30.24	2.80	0.781	2.01	5.44
	50	28.04	2.59	0.781	1.81	5.43
	55	26.17	2.42	0.781	1.64	5.41

TABLE 16C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-11

0.0369527 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.48	0.821	2.66	7.98
	55	35.12	3.25	0.821	2.43	8.01
5 YEAR	60	32.94	3.05	0.821	2.22	8.01
	65	31.04	2.87	0.821	2.05	7.99
	70	29.37	2.72	0.821	1.89	7.96

TABLE 16D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-11

0.0369527 =Area (ha) 1.00 = C

1.00	= 0					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	85	42.95	4.41	0.933	3.48	17.75
	90	41.11	4.22	0.93	3.29	17.77
100 YEAR	95	39.43	4.05	0.93	3.12	17.77
	100	37.90	3.89	0.93	2.96	17.76
	105	36.50	3.75	0.93	2.82	17.74

Equations:

Flow Equation $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 16E: Storage Provided - R-11

Area R-11: Storage Table							
		Storage					
Head	Area*	Volume					
(m)	(m ²)	(m ³)					
0.000	0.063	0.00					
0.025	11.210	0.14					
0.050	41.586	0.80					
0.075	91.190	2.46					
0.100	160.023	5.60					
0.125	248.085	10.70					
0.150	359.312	18.29					

Table 16F: Roof Drain Flows					
Ro	of Drains				
Roof Area	369.527	m²			
Qty	1				
Type Setting	Accutrol RD- 1/4 Open	100-A-ADJ			
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.71	L/s (ea)			
Design Flow 4" of head	0.79	L/s (ea)			
Design Flow 5" of head	0.87	L/s (ea)			
Design Flow 6" of head	0.95	L/s (ea)			

Stage Storage Curve

Table 16G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.781	0.099	5.44
5 Year	R-11	0.821	0.112	8.01
100 Year		0.933	0.148	17.77

TABLE 17A: Post-Development Runoff Coefficient "C" - R-12

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.020	Roof	0.039	0.90	0.90	1.00	1.00
0.039	Soft	0.000	0.20		0.25	

TABLE 17B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-12

0.039 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	40	32.86	3.18	0.781	2.40	5.77
	45	30.24	2.93	0.781	2.15	5.80
2 YEAR	50	28.04	2.72	0.781	1.94	5.81
	55	26.17	2.54	0.781	1.75	5.79
	60	24.56	2.38	0.781	1.60	5.75

TABLE 17C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-12

0.0387233 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.65	0.821	2.83	8.48
	55	35.12	3.40	0.821	2.58	8.52
5 YEAR	60	32.94	3.19	0.821	2.37	8.53
	65	31.04	3.01	0.821	2.19	8.53
	70	29.37	2.85	0.821	2.02	8.50

TABLE 17D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-12

0.0387233 =Area (ha) 1.00 = C

1.00	= 0					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	90	41.11	4.43	0.936	3.49	18.84
	95	39.43	4.25	0.94	3.31	18.86
100 YEAR	100	37.90	4.08	0.94	3.14	18.87
	105	36.50	3.93	0.94	2.99	18.86
	110	35.20	3.79	0.94	2.85	18.83

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 17E: Storage Provided - R-12

Area R-12: Storage Table						
		Storage				
Head	Area*	Volume				
(m)	(m ²)	(m ³)				
0.000	0.063	0.00				
0.025	11.735	0.15				
0.050	43.570	0.84				
0.075	95.568	2.58				
0.100	167.730	5.87				
0.125	260.054	11.22				
0.150	377.537	19.19				

Table 17F: Roof Drain Flows					
Roc	of Drains				
Roof Area	387.233	m²			
Qty	1				
Type Setting	Accutrol RD- 1/4 Open	100-A-ADJ			
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.71	L/s (ea)			
Design Flow 4" of head	0.79	L/s (ea)			
Design Flow 5" of head	0.87	L/s (ea)			
Design Flow 6" of head	0.95	L/s (ea)			

Stage Storage Curve

Table 17G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.781	0.099	5.81
5 Year	R-12	0.821	0.112	8.53
100 Year		0.936	0.149	18.87

TABLE 18A: Post-Development Runoff Coefficient "C" - R-13

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.020	Roof	0.039	0.90	0.90	1.00	1.00
0.039	Soft	0.000	0.20		0.25	

TABLE 18B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-13

0.039 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	40	32.86	3.19	0.781	2.40	5.77
	45	30.24	2.93	0.781	2.15	5.80
2 YEAR	50	28.04	2.72	0.781	1.94	5.81
	55	26.17	2.54	0.781	1.76	5.79
	60	24.56	2.38	0.781	1.60	5.76

TABLE 18C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-13

0.038739 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.65	0.821	2.83	8.49
	55	35.12	3.40	0.821	2.58	8.52
5 YEAR	60	32.94	3.19	0.821	2.37	8.54
	65	31.04	3.01	0.821	2.19	8.53
	70	29.37	2.85	0.821	2.03	8.51

TABLE 18D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-13

0.038739 =Area (ha) 1.00 = C

	-			Allowable	Net Flow	
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Runoff (L/s)	to be Stored (L/s)	Storage Req'd (m ³)
	90	41.11	4.43	0.936	3.49	18.85
	95	39.43	4.25	0.94	3.31	18.87
100 YEAR	100	37.90	4.08	0.94	3.15	18.88
	105	36.50	3.93	0.94	2.99	18.87
	110	35.20	3.79	0.94	2.86	18.84

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 18E: Storage Provided - R-13

Area R-13: Storage Table						
		Storage				
Head	Area*	Volume				
(m)	(m ²)	(m ³)				
0.000	0.063	0.00				
0.025	11.746	0.15				
0.050	43.612	0.84				
0.075	95.661	2.58				
0.100	167.894	5.87				
0.125	260.309	11.23				
0.150	377.904	19.21				

Table 18F: Roof Drain Flows					
Roo	of Drains				
Roof Area	387.39	m²			
Qty	1				
Type Setting	Accutrol RD-1 1/4 Open	100-A-ADJ			
Design Head	0.05-0.15	m			
Design Flow 1" of head	0.32	L/s (ea)			
Design Flow 2" of head	0.63	L/s (ea)			
Design Flow 3" of head	0.71	L/s (ea)			
Design Flow 4" of head	0.79	L/s (ea)			
Design Flow 5" of head	0.87	L/s (ea)			
Design Flow 6" of head	0.95	L/s (ea)			

Stage Storage Curve

Table 18G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.781	0.099	5.81
5 Year	R-13	0.821	0.112	8.54
100 Year		0.936	0.149	18.88

TABLE 19A: Post-Development Runoff Coefficient "C" - R-14

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.027	Roof	0.037	0.90	0.90	1.00	1.00
0.037	Soft	0.000	0.20		0.25	

TABLE 19B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-14

0.037 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	35	36.06	3.32	0.784	2.54	5.33
	40	32.86	3.03	0.784	2.24	5.38
2 YEAR	45	30.24	2.78	0.784	2.00	5.40
	50	28.04	2.58	0.784	1.80	5.39
	55	26.17	2.41	0.784	1.63	5.36

TABLE 19C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-14

0.0367971 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	50	37.65	3.47	0.827	2.64	7.92
	55	35.12	3.23	0.827	2.41	7.94
5 YEAR	60	32.94	3.03	0.827	2.21	7.94
	65	31.04	2.86	0.827	2.03	7.92
	70	29.37	2.70	0.827	1.88	7.88

TABLE 19D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-14

0.0367971 =Area (ha) 1.00 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	80	44.99	4.60	0.950	3.65	17.53
	85	42.95	4.39	0.95	3.44	17.56
100 YEAR	90	41.11	4.21	0.95	3.26	17.58
	95	39.43	4.03	0.95	3.08	17.58
	100	37.90	3.88	0.95	2.93	17.56

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 19E: Storage Provided - R-14

Area R-14: Storage Table									
		Storage							
Head	Area*	Volume							
(m)	(m ²)	(m ³)							
0.000	0.063	0.00							
0.025	10.664	0.13							
0.050	39.476	0.76							
0.075	86.499	2.34							
0.100	151.733	5.31							
0.125	235.177	10.15							
0.150	358.893	17.58							

Table 19F: Roof Drain Flows							
Ro	of Drains						
Roof Area	367.971	m²					
Qty	1						
Туре	Accutrol RD-	100-A-ADJ					
Setting	1/4 Open						
Design Head	0.05-0.15	m					
Design Flow 1" of head	0.32	L/s (ea)					
Design Flow 2" of head	0.63	L/s (ea)					
Design Flow 3" of head	0.71	L/s (ea)					
Design Flow 4" of head	0.79	L/s (ea)					
Design Flow 5" of head	0.87	L/s (ea)					
Design Flow 6" of head	0.95	L/s (ea)					

Stage Storage Curve

Table 19G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.784	0.100	5.40
5 Year	R-14	0.827	0.114	7.94
100 Year		0.950	0.150	17.58

TABLE 20A: Post-Development Runoff Coefficient "C" - R-15

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	C_{avg}	"C" + 25%	*C _{avg}
Total	Hard	0.000	0.90		1.00	
0.040	Roof	0.042	0.90	0.90	1.00	1.00
0.042	Soft	0.000	0.20		0.25	

TABLE 20B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-15

0.042 =Area (ha)

0.90 = C

Return	Time	Intensity	Flow	Allowable Runoff	Net Flow to be Stored	Storage
Period	(min)	(mm/hr)	Q (L/s)	(L/s)	(L/s)	Req'd (m ³)
	35	36.06	3.79	0.924	2.86	6.01
	40	32.86	3.45	0.924	2.53	6.06
2 YEAR	45	30.24	3.17	0.924	2.25	6.08
	50	28.04	2.94	0.924	2.02	6.06
	55	26.17	2.75	0.924	1.82	6.02

TABLE 20C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-15

0.0419571 =Area (ha)

0.90 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	45	40.63	4.27	1.005	3.26	8.80
	50	37.65	3.95	1.005	2.95	8.84
5 YEAR	55	35.12	3.69	1.005	2.68	8.85
	60	32.94	3.46	1.005	2.45	8.83
	65	31.04	3.26	1.005	2.25	8.79

TABLE 20D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - R-15

0.0419571 =Area (ha) 1.00 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	75	47.26	5.51	1.222	4.29	19.30
	80	44.99	5.25	1.22	4.03	19.32
100 YEAR	85	42.95	5.01	1.22	3.79	19.32
	90	41.11	4.80	1.22	3.57	19.30
	95	39.43	4.60	1.22	3.38	19.25

Equations: Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient I is the rainfall intensity, City of Ottawa IDF A is the total drainage area

TABLE 20E: Storage Provided - R-15

Area R-13: Storage Table									
		Storage							
Head	Area*	Volume							
(m)	(m ²)	(m ³)							
0.000	0.063	0.00							
0.025	12.484	0.16							
0.050	46.543	0.89							
0.075	102.240	2.75							
0.100	179.574	6.28							
0.125	278.546	12.00							
0.150	406.505	20.57							

Table 20F: Roof Drain Flows Roof Drains				
Qty	1			
Туре	Accutrol RD-	Accutrol RD-100-A-ADJ		
Setting	1/2 Open			
Design Head	0.05-0.15	m		
Design Flow 1" of head	0.32	L/s (ea)		
Design Flow 2" of head	0.63	L/s (ea)		
Design Flow 3" of head	0.79	L/s (ea)		
Design Flow 4" of head	0.95	L/s (ea)		
Design Flow 5" of head	1.10	L/s (ea)		
Design Flow 6" of head	1.26	L/s (ea)		

Stage Storage Curve

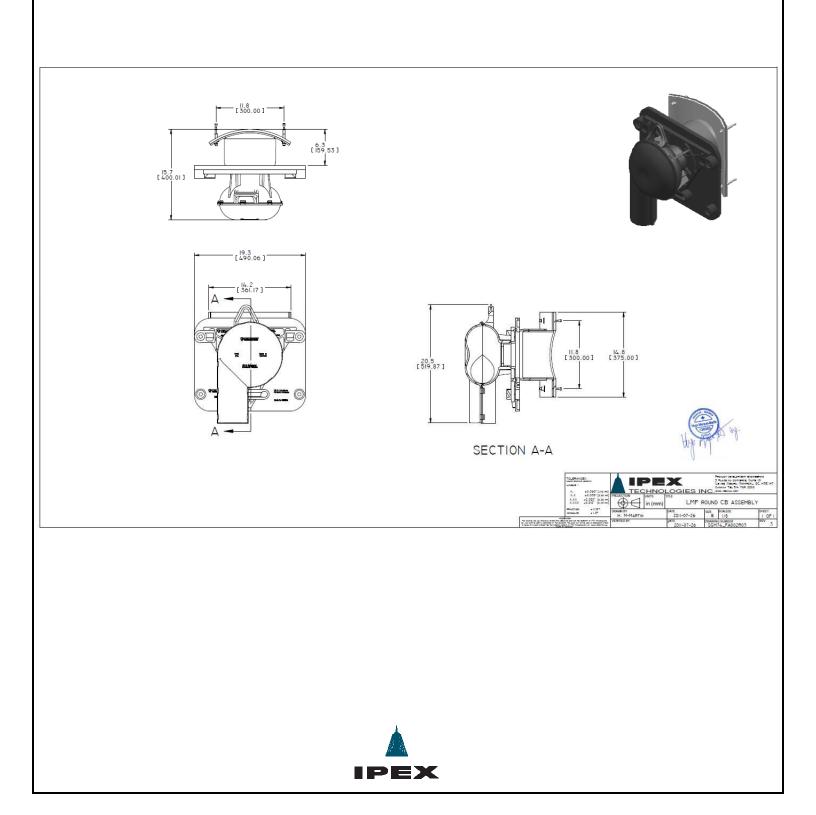
Table 18G: Total Roof Storage

		Flow	Head	Required
Design Event	Roof Drain ID	(L/S)	m	Volume
2 Year		0.924	0.098	6.08
5 Year	R-15	1.005	0.111	8.85
100 Year		1.222	0.146	19.32

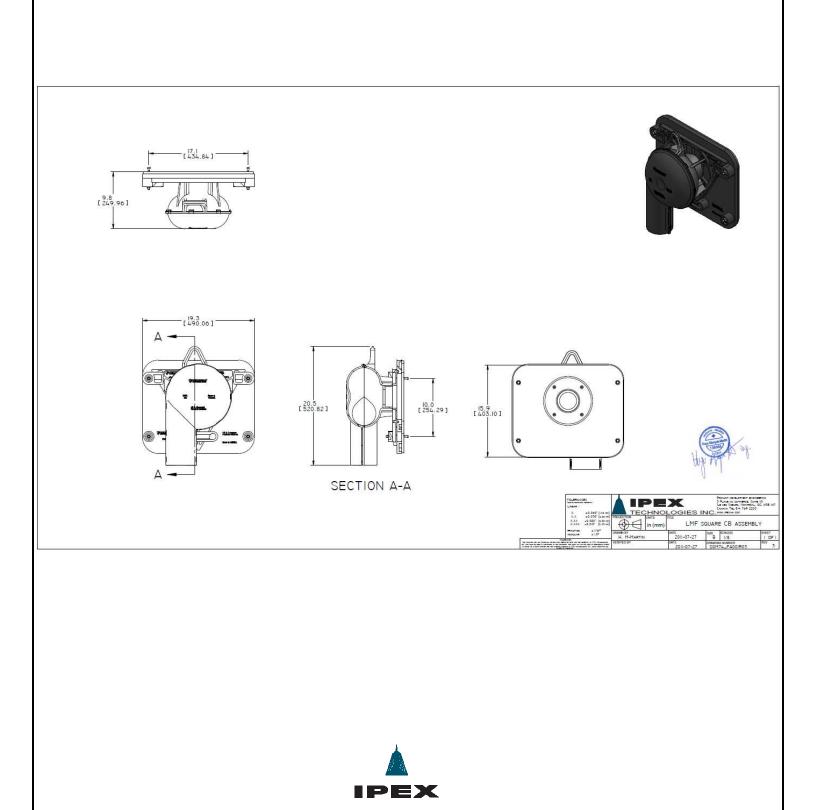
TEMPEST Product Submittal Package R2

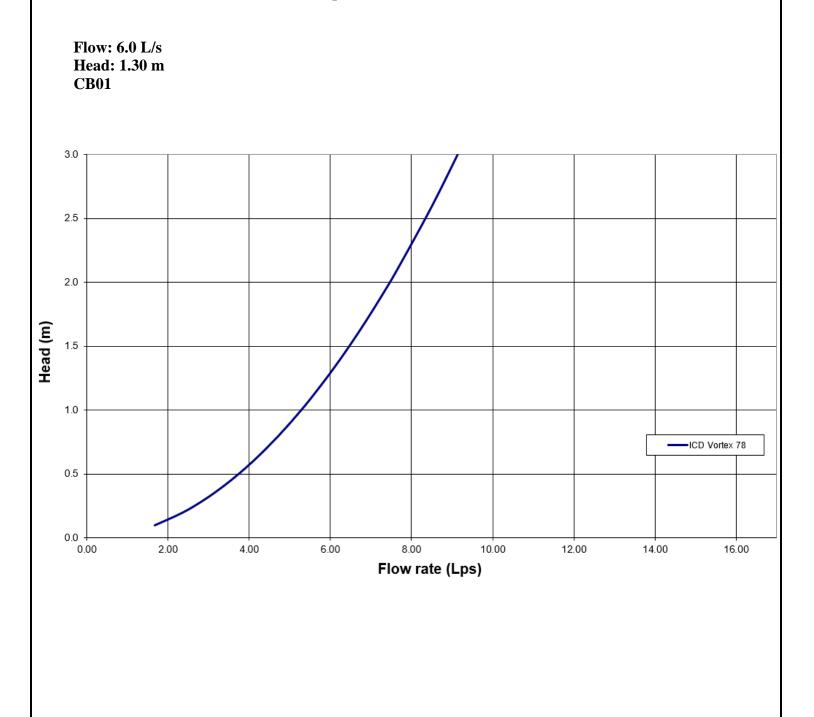
Date: September 13, 2023

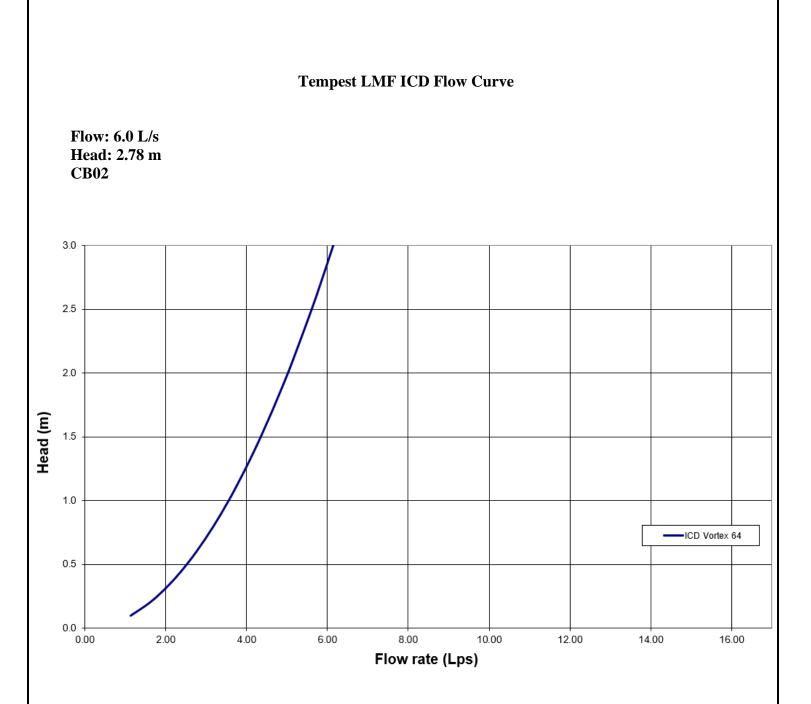
<u>Customer</u>: Novatech

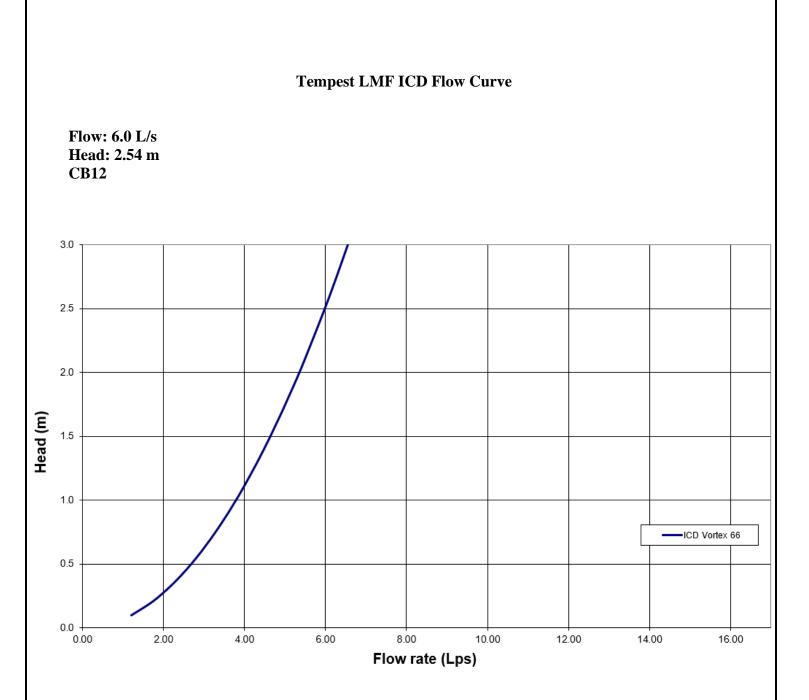

<u>Contact</u>: Melanie Schroeder

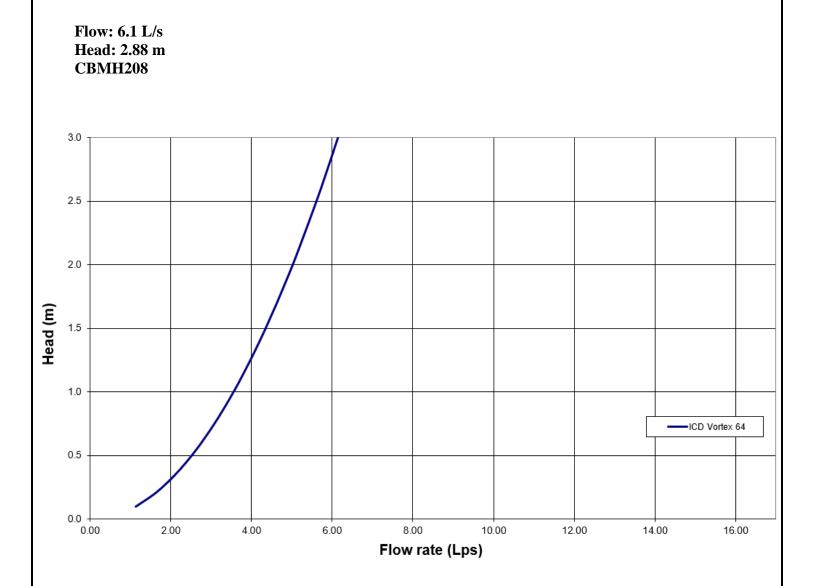
Location: Ottawa

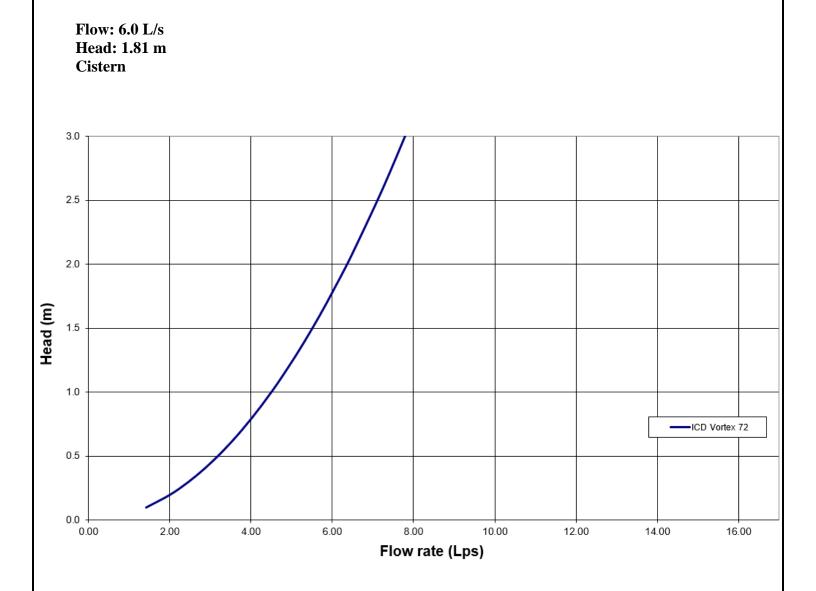

Project Name: 4200 Innes Rd – Trinity Apartments


Tempest LMF ICD Rd Shop Drawing


<u>Tempest LMF ICD Sq</u> Shop Drawing


Tempest LMF ICD Flow Curve

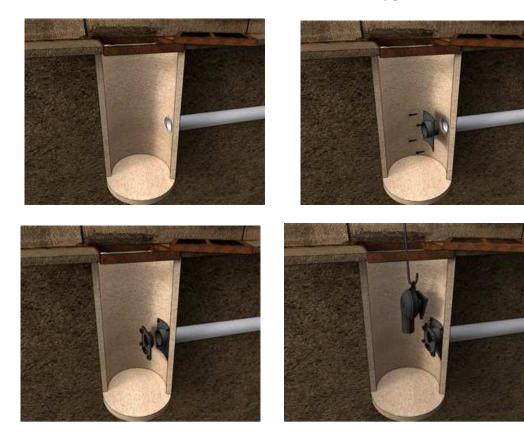






Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.



Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX <u>Online Solvent</u> <u>Cement Training Course</u>.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

CDS Average Annual Efficiency For TSS Removal & Total Annual Volume Treated

 Area =
 1.89
 ha

 Impervious:
 81
 %

 CDS Model:
 PMSU2020_5

 Flowrate:
 31
 l/s

 IDF Data:
 Ottawa

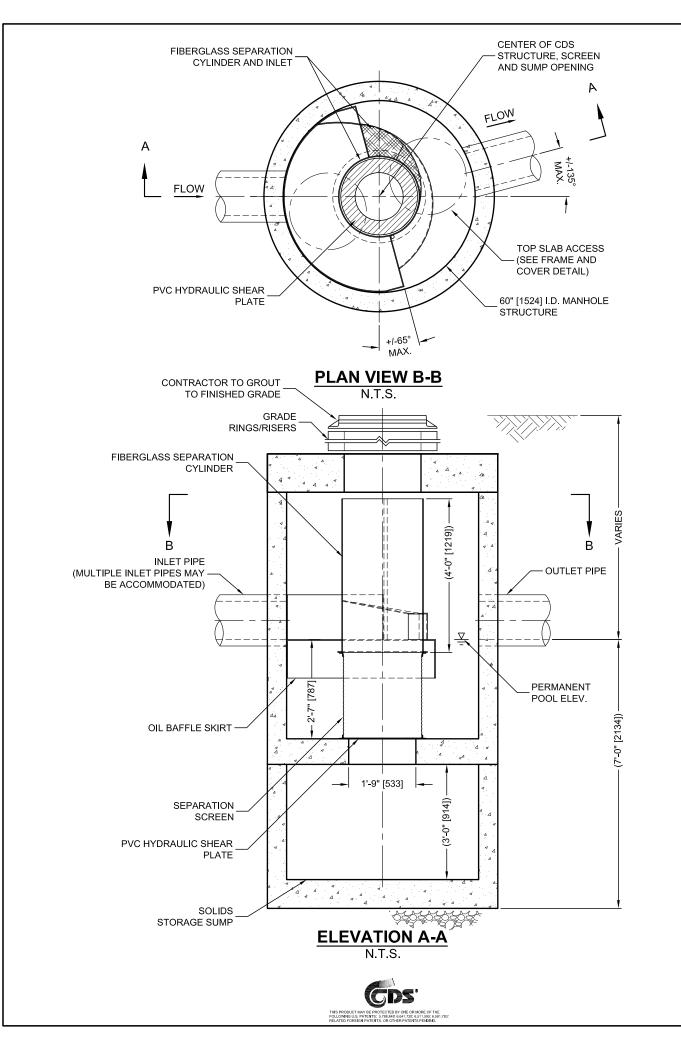
 PSD:
 FINE

Engineer: NOVATECH

Contact: Melanie Schroeder Date: 9/May/23

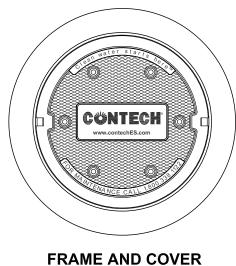
Project: Quinn's Pointe Stage 2A Location: 4200 Innes Rd., Ottawa OGS ID: CDS

		Peak Flow	TSS Percentage Captured	Treated Flow Volume	Total Flow Volume	Annual Exceedance Probability	System Flow	CDS Flow	By-Pass Flow	Volume Percentage Treated
month / yr	Yr	l/s	%	litres	litres	%	l/s	l/s	l/s	%
1-M	0.08	5.35	95.68	10036	10036	100.00	5.35	5.35	0.00	100.00
2-M	0.17	8.74	93.64	16478	16478	99.75	8.74	8.74	0.00	100.00
3-M	0.25	11.57	91.94	21924	21924	98.17	11.57	11.57	0.00	100.00
4-M	0.33	14.14	90.38	26942	26942	95.04	14.14	14.14	0.00	100.00
5-M	0.42	18.45	87.73	35615	35615	90.91	18.45	18.45	0.00	100.00
6-M	0.50	22.76	85.08	44287	44287	86.47	22.76	22.76	0.00	100.00
7-M	0.58	23.89	84.38	46654	46654	82.01	23.89	23.89	0.00	100.00
8-M	0.67	25.03	83.67	49020	49020	77.67	25.03	25.03	0.00	100.00
9-M	0.75	26.16	82.96	51387	51387	73.64	26.16	26.16	0.00	100.00
10-M	0.83	28.25	81.59	55775	55870	69.90	28.25	28.25	0.00	99.85
11-M	0.92	30.33	80.21	60164	60352	66.40	30.33	30.33	0.00	99.71
1-Yr	1	32.42	78.84	64552	64835	63.21	32.42	31.15	1.27	99.56
2-Yr	2	35.60	76.00	70064	71894	39.35	35.60	31.15	4.45	97.46
5-Yr	5	39.20	72.57	75528	80081	18.13	39.20	31.15	8.05	94.31
10-Yr	10	43.10	68.81	80664	89210	9.52	43.10	31.15	11.95	90.42
25-Yr	25	48.60	63.74	86901	102538	3.92	48.60	31.15	17.45	84.75
50-Yr	50	54.80	58.53	92673	117923	1.98	54.80	31.15	23.65	78.59
100-Yr	100	62.20	52.94	98467	137316	1.00	62.20	31.15	31.05	71.71
A			al Efficienc	y [%]:	86.4	Ave. Ann.		- [0/].		99.6


Notes:

1) CDS Efficiency based on testing conducted at the University of Central Florida

2) CDS design flowrate and scaling based on standard manufacturer model & product specificiations



CDS PMSU2020-5-C DESIGN NOTES

THE STANDARD CDS PMSU2020-5-C CONFIGURATION IS SHOWN. ALTERNATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS.

CONFIGURATION DESCRIPTION

GRATED INLET ONLY (NO INLET PIPE)	
GRATED INLET WITH INLET PIPE OR PIPES	
CURB INLET ONLY (NO INLET PIPE)	
CURB INLET WITH INLET PIPE OR PIPES	
CUSTOMIZABLE SUMP DEPTH AVAILABLE	
ANTI-FLOTATION DESIGN AVAILABLE UPON REQUEST	

(DIAMETER VARIES) N.T.S.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- MAINTENANCE CLEANING.

INSTALLATION NOTES

- SPECIFIED BY ENGINEER OF RECORD.
- в. (LIFTING CLUTCHES PROVIDED).
- CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE. C.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- Ε. SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

CDS PMSU2020-5-C **INLINE CDS** STANDARD DETAIL

CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS

CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE

4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET HS20 (AASHTO M 306) LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING

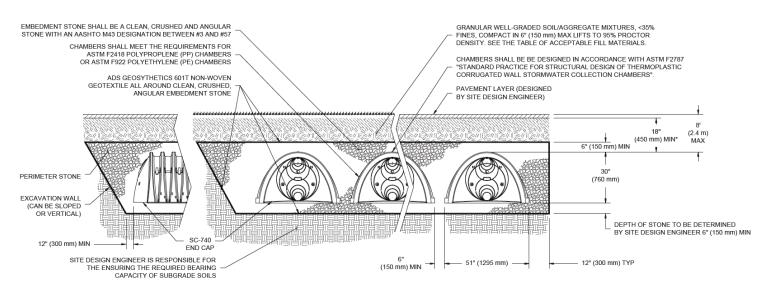
3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED

	SITE S A REQ		ECIFIC REMEN	<u>1T:</u>	<u>s</u>
STRUCTURE ID					
WATER QUALITY	FLOW RAT	E ((CFS OR L/s)		*
PEAK FLOW RATE (CFS OR L/s) *					*
RETURN PERIOD OF PEAK FLOW (YRS) *					
SCREEN APERTURE (2400 OR 4700)					*
			,		
PIPE DATA:	I.E.	ſ	MATERIAL	D	AMETER
INLET PIPE 1	*		*		*
INLET PIPE 2	*		*		*
OUTLET PIPE	*		*		*
RIM ELEVATION					*
	DALLAGT		MIDTU		
ANTI-FLOTATION	BALLAST		WIDTH	_	HEIGHT
			*		*
NOTES/SPECIAL	REQUIREM	EN	TS:		
* PER ENGINEER	OF RECOF	D			

User Inputs

SC-740

Chamber Model:


Results

System Volume and Bed Size

Outlet Control Structure:	No		
Project Name:	Trinity Apts - CB02	Installed Storage Volume:	18.27 cubic meters.
Engineer:	Melanie Schroeder	Storage Volume Per Chamber:	1.30 cubic meters.
Project Location:	Ontario	Number Of Chambers Required:	6
-		Number Of End Caps Required:	6
Measurement Type:	Metric	Chamber Rows:	3
Required Storage Volume:	14.16 cubic meters.	Maximum Length:	6.64 m.
Stone Porosity:	40%	Maximum Width:	4.81 m.
Stone Foundation Depth:	153 mm.		
Stone Above Chambers:	153 mm.	Approx. Bed Size Required:	31.85 square me- ters.
Average Cover Over Chambers:	458 mm.	System Compor	hents
Design Constraint Dimensions:	(6.10 m. x 6.10 m.)		
		Amount Of Stone Required:	27 cubic meters
		Volume Of Excavation (Not Including Fill):	g 34 cubic meters
		Total Non-woven Geotextile Require	d: 106 square meters
		Woven Geotextile Required (excludir Isolator Row):	1g 14 square meters

Woven Geotextile Required (Isolator 9 square meters Row):

Impervious Liner Required:	0 square meters
----------------------------	-----------------

MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24 (600 mm).

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

TRINITY APTS - CB02 OTTAWA, ON, CANADA

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2. COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

REQUIREMENTS FOR HANDLING AND INSTALLATION: 7

- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2").
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION. a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

- STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2.
- 3 CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2"). 7.
- 8 THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

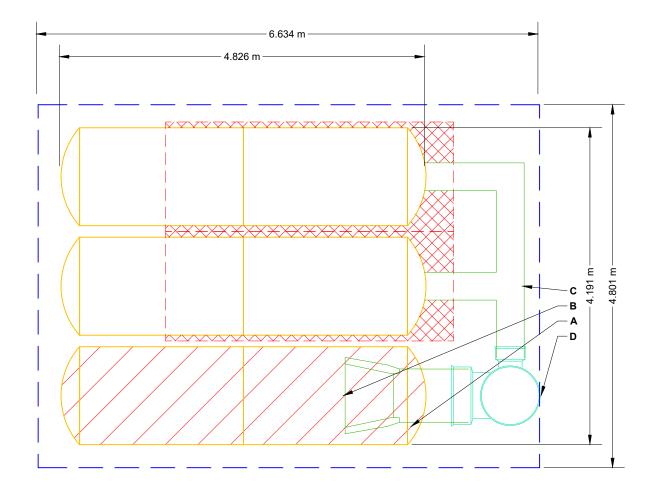
NOTES FOR CONSTRUCTION EQUIPMENT

- 1.
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".


STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

-						
	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS:				
6		MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	3.353	PART TYPE	ITEM ON	
6	STORMTECH SC-740 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	1.524		LAYOUT	600 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC740ECE
152	STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):		PREFABRICATED EZ END CAP		BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS
<u>152</u> 40	STONE BELOW (mm)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	1.372	FLAMP	В	INSTALL FLAMP ON 600 mm ACCESS PIPE / PART#: SC74024RAMP
40		TOP OF STONE:	1.067	MANIFOLD	С	300 mm x 300 mm TOP MANIFOLD, ADS N-12
18.3	(PERIMETER STONE INCLUDED)	TOP OF SC-740 CHAMBER:	0.01/	INTLOPLAST (INLET W/ ISO	D	750 mm DIAMETER (610 mm SUMP MIN)
10.5	(COVER STONE INCLUDED)	300 mm x 300 mm TOP MANIFOLD INVERT:		PLUS ROW)		
31.8	(BASE STONE INCLUDED) SYSTEM AREA (m [°])	600 mm ISOLATOR ROW PLUS INVERT: BOTTOM OF SC-740 CHAMBER:	0.155			
22.9	SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000	5		

PLACE MINIMUM 3.810 m OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

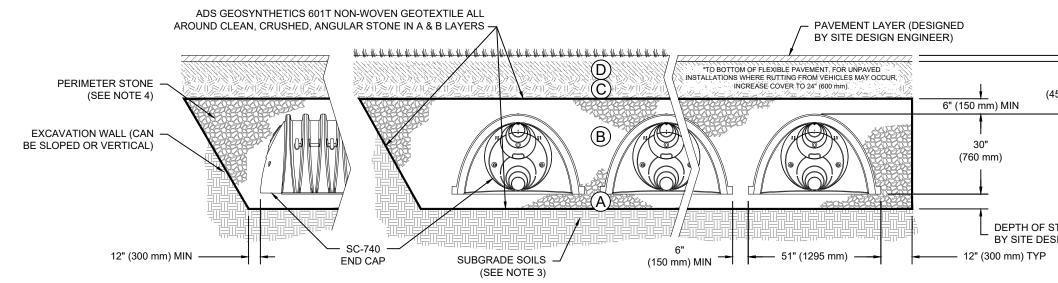
MOTES
 MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COMPONENTS IN THE FIELD.
 THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQU
 THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DETERMINING
 THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OF PROVIDED.
 MOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE

- BED LIMITS

^INVERT A		E OF CHAMBER MAX FLOW					FIMATE
CEZ / TYP OF ALL 600 mm	3 mm		N			∢	THE UL
0			CBO	AC	MS	D: N	N. IT IS '
	318 mm	130 L/s IN	0	ANA	DRAWN: MS	CHECKED: N/A	UCTIO
			TRINITY APTS - CB02	OTTAWA, ON, CANADA	DR/	В	CONSTR
			₹A	WA, 0			OR TO (
			NIT	DTTA			NG PRIC
			TRI			:#	DRAWI
					ш	PROJECT #:	W THIS
					DATE:	PRC	- REVIE
							R SHALI
						z	NGINEE
						DESCRIPTION	SIGN E
						SCR	SITE DE
						ö	E. THE
							NTATIV
		-				CHK	EPRESE
					_	o ≥	JECT RI
						DRW	ER PRO
						DATE	OR OTH
		-					INEER
			StormTech®	Chamber System		888-892-2694 WWW.STORMTECH.COM	OVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN EN
ND COUPLE ADDITIONAL PIPE TO	O STANDAR	D MANIFOLD	4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473		$SCALE = 1 \cdot 50$		THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE
UIREMENTS ARE MET. E DESIGN ENGINEER IS RESPO	NSIBLE FOF	R					THIS DF
OR DECREASED ONCE THIS INF	ORMATION	IS		SHE		~	
GE VOLUME CAN BE ACHIEVED	ON SITE.		2	Ο	F	6	

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

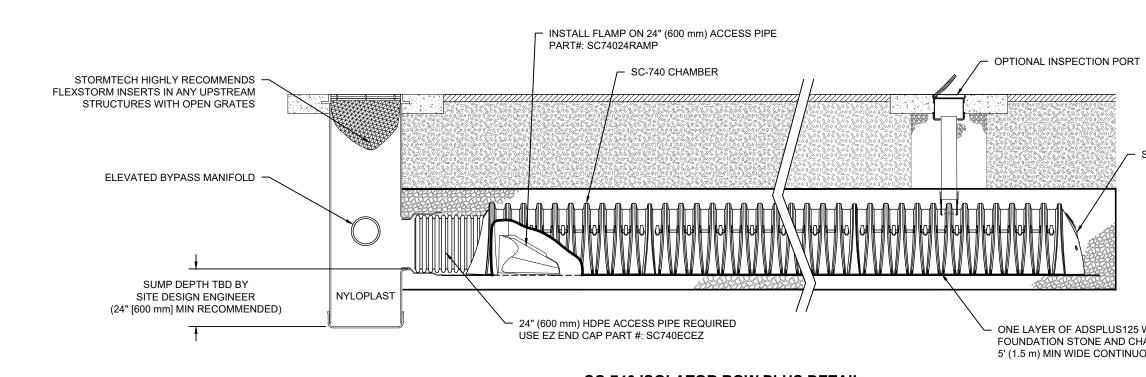
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPA
D	FINAL FILL : FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPAR INSTALL
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMBE 6" (150 mm) WELL GRA PROCES VEHICLE W
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE CO


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (A

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR COMPACTION REQUIREMENTS.


4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT TH

NOTES:

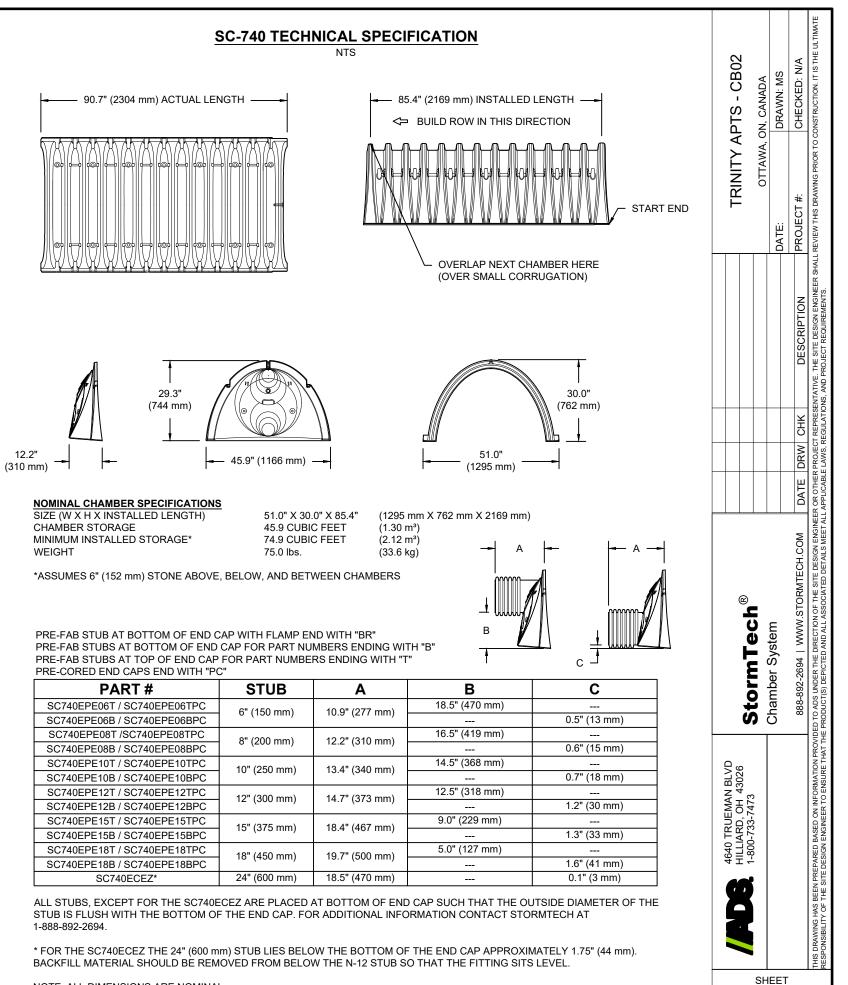
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

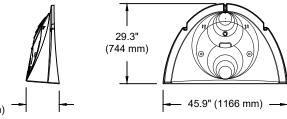
	TIMATE
PACTION / DENSITY REQUIREMENT	CB02 DA MS D: N/A D: N/A
RE PER SITE DESIGN ENGINEER'S PLANS. PAVED	INITY APTS - CB02 OTTAWA, ON, CANADA DRAWN: MS CHECKED: N/A
LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.	Y AP' WA, ON, D D C C
MPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN n) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR ESSED AGGREGATE MATERIALS. ROLLER GROSS WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).	TECH.COM DATE TRINITY APTS - CB02 MTECH.COM DATE OTTAWA, ON, CANADA MTECH.COM DATE DRAWN: MS
NO COMPACTION REQUIRED.	GEER SHAL
COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}	RMTECH.COM DATE DRW CHK DESCRIPTION
ASHTO M43) STONE".	DESCI
SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR	
HE SITE DESIGN ENGINEER'S DISCRETION.	CHK
	DRW
	DATE
<u>+</u>	M Neiner R
♦ 8' 18" (2.4 m) 450 mm) MIN* MAX) RMTECH.COM
	- Syst
	StormTech® Chamber System 888-892-2694 www.stor
STONE TO BE DETERMINED SIGN ENGINEER 6" (150 mm) MIN	
	-VD 26
	4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 3-7473
	4640 TRUEMAN HILLIARD, OH 1-800-733-7473
	464(HILL 1-80 1-80
	ACTION AS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF T
	SHEET
	3 OF 6

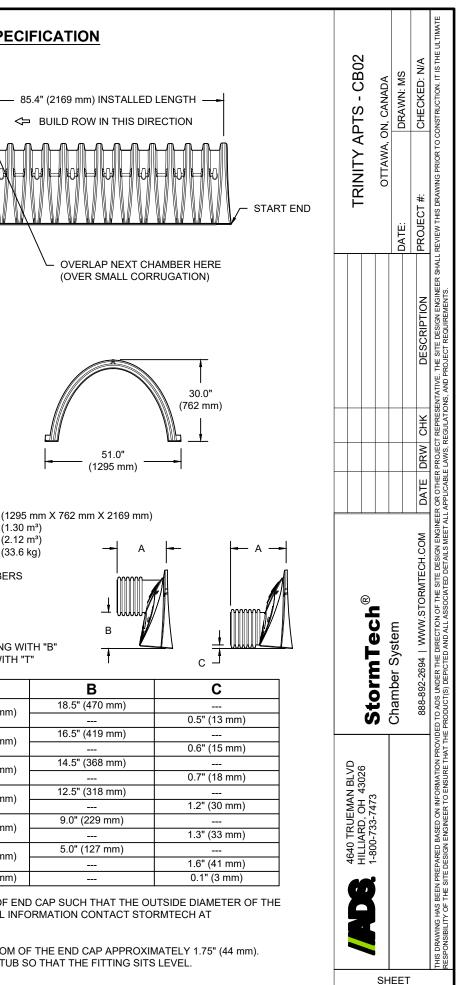
SC-740 ISOLATOR ROW PLUS DETAIL

NTS

INSPECTION & MAINTENANCE

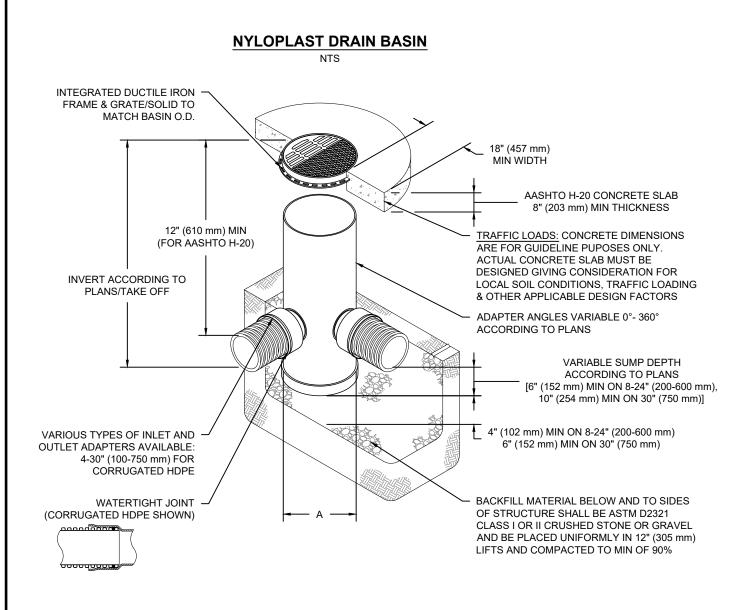

INSPECT ISOLATOR ROW PLUS FOR SEDIMENT STEP 1)


- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
- ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.


NOTES

- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

	CB02		DA	SW	ED: N/A	N. IT IS THE ULTIMATE
	APTS -		OTTAWA, ON, CANADA	DRAWN: MS	CHECKED: N/A	O CONSTRUCTIC
SC-740 END CAP	TRINITY APTS - CB02		OTTAWA	DATE:	PROJECT #:	ALL REVIEW THIS DRAWING PRIOR T
					DESCRIPTION	/E. THE SITE DESIGN ENGINEER SH D PROJECT REQUIREMENTS.
WOVEN GEOTEXTILE BETWEEN IAMBERS OUS FABRIC WITHOUT SEAMS				_	ž	PRESENTATIV
					DRW CHK	ROJECT REI LAWS. REGU
					DATE	OR OTHER P
	(StormTech®		Champer System	888-892-2694 WWW.STORMTECH.COM	OVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENC THE PRODUCT(S) DEPICITED AND ALL ASSOCIATED DETAILS MEE
	4640 TRUEMAN BLVD	_				THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER TO CONSTRUCTION. IT IS THE ULTIMATE REPONDING THE SITE DESIGN ENGINEER TO ENGINEER
	2	1		EET)F	6	_


5 OF 6

SIZE (W X H X INSTALLED LENGTH)
CHAMBER STORAGE
MINIMUM INSTALLED STORAGE*
WEIGHT

PART #	STUB	Α			
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)			
SC740EPE06B / SC740EPE06BPC	0 (130 mm)	10.9 (277 1111)			
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)			
SC740EPE08B / SC740EPE08BPC	8 (200 mm)	12.2 (310 1111)			
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)			
SC740EPE10B / SC740EPE10BPC		13.4 (340 1111)			
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14.7" (373 mm)			
SC740EPE12B / SC740EPE12BPC	12 (300 mm)	14.7 (373 1111)			
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18.4" (467 mm)			
SC740EPE15B / SC740EPE15BPC	15 (37511111)	10.4 (407 1111)			
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)			
SC740EPE18B / SC740EPE18BPC		13.7 (300 1111)			
SC740ECEZ*	24" (600 mm)	18.5" (470 mm)			

1-888-892-2694.

NOTE: ALL DIMENSIONS ARE NOMINAL

NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(300 mm)		AASHTO H-10	H-20	AASHTO H-20
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(375 mm)		AASHTO H-10	H-20	AASHTO H-20
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(450 mm)		AASHTO H-10	H-20	AASHTO H-20
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(600 mm)		AASHTO H-10	H-20	AASHTO H-20
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(750 mm)		AASHTO H-20	H-20	AASHTO H-20

9 14640 TRUEMAN BLVD TRINITY APTS - CB02 1-800-733-7473 1-800-733-7473 TRINITY APTS - CB02 1-800-733-7473 0TAWA 0TAWA 1-800-733-7473 1-800-733-7473 OTAWA 1-800-733-7473 0TAWA OTAWA 1-900-733 0TAWA OTAWA 1-900-733 0TAWA OTAWA 1-900-733 0TAWA OTAWA 1-900-733 0TAWA OTAWA 1-900-743 0TAWA OTAWA 1-900-743 0TAWA OTAWA <		-			_	-			
SHEET									ίσος στο
SHEET	6	c		NVDA13ct®					
EET	С							OTTAWA, O	N, CANADA
-)F					_		DATE:	DRAWN: MS
	6			770-932-2443 WWW.NYLOPLAST-US.COM	DATE	RW CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
			THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVI. RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE IE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL	ER OR OTHER PRC	DJECT REPRESENTATIV WS, REGULATIONS, AN	/E. THE SITE DESIGN ENGINEER SHAL D PROJECT REQUIREMENTS.	L REVIEW THIS DRAWING PRIOR TO C	DINSTRUCTION. IT IS THE ULTIMATE

StormTech[®] SC-740 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

Nominal Chamber Specifications (not to scale)

Size (L x W x H) 90.7" (2304 mm) 85.4" x 51" x 30" ACTUAL LENGTH 2,170 mm x 1,295 mm x 762 mm 24" (600 mm) DIAMETER MAX. **Chamber Storage** 45.9 ft³ (1.30 m³) 29.3" (744 mm) Min. Installed Storage* 74.9 ft³ (2.12 m³) 12.2" (310 mm) 45.9" (1166 mm) Weight 85.4" (2169 mm) 74.0 lbs (33.6 kg) **INSTALLED LENGTH** Shipping 30.0" (762 mm) 30 chambers/pallet 60 end caps/pallet 51 0' 12 pallets/truck (1295 mm) *Assumes 6" (150 mm) stone above. below and between chambers and 40% stone porosity. EMBEDMENT STONE SHALL BE A CLEAN, CRUSHED AND ANGULAR STONE WITH AN AASHTO M43 DESIGNATION BETWEEN #3 AND #57 GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES, COMPACT IN 6" (150 mm) MAX LIFTS TO 95% PROCTOR DENSITY. SEE THE TABLE OF ACCEPTABLE FILL MATERIALS. CHAMBERS SHALL MEET THE REQUIREMENTS FOR ASTM F2418 POLYPROPLENE (PP) CHAMBERS OR ASTM F2922 POLYETHYLENE (PE) CHAMBERS CHAMBERS SHALL BE BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". ADS GEOSYTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND CLEAN, CRUSHED ANGULAR EMBEDMENT STONE PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER (2.4 m) MAX (450 m 6" (150 m PERIMETER STONE 30" (760 mm) EXCAVATION WALI (CAN BE SLOPEI OR VERTICAL DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 6" (150 mm) MIN SC-740 END CA 12" (300 mm) MIN SITE DESIGN ENGINEER IS RESPONSIBLE FOR THE ENSURING THE REQUIRED BEARING 51" (1295 mm) 12" (300 mm) TYP (150 mm) MIN CAPACITY OF SUBGRADE SOILS *MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR. INCREASE COVER TO 24" (600 mm)

StormTech SC-740 Specifications

Cumulative Storage Volumes Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under Chambers.

Depth of Water in System Inches (mm)	Cumul Cham Storage	ber	Total System Cumulative Storage ft³ (m³)
42 (1067)	45	.90 (1.300)	74.90 (2.121)
41 (1041)	T	.90 (1.300)	73.77 (2.089)
40 (1016)	I 45	.90 (1.300)	72.64 (2.057)
39 (991)	Stone	90 (1.300)	71.52 (2.025)
38 (965)		.90 (1.300)	70.39 (1.993)
37 (940)	45	.90 (1.300)	69.26 (1.961)
36 (914)	45	.90 (1.300)	68.14 (1.929)
35 (889)	45	.85 (1.298)	66.98 (1.897)
34 (864)	45	.69 (1.294)	65.75 (1.862)
33 (838)	45	.41 (1.286)	64.46 (1.825)
32 (813)	44	.81 (1.269)	62.97 (1.783)
31 (787)	44	.01 (1.246)	61.36 (1.737)
30 (762)	43	.06 (1.219)	59.66 (1.689)
29 (737)	41	.98 (1.189)	57.89 (1.639)
28 (711)	40	.80 (1.155)	56.05 (1.587)
27 (686)	39	.54 (1.120)	54.17 (1.534)
26 (660)	38	.18 (1.081)	52.23 (1.479)
25 (635)	36	.74 (1.040)	50.23 (1.422)
24 (610)	35.	22 (0.977)	48.19 (1.365)
23 (584)	33.	64 (0.953)	46.11 (1.306)
22 (559)	31	.99 (0.906)	44.00 (1.246)
21 (533)	30.	29 (0.858)	1.85 (1.185)
20 (508)	28.	54 (0.808)	39.67 (1.123)
19 (483)	26	.74 (0.757)	37.47 (1.061)
18 (457)	24	.89 (0.705)	35.23 (0.997)
17 (432)	23	.00 (0.651)	32.96 (0.939)
16 (406)	21	06 (0.596)	30.68 (0.869)
15 (381)	19	.09 (0.541)	28.36 (0.803)
14 (356)	17.	08 (0.484)	26.03 (0.737)
13 (330)	15.	04 (0.426)	23.68 (0.670)
12 (305)	12	97 (0.367)	21.31 (0.608)
11 (279)	10.	87 (0.309)	18.92 (0.535)
10 (254)	8	.74 (0.247)	16.51 (0.468)
9 (229)	6	.58 (0.186)	14.09 (0.399)
8 (203)	4	.41 (0.125)	11.66 (0.330)
7 (178)	2.	21 (0.063)	9.21 (0.264)
6 (152)	A	0 (0)	6.76 (0.191)
5 (127)		0 (0)	5.63 (0.160)
4 (102)	Stone	0 (0)	4.51 (0.128)
3 (76)	Foundatio	n 0(0)	3.38 (0.096)
2 (51)		0 (0)	2.25 (0.064)
1 (25)	¥	0 (0)	1.13 (0.032)

Note: Add 1.13 ft³ (0.032 m³) of storage for each additional inch (25 mm) of stone foundation.

ADS StormTech products, manufactured in accordance with ASTM F2418 or ASTMF2922, comply with all requirements in the Build America, Buy America (BABA) Act.

Working on a project?

Visit us at adspipe.com/stormtech and utilize the Design Tool

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® is a registered trademark of StormTech, Inc. © 2022 Advanced Drainage Systems, Inc. 12/22 CS

Storage Volume Per Chamber ft³ (m³)

	Bare Chamber		amber and St ation Depth i	
	Storage ft³ (m³)	6 (150)	12 (300)	18 (450)
SC-740 Chamber	45.9 (1.3)	74.9 (2.1)	81.7 (2.3)	88.4 (2.5)

Note: Assumes 6" (150 mm) stone above chambers, 6" (150 mm) row spacing and 40% stone porosity.

Amount of Stone Per Chamber

English Tons (yds³)	Stone Foundation Depth				
Eligiish tons (yus-)	6″	12″	16″		
SC-740	3.8 (2.8)	4.6 (3.3)	5.5 (3.9)		
Metric Kilograms (m³)	150 mm	300 mm	450 mm		
SC-740	3,450 (2.1)	4,170 (2.5)	4,490 (3.0)		

Note: Assumes 6" (150 mm) of stone above and between chambers.

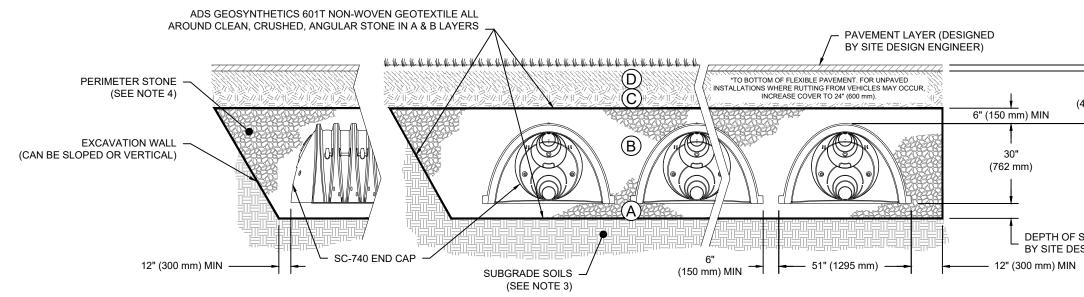
Volume Excavation Per Chamber yd³ (m³)

	Ston	e Foundation [Depth
	6 (150)	12 (300)	18 (450)
SC-740	5.5 (4.2)	6.2 (4.7)	6.8 (5.2)

Note: Assumes 6" (150 mm) of row separation and 18" (450 mm) of cover. The volume of excavation will vary as depth of cover increases.

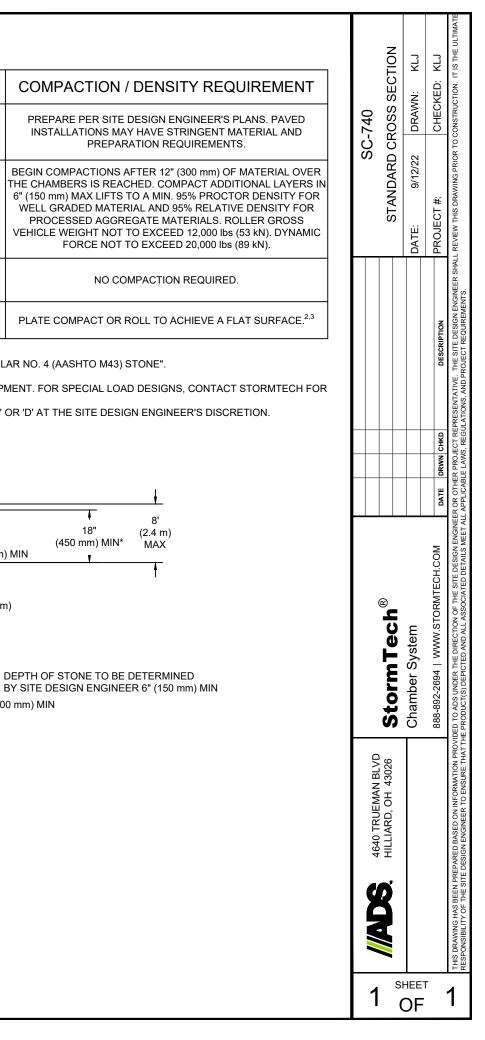
ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	СОМРА
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE INSTALL/
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMP THE CHAMBE 6" (150 mm) M WELL GRAE PROCESS VEHICLE WE FC
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COM

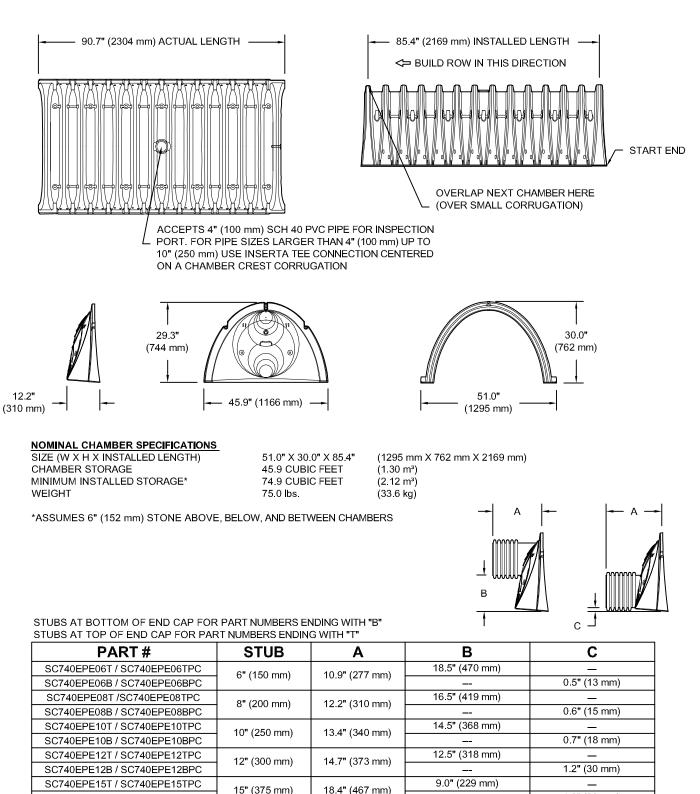

PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.


3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.


NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

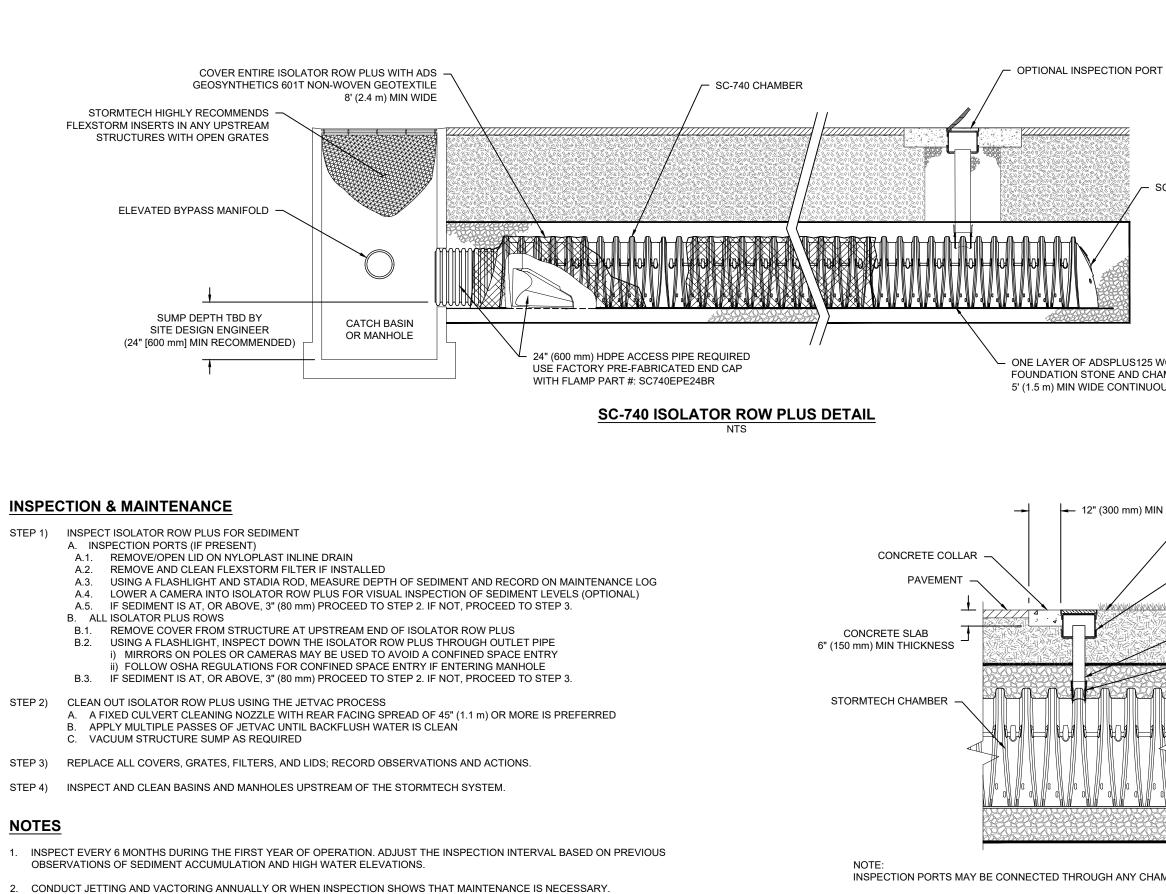
SC-740 TECHNICAL SPECIFICATION

NTS

 SC740EPE15B / SC740EPE15BPC
 13 (37 mm)

 SC740EPE18T / SC740EPE18TPC
 18" (450 mm)

 SC740EPE18B / SC740EPE18BPC
 18" (450 mm)


 SC740EPE18B / SC740EPE18BPC
 18" (450 mm)

 SC740EPE24B*
 24" (600 mm)

 ALL STUBS, EXCEPT FOR THE SC740EPE24B ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF

ALL STUBS, EXCEPT FOR THE SC740EPE24B ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694.

* FOR THE SC740EPE24B THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

4" PVC INSPECTION PORT I (SC SERIES CHAMBER NTS

> R CORRUGATION CREST.	IDTH - CONCRETE COLLAR NOT REQUIRED FOR UNPAVED APPLICATIONS 8" NYLOPLAST INSPECTION PORT BODY (PART# 2708AG4IPKIT) OR TRAFFIC RATED BOX W/SOLID LOCKING COVER 4" (100 mm) SDR 35 PIPE 4" (100 mm) INSERTA TEE TO BE CENTERED ON CORRUGATION CREST	VEN GEOTEXTILE BETWEEN BERS FABRIC WITHOUT SEAMS		740 END CAP	
				sc	SC-740
HILLIARD, OH 43026	StormTech®			ISOLATOR ROV	SOLATOR ROW PLUS DETAILS
	Chamber System			DATE: 9/12/22	DRAWN: KLJ
	888-892-2694 WWW.STORMTECH.COM	DATE DRWN CHKD	DESCRIPTION	PROJECT #:	CHECKED: KLJ

Isolator[®] Row Plus O&M Manual

The Isolator® Row Plus

Introduction

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row Plus is a technique to inexpensively enhance Total Suspended Solids (TSS) and Total Phosphorus (TP) removal with easy access for inspection and maintenance.

The Isolator Row Plus

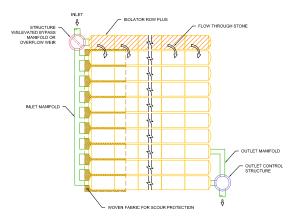
The Isolator Row Plus is a row of StormTech chambers, either SC-160, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-7200 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for sediment settling and filtration as stormwater rises in the Isolator Row Plus and passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC-310-3 and SC-740 models) allow stormwater to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row Plus protecting the adjacent stone and chambers storage areas from sediment accumulation.

ADS geotextile fabric is placed between the stone and the Isolator Row Plus chambers. The woven geotextile provides a media for stormwater filtration, a durable surface for maintenance, prevents scour of the underlying stone and remains intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the chamber's sidewall. The non-woven fabric is not required over the SC-160, DC-780, MC-3500 or MC-7200 models as these chambers do not have perforated side walls.

The Isolator Row Plus is designed to capture the "first flush" runoff and offers the versatility to be sized on a volume basis or a flow-rate basis. An upstream manhole provides access to the Isolator Row Plus and includes a high/low concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator Row Plus bypass through a manifold to the other chambers. This is achieved with an elevated bypass manifold or a high-flow weir. This creates a differential between the Isolator Row Plus row of chambers and the manifold to the rest of the system, thus allowing for settlement time in the Isolator Row Plus. After Stormwater flows through the Isolator Row Plus and into the rest of the chamber system it is either exfiltrated into the soils below or passed at a controlled rate through an outlet manifold and outlet control structure.

The Isolator Row FLAMP[™] (patent pending) is a flared end ramp apparatus attached to the inlet pipe on the inside of the chamber end cap. The FLAMP provides a smooth transition from pipe invert to fabric bottom. It is configured to improve chamber function performance by enhancing outflow of solid debris that would otherwise collect at the chamber's end. It also serves to improve the fluid and solid flow into the access pipe during maintenance and cleaning and to guide cleaning and inspection equipment back into the inlet pipe when complete.

The Isolator Row Plus may be part of a treatment train system. The treatment train design and pretreatment device selection by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, StormTech recommend using the Isolator Row Plus to minimize maintenance requirements and maintenance costs.


Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row Plus.

Looking down the Isolator Row PLUS from the manhole opening, ADS PLUS Fabric is shown between the chamber and stone base.

StormTech Isolator Row PLUS with Overflow Spillway (not to scale)

Isolator Row Plus Inspection/Maintenance

Inspection

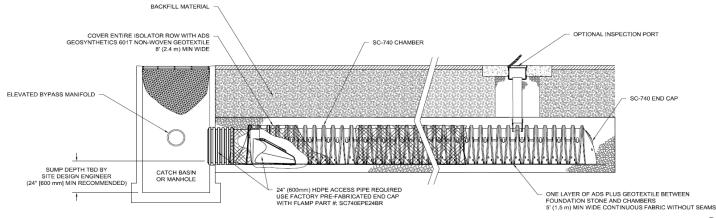
The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row Plus should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row Plus incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row Plus, clean-out should be performed.

Maintenance


The Isolator Row Plus was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row Plus while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. StormTech recommends a maximum nozzle pressure of 2000 psi be utilized during cleaning. JetVac reels can vary in length. For ease of maintenance, ADS recommends Isolator Row Plus lengths up to 200' (61 m). The JetVac process shall only be performed on StormTech Isolator Row Plus that have ADS Plus Fabric (as specified by StormTech) over their angular base stone.

StormTech Isolator Row PLUS (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-7200 chamber models and is not required over the entire Isolator Row PLUS.

Isolator Row Plus Step By Step Maintenance Procedures

Step 1

Inspect Isolator Row Plus for sediment.

A) Inspection ports (if present)

- i. Remove lid from floor box frame
- ii. Remove cap from inspection riser
- iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
- iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.

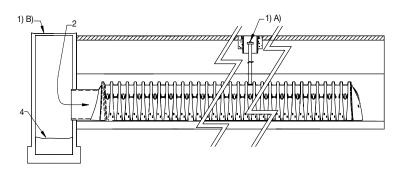
B) All Isolator Row Plus

- i. Remove cover from manhole at upstream end of Isolator Row Plus
- ii. Using a flashlight, inspect down Isolator Row Plus through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
- iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2.

If not, proceed to Step 3.

Step 2

Clean out Isolator Row Plus using the JetVac process.


- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required

Step 3

Replace all caps, lids and covers, record observations and actions.

Step 4

Inspect & clean catch basins and manholes upstream of the StormTech system.

