

Preliminary Geotechnical Investigation and Hydrogeological Assessment

600 March Road, Kanata (Ottawa), Ontario

Nokia

April 07, 2022

GHD

179 Colonnade Road South, Suite 400

Ottawa, Ontario K2E 7J4, Canada

T +1 613 727 0510 | F +1 613 727 0704 | E info-northamerica@ghd.com | ghd.com

Sahar Soleimani, P. Eng.

Ben Kempel, P. Geo

Document status

Status	Revision	Author(s)	Reviewer		Approved for is	sue	
Code			Name	Signature	Name	Signature	Date
S4	01	Kenneth Omenogor	Sahar Soleimani, P. Eng.	Sali	Karl Roechner, P. Eng.	KelRel	April 7, 2022
			Hassan Gilani, P. Eng.	Ran	_		
		Shawn Moloney	Ben Kempel, P. Geo	Amap			

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	1				
2.	Site a	nd Proje	ct Description	1		
3.	Field I	Field Investigation				
	3.1	Labora	atory Testing	3		
4.	Subsu	urface Co	onditions	3		
	4.1	Ground	d Cover	4		
		4.1.1	Topsoil	4		
		4.1.2	Pavement Structure and Fill	4		
	4.2	Silty Cl	lay to Clay	4		
	4.3	Bedroc	ck	5		
5.	Hydro	geologic	c Conditions	6		
	5.1	Ground	dwater Levels and Elevations	6		
	5.2	Hydrau	ulic Properties	6		
6.	Discu	ssion an	d Recommendations	7		
	6.1	Site Pr	reparation and Grading	7		
	6.2	Mass E	Excavation	8		
		6.2.1	Overburden Excavation	8		
		6.2.2	Bedrock Excavation	9		
		6.2.3	Temporary Drainage	9		
	6.3	Founda	ations	10		
	6.4	Frost F	Protection	10		
	6.5	Seismi	ic Site Classification	10		
	6.6	Floor S	Slabs	10		
	6.7	Prelimi	inary Groundwater Control Analysis	11		
		6.7.1	Modelling Assumptions	11		
		6.7.2	Water Taking Rate Estimate Methodology	11		
		6.7.3	Water Taking Analysis	12		
		6.7.4 6.7.5	Summary Water Taking Discussion	13 14		
		6.7.6	Permanent Drainage	15		
		0.110	6.7.6.1 Underfloor Drainage	15		
			6.7.6.2 Perimeter Drainage	15		
		_	6.7.6.3 Elevator Pits	15		
	6.8		ion Potential of Soils	15		
	6.9		ig Backfill	16		
		6.9.1		16		
	0.40	6.9.2	Exterior Foundation Wall Backfill	16		
	6.10		ground Services	17		
		6.10.1 6.10.2	Bedding and Cover Service Trench Backfill	17 17		
		0.10.2		17		

7. Scope and Limitation		and Limitation	19
6.12 Construction Field Review			
	6.11	Pavement Design Recommendations	17

Table index

Table 1	Laboratory Testing	3
Table 2	Summary of Subsurface Conditions in Meters	3
Table 3	Results of Uniaxial Unconfined Compressive Strength Tests on Selected Bedrock	5
Table 4	Groundwater Elevations	6
Table 5	Maximum Slope Inclinations based on Soil Types (OHSA)	8
Table 6	Summary of Assumed Excavation Elevations	12
Table 7	Estimated Water Taking with 3x Safety Factor	13
Table 8	Summary of Preliminary Water Taking Rates	14
Table 9	Corrosivity Test Results	15
Table 10	Recommended Pavement Structure - 20 Year Design Life	18

Figure index

Figure 1 Site Location Map

Appendices

- Appendix A Explanatory Notes, Geotechnical Borehole Logs
- Appendix B Rock Core Photos
- Appendix C Summary Table and Results of Geotechnical Laboratory Testing
- Appendix D Hydrogeological Assessment and Results
- Appendix E Chemical Laboratory Results

1. Introduction

The technical services of GHD were retained by Nokia (Client) to carry out a preliminary Geotechnical Investigation and preliminary Hydrogeological Assessment for supporting the Zoning By-law Amendment application and Plan of Subdivision application for the redevelopment of the Nokia Campus. The Nokia Property is located at 600 March Road, Kanata (Ottawa), Ontario, hereafter referred to as the Site.

The purpose of the preliminary investigation was to evaluate the soil and bedrock stratigraphy as well as to assess preliminary groundwater conditions at the Site in order to provide preliminary geotechnical and hydrogeological recommendations and comments with respect to the most recent project concept/construction, including:

- Foundation design and geotechnical resistances and reaction values at limit states.
- Subgrade preparation for the building's slab-on-grade and external works.
- Recommendation on excavation and backfilling.
- Site seismic classification in accordance with the National Building Code of Canada (NBCC).
- Control of underground water during and after construction as well as drainage requirements.
- General construction recommendations.

As part of this investigation, ten boreholes were advanced, including installation of five monitoring wells, in situ hydraulic response testing, and laboratory testing to provide interpretation of factual information obtained. This report is accompanied by a series of five appendices including:

- Appendix A | Geotechnical Borehole Logs
- Appendix B | Rock Core Photos
- Appendix C | Results of Geotechnical Laboratory Testing
- Appendix D | Hydrogeological Assessment and Results
- Appendix E | Chemical Laboratory Results

Furthermore, this report has been prepared with limited understanding of the design as described in Section 2 and will be carried out in accordance with all applicable codes and standards. Any changes to the project described herein will require that GHD be retained to assess the impact of the changes on the recommendations provided.

This work was completed in accordance with our proposal reference number 12566614 dated October 27, 2021. This report is subject to a number of limiting conditions due to the inherent nature of geological, geotechnical, and hydrogeological profiles determined by investigative soundings. The applicable limitations of this investigation are explained following the technical section of this report. These limiting conditions are an integral part of this report and the reader is strongly encouraged to inform themselves in order to facilitate their comprehension, interpretation, and use of this document.

2. Site and Project Description

GHD understands that the property owner (Nokia) is looking to improve its existing campus situated on southeast corner of Terry Fox and March Road intersection (600 March Road). The total area of the site including structures, car parking, access roads and landscaped areas is approximately 26 acres. The Site is almost rectangular in shape and currently consists of 538,603 square feet of interconnected buildings on the north being used as Nokia office and lab space, and surface level parking lot on the south. The existing grading of the site is relatively flat with minimal changes in elevation. The site is surrounded by Terry Fox Drive to the north, March Road to the west, Legget Drive to the east and a commercial building to the south. The location of the Site is illustrated on the Site Location Plan attached as Figure 1 at the end of this report.

The plan is to amend the current zoning at this site to add additional density and uses into an integrated live/work/play community. The new Nokia campus will cover 9-acre area at the south end of the site. It will consist of multiple interconnected buildings with few levels of podiums, and an 8-storey and a 5-storey building with at least one level of underground parking covering the total footprint of the buildings.

A retail street bisecting the property east to west connecting March Road to Legget Drive is located adjacent to the Nokia campus at the north end. Retail units are on both sides of the street with eight storeys of residential buildings over top. The balance of the site to the north would be mixed use development in the form of residential towers with a north - south street through the centre of the site connecting the retail street to Terry Fox. The residential towers will consist of 8 to 28 storey buildings with at least one level of underground parking for each building.

The Site is located in the physiographic region of the Ottawa Valley Clay Plains. Surficial geological mapping indicates that the site is underlain by the clay plain consisting of the glaciomarine clay and silt deposits commonly known as the Leda Clay, with lenses of sand. According to the Paleozoic Geology of Southern Ontario map, bedrock at this site consists of interbedded dolomite with sandstone of Beekmantown Group.

3. Field Investigation

The fieldwork program was undertaken between January 28 and February 2, 2022, and consisted of the advancement of ten boreholes, identified as BH01-22 to BH10-22, inclusively, drilled to refusal/bedrock. The boreholes were advanced to depths ranging from 0.9 to 8.6 meters below ground surface (mbgs). Auger refusal was encountered at depths of 0.4 to 3.6 metres (m) in all boreholes. Upon encountering auger refusal, boreholes BH02-22, BH03-22, BH06-22, BH07-22, and BH10-22 were extended an additional 1.6 m to 6.4 m into the bedrock using rotary diamond drilling techniques while retrieving HQ sized core. The locations of the boreholes are illustrated on the Site Location Plan in Figure 1.

The borehole drilling operations were carried out with a rubber-track mounted drill auger rig, supplied, and operated by Aardvark Drilling Inc., under the supervision of GHD field staff. Boreholes were advanced into the overburden using hollow stem augers with Standard Penetration Tests (SPTs) at regular intervals using a 50-millimetre (mm) diameter split spoon sampler and a 63.5-kilogram (kg) hammer, free falling from a distance of 760 mm, to collect soil samples. The number of drops required to drive the sampler 0.3 m recorded on the borehole logs as "N" value.

The drilling procedure involved collection of shear strength data with field vane tests (FVTs) in strata where cohesive overburden was encountered. Sampling procedures were conducted in accordance with American Society for Testing and Materials (ASTM) Standard D 1586.

Wire line techniques using HQ size cores (96 mm outside diameter and 63.5 mm inside diameter) were used to advance the boreholes into the bedrock. A GHD field personnel documented the percentage recovery, thickness and depths of interbedded limestone layers, rock quality designation (RQD), the amount of water loss/return, and presence of voids or cavities in the bedrock. The rock cores were placed in partitioned wooden core boxes to keep each core run separate with depths of recovery clearly marked. Pictures of recovered cores have been provided in Appendix B. The percentage core recovery and RQD values are provided on the borehole logs included in Appendix A.

Boreholes BH01-22, BH02-22, BH03-22, BH06-22, and BH10-22 were fitted with a monitoring well for groundwater level measurement and hydrogeological assessment. Four monitoring wells (BH02-22, BH03-22, BH06-22, and BH10-22) were sealed within the bedrock, while one monitoring well (BH01-22) was sealed in overburden. Measurement for stabilized groundwater level and single well response tests (SWRTs) were completed between February 2 and 6, 2021 by GHD personnel.

All monitoring wells were instrumented with 1.5 (5-foot) and 3 m (10-foot) long, 50 mm (2-inch) inside diameter, No. 10 slot, Schedule 40 PVC screen set in the bedrock, and riser pipe. A fresh commercially available silica sand pack was placed in the annular space between the PVC screen/riser pipe and the borehole, from the bottom of the well screen to at least 0.30 m above the top of the well screen. Bentonite seal was placed above the sand pack to within 0.30 m of

the ground surface. A protective casing with a concrete collar was placed around each of the monitoring wells upon completion. The monitoring well installation details are shown on the individual borehole logs included in Appendix A.

The elevations of the boreholes were surveyed using a survey grade GPS equipment referenced to the NAD 83 UTM Zone 18 and geodetic datum.

3.1 Laboratory Testing

All of the recovered geotechnical soil samples were transported to our laboratory where they were logged and visually identified for presentation purposes in this report.

Following the field work, geotechnical laboratory testing was conducted on representative soil and rock samples collected during the field works. The purpose of these laboratory tests was to determine the geotechnical engineering properties of the subsurface soil and rock for use in analysis. The laboratory tests undertaken are shown in Table 1.

Table 1 Laboratory Testing

Laboratory test	Quantity of tests undertaken
Water content testing	9
Atterberg limits tests	3
Sieve analysis	4
Hydrometer testing	3
Corrosivity testing	2*
UCS testing of rock core	5

Notes: UCS = Unconfined compressive strength * Including one soil and one water samples

The geotechnical laboratory test results, and a summary table are presented in Appendix C. Results of the laboratory testing were used to confirm site soil logging and are discussed in the proceeding relevant subsurface condition section. One soil sample from borehole BH01-22 and one water sample from monitoring well BH04-22 were submitted to Eurofins Environment Testing for corrosivity testing parameters including, chloride, sulphate, pH, sulphide, redox potential, and resistivity. The results of chemical testing carried out on one soil sample and one groundwater sample are included in Appendix D.

The soil and rock samples will be stored for a period of 6 months, after which they will be discarded, unless otherwise requested by the Client.

4. Subsurface Conditions

The detailed subsoil conditions encountered at the locations of drilled boreholes are presented within the borehole reports located in Appendix A of this report. The following table presents an overview of the depth and elevation of each subsoil stratum encountered at the drilling locations:

Borehole	-	Asphalt/	Fill Thickness	Silty Clay to C	Clay	Bedrock		End of Bor	ehole
No.	Surface Elevation	Topsoil Thickness		Depth	Elev.	Depth	Elev.	Depth	Elev.
BH01-22	2 80.2	-	0.6	0.6	79.6	-	-	3.6	76.6

 Table 2
 Summary of Subsurface Conditions in Meters

BH02-22	79.7	0.1	0.5	0.6	79.1	2.4	77.3	8.6	71.1
BH03-22	80.7	0.1	0.5	0.6	80.1	1.4	79.3	3.0	77.7
BH04-22	79.8	0.1	0.5	0.6	79.2	-	-	1.7	78.1
BH05-22	81.1	0.1	0.5	0.6	80.5	-	-	0.9	80.2
BH06-22	79.6	0.1	0.3	-	-	0.4	79.2	3.6	76.0
BH07-22	82.5	0.6	-	0.6	81.9	1.0	81.5	4.1	78.4
BH08-22	79.8	0.1	0.5	-	-	-	-	0.6	79.2
BH09-22	82.1	0.9	-	-	-	-	-	0.9	81.2
BH10-22	80.4	0.1	0.8	-	-	0.9	79.5	4.1	76.3

In general, soils encountered at the borehole locations consisted of a surface layer of asphalt or topsoil, overlying a fill material and discontinuous layer of native silty clay to clay, overlying sandstone with dolomite interbeds bedrock. Shallow bedrock ranging in depths of 0.6 to 0.9 mbgs was encountered at the northern site extremity and gradually increased to depths of up to 2.4 to 3.6 mbgs at the southern site boundary.

General descriptions of the subsurface conditions are summarized in the following sections, with a graphical representation of each borehole on the Geotechnical Logs in Appendix A. Notes on borehole logs are provided in Appendix A. Results from the laboratory testing and a summary table of pertinent laboratory results are presented in Appendix C.

4.1 Ground Cover

4.1.1 Topsoil

Topsoil was encountered in two boreholes (BH07-22 and BH09-22) to depths ranging from 0.6 to 0.9 mbgs and generally constituted of organic material with rootlets.

The topsoil descriptions, and thicknesses within this report are for preliminary estimation purposes only and should not be used for quality or quantity assessment. Furthermore, it should be noted that the thickness of topsoil may vary between borehole or test pit locations. Classification of this material was based solely on visual and textural evidence; testing of organic content or other constituents was not carried out as it was not part of the scope of work.

4.1.2 Pavement Structure and Fill

Asphalt layer with thickness of 100 mm was encountered at the ground surface at the location of boreholes BH01-22, BH02-22, BH03-22, BH04-22, BH05-22, BH06-22, BH08-22, and BH10-22. Granular base/subbase (fill material) consisting of sandy sit, sandy gravel to gravelly sand was encountered below the asphalt and extends to depths ranging from 0.4 to 0.9 m. Fill material was also encountered at the surface in borehole BH01-22 and extends to depth of 0.6 m.

Fill material was generally dense and was recovered in moist condition. Water content testing on fill materials returned results ranging from 10 percent to 13 percent. Sieve Analysis tests on two samples of fill returned results of 23 to 45 percent gravel, 29 to 58 percent sand and 19 to 26 percent fines.

4.2 Silty Clay to Clay

Silty clay to clay deposits were encountered below the fill or topsoil in boreholes BH01-22 to BH05-22, and BH07-22 at depth of 0.6 mbgs (Elevations 81.9 m to 79.1 m).

The SPT "N" values recorded within the silty clay to clay deposit range from 4 blows to 13 blows per 0.3 m of penetration. In situ shear vane testing carried out within this deposit measured undrained shear strength values in the

range of 68 kilopascal (kPa) to 96 kPa, indicating that the deposit has a stiff consistency. Remolded shear strengths measured in the deposit ranged from about 19 kPa to 69 kPa. The calculated sensitivity ratios in this deposit generally range between 1 and 3, indicating low to medium sensitivity clay.

The water content measured on samples of the silty clay to clay range between 23 percent and 54 percent.

Grain size and Atterberg limits tests were carried out on three samples of the marine clay deposits. The laboratory results are included in Appendix C. A review of the results shows that the samples have 73 to 93 percent fines passing the No. 200 sieve, liquid limits between 57 and 64 percent, plastic limits between 17 and 25 percent, and plasticity indices between 33 and 40 percent, classifying the soil a high plasticity clay. Based on the laboratory test results, the clay deposits can be classified as Organic or Fat Clays (CH) in accordance with ASTM D2487. The fat clays are susceptible to volume change with change in moisture content, i.e., would shrink on drying and swell upon wetting.

4.3 Bedrock

Bedrock (including presumed) was encountered at depths ranging from 0.4 to 3.6 mbgs (Elevations 76.6 to 81.5 m). A summary of the bedrock depths and elevation for each borehole is presented in Table 2.

Upon refusal on the presumed possible bedrock, boreholes BH02-22, BH03-22, BH06-22, BH07-22, and BH10-22 were extended an additional 1.6 m to 6.4 m below the refusal using HQ diamond coring methods to confirm the presence, type, and quality of bedrock.

Based on retrieved rock core and rock exposures, bedrock at the site consists of slightly weathered to fresh, thinly to medium bedded, light grey with yellow bands dolomitic sandstone of the Beekmantown Group per the published Paleozoic geology map.

RQD values measured on the bedrock core samples generally range from 63 to 100 percent, indicating fair to excellent quality rock, except for bedrock at borehole BH10-22 where RQD value of 36 percent indicating poor quality rock is noted at depths of 3.5 to 4.0 mbgs. This low RQD value measured was due to mechanical break that occurred during the last core run of borehole BH10-22 drilling operations, resulting in loss of some of the drilled core sample.

Notes on RQD, solid core recovery (SCR) and total core recovery (TCR) are presented in Appendix A. Bedrock core photographs are presented in Appendix B.

Unconfined compressive strength (UCS) testing of five samples of the sandstone bedrock returned UCS values ranging from 91.1 megapascal (MPa) to 122.5 MPa, resulting in an average value of 106.6 MPa. In accordance with The Canadian Foundation Engineering Manual – 2006 (CFEM) bedrock is classified as strong to very strong. The results of UCS testing are presented in Appendix C and a summary of the UCS results is presented in Table 3 below.

Borehole No.	Run No.	Sample Depth (m)	Compressive Strength (MPa)
BH02-22	5	6.5 - 7.5	122.5
BH03-22	2	2.0 - 3.0	91.1
BH06-22	2	1.9 - 3.6	94.2
BH07-22	3	3.5 - 4.1	111.8
BH10-22	1	0.9 - 2.0	113.3

Table 3 Results of Uniaxial Unconfined Compressive Strength Tests on Selected Bedrock

Using the RQD, uniaxial compressive strength, joint conditions, and groundwater table conditions the bedrock can be rated as Class II "Good rock" in accordance with the Rock Mass Rating criteria as described in ASTM D5878.