Sample Maintenance Log

Date	Stadia Rod Fixed point to chamber bottom (1)	Readings Fixed point to top of sediment (2)	Sedi- ment Depth (1)–(2)	Observations/Actions	Inspector
3/15/11	6.3 ft	none		New installation, Fixed point is CI frame at grade	DJM
9/24/11		6.2	0,1 ft	some grit felt	SM
6/20/13		5.8	0.5 ft	Mucky feel, debris visible in manhole and in Isolator Row PLUS, maintenance due	NV
7/7/13	6.3 ft		0	System jetted and vacuumed	DJM

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® and the Isolator® Row Plus are registered trademarks of StormTech, Inc. © 2022 Advanced Drainage Systems, Inc. #11081 2/22 CS adspipe.com 800-821-6710

ADS StormTech[®] Installation Guide SC-310/SC-740/DC-780

StormTech Installation Video

Required Materials and Equipment List

- Acceptable fill materials per Table 1
- ADS Plus and non-woven geotextile fabrics
- StormTech solid end caps and pre-cored end caps
- StormTech chambers
- StormTech manifolds and fittings

Important Notes:

- A. This installation guide provides the minimum requirements for proper installation of chambers. Non-adherence to this guide may result in damage to chambers during installation. Replacement of damaged chambers during or after backfilling is costly and very time consuming. It is recommended that all installers are familiar with this guide, and that the contractor inspects the chambers for distortion, damage and joint integrity as work progresses.
- B. Use of a dozer to push embedment stone between the rows of chambers may cause damage to chambers and is not an acceptable backfill method. Any chambers damaged by using the "dump and push" method are not covered under the StormTech standard warranty.
- C. Care should be taken in the handling of chambers and end caps. Avoid dropping, prying or excessive force on chambers during removal from pallet and initial placement.

Requirements for System Installation

Excavate bed and prepare subgrade per engineer's plans.

Place non-woven geotextile over prepared soils and up excavation walls. Install underdrains if required.

Place clean, crushed, angular stone foundation 6" (150 mm) min. Compact to achieve a flat surface.

Manifold, Scour Fabric and Chamber Assembly

Install manifolds and lay out ADS Plus fabric at inlet rows (min. 12.5 ft (3.8 m)) at each inlet end cap. Place a continuous piece along entire length of Isolator[®] Plus Row(s).

Align the first chamber and end cap of each row with inlet pipes. Contractor may choose to postpone stone placement around end chambers and leave ends of rows open for easy inspection of chambers during the backfill process.

Continue installing chambers by overlapping chamber end corrugations. Chamber joints are labeled "Lower Joint – Overlap Here" and "Build this direction – Upper Joint" Be sure that the chamber placement does not exceed the reach of the construction equipment used to place the stone. Maintain minimum 6" (150 mm) spacing between rows.

Attaching the End Caps

Lift the end of the chamber a few inches off the ground. With the curved face of the end cap facing outward, place the end cap into the chamber's end corrugation.

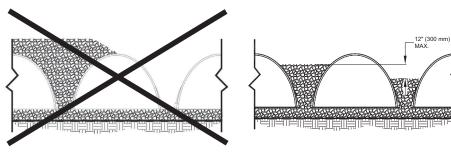
Prefabricated End Caps

24" (600 mm) inlets are the maximum size that can fit into a SC-740/DC-780 end cap and must be prefabricated with a 24" (600 mm) pipe stub. SC-310 chambers with a 12" (300 mm) inlet pipe must use a prefabricated end cap with a 12" (300 mm) pipe stub. When used on an Isolator Row Plus, these end caps will contain a welded FLAMP (flared end ramp) that will lay on top of the ADS Plus fabric (shown above)

Isolator Row Plus

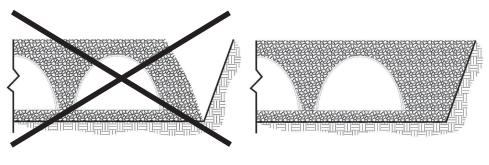
Place a continuous layer of ADS Plus fabric between the foundation stone and the Isolator Row Plus chambers, making sure the fabric lays flat and extends the entire width of the chamber feet. Drape a strip of ADS non-woven geotextile over the row of chambers (not required over DC-780). This is the same type of non-woven geotextile used as a separation layer around the angular stone of the StormTech system.

Initial Anchoring of Chambers – Embedment Stone



Initial embedment shall be spotted along the centerline of the chamber evenly anchoring the lower portion of the chamber. This is best accomplished with a stone conveyor or excavator reaching along the row.

No equipment shall be operated on the bed at this stage of the installation. Excavators must be located off the bed. Dump trucks shall not dump stone directly on to the bed. Dozers or loaders are not allowed on the bed at this time.


Backfill of Chambers – Embedment Stone

Uneven Backfill

Even Backfill

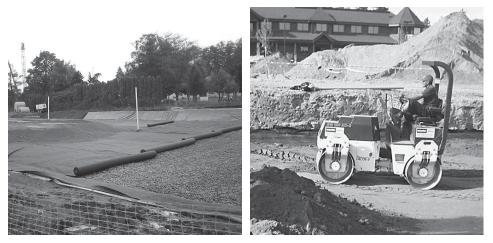
Backfill chambers evenly. Stone column height should never differ by more than 12" (300 mm) between adjacent chamber rows or between chamber rows and perimeter.

Perimeter Not Backfilled

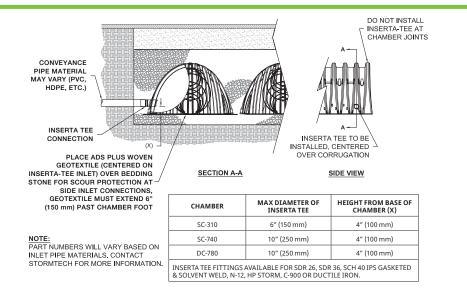
Perimeter Fully Backfilled

Perimeter stone must be brought up evenly with chamber rows. Perimeter must be fully backfilled, with stone extended horizontally to the excavation wall.

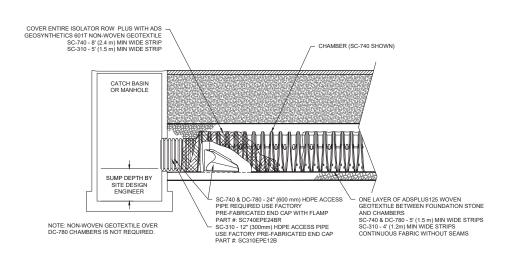
Backfill - Embedment Stone & Cover Stone



Continue evenly backfilling between rows and around perimeter until embedment stone reaches tops of chambers. Perimeter stone must extend horizontally to the excavation wall for both straight or sloped sidewalls. Only after chambers have StormTech recommends that the been backfilled to top of chamber and with a minimum 6" (150 mm) of cover stone on top of chambers can small dozers be used over the chambers for backfilling remaining cover stone.


Small dozers and skid loaders may be used to finish grading stone backfill in accordance with ground pressure limits in Table 2. They must push material parallel to rows only. Never push perpendicular to rows. contractor inspect chambers before placing final backfill. Any chambers damaged by construction shall be removed and replaced.

Final Backfill of Chambers – Fill Material



Install non-woven geotextile over stone. Geotextile must overlap 24" (600 mm) min. where edges meet. Compact each lift of backfill as specified in the site design engineer's drawings. Roller travel parallel with rows.

Inserta Tee Detail

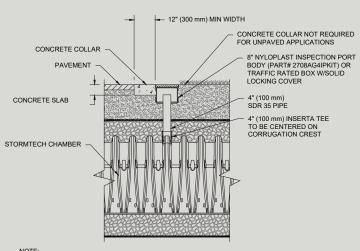
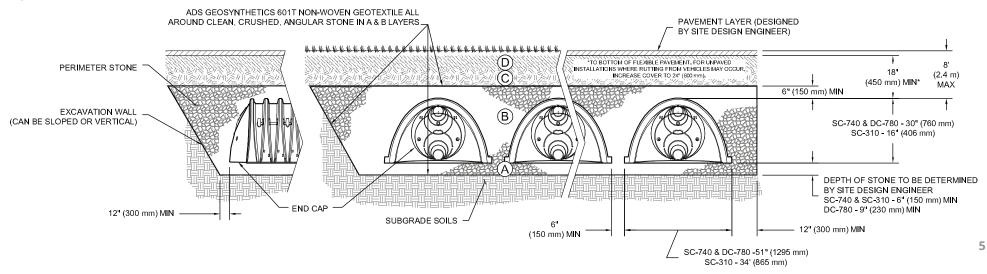

StormTech Isolator Row Plus Detail

Table 1- Acceptable Fill Materials

Material Location	Description	AASHTO M43 Designation ¹	Compaction/Density Requirement
D Final Fill: Fill Material for layer 'D' starts from the top of the 'C' layer to the bottom of flexible pavement or unpaved finished grade above. Note that the pavement subbase may be part of the 'D' layer.	Any soil/rock materials, native soils or per engineer's plans. Check plans for pavement subgrade requirements.	N/A	Prepare per site design engineer's plans. Paved installations may have stringent material and preparation requirements.
€ Initial Fill: Fill Material for layer 'C' starts from the top of the embedment stone ('B' layer) to 18" (450 mm) above the top of the chamber. Note that pavement subbase may be part of the 'C' layer.	Granular well-graded soil/aggregate mixtures, <35% fines or processed aggregate. Most pavement subbase materials can be used in lieu of this layer.	AASHTO M45 A-1, A-2-4, A-3 or AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	Begin compaction after min. 12" (300 mm) of material over the chambers is reached. Compact additional layers in 6" (150 mm) max. lifts to a min. 95% Proctor density for well-graded material and 95% relative density for processed aggregate materials. Roller gross vehicle weight not to exceed 12,000 lbs (53 kN). Dynamic force not to exceed 20,000 lbs (89 kN)
BEmbedment Stone: Embedment Stone surrounding chambers from the foundation stone to the 'C' layer above.	Clean, crushed, angular stone	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	No compaction required.
(A) Foundation Stone: Foundation Stone below the chambers from the subgrade up to the foot (bottom) of the chamber.	Clean, crushed, angular stone,	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	Place and compact in 6" (150 mm) lifts using two full coverages with a vibratory compactor. ^{2,3}

Figure 1- Inspection Port Detail



NOTE: INSPECTION PORTS MAY BE CONNECTED THROUGH ANY CHAMBER CORRUGATION CREST.

Please Note:

- 1. The listed AASHTO designations are for gradations only. The stone must also be clean, crushed, angular. For example, a specification for #4 stone would state: "clean, crushed, angular no. 4 (AASHTO M43) stone".
- 2. StormTech compaction requirements are met for 'A' location materials when placed and compacted in 6" (150 mm) (max) lifts using two full coverages with a vibratory compactor.
- 3. Where infiltration surfaces may be comprised by compaction, for standard installations and standard design load conditions, a flat surface may be achieved by raking or dragging without compaction equipment. For special load designs, contact StormTech for compaction requirements.

Figure 2 - Fill Material Locations

Notes:

- 1.36" (900 mm) of stabilized cover materials over the chambers is recommended during the construction phase if general construction activities, such as full dump truck travel and dumping, are to occur over the bed.
- 2. During paving operations, dump truck axle loads on 18" (450 mm) of cover may be necessary. Precautions should be taken to avoid rutting of the road base layer, to ensure that compaction requirements have been met, and that a minimum of 18" (450 mm) of cover exists over the chambers. Contact StormTech for additional guidance on allowable axle loads during paving.
- 3. Ground pressure for track dozers is the vehicle operating weight divided by total ground contact area for both tracks. Excavators will exert higher ground pressures based on loaded bucket weight and boom extension.
- 4. Mini-excavators (< 8,000lbs/3,628 kg) can be used with at least 12" (300 mm) of stone over the chambers and are limited by the maximum ground pressures in Table 2 based on a full bucket at maximum boom extension.
- 5. Storage of materials such as construction materials, equipment, spoils, etc. should not be located over the StormTech system. The use of equipment over the StormTech system not covered in Table 2 (ex. soil mixing equipment, cranes, etc) is limited. Please contact StormTech for more information.
- 6. Allowable track loads based on vehicle travel only. Excavators shall not operate on chamber beds until the total backfill reaches 3 feet (900 mm) over the entire bed.

StormTech

Table 2 - Maximum Allowable Construction Vehicle Loads⁶

Material	Fill Depth		lowable Wheel bads		Allowable Loads⁰	Maximum Allowable Roller Loads
Location	over Chambers in. (mm)	Max Axle Load for Trucks lbs (kN)	Max Wheel Load for Loaders lbs (kN)	Track Width in. (mm)	Max Ground Pressure psf (kPa)	Max Drum Weight or Dynamic Force lbs (kN)
Final Fill Material	36" (900) Compacted	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	3880 (186) 2640 (126) 2040 (97) 1690 (81) 1470 (70)	38,000 (169)
© Initial Fill Material	24" (600) Compacted	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	2690 (128) 1880 (90) 1490 (71) 1280 (61) 1150 (55)	20,000 (89)
	24" (600) Loose/ Dumped	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	2390 (114) 1700 (81) 1370 (65) 1190 (57) 1080 (51)	20,000 (89) Roller gross vehicle weight not toexceed 12,000 lbs. (53 kN)
	18" (450)	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	2110 (101) 1510 (72) 1250 (59) 1100 (52) 1020 (48)	20,000 (89) Roller gross vehicle weight not to exceed 12,000 lbs. (53 kN)
B Embedment Stone	12" (300)	16,000 (71)	NOT ALLOWED	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	1540 (74) 1190 (57) 1010 (48) 910 (43) 840 (40)	20,000 (89) Roller gross vehicle weight not to exceed 12,000 lbs. (53 kN)
	6" (150)	8,000 (35)	NOT ALLOWED	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	1070 (51) 900 (43) 800 (38) 760 (36) 720 (34)	NOT ALLOWED

Table 3 - Placement Methods and Descriptions

Material	Placement Methods/ Restrictions	Wheel Load Restrictions	Track Load Restrictions	Roller Load Restrictions
Location	Restrictions	See Tab	le 2 for Maximum Constru	uction Loads
D Final Fill Material	A variety of placement methods may be used. All construction loads must not exceed the maxi- mum limits in Table 2.	36" (900 mm) minimum cover required for dump trucks to dump over chambers.	Dozers to push paral- lel to rows until 36" (900mm) compaced cover is reached. ⁴	Roller travel parallel to rows only until 36" (900 mm) compacted cover is reached.
© Initial Fill Material	Excavator positioned off bed rec- ommended. Small excavator allowed over chambers. Small dozer allowed.	Asphalt can be dumped into paver when compacted pavement subbase reaches 18" (450 mm) above top of chambers.	Small LGP track dozers & skid loaders allowed to grade cover stone with at least 6" (150 mm) stone under tracks at all times. Equipment must push parallel to rows at all times.	Use dynamic force of roller only after compacted fill depth reaches 12" (300 mm) over chambers. Roller travel parallel to cham- ber rows only.
B Embedment Stone	No equipment allowed on bare chambers. Use excavator or stone conveyor positioned off bed or on foundation stone to evenly fill around all chambers to at least the top of chambers.	No wheel loads allowed. Mate- rial must be placed outside the limits of the chamber bed.	No tracked equipment is allowed on chambers until a min. 6" (150 mm) cover stone is in place.	No rollers allowed.
A Foundation Stone	No StormTech restrictions. Contrac subgrade bearing capacity, dewate	tor responsible for an ring or protection of s	y conditions or requiremer subgrade.	nts by others relative to

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com. Advanced Drainage Systems, the ADS logo, and the green stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech[®] and the Isolator[®] Row Plus are registered trademarks of StormTech, Inc ©2021 Advanced Drainage Systems, Inc. #11010 7/21 CS

StormTech® Standard Limited Warranty

STANDARD LIMITED WARRANTY OF STORMTECH LLC ("STORMTECH"): PRODUCTS

- (A) This Limited Warranty applies solely to the StormTech chambers and end plates manufactured by StormTech and sold to the original purchaser (the "Purchaser"). The chambers and end plates are collectively referred to as the "Products."
- (B) The structural integrity of the Products, when installed strictly in accordance with StormTech's written installation instructions at the time of installation, are warranted to the Purchaser against defective materials and workmanship for one (1) year from the date of purchase. Should a defect appear in the Limited Warranty period, the Purchaser shall provide StormTech with written notice of the alleged defect at StormTech's corporate headquarters within ten (10) days of the discovery of the defect. The notice shall describe the alleged defect in reasonable detail. StormTech agrees to supply replacements for those Products determined by StormTech to be defective and covered by this Limited Warranty. The supply of replacement products is the sole remedy of the Purchaser for breaches of this Limited Warranty. StormTech's liability specifically excludes the cost of removal and/or installation of the Products.
- (C) THIS LIMITED WARRANTY IS EXCLUSIVE. THERE ARE NO OTHER WARRANTIES WITH RESPECT TO THE PRODUCTS, INCLUDING NO IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.
- (D) This Limited Warranty only applies to the Products when the Products are installed in a single layer. UNDER NO CIRCUMSTANCES, SHALL THE PRODUCTS BE INSTALLED IN A MULTI-LAYER CONFIGURATION.
- (E) No representative of StormTech has the authority to change this Limited Warranty in any manner or to extend this Limited Warranty. This Limited Warranty does not apply to any person other than to the Purchaser.

- (F) Under no circumstances shall StormTech be liable to the Purchaser or to any third party for product liability claims; claims arising from the design, shipment, or installation of the Products, or the cost of other goods or services related to the purchase and installation of the Products. For this Limited Warranty to apply, the Products must be installed in accordance with all site conditions required by state and local codes; all other applicable laws; and StormTech's written installation instructions.
- (G) THE LIMITED WARRANTY DOES NOT EXTEND TO INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES. STORMTECH SHALL NOT BE LIABLE FOR PENALTIES OR LIQUIDATED DAMAGES, INCLUDING LOSS OF PRODUCTION AND PROFITS: LABOR AND MATERIALS: OVERHEAD COSTS: OR OTHER LOSS OR EXPENSE INCURRED BY THE PURCHASER OR ANY THIRD PARTY. SPECIFICALLY EXCLUDED FROM LIMITED WARRANTY COVERAGE ARE DAMAGE TO THE PRODUCTS ARISING FROM ORDINARY WEAR AND TEAR: ALTERATION, ACCIDENT, MISUSE, ABUSE OR NEGLECT; THE PRODUCTS BEING SUBJECTED TO VEHICLE TRAFFIC OR OTHER CONDITIONS WHICH ARE NOT PERMITTED BY STORMTECH'S WRITTEN SPECIFICATIONS OR INSTALLATION INSTRUCTIONS: FAILURE TO MAINTAIN THE MINIMUM GROUND COVERS SET FORTH IN THE INSTALLATION INSTRUCTIONS; THE PLACEMENT OF IMPROPER MATERIALS INTO THE PRODUCTS; FAILURE OF THE PRODUCTS DUE TO IMPROPER SITING OR IMPROPER SIZING: OR ANY OTHER EVENT NOT CAUSED BY STORMTECH. A PRODUCT ALSO IS EXCLUDED FROM LIMITED WARRANTY COVERAGE IF SUCH PRODUCT IS USED IN A PROJECT OR SYSTEM IN WHICH ANY GEOTEXTILE PRODUCTS OTHER THAN THOSE PROVIDED BY ADVANCED DRAINAGE SYSTEMS ARE USED. THIS LIMITED WARRANTY REPRESENTS STORMTECH'S SOLE LIABILITY TO THE PURCHASER FOR CLAIMS RELATED TO THE PRODUCTS. WHETHER THE CLAIM IS BASED UPON CONTRACT. TORT, OR OTHER LEGAL THEORY.

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech* is a registered trademark of StormTech, Inc. © 2023 Advanced Drainage Systems, Inc. 3/23 CS adspipe.com 800-821-6710

ADS 0601T/O NONWOVEN GEOTEXTILE SPECIFICATION

Scope

This specification describes ADS 0601T/O nonwoven geotextile.

Filter Fabric Requirements

ADS 0601T/O is an orange nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. ADS 0601T/O is inert to biological degradation and resists naturally encountered chemicals, alkali and acids. ADS 0601T/O conforms to the physical property values listed below:

Filter Fabric Properties

Property	Test Method	Unit	Typical Value ¹ MD	Typical Value ¹ CD
Grab Tensile Strength	ASTM D4632	lbs (N)	175 (779)	175 (779)
Grab Tensile Elongation	ASTM D4632	%	75	75
Trapezoid Tear Strength	ASTM D4533	lbs (N)	85 (378)	85 (378)
CBR Puncture Strength	ASTM D6241	lbs (N)	480 (2136)	480 (2136)
Permittivity	ASTM D4491	sec ⁻¹	1.5	1.5
Flow Rate	ASTM D4491	gal/min/ft² (l/min/m²)	105 (4278)	105 (4278)
UV Resistance (at 500 hours) ¹	ASTM D4355	% strength retained	80	80

Physical Properties

Property	Test Method	Unit	Typical Value ²
Weight	ASTM D5161	oz/yd² (g/m²)	6.5 (220)
Thickness	ASTM D5199	mils (mm)	65 (1.7)
Roll Dimensions (W x L)	-	ft (m)	15 x 300 (4.5 x 91)
Roll Area	-	yd² (m²)	500 (418)
Estimated Roll Weight	-	lb (kg)	220 (100)

1 Modified, Minimum Test Value

2 ASTM D4439 Standard Terminology for Geosynthetics: typical value, n-for geosynthetics, the mean value calculated from documented manufacturing quality control test results for a defined population obtained from one test method associated with on specific property.

ADS 315W WOVEN GEOTEXTILE SPECIFICATION

Scope

This specification describes ADS 315W woven geotextile.

Filter Fabric Requirements

ADS 315W is manufactured using high-tenacity polypropylene yarns that are woven to form a dimensionally stable network, which allows the yarns to maintain their relative position. ADS 315W resists ultraviolet deterioration, rotting and biological degradation and is inert to commonly encountered soil chemicals. ADS 315W conforms to the physical property values listed below:

Filter Fabric Properties

Property	Test Method	Unit	M.A.R.V. (Minimum Average Roll Value)²
Tensile Strength (Grab)	ASTM D4632	lbs (N)	315 (1400)
Elongation	ASTM D4632	%	15
CBR Puncture	ASTM D6241	lbs (N)	900 (4005)
Puncture	ASTM D4833	lbs (N)	150 (667)
Mullen Burst	ASTM D3786	psi (kPa)	600 (4134)
Trapezoidal Tear	ASTM D4533	lbs (N)	120 (533)
UV Resistance (at 500 hours)	ASTM D4355	%	70
Apparent Opening Size (AOS)*	ASTM D4751	U.S. Sieve (mm)	40 (.425)
Permittivity	ASTM D4491	Sec ⁻¹	.05
Water Flow Rate	ASTM D4491	gpm/ft ² (l/min/m ²)	4 (163)

* Maximum average roll value.

Packaging

Roll Dimensions (W x L) - ft. (m)	12.5 x 360/ 15 x 300 / 17.5 x 258 (3.81 x 109.8/ 4.57 x 91.5 / 5.33 x 78.6)
-----------------------------------	---

Chambers at MH 210

User Inputs

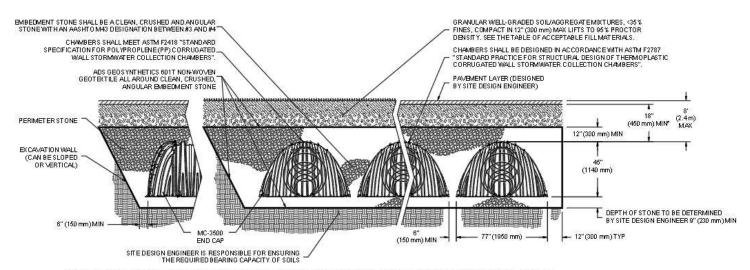
MC-3500

Chamber Model:

<u>Results</u>

System Volume and Bed Size

		<u></u>	200.0.20
Outlet Control Structure:	No	Installed Storage Volume:	82.52 cubic meters.
Project Name:	Trinity Apt	Installed Storage Volume:	
Engineer:	Melanie Schroeder	Storage Volume Per Chamber:	3.12 cubic meters.
Project Location:	Ontario	Number Of Chambers Required:	13
-		Number Of End Caps Required:	6
Measurement Type:	Metric	Chamber Rows:	3
Required Storage Volume:	76.51 cubic meters.	Maximum Length:	13.88 m.
Stone Porosity:	40%	Maximum Width:	6.79 m.
Stone Foundation Depth:	229 mm.		
Stone Above Chambers:	305 mm.	Approx. Bed Size Required:	84.59 square me- ters.
Average Cover Over Chambers:	458 mm.	System Compo	nents
Design Constraint Dimensions:	(8.01 m. x 16.00 m.)		
		Amount Of Stone Required:	99 cubic meters
		Volume Of Excavation (Not Includin Fill):	g 142 cubic meters


Total Non-woven Geotextile Required:287 square meters

Woven Geotextile Required (excluding42 square meters Isolator Row):

Woven Geotextile Required (Isolator 39 square meters Row):

Total Woven Geotextile Req	uired: 81 square meters
	uneu. or square meters

Impervious Liner Required: 0 square meters

MINMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24"

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

TRINITY APT OTTAWA, ON, CANADA

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2. COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418. "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER. COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

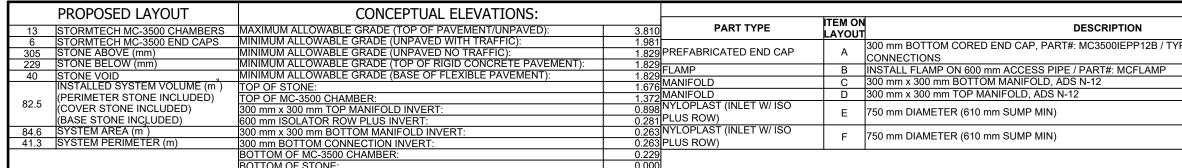
REQUIREMENTS FOR HANDLING AND INSTALLATION: 7

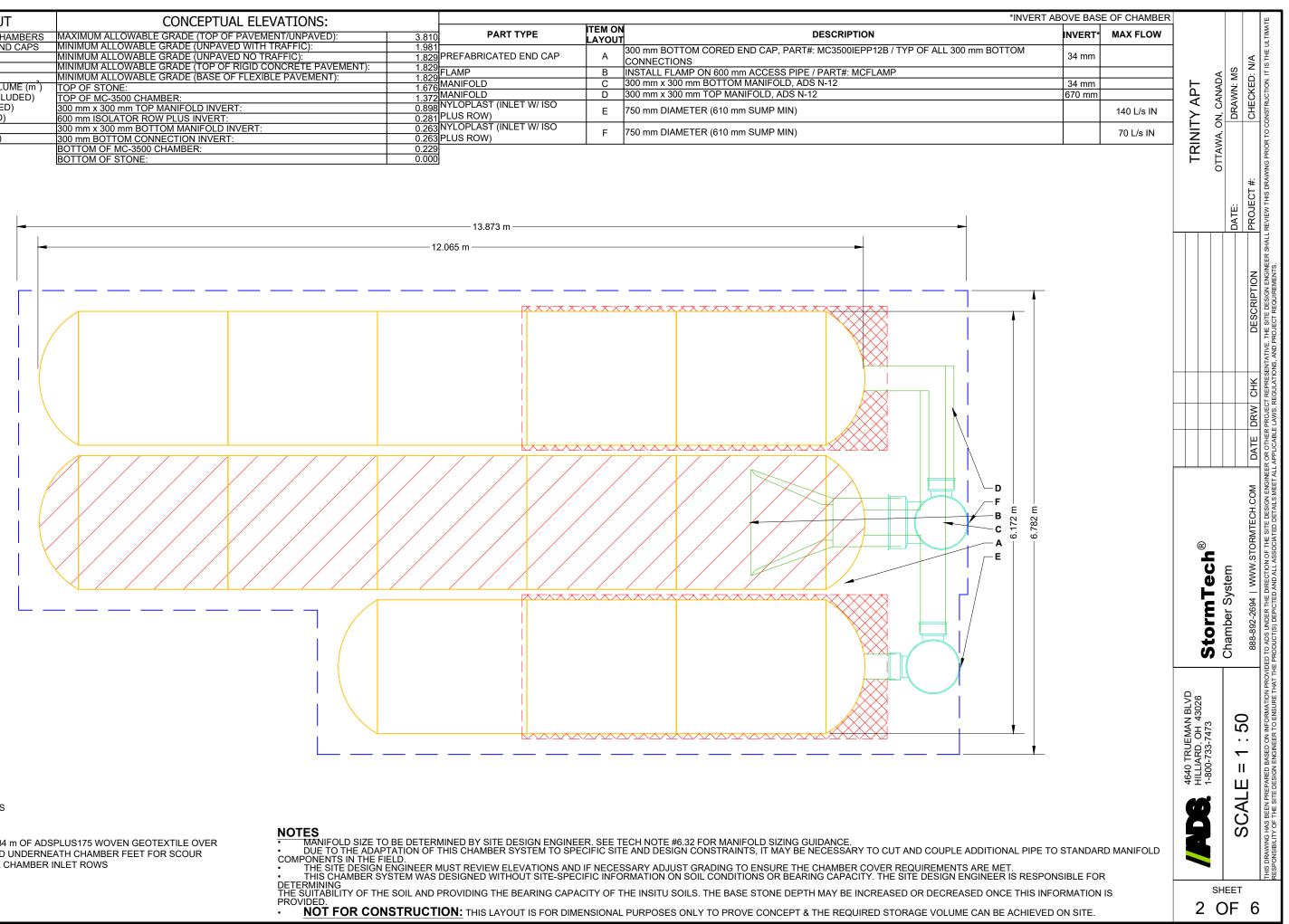
- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION. a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS. 7
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm). 8.
- 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN FNGINFFR
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 11. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT


- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1
- THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: 2
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE . WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE"
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.


USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

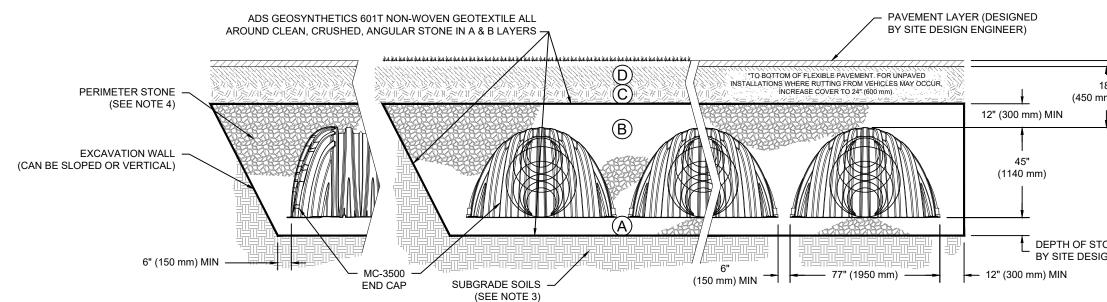
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

PLACE MINIMUM 5.334 m OF ADSPLUS175 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

BED LIMITS

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

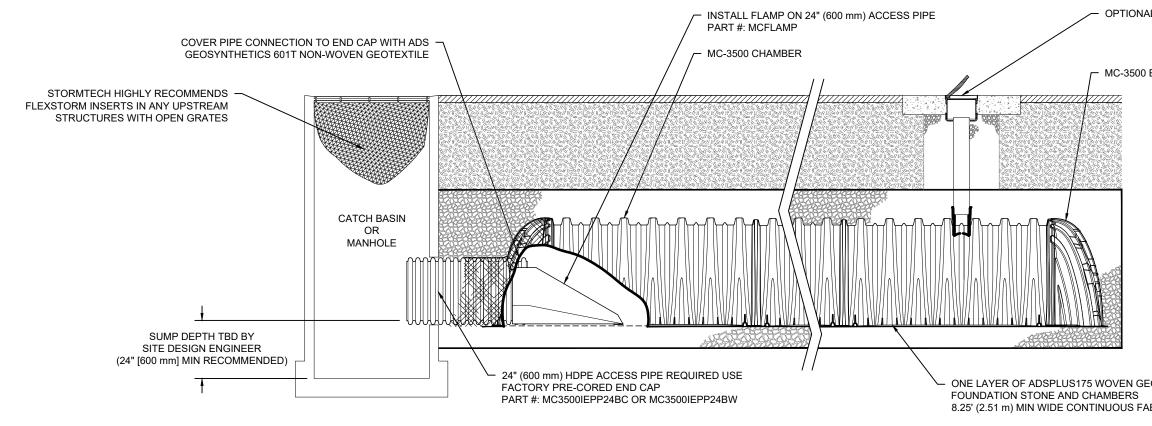
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPA
D	FINAL FILL : FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPAR INSTALI
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMB 12" (300 mm WELL GRA
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE CO


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (A

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR COMPACTION REQUIREMENTS.