5. Hydrogeologic Conditions

5.1 Groundwater Levels and Elevations

Monitoring wells were instrumented into boreholes BH01-22, BH02-22, BH03-22, BH06-22 and BH10-22 to allow for groundwater sampling, hydraulic response testing, and measurements o groundwater levels. The wells were developed on February 3, 2022, to remove all residual drilling fluids and to remove as much silt from the wells as possible. Post development groundwater levels were measured on February 9, 2022, prior to the single well response testing. The measured groundwater levels before and after well development are provided in the Table 4 below.

Well ID	Ground Surface (mAMSL)	Screened Unit	February 03, 2022 (pre-development)		February 09, 2022 (post-development)	
			Depth (mBGS)	Elevation (mAMSL)	Depth (mBGS)	Elevation (mAMSL)
BH01-22	80.175	Overburden	Dry	-	Dry	-
BH02-22	79.717	Bedrock	3.88	75.84	3.88	75.84
BH03-22	80.705	Bedrock	1.55	79.15	Dry	-
BH06-22	79.607	Bedrock	2.86	76.74	3.33	76.28
BH10-22	80.431	Bedrock	3.00	77.43	3.19	77.24

Table 4 Groundwater Elevations

Notes:

mBGS – metres below ground surface

mAMSL - metres above mean sea level

As shown above, the overburden well BH01-22 has been dry since installation. Groundwater levels did not recover in BH03-22 between development and hydraulic response testing.

Bedrock groundwater levels were measured at depths of 3.19 m BGS (BH10-22) to 3.88 m BGS (BH02-22) corresponding to elevations ranging from 75.84 mAMSL (BH02-22) to 77.24 mAMSL (BH10-22). These groundwater levels are based only on wells where the static groundwater levels have stabilized following well development.

It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events.

5.2 Hydraulic Properties

Single well response testing was completed at all of the bedrock monitoring wells with sufficient water column using recovery testing techniques. A pressure transducer was installed in BH02-22, BH06-22, and BH10-22 to continuously measure water levels in the well during the tests. The wells were purged to induce an initial displacement and the resulting recovery of groundwater levels was monitored between February 9 and February 11, 2022. The water volume in BH06-22 was insufficient to produce an adequate response to be a successful recovery test.

Based on the results from the recovery tests, the horizontal hydraulic conductivity (K_h) of the Beekmantown Group Formation at the Site ranges from 2.073 × 10⁻⁶ (BH10-22) to 3.849×10^{-5} centimetre per second (cm/sec) (2.073 × 10⁻⁴ to 3.849×10^{-3} [metres per day] m/day) (geometric mean 8.93×10^{-6} cm/sec [8.93×10^{-4} m/day]). The solutions sheet for the recovery test analyses are presented in Appendix D.1.

6. Discussion and Recommendations

According to the information provided by the client, the project will consist of the construction of multiple interconnected buildings with a few levels of podiums and at least one level of underground parking for the south Nokia campus, and construction of multiple residential towers (8 to 28 storey buildings) with a minimum of one level of underground parking at each tower location for the north side of the site.

Structural details were not available at the time this report was prepared; however, it is anticipated that the proposed building foundations will be founded within the underlying bedrock, up to 3 to 4 m below the existing site grade.

Based on the aforementioned information, the geotechnical and hydrogeological findings at the borehole locations and assuming they are representative of the subsurface conditions across the entire Site, the preliminary geotechnical and hydrogeological recommendations and comments are provided in the following subsections. The following recommendations are provided on the basis that the structures will be designed in accordance with Part 4 of the 2012 Ontario Building Code (OBC).

Note that these recommendations are provided for the rezoning application and are solely intended to guide the client during this phase of the project development. We request that the recommendations presented herein be reviewed and re-evaluated as needed once the specific project details are known. Additional testing may be required to complete a detailed final geotechnical and hydrogeological investigation report for the detailed design purposes.

6.1 Site Preparation and Grading

Based on the conditions encountered in the boreholes, the Site is covered by an asphalt layer or surficial topsoil layer overlying earth fill material followed by a discontinuous layer of native silty clay to clay (marine clay) overlying sandstone with dolomite interbeds bedrock.

The site topography is noted to be relatively flat, hence significant grade raises are not anticipated as part of the proposed development plan.

Initial site preparation within the proposed structure footprints would require removal of existing topsoil, fill, deleterious materials, and disturbed native in order to expose the underlying native soils or bedrock. Within the pavement footprint, the existing fill below anticipated subgrade levels may remain in place as long as the material is proven to be competent, stable, and free of any organics and deleterious materials

Prior to site grading activity, the exposed subgrade soils should be visually inspected, compacted, and proof rolled under examination by geotechnical personnel using large axially loaded equipment. Any soft, organic, or unacceptable areas should be removed as directed by the qualified geotechnical personnel and replaced with suitable engineered fill materials compacted to a minimum of 98 percent Standard Proctor Maximum Dry Density (SPMDD). Recommendations regarding placement of engineered fill are provided in Sections 6.10 and 6.12 of this report.

Bedrock excavation will also be required to achieve anticipated founding levels for underground services and underground parking levels. Recommendations regarding bedrock excavations are provided in Section 6.2.2

The granular fill material, free of topsoil/organic and rootlets, encountered at the site might be suitable for reuse as backfill to raise site grades, where required, or as trench backfill during installation of buried services, provided they are free of organic material, and are within the optimum moisture content. The surficial fill at this site should not be used as backfill against the foundation elements. Native soils with high proportions of silt and clays will be difficult to compact and are also susceptible to volume change with change in volume and therefore should not be used for backfilling under or around structure or for raising grades in the proposed pavement areas.

Reclaimed asphalt pavement (RAP) and/or reclaimed concrete material (RCM) may be used on this project as granular as stated in OPSS.MUNI 1010 "Material Specification for Aggregates – Base, Subbase, Select Subgrade and Backfill Material" and as amended by City of Ottawa specification F-3142 "Reclaimed Asphalt Pavement (RAP) for Road Base".

It is noted that the proposed development also comprises removal of the existing interconnected Nokia structures. The environmental requirements for removal of existing building materials are not addressed in this report.

6.2 Mass Excavation

Considering one level of underground parking at all building locations, an excavation depth of up to 3 m is assumed for this project. The excavation will be carried out through topsoil or pavement structure fill layers followed by stiff silty clay to clay layer and will penetrate the underlying bedrock. These excavations will extend below the groundwater beyond a depth of approximately 1.5 m to 3.8 m below site grade.

6.2.1 Overburden Excavation

All excavations should be completed and maintained in accordance with the Occupational Health and Safety Act (OHSA) requirements. The following recommendations for excavations should be considered to be a supplement to, not a replacement of, the OHSA requirements.

The Occupational Health and Safety Act (OHSA) regulations require that if workmen must enter an excavation deeper than 1.2 m, the excavation must be suitably sloped and/or braced in accordance with the OHSA requirements. OHSA specifies maximum slope of the excavations for four broad soil types as summarized in the following table:

 Table 5
 Maximum Slope Inclinations based on Soil Types (OHSA)

Soil Type	Base of Slope	Maximum Slope Inclination
1	Within 1.2 m of bottom	One horizontal to one vertical
2	Within 1.2 m of bottom of trench	One horizontal to one vertical
3	From bottom of excavation	One horizontal to one vertical
4	From bottom of excavation	Three horizontal to one vertical

OHSA Section 226 defines the four soil types as follows:

Type 1 Soil:

- 1. Hard, very dense, and only able to be penetrated with difficulty by a small sharp object.
- 2. Has a low natural moisture content and a high degree of internal strength.
- 3. Has no signs of water seepage.
- 4. Can be excavated only by mechanical equipment.

Type 2 Soil:

- 1. Very stiff, dense and can be penetrated with moderate difficulty by a small sharp object.
- 2. Has a low to medium natural moisture content and a medium degree of internal strength.
- 3. Has a damp appearance after it is excavated.

Type 3 Soil:

- 1. Stiff to firm and compact to loose in consistency or is previously excavated soil.
- 2. Exhibits signs of surface cracking.
- 3. Exhibits signs of water seepage.
- 4. If it is dry may run easily into a well-defined conical pile.
- 5. Has a low degree of internal strength.

Type 4 Soil:

- 1. Soft to very soft and very loose in consistency, very sensitive and upon disturbance is significantly reduced in natural strength.
- 2. Runs easily or flows unless it is completely supported before excavating procedures.
- 3. Has almost no internal strength.
- 4. Wet or muddy.
- 5. Exerts substantial fluid pressure on its supporting system. Ontario Regulation (O. Reg.) 213/91, s. 226 (5).

No unusual problems are anticipated in excavating the soil using conventional excavating equipment. The subsoils above the water table can be considered Type 3 soils. Subsoils below the water table should be considered as Type 4 soils unless groundwater levels are lowered in advance of excavation. Furthermore, no vertical unbraced excavations should be performed in the soil.

If the above recommended excavation side slopes cannot be maintained due to lack of space or any other reason, the excavation side slopes must be supported by an engineered shoring system. The shoring system should be designed in accordance with Canadian Engineering Foundation Manual (4th Edition) and the OHSA Regulations for Construction Projects.

Depending on the climatic conditions and duration of the work, impermeable membranes may be required in order to prevent erosion and the development of local instabilities in the excavation slopes (soils).

During the excavation, excavated material, machinery or equipment should not be placed closer than one meter or the equivalent excavation depth (whichever is larger) from the top of the excavation sidewalls and the safety guidelines provided by OHSA (Section 226) should be strictly adhered to for the open cut excavations.

6.2.2 Bedrock Excavation

Within the bedrock, near-vertical excavations (10V:1H within sound bedrock) can be considered for this project. Bedrock at the site was noted to generally be good to excellent quality and strong to very strong.

Based on our experience with similar projects, the excavation of the upper portion of the fractured rock may potentially be possible with mechanical equipment (jackhammer and hydraulic shovel). Alternatively, the rock mass may be excavated through blasting techniques provided that adequate monitoring is performed by a qualified geotechnical engineer during these works.

To minimize overbreak of bedrock, line-drilling should be completed along the excavation perimeter. This will help maintain the integrity of the rock face throughout the depth of the excavation.

Rock excavation, including vibration control, during these works must be completed in accordance with municipal regulation. Additionally, these works must be monitored by a specialized firm (blasting patterns, protection of adjacent structures, etc.). It should be noted that blasting works can modify the permeability and bearing capacity of the bedrock. Excessive fracturing of bedrock, caused by poorly controlled blasting operations, should thus be avoided. Rigorous control of rock excavation work should therefore be a priority.

All rock excavation faces should be inspected by qualified geotechnical engineer, to detect any possible instabilities. All stabilization works must comply with applicable health and safety regulations and must be validated by a geotechnical engineer.

6.2.3 Temporary Drainage

Surface water seepage is expected in the excavation. Based on the excavation depth of about 3 m, groundwater seepage is expected in the excavated areas. Groundwater levels depend on seasonal conditions and dewatering may need to be reassess especially where any variation in depth of excavations is proposed or where excavations are left open. Conventional construction dewatering techniques should be taken during construction, such as pumping from sumps and or ditches. Additional information on groundwater control during the construction is provided in Section 6.7.

6.3 Foundations

In general, the subsurface conditions in the area of the proposed residential buildings consist of fill/topsoil overlying discontinuous deposit of silty clay to clay, over bedrock. The depth to bedrock is variable across the site, ranging from elevations 76.6 m at the south end to 81.5 m at the north (i.e., 0.4 to 3.6 mbgs). Considering one level of underground parking at all building locations, the foundations of the new buildings should consist of conventional spread and/or strip footings resting on sound bedrock, clean and free of weathering or loose fragments.

Footings placed on sound sandstone bedrock can be designed using a factored bearing capacity value at Ultimate Limit State (ULS) of 3.0 MPa. The factored ULS value includes the geotechnical resistance factor (Φ) of 0.5 for shallow foundations. Serviceability Limit State (SLS) resistance do not apply to footings founded on the bedrock, since the SLS resistance is greater than the factored bearing capacity at ULS.

The bedrock surface should be covered with a minimum 50 mm thick mat of high-slump 0.4 to 1 MPa unshrinkable concrete to provide a smooth working surface and to fill any low depressions and 'nook' and crannies'.

6.4 Frost Protection

All of the exterior building foundations (exterior pile caps, grade beams, footings, etc.) for heated structures should be placed at least 1.5 m beneath the final exterior grade in order to provide adequate frost protection.

Building foundations for unheated structures or isolated exterior foundations (retaining walls, signs, lamp posts, etc.) should be placed at least 1.8 m beneath the final exterior grade in order to provide adequate frost protection.

6.5 Seismic Site Classification

The 2012 Ontario Building Code (OBC) requires the assignment of a seismic site class for calculations of earthquake design forces and the structural design based on a 2 percent probability of exceedance in 50 years. According to the 2012 OBC, the seismic site class is a function of soil profile and is based on the average properties of the subsoil strata to a depth of 30 m below the ground surface. The 2012 OBC provides the following three methods to obtain the average properties for the top 30 m of the subsoil strata:

- Average shear wave velocity.
- Average Standard Penetration Test (SPT) values (uncorrected for overburden).
- Average undrained shear strength.

During the preliminary geotechnical investigation, the depths of boreholes extended to a maximum depth of 8.6 mbgs and terminated within the sandstone bedrock. For the planning purposes, based on the criteria listed in Table 4.1.8.4.A. of the 2012 OBC and our knowledge of the regional geology and borehole data, and in absence of geophysical seismic survey, a **Seismic Site Class 'C'** can be used.

Knowing that the structures will have at least one level of underground parking and will likely be founded on or within bedrock, it is recommended that a site-specific test should be carried out to confirm the seismic site class. The Multi-Channel Analysis of Surface Waves (MASW) is a relatively economical and quick method of determining seismic site class. GHD can provide MASW services, if required.

6.6 Floor Slabs

A conventional slab-on-grade, structurally separated from the columns and foundation walls, can be used for the lowest basement level floor slab of the buildings on the site prepared as discussed in Sections 6.1 and 6.10. Based on the borehole data, the subgrade beneath a slab-on-grade within the investigated area is expected to comprise of either native silty clay to clay strata or sandstone with interbedded dolomite bedrock.

Specifically, the native soils at the site may be suitable to support the slab-on-grade provided unsuitable materials that may be present are removed and the exposed subgrade is proof-rolled, recompacted, and inspected by qualified

geotechnical personnel. If grades are to be raised, then suitable engineered fill should be placed as discussed in Section 6.9.

A layer consisting of Granular 'A' at least 200 mm thick and combined with a drainage system as specified in Section 6.7 should be placed immediately below the floor slabs to support the slab-on-grade. This layer should be compacted to 100 percent of its SPMDD and placed on approved subgrade surfaces.

If floor coverings are to be used on slab-on-grades then, a vapour barrier is recommended to be incorporated beneath the slab and should be specified by the architect. Floor toppings may also be impacted by curing and moisture conditions of the concrete. Floor finish manufacturer's specifications and requirements should be consulted, and procedures outlined in the specifications should be followed.

The slabs should not be tied into the foundation walls. Construction and control joints in the concrete should be designed by a suitably qualified and experienced engineer.

6.7 Preliminary Groundwater Control Analysis

6.7.1 Modelling Assumptions

To estimate the volume of water needed to be dewatered for each Site building the following assumptions were used:

- The footprint of each building was measured based on the Conceptual Site Plan shown in Appendix D.2 by using the scale on Figure 1 and matching the size of features around the Site.
- The size of the excavation is assumed to match the footprint of the building and be excavated vertically through the bedrock.
- The shape of the excavations were broken down into simple rectangular areas to allow for simple modelling using shafts and trenches based on the relative lengths of the sides, as shown in the summary table in Appendix D.4.
- The total flow into the excavations were assumed to a sum total of each block of the building even though the shapes have shared edges (conservative assumption).
- A uniform excavation depth for each building was used to 3 m below ground surface.
- A single water elevation measurement event was used.

6.7.2 Water Taking Rate Estimate Methodology

The equation for construction water-taking rate of an unconfined aquifer shaft and trench [Canadian Geotechnical Society/Southern Ontario Section - Toronto Group, International Association of Hydrogeologists/Canadian National Chapter (CGS), 2013], are presented below in Equation 6-1 and 6-2, respectively. These rates are then applied to estimate construction water-taking for each Site building.

$$Q = \frac{\pi K_{h}(H^{2}-h^{2})}{\ln\left(\frac{R_{0}}{r_{w}}\right)}$$
Equation 6-1
Shaft
$$Q = \frac{\pi K_{h}(H^{2}-h^{2})}{\ln\left(\frac{R_{0}}{r_{w}}\right)} + 2\left[\frac{xK_{h}(H^{2}-h^{2})}{2R_{0}}\right]$$
Equation 6-2
Trench

Where:

- Q is pumping rate in units of cubic metres per day (m³/day)
- In is the natural logarithm
- K_h is the hydraulic conductivity, as defined in Section 5.2, in metres per day (m/day)
- H is the height of groundwater pressure at the excavation in meters above a relevant datum

- h is the height of groundwater near the excavation in meters following water-taking activities and is referenced to a relevant datum
- R₀ is the zero drawdown distance, or zone of influence (ZOI)
- rw the radius of the shaft

To estimate the radius to zero drawdown (R_0), representing the ZOI near the excavations GHD applied the empirical Sichardt relationship expressed as Equation 6-3, below.

$$R_0=3000(H-h)\sqrt{K_h \times \frac{1 \text{ day}}{86,400 \text{ seconds}} + r_w}$$

Equation 6-3

The height of the aquifer thickness, H, was measured based on static water levels measured in the monitoring wells and the assumed elevation of the bottom of the excavations.

6.7.3 Water Taking Analysis

Groundwater elevations following construction water taking are anticipated to be 76.5 mAMSL. This will be within the Beekmantown Group formation. Prior to construction water taking the static water levels from the unconfined bedrock unit are expected to be approximately 3.19 mBGS (77.24 mAMSL) (based on BH10-22).

It is assumed that water taking will lower the water table to 0.5 m below the base of the excavations, 77.0 mAMSL. A summary of the depths and corresponding elevations is provided below.

Table 6	Summary of Assumed Exca	vation Elevations
---------	-------------------------	-------------------

	Depth (mBGS)	Elevation (mAMSL)
Ground	0	80*
Water Table	3.19	77.24^
Base of Excavations	3.00	77*
Water-Taking Level, 0.5 m below deepest part of excavation	3.50	76.5*

Notes: * Uniform site elevation and excavation depths used

^- BH10-22 water elevation used across Northern portion of the Site

The required drawdown is anticipated to be 0.74 m within each excavation area.

The results from the recovery tests were used to estimate the hydraulic properties (hydraulic conductivity) of the bedrock that were then used to estimate groundwater taking rates and area of influence for excavations within the Beekmantown Group formation. The results from the recovery tests completed within BH02-01 and BH10-01 estimate the hydraulic conductivity (K_h) of the bedrock ranging from 2.073 × 10⁻⁶ (BH10-22) to 3.849 × 10⁻⁵ cm/sec (2.073 × 10⁻⁴ to 3.849 × 10⁻³ m/day) (geometric mean 8.93 × 10⁻⁶ cm/sec [8.93 × 10⁻⁴ m/day]).