4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT TH

NOTES:

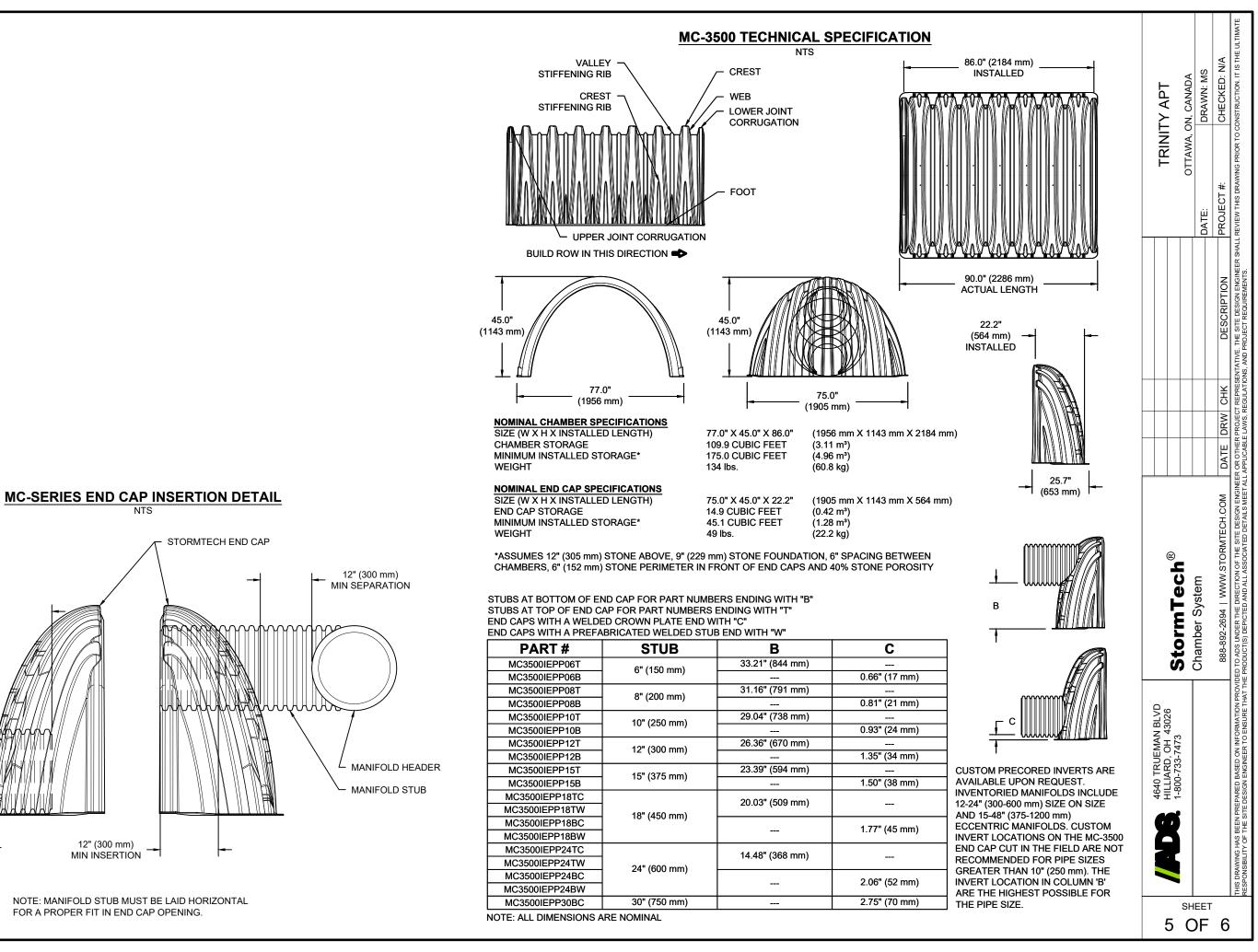
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

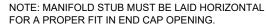
PACTION / DENSITY REQUIREMENT Inter FER SITE DESIGN ENGINEER'S PLANS: PAYED Inter SITE DESIGN ENGINEER'S DISCRETION Inter SITE DESIGN ENGINEER'S '(230 mm) MIN						
ABOUTE THE ENVIREMENT ON INFORMATION PROVIDED TABLE THAT THE DESCIPATION OF THE SERVERED BASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATES	RE PER SITE DESIGN ENGINEER'S PLANS. PAVED	Ү АРТ	N, CANADA	DRAWN: MS	CHECKED: N/A	DNSTRUCTION. IT IS THE ULTIMATE
ABOUTE THE ENVIREMENT ON INFORMATION PROVIDED TABLE THAT THE DESCIPATION OF THE SERVERED BASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATES	PREPARATION REQUIREMENTS. MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN n) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR	TRINIT	OTTAWA, O	DATE:	PROJECT #:	L REVIEW THIS DRAWING PRIOR TO CC
ABB-B92-2694 I WWWSTO RESPONSIBILIT REPRAVING HAS BEEN REPORTED AND PRODUCING) THE DRECTING THE DRAWING HAS BEEN REPORTED AND FROM FROM FROM FROM FROM THAL RADIO REPORTING THAS THE PROPERTIES AND	NO COMPACTION REQUIRED.					INEER SHALI TS.
ABOUTE THE ENVIREMENT ON INFORMATION PROVIDED TABLE THAT THE DESCIPATION OF THE SERVERED BASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PRODUCTION OF THE ENVIREMENT OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION OF THE SERVERE PRASED ON INFORMATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATION PROVIDED TABLE THAT THE PROPERTIES AND ALL ASSOCIATES	OMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}				RIPTION	DESIGN ENG
ABB-B92-2694 I WWWSTO RESPONSIBILIT REPRAVING HAS BEEN REPORTED AND PRODUCING) THE DRECTING THE DRAWING HAS BEEN REPORTED AND FROM FROM FROM FROM FROM THAL RADIO REPORTING THAS THE PROPERTIES AND	ASHTO M43) STONE".				DESC	THE SITE ROJECT R
ABB-B92-2694 I WWWSTO RESPONSIBILIT REPRAVING HAS BEEN REPORTED AND PRODUCING) THE DRECTING THE DRAWING HAS BEEN REPORTED AND FROM FROM FROM FROM FROM THAL RADIO REPORTING THAS THE PROPERTIES AND						ENTATIVE
AGO TRUEMAN BLVD A640 TRUEMAN B	12 SHE DESIGN ENGINEER'S DISCRETION.				CHK	T REPRES
ABB-B92-2694 I WWWSTO RESPONSIBILITARED BASED ON INFORMATION FROMER TO RESURPTION OF THE STREET AND RECOVERING FREE PRODUCTS) DESIGNER TRANT THE PRODUCTS) DESIGNER TRANT TRANK TRANT TRANK TRANT TRANK						R PROJEC E LAWS, F
ABB-B92-2694 I WWWSTO RESPONSIBILITARED BASED ON INFORMATION FROMER TO RESURPTION OF THE STREET AND RECOVERING FREE PRODUCTS) DESIGNER TRANT THE PRODUCTS) DESIGNER TRANT TRANK TRANT TRANK TRANT TRANK					DATE	R OR OTHE
SHEET	B" (2.4 m) n) MIN* MAX	B H S S		Chamber System	888-892-2694 WWW.STORMTECH.COM	WIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL
						THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PRC RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT
		3			6	

MC-3500 ISOLATOR ROW PLUS DETAIL

NTS

INSPECTION & MAINTENANCE

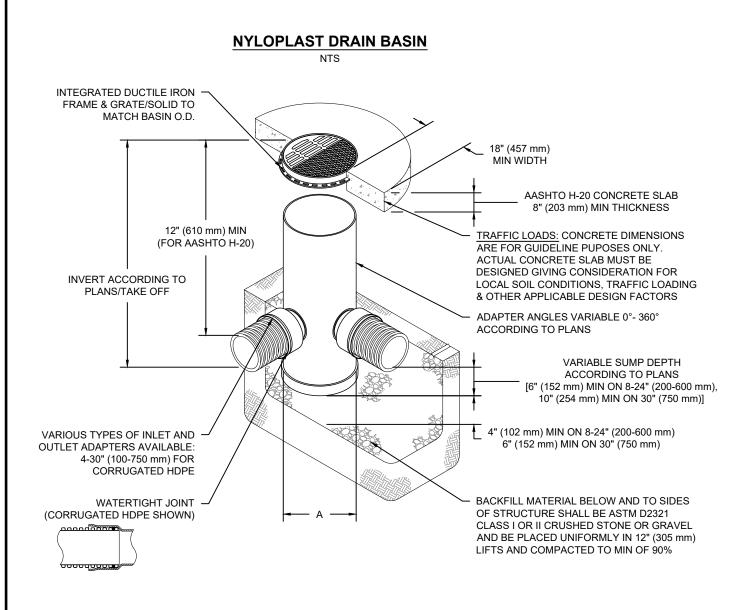

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT


- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B.3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1. OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

NSPECTION PORT		Υ ΑΡΤ	N, CANADA	DRAWN: MS	CHECKED: N/A
		TRINITY APT	OTTAWA, ON, CANADA	DATE:	PROJECT #:
					DESCRIPTION
DTEXTILE BETWEEN	_				CHK
					DRW C
					DATE
		¢	Storm I ecn	Chamber System	888-892-2694 WWW.STORMTECH.COM
		4640 TRUEMAN BLVD HILLIARD, OH 43026	1-800-733-7473		
		4		ieet)F	6


12" (300 mm) MIN INSERTION -

MANIFOLD STUB

12" (300 mm)

MIN SEPARATION

MANIFOLD HEADER

NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	GRATE/SOLID COVER OPTIONS				
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY			
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY			
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID			
(300 mm)		AASHTO H-10	H-20	AASHTO H-20			
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID			
(375 mm)		AASHTO H-10	H-20	AASHTO H-20			
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID			
(450 mm)		AASHTO H-10	H-20	AASHTO H-20			
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID			
(600 mm)		AASHTO H-10	H-20	AASHTO H-20			
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID			
(750 mm)		AASHTO H-20	H-20	AASHTO H-20			

				e ultimate
TRINITY APT	OTTAWA, ON, CANADA	DRAWN: MS	CHECKED: N/A	CONSTRUCTION. IT IS THI
TRINI	OTTAWA, (DATE:	PROJECT #:	LL REVIEW THIS DRAWING PRIOR TO (
			DESCRIPTION	IVE. THE SITE DESIGN ENGINEER SHA ND PROJECT REQUIREMENTS.
			/ CHK	CT REPRESENTAT , REGULATIONS, AN
			DATE DRW CHK	OR OTHER PROJE APPLICABLE LAWS
 @ 	Nyloplast		770-932-2443 WWW.NYLOPLAST-US.COM	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER AND ALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
4640 TRUEMAN BLVD HILLIARD, OH 43026	1-800-733-7473			ING HAS BEEN PREPARED BASED ON INFORMATION PROVII SILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH
6		EET)F	6	THIS DRAV RESPONSI

StormTech[®] MC-3500 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

Nominal Chamber Specifications

(not to scale)

Size (L x W x H) 90" x 77" x 45" 2286 mm x 1956 mm x 1143 mm

Chamber Storage 109.9 ft³ (3.11 m³)

Min. Installed Storage* 175.0 ft³ (4.96 m³)

Weight 134 lbs (60.8 kg)

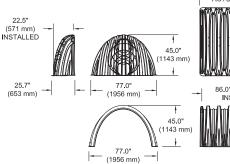
Shipping

15 chambers/pallet 7 end caps/pallet 7 pallets/truck

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 6" (150 mm) of stone between chambers/ end caps and 40% stone porosity.

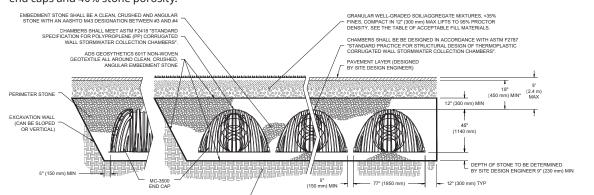
Nominal End Cap Specifications (not to scale)

Size (L x W x H) 26.5" x 71" x 45.1" 673 mm x 1803 mm x 1145 mm


End Cap Storage 14.9 ft³ (0.42 m³)

Min. Installed Storage* 45.1 ft³ (1.28 m³)

Weight 49 lbs (22.2 kg)


*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 6" (150 mm) of stone perimeter, 6" (150 mm) of stone between chambers/ end caps and 40% stone porosity.

SITE DESIGN ENGINEER IS RESPONSIBLE FOR ENSURING / THE REQUIRED BEARING CAPACITY OF SOILS

StormTech MC-3500 Specifications

Storage Volume Per Chamber

	Bare Chamber	Chamber and Stone Foundation Depth in. (mm)					
	Storage ft³ (m³)	9 in (230 mm)	12 in (300 mm)	15 in (375 mm)	18 in (450 mm)		
Chamber	109.9 (3.11)	175.0 (4.96)	179.9 (5.09)	184.9 (5.24)	189.9 (5.38)		
End Cap	14.9 (0.42)	45.1 (1.28)	46.6 (1.32)	48.3 (1.37)	49.9 (1.41)		

Note: Assumes 6" (150 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume.

Amount of Stone Per Chamber

English	Stone Foundation Depth						
English Tons (yds³)	9 in	12 in	15 in	18 in			
Chamber	8.5 (6.0)	9.1 (6.5)	9.7 (6.9)	10.4 (7.4)			
End Cap	3.9 (2.8)	4.1 (2.9)	4.3 (3.1)	4.5 (3.2)			
Metric Kilograms (m³)	230 mm	300 mm	375 mm	450 mm			
Chamber	7711 (4.6)	8255 (5.0)	8800 (5.3)	9435 (5.7)			
End Cap	3538 (2.1)	3719 (2.2)	3901 (2.4)	4082 (2.5)			

Note: Assumes 12" (300 mm) of stone above and 6" (150 mm) row spacing and 6" (150 mm) of perimeter stone in front of end caps.

Volume Excavation Per Chamber yd³ (m³)

	Stone Foundation Depth					
	9 in (230 mm)	12 in (300 mm)	15 in (375mm)	18 in (450 mm)		
Chamber	11.9 (9.1)	12.4 (9.5)	12.8 (9.8)	13.3 (10.2)		
End Cap	4.0 (3.1)	4.1 (3.3)	4.3 (3.3)	4.4 (3.4)		

Note: Assumes 6" (150 mm) of separation between chamber rows and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.

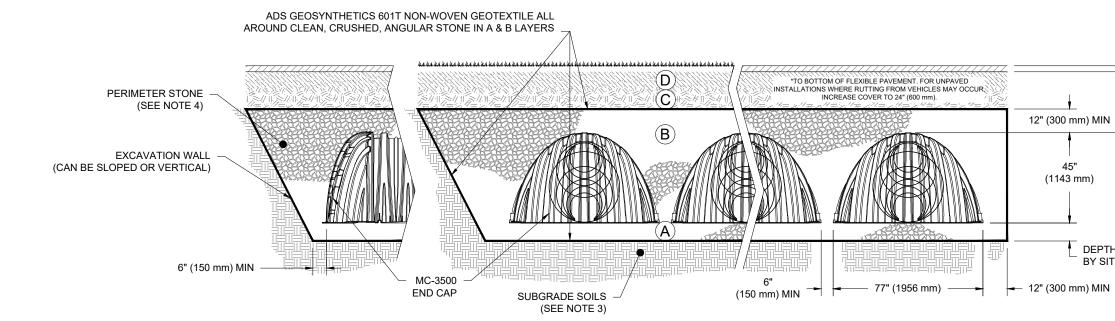
ADS StormTech products, manufactured in accordance with ASTM F2418 or ASTMF2922, comply with all requirements in the Build America, Buy America (BABA) Act.

Working on a project? Visit us at adspipe.com/stormtech and utilize the Design Tool

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® is a registered trademark of StormTech, Inc. © 2022 Advanced Drainage Systems, Inc. #S150909 12/22 CS adspipe.com 800-821-6710

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

		MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	СОМРА
	D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE
	С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMBE 12" (300 mm) WELL GRA
-	В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M431 3, 4	
	А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE COM

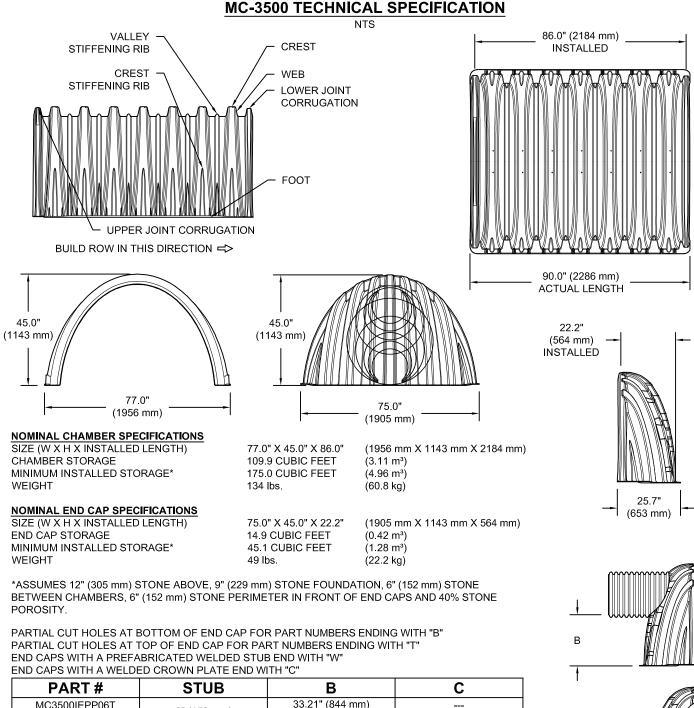

PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (A

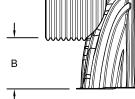
2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

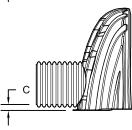
3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR COMPACTION REQUIREMENTS.

4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT TI

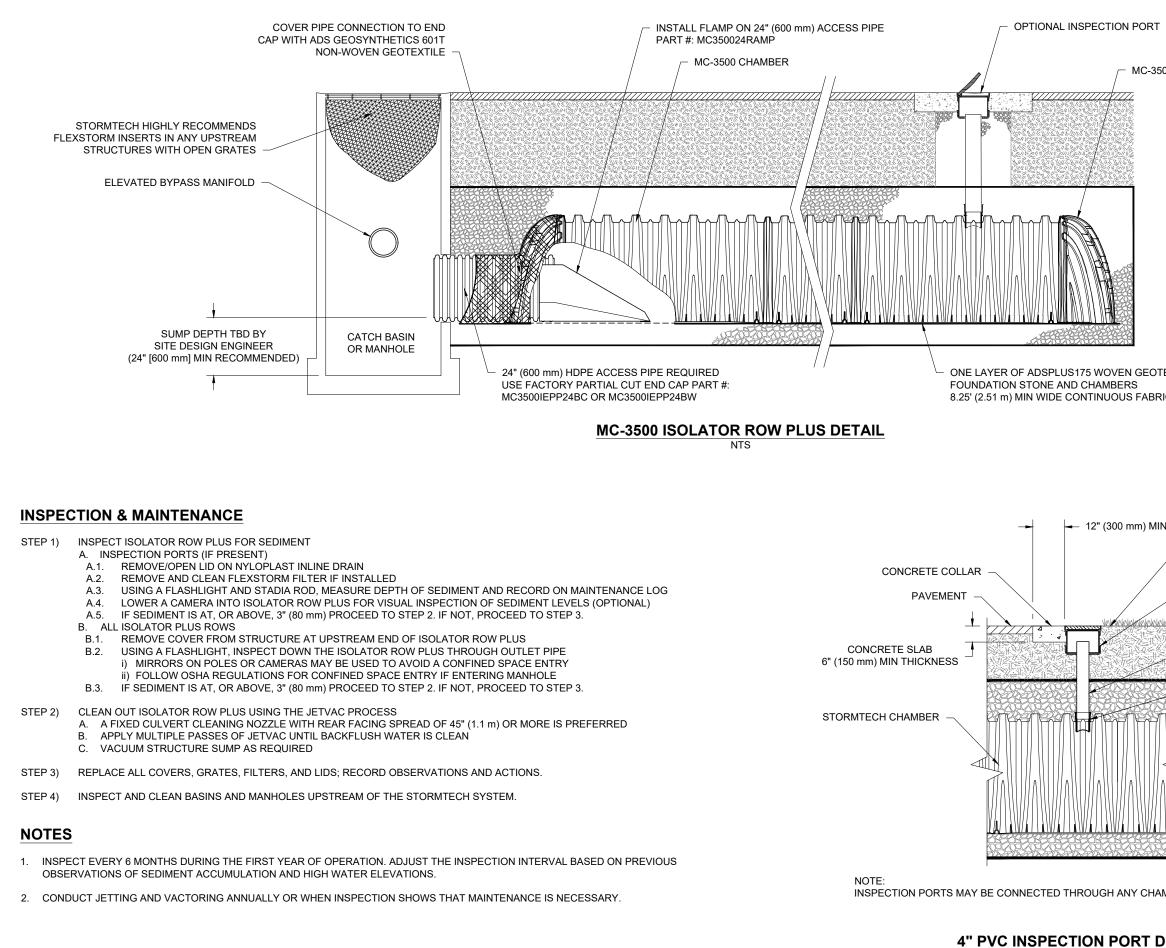


*FOR COVER DEPTHS GREATER THAN 8.0' (2.4 m) PLEASE CONTACT ADS


NOTES:


- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

PACTION / DENSITY REQUIREMENT ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED ALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. DMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER IBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN IMM MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR PROCESSED AGGREGATE MATERIALS. NO COMPACTION REQUIRED. COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2.3} AASHTO M43) STONE". IS SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR HE SITE DESIGN ENGINEER'S DISCRETION. MIN* MAX MIN* MAX	MC-3500		STANDARD CROSS SECTION	DATE: 8/03/22 DRAWN: KLJ	PROJECT #: CHECKED: KLJ
ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED ALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. DMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER IBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN Im) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. NO COMPACTION REQUIRED. COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3} AASHTO M43) STONE". SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR HE SITE DESIGN ENGINEER'S DISCRETION.	MC-3500		STANDARD CROSS SEC	8/03/22	
ALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. DMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER IBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN IMM) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. NO COMPACTION REQUIRED. COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2.3} AASHTO M43) STONE". R SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR THE SITE DESIGN ENGINEER'S DISCRETION. 18" (450 mm) (2.4 m)	MC-350		STANDARD CROS	8/03/22	
IBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN IMM) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. NO COMPACTION REQUIRED. COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3} AASHTO M43) STONE". SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR HE SITE DESIGN ENGINEER'S DISCRETION. 8' 18" (450 mm) (2.4 m)			STANDAR		PROJECT #:
COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3} AASHTO M43) STONE". SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR THE SITE DESIGN ENGINEER'S DISCRETION.					
AASHTO M43) STONE". SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR HE SITE DESIGN ENGINEER'S DISCRETION. 8' 18" (450 mm) (2.4 m)					
8 SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR THE SITE DESIGN ENGINEER'S DISCRETION.					TION
HE SITE DESIGN ENGINEER'S DISCRETION.					DESCRIPTION
8' 18" (450 mm) (2.4 m)					
18" (450 mm) (2.4 m)					
18" (450 mm) (2.4 m)					DRWN CHKD
18" (450 mm) (2.4 m)			_		
18" (450 mm) (2.4 m)					DATE
<u>Y</u>					MC
					TECH.COM
**THIS CROSS SECTION DETAIL REPRESENTS MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS. H OF STONE TO BE DETERMINED TE DESIGN ENGINEER 9" (230 mm) MIN		StormTech®		Chamber System	888-892-2694 WWW.STORMT
	4640 TRUEMAN BLVD	HILLIARD, OH 43026			
		P			
		;	sн С	EET	-


SIUB	В	0	
6" (150 mm)	33.21" (844 mm)		
0 (150 mm)		0.66" (17 mm)	
9" (200 mm)	31.16" (791 mm)		
8 (200 mm)		0.81" (21 mm)	1
10" (250 mm)	29.04" (738 mm)		
10 (250 mm)		0.93" (24 mm)	
10" (200 mm)	26.36" (670 mm)		
12 (300 mm)		1.35" (34 mm)	7
15" (275 mm)	23.39" (594 mm)] cι
13 (37311111)		1.50" (38 mm)	Α\
	20.02" (500 mm)		
18" (450 mm)	20.03 (509 mm)		12 AN
16 (450 1111)		1 77" (45 mm)	
		1.77 (45 1111)	IN
	14.49" (269 mm)		E
24" (600 mm)	14.40 (300 11111)		R
24 (000 11111)		2.06" (F2 mm)	- GI IN
		2.00 (52 mm)	
30" (750 mm)		2.75" (70 mm)	┨╥
	6" (150 mm) 8" (200 mm) 10" (250 mm) 12" (300 mm) 15" (375 mm) 18" (450 mm) 24" (600 mm)	$\begin{array}{c} \begin{array}{c} 33.21" (844 \text{ mm}) \\ \\ 33.21" (844 \text{ mm}) \\ \\ 31.16" (791 \text{ mm}) \\ \\ 31.16" (791 \text{ mm}) \\ \\ 29.04" (738 \text{ mm}) \\ \\ 20.03" (509 \text{ mm}) \\ 18" (450 \text{ mm}) \\ 18" (450 \text{ mm}) \\ \\ 20.03" (509 \text{ mm}) \\ \\ 24" (600 \text{ mm}) \\ \\ 14.48" (368 \text{ mm}) \\ \\ \\ 14.48" (368 \text{ mm}) \\ \\ \end{array}$	$\frac{33.21" (844 \text{ mm})}{} = 0.66" (17 \text{ mm})}{0.66" (17 \text{ mm})}$ $\frac{31.16" (791 \text{ mm})}{} = 0.81" (21 \text{ mm})}{} = 0.81" (21 \text{ mm})}$ $\frac{10" (250 \text{ mm})}{10" (250 \text{ mm})} = \frac{29.04" (738 \text{ mm})}{} = 0.93" (24 \text{ mm})}{} = 0.93" (24 \text{ mm})}$ $\frac{12" (300 \text{ mm})}{12" (300 \text{ mm})} = \frac{26.36" (670 \text{ mm})}{} = 1.35" (34 \text{ mm})}{} = 1.35" (34 \text{ mm})}$ $\frac{15" (375 \text{ mm})}{} = 1.50" (38 \text{ mm})}{} = 1.50" (38 \text{ mm})}$ $\frac{18" (450 \text{ mm})}{} = 1.77" (45 \text{ mm})}{} = 1.448" (368 \text{ mm})} =$ $\frac{24" (600 \text{ mm})}{} = 2.06" (52 \text{ mm})}$

TOM PARTIAL CUT INVERTS ARE ILABLE UPON REQUEST. ENTORIED MANIFOLDS INCLUDE 4" (300-600 mm) SIZE ON SIZE 15-48" (375-1200 mm) ENTRIC MANIFOLDS. CUSTOM ERT LOCATIONS ON THE MC-3500 CAP CUT IN THE FIELD ARE NOT OMMENDED FOR PIPE SIZES ATER THAN 10" (250 mm). THE ERT LOCATION IN COLUMN 'B' THE HIGHEST POSSIBLE FOR PIPE SIZE.

NOTE: ALL DIMENSIONS ARE NOMINAL

(MC SERIES CHAMBER

MBER CORRUGATION VALLEY.		N WIDTH CONCRETE COLLAR NOT REQUIRED FOR UNPAVED APPLICATIONS 8" NYLOPLAST INSPECTION PORT BODY (PART# 2708AG4IPKIT) OR TRAFFIC RATED BOX W/SOLID LOCKING COVER 4" (100 mm) SDR 35 PIPE 4" (100 mm) INSERTA TEE TO BE CENTERED ON CORRUGATION VALLEY	TEXTILE BETWEEN RIC WITHOUT SEAMS			500 END CAP
					MC	MC-3500
	4640 TRUEMAN BLVD HILLIARD, OH 43026	StormTech®				
					ISULA I UK KUV	V PLUS DE LAILS
		Chamber System			DATE: 8/03/22	DRAWN: KLJ
		888-892-2694 WWW.STORMTECH.COM	DATE DRWN CHKD	DESCRIPTION	PROJECT #:	CHECKED: KLJ
DRAWING HAS BEEN PREPA	ARED BASED ON INFORMATION PROVI	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE	ER OR OTHER PROJECT REPRESENTAT	TIVE. THE SITE DESIGN ENGINEER SP	ALL REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS THE
MATE RESPONSIBILITY OF 1	HE SITE DESIGN ENGINEER TO ENSUR	_	S MEET ALL APPLICABLE LAWS, KEGU	LATIONS, AND PROJECT REQUIREMEN	N15.	
	BER CORRUGATION VALLEY.	BEEL COLLINA NETER EASED ON INFORMATION PROVINCERED ON	4.4. (100 mul POCKING COVER 4.1. (100 mul Sobe 322.664 www.storer Bas-892-2664 www.storer Procession unroremation procure Consumer That the proportion of the Base association provided to a store and Base 2004 Interestion provided to a store and Base 2004 Interestication provided to a store and Base 20	XTILE BETWEEN WITHOUT SEAMS WIDTH CONCRETE COLLAR NOT REQUIRED FOR UNPAVED APPLICATIONS B" NYLOPLAST INSPECTION PORT BODY (PART# 2708AG4IPKIT) OR TRAFFIC RATED BOX W/SOLID LOCKING COVER 4" (100 mm) SDR 35 PIPE 4" (100 mm) SDR 35 PIPE 4" (100 mm) CORRUGATION VALLEY BER CORRUGATION VALLEY.	XTILE BETWEEN WITHOUT SEAMS WIDTH CONCRETE COLLAR NOT REQUIRED FOR UNPAVED APPLICATIONS 8" NYLOPLAST INSPECTION PORT BODY (PART# 2708AGIPKIT) OR TRAFFIC RATED BOX W/SOLID LOCKING COVER 4" (100 mm) SDR 35 PIPE 4" (100 mm) INSERTA TEE TO BE CENTERED ON CORRUGATION VALLEY BER CORRUGATION VALLEY.	XTILE BETWEEN XTILE BETWEEN WITHOUT SEAMS WI

Isolator[®] Row Plus O&M Manual

The Isolator® Row Plus

Introduction

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row Plus is a technique to inexpensively enhance Total Suspended Solids (TSS) and Total Phosphorus (TP) removal with easy access for inspection and maintenance.

The Isolator Row Plus

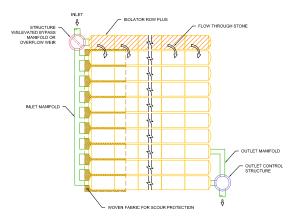
The Isolator Row Plus is a row of StormTech chambers, either SC-160, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-7200 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for sediment settling and filtration as stormwater rises in the Isolator Row Plus and passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC-310-3 and SC-740 models) allow stormwater to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row Plus protecting the adjacent stone and chambers storage areas from sediment accumulation.

ADS geotextile fabric is placed between the stone and the Isolator Row Plus chambers. The woven geotextile provides a media for stormwater filtration, a durable surface for maintenance, prevents scour of the underlying stone and remains intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the chamber's sidewall. The non-woven fabric is not required over the SC-160, DC-780, MC-3500 or MC-7200 models as these chambers do not have perforated side walls.

The Isolator Row Plus is designed to capture the "first flush" runoff and offers the versatility to be sized on a volume basis or a flow-rate basis. An upstream manhole provides access to the Isolator Row Plus and includes a high/low concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator Row Plus bypass through a manifold to the other chambers. This is achieved with an elevated bypass manifold or a high-flow weir. This creates a differential between the Isolator Row Plus row of chambers and the manifold to the rest of the system, thus allowing for settlement time in the Isolator Row Plus. After Stormwater flows through the Isolator Row Plus and into the rest of the chamber system it is either exfiltrated into the soils below or passed at a controlled rate through an outlet manifold and outlet control structure.

The Isolator Row FLAMP[™] (patent pending) is a flared end ramp apparatus attached to the inlet pipe on the inside of the chamber end cap. The FLAMP provides a smooth transition from pipe invert to fabric bottom. It is configured to improve chamber function performance by enhancing outflow of solid debris that would otherwise collect at the chamber's end. It also serves to improve the fluid and solid flow into the access pipe during maintenance and cleaning and to guide cleaning and inspection equipment back into the inlet pipe when complete.

The Isolator Row Plus may be part of a treatment train system. The treatment train design and pretreatment device selection by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, StormTech recommend using the Isolator Row Plus to minimize maintenance requirements and maintenance costs.


Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row Plus.

Looking down the Isolator Row PLUS from the manhole opening, ADS PLUS Fabric is shown between the chamber and stone base.

StormTech Isolator Row PLUS with Overflow Spillway (not to scale)

Isolator Row Plus Inspection/Maintenance

Inspection

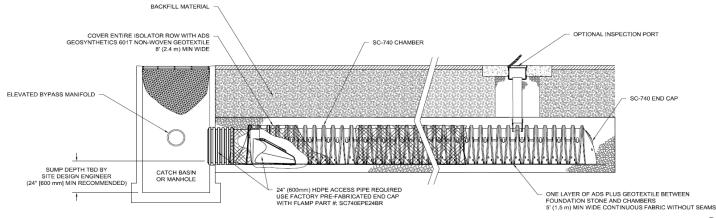
The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row Plus should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row Plus incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row Plus, clean-out should be performed.

Maintenance


The Isolator Row Plus was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row Plus while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. StormTech recommends a maximum nozzle pressure of 2000 psi be utilized during cleaning. JetVac reels can vary in length. For ease of maintenance, ADS recommends Isolator Row Plus lengths up to 200' (61 m). The JetVac process shall only be performed on StormTech Isolator Row Plus that have ADS Plus Fabric (as specified by StormTech) over their angular base stone.

StormTech Isolator Row PLUS (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-7200 chamber models and is not required over the entire Isolator Row PLUS.

Isolator Row Plus Step By Step Maintenance Procedures

Step 1

Inspect Isolator Row Plus for sediment.

A) Inspection ports (if present)

- i. Remove lid from floor box frame
- ii. Remove cap from inspection riser
- iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
- iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.

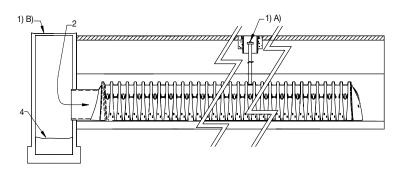
B) All Isolator Row Plus

- i. Remove cover from manhole at upstream end of Isolator Row Plus
- ii. Using a flashlight, inspect down Isolator Row Plus through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
- iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2.

If not, proceed to Step 3.

Step 2

Clean out Isolator Row Plus using the JetVac process.


- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required

Step 3

Replace all caps, lids and covers, record observations and actions.

Step 4

Inspect & clean catch basins and manholes upstream of the StormTech system.

Sample Maintenance Log

Date	Stadia Rod Fixed point to chamber bottom (1)	Readings Fixed point to top of sediment (2)	Sedi- ment Depth (1)–(2)	Observations/Actions	Inspector
3/15/11	6.3 ft	none		New installation, Fixed point is CI frame at grade	DJM
9/24/11		6.2	0,1 ft	some grit felt	SM
6/20/13		5.8	0.5 ft	Mucky feel, debris visible in manhole and in Isolator Row PLUS, maintenance due	NV
7/7/13	6.3 ft		0	System jetted and vacuumed	DJM

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® and the Isolator® Row Plus are registered trademarks of StormTech, Inc. © 2022 Advanced Drainage Systems, Inc. #11081 2/22 CS adspipe.com 800-821-6710

StormTech[®] Installation Guide MC-3500 & MC-4500 Chamber

- Acceptable fill materials per Table 1
- ADS Plus and non-woven geotextile fabrics
- StormTech solid end caps, pre-cored and pre-fabricated end caps
- StormTech chambers, manifolds and fittings

Note: MC-3500 chamber pallets are 77" x 90" (2.0 m x 2.3 m) and weigh about 2010 lbs. (912 kg) and MC-4500 pallets are 100" x 52" (2.5 m x 1.3 m) and weigh about 840 lbs. (381 kg). Unloading chambers requires 72" (1.8 m) (min.) forks and/or tie downs (straps, chains, etc).

Important Notes:

- A. This installation guide provides the minimum requirements for proper installation of chambers. Nonadherence to this guide may result in damage to chambers during installation. Replacement of damaged chambers during or after backfilling is costly and very time consuming. It is recommended that all installers are familiar with this guide, and that the contractor inspects the chambers for distortion, damage and joint integrity as work progresses.
- B. Use of a dozer to push embedment stone between the rows of chambers may cause damage to chambers and is not an acceptable backfill method. Any chambers damaged by using the "dump and push" method are not covered under the StormTech standard warranty.
- C. Care should be taken in the handling of chambers and end caps. End caps must be stored standing upright. Avoid dropping, prying or excessive force on chambers during removal from pallet and initial placement.

Requirements for System Installation

Excavate bed and prepare subgrade per engineer's plans. Plans and specifications should include Best Management Practices (BMPs) to deter contamination of open pits during construction.

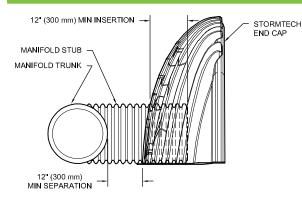
Place non-woven geotextile over prepared soils and up excavation walls.

Place clean, crushed, angular stone foundation 9" (230 mm) min. Install underdrains if required. Compact to achieve a flat surface.

Manifold, Scour Fabric and Chamber Assembly

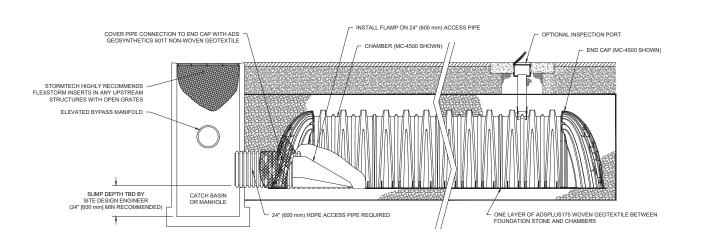
Install manifolds and lay out ADS PLUS fabric at inlet rows [min. 17.5 ft (5.33 m)] at each inlet end cap. Place a continuous piece (no seams) along entire length of Isolator[®] PLUS Row(s).

Align the first chamber and end cap of each row with inlet pipes. Contractor may choose to postpone stone placement around end chambers and leave ends of rows open for easy inspection of chambers during the backfill process.



overlapping chamber end corrugations. Chamber joints are labeled "Lower Joint - Overlap Here" and "Build this direction – Upper Joint" Be sure that the chamber placement does not exceed the reach of the construction equipment used to place the stone. Maintain minimum 6" (150 mm) spacing between MC-3500 rows and 9" (230 mm) spacing between MC-4500 rows.

Place a continuous layer of ADS PLUS fabric between the foundation stone and the Isolator Row PLUS chambers, making sure the fabric lays flat and extends the entire width of the chamber feet. When used on an Isolator Row PLUS, a 24" FLAMP (flared end ramp) is attached to the inside of the inlet pipe with a provided threaded rod and bolt. The FLAMP then lays on top of the ADS PLUS fabric.

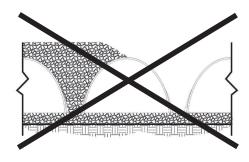

Manifold Insertion

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

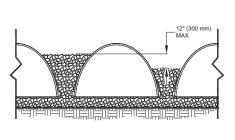
Insert inlet and outlet manifolds a minimum 12" (300 mm) into chamber end caps. Manifold header should be a minimum 12" (300 mm) from base of end cap.

StormTech Isolator Row Plus Detail

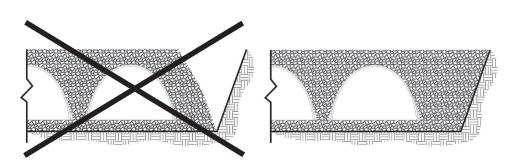
Initial Anchoring of Chambers – Embedment Stone



Initial embedment shall be spotted along the centerline of the chamber evenly anchoring the lower portion of the chamber. This is best accomplished with a stone conveyor or excavator reaching along the row.



No equipment shall be operated on the bed at this stage of the installation. Excavators must be located off the bed. Dump trucks shall not dump stone directly on to the bed. Dozers or loaders are not allowed on the bed at this time.


Backfill of Chambers – Embedment Stone

Uneven Backfill

Even Backfill

Perimeter Not Backfilled

Perimeter Fully Backfilled

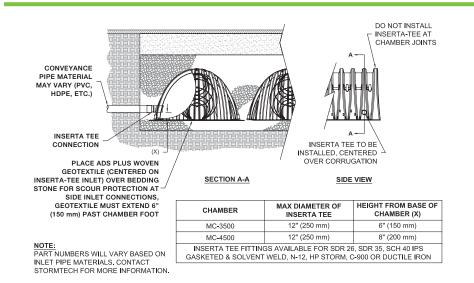
Backfill chambers evenly. Stone column height should never differ by more than 12" (300 mm) between adjacent chamber rows or between chamber rows and perimeter.

Perimeter stone must be brought up evenly with chamber rows. Perimeter must be fully backfilled, with stone extended horizontally to the excavation wall.

Backfill of Chambers – Embedment Stone and Cover Stone

Continue evenly backfilling between rows and around perimeter until embedment stone reaches tops of chambers and a minimum 12" (300 mm) of cover stone is in place. Perimeter stone must extend horizontally to the excavation wall for both straight or sloped sidewalls. The recommended backfill methods are with a stone conveyor outside of the bed or build as you go with an excavator inside the bed reaching along the rows. Backfilling while assembling chambers rows as shown in the picture will help to ensure that equipment reach is not exceeded.