The analytical model input parameters are summarized as follows:

K_h= 8.93 × 10⁻⁶ cm/sec (8.93 × 10⁻⁴ m/day)

H= 0.736 m height of water table.1

 h_w = 0 m water-taking height (relative to 0.5 m below base of excavation)

The same inputs were used for each of the eight proposed residential buildings north of the northern cross street between March Road and Legget Drive. The conceptual Site plan shown in Appendix D.2 has all of the residential

¹ Height measurements are relative to base of active groundwater flow system and is assumed to be base of dewatering, or 0.5 m below base of excavations (76.5 mAMSL).

buildings numbered for ease of discussion. Residential Buildings 9 and 10, and the office building south of that cross street will not require dewatering based on the February 9th, 2022 groundwater elevations measured in BH06-22 and BH02-22. These conditions may change based on seasonal fluctuations.

Using Equation 6-1 and 6-2, the water-taking rates and radius of influence (R_0) estimated for each excavation are summarized below:

Building	Building Description	Estimated Q (m³/day)	Estimated Q (L/min)	Estimated R ₀ (m)
1	North corner of Terry Fox & Legget dual 16 level unit	1.121	0.778	39.28
2	North Site 13 and 18 level unit	1.144	0.794	37.57
3	Northwest Site northern 28 level twin	0.41	0.285	20.47
4	Northwest Site southern 28 level twin	0.41	0.285	20.47
5	West side 20 level unit	0.62	0.431	30.89
6	West side 14 level unit	0.86	0.597	36.89
7	Mid-west side 10 level unit	0.66	0.458	32.96
8	East side 12 level unit	0.67	0.468	34.18

Table 6 Water Taking Estimates

The water-taking model sheets showing the above inputs are provided in Appendix D.3. Based on the calculations presented in Sections 6.7.2 the water-taking zones of influence are estimated to range between 20.47 to 39.28 m around the building excavations.

During the early stages of water-taking, additional groundwater will be pumped to draw down groundwater in storage. A safety factor of 3x is often applied to allow for a higher water-taking rate during the early stages of groundwater pumping and to account for variability of bedrock fracture conditions. Using a safety factor of 3x, the approximate water-taking rates are summarized below:

 Table 7
 Estimated Water Taking with 3x Safety Factor

Building	Safety Factored Q (m³/day)
1	3.36
2	3.43
3	1.23
4	1.23
5	1.86
6	2.58
7	1.98
8	2.02

6.7.4 Summary

The preliminary water-taking rates for all Project excavations are summarized below.

Table 8 Summary of Preliminary Water Taking Rates

Building	Steady State Groundwater Inflow (L/day)	Safety Factor 3x (L/day)
1	1,121	3,363
2	1,144	3,432
3	410	1,230
4	410	1,230
5	620	1,860
6	860	2,580
7	660	1,980
8	674	2,022
9		
10		
Office		

Notes: -- Construction dewatering not required based on February 9, 2022 groundwater elevations

6.7.5 Water Taking Discussion

The water taking analysis presented above is strictly a preliminary hydrogeologic assessment of the proposed Site excavations. Further information is required both with respect to the seasonal fluctuation of groundwater elevations and more accurate site building drawings need to be reviewed in order to increase the accuracy of the models used.

According to O. Reg. 63/16 and O. Reg. 387/04, if the volume of water to be pumped from excavations for the purpose of construction dewatering is greater than 50,000 litre per day (L/day) a Permit to Take Water (PTTW) is required from the Ministry of the Environment, Conservation and Parks (MECP). According to O. Reg. 63.16, if short-term construction site dewatering is greater than 50,000 L/day but less than 400,000 L/day, registry with the Environmental Activity Sector Registry (EASR) is sufficient and PTTW is not required. However, based on the preliminary groundwater inflow estimates provided above, water taking exceeding 400,000 L/day will not be required to dewater groundwater excavations during construction.

Long-term, permanent, dewatering rates of 5,900 L/day are expected to control groundwater after construction. Therefore, the water taking associated with long-term dewatering would not require a PTTW.

It should be noted that the SWRTs used to estimate the hydraulic conductivity of the overburden and bedrock tests the immediate vicinity of the well. SWRTs do not provide an indication of the long-term availability of groundwater to recharge the well. Accordingly, it is possible that the instantaneous recharge to the bedrock wells is extremely fast, but the long-term effects of dewatering may result in progressively lower groundwater intrusion over time.

The estimates presented above used a conservative approach to estimate the groundwater taking at each building. The water level was assumed to be flat based on the largest dewatering level needed in the North of the Site around BH10-22.

Further water elevation measurement events will be needed to establish the seasonal fluctuations and provide a better estimate for the dewatering volumes.

Below sections provide additional recommendations for permanent drainage, perimeter drainage and sub-floor drainage.

6.7.6 Permanent Drainage

6.7.6.1 Underfloor Drainage

Under floor drains are recommended for structures with underground levels. The drains should be connected to a frost-free outlet for year-round drainage. For preliminary purposes, the under-slab drainage system should consist of:

- 300 mm thick clear stone (20-5 mm) having a permeability of 1 cm/s or more, compacted with a heavy compactor. Moreover, a Texel geotextile membrane or equivalent should be placed between the crushed stone and sand deposit fill to avoid clogging of the clean crushed stone and reducing the thickness of the drainage layer.
- 100 mm (4") perforated drainpipes spaced at 4 to 6 m centre to centre, connected to sufficient capacity collectors depending on the area covered by the drainpipes.
- A sump pump of sufficient capacity with an additional half design-capacity pump for uninterrupted service in low discharge periods, with proper backup system.

It is recommended that the underside of the basement floor slab be protected with a waterproofing membrane to prevent water penetration into the basement level.

6.7.6.2 Perimeter Drainage

As groundwater has to be controlled underneath the building slab-on-grade level, backfilling of foundation walls should be carried out mostly using granular materials, such as compacted granular backfill such as an OPSS "Granular BI or BII" type product.

Where foundation walls are present, it is recommended that Composite Drainage Blanket (CDB) or geo-drain be used for the perimeter walls. There are several commercially available product liens available. The CDB should be connected by a collection piping system and drained to a frost-free outlet for year-round drainage.

As the underground portion of the structure is anticipated to be below the water table, it is also recommended that the exterior walls be protected with a waterproofing membrane applied to the wall in addition to the CDB.

6.7.6.3 Elevator Pits

Elevator pits, if present, should have drainage weepers and waterproofing design measures. If drainage weepers are not practical, then the pits will need to be designed to resist hydraulic buoyancy pressures.

If elevator pistons are used, then the designers of these shafts and installations will need to also consider buoyancy issues. Installation of these will also need to consider groundwater control and buoyancy during installation.

6.8 **Corrosion Potential of Soils**

Analytical testing on one soil sample and one water sample was undertaken to assess the corrosion potential of buried concrete and steel structural elements. The test results are provided in Appendix D and summarized in Table 9.

Sample ID/Type	Depth Intervals (m)	Chlorides (% for Soil) (mg/L for Water)	Sulphates (% for Soil) (mg/L for Water)	рН	Resistivity (Ohm-cm)	Redox Potential (mV)
BH01-22, SS2	2.3 - 2.7	0.067	0.04	7.79	1180	210
BH02-22	-	820	220	7.54	298	237

 Table 9
 Corrosivity Test Results

Based on the results obtained for the samples submitted, the soil and groundwater at the site are considered to be extremely corrosive to cast iron pipe.

A review of the analytical test results shows the sulphate content in the tested sample is less than 0.1 percent in soil sample and between 150 milligram per litre (mg/L) to 1500 mg/L in water sample. Based upon the test results and Table 3 of the Canadian Standards Association (CSA) document A23.1-04/A23.2-04 'Concrete Materials and Methods of Concrete Construction/Methods of Test and Standard Practices for Concrete', the degree of exposure of the subsurface concrete structures to sulphate attack is moderate. Therefore, moderate sulphate resistance (MS) cement should be used for the below grade concrete structures.

6.9 Building Backfill

Where it is required to have the placement and compaction of the granular materials and these will support the floor slabs, foundations, pavement, or any interior backfill then these materials must be treated as Engineered Fill.

6.9.1 Engineered Fill

The fill operations for Engineered Fill must satisfy the following criteria:

- Engineered Fill must be placed under the continuous supervision of the Geotechnical Engineer.
- Prior to placing any Engineered Fill, all unsuitable existing fill, topsoil, and deleterious materials must be removed.
 Following this the subgrade should be proof rolled with any weak/soft areas being over excavated and replaced with engineered fill.
- Prior to the placement of Engineered Fill, the source or borrow areas for the Engineered Fill must be evaluated for its suitability. Samples of proposed fill material must be provided to the Geotechnical Engineer and tested in the geotechnical laboratory for SPMDD and grain size, prior to approval of the material for use as Engineered Fill. The Engineered Fill must consist of environmentally suitable soils (as per industry standard procedures of federal or provincial guidelines/regulations), free of organics and other deleterious material (building debris such as wood, bricks, metal, and the like), compactable, and of suitable moisture content so that it is within -2 percent to +0.5 percent of the Optimum Moisture as determined by the Standard Proctor test. Imported granular soils meeting the requirements of Granular 'A', or 'B' Type II OPSS 1010 criteria would be suitable.
- The Engineered Fill must be placed in maximum loose lift thicknesses appropriate to the compaction equipment utilized. Typical loose thicknesses range from 0.2 m to 0.3 m. Each lift of Engineered Fill must be compacted to 100 percent SPMDD using an appropriately sized roller, suitable for the fill material.
- Field density tests must be taken by the Geotechnical Engineer, on each lift of Engineered Fill. Any Engineered
 Fill, not meeting compaction specifications, shall be removed or re-compacted and retested.

6.9.2 Exterior Foundation Wall Backfill

Where applicable and/or if necessary, any backfill placed against the foundation walls should be free draining granular materials meeting the grading requirements of OPSS 1010 for Granular 'B' Type I specifications up to within 0.3 m of the ground surface. The upper 0.3 m should be a low permeable soil to reduce surface water infiltration. Foundation backfill should be placed and compacted as outlined below.

- Free-draining granular backfill should be used for the foundation wall.
- Backfill should not be placed in a frozen condition or placed on a frozen subgrade.
- Backfill should be placed and compacted in uniform lift thickness compatible with the selected construction equipment, but not thicker than 0.2 m. Backfill should be placed uniformly on both sides of the foundation walls to avoid build-up of unbalanced lateral pressures.
- At exterior flush door openings, the underside of sidewalks should be insulated, or the sidewalk should be placed on frost walls to prevent heaving. Granular backfill should be used and extended laterally beneath the entire area of the entrance slab. The entrance slab should slope away from the building.
- For backfill that would underlie paved areas, sidewalks, or exterior slabs-on-grade, each lift should be uniformly compacted to at least 98 percent of its SPMDD.

- For backfill on the building exterior that would underlie landscaped areas, each lift should be uniformly compacted to at least 95 percent of its SPMDD.
- In areas on the building exterior where an asphalt or concrete pavement will not be present adjacent to the foundation wall, the upper 0.3 m of the exterior foundation wall backfill should be a low permeable soil to reduce surface water infiltration.
- Exterior grades should be sloped away from the foundation wall, and roof drainage downspouts should be placed so that water flows away from the foundation wall.

6.10 Underground Services

6.10.1 Bedding and Cover

Underground service lines, if any, can be founded on either undisturbed native soils or on bedrock. The suitability of the foundation soils to provide adequate support for buried services must be verified and confirmed on site at the time of construction/installation by qualified geotechnical personnel experienced in such work.

It is recommended that prior to commencing the construction of the site servicing, consideration be given to the excavation of a series of trial excavations along the alignment of the proposed service lines to determine more accurately the soil behavior and whether or not any dewatering works will be required.

The following are recommendations for service trench bedding and cover materials that may be associated with the development.

- Bedding for buried utilities should consist of 150 mm Granular 'A' and placed in accordance with City of Ottawa specifications.
- The cover material, from bedding level to at least 300 mm above the top of pip, should consist of Granular 'A' or Granular B Type I and the dimensions should comply with City of Ottawa standards.
- The bedding material and cover materials should be compacted as per City of Ottawa standards and to at least 95 percent of its SPMDD.
- Compaction equipment should be used in such a way that the utility pipes are not damaged during construction.

6.10.2 Service Trench Backfill

Backfill above the cover for buried utilities should be in accordance with the following recommendation:

 For service trenches under pavement areas, the backfill should be placed and compacted in uniform thickness compatible with the selected compaction equipment and not thicker than 200 mm. Each lift should be compacted to a minimum of 95 percent SPMDD.

6.11 Pavement Design Recommendations

Access driveways and parking areas are expected to be constructed over native stiff silty clay to clay, bedrock or engineered fill. In order to prepare the site for the pavement area, it is necessary that the area be stripped of any existing cover materials such as surficial topsoil or any other deleterious materials deemed unsuitable by geotechnical personnel to expose a suitable subgrade. The exposed subgrade should be proof rolled in the presence of a Geotechnical Engineer. Any areas where "soft spots", rutting, local anomalies, or appreciable deflection are noted should be excavated and replaced with suitable fill. In problematic areas the use of geotextiles may be warranted for strength improvement. The fill placed to repair a subgrade should be compacted to at least 98 percent of its SPMDD.

The preliminary pavement sections described in the table below are recommended for areas subjected to parking lot and access road. GHD could review these preliminary pavement structures should Nokia provide GHD with project traffic design parameters. Pavement materials and workmanship should conform to the appropriate Ontario Provincial Standard Specifications (OPSS). Table 10 Recommended Pavement Structure - 20 Year Design Life

		Layer Thicknesses (mm)						
Pavement Structure Elements	Compaction Requirement	Standard Duty (Car Parking Areas)	Heavy Duty (Access Roads)					
Surface Course OPSS 1150 HL3 Hot Mix	OPSS 310, Table 10	50	40					
Base Course OPSS 1150 HL8 HS Hot Mix Asphalt	OPSS 310, Table 10	-	50					
Granular A Base (19 mm crusher run limestone)	100% SPMDD	150	150					
Granular B Type I Subbase (Sand and Gravel)	100% SPMDD	250	500					

In order to accommodate the recommended thicknesses, designers will need to review grades and determine where stripping or filling is necessary. Pavement materials and workmanship should conform to the appropriate OPSS.

To maintain the integrity of the pavement at the Site, filter-cloth wrapped 100 mm diameter PVC perforated subdrains should be installed at all catch basins (3 m stubs in the upgradient direction) and all along the perimeter of the parking lot. The invert of the subdrains should be at least 300 mm below the bottom of the subbase and should be sloped to drain to adjacent catch basins. The subdrains should be installed in a 300 mm by 300 mm trench lined by suitable geotextile and consist of a 100 mm diameter perforated pipe wrapped in a suitable geotextile and surrounded with a minimum thickness of 50 mm of free draining sand such as clear stone wrapped with a filter cloth or concrete sand.

Grading adjacent to pavement areas should be designed so that water is not allowed to pond adjacent to the outside edges of the pavement. Surface runoff should be directed to storm sewers or allowed to flow into ditches.

Annual or regular maintenance will be required to achieve maximum life expectancy. Generally, the asphalt pavement maintenance will involve crack sealing and repair of local distress.

It should be noted that the preliminary pavement sections described within this report represent end-use conditions only, which includes light vehicular traffic and occasional garbage or service trucks. It may be necessary that these sections be temporarily over-built during the construction phase to withstand larger construction loadings such as loaded dump trucks or concrete trucks. Pavement design for the new road dissecting the property into commercial and residential sections can be provided during the detail design when project traffic design parameters are available.

6.12 Construction Field Review

The recommendations provided in this report are based on an adequate level of construction monitoring being conducted during construction phase of the proposed building. GHD requests to be retained to review the drawings and specifications, once complete, to verify that the recommendations within this report have been adhered to, and to look for other geotechnical problems. Due to the nature of the proposed development, an adequate level of construction monitoring is considered to be as follows:

- Prior to construction of footings, the exposed foundation subgrade should be examined by a Geotechnical Engineer or a qualified Technologist acting under the supervision of a Geotechnical Engineer, to assess whether the subgrade conditions correspond to those encountered in the boreholes, and the recommendations provided in this report have been implemented.
- A qualified Technologist acting under the supervision of a Geotechnical Engineer should monitor placement of Engineered Fill underlying floor slabs.
- Backfilling operations should be conducted in the presence of a qualified Technologist on a part time basis, to
 ensure that proper material is employed, and specified compaction is achieved.
- Placement of concrete should be periodically tested to ensure that job specifications are being achieved.

7. Scope and Limitation

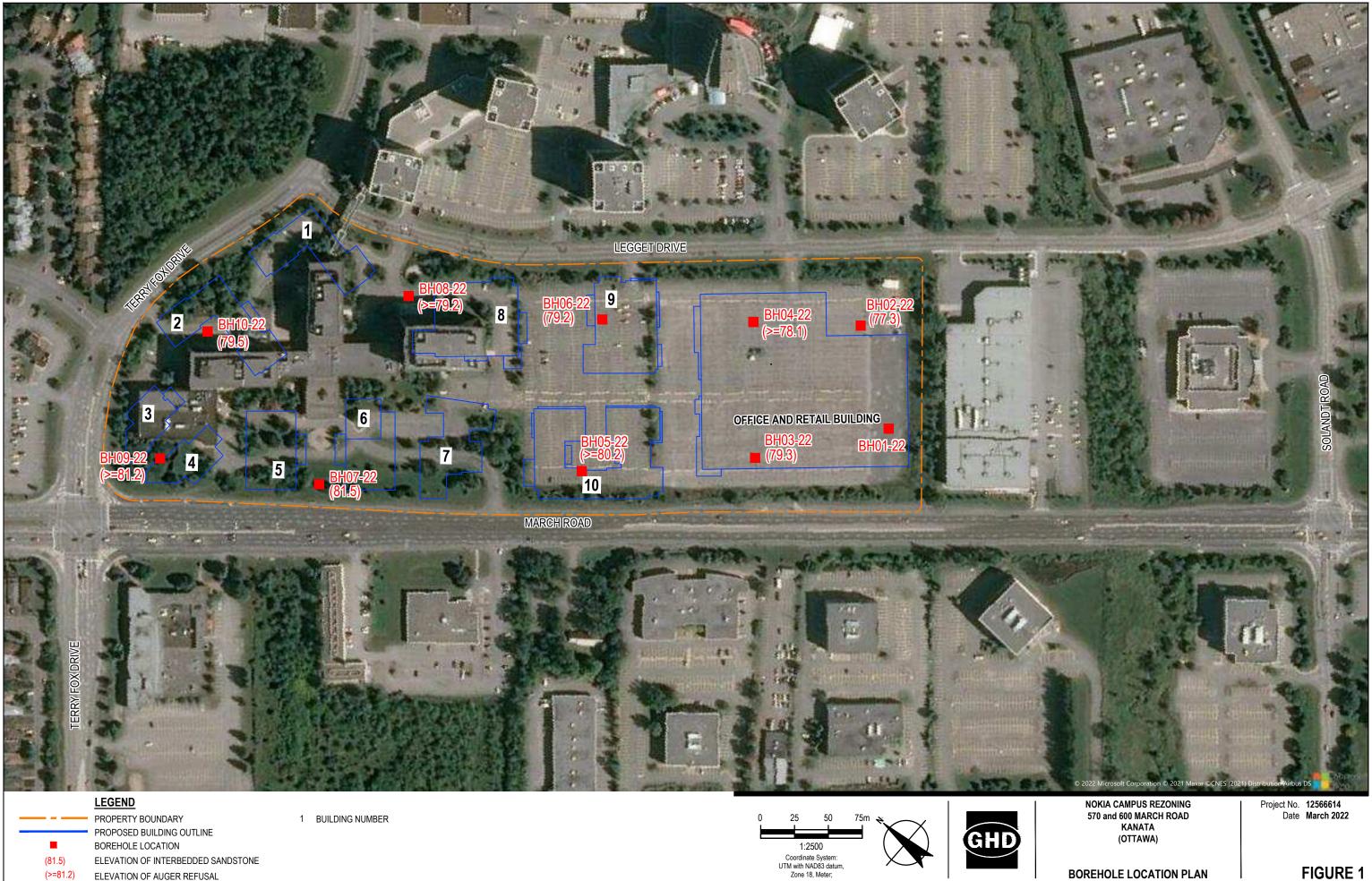
This report has been prepared by GHD for Nokia Inc. and may only be used and relied on by Nokia Inc. for the purpose agreed between GHD and Nokia Inc. as set out in Section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Nokia Inc. arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report (refer Section 6 of this report). GHD disclaims liability arising from any of the assumptions being incorrect.