<image>


Only after chambers have been backfilled to top of chamber and with a minimum 12" (300 mm) of cover stone on top of chambers can skid loaders and small LGP dozers be used to final grade cover stone and backfill material in accordance with ground pressure limits in Table 2. Equipment must push material parallel to rows only. Never push perpendicular to rows. StormTech recommends the contractor inspect chamber rows before placing final backfill. Any chambers damaged by construction equipment shall be removed and replaced.

Final Backfill of Chambers – Fill Material

Install non-woven geotextile over stone. Geotextile must overlap 24" (600 mm) where edges meet. Compact at 24" (600 mm) of fill. Roller travel parallel with rows.

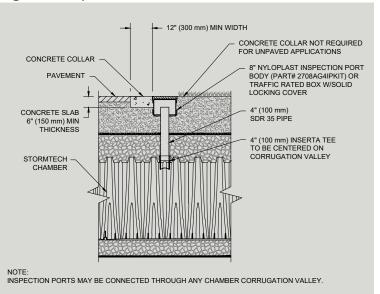
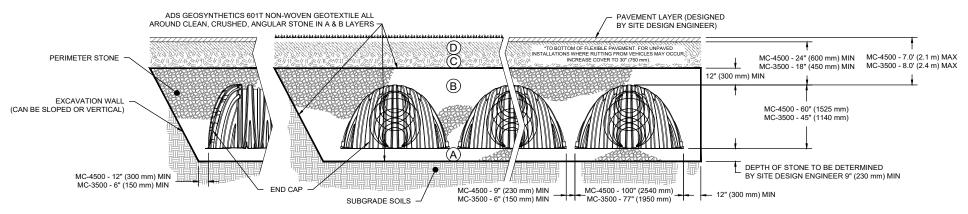

Inserta Tee Detail

Table 1- Acceptable Fill Materials

Material Location	Description	AASHTO M43 Designation ¹	Compaction/Density Requirement
(D) Final Fill: Fill Material for layer 'D' starts from the top of the 'C' layer to the bottom of flexible pavement or unpaved finished grade above. Note that the pavement subbase may be part of the 'D' layer.	Any soil/rock materials, native soils or per engineer's plans. Check plans for pavement subgrade requirements.	N/A	Prepare per site design engineer's plans. Paved installations may have stringent material and preparation requirements.
ⓒ Initial Fill: Fill Material for layer 'C' starts from the top of the embedment stone ('B' layer) to 24" (600 mm) above the top of the chamber. Note that pavement subbase may be part of the 'C' layer.	Granular well-graded soil/aggregate mixtures, <35% fines or processed aggregate. Most pavement subbase materials can be used in lieu of this layer.	AASHTO M145 ¹ A-1, A-2-4, A-3 or AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	Begin compaction after min. 24" (600 mm) of material over the chambers is reached. Compact additional layers in 12" (300 mm) max. lifts to a min. 95% Proctor density for well-graded material and 95% relative density for processed aggregate materials.
B Embedment Stone: Fill the surrounding chambers from the foundation stone (A' layer) to the 'C' layer above.	Clean, crushed, angular stone	AASHTO M43 ¹ 3, 4	No compaction required.
(A) Foundation Stone: Fill below chambers from the subgrade up to the foot (bottom) of the chamber.	Clean, crushed, angular stone,	AASHTO M43 ¹ 3, 4	Place and compact in 9" (230 mm) max lifts using two full coverages with a vibratory compactor. ^{2,3}


Figure 1- Inspection Port Detail

Please Note:

- 1. The listed AASHTO designations are for gradations only. The stone must also be clean, crushed, angular. For example, a specification for #4 stone would state: "clean, crushed, angular no. 4 (AASHTO M43) stone".
- 2. StormTech compaction requirements are met for 'A' location materials when placed and compacted in 9" (230 mm) (max) lifts using two full coverages with a vibratory compactor.
- 3. Where infiltration surfaces may be comprised by compaction, for standard installations and standard design load conditions, a flat surface may be achieved by raking or dragging without compaction equipment. For special load designs, contact StormTech for compaction requirements.

Figure 2 - Fill Material Locations

Notes:

- 1.36" (900 mm) of stabilized cover materials over the chambers is recommended during the construction phase if general construction activities, such as full dump truck travel and dumping, are to occur over the bed.
- 2. During paving operations, dump truck axle loads on 18" (450mm) of cover for MC-3500s may be necessary. Precautions should be taken to avoid rutting of the road base layer, to ensure that compaction requirements have been met, and that a minimum of 18" (450mm) of cover for MC-3500s exists over the chambers. Contact StormTech for additional guidance on allowable axle loads during paving.
- 3. Ground pressure for track dozers is the vehicle operating weight divided by total ground contact area for both tracks. Excavators will exert higher ground pressures based on loaded bucket weight and boom extension.
- 4. Mini-excavators (<8,000lbs/3,628 kg) can be used with at least 12" (300 mm) of stone over the chambers and are limited by the maximum ground pressures in Table 2 based on a full bucket at maximum boom extension.
- 5. StormTech does not require compaction of initial fill at 18" (450 mm) of cover. However, requirements by others for 6" (150 mm) lifts may necessitate the use of small compactors at 18" (450 mm) of cover.
- 6. Storage of materials such as construction materials, equipment, spoils, etc. should not be located over the StormTech system. The use of equipment over the StormTech system not covered in Table 2 (ex. soil mixing equipment, cranes, etc) is limited. Please contact StormTech for more information.
- 7. Allowable track loads based on vehicle travel only. Excavators shall not operate on chamber beds until the total backfill reaches 3 feet (900 mm) over the entire bed.

Call StormTech at **888.892.2694** for technical and product information or visit www.stormtech.com

Table 2 - Maximum Allowable Construction Vehicle Loads⁶

Material	Fill Depth	ers Max Axle Load Max Wheel Load Track Max Groun				Maximum Allowable Roller Loads	
Location	over Chambers in. (mm)				Max Drum Weight or Dynamic Force lbs (kN)		
D Final Fill Material	36" (900) Compacted	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	4050 (194) 2760 (132) 2130 (102) 1770 (84) 1530 (73)	38,000 (169)	
C Initial Fill Material		1920`(92)´ 1520 (73) 1310 (63)	20,000 (89)				
	24" (600)	MC-3500		12" (305)	2430 (116)	16,000 (71)	
	Loose/Dumped	32,000 (142)	16,000 (71)	18" (457) 24" (610)	1730 (82) 1390 (66)		
			-4500	30" (762) 1210 (58)	30" (762) 1210 (58)		
		24,000 (107)	12,000 (53)	36" (914)	1100 (52)	E 000 (22)	
	18" (450)		-3500	12" (305)	2140 (102) 1530 (73)	5,000 (22) (static loads only)⁵	
		32,000 (142)	16,000 (71)	18" (457) 24" (610)	1260 (60)	(Static loads of ly) ³	
	IVIC-4500 30" (762)	1120 (53)					
	4.2// (200)	24,000 (107)	12,000 (53)	36" (914)	1030 (49)		
B)Embedment Stone	12" (300)	Not Allowed	Not Allowed	12" (305) 18" (457) 24" (610) 30" (762)	1100 (53) 710 (34) 660 (32) 580 (28)	Not Allowed	
	6" (150)	Not Allowed	Not Allowed	Not Allowed	Not Allowed	Not Allowed	

Table 3 - Placement Methods and Descriptions

Material	Placement Methods/ Restrictions	Wheel Load Restrictions	Track Load Restrictions	Roller Load Restrictions		
Location	Restrictions	See Table	e 2 for Maximum Constru	ction Loads		
Final Fill Material	A variety of placement methods may be used. All construction loads must not exceed the maximum limits in Table 2.	36" (900 mm) minimum cover required for dump trucks to dump over chambers.	Dozers to push parallel to rows. ⁴	Roller travel parallel to rows only until 36" (900 mm) compacted cover is reached.		
©Initial Fill Material	Excavator positioned off bed recom- mended. Small excavator allowed over chambers. Small dozer allowed.	Asphalt can be dumped into paver when compacted pavement subbase reaches 24" (600 mm) above top of chambers.	Small LGP track dozers & skid loaders allowed to grade cover stone with at least 12" (300 mm) stone under tracks at all times. Equipment must push par- allel to rows at all times.	Use dynamic force of roller only after compacted fill depth reaches 24" (600 mm) over chambers. Roller travel parallel to chamber rows only.		
B Embedment Stone	No equipment allowed on bare chambers. Use excavator or stone conveyor positioned off bed or on foundation stone to evenly fill around all chambers to at least the top of chambers.	No wheel loads allowed. Material must be placed outside the limits of the chamber bed.	No tracked equipment is allowed on chambers until a min. 12" (300 mm) cover stone is in place.	No rollers allowed.		
A Foundation Stone	No StormTech restrictions. Contractor responsible for any conditions or requirements by others relative to subgrade bearing capacity, dewatering or protection of subgrade.					

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com. Advanced Drainage Systems, the ADS logo, and the green stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® and the Isolator® Row PLUS are registered trademarks of StormTech, Inc. ©2022 Advanced Drainage Systems, Inc. #10816 5/22 CS

StormTech® Standard Limited Warranty

STANDARD LIMITED WARRANTY OF STORMTECH LLC ("STORMTECH"): PRODUCTS

- (A) This Limited Warranty applies solely to the StormTech chambers and end plates manufactured by StormTech and sold to the original purchaser (the "Purchaser"). The chambers and end plates are collectively referred to as the "Products."
- (B) The structural integrity of the Products, when installed strictly in accordance with StormTech's written installation instructions at the time of installation, are warranted to the Purchaser against defective materials and workmanship for one (1) year from the date of purchase. Should a defect appear in the Limited Warranty period, the Purchaser shall provide StormTech with written notice of the alleged defect at StormTech's corporate headquarters within ten (10) days of the discovery of the defect. The notice shall describe the alleged defect in reasonable detail. StormTech agrees to supply replacements for those Products determined by StormTech to be defective and covered by this Limited Warranty. The supply of replacement products is the sole remedy of the Purchaser for breaches of this Limited Warranty. StormTech's liability specifically excludes the cost of removal and/or installation of the Products.
- (C) THIS LIMITED WARRANTY IS EXCLUSIVE. THERE ARE NO OTHER WARRANTIES WITH RESPECT TO THE PRODUCTS, INCLUDING NO IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.
- (D) This Limited Warranty only applies to the Products when the Products are installed in a single layer. UNDER NO CIRCUMSTANCES, SHALL THE PRODUCTS BE INSTALLED IN A MULTI-LAYER CONFIGURATION.
- (E) No representative of StormTech has the authority to change this Limited Warranty in any manner or to extend this Limited Warranty. This Limited Warranty does not apply to any person other than to the Purchaser.

- (F) Under no circumstances shall StormTech be liable to the Purchaser or to any third party for product liability claims; claims arising from the design, shipment, or installation of the Products, or the cost of other goods or services related to the purchase and installation of the Products. For this Limited Warranty to apply, the Products must be installed in accordance with all site conditions required by state and local codes; all other applicable laws; and StormTech's written installation instructions.
- (G) THE LIMITED WARRANTY DOES NOT EXTEND TO INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES. STORMTECH SHALL NOT BE LIABLE FOR PENALTIES OR LIQUIDATED DAMAGES, INCLUDING LOSS OF PRODUCTION AND PROFITS: LABOR AND MATERIALS: OVERHEAD COSTS: OR OTHER LOSS OR EXPENSE INCURRED BY THE PURCHASER OR ANY THIRD PARTY. SPECIFICALLY EXCLUDED FROM LIMITED WARRANTY COVERAGE ARE DAMAGE TO THE PRODUCTS ARISING FROM ORDINARY WEAR AND TEAR: ALTERATION, ACCIDENT, MISUSE, ABUSE OR NEGLECT; THE PRODUCTS BEING SUBJECTED TO VEHICLE TRAFFIC OR OTHER CONDITIONS WHICH ARE NOT PERMITTED BY STORMTECH'S WRITTEN SPECIFICATIONS OR INSTALLATION INSTRUCTIONS: FAILURE TO MAINTAIN THE MINIMUM GROUND COVERS SET FORTH IN THE INSTALLATION INSTRUCTIONS; THE PLACEMENT OF IMPROPER MATERIALS INTO THE PRODUCTS; FAILURE OF THE PRODUCTS DUE TO IMPROPER SITING OR IMPROPER SIZING: OR ANY OTHER EVENT NOT CAUSED BY STORMTECH. A PRODUCT ALSO IS EXCLUDED FROM LIMITED WARRANTY COVERAGE IF SUCH PRODUCT IS USED IN A PROJECT OR SYSTEM IN WHICH ANY GEOTEXTILE PRODUCTS OTHER THAN THOSE PROVIDED BY ADVANCED DRAINAGE SYSTEMS ARE USED. THIS LIMITED WARRANTY REPRESENTS STORMTECH'S SOLE LIABILITY TO THE PURCHASER FOR CLAIMS RELATED TO THE PRODUCTS. WHETHER THE CLAIM IS BASED UPON CONTRACT. TORT, OR OTHER LEGAL THEORY.

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech* is a registered trademark of StormTech, Inc. © 2023 Advanced Drainage Systems, Inc. 3/23 CS adspipe.com 800-821-6710

ADS 0601T/O NONWOVEN GEOTEXTILE SPECIFICATION

Scope

This specification describes ADS 0601T/O nonwoven geotextile.

Filter Fabric Requirements

ADS 0601T/O is an orange nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. ADS 0601T/O is inert to biological degradation and resists naturally encountered chemicals, alkali and acids. ADS 0601T/O conforms to the physical property values listed below:

Filter Fabric Properties

Property	Test Method	Unit	Typical Value ¹ MD	Typical Value ¹ CD
Grab Tensile Strength	ASTM D4632	lbs (N)	175 (779)	175 (779)
Grab Tensile Elongation	ASTM D4632	%	75	75
Trapezoid Tear Strength	ASTM D4533	lbs (N)	85 (378)	85 (378)
CBR Puncture Strength	ASTM D6241	lbs (N)	480 (2136)	480 (2136)
Permittivity	ASTM D4491	sec ⁻¹	1.5	1.5
Flow Rate	ASTM D4491	gal/min/ft² (l/min/m²)	105 (4278)	105 (4278)
UV Resistance (at 500 hours) ¹	ASTM D4355	% strength retained	80	80

Physical Properties

Property	Test Method	Unit	Typical Value ²
Weight	ASTM D5161	oz/yd² (g/m²)	6.5 (220)
Thickness	ASTM D5199	mils (mm)	65 (1.7)
Roll Dimensions (W x L)	-	ft (m)	15 x 300 (4.5 x 91)
Roll Area	-	yd² (m²)	500 (418)
Estimated Roll Weight	-	lb (kg)	220 (100)

1 Modified, Minimum Test Value

2 ASTM D4439 Standard Terminology for Geosynthetics: typical value, n-for geosynthetics, the mean value calculated from documented manufacturing quality control test results for a defined population obtained from one test method associated with on specific property.

ADS 315W WOVEN GEOTEXTILE SPECIFICATION

Scope

This specification describes ADS 315W woven geotextile.

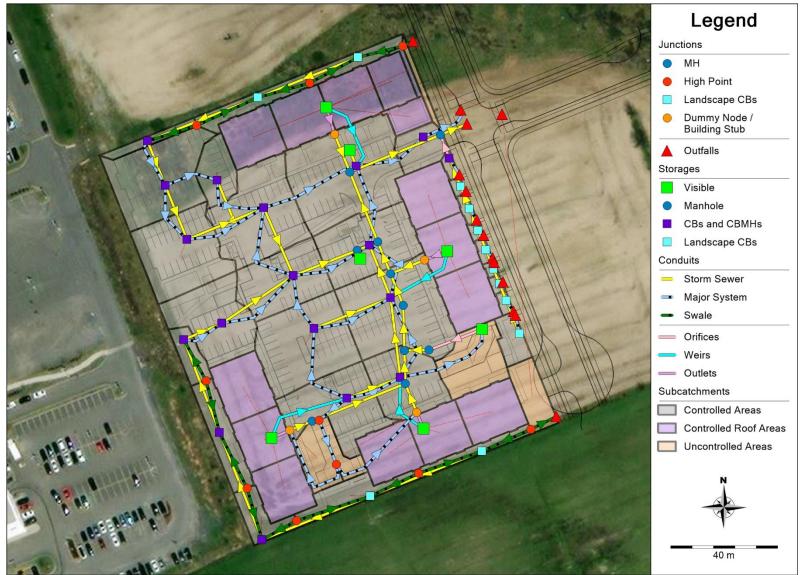
Filter Fabric Requirements

ADS 315W is manufactured using high-tenacity polypropylene yarns that are woven to form a dimensionally stable network, which allows the yarns to maintain their relative position. ADS 315W resists ultraviolet deterioration, rotting and biological degradation and is inert to commonly encountered soil chemicals. ADS 315W conforms to the physical property values listed below:

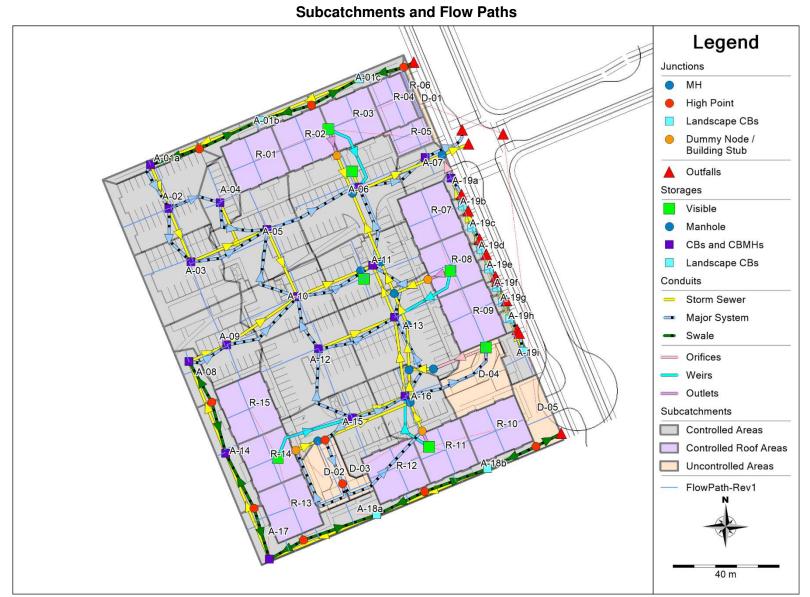
Filter Fabric Properties

Property	Test Method	Unit	M.A.R.V. (Minimum Average Roll Value)²
Tensile Strength (Grab)	ASTM D4632	lbs (N)	315 (1400)
Elongation	ASTM D4632	%	15
CBR Puncture	ASTM D6241	lbs (N)	900 (4005)
Puncture	ASTM D4833	lbs (N)	150 (667)
Mullen Burst	ASTM D3786	psi (kPa)	600 (4134)
Trapezoidal Tear	ASTM D4533	lbs (N)	120 (533)
UV Resistance (at 500 hours)	ASTM D4355	%	70
Apparent Opening Size (AOS)*	ASTM D4751	U.S. Sieve (mm)	40 (.425)
Permittivity	ASTM D4491	Sec ⁻¹	.05
Water Flow Rate	ASTM D4491	gpm/ft ² (l/min/m ²)	4 (163)

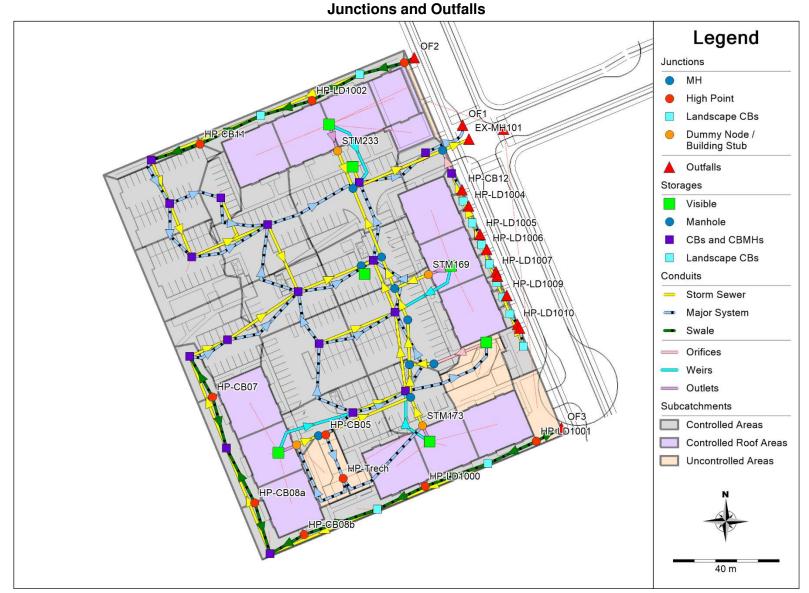
* Maximum average roll value.

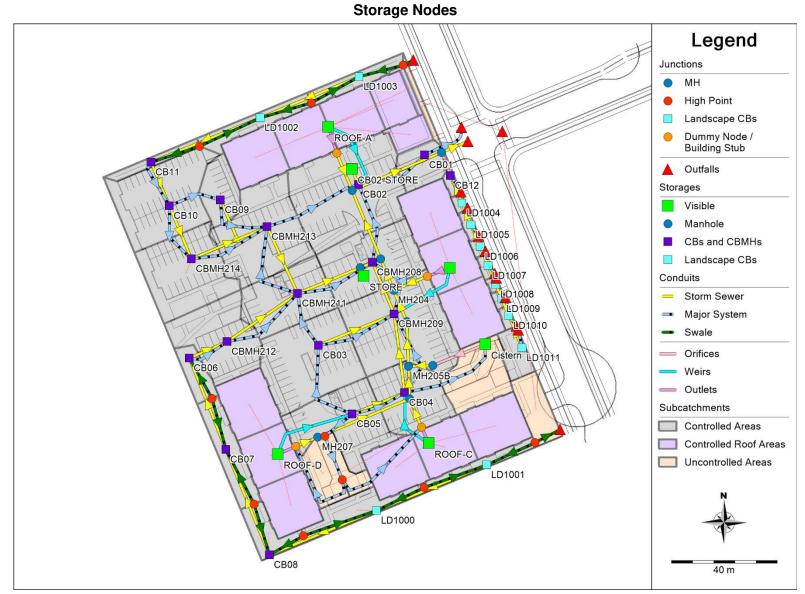

Packaging

Roll Dimensions (W x L) - ft. (m)	12.5 x 360/ 15 x 300 / 17.5 x 258 (3.81 x 109.8/ 4.57 x 91.5 / 5.33 x 78.6)
-----------------------------------	---



Overall Model Schematic




Date: 2023-09-11 M:\2022\122179\DATA\Calculations\SWM\PCSWMM\122179-PCSWMM Model Schematics-Rev1.docx

Date: 2023-09-11 M:\2022\122179\DATA\Calculations\SWM\PCSWMM\122179-PCSWMM Model Schematics-Rev1.docx

Date: 2023-09-11 M:\2022\122179\DATA\Calculations\SWM\PCSWMM\122179-PCSWMM Model Schematics-Rev1.docx

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) _____ _____ -----

Boundary Condition Based on Statec model at MH101 2-year = 86.63m 5-year = 86.63m

WARNING 04: minimum elevation drop used for Conduit HP-CB02 WARNING 04: minimum elevation drop used for Conduit HP-CB03a WARNING 04: minimum elevation drop used for Conduit HP-CB03b WARNING 04: minimum elevation drop used for Conduit HP-CB04 WARNING 04: minimum elevation drop used for Conduit HP-CB05a WARNING 04: minimum elevation drop used for Conduit HP-CB05b WARNING 04: minimum elevation drop used for Conduit HP-CB06 WARNING 04: minimum elevation drop used for Conduit HP-CB09 WARNING 04: minimum elevation drop used for Conduit HP-CB10a WARNING 04: minimum elevation drop used for Conduit HP-CB10b WARNING 04: minimum elevation drop used for Conduit HP-CB11 WARNING 04: minimum elevation drop used for Conduit HP-CBMH208 WARNING 04: minimum elevation drop used for Conduit HP-CBMH209 WARNING 04: minimum elevation drop used for Conduit HP-CBMH211a WARNING 04: minimum elevation drop used for Conduit HP-CBMH211b WARNING 04: minimum elevation drop used for Conduit HP-CBMH212 WARNING 04: minimum elevation drop used for Conduit HP-CBMH213 WARNING 04: minimum elevation drop used for Conduit HP-CBMH214 WARNING 04: minimum elevation drop used for Conduit MS01 WARNING 04: minimum elevation drop used for Conduit MS05 WARNING 04: minimum elevation drop used for Conduit MS06 WARNING 04: minimum elevation drop used for Conduit MS07 WARNING 04: minimum elevation drop used for Conduit MS08 WARNING 04: minimum elevation drop used for Conduit MS09 WARNING 04: minimum elevation drop used for Conduit MS10 WARNING 04: minimum elevation drop used for Conduit MS11 WARNING 04: minimum elevation drop used for Conduit MS12 WARNING 04: minimum elevation drop used for Conduit MS13 WARNING 02: maximum depth increased for Node CB02 WARNING 02: maximum depth increased for Node CBMH208 WARNING 02: maximum depth increased for Node CBMH213

* * * * * * * * * * * * *

Element Count ******** Number of rain gages 1 Number of subcatchments ... 50 Number of nodes 75 Number of links 104 Number of pollutants 0 Number of land uses 0

* * * * * * * * * * * * * * * * Raingage Summary

Raingage 03-C100yr-3hr INTENSITY 10 min.

0.01 60.00

86.67

66.67

64.00

57.33

33.33

58.23

70.53

37.14

45.00

56.92

49.29

53.33

63.12

69.41

92.50

52.67

Area

0.03

0.02

0.10

0.09

0.03

0.10

0.13

0.03

0.02

0.07

0.07

0.08

0.10

0.12

0.04

0.08

* * * * * * * * * * * * * *

| Name | Data Source | Data
Type | Recording
Interval |
|----------|----------------|--------------|-----------------------|
| Daingaga | 0.2 c100um 3hm | TNUENCTON | 10 min |

Width %Imperv %Slope Rain Gage

15.70

80.00

92.90

74.30

74.30

70.00

81.40

94.30

85.70

95.70

4.30

87.10

15.70 2.0000 Raingage 15.70 1.5000 Raingage

2.0000 Raingage

2.0000 Raingage

2.0000 Raingage

2.5000 Raingage

2.5000 Raingage

2.0000 Raingage

1.0000 Raingage

2.0000 Raingage

2.0000 Raingage

2.0000 Raingage

 95.70
 2.0000
 Raingage

 95.70
 2.0000
 Raingage

 15.70
 1.0000
 Raingage

 88.60
 2.0000
 Raingage

2.0000 Raingage

2.0000 Raingage

Outlet

LD1002

LD1003

CBMH214

CBMH213

CBMH212

CBMH211

CBMH208

CBMH209

CB11

CB10

CB09

CB02

CB01

CB06

СВ03

CB07 CB05

* Subcatchment Summary * * * * * * * * * * * * * * * * * * *

Name

A-01a

A-01b

A-01c

A-02

A-03

A-04

A-05

A-06

A-07

A-08

A-09

A-10

A-11

A-12

A-13

A-14

A-15

| Name | Туре | | lev. | Depth | Area | Inflow | |
|-------------------------|------|----------------|----------------|--------|----------------------|------------|------------------|
| * * * * * * * * * * * | | т., | vert | Max. | Ponded | D + | |
| Node Summary | | | | | | | |
| * * * * * * * * * * * * | | | | | | | |
| R-15 | 0.04 | 21.00 | 100.00 | 0.5000 | каıngage | | ROOF-D |
| | | | 100.00 | | Raingage | | |
| R-13
R-14 | 0.04 | 20.53
19.47 | 100.00 | | Raingage
Raingage | | ROOF-D
ROOF-D |
| R-12 | 0.04 | 20.53 | 100.00 | | Raingage | | ROOF-C |
| R-11 | 0.04 | 19.47 | 100.00 | | Raingage | | ROOF-C |
| | | | | | | | |
| R-09
R-10 | 0.04 | 21.00
21.00 | 100.00 | | Raingage
Raingage | | ROOF-B
ROOF-C |
| R-08
R-09 | 0.04 | | | | | | |
| R-07
R-08 | 0.04 | 20.53
19.47 | 100.00 | | Raingage
Raingage | | ROOF-B
ROOF-B |
| R-06
R-07 | 0.00 | 3.64 | 100.00 | | Raingage | | ROOF-A |
| R-05 | 0.01 | 12.50 | 100.00 | | Raingage | | ROOF-A |
| R-04 | 0.03 | 15.63 | 100.00 | 0.0000 | Raingage | | ROOF-A |
| R-03 | 0.04 | 19.47 | 100.00 | | Raingage | | ROOF-A |
| | | | | 0.5000 | Raingage | | ROOF-A |
| R-01
R-02 | 0.04 | 20.53
19.47 | 100.00 | 0.5000 | Kaingage | | |
| D-05
R-01 | 0.03 | 25.46 | 28.60 | | Raingage | | ROOF-A |
| D-04
D-05 | 0.05 | | 28.60 | | Raingage | | OF-Unc |
| D-03
D-04 | 0.01 | 4.48 | 75.70 | | Raingage | | Cistern |
| D-02
D-03 | 0.03 | 9.06 | 100.00 | 7.0000 | Raingage | | STM161
STM173 |
| D-01
D-02 | 0.01 | 9.06 | 70.00 | 6.5000 | Raingage | | STM161 |
| A-191
D-01 | 0.02 | 23.71
35.00 | 38.60
41.40 | | Raingage
Raingage | | LD1011
OF-Unc |
| A-19h
A-19i | 0.00 | 12.00 | 38.60 | | Raingage | | LD1010 |
| A-19g | 0.00 | 9.33 | 38.60 | | Raingage | | LD1009 |
| A-19f | 0.00 | 12.00 | 38.60 | | Raingage | | LD1008 |
| A-19e | 0.00 | 13.00 | 38.60 | | Raingage | | LD1007 |
| A-19d | 0.00 | 9.33 | 38.60 | | Raingage | | LD1006 |
| A-19c | 0.00 | 12.00 | 38.60 | | Raingage | | LD1005 |
| A-19b | 0.00 | 9.33 | 38.60 | | Raingage | | LD1004 |
| A-19a | 0.00 | 10.50 | 38.60 | | Raingage | | CB12 |
| A-18b | 0.02 | 85.00 | 30.00 | | Raingage | | LD1001 |
| A-18a | | 110.00 | 30.00 | | Raingage | | LD1000 |
| | 0.02 | | 11.40 | | Raingage | | |
| A-17 | | 76.67 | | | | | CB08 |

| HP-CB05 | JUNCTION | 89.15 | 0.35 | 0.0 |
|------------|----------|-------|------|-----|
| HP-CB07 | JUNCTION | 89.18 | 0.35 | 0.0 |
| HP-CB08a | JUNCTION | 89.20 | 0.35 | 0.0 |
| HP-CB08b | JUNCTION | 89.35 | 0.35 | 0.0 |
| HP-CB11 | JUNCTION | 89.20 | 0.35 | 0.0 |
| HP-LD1000 | JUNCTION | 89.15 | 0.35 | 0.0 |
| HP-LD1001 | JUNCTION | 89.10 | 0.35 | 0.0 |
| HP-LD1002 | JUNCTION | 89.10 | 0.35 | 0.0 |
| HP-LD1003 | JUNCTION | 89.05 | 0.35 | 0.0 |
| HP-Trech | JUNCTION | 86.85 | 0.35 | 0.0 |
| STM161 | JUNCTION | 85.15 | 4.25 | 0.0 |
| STM169 | JUNCTION | 84.80 | 4.48 | 0.0 |
| STM173 | JUNCTION | 85.03 | 4.39 | 0.0 |
| STM233 | JUNCTION | 87.10 | 2.22 | 0.0 |
| EX-MH101 | OUTFALL | 83.17 | 1.11 | 0.0 |
| HP-CB12 | OUTFALL | 88.89 | 0.35 | 0.0 |
| HP-LD1004 | OUTFALL | 88.85 | 0.35 | 0.0 |
| HP-LD1005 | OUTFALL | 88.75 | 0.35 | 0.0 |
| HP-LD1006 | OUTFALL | 88.73 | 0.35 | 0.0 |
| HP-LD1007 | OUTFALL | 88.67 | 0.35 | 0.0 |
| HP-LD1008 | OUTFALL | 88.67 | 0.35 | 0.0 |
| HP-LD1009 | OUTFALL | 88.68 | 0.35 | 0.0 |
| HP-LD1010 | OUTFALL | 88.65 | 0.35 | 0.0 |
| HP-LD1011 | OUTFALL | 88.66 | 0.35 | 0.0 |
| OF1 | OUTFALL | 88.59 | 0.35 | 0.0 |
| OF2 | OUTFALL | 88.59 | 0.35 | 0.0 |
| OF3 | OUTFALL | 88.70 | 0.35 | 0.0 |
| OF-Unc | OUTFALL | 0.00 | 0.00 | 0.0 |
| CB01 | STORAGE | 87.50 | 1.55 | 0.0 |
| CB02 | STORAGE | 86.10 | 3.25 | 0.0 |
| CB02-STORE | STORAGE | 86.90 | 2.05 | 0.0 |
| CB03 | STORAGE | 87.55 | 1.55 | 0.0 |
| CB04 | STORAGE | 87.38 | 1.72 | 0.0 |
| CB05 | STORAGE | 87.65 | 1.55 | 0.0 |
| CB06 | STORAGE | 86.69 | 2.66 | 0.0 |
| CB07 | STORAGE | 87.07 | 2.23 | 0.0 |
| CB08 | STORAGE | 87.29 | 2.06 | 0.0 |
| СВ09 | STORAGE | 87.65 | 1.55 | 0.0 |
| CB10 | STORAGE | 86.81 | 2.29 | 0.0 |
| CB11 | STORAGE | 87.06 | 2.14 | 0.0 |
| CB12 | STORAGE | 85.33 | 3.77 | 0.0 |
| | | | | |

| Name | From Node | To Node | | - | %Slope Roughne |
|-------------------------|--------------------|---------|--------------|-----|----------------|
| Link Summary
******* | | | | | |
| * * * * * * * * * * * * | | | | | |
| 010KE | SIORAGE | 00.50 | 2.00 | 0.0 | |
| ROOF-D
STORE | STORAGE | | 2.63 | | |
| | STORAGE | | 0.35 | | |
| ROOF-B
ROOF-C | STORAGE
STORAGE | 91.00 | 0.35 | 0.0 | |
| ROOF-A | STORAGE | 91.00 | | 0.0 | |
| MH215 | STORAGE | | 4.19 | 0.0 | |
| MH210 | STORAGE | | 2.93 | 0.0 | |
| MH207 | STORAGE | 84.96 | | 0.0 | |
| MH206 | STORAGE | 84.72 | | 0.0 | |
| MH205B | STORAGE | 84.65 | | 0.0 | |
| MH205 | STORAGE | | 4.25 | | |
| MH204 | STORAGE | | 4.51 | | |
| MH203 | STORAGE | | | 0.0 | |
| MH202 | STORAGE | 83.99 | 4.66
4.52 | 0.0 | |
| MH201 | STORAGE | 83.80 | | 0.0 | |
| LD1011 | STORAGE | | 1.35 | | |
| LD1010 | STORAGE | | 1.43 | | |
| LD1009 | STORAGE | | | 0.0 | |
| LD1008 | STORAGE | 87.44 | 1.51 | 0.0 | |
| LD1007 | STORAGE | 87.39 | | 0.0 | |
| LD1006 | STORAGE | | 1.66 | | |
| LD1005 | STORAGE | | | | |
| LD1004 | STORAGE | 87.24 | 1.86 | 0.0 | |
| LD1003 | STORAGE | 87.55 | 1.55 | 0.0 | |
| LD1002 | STORAGE | | 1.81 | 0.0 | |
| LD1001 | STORAGE | | 1.35 | | |
| LD1000 | STORAGE | | 1.68 | 0.0 | |
| Cistern | STORAGE | 86.39 | | 0.0 | |
| CBMH214 | STORAGE | 86.58 | | 0.0 | |
| CBMH213 | STORAGE | | 2.97 | 0.0 | |
| CBMH212 | STORAGE | | 2.67 | | |
| CBMH211 | STORAGE | | 2.81 | 0.0 | |
| CBMH209 | STORAGE | | | | |
| | | 86.28 | 2.77 | 0.0 | |

| CB03-CBMH209 | CB03 | CBMH209 | CONDUIT | 30.9 | 1.0033 | 0.0130 |
|------------------|---------|---------|---------|------|---------|--------|
| CB04-CBMH209 | CB04 | CBMH209 | CONDUIT | 30.0 | 1.0001 | 0.0130 |
| CB05-CB04 | CB05 | CB04 | CONDUIT | 21.5 | 0.9768 | 0.0130 |
| CB06-CBMH212 | CB06 | CBMH212 | CONDUIT | 15.5 | 0.5161 | 0.0130 |
| CB07-CB06 | CB07 | CB06 | CONDUIT | 37.2 | 0.5108 | 0.0130 |
| CB08-CB07 | CB08 | CB07 | CONDUIT | 43.0 | 0.4884 | 0.0130 |
| CB09-CBMH214 | СВ09 | CBMH214 | CONDUIT | 16.2 | 0.9877 | 0.0130 |
| CB10-CBMH214 | CB10 | CBMH214 | CONDUIT | 21.7 | 0.4608 | 0.0130 |
| CB11-CB10 | CB11 | CB10 | CONDUIT | 17.8 | 0.5056 | 0.0130 |
| CBMH209-CBMH208 | CBMH209 | CBMH208 | CONDUIT | 21.1 | 0.5213 | 0.0130 |
| CBMH211-MH210 | CBMH211 | MH210 | CONDUIT | 25.6 | 0.3125 | 0.0130 |
| CBMH212-CBMH211 | CBMH212 | CBMH211 | CONDUIT | 32.2 | 0.4969 | 0.0130 |
| CBMH213-CBMH211 | CBMH213 | CBMH211 | CONDUIT | 27.6 | 0.2899 | 0.0130 |
| CBMH214-CBMH213 | CBMH214 | CBMH213 | CONDUIT | 31.1 | 0.2894 | 0.0130 |
| HP-CB01 | CB01 | OF1 | CONDUIT | 3.0 | 8.0257 | 0.0160 |
| HP-CB02 | CB02 | CB01 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB03a | CB03 | CBMH209 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB03b | CB03 | CBMH211 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB04 | CB04 | CBMH209 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB05a | CB05 | CB04 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB05b | CB05 | CB03 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB06 | CB06 | CBMH212 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB09 | CB09 | CBMH213 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB10a | CB10 | CBMH214 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB10b | CB10 | CB09 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CB11 | CB11 | CB10 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CBMH208 | CBMH208 | CB02 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CBMH209 | CBMH209 | CBMH208 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CBMH211a | CBMH211 | CBMH208 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CBMH211b | CBMH211 | CBMH213 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CBMH212 | CBMH212 | CBMH211 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CBMH213 | CBMH213 | CB02 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-CBMH214 | CBMH214 | CBMH213 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| HP-TrenchCistern | CB04 | Cistern | CONDUIT | 3.0 | -2.0004 | 0.0160 |
| LD1000-CB08 | LD1000 | CB08 | CONDUIT | 43.7 | 0.5034 | 0.0130 |
| LD1001-LD1000 | LD1001 | LD1000 | CONDUIT | 45.0 | 0.4889 | 0.0130 |
| LD1002-CB11 | LD1002 | CB11 | CONDUIT | 44.4 | 0.4955 | 0.0130 |
| LD1003-LD1002 | LD1003 | LD1002 | CONDUIT | 40.4 | 0.4951 | 0.0130 |
| LD1004-CB12 | LD1004 | CB12 | CONDUIT | 11.3 | 0.5310 | 0.0130 |
| LD1005-LD1004 | LD1005 | LD1004 | CONDUIT | 8.9 | 0.4494 | 0.0130 |
| LD1006-LD1005 | LD1006 | LD1005 | CONDUIT | 8.9 | 0.4494 | 0.0130 |
| | | | | | | |

| LD1007-LD1006 | LD1007 | LD1006 | CONDUIT | 7.7 | 0.5195 | 0.0130 |
|---------------|------------|-----------|---------|------|---------|--------|
| LD1008-LD1007 | LD1008 | LD1007 | CONDUIT | 7.6 | 0.5263 | 0.0130 |
| LD1009-LD1008 | LD1009 | LD1008 | CONDUIT | 6.0 | 0.5000 | 0.0130 |
| LD1010-LD1009 | LD1010 | LD1009 | CONDUIT | 6.8 | 0.4412 | 0.0130 |
| LD1011-LD1010 | LD1011 | LD1010 | CONDUIT | 13.2 | 0.5303 | 0.0130 |
| MH201-MH101 | MH201 | EX-MH101 | CONDUIT | 10.8 | 0.4630 | 0.0130 |
| MH202-MH201 | MH202 | MH201 | CONDUIT | 36.6 | 0.4918 | 0.0130 |
| MH203-MH202 | MH203 | MH202 | CONDUIT | 28.0 | 0.5000 | 0.0130 |
| MH204-MH203 | MH204 | MH203 | CONDUIT | 12.8 | 0.5469 | 0.0130 |
| MH205B-MH205 | MH205B | MH205 | CONDUIT | 16.8 | 0.4762 | 0.0130 |
| MH205-MH204 | MH205 | MH204 | CONDUIT | 12.8 | 0.4688 | 0.0130 |
| MH206-MH205B | MH206 | MH205B | CONDUIT | 12.3 | 0.4878 | 0.0130 |
| MH207-MH206 | MH207 | MH206 | CONDUIT | 37.6 | 0.5053 | 0.0130 |
| MH210-CBMH208 | MH210 | CBMH208 | CONDUIT | 5.0 | 0.4000 | 0.0130 |
| MH215-MH205B | MH215 | MH205B | CONDUIT | 9.2 | 1.9569 | 0.0130 |
| MS01 | CB05 | HP-CB05 | CONDUIT | 3.0 | 0.0102 | 0.0160 |
| MS02 | HP-CB05 | HP-Trech | CONDUIT | 18.0 | 12.8834 | 0.0160 |
| MS03 | HP-Trech | STM161 | CONDUIT | 8.6 | 3.6070 | 0.0160 |
| MS04 | HP-Trech | STM173 | CONDUIT | 8.0 | 4.5046 | 0.0160 |
| MS05 | CB12 | HP-CB12 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS06 | LD1004 | HP-LD1004 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS07 | LD1005 | HP-LD1005 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS08 | LD1006 | HP-LD1006 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS09 | LD1007 | HP-LD1007 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS10 | LD1008 | HP-LD1008 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS11 | LD1009 | HP-LD1009 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS12 | LD1010 | HP-LD1010 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| MS13 | LD1011 | HP-LD1011 | CONDUIT | 3.0 | 0.0102 | 0.0350 |
| STM161-MH207 | STM161 | MH207 | CONDUIT | 8.9 | 2.0229 | 0.0130 |
| STM169-MH204 | STM169 | MH204 | CONDUIT | 13.7 | 1.9712 | 0.0130 |
| STM173-MH206 | STM173 | MH206 | CONDUIT | 11.5 | 2.0004 | 0.0130 |
| STM233-MH202 | STM233 | MH202 | CONDUIT | 15.3 | 1.9612 | 0.0130 |
| STORE-CB02 | CB02-STORE | CB02 | CONDUIT | 6.4 | 0.9375 | 0.0130 |
| STORE-MH210 | STORE | MH210 | CONDUIT | 3.5 | 1.1429 | 0.0130 |
| SW01 | HP-CB11 | CB11 | CONDUIT | 19.3 | 1.8138 | 0.0350 |
| SW02 | HP-CB11 | LD1002 | CONDUIT | 25.2 | 1.5875 | 0.0350 |
| SW03 | HP-LD1002 | LD1002 | CONDUIT | 20.2 | 1.4853 | 0.0350 |
| SW04 | HP-LD1002 | LD1003 | CONDUIT | 20.5 | 1.7076 | 0.0350 |
| SW05 | HP-LD1003 | LD1003 | CONDUIT | 17.2 | 1.7445 | 0.0350 |
| SW06 | HP-LD1003 | OF2 | CONDUIT | 4.3 | 10.7594 | 0.0350 |
| SW07 | HP-CB07 | CB06 | CONDUIT | 17.4 | 1.0345 | 0.0350 |
| | | | | | | |

| SW08 | HP-CB07 | CB07 | CONDUIT | 20.1 | 1.1444 | 0.0350 |
|-------------|-----------|---------|---------|------|--------|--------|
| SW09 | HP-CB08a | CB07 | CONDUIT | 23.1 | 1.0823 | 0.0350 |
| SW10 | HP-CB08a | CB08 | CONDUIT | 20.0 | 1.0001 | 0.0350 |
| SW11 | HP-CB08b | CB08 | CONDUIT | 14.7 | 2.3816 | 0.0350 |
| SW12 | HP-CB08b | LD1000 | CONDUIT | 29.2 | 1.5413 | 0.0350 |
| SW13 | HP-LD1000 | LD1000 | CONDUIT | 19.9 | 1.2564 | 0.0350 |
| SW14 | HP-LD1000 | LD1001 | CONDUIT | 25.2 | 1.3890 | 0.0350 |
| SW15 | HP-LD1001 | LD1001 | CONDUIT | 20.1 | 1.4927 | 0.0350 |
| SW16 | HP-LD1001 | OF3 | CONDUIT | 10.7 | 3.7409 | 0.0350 |
| 0-CB01 | CB01 | MH202 | ORIFICE | | | |
| O-CB02 | CB02 | MH202 | ORIFICE | | | |
| O-CB12 | CB12 | MH201 | ORIFICE | | | |
| O-CBMH208 | CBMH208 | MH203 | ORIFICE | | | |
| O-Cistern | Cistern | MH215 | ORIFICE | | | |
| Spill-RoofA | ROOF-A | CB02 | WEIR | | | |
| Spill-RoofB | ROOF-B | CBMH209 | WEIR | | | |
| Spill-RoofC | ROOF-C | CB04 | WEIR | | | |
| Spill-RoofD | ROOF-D | CB05 | WEIR | | | |
| O-RoofA | ROOF-A | STM233 | OUTLET | | | |
| O-RoofB | ROOF-B | STM169 | OUTLET | | | |
| O-RoofC | ROOF-C | STM173 | OUTLET | | | |
| O-RoofD | ROOF-D | STM161 | OUTLET | | | |
| | | | | | | |

| Conduit | Shape | Full
Depth | Full
Area | Hyd.
Rad. | Max.
Width | No. of
Barrels | Full
Flow |
|-----------------|----------|---------------|--------------|--------------|---------------|-------------------|--------------|
| CB03-CBMH209 | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 32.85 |
| CB04-CBMH209 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 59.47 |
| CB05-CB04 | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 32.42 |
| CB06-CBMH212 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 42.73 |
| CB07-CB06 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 42.50 |
| CB08-CB07 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 41.56 |
| CB09-CBMH214 | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 32.60 |
| CB10-CBMH214 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 40.37 |
| CB11-CB10 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 42.29 |
| CBMH209-CBMH208 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 126.60 |
| CBMH211-MH210 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 98.02 |

| CBMH212-CBMH211 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 41.92 |
|------------------|-----------|------|------|------|------|---|---------|
| CBMH213-CBMH211 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 94.40 |
| CBMH214-CBMH213 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 94.32 |
| HP-CB01 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 2160.87 |
| HP-CB02 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB03a | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB03b | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB04 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB05a | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB05b | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB06 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB09 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB10a | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB10b | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CB11 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CBMH208 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CBMH209 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CBMH211a | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CBMH211b | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CBMH212 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CBMH213 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-CBMH214 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| HP-TrenchCistern | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 1078.81 |
| LD1000-CB08 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 42.20 |
| LD1001-LD1000 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 41.58 |
| LD1002-CB11 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 41.86 |
| LD1003-LD1002 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 41.84 |
| LD1004-CB12 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 43.34 |
| LD1005-LD1004 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 39.87 |
| LD1006-LD1005 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 39.87 |
| LD1007-LD1006 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 42.86 |
| LD1008-LD1007 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 43.15 |
| LD1009-LD1008 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 42.05 |
| LD1010-LD1009 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 39.50 |
| LD1011-LD1010 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 43.31 |
| MH201-MH101 | CIRCULAR | 0.53 | 0.22 | 0.13 | 0.53 | 1 | 292.64 |
| MH202-MH201 | CIRCULAR | 0.53 | 0.22 | 0.13 | 0.53 | 1 | 301.62 |
| MH203-MH202 | CIRCULAR | 0.53 | 0.22 | 0.13 | 0.53 | 1 | 304.12 |
| MH204-MH203 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 129.67 |
| MH205B-MH205 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 66.73 |
| MH205-MH204 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 66.21 |
| | | | | | | | |

| MH206-MH205B | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 67.54 |
|---------------|-------------|------|------|------|------|---|---------|
| MH207-MH206 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 42.28 |
| MH210-CBMH208 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 110.90 |
| MH215-MH205B | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 83.19 |
| MS01 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 76.88 |
| MS02 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 2737.80 |
| MS03 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 1448.64 |
| MS04 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 1618.87 |
| MS05 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS06 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS07 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS08 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS09 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS10 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS11 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS12 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| MS13 | RECT_OPEN | 0.35 | 0.35 | 0.21 | 1.00 | 1 | 35.15 |
| STM161-MH207 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 84.58 |
| STM169-MH204 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 83.50 |
| STM173-MH206 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 84.11 |
| STM233-MH202 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 83.28 |
| STORE-CB02 | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 31.76 |
| STORE-MH210 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 187.45 |
| SW01 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 427.18 |
| SW02 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 399.65 |
| SW03 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 386.57 |
| SW04 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 414.49 |
| SW05 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 418.94 |
| SW06 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 1040.44 |
| SW07 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 322.62 |
| SW08 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 339.31 |
| SW09 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 329.99 |
| SW10 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 317.20 |
| SW11 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 489.51 |
| SW12 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 393.79 |
| SW13 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 355.53 |
| SW14 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 373.83 |
| SW15 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 387.53 |
| SW16 | TRAPEZOIDAL | 0.35 | 0.37 | 0.17 | 2.10 | 1 | 613.50 |
| | | | | | | | |

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

**** Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date 04/19/2023 00:00:00 Ending Date 04/21/2023 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00
 Wet Time Step
 00:05:00

 Dry Time Step
 00:05:00

 Routing Time Step
 1.00 sec
 Variable Time Step YES Maximum Trials 8 Number of Threads 8 Head Tolerance 0.001500 m

| * | Volume | Depth |
|---|-----------|--------|
| Runoff Quantity Continuity | hectare-m | mm |
| * | | |
| Total Precipitation | 0.138 | 71.667 |
| Evaporation Loss | 0.000 | 0.000 |
| Infiltration Loss | 0.017 | 8.614 |
| | | |

| Surface Runoff
Final Storage
Continuity Error (%) | 0.120
0.002
-1.198 | 62.649
1.263 |
|---|--|---|
| Flow Routing Continuity
Dry Weather Inflow
Groundwater Inflow
RDII Inflow
External Inflow
Flooding Loss
Exaporation Loss
Exfiltration Loss
Initial Stored Volume
Final Stored Volume
Continuity Error (%) | Volume
hectare-m
0.000
0.120
0.000
0.000
0.120
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | Volume
10^6 ltr

1.203
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 |
| Time-Step Critical Elements
None | | |
| All links are stable. | *** | |
| | | |

| Average It
Percent No | | | - | Step | : | 2.00 | |
|--------------------------|-----|---------|-----|------|---|-------|---|
| Time Step | Fre | equenci | Les | | : | | |
| 1.000 | - | 0.871 | sec | | : | 99.93 | 8 |
| 0.871 | - | 0.758 | sec | | : | 0.03 | 8 |
| 0.758 | - | 0.660 | sec | | : | 0.01 | 8 |
| 0.660 | - | 0.574 | sec | | : | 0.01 | 8 |
| 0.574 | - | 0.500 | sec | | : | 0.02 | 8 |
| | | | | | | | |

| | Total | Total | Total | Total | Imperv | Perv | Total | Total |
|----------------------|--------|-------|-------|-------|--------|--------|--------|----------|
| Peak Runoff | | - | - | | | | D 66 | |
| Runoff Coeff | Precip | Runon | Evap | Infil | Runoff | Runoff | Runoff | Runoff |
| Subcatchment | mm | mm | mm | mm | mm | mm | mm | 10^6 ltr |
| LPS | | | | | | | | |
| | | | | | | | | |
| A-01a
5.20 0.530 | 71.67 | 0.00 | 0.00 | 36.98 | 11.07 | 26.95 | 38.02 | 0.00 |
| A-01b
11.17 0.519 | 71.67 | 0.00 | 0.00 | 37.08 | 11.05 | 26.14 | 37.19 | 0.01 |
| A-01c | 71.67 | 0.00 | 0.00 | 37.05 | 11.06 | 26.37 | 37.43 | 0.01 |
| 8.63 0.522 | | | | | | | | |
| A-02
46.69 0.911 | 71.67 | 0.00 | 0.00 | 5.66 | 61.20 | 4.10 | 65.29 | 0.06 |
| A-03 | 71.67 | 0.00 | 0.00 | 8.80 | 56.20 | 6.19 | 62.39 | 0.05 |
| 41.29 0.871
A-04 | 71.67 | 0.00 | 0.00 | 3.11 | 65.22 | 2.32 | 67.54 | 0.02 |
| 14.72 0.942 | | | | | | | | |
| A-05 | 71.67 | 0.00 | 0.00 | 11.33 | 52.19 | 7.82 | 60.00 | 0.06 |
| 46.92 0.837 | 71 (7 | 0.00 | 0.00 | 11 24 | 50.00 | 7 76 | 50.00 | 0.00 |
| A-06
63.37 0.837 | 71.67 | 0.00 | 0.00 | 11.34 | 52.20 | 7.76 | 59.96 | 0.08 |
| A-07 | 71.67 | 0.00 | 0.00 | 13.18 | 49.12 | 9.49 | 58.60 | 0.02 |
| 12.31 0.818 | | | | | | | | |

| A-08 | 71.67 | 0.00 | 0.00 | 42.34 | 3.03 | 28.49 | 31.52 | 0.01 |
|----------------------|-------|------|------|-------|-------|-------|-------|------|
| 7.20 0.440
A-09 | 71.67 | 0.00 | 0.00 | 8.17 | 57.16 | 5.83 | 63.00 | 0.05 |
| 35.66 0.879 | | | | | | | | |
| A-10
33.94 0.950 | 71.67 | 0.00 | 0.00 | 2.49 | 66.26 | 1.86 | 68.12 | 0.05 |
| A-11 | 71.67 | 0.00 | 0.00 | 6.28 | 60.21 | 4.52 | 64.73 | 0.05 |
| 38.82 0.903
A-12 | 71.67 | 0.00 | 0.00 | 1.88 | 67.27 | 1.40 | 68.68 | 0.07 |
| 49.78 0.958 | | | | | | | | |
| A-13
58.16 0.958 | 71.67 | 0.00 | 0.00 | 1.88 | 67.29 | 1.40 | 68.69 | 0.08 |
| A-14 | 71.67 | 0.00 | 0.00 | 37.24 | 11.04 | 25.31 | 36.34 | 0.01 |
| 15.42 0.507
A-15 | 71.67 | 0.00 | 0.00 | 5.00 | 62.25 | 3.64 | 65.90 | 0.05 |
| 38.52 0.919
A-16 | 71.67 | 0.00 | 0.00 | 3.11 | 65.23 | 2.32 | 67.55 | 0.04 |
| 29.94 0.943
A-17 | 71 (7 | 0.00 | 0.00 | 38.99 | 8.03 | 27.38 | 35.42 | 0.01 |
| 9.79 0.494 | 71.67 | 0.00 | 0.00 | 38.99 | 8.03 | 27.38 | 33.42 | 0.01 |
| A-18a
14.61 0.600 | 71.67 | 0.00 | 0.00 | 30.75 | 21.08 | 21.95 | 43.03 | 0.01 |
| A-18b | 71.67 | 0.00 | 0.00 | 30.70 | 21.10 | 22.42 | 43.52 | 0.01 |
| 7.55 0.607
A-19a | 71.67 | 0.00 | 0.00 | 26.92 | 27.13 | 19.74 | 46.87 | 0.00 |
| 1.89 0.654 | /1.0/ | 0.00 | 0.00 | 20.92 | 27.13 | 19.74 | 40.07 | 0.00 |
| A-19b
1.26 0.657 | 71.67 | 0.00 | 0.00 | 26.89 | 27.15 | 19.94 | 47.09 | 0.00 |
| A-19c | 71.67 | 0.00 | 0.00 | 26.94 | 27.12 | 19.60 | 46.72 | 0.00 |
| 2.16 0.652
A-19d | 71.67 | 0.00 | 0.00 | 26.90 | 27.14 | 19.86 | 47.00 | 0.00 |
| 1.26 0.656 | | | | | | | | |
| A-19e
1.76 0.655 | 71.67 | 0.00 | 0.00 | 26.91 | 27.13 | 19.78 | 46.92 | 0.00 |
| A-19f | 71.67 | 0.00 | 0.00 | 26.87 | 27.18 | 20.03 | 47.21 | 0.00 |
| 1.08 0.659
A-19q | 71.67 | 0.00 | 0.00 | 26.89 | 27.15 | 19.92 | 47.06 | 0.00 |
| 1.26 0.657 | | | | | | | | |
| A-19h
1.62 0.655 | 71.67 | 0.00 | 0.00 | 26.91 | 27.13 | 19.78 | 46.92 | 0.00 |
| A-19i | 71.67 | 0.00 | 0.00 | 27.14 | 27.09 | 18.38 | 45.47 | 0.01 |
| 7.26 0.634
D-01 | 71.67 | 0.00 | 0.00 | 25.63 | 29.16 | 19.14 | 48.30 | 0.00 |
| 3 17 0 674 | | | | | | | | |

| D-02
13.54 0 | .811 | 71.67 | 0.00 | 0.00 | 3.26 | 49.17 | 8.96 | 58.13 | 0.02 |
|-----------------|------|-------|------|--------|-------|-------|-------|-------|------|
| D-03 | | 71.67 | 0.00 | 0.00 | 0.00 | 70.29 | 0.00 | 70.29 | 0.01 |
| 6.45 0.
D-04 | 981 | 71.67 | 0.00 | 0.00 | 10.69 | 53.15 | 7.55 | 60.70 | 0.03 |
| | .847 | | | | | | | | |
| D-05
11.65 0 | .573 | 71.67 | 0.00 | 0.00 3 | 31.66 | 20.07 | 21.01 | 41.08 | 0.01 |
| R-01 | | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| 19.34 0
R-02 | .985 | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| | .985 | /1.0/ | 0.00 | 0.00 | 0.00 | 10.37 | 0.00 | /0.5/ | 0.05 |
| R-03
18.34 0 | .985 | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| R-04 | | 71.67 | 0.00 | 0.00 | 0.00 | 70.51 | 0.00 | 70.51 | 0.02 |
| | .984 | | | | | | | | |
| R-05
7.44 0. | 983 | 71.67 | 0.00 | 0.00 | 0.00 | 70.42 | 0.00 | 70.42 | 0.01 |
| R-06 | | 71.67 | 0.00 | 0.00 | 0.00 | 70.39 | 0.00 | 70.39 | 0.00 |
| 1.98 0.
R-07 | 982 | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| | .985 | /1.0/ | 0.00 | 0.00 | 0.00 | 10.37 | 0.00 | /0.5/ | 0.05 |
| R-08
18.34 0 | .985 | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| R-09 | | 71.67 | 0.00 | 0.00 | 0.00 | 70.58 | 0.00 | 70.58 | 0.03 |
| | .985 | | | | | | | | |
| R-10
20.82 0 | .985 | 71.67 | 0.00 | 0.00 | 0.00 | 70.58 | 0.00 | 70.58 | 0.03 |
| R-11 | | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| 18.34 0
R-12 | .985 | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| 19.34 0 | .985 | | | | | | | | |
| R-13
19.34 0 | .985 | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| R-14 | | 71.67 | 0.00 | 0.00 | 0.00 | 70.57 | 0.00 | 70.57 | 0.03 |
| 18.34 0
R-15 | .985 | 71.67 | 0.00 | 0.00 | 0.00 | 70 50 | 0.00 | 70 59 | 0 03 |
| | .985 | /1.0/ | 0.00 | 0.00 | 0.00 | 70.58 | 0.00 | 70.58 | 0.03 |
| | | | | | | | | | |

| | | Average | Maximum | Maximum | Time | of Max | Reported |
|------------|----------|---------|---------|---------|------|---------|-----------|
| | | Depth | Depth | HGL | | irrence | Max Depth |
| Node | Туре | Meters | Meters | Meters | days | hr:min | Meters |
| НР-СВ05 | JUNCTION | 0.00 | 0.00 | 89.15 | 0 | 00:00 | 0.00 |
| HP-CB07 | JUNCTION | 0.00 | 0.00 | 89.18 | 0 | 00:00 | 0.00 |
| HP-CB08a | JUNCTION | 0.00 | 0.00 | 89.20 | 0 | 00:00 | 0.00 |
| HP-CB08b | JUNCTION | 0.00 | 0.00 | 89.35 | 0 | 00:00 | 0.00 |
| HP-CB11 | JUNCTION | 0.00 | 0.00 | 89.20 | 0 | 00:00 | 0.00 |
| HP-LD1000 | JUNCTION | 0.00 | 0.00 | 89.15 | 0 | 00:00 | 0.00 |
| HP-LD1001 | JUNCTION | 0.00 | 0.00 | 89.10 | 0 | 00:00 | 0.00 |
| HP-LD1002 | JUNCTION | 0.00 | 0.00 | 89.10 | 0 | 00:00 | 0.00 |
| HP-LD1003 | JUNCTION | 0.00 | 0.00 | 89.05 | 0 | 00:00 | 0.00 |
| HP-Trech | JUNCTION | 0.00 | 0.00 | 86.85 | 0 | 00:00 | 0.00 |
| STM161 | JUNCTION | 0.01 | 0.07 | 85.22 | 0 | 01:10 | 0.07 |
| STM169 | JUNCTION | 0.01 | 0.03 | 84.83 | 0 | 02:08 | 0.03 |
| STM173 | JUNCTION | 0.01 | 0.06 | 85.09 | 0 | 01:10 | 0.06 |
| STM233 | JUNCTION | 0.01 | 0.05 | 87.15 | 0 | 01:52 | 0.05 |
| EX-MH101 | OUTFALL | 0.47 | 0.47 | 83.64 | 0 | 00:00 | 0.47 |
| HP-CB12 | OUTFALL | 0.00 | 0.00 | 88.89 | 0 | 00:00 | 0.00 |
| HP-LD1004 | OUTFALL | 0.00 | 0.00 | 88.85 | 0 | 00:00 | 0.00 |
| HP-LD1005 | OUTFALL | 0.00 | 0.00 | 88.75 | 0 | 00:00 | 0.00 |
| HP-LD1006 | OUTFALL | 0.00 | 0.00 | 88.73 | 0 | 00:00 | 0.00 |
| HP-LD1007 | OUTFALL | 0.00 | 0.00 | 88.67 | 0 | 00:00 | 0.00 |
| HP-LD1008 | OUTFALL | 0.00 | 0.00 | 88.67 | 0 | 00:00 | 0.00 |
| HP-LD1009 | OUTFALL | 0.00 | 0.00 | 88.68 | 0 | 00:00 | 0.00 |
| HP-LD1010 | OUTFALL | 0.00 | 0.00 | 88.65 | 0 | 00:00 | 0.00 |
| HP-LD1011 | OUTFALL | 0.00 | 0.00 | 88.66 | 0 | 00:00 | 0.00 |
| OF1 | OUTFALL | 0.00 | 0.00 | 88.59 | 0 | 00:00 | 0.00 |
| OF2 | OUTFALL | 0.00 | 0.00 | 88.59 | 0 | 00:00 | 0.00 |
| OF3 | OUTFALL | 0.00 | 0.00 | 88.70 | 0 | 00:00 | 0.00 |
| OF-Unc | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 |
| CB01 | STORAGE | 0.01 | 1.30 | 88.80 | 0 | 01:13 | 1.30 |
| CB02 | STORAGE | 0.36 | 2.78 | 88.88 | 0 | 03:28 | 2.78 |
| CB02-STORE | STORAGE | 0.24 | 1.99 | 88.89 | 0 | 03:28 | 1.98 |
| СВ03 | STORAGE | 0.52 | 1.43 | 88.98 | 0 | 02:34 | 1.43 |
| CB04 | STORAGE | 0.60 | 1.60 | 88.98 | 0 | 02:41 | 1.60 |
| CB05 | STORAGE | 0.47 | 1.35 | 89.00 | 0 | 01:14 | 1.35 |
| СВ06 | STORAGE | 1.00 | 2.31 | 89.00 | 0 | 01:20 | 2.31 |
| | | | | | | | |

| CB07 | STORAGE | 0.77 | 1.96 | 89.03 | 0 | 01:14 | 1.96 |
|---------|---------|------|------|-------|---|-------|------|
| CB08 | STORAGE | 0.65 | 1.76 | 89.05 | 0 | 01:14 | 1.75 |
| CB09 | STORAGE | 0.47 | 1.33 | 88.98 | 0 | 02:41 | 1.33 |
| CB10 | STORAGE | 0.92 | 2.17 | 88.98 | 0 | 02:44 | 2.17 |
| CB11 | STORAGE | 0.77 | 1.92 | 88.98 | 0 | 02:40 | 1.92 |
| CB12 | STORAGE | 0.04 | 2.54 | 87.87 | 0 | 01:14 | 2.53 |
| CBMH208 | STORAGE | 1.40 | 2.88 | 88.98 | 0 | 02:41 | 2.88 |
| CBMH209 | STORAGE | 1.28 | 2.70 | 88.98 | 0 | 02:40 | 2.70 |
| CBMH211 | STORAGE | 1.27 | 2.69 | 88.98 | 0 | 02:41 | 2.69 |
| CBMH212 | STORAGE | 1.07 | 2.41 | 88.99 | 0 | 01:21 | 2.41 |
| CBMH213 | STORAGE | 1.17 | 2.55 | 88.98 | 0 | 02:42 | 2.55 |
| CBMH214 | STORAGE | 1.07 | 2.40 | 88.98 | 0 | 02:42 | 2.40 |
| Cistern | STORAGE | 0.04 | 1.81 | 88.20 | 0 | 01:21 | 1.81 |
| LD1000 | STORAGE | 0.51 | 1.48 | 89.05 | 0 | 01:14 | 1.48 |
| LD1001 | STORAGE | 0.41 | 1.25 | 89.05 | 0 | 01:15 | 1.25 |
| LD1002 | STORAGE | 0.62 | 1.64 | 88.98 | 0 | 02:41 | 1.64 |
| LD1003 | STORAGE | 0.52 | 1.43 | 88.98 | 0 | 02:42 | 1.43 |
| LD1004 | STORAGE | 0.01 | 0.63 | 87.87 | 0 | 01:14 | 0.63 |
| LD1005 | STORAGE | 0.01 | 0.58 | 87.87 | 0 | 01:15 | 0.58 |
| LD1006 | STORAGE | 0.01 | 0.53 | 87.87 | 0 | 01:14 | 0.53 |
| LD1007 | STORAGE | 0.01 | 0.48 | 87.87 | 0 | 01:14 | 0.48 |
| LD1008 | STORAGE | 0.00 | 0.43 | 87.87 | 0 | 01:14 | 0.43 |
| LD1009 | STORAGE | 0.00 | 0.39 | 87.87 | 0 | 01:14 | 0.39 |
| LD1010 | STORAGE | 0.00 | 0.35 | 87.87 | 0 | 01:14 | 0.35 |
| LD1011 | STORAGE | 0.00 | 0.27 | 87.87 | 0 | 01:14 | 0.27 |
| MH201 | STORAGE | 0.05 | 0.21 | 84.01 | 0 | 01:12 | 0.21 |
| MH202 | STORAGE | 0.04 | 0.15 | 84.14 | 0 | 01:11 | 0.15 |
| MH203 | STORAGE | 0.04 | 0.14 | 84.33 | 0 | 01:11 | 0.14 |
| MH204 | STORAGE | 0.01 | 0.13 | 84.54 | 0 | 01:11 | 0.13 |
| MH205 | STORAGE | 0.01 | 0.14 | 84.68 | 0 | 01:10 | 0.14 |
| MH205B | STORAGE | 0.01 | 0.15 | 84.80 | 0 | 01:10 | 0.14 |
| MH206 | STORAGE | 0.01 | 0.13 | 84.85 | 0 | 01:10 | 0.13 |
| MH207 | STORAGE | 0.01 | 0.11 | 85.07 | 0 | 01:10 | 0.11 |
| MH210 | STORAGE | 1.33 | 2.78 | 88.98 | 0 | 02:41 | 2.78 |
| MH215 | STORAGE | 0.00 | 0.05 | 84.94 | 0 | 01:23 | 0.05 |
| ROOF-A | STORAGE | 0.01 | 0.15 | 91.15 | 0 | 01:52 | 0.15 |
| ROOF-B | STORAGE | 0.02 | 0.15 | 91.15 | 0 | 02:08 | 0.15 |
| ROOF-C | STORAGE | 0.02 | 0.15 | 91.15 | 0 | 02:08 | 0.15 |
| ROOF-D | STORAGE | 0.02 | 0.15 | 91.15 | 0 | 02:05 | 0.15 |
| STORE | STORAGE | 1.13 | 2.48 | 88.98 | 0 | 02:41 | 2.48 |
| | | | | | | | |

| lode | Туре | Lateral | Inflow | Occu | of Max
rrence
hr:min | Lateral
Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | Flow
Balance
Error
Percent |
|-----------|----------|---------|--------|------|----------------------------|---|---------------------------------------|-------------------------------------|
| нр-св05 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-CB07 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-CB08a | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-CB08b | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-CB11 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1000 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1001 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1002 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1003 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-Trech | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| STM161 | JUNCTION | 13.54 | 16.36 | 0 | 01:10 | 0.0169 | 0.1 | 0.002 |
| STM169 | JUNCTION | 0.00 | 3.14 | 0 | 02:08 | 0 | 0.0833 | 0.002 |
| TM173 | JUNCTION | 6.45 | 9.26 | 0 | 01:10 | 0.00914 | 0.0924 | 0.002 |
| TM233 | JUNCTION | 0.00 | 5.58 | 0 | 01:52 | 0 | 0.111 | 0.003 |
| X-MH101 | OUTFALL | 0.00 | 62.01 | 0 | 01:12 | 0 | 1.19 | 0.000 |
| HP-CB12 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1004 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1005 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1006 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1007 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1008 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1009 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1010 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| HP-LD1011 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
|)F1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
|)F2 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
|)F3 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
|)F-Unc | OUTFALL | 14.83 | 14.83 | 0 | 01:10 | 0.0149 | 0.0149 | 0.000 |
| CB01 | STORAGE | 12.31 | 12.31 | 0 | 01:10 | 0.0152 | 0.0152 | 0.003 |
| CB02 | STORAGE | 63.37 | 72.31 | 0 | 01:07 | 0.0803 | 0.166 | 0.008 |

| CB02-STORE | STORAGE | 0.00 | 53.75 | 0 | 01:07 | 0 | 0.0212 | -0.162 |
|------------|---------|-------|--------|---|-------|---------|---------|--------|
| CB03 | STORAGE | 49.78 | 49.78 | 0 | 01:10 | 0.0694 | 0.0694 | 0.343 |
| CB04 | STORAGE | 29.94 | 63.14 | 0 | 01:06 | 0.0412 | 0.0931 | -0.089 |
| CB05 | STORAGE | 38.52 | 38.52 | 0 | 01:10 | 0.0521 | 0.0521 | 0.410 |
| CB06 | STORAGE | 7.20 | 54.74 | 0 | 01:07 | 0.00567 | 0.0729 | -0.006 |
| CB07 | STORAGE | 15.42 | 49.89 | 0 | 01:07 | 0.0134 | 0.0606 | 0.010 |
| CB08 | STORAGE | 9.79 | 37.15 | 0 | 01:08 | 0.00815 | 0.0412 | -0.108 |
| CB09 | STORAGE | 14.72 | 20.04 | 0 | 01:07 | 0.0203 | 0.0204 | 0.407 |
| CB10 | STORAGE | 46.69 | 65.61 | 0 | 01:07 | 0.0627 | 0.0994 | 0.067 |
| CB11 | STORAGE | 5.20 | 48.87 | 0 | 01:07 | 0.00456 | 0.0377 | 0.183 |
| CB12 | STORAGE | 1.89 | 17.04 | 0 | 01:06 | 0.00197 | 0.0203 | -0.112 |
| CBMH208 | STORAGE | 38.82 | 172.14 | 0 | 01:06 | 0.0518 | 0.725 | -0.002 |
| CBMH209 | STORAGE | 58.16 | 149.19 | 0 | 01:06 | 0.0811 | 0.243 | -0.268 |
| CBMH211 | STORAGE | 33.94 | 132.47 | 0 | 01:06 | 0.047 | 0.391 | -0.026 |
| CBMH212 | STORAGE | 35.66 | 76.02 | 0 | 01:06 | 0.0466 | 0.113 | 0.022 |
| CBMH213 | STORAGE | 46.92 | 104.25 | 0 | 01:07 | 0.0594 | 0.251 | 0.004 |
| CBMH214 | STORAGE | 41.29 | 69.33 | 0 | 01:07 | 0.0537 | 0.173 | 0.005 |
| Cistern | STORAGE | 23.85 | 23.85 | 0 | 01:10 | 0.0303 | 0.0303 | -0.000 |
| LD1000 | STORAGE | 14.61 | 30.99 | 0 | 01:05 | 0.0142 | 0.0291 | 0.706 |
| LD1001 | STORAGE | 7.55 | 22.77 | 0 | 01:10 | 0.0074 | 0.0106 | -0.417 |
| LD1002 | STORAGE | 11.17 | 34.10 | 0 | 01:07 | 0.00967 | 0.0247 | 0.205 |
| LD1003 | STORAGE | 8.63 | 21.46 | 0 | 01:04 | 0.00749 | 0.00937 | -0.228 |
| LD1004 | STORAGE | 1.26 | 18.11 | 0 | 01:07 | 0.00132 | 0.0184 | 0.115 |
| LD1005 | STORAGE | 2.16 | 15.79 | 0 | 01:07 | 0.00224 | 0.0171 | 0.132 |
| LD1006 | STORAGE | 1.26 | 13.04 | 0 | 01:09 | 0.00132 | 0.0148 | -0.025 |
| LD1007 | STORAGE | 1.76 | 11.78 | 0 | 01:07 | 0.00183 | 0.0135 | -0.033 |
| LD1008 | STORAGE | 1.08 | 10.20 | 0 | 01:07 | 0.00113 | 0.0117 | 0.064 |
| LD1009 | STORAGE | 1.26 | 9.34 | 0 | 01:08 | 0.00132 | 0.0105 | -0.025 |
| LD1010 | STORAGE | 1.62 | 8.68 | 0 | 01:09 | 0.00169 | 0.00921 | -0.104 |
| LD1011 | STORAGE | 7.26 | 7.26 | 0 | 01:10 | 0.00755 | 0.00755 | 0.366 |
| MH201 | STORAGE | 0.00 | 62.17 | 0 | 01:11 | 0 | 1.19 | -0.004 |
| MH202 | STORAGE | 0.00 | 56.32 | 0 | 01:11 | 0 | 1.17 | 0.005 |
| MH203 | STORAGE | 0.00 | 39.33 | 0 | 01:11 | 0 | 0.898 | -0.000 |
| MH204 | STORAGE | 0.00 | 33.38 | 0 | 01:10 | 0 | 0.306 | -0.000 |
| MH205 | STORAGE | 0.00 | 30.53 | 0 | 01:10 | 0 | 0.223 | -0.000 |
| MH205B | STORAGE | 0.00 | 30.63 | 0 | 01:10 | 0 | 0.223 | -0.010 |
| MH206 | STORAGE | 0.00 | 25.32 | 0 | 01:10 | 0 | 0.192 | -0.000 |
| MH207 | STORAGE | 0.00 | 16.35 | 0 | 01:10 | 0 | 0.1 | -0.016 |
| MH210 | STORAGE | 0.00 | 248.00 | 0 | 01:06 | 0 | 0.523 | -0.006 |
| MH215 | STORAGE | 0.00 | 6.04 | 0 | 01:21 | 0 | 0.0303 | -0.049 |
| ROOF-A | STORAGE | 77.84 | 77.84 | 0 | 01:10 | 0.111 | 0.111 | -0.002 |
| | | | | | | | | |
| | | | | | | | | |

| ROOF-B | STORAGE | 58.50 | 58.50 | 0 | 01:10 | 0.0833 | 0.0833 | -0.001 |
|--------|---------|-------|--------|---|-------|--------|--------|--------|
| ROOF-C | STORAGE | 58.50 | 58.50 | 0 | 01:10 | 0.0833 | 0.0833 | -0.001 |
| ROOF-D | STORAGE | 58.50 | 58.50 | 0 | 01:10 | 0.0833 | 0.0833 | -0.001 |
| STORE | STORAGE | 0.00 | 238.38 | 0 | 01:06 | 0 | 0.0891 | -0.073 |

Surcharging occurs when water rises above the top of the highest conduit.

| Node | Туре | Hours
Surcharged | Max. Height
Above Crown
Meters | Min. Depth
Below Rim
Meters | |
|------------|---------|---------------------|--------------------------------------|-----------------------------------|--|
| CB02-STORE | STORAGE | 6.95 | 1.785 | 0.065 | |

No nodes were flooded.