The recommendations made in this report are in accordance with our present understanding of the project, the current Site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of geotechnical engineering professions currently practicing under similar conditions in the same locality.

No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in this report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design. By issuing this report, GHD is the geotechnical engineer of record. It is recommended that GHD be retained during construction of all foundations and during earth-work operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the test locations only. The subsurface conditions confirmed at the test locations may vary at other locations. The subsurface conditions can also be significantly modified by the construction activities on Site (ex., excavation, dewatering and drainage, blasting, pile driving, etc.). These conditions can also be modified by exposure of soils or bedrock to humidity, dry periods, or frost. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction which could not be detected or anticipated at the time of our investigation. Should any conditions at the Site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD are completed.

Figures

Filename: \\ghdneftghdrEdDdrCAlOttawalProjects\661112566614IDigital_Design\ACAD\Figures\RPT001112566614-GHD-0000-RPT-EN-0101_WA-001.DWG Plot Date: 24 March 2022 10:46 AM

ELEVATION OF AUGER REFUSAL

(>=81.2)

BOREHOLE LOCATION PLAN

Appendices

Appendix A

Explanatory Notes, Geotechnical Borehole and Test Pit Logs,

Notes on Borehole and Test Pit Reports

Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

0		(Unified system)			Termin	ology					
Clay	< 0.002 mm										
Silt	0.002 to 0.075 mm			"tra	ice"	1-10%					
Sand	0.075 to 4.75 mm	fine 0.075 to 4.25 mm		"so	me"	10-20%					
		medium 0.425 to 2.0 mm		adj	ective (silty, sar	• /					
		coarse 2.0 to 4.75 mm		"an	d"	35-50%					
Gravel	4.75 to 75 mm	fine 4.75 to 19 mm coarse 19 to 75 mm									
Cobbles Boulders	75 to 300 mm >300 mm										
	ve density of nular soils	Standard penetration index "N" value			istency of sive soils	Undraine strengt					
		(BLOWS/ft - 300 mm)				(P.S.F)	(kPa)				
				Ve	ery soft	<250	<12				
Ve	ery loose	0-4			Soft	250-500	12-25				
	Loose	4-10			Firm	500-1000	25-50				
C	Compact	10-30			Stiff	1000-2000	50-100				
	Dense	30-50		V	ery stiff	2000-4000	100-200				
Ve	ery dense	>50			Hard	>4000	>200				
	Rock quality	designation] [STRATIGRA	PHIC LEGEND					
"RQE	D" (%) Value	Quality				•					
	<25	Very poor			00	20					
	25-50	Poor		Sand	Gravel	Cobbles& boulders	Bedrock				
	50-75	Fair		Sanu			Deurock				
	30-73										
	75-90	Good									
				Silt	Clay	$\begin{array}{ c c }\hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Fill				
Split spoon E, GSE, AGE	75-90 >90 ber	Good Excellent on the log by the abbreviation listed he ST: S	reafter. The numberin helby tube iston sample (Osterber	g of samples is	s sequential for ea	Organic soil	Fill				
e and Numl type of sam Split spoon E, GSE, AGE	75-90 >90 ber uple recovered is shown o	Good Excellent on the log by the abbreviation listed he ST: S	helby tube iston sample (Osterbe	g of samples is rg)	s sequential for ea	Organic soil organic soil ach type of sample. AG: Auger RC: Rock core GS: Grab sample	Fill				
e and Numl stype of sam Split spoon E, GSE, AGE covery e recovery, sh	75-90 >90 ber sple recovered is shown of E: Environmental samplin hown as a percentage, is	Good Excellent on the log by the abbreviation listed he ST: S g PS: P	helby tube iston sample (Osterbei ned to the distance the	g of samples is rg) e sampler was o	s sequential for ea	Organic soil organic soil					
e and Numl spit spoon E, GSE, AGE covery e recovery, st D "Rock Quali run.	75-90 >90 ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD	Good Excellent on the log by the abbreviation listed he ST: S g PS: P the ratio of length of the sample obtai	helby tube iston sample (Osterbei ned to the distance the	g of samples is rg) e sampler was o	s sequential for ea	Organic soil organic soil					
e and Numl stype of sam Split spoon E, GSE, AGE covery e recovery, st D "Rock Quali run. SITU TEST	75-90 >90 ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS:	Good Excellent on the log by the abbreviation listed he ST: S g PS: P the ratio of length of the sample obtai	helby tube iston sample (Osterber ned to the distance the he ratio of the total leng	g of samples is rg) e sampler was (gth of all core f	s sequential for ea driven/pushed into ragments of 4 incl	Organic soil Organic soil	ne total leng				
e and Numl stype of sam Split spoon E, GSE, AGE covery e recovery, st D "Rock Quali run. SITU TEST	75-90 >90 ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index	Good Excellent on the log by the abbreviation listed he ST: S g PS: P the ratio of length of the sample obtai	helby tube iston sample (Osterber ned to the distance the he ratio of the total leng N _c : Dynamic cone Cu: Undrained	g of samples is rg) e sampler was (gth of all core f	s sequential for ea driven/pushed into ragments of 4 incl	Organic soil organic soil	ne total leng				
e and Numl stype of sam Split spoon E, GSE, AGE covery e recovery, sh D "Rock Quali run. SITU TEST Standard per Refusal to pe	75-90 >90 ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index	Good Excellent on the log by the abbreviation listed he ST: S g PS: P the ratio of length of the sample obtai	helby tube iston sample (Osterber ned to the distance the he ratio of the total leng N _c : Dynamic cone Cu: Undrained	g of samples is rg) e sampler was gth of all core f e penetration in I shear strength	s sequential for ea driven/pushed into ragments of 4 incl	Organic soil AG: Auger RC: Rock core GS: Grab sample to the soil thes (10 cm) or more to th k: Permeab ABS: Absorption (P	ne total leng ility Packer test)				
e and Numl stype of sam Split spoon E, GSE, AGE covery e recovery, st P "Rock Quali "Rock Quali "U. SITU TEST Standard per Refusal to pe BORATOR	75-90 >90 ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: hetration index enetration RY TESTS:	Good Excellent	helby tube iston sample (Osterber ned to the distance the he ratio of the total leng N _c : Dynamic cone Cu: Undrained Pr: Press	g of samples is rg) e sampler was o gth of all core f e penetration in I shear strength sure meter	s sequential for ea driven/pushed into ragments of 4 incl idex	Organic soil AG: Auger RC: Rock core GS: Grab sample to the soil thes (10 cm) or more to th k: Permeab ABS: Absorption (P	ne total leng ility Packer test) O.V.: Orgar				
e and Numl bype of sam Split spoon E, GSE, AGE covery e recovery, sh e "Rock Quali run. SITU TEST Standard per Refusal to pe BORATOR	75-90 >90 ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: hetration index enetration RY TESTS:	Good Excellent on the log by the abbreviation listed he ST: S g PS: P the ratio of length of the sample obtai " value, expressed as percentage, is the H: Hydrometer analysis	helby tube iston sample (Osterber ned to the distance the he ratio of the total leng N _c : Dynamic cone Cu: Undrained Pr: Press A: Atterberg limi	g of samples is rg) e sampler was o gth of all core f e penetration in I shear strength sure meter ts	s sequential for ea driven/pushed into ragments of 4 incl idex n C: Consolid	Organic soil Organic soil AG: Auger RC: Rock core GS: Grab sample to the soil hes (10 cm) or more to th k: Permeab ABS: Absorption (P	ne total lengi				
e and Numl stype of sam Split spoon E, GSE, AGE covery e recovery, st P "Rock Quali "Rock Quali "U. SITU TEST Standard per Refusal to pe BORATOR	75-90 >90 ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: metration index enetration RY TESTS: EX	Good Excellent	helby tube iston sample (Osterber ned to the distance the he ratio of the total leng N _c : Dynamic cone Cu: Undrained Pr: Press	g of samples is rg) e sampler was o gth of all core f e penetration in I shear strength sure meter ts	s sequential for ea driven/pushed into ragments of 4 incl idex n C: Consolid CS: Swedis	Organic soil Organic soil AG: Auger RC: Rock core GS: Grab sample to the soil hes (10 cm) or more to th k: Permeab ABS: Absorption (P	ne total leng ility Packer test) O.V.: Orgar				

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

,	RE	FEREN	CE No.	:	12566614																
						BOREHOLE	No	. : _	В	H01	-22		_	В	OR	EH	OL	EF	REF	0	RT
						ELEVATION	: _		80.	<u>2 m</u>	(6	BEOL	DETIC)				Page	e1 o	f 1		
	CL	IENT:		No	kia									<u>LE</u>	GEN	D					
	PR	OJECT	:	Ge	otechnical Investigat	on-Nokia Campus	Re	zonir	ng						SS ST			SPOC SY TU			
	LO	CATION	N:	570	0 and 600 March Roa	id, Ottawa, Ontario									VA	- V.	ANE	SHEA	R		
	DE	SCRIB	ED BY:	Da	thon Ash	CHECKED) B,	Y: _	Sahar S	Solei	man	i			AU GS			R PRO SAMF			
	DA	TE (ST	ART):	28	January 2022	DATE (FIN	IIS	H): _	28 Janu	lary	2022	2		Ţ		- V	/ATEI	R LE\	/EL		
	NC	RTHIN	G:	502	21740.104	EASTING: 428002.481								ELEV	-).2	(1-D-)		
24/3/22	Del Eleve Stratig					PTION OF OIL	State	Type and Number	Gravel Sand Silt Clay	Unconfined Compressive Strength	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	□ R Ճ N O	emould umber r Water Atterbe	ed Field efer to \$ content	e Value I Vane \ Sensitivi (%) s (%) lows / 12	/alue (ł ty		PIEZOMETER/ STANDPIPE INSTALLATION
)ate:	Feet	Metres				SURFACE			%	MPa	%	%	%	%	10	20 30	40 50	0 60 7	0 80	90	
: 12566614 SOIL LOG D	- 1 — 2 —	- - - - 0.5 - 0.6	79.6		FILL - Gravelly silty clay, greyish brown CLAY, greyish brow	moist, dense		GS1	29-37-22-12	2		13	-		0		Sar	nd and C	Concret		
GEOTECH_V10.GLB Report		- - - - - - - - - - - - - - - - - - -			to stiff			SS1			100.0	36	2-4-5-5	9	•		0	B	ientonit		
J Library File: 12566614 GHE	5 — 6 — 7 —	- 1.3 - - - - - - 2.0 - -			grey, moist to wet, s	tiff		-					-] San 		
14/TECH/GINT LOGS/12566614 LOG.GP	8 — 9 — 10 — 11 —	- 2.5 						SS2			100.C		2-2-2-2		•				-Scree	n	
File: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 12 13 14 15 16	- 3.5 - 3.6 - 4.0 - 4.5 	76.6		END OF BOREHOL (Auger Refusal) NOTE: 1. Borehole dry upo drilling. 2. Borehole dry on f	n completion of													3.6 r	n	

BOREHOLE No.: BH02-22 ELEVATION: 79.7 m (GEO)		B	OREHO		-T						
ELEVATION: 79.7 m (GEO			BOREHOLE REPORT								
	<u>, , , , , , , , , , , , , , , , , , , </u>	Page 1 of 2									
CLIENT: Nokia		LEC	GEND								
PROJECT: Geotechnical Investigation-Nokia Campus Rezoning				T SPOON							
LOCATION: 570 and 600 March Road, Ottawa, Ontario				_BY TUBE E SHEAR							
DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani			AU - AUG	ER PROBE							
DATE (START): <u>31 January 2022</u> DATE (FINISH): <u>1 February 2022</u>		GS - GRAB SAMPLE ▼ - WATER LEVEL									
NORTHING: 5021805.708 EASTING: 428046.309		ELEVATION: 79.7									
			△ Undisturbed V	′ane Value (kPa)							
Depth Depth Depth Depth Depth Depth Depth Depth Number Compressive Stratigraphy Stratigraphy Stratigraphy Stratigraphy Compressive Strength Number State Compressive Strength Molecure Molecure	Blows per 15cm/ 00 RQD(%)		∆ Number refer t O Water conte	eld Vane Value (kPa) to Sensitivity ent (%) nits (%) (blows / 12 in30 cm)	PIEZOMETER/ STANDPIPE INSTALLATION						
e GROUND SURFACE % MPa % %	6 %	%		50 60 70 80 90							
B ASPHALT G - 0.1 79.6 FILL - GRAVEL, some sand and silt,			5	Sand and Concrete →							
grey, moist, dense											
2 - 0.6 79.1 CLAY, some silt, trace sand and											
gravel, greyish brown, moist, stiff											
	9 9-6-7-7	13	• I o								
B - 2.4 77.3 DOLOMITIC SANDSTONE, grey,	- 50/102mm	50/102 mm									
5 2.5 slightly weathered, excellent to fair qullity				Bentonite ->							
9 – Run1 100 –	- 91	100									
joint, perpendicular to core axis	- 68	89									
				2/3/2022	Ţ						
joint, perpendicular to core axis											
	- 84	92									
			+ + + +								
L III E III				4.9 m—							

	REFERENCE No	.:12566614																
			BOREHOLE No.:BH02-22								BOREHOLE REPORT							
		GHD	ELEVATION:	_		79.7	7 m	_(C	EOE	DETIC)				Page 2				
	CLIENT:	Nokia									LE	GEN	D					
	PROJECT:	Geotechnical Investiga	tion-Nokia Campus I	Re	zonin	g						SS						
	LOCATION:	570 and 600 March Ro	ad, Ottawa, Ontario									ST VA		HELBY T ANE SHE				
	DESCRIBED BY:	Dathon Ash	CHECKED	B١	Y:	Sahar S	oleii	man	i			AU GS		JGER PI RAB SAI				
	DATE (START):	31 January 2022	_ DATE (FIN	ISI	H): _	1 Februa	ary 2	2022			Ţ	65		ATER LI				
	NORTHING:	5021805.708	EASTING:			428046.	309				ELEV	ΑΤΙΟ	N:	79.7				
24/3/22	Depth Elevation (m) BGS		IPTION OF SOIL	State	Type and Number	Gravel Sand Silt Clay	Unconfined Compressive Strength	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	□ R Ճ N O	emoulde umber re Water c	ed Vane Va ed Field Van efer to Sensi ontent (%) g limits (%) ue (blows)	e Value tivity	e (kPa)	PIEZOMETER/ STANDPIPE INSTALLATION	
ate:	Feet Metres	GROUN	D SURFACE			%	MPa	%	%	%	%	10	20 30	40 50 60	70 8	0 90	-	
File: \\GHDNET\GHD\CA\OTTAWA\PROJECTS\681\17566614\TECH\GINTLOGS\12566614 LOG.GPJ Library File: 12566614 GHD_GEOTECH_V10.GLB Report: 12566614 SOIL LOG Date: 24/3/22	$17 - \frac{1}{2}$ $18 - 5.5$ $19 - \frac{1}{2}$ $20 - 6.0$ $20 - 6.0$ $21 - 6.5$ $22 - \frac{1}{2}$ $23 - 7.0$ $24 - \frac{1}{2}$ $23 - 7.5$ $25 - \frac{1}{2}$ $26 - 8.0$ $27 - \frac{1}{2}$ $28 - 8.5$ $- 8.6$ 71.1 $29 - \frac{1}{2}$	joint, approximatel core axis END OF BOREHC NOTE: 1. Water level at a	ΊLE		Run4 Run5		122.5	100		73 63 76	94				5.5	and		
File: \\GHDNET\GHD\CA\OTTAWA\PI	9.0 30 31 32 	(Elev. /5.84 m) be on February 3, 202	low ground surface 2.														-	

REFERENCE No.: 12566614																						
						BOREHOLE	No	o.: _	В	H03	<u>-22</u>			BOREHOLE REPORT								
						ELEVATION:	-		80.	7 m	(G	EOE	DETIC)	_	•••			el o				
	CL	ENT:		No	kia								·	LE	GEN	D						
	PR	OJECT	:	Ge	otechnical Investigati	on-Nokia Campus	Re	zonin	g						SS			SPOC				
	LO	CATION	N:	57	0 and 600 March Roa	d, Ottawa, Ontario									ST VA			BY TU SHEA				
	DE	SCRIB	ED BY:	Da	thon Ash	CHECKED	B	Y:	Sahar S	olei	man	i										
	DA	TE (ST	ART):	28	January 2022	DATE (FIN	ISI	H): _	31 Janu	ary	2022	2		\ ▼	GS			SAMF R LEV				
	NO	RTHIN	G:	502	21800.342	EASTING:			427921	.429				ELEV	ATIO	N:	8	0.7				
						PTION OF DIL	State	Type and Number	Gravel Sand Silt Clay	Unconfined Compressive Strength	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	□ R Ճ Ni O	emould umber r Water	ed Field efer to content	Sensitivi	/alue (kPa	PI	EZOMETER/ STANDPIPE STALLATION	
alta. 7	Feet	Metres				SURFACE			%	MPa	%	%	%	%					0 80 90			
	1 -	- 0.1 - - - - 0.5	80.6		ASHPHALT FILL - Sandy GRAV trace clay, greyish b dense	EL, some silt, rown, moist,		GS1	45-29-18-8			10			0		Sa	nd and C	Concrete- 0.2 m-			
	2 — - 3 — -	- 0.6 - - - - 1.0 -	80.1		Silty CLAY, some sa greyish brown, mois	and, trace gravel, t, stiff	V	SS1	1-28-(71)		95.8	30	4-5-5-5	10	•	0		B	entonite -	•		
	4 — 5 —	- _ 1.4 - 1.5 -	79.3		DOLOMITIC SANDS with yellow bands, s excellent quality	STONE, light grey lightly weathered,		Run1			100		100	100					Sand- 	-		
GLU LINIALY LIE. 120	6 — 7 — -	- 2.0 					_	-											Screen-			
GG/1200014 LOG.	8 — 9 —	- 2.5 - -						Run2		91.1	100		100	100								
	10 —	- 3.0	77.7	VX	END OF BOREHOL	E	┦	4							\vdash	++	+		—3.0 m-			
2000 I4/I ECI I/GII	- 11 — -	- - - - 3.5			NOTE: 1. Water level at a c (Elev. 79.15 m) belo