Average Volume Avg Evap Exfil Maximum Max Time of Max Maximum Storage Unit 1000 m3 Pent Pent Pent Volume Pent Occurrence Outflow CB01 0.000 0 0 0 0.003 11 0 01:13 6.02 CB02 0.004 1 0 0 0.018 100 0 11.3 6.02 CB03 0.003 5 0 0.012 33 0 02:34 40.92 CB04 0.003 6 0 0.006 37 0 02:41 53.79 CB05 0.001 2 0 0 0.007 17 0 01:14 33.29

| CB06 | 0.000 | 38 | 0 | 0 | 0.001 | 87 | 0 | 01:20 | 37.04 |
|---------|-------|----|---|---|-------|-----|---|-------|--------|
| СВ07 | 0.000 | 34 | 0 | 0 | 0.001 | 88 | 0 | 01:14 | 28.22 |
| CB08 | 0.000 | 31 | 0 | 0 | 0.001 | 85 | 0 | 01:14 | 15.51 |
| СВ09 | 0.001 | 2 | 0 | 0 | 0.006 | 18 | 0 | 02:41 | 17.59 |
| CB10 | 0.006 | 6 | 0 | 0 | 0.039 | 39 | 0 | 02:44 | 44.03 |
| CB11 | 0.000 | 36 | 0 | 0 | 0.001 | 90 | 0 | 02:40 | 24.16 |
| CB12 | 0.000 | 0 | 0 | 0 | 0.001 | 16 | 0 | 01:14 | 8.59 |
| CBMH208 | 0.013 | 5 | 0 | 0 | 0.061 | 26 | 0 | 02:41 | 164.09 |
| CBMH209 | 0.011 | 12 | 0 | 0 | 0.060 | 63 | 0 | 02:40 | 134.17 |
| CBMH211 | 0.004 | 7 | 0 | 0 | 0.021 | 34 | 0 | 02:41 | 89.72 |
| CBMH212 | 0.001 | 2 | 0 | 0 | 0.006 | 9 | 0 | 01:21 | 49.15 |
| CBMH213 | 0.011 | 5 | 0 | 0 | 0.055 | 23 | 0 | 02:42 | 76.59 |
| CBMH214 | 0.007 | 8 | 0 | 0 | 0.040 | 45 | 0 | 02:42 | 51.15 |
| Cistern | 0.000 | 2 | 0 | 0 | 0.014 | 82 | 0 | 01:21 | 6.04 |
| LD1000 | 0.000 | 30 | 0 | 0 | 0.000 | 88 | 0 | 01:14 | 15.47 |
| LD1001 | 0.000 | 30 | 0 | 0 | 0.000 | 93 | 0 | 01:15 | 6.50 |
| LD1002 | 0.000 | 34 | 0 | 0 | 0.000 | 91 | 0 | 02:41 | 15.50 |
| LD1003 | 0.000 | 33 | 0 | 0 | 0.000 | 92 | 0 | 02:42 | 7.60 |
| LD1004 | 0.000 | 0 | 0 | 0 | 0.000 | 2 | 0 | 01:14 | 15.26 |
| LD1005 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:15 | 15.54 |
| LD1006 | 0.000 | 0 | 0 | 0 | 0.000 | 2 | 0 | 01:14 | 12.39 |
| LD1007 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:14 | 11.79 |
| LD1008 | 0.000 | 0 | 0 | 0 | 0.000 | 2 | 0 | 01:14 | 10.08 |
| LD1009 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:14 | 9.13 |
| LD1010 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:14 | 8.10 |
| LD1011 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 01:14 | 7.06 |
| MH201 | 0.000 | 1 | 0 | 0 | 0.000 | 4 | 0 | 01:12 | 62.01 |
| MH202 | 0.000 | 1 | 0 | 0 | 0.000 | 3 | 0 | 01:11 | 56.28 |
| MH203 | 0.000 | 1 | 0 | 0 | 0.000 | 3 | 0 | 01:11 | 39.23 |
| MH204 | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:11 | 33.38 |
| MH205 | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:10 | 30.53 |
| MH205B | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:10 | 30.53 |
| MH206 | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:10 | 25.31 |
| MH207 | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:10 | 16.11 |
| MH210 | 0.002 | 45 | 0 | 0 | 0.003 | 95 | 0 | 02:41 | 238.38 |
| MH215 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:23 | 6.04 |
| ROOF-A | 0.005 | 1 | 0 | 0 | 0.072 | 10 | 0 | 01:52 | 5.58 |
| ROOF-B | 0.006 | 1 | 0 | 0 | 0.059 | 10 | 0 | 02:08 | 3.14 |
| ROOF-C | 0.006 | 1 | 0 | 0 | 0.059 | 10 | 0 | 02:08 | 3.14 |
| ROOF-D | 0.006 | 1 | 0 | 0 | 0.059 | 10 | 0 | 02:05 | 3.21 |
| STORE | 0.046 | 53 | 0 | 0 | 0.087 | 100 | 0 | 01:06 | 29.65 |
| | | | | | | | | | |

| Outfall Node | | | Flow | Volume |
|--------------|-------|-------|-------|--------|
| EX-MH101 | 70.66 | 9.74 | 62.01 | 1.189 |
| HP-CB12 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1004 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1005 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1006 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1007 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1008 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1009 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1010 | 0.00 | 0.00 | 0.00 | 0.000 |
| HP-LD1011 | 0.00 | 0.00 | 0.00 | 0.000 |
| OF1 | 0.00 | 0.00 | 0.00 | 0.000 |
| OF2 | 0.00 | 0.00 | 0.00 | 0.000 |
| OF3 | 0.00 | 0.00 | 0.00 | 0.000 |
| OF-Unc | 5.99 | 1.44 | 14.83 | 0.015 |
| System | 5.48 | 11.18 | 74.70 | 1.204 |

Link Flow Summary

| | | Maximum
 Flow | Time of Max
Occurrence | Maximum
 Veloc | Max/
Full | Max/
Full |
|---|-------------------------------|-------------------------|-------------------------------|----------------------|----------------------|----------------------|
| Link | Туре | LPS | days hr:min | m/sec | Flow | Depth |
| CB03-CBMH209
CB04-CBMH209
CB05-CB04 | CONDUIT
CONDUIT
CONDUIT | 40.92
53.79
33.29 | 0 01:05
0 01:06
0 01:06 | 1.30
1.10
1.06 | 1.25
0.90
1.03 | 1.00
1.00
1.00 |

| CB06-CBMH212 | CONDUIT | 49.15 | 0 | 01:07 | 1.00 | 1.15 | 1.00 |
|------------------|---------|--------|---|-------|------|------|------|
| CB07-CB06 | CONDUIT | 37.04 | 0 | 01:07 | 0.75 | 0.87 | 1.00 |
| CB08-CB07 | CONDUIT | 28.22 | 0 | 01:08 | 0.57 | 0.68 | 1.00 |
| CB09-CBMH214 | CONDUIT | 17.59 | 0 | 01:07 | 0.82 | 0.54 | 1.00 |
| CB10-CBMH214 | CONDUIT | 19.49 | 0 | 01:07 | 0.52 | 0.48 | 1.00 |
| CB11-CB10 | CONDUIT | 44.03 | 0 | 01:07 | 0.90 | 1.04 | 1.00 |
| CBMH209-CBMH208 | CONDUIT | 134.17 | 0 | 01:06 | 1.21 | 1.06 | 1.00 |
| CBMH211-MH210 | CONDUIT | 88.91 | 0 | 01:06 | 0.81 | 0.91 | 1.00 |
| CBMH212-CBMH211 | CONDUIT | 41.30 | 0 | 01:06 | 0.84 | 0.99 | 1.00 |
| CBMH213-CBMH211 | CONDUIT | 76.59 | 0 | 01:06 | 0.69 | 0.81 | 1.00 |
| CBMH214-CBMH213 | CONDUIT | 51.15 | 0 | 01:06 | 0.47 | 0.54 | 1.00 |
| HP-CB01 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB02 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB03a | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB03b | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB04 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB05a | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB05b | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB06 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB09 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB10a | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB10b | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CB11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH208 | CONDUIT | 7.98 | 0 | 02:41 | 0.32 | 0.10 | 0.07 |
| HP-CBMH209 | CONDUIT | 0.43 | 0 | 02:32 | 0.04 | 0.01 | 0.03 |
| HP-CBMH211a | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH211b | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH212 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH213 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH214 | CONDUIT | 0.29 | 0 | 02:47 | 0.02 | 0.00 | 0.04 |
| HP-TrenchCistern | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| LD1000-CB08 | CONDUIT | 15.51 | 0 | 01:08 | 0.56 | 0.37 | 1.00 |
| LD1001-LD1000 | CONDUIT | 15.47 | 0 | 01:10 | 0.43 | 0.37 | 1.00 |
| LD1002-CB11 | CONDUIT | 24.16 | 0 | 01:07 | 0.49 | 0.58 | 1.00 |
| LD1003-LD1002 | CONDUIT | 15.50 | 0 | 01:04 | 0.42 | 0.37 | 1.00 |
| LD1004-CB12 | CONDUIT | 15.26 | 0 | 01:06 | 0.83 | 0.35 | 1.00 |
| LD1005-LD1004 | CONDUIT | 15.54 | 0 | 01:07 | 0.80 | 0.39 | 1.00 |
| LD1006-LD1005 | CONDUIT | 12.39 | 0 | 01:06 | 0.74 | 0.31 | 1.00 |
| LD1007-LD1006 | CONDUIT | 11.79 | 0 | 01:09 | 0.75 | 0.28 | 1.00 |
| LD1008-LD1007 | CONDUIT | 10.08 | 0 | 01:07 | 0.73 | 0.23 | 1.00 |
| LD1009-LD1008 | CONDUIT | 9.13 | 0 | 01:07 | 0.71 | 0.22 | 1.00 |
| | | | | | | | |

| LD1010-LD1009 | CONDUIT | 8.10 | 0 | 01:08 | 0.67 | 0.21 | 1.00 |
|---------------|---------|--------|---|-------|------|------|------|
| LD1011-LD1010 | CONDUIT | 7.06 | 0 | 01:09 | 0.64 | 0.16 | 1.00 |
| MH201-MH101 | CONDUIT | 62.01 | 0 | 01:12 | 0.90 | 0.21 | 0.36 |
| MH202-MH201 | CONDUIT | 56.28 | 0 | 01:11 | 0.88 | 0.19 | 0.34 |
| MH203-MH202 | CONDUIT | 39.23 | 0 | 01:11 | 0.89 | 0.13 | 0.26 |
| MH204-MH203 | CONDUIT | 33.38 | 0 | 01:11 | 0.98 | 0.26 | 0.35 |
| MH205B-MH205 | CONDUIT | 30.53 | 0 | 01:10 | 0.95 | 0.46 | 0.46 |
| MH205-MH204 | CONDUIT | 30.53 | 0 | 01:10 | 0.97 | 0.46 | 0.46 |
| MH206-MH205B | CONDUIT | 25.31 | 0 | 01:10 | 0.85 | 0.37 | 0.44 |
| MH207-MH206 | CONDUIT | 16.11 | 0 | 01:10 | 0.80 | 0.38 | 0.43 |
| MH210-CBMH208 | CONDUIT | 159.09 | 0 | 01:06 | 1.44 | 1.43 | 1.00 |
| MH215-MH205B | CONDUIT | 6.04 | 0 | 01:20 | 0.92 | 0.07 | 0.26 |
| MS01 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS02 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS03 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS04 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS05 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS06 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS07 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS08 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS09 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS10 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS12 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| MS13 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| STM161-MH207 | CONDUIT | 16.35 | 0 | 01:10 | 1.06 | 0.19 | 0.36 |
| STM169-MH204 | CONDUIT | 3.14 | 0 | 02:08 | 0.79 | 0.04 | 0.14 |
| STM173-MH206 | CONDUIT | 9.26 | 0 | 01:10 | 1.11 | 0.11 | 0.23 |
| STM233-MH202 | CONDUIT | 5.58 | 0 | 01:52 | 0.92 | 0.07 | 0.18 |
| STORE-CB02 | CONDUIT | 53.75 | 0 | 01:07 | 1.71 | 1.69 | 1.00 |
| STORE-MH210 | CONDUIT | 238.38 | 0 | 01:06 | 2.16 | 1.27 | 1.00 |
| SW01 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.19 |
| SW02 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.26 |
| SW03 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.26 |
| SW04 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.33 |
| SW05 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.33 |
| SW06 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| SW07 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.01 |
| SW08 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 |
| SW09 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 |
| SW10 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.06 |
| | | | | | | | |

| SW11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.06 |
|-------------|---------|------|---|-------|------|------|------|
| SW12 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.22 |
| SW13 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.22 |
| SW14 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.36 |
| SW15 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.36 |
| SW16 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| 0-CB01 | ORIFICE | 6.02 | 0 | 01:13 | | | 1.00 |
| 0-CB02 | ORIFICE | 5.97 | 0 | 03:28 | | | 1.00 |
| O-CB12 | ORIFICE | 5.98 | 0 | 01:14 | | | 1.00 |
| O-CBMH208 | ORIFICE | 6.08 | 0 | 02:41 | | | 1.00 |
| O-Cistern | ORIFICE | 6.04 | 0 | 01:21 | | | 1.00 |
| Spill-RoofA | WEIR | 0.00 | 0 | 00:00 | | | 0.00 |
| Spill-RoofB | WEIR | 0.00 | 0 | 00:00 | | | 0.00 |
| Spill-RoofC | WEIR | 0.00 | 0 | 00:00 | | | 0.00 |
| Spill-RoofD | WEIR | 0.06 | 0 | 02:05 | | | 0.00 |
| O-RoofA | DUMMY | 5.58 | 0 | 01:52 | | | |
| O-RoofB | DUMMY | 3.14 | 0 | 02:08 | | | |
| O-RoofC | DUMMY | 3.14 | 0 | 02:08 | | | |
| O-RoofD | DUMMY | 3.15 | 0 | 02:05 | | | |
| | | | | | | | |

Adjusted ----- Fraction of Time in Flow Class -----

| | Adjusted | | | Fraction of | | Time | in Flow | w Clas: | | |
|-----------------|----------|------|------|-------------|------|------|---------|---------|------|-------|
| | /Actual | | Up | Down | Sub | Sup | Up | Down | Norm | Inlet |
| Conduit | Length | Dry | Dry | Dry | Crit | Crit | Crit | Crit | Ltd | Ctrl |
| | | | | | | | | | | |
| CB03-CBMH209 | 1.00 | 0.01 | 0.03 | 0.00 | 0.51 | 0.00 | 0.00 | 0.45 | 0.52 | 0.00 |
| CB04-CBMH209 | 1.00 | 0.01 | 0.04 | 0.00 | 0.54 | 0.00 | 0.00 | 0.42 | 0.48 | 0.00 |
| CB05-CB04 | 1.00 | 0.01 | 0.02 | 0.00 | 0.46 | 0.00 | 0.00 | 0.50 | 0.55 | 0.00 |
| CB06-CBMH212 | 1.00 | 0.01 | 0.00 | 0.00 | 0.66 | 0.00 | 0.00 | 0.33 | 0.34 | 0.00 |
| CB07-CB06 | 1.00 | 0.01 | 0.00 | 0.00 | 0.62 | 0.00 | 0.00 | 0.38 | 0.40 | 0.00 |
| CB08-CB07 | 1.00 | 0.25 | 0.00 | 0.00 | 0.58 | 0.00 | 0.00 | 0.17 | 0.45 | 0.00 |
| CB09-CBMH214 | 1.00 | 0.01 | 0.02 | 0.00 | 0.45 | 0.00 | 0.00 | 0.52 | 0.55 | 0.00 |
| CB10-CBMH214 | 1.00 | 0.01 | 0.00 | 0.00 | 0.64 | 0.00 | 0.00 | 0.35 | 0.36 | 0.00 |
| CB11-CB10 | 1.00 | 0.01 | 0.00 | 0.00 | 0.60 | 0.00 | 0.00 | 0.39 | 0.40 | 0.00 |
| CBMH209-CBMH208 | 1.00 | 0.01 | 0.00 | 0.00 | 0.70 | 0.00 | 0.00 | 0.29 | 0.01 | 0.00 |
| CBMH211-MH210 | 1.00 | 0.01 | 0.00 | 0.00 | 0.70 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 |

| CBMH212-CBMH211 | 1.00 | 0.01 | 0.00 | 0.00 | 0.68 | 0.00 | 0.00 | 0.31 | 0.02 | 0.00 |
|------------------|------|------|------|------|------|------|------|------|------|------|
| CBMH213-CBMH211 | 1.00 | 0.01 | 0.00 | 0.00 | 0.69 | 0.00 | 0.00 | 0.30 | 0.01 | 0.00 |
| CBMH214-CBMH213 | 1.00 | 0.01 | 0.00 | 0.00 | 0.68 | 0.00 | 0.00 | 0.32 | 0.01 | 0.00 |
| HP-CB01 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB02 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB03a | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB03b | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB04 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB05a | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB05b | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB06 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB09 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB10a | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB10b | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CB11 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH208 | 1.00 | 0.89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 |
| HP-CBMH209 | 1.00 | 0.95 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH211a | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH211b | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH212 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH213 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-CBMH214 | 1.00 | 0.95 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| HP-TrenchCistern | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| LD1000-CB08 | 1.00 | 0.02 | 0.01 | 0.00 | 0.50 | 0.00 | 0.00 | 0.47 | 0.53 | 0.00 |
| LD1001-LD1000 | 1.00 | 0.01 | 0.00 | 0.00 | 0.46 | 0.00 | 0.00 | 0.54 | 0.57 | 0.00 |
| LD1002-CB11 | 1.00 | 0.04 | 0.01 | 0.00 | 0.56 | 0.00 | 0.00 | 0.39 | 0.47 | 0.00 |
| LD1003-LD1002 | 1.00 | 0.08 | 0.01 | 0.00 | 0.50 | 0.00 | 0.00 | 0.40 | 0.52 | 0.00 |
| LD1004-CB12 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| LD1005-LD1004 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| LD1006-LD1005 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| LD1007-LD1006 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| LD1008-LD1007 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| LD1009-LD1008 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| LD1010-LD1009 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| LD1011-LD1010 | 1.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 |
| MH201-MH101 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| MH202-MH201 | 1.00 | 0.01 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.80 | 0.18 | 0.00 |
| MH203-MH202 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| MH204-MH203 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| MH205B-MH205 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| MH205-MH204 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| | | | | | | | | | | |

| MH206-MH205B | 1.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.95 | 0.03 | 0.00 |
|---------------|------|------|------|------|------|------|------|------|------|------|
| MH207-MH206 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| MH210-CBMH208 | 1.00 | 0.01 | 0.00 | 0.00 | 0.70 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 |
| MH215-MH205B | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.96 | 0.00 | 0.00 |
| MS01 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS02 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS03 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS04 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS05 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS06 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS07 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS08 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS09 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS10 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS11 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS12 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MS13 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| STM161-MH207 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.82 | 0.18 | 0.00 |
| STM169-MH204 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| STM173-MH206 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| STM233-MH202 | 1.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 |
| STORE-CB02 | 1.00 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.83 | 0.00 | 0.00 |
| STORE-MH210 | 1.00 | 0.01 | 0.00 | 0.00 | 0.68 | 0.00 | 0.00 | 0.31 | 0.31 | 0.00 |
| SW01 | 1.00 | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW02 | 1.00 | 0.68 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW03 | 1.00 | 0.68 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW04 | 1.00 | 0.67 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW05 | 1.00 | 0.67 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW06 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW07 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW08 | 1.00 | 0.89 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW09 | 1.00 | 0.89 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW10 | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW11 | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW12 | 1.00 | 0.78 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW13 | 1.00 | 0.78 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW14 | 1.00 | 0.68 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW15 | 1.00 | 0.68 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SW16 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| | | | | | | | | | | |

| | | | | Hours | |
|-----------------|-----------|------------|----------|-------------|----------|
| | | Hours Full | | Above Full | Capacity |
| Conduit | Both Ends | Upstream | Dnstream | Normal Flow | Limited |
| | | | | | |
| CB03-CBMH209 | | | | 0.04 | 0.05 |
| CB04-CBMH209 | | 20.83 | | 0.01 | 0.01 |
| CB05-CB04 | 19.65 | 19.65 | 20.68 | 0.01 | 0.03 |
| CB06-CBMH212 | | 29.02 | | 0.02 | 0.01 |
| CB07-CB06 | 25.01 | | | 0.01 | 0.01 |
| CB08-CB07 | 22.09 | | | | 0.01 |
| CB09-CBMH214 | 19.63 | 19.63 | 20.40 | 0.01 | 0.01 |
| CB10-CBMH214 | 27.95 | 27.95 | 28.85 | 0.01 | 0.01 |
| CB11-CB10 | 25.13 | 25.13 | 26.20 | 0.01 | 0.01 |
| CBMH209-CBMH208 | 31.40 | 31.40 | 32.15 | 0.01 | 0.05 |
| CBMH211-MH210 | 31.32 | 31.32 | 31.91 | 0.01 | 0.01 |
| CBMH212-CBMH211 | 29.97 | 29.97 | 31.28 | 0.01 | 0.01 |
| CBMH213-CBMH211 | 30.18 | 30.18 | 30.84 | 0.01 | 0.01 |
| CBMH214-CBMH213 | 28.90 | 28.90 | 29.67 | 0.01 | 0.01 |
| LD1000-CB08 | 19.76 | 19.76 | 21.26 | 0.01 | 0.01 |
| LD1001-LD1000 | 18.75 | 18.75 | 19.71 | 0.01 | 0.01 |
| LD1002-CB11 | 21.39 | 21.39 | 24.40 | 0.01 | 0.01 |
| LD1003-LD1002 | 19.86 | 19.86 | 21.26 | 0.01 | 0.01 |
| LD1004-CB12 | 0.54 | 0.54 | 0.58 | 0.01 | 0.01 |
| LD1005-LD1004 | 0.50 | 0.50 | 0.53 | 0.01 | 0.01 |
| LD1006-LD1005 | 0.45 | 0.45 | 0.49 | 0.01 | 0.01 |
| LD1007-LD1006 | 0.40 | 0.40 | 0.44 | 0.01 | 0.01 |
| LD1008-LD1007 | 0.34 | 0.34 | 0.39 | 0.01 | 0.01 |
| LD1009-LD1008 | 0.29 | 0.29 | 0.33 | 0.01 | 0.01 |
| LD1010-LD1009 | 0.25 | 0.25 | 0.28 | 0.01 | 0.01 |
| LD1011-LD1010 | 0.12 | 0.12 | 0.23 | 0.01 | 0.01 |
| MH210-CBMH208 | 31.97 | 31.97 | 32.09 | 0.05 | 0.01 |
| STORE-CB02 | 6.95 | 6.95 | 7.04 | 0.07 | 0.01 |
| STORE-MH210 | 29.58 | 29.58 | 29.93 | 0.03 | 0.01 |

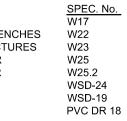
Analysis ended on: Mon Sep 11 15:35:30 2023 Total elapsed time: 00:00:06 Appendix F Drawings

| | ENERAL NOTES:
COORDINATE AND SCHEDULE ALL WORK WITH OTHE | R TRADES AND CONTRAC | TORS. | WATERMAIN NOTES: |
|------------|--|--|--|---|
| 2. | DETERMINE THE EXACT LOCATION, SIZE, MATERIAL
CONSTRUCTION. PROTECT AND ASSUME RESPONSI
DRAWING. | | | SUPPLY AND CONSTRUCT ALL WATE
OTTAWA STANDARDS AND SPECIFIC SPECIFICATIONS:
ITEM |
| | OBTAIN ALL NECESSARY PERMITS AND APPROVALS
BEFORE COMMENCING CONSTRUCTION OBTAIN AND
LIABILITY INSURANCE FOR \$5,000,000.00. INSURANCE | PROVIDE PROOF OF COM | PREHENSIVE, ALL RISK AND OPERATIONAL | WATERMAIN TRENCHING
THERMAL INSULATION IN SHALLOV
THERMAL INSULATION BY OPEN ST
WATERMAIN CROSSING BELOW SE |
| 5. | CO-INSURED.
RESTORE ALL DISTURBED AREAS ON-SITE AND OFF-
ALLOWANCES TO EXISTING CONDITIONS OR BETTER | | | WATERMAIN CROSSING ABOVE SE
HYDRANT
VALVE AND VALVE BOX
WATERMAIN |
| 6. | REMOVE FROM SITE ALL EXCESS EXCAVATED MATE
BY ENGINEER. EXCAVATE AND REMOVE FROM SITE
BE DISPOSED OF AT A LICENSED LANDFILL FACILITY. | RIAL, ORGANIC MATERIAL
ANY CONTAMINATED MAT | AND DEBRIS UNLESS OTHERWISE INSTRUCTED | 3. SUPPLY AND CONSTRUCT ALL WATE
AND SPECIFICATIONS. EXCAVATION
CONTRACTOR. CONNECTIONS AND |
| 7. | ALL DIMENSIONS AND INVERTS MUST BE VERIFIED P
CONTRACTOR IS TO NOTIFY THE ENGINEER PROMPT | RIOR TO CONSTRUCTION. | IF THERE IS ANY DISCREPANCY THE | PERFORMED BY CITY OFFICIALS.
3. WATERMAIN SHALL BE MINIMUM 2.4
THAN 2.4m COVER TO BE INSULATE |
| 8. | ALL ELEVATIONS ARE GEODETIC AND ARE REFERED
CROSS LOCATED ON THE BASE OF A LIGHT STANDAI
BEARINGS ARE DERIVED FROM MTM ZONE 9 (NAD-83
TOPOGRAPHIC PLAN OF SURVEY OF PART IF THE NC
OF PIN 14563-3947 BEING PART OF LOT 1 CONCESSIO | RD WITHIN THE NEIGHBOR
, ORIGINAL). REFER TO AN
DRTHERLY LIMIT, THE WES | ING DEALERSHIP PROPERTY TO THE SOUTH.
INIS O'SULLIVAN VOLLEBEKK LTD.
TERLY LIMIT AND PART OF THE SOUTHERLY LIIT | PROVIDE MINIMUM CLEARANCE, BE
WATERMAIN MUST HAVE A MINIMUM
UTILITIES WHEN CROSSING. WATER SERVICE IS TO BE CONSTRUINDICATED. |
| 9. | JANUARY 6,2023.
REFER TO GEOTECHNICAL INVESTIGATION REPORT
OTTAWA ONTARIO, PG6528-1, (DATED MARCH 22,202)
CONSTRUCTION RECOMMENDATIONS AND GEOTECH | 3), PREPARED BY PATERS(
INICAL INSPECTION REQU | ON GROUP FOR SUBSURFACE CONDITIONS,
IREMENTS. THE GEOTECHNICAL CONSULTANT | CATHODIC PROTECTION REQUIRED
44. 8. IF WATERMAIN MUST BE DEFLECTE |
| 10. | IS TO REVIEW ON-SITE CONDITIONS AFTER EXCAVAT
REFER TO ARCHITECT'S AND LANDSCAPE ARCHITEC
DIMENSIONS. | | | HALF THAT RECOMMENDED BY THE
GRADING NOTES: |
| | REFER TO THE STORMWATER MANAGEMENT REPOR | , | | 1. ALL TOPSOIL, ORGANIC OR DELET
BUILDING AND PAVED AREAS. |
| 13. | (R10 AND R25).
PROVIDE LINE/PARKING PAINTING. | | | 2. EXPOSED SUB-GRADES IN PROPO
INSPECTED BY THE GEOTECHNICA |
| 14. | CONTRACTOR TO PROVIDE THE CONSULTANT WITH
INFORMATION SHOWN ON THIS PLAN. AS-BUILT INFO
INVERT AND T/G ELEVATIONS, STRUCTURE LOCATIO
ALIGNMENT CHANGES, ETC. | RMATION MUST INCLUDE: | PIPE MATERIAL, SIZES, LENGTHS, SLOPES, | 3. NON-SPECIFIED EXISTING FILL ALC
BENEATH EXTERIOR PARKING ARE
MATERIALS SHOULD BE SPREAD II
SPREADING EQUIPMENT TO MINIM |
| | CONTRACTOR IS RESPONSIBLE FOR ALL LAYOUT FO | R CONSTRUCTION PURPO | SES. | AREAS TO BE PAVED, IT SHOULD E |
| | SUPPLY AND CONSTRUCT ALL SEWERS AND APPUR
STANDARDS AND SPECIFICATIONS.
SPECIFICATIONS:
ITEM | SPEC. No. | REFERENCE | A MINIMUM OF 100% OF THE MATE
AT THE SUBGRADE LEVEL, THE TO
BE REDUCED TO 300 MM FOR THE
SHOULD BE REVIEWED AND APPRO
SHOULD BE EXERCISED TO ENSUR |
| | SANITARY/STORM/CATCHBASIN MANHOLE (1200Ø)
STORM MANHOLE (1500Ø)
CATCHBASIN (600x600)
CATCHBASIN FRAME AND COVER | 701.010
701.011
705.010
400.020 | OPSD
OPSD
OPSD
OPSD | WATER.
5. BACKFILL MATERIAL BELOW SIDEV |
| | STORM/SANITARY MH FRAME
SANITARY COVER
STORM COVER (CLOSED)
STORM COVER (OPEN) | S25
S24
S24.1
S28.1 | CITY OF OTTAWA
CITY OF OTTAWA
CITY OF OTTAWA
CITY OF OTTAWA | WHICH ARE NOT ADJACENT TO TH
THIS MATERIAL SHOULD BE PLACE
SPMDD UNDER DRY AND ABOVE F |
| | SEWER TRENCH
STORM SEWER < 450mmØ
STORM SEWER >= 450mmØ
SANITARY SEWER | S20.1
S6 & S7
PVC DR 35(UNLESS SPEC
CONC 65D (UNLESS SPEC
PVC DR 35 | CITY OF OTTAWA
IFIED OTHERWISE) | 6. IF SOFT SPOTS DEVELOP IN THE S
AREAS SHOULD BE EXCAVATED A |
| | CATCHBASIN LEAD
CATCHBASIN COVER
ROAD SUBDRAIN (CONTINUOUS) | PVC DR 35
PVC DR 35
S19
R1 | CITY OF OTTAWA
CITY OF OTTAWA | 7. ALL CURBS SHALL BE BARRIER CU
DETAILS |
| | WATERTIGHT FRAME & COVER | 401.030 | OPSD | 8. GRADE AND/OR FILL BEHIND PROF
POSITIVE DRAINAGE. |
| | INSULATE ALL PIPES (SAN/STM) THAT HAVE LESS TH.
CLEARANCE BETWEEN PIPE AND INSULATION (REFE | R TO DETAIL) | | 9. MINIMUM OF 2% GRADE FOR ALL |
| | SERVICES ARE TO BE CONSTRUCTED TO 1.0m FROM | JIPED WITH BACKFLOW PR | | ALL GRADES BY CURBS ARE EDGE REFER TO LANDSCAPE PLAN FOR |
| 5. | OTTAWA STANDARD DETAILS S14 AND S14,1 OR S14.
THE PIPE BEDDING FOR THE SEWER AND WATER PIF
HOWEVER, WHEN THE BEDDING IS LOCATED WITHIN | PES SHOULD CONSIST OF | | 12. CONTRACTOR TO PROVIDE THE C |
| | SHOULD BE PLACED FOR BEDDING IS LOCATED WITHIN
SHOULD BE PLACED FOR BEDDING FOR SEWER OR N
THICK LOOSE LIFTS AND COMPACTED TO A MINIMUM
LEAST TO THE SPRING LINE OF THE PIPE. THE COVE
EXTEND FROM THE SPRING LINE OF THE PIPE TO AT
BE PLACED IN MAXIMUM 225 MM THICK LIFTS AND CO | NATER PIPES. THE MATER
1 OF 99% OF ITS SPMDD. T
R MATERIAL, WHICH SHOU
LEAST 300 MM ABOVE THE | IAL SHOULD BE PLACED IN A MAXIMUM 225 MM
HE BEDDING MATERIAL SHOULD EXTEND AT
LD CONSIST OF OPSS GRANULAR A, SHOULD
E OBVERT OF THE PIPE. THE MATERIAL SHOULD | DESIGN GRADE SHOWN ON THIS F
EROSION AND SEDIMEN
1. THE OWNER AGREES TO PREPARE A |
| 6. | CRUSHED STONE AS A BEDDING LAYER SHALL NOT I
WHERE HARD SURFACE AREAS ARE CONSIDERED A
THE FROST ZONE (ABOUT 1.8 M BELOW FINISHED GF
MINIMIZE DIFFERENTIAL FROST HEAVING. THE TREN | BOVE THE TRENCH BACKF
RADE) SHOULD MATCH THE | SOILS EXPOSED AT THE TRENCH WALLS TO | CITY OF OTTAWA, APPROPRIATE TO
GRADING, REMOVAL OF VEGETATION
ACCORDANCE WITH THE CURRENT B
LIMITED TO INSTALLING FILTER CLOT
STRUCTURES AND INSTALL AND MAIN |
| 7. | LIFTS AND COMPACTED TO A MINIMUM OF 95% OF TH
FLEXIBLE CONNECTIONS ARE REQUIRED FOR CONN
SEAL AND DURASEAL). THE CONCRETE CRADLE FOR | ECTING PIPES TO MANHO | | 2. THE CONTRACTOR SHALL PLACE FIL
CONSTRUCTION AND WILL REMAIN IN |
| 8. | ALL STORM MANHOLES MANHOLES WITH PIPE SIZES
INDICATED. ALL STORM MANHOLES WITH PIPE SIZES | LESS THAN 900mm ARE T | O HAVE 300mm SUMPS UNLESS OTHERWISE | 3. SILT FENCING FOR ENTIRE PERIMETE
CONSTRUCTION. |
| 9. | CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED S
ASPHALT TO ENSURE THAT THEY ARE CLEAN AND O
RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS &
APPROVAL FROM THE CITY'S SEWER OPERATIONS. | PERATIONAL. UPON COMF
APPURTENANCES AND RE | LETION OF CONTRACT, THE CONTRACTOR IS
CCTV PRIOR TO ACCEPTANCE. OBTAIN | 4. THE CONTRACTOR ACKNOWLEDGES
SUBJECT TO PENALTIES IMPOSED BY |
| 10. | APPROVAL FROM THE CITY'S SEWER OPERATIONS. F
REVIEW AND APPROVAL.
CONTRACTOR TO PROVIDE THE CONSULTANT WITH
AS-BUILT INFORMATION SHOWN ON THIS PLAN. AS-E
SLOPES, INVERT AND T/G ELEVATIONS, STRUCTURE | A GENERAL PLAN OF SERV
BUILT INFORMATION MUST | /ICES INDICATING ALL APPLICABLE SERVICING
INCLUDE: PIPE MATERIAL, SIZES, LENGTHS, | SEWER & WATERMAIN INSU
1. INSULATE ALL SEWER PIPES THAT HAN
THAN 2.0m COVER AND ALL WATERMA
LESS THAN 2.4m OF COVER WITH EXPA |
| 11. | THE OWNER SHALL REQUIRE THAT THE SITE SERVIC
ALL SANITARY SEWERS, LEAKAGE TESTING SHALL B
407.07.24. DYE TESTING IS TO BE COMPLETED ON AL
SANITARY SEWER MAIN. THE FIELD TESTS SHALL BE
ENGINEER WHO SHALL SUBMIT A CERTIFIED COPY (| E COMPLETED IN ACCORD
L SANITARY SERVICES TO
PERFORMED IN THE PRE | ANCE WITH OPSS 410.07.16, 410.07.16.04 AND CONFIRM PROPER CONNECTION TO THE | POLYSTYRENE INSULATION AS PER OF
1109.030.
2. THE THICKNESS OF INSULATION SHAL
EQUIVALENT OF 25mm FOR EVERY 300
REDUCTION IN THE REQUIRED DEPTH |
| 12. | ALL CATCHBASINS AND CATCHBASIN MANHOLES TO
EXTENDING IN TWO DIRECTIONS 300mm BELOW THE
BETWEEN DIFFERENT PAVEMENT COMPOSITIONS. TO
TO THE DRAINAGE LINES. | SUBGRADE LEVEL. SUBD | RAIN IS TO BE PROVIDED AT THE TRANSITIONS | COVER WITH 50mm MINIMUM (SEE TAE
T = THICKNESS OF INSULATION (mm)
W = WIDTH OF INSULATION (mm)
W = D + 300 (1000 min.)
D = O.D OF PIPE (mm) |
| 11. | ALL WORKS SHALL BE PERFORMED AS APPLICABLE
AND IN PARTICULAR O.P.S.S. 407 AND 410. | IN ACCORDANCE WITH CIT | Y OF OTTAWA STANDARD SPECIFICATIONS, | |
| - | PAVEMENT STRUCTURE:
- HEAVY-TRUCK TRAFFIC AND LOADING AREAS
40mm HL3 OR SUPERPAVE 12.5 | | | |
| - | 50mm HL8 OR SUPERPAVE 19.0
150mm OPSS GRAN "A" CRUSHED STONE
450mm OPSS GRANULAR B TYPE II
- CAR ONLY PARKING AREAS
50mm HL3 OR SUPERPAVE 12.5 | | | |
| | | | | |
| <u>NOT</u> | MINIMUM PERFORMANCE GRADED (PG) 58-34 ASPHAL
CEMENT.
SUBGRADE - EITHER IN SITU SOIL, BEDROCK OR OPS | | | |

STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

IN AND APPURTENANCES IN ACCORDANCE WITH THE MOST CURRENT CITY OF NS.

REFERENCE CITY OF OTTAWA


CITY OF OTTAWA

CITY OF OTTAWA

CITY OF OTTAWA

CITY OF OTTAWA CITY OF OTTAWA

CITY OF OTTAWA

INS AND APPURTENANCES IN ACCORDANCE WITH THE CITY OF OTTAWA STANDARD TALLATION, BACKFILL AND RESTORATION OF ALL WATERMAINS BY THE T-OFFS AT THE MAIN AND CHLORINATION OF THE WATER SYSTEM SHALL BE

PTH BELOW GRADE UNLESS OTHERWISE INDICATED. ANY WATERMAIN WITH LESS R THE SEWER AND WATERMAIN NOTES AND DETAIL. EN OUTSIDE OF PIPES, AT ALL CROSSINGS AS PER CITY DETAILS W25 AND W25.2.

TICAL CLEARANCE OF 0.25m OVER AND 0.50m UNDER SEWERS AND ALL OTHER

D TO WITHIN 1.0m OF FOUNDATION WALL AND CAPPED, UNLESS OTHERWISE

ALL IRON FITTINGS CITY OF OTTAWA STANDARD DETAILS WSD-39, 40, 41, 42, 43 AND

MEET ALIGNMENT, ENSURE THAT THE AMOUNT OF DEFLECTION USED IS LESS THAN UFACTURER.

US MATERIAL MUST BE ENTIRELY REMOVED FROM BENEATH THE PROPOSED

PAVED AREAS SHOULD BE PROOF ROLLED WITH A LARGE STEEL DRUM ROLLER AND GINEER PRIOR TO THE PLACEMENT OF GRANULARS.

WITH SITE-EXCAVATED SOIL COULD BE PLACED AS GENERAL LANDSCAPING FILL AND VHERE SETTLEMENT OF THE GROUND SURFACE IS OF MINOR CONCERN. THESE IS WITH A MAXIMUM THICKNESS OF 300 mm AND COMPACTED BY THE TRACKS OF THE (OIDS. IF THIS MATERIAL IS TO BE USED TO BUILD UP THE SUBGRADE LEVEL FOR OMPACTED IN THIN LIFTS TO AT LEAST 95% OF THE MATERIAL'S SPMDD.

SUBBASE SHOULD BE PLACED IN MAXIMUM 300 mm THICK LIFTS AND COMPACTED TO S SPMDD USING SUITABLE COMPACTION EQUIPMENT. IF BEDROCK IS ENCOUNTERED THICKNESS OF THE PAVEMENT GRANULAR MATERIALS (BASE AND SUBBASE) COULD OWING PAVEMENT STRUCTURES. THE UPPER 300 mm OF THE BEDROCK SURFACE BY PATERSON PRIOR TO PLACING THE BASE AND SUBBASE MATERIALS. CARE IAT THE BEDROCK SUBGRADE DOES NOT HAVE DEPRESSIONS THAT WILL TRAP THE

AND WALKWAY SUBGRADE AREAS OR OTHER SETTLEMENT SENSITIVE STRUCTURES ILDINGS SHOULD CONSIST OF FREE-DRAINING,NON-FROST SUSCEPTIBLE MATERIAL. MAXIMUM 300 MM THICK LOOSE LIFTS AND COMPACTED TO AT LEAST 98% OF ITS ZING CONDITIONS.

RADE DURING COMPACTION OR DUE TO CONSTRUCTION TRAFFIC, THE AFFECTED EPLACED WITH OPSS GRANULAR B TYPE II MATERIAL.

150mm) UNLESS OTHERWISE NOTED. REFER TO THE ARCHITECTURAL PLANS FOR

D CURB AND BETWEEN BUILDINGS AND CURBS, WHERE REQUIRED TO PROVIDE

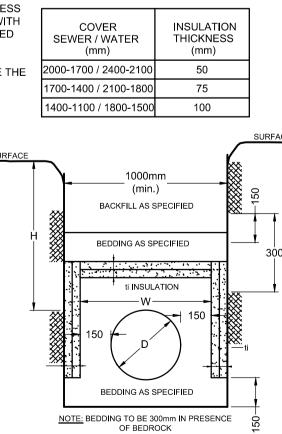
SS AREAS UNLESS OTHERWISE NOTED

PAVEMENT GRADES UNLESS OTHERWISE INDICATED.

TING AND OTHER LANDSCAPE FEATURE DETAILS.

JLTANT WITH A GRADING PLAN INDICATING THE AS-BUILT ELEVATION OF EVERY

CONTROL NOTES:


MPLEMENT AN EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE SITE CONDITIONS, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, C.) AND DURING ALL PHASES OF SITE PREPARATION AND CONSTRUCTION IN MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL SUCH AS BUT NOT CROSS MANHOLE/CATCHBASIN LIDS TO PREVENT SEDIMENTS FROM ENTERING N A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED.

CLOTH UNDER THE CATCHBASIN AND MANHOLE GRATES FOR THE DURATION OF CE DURING ALL PHASES OF CONSTRUCTION.

SITE, SHALL BE UTILIZED TO CONTROL EROSION FROM THE SITE DURING

T FAILURE TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES MAY BE Y APPLICABLE REGULATORY AGENCY.

TION NOTES:

INSULATION DETAIL FOR SHALLOW SEWERS & WATERMAIN N.T.S

| | | | | SCALE | DESIGN | FOR REV | EW ONLY |
|-----|----------------------------------|--------------|-----|----------|---------|---------|-----------|
| | | | | AS SHOWN | | REVIEW | RENEW |
| 2. | REVISED PER CITY COMMENTS | SEPT 15/2023 | GJM | | ARM/CJF | WEDFO. | , HED FOI |
| 1 | ISSUED FOR SITE PLAN APPLICATION | MAY 24/2023 | GJM | | | 1550 | 550 |
| No. | REVISION | DATE | BY | | GJM | | |

| | PIPE CR | OSSING TABLE | |
|----------------|--------------------------|-----------------------------|-----------|
| CROSSING | LOWER PIPE | HIGHER PIPE | CLEARANCE |
| 1 | 825mmØ STM OBV = 83.73 * | 200mmØ WM (F.P) INV = 86.14 | ±2.41m |
| 2 | 825mmØ STM OBV = 83.73* | 200mmØ SAN INV = 84.69 | ±0.96m |
| 3 | 250mmØ STM OBV = 85.56 | 200mmØ WTM INV = 86.24 | ±0.68m |
| 4 | 525mmØ STM OBV = 84.70* | 200mmØ WTM INV = 86.15 | ±1.45m |
| 5 | 200mmØ SAN OBV = 85.13 | 200mmØ WTM INV = 86.14 | ±1.01m |
| 6 | 525mmØ STM OBV =84.68* | 200mmØ SAN INV = 84.92 | ±0.25m |
| 7 | 525mmØ STM OBV = 84.70* | 200mmØ WTM INV = 86.15 | ±1.45m |
| 8 | 200mmØ WTM OBV = 85.84 | 375mmØ STM INV =86.34* | ±0.50m |
| 9 | 250mmØ STM OBV = 86.73 | 200mmØ WTM INV = 86.98 | ±1.46m |
| $\overline{0}$ | 250mmØ STM OBV = 84.81 | 200mmØ SAN INV = 85.08 | ±0.27m |
| 1) | 250mmØ STM OBV = 84.87 | 200mmØ WTM INV = 86.33 | ±1.46m |
| 12 | 200mmØ SAN OBV = 85.42 | 200mmØ WTM INV = 86.29 | ±0.87m |
| 13 | 200mmØ SAN OBV = 85.72 | 200mmØ WTM INV = 86.48 | ±0.79m |
| 14 | 250mmØ STM OBV = 85.20 | 200mmØ WTM INV = 86.54 | ±1.34m |
| (15) | 250mmØ STM OBV = 85.00 | 200mmØ SAN INV = 85.36 | ±0.36m |
| 16 | 250mmØ STM OBV = 85.21 | 200mmØ WTM INV = 86.57 | ±1.36m |
| 17 | 200mmØ SAN OBV = 85.74 | 200mmØ WTM INV = 86.54 | ±0.80m |
| 18 | 250mmØ STM OBV = 84.99 | 200mmØ SAN INV = 85.27 | ±0.28m |
| (19) | 250mmØ STM OBV = 86.39 | 200mmØ WTM INV = 86.50 | ±0.25m |
| 0 | 825mmØ STM OBV = 84.79* | 200mm WM INV = 85.95 | ±1.16m |

* INV/OBV INDICATED FOR CONCRETE PIPES ARE OUTER DIAMETER

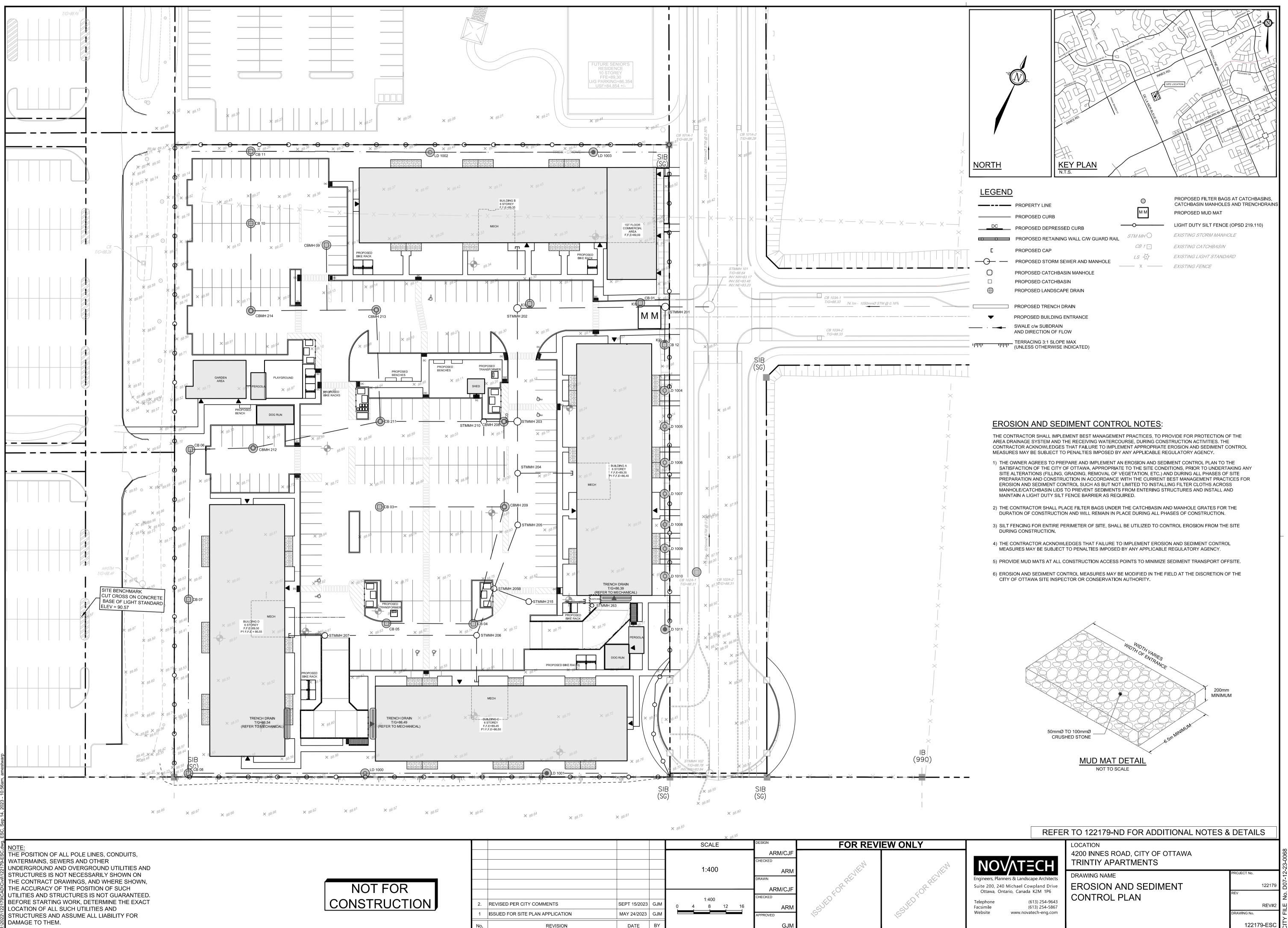
| | | ICD SIZI | NG AND | FLOWS | | |
|-----------|-------------------------|-------------------|---------|-------------------|--------------------|---------------------------------|
| STRUCTURE | TEMPEST
LMF ICD SIZE | ICD INVERT
(m) | T/G (m) | 100-yr HGL
(m) | 100-yr
HEAD (m) | 100-yr
RELEASE
RATE (L/s) |
| CB01 | Vortex 78 | 87.50 | 88.70 | 88.80 | 1.30 | 6.0 |
| CB02 | Vortex 64 | 86.10 | 88.60 | 88.88 | 2.78 | 6.0 |
| CB12 | Vortex 66 | 85.33 | 88.75 | 87.87 | 2.54 | 6.0 |
| CBMH208 | Vortex 64 | 86.10 | 88.65 | 88.98 | 2.88 | 6.1 |
| CISTERN | Vortex 72 | 86.39 | 89.21 | 88.20 | 1.81 | 6.1 |

| | PRC | POSED W | ATERMAIN (1+000.0) |
|---------|----------------------|-------------------|--|
| STATION | SURFACE
ELEVATION | T/WM
ELEVATION | COMMENTS |
| 1+000.0 | 88.64 | 86.24 | CONNECTION TO EXISTING 300mmØ WM |
| 1+005.3 | 88.74 | 86.34 | CROSS ABOVE 825mmØ STM (±2.41 CLEARANCE |
| 1+014.1 | 88.84 | 86.44 | 200mmØ VALVE AND VALVE BOX |
| 1+016.2 | 88.84 | 86.44 | CROSS ABOVE 250mmØ STM (±0.68 CLEARANCE |
| 1+040.6 | 88.80 | 86.40 | 200mmØ VALVE AND VALVE BOX |
| 1+051.1 | 88.78 | 86.34 | CROSS ABOVE 200mmØ STM (±1.01 CLEARANCE |
| 1+052.6 | 88.74 | 86.34 | CROSS ABOVE 525mmØ STM (±1.45 CLEARANCE |
| 1+087.4 | 88.75 | 85.84 | CROSS BELOW 375mmØ STM AS PER CITY OF
OTTAWA STANDARD W25 (±0.50 CLEARANCE) |
| 1+091.1 | 88.79 | 86.39 | 45° HORIZONTAL BEND |
| 1+097.2 | 88.89 | 86.49 | 45° HORIZONTAL BEND |
| 1+117.9 | 88.94 | 87.18 | CROSS ABOVE 250mmØ STM AS PER CITY OF
OTTAWA STANDARD W25 (±0.25 CLEARANCE) |
| 1+134.3 | 89.01 | 86.61 | 200mmØ VALVE AND VALVE BOX |
| 1+167.6 | 89.08 | 86.68 | CROSS ABOVE 200mmØ SAN (±0.79 CLEARANCE |
| 1+169.1 | 89.11 | 86.74 | CROSS UNDER 200mmØ STM (±1.31 CLEARANCE |
| 1+170.6 | 89.10 | 86.70 | 45° HORIZONTAL BEND |
| 1+179.7 | 89.08 | 86.68 | 45° HORIZONTAL BEND |
| 1+205.8 | 89.16 | 86.76 | CROSS ABOVE 250mmØ STM (±1.36 CLEARANCI |
| 1+208.0 | 89.14 | 86.74 | CROSS ABOVE 200mmØ SAN (±0.80 CLEARANCI |
| 1+224.2 | 89.16 | 86.76 | 200mmØ VALVE AND VALVE BOX |
| 1+263.5 | 88.55 | 86.15 | CROSS ABOVE 825mmØ (±1.16 CLEARANCE) |
| 1+251.7 | 88.75 | 86.35 | DMA CHAMBER PER CITY DETAIL W3 |
| 1+269.0 | 88.59 | 86.19 | CONNECTION TO EXISTING 300mmØ WM |

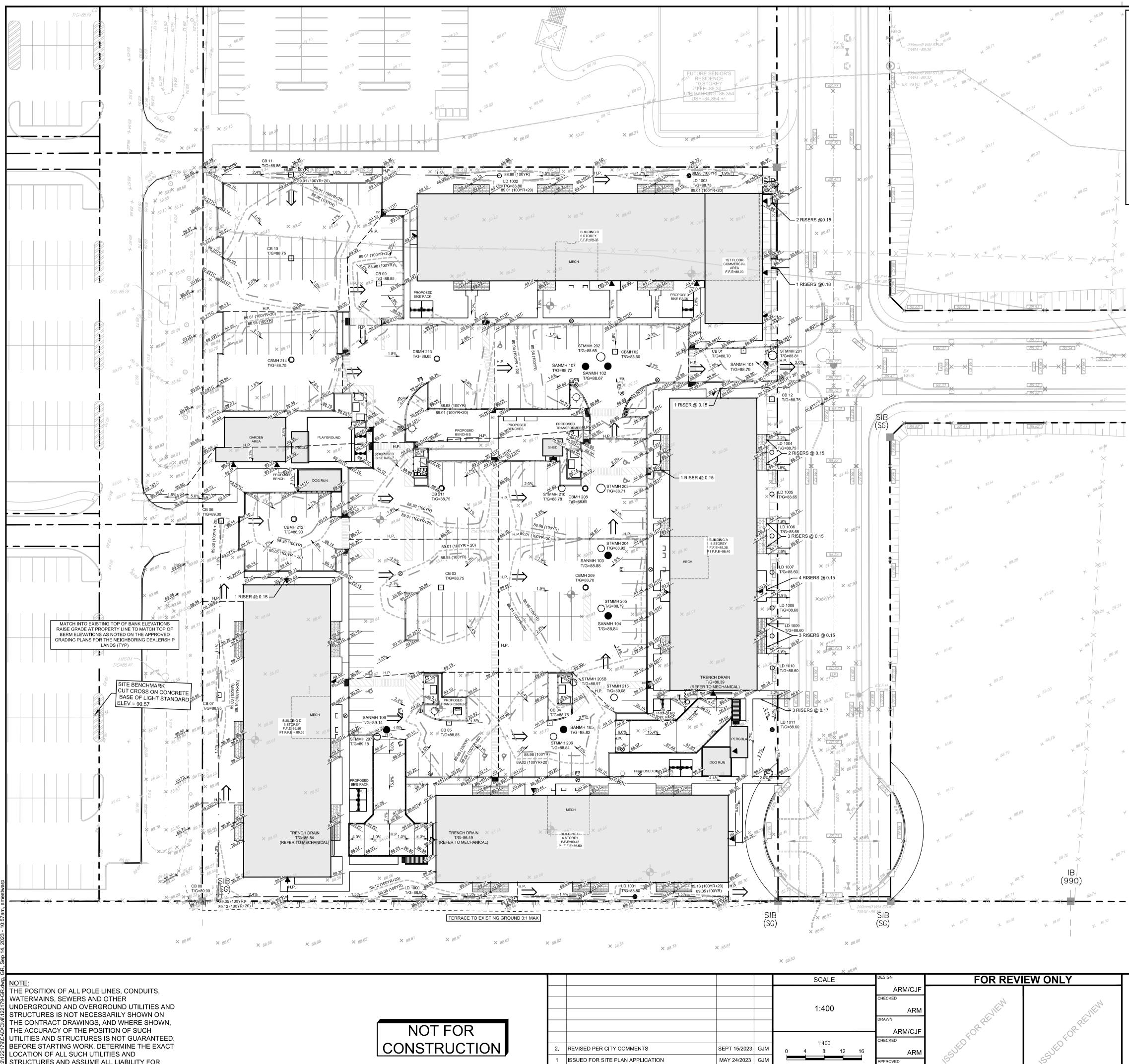
| PROPOSED WATERMAIN (2+000.0) | | | | | |
|------------------------------|----------------------|-------------------|--|--|--|
| STATION | SURFACE
ELEVATION | T/WM
ELEVATION | COMMENTS | | |
| 2+000.0 | 88.72 | 86.32 | CONNECTION TO PROPOSED 200mmØ WM | | |
| 2+003.0 | 88.79 | 86.39 | 200mmØ VALVE AND VALVE BOX | | |
| 2+036.2 | 88.93 | 86.08 | CROSS ABOVE 250mmØ STM ±1.46 CLEARANCE) | | |
| 2+037.6 | 88.89 | 85.99 | CROSS ABOVE 200mmØ STM (±0.87 CLEARANCE) | | |
| 2+068.0 | 88.10 | 86.50 | CROSS ABOVE 250mmØ STM AS PER CITY OF
OTTAWA STANDARD W25 (±0.25 CLEARANCE) | | |
| 2+078.0 | 89.01 | 86.61 | 200mmØ VALVE AND VALVE BOX | | |
| 2+084.0 | 89.29 | 86.89 | CONNECTION TO PROPOSED 200mmØ WM | | |

| PROPOSED WATERMAIN (3+000.0) | | | | |
|------------------------------|----------------------|-------------------|----------------------------------|--|
| STATION | SURFACE
ELEVATION | T/WM
ELEVATION | COMMENTS | |
| 3+000.0 | 88.87 | 86.47 | CONNECTION TO PROPOSED 200mmØ WM | |
| 3+006.0 | 89.21 | 86.81 | 200mmØ VALVE AND VALVE BOX | |
| 3+009.0 | 89.32 | 86.92 | BUILDING CAP | |
| | | | | |

| PROPOSED WATERMAIN (4+000.0) | | | | |
|------------------------------|----------------------|-------------------|----------------------------------|--|
| STATION | SURFACE
ELEVATION | T/WM
ELEVATION | COMMENTS | |
| 4+000.0 | 88.79 | 86.39 | CONNECTION TO PROPOSED 200mmØ WM | |
| 4+012.4 | 89.07 | 86.67 | 200mmØ VALVE AND VALVE BOX | |
| 4+020.0 | 89.25 | 86.85 | BUILDING CAP | |


| PROPOSED WATERMAIN (5+000.0) | | | | |
|------------------------------|----------------------|-------------------|----------------------------------|--|
| STATION | SURFACE
ELEVATION | T/WM
ELEVATION | COMMENTS | |
| 5+000.0 | 89.12 | 86.72 | CONNECTION TO PROPOSED 200mmØ WM | |
| 5+001.4 | 89.31 | 86.91 | 200mmØ VALVE AND VALVE BOX | |
| 5+004.0 | 89.37 | 86.97 | BUILDING CAP | |

| PROPOSED WATERMAIN (6+000.0) | | | | |
|------------------------------|----------------------|-------------------|----------------------------------|--|
| STATION | SURFACE
ELEVATION | T/WM
ELEVATION | COMMENTS | |
| 6+000.0 | 89.07 | 86.67 | CONNECTION TO PROPOSED 200mmØ WM | |
| 6+011.8 | 89.43 | 87.03 | 200mmØ VALVE AND VALVE BOX | |
| 6+013.9 | 89.42 | 87.02 | BUILDING CAP | |


| LOCATION |
|---------------------------------|
| 4200 INNES ROAD, CITY OF OTTAWA |
| TRINTIY APARTMENTS |
| DRAWING NAME |
| NOTES AND DETAILS |

REV

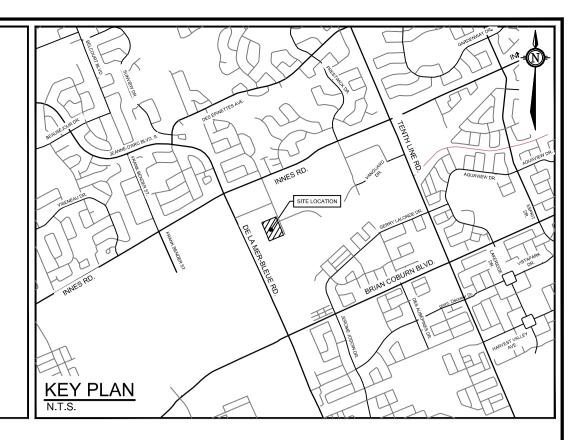
| × 88.95 | | | | | | | | | | |
|---------|----------------------------------|--------------|-----|-------------|----------|-----------------|---------------------|--|--|--|
| | | | | SCALE | DESIGN | FOR REVIEW ONLY | | | | |
| | | | | | | | | | | |
| | | | | - 1:400 | CHECKED | . IEN | LIN . | | | |
| | | | | | | EN | E.M. | | | |
| | | | | ľ | | - C- K- | 224 | | | |
| | | | | | ARM/CJF | < ⁰ | ¢.Ok. | | | |
| | | | | 1:400 | CHECKED | | $\langle O \rangle$ | | | |
| 2. | REVISED PER CITY COMMENTS | SEPT 15/2023 | GJM | 0 4 8 12 16 | ARM | CUL. | a JECT | | | |
| 1 | ISSUED FOR SITE PLAN APPLICATION | MAY 24/2023 | GJM | ·」 | APPROVED | 55 | 55 | | | |
| No. | REVISION | DATE | BY | | GJM | | | | | |

PLAN No. 18993

STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

| × 88.95 | | | | | | | | |
|---------|----------------------------------|--------------|-----|-------------|----------|-----------------|---|--|
| | | | | SCALE | DESIGN | FOR REVIEW ONLY | | |
| | | | | | ARM/CJF | | | |
| | | | | | CHECKED | A. | 4 | |
| | | | | 1:400 | ARM | WE | | |
| | | | | | DRAWN | PH | <u>A</u> | |
| | | | | | ARM/CJF | Se l | ×. | |
| | | | | 1:400 | CHECKED | | A CANANA A C | |
| 2. | REVISED PER CITY COMMENTS | SEPT 15/2023 | GJM | 0 4 8 12 16 | ARM | CUEL | - UFP | |
| 1 | ISSUED FOR SITE PLAN APPLICATION | MAY 24/2023 | GJM | | APPROVED | 55 | 55 | |
| No. | REVISION | DATE | BY | | GJM | | | |

NORTH


LEGEND

DC $\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\times\!\!\times$ x 98.40 x 98.40 97.79TV 97.79BV ¥ 97.88TC V&VB ⊗ FDSC Y H.P. _ __ __ _ _____ · ___

2.0% \leftarrow

ELEVATION

| PROPERTY LINE | SAN MH |
|---|-----------------|
| PROPOSED BARRIER CURB | STM MH |
| PROPOSED DEPRESSED CURB
PROPOSED TACTILE WALKING
SURFACE INDICATOR (TWSI)
PROPOSED ELEVATION | () e |
| EXISTING ELEVATION | -0 |
| PROPOSED SWALE ELEVATION | SAN MH |
| PROPOSED TOP OF WALL ELEVATION | STM MH |
| PROPOSED BOTTOM OF WALL ELEVATION | \bigcirc |
| PROPOSED TOP OF CURB ELEVATION | $^{CB 1}$. |
| PROPOSED VALVE AND VALVE BOX | |
| FIRE DEPARTMENT SIAMESE CONNECTION | _O UF |
| PROPOSED BUILDING ENTRANCE | O
AN |
| PROPOSED HIGH POINT
SWALE c/w SUBDRAIN
AND DIRECTION OF FLOW | ¢ |
| TERRACING 3:1 SLOPE MAX
(UNLESS OTHERWISE INDICATED) | |
| PROPOSED RETAINING WALL C/W GUARD RA | AL. |
| SLOPE AND DIRECTION | |
| DIRECTION OF MAJOR OVERLAND FLOW | |
| PROPOSED LANDSCAPE DRAIN
PROPOSED CATCHBASIN MANHOLE
PROPOSED CATCHBASIN | |
| PROPOSED LANDSCAPE TEE CATCH BASIN
PROPOSED LANDSCAPE ELBOW CATCH BAS | IN |

PROPOSED TRENCH DRAIN

1:100 YEAR PONDING AREA AND ELEVATION 1:100 YEAR (+20%) PONDING AREA AND

O Θ

PROPOSED SANITARY MANHOLE PROPOSED STORM MANHOLE PROPOSED HYDRANT & VALVE

PROPOSED VALVE AND VALVE BOX EXISTING VALVE & VALVE BOX EXISTING VALVE & LEAD EXISTING SANITARY MANHOLE

EXISTING STORM MANHOLE

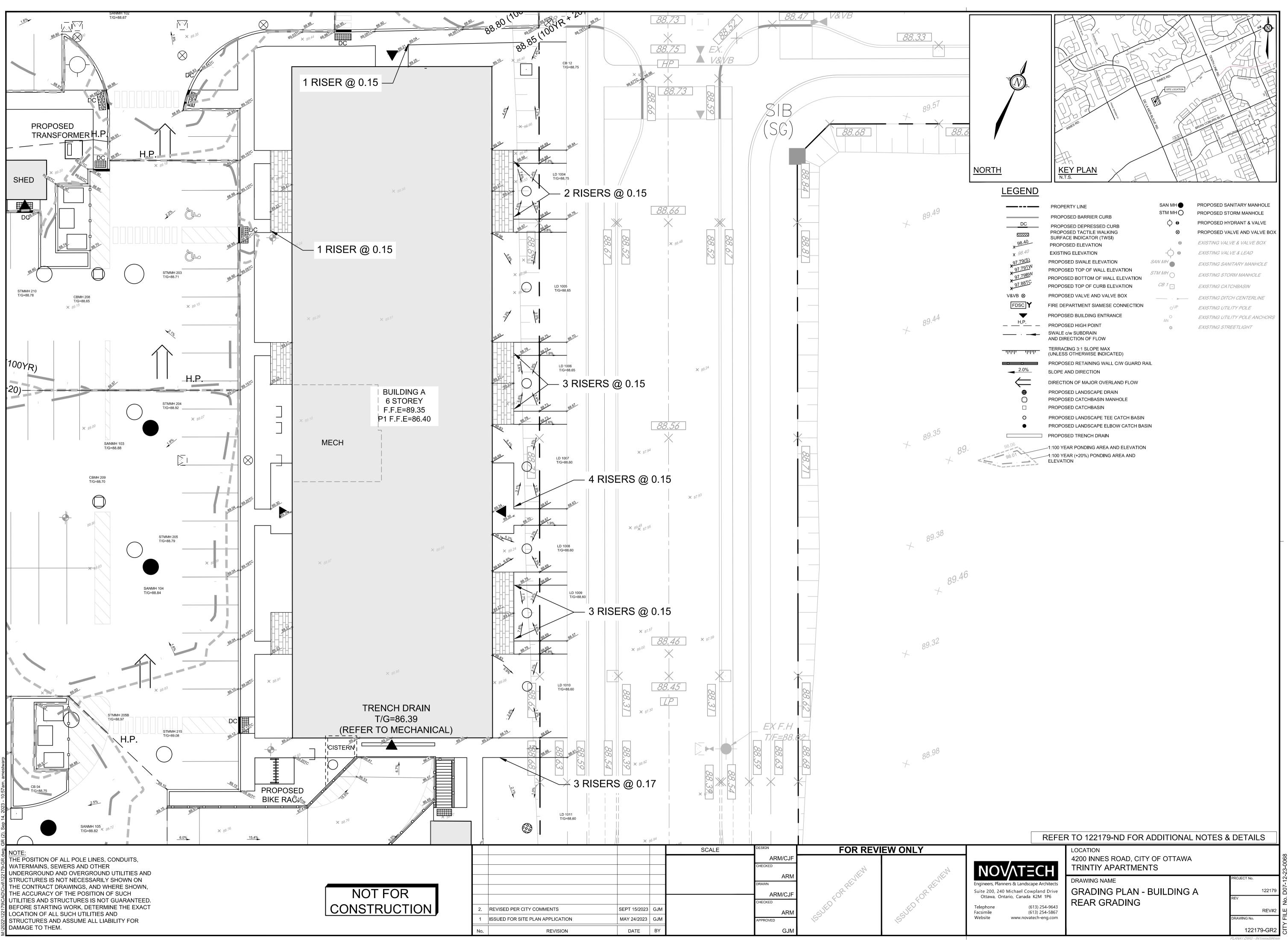
EXISTING CATCHBASIN

EXISTING DITCH CENTERLINE

EXISTING UTILITY POLE

EXISTING UTILITY POLE ANCHORS EXISTING STREETLIGHT

REFER TO 122179-ND FOR ADDITIONAL NOTES & DETAILS


LOCATION 4200 INNES ROAD, CITY OF OTTAWA TRINTIY APARTMENTS NOVATECH ECT No. DRAWING NAME Engineers, Planners & Landscape Architects **GRADING PLAN** Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 (613) 254-9643 Telephone

(613) 254-5867

www.novatech-eng.com

Facsimile

Website

PLAN No. 18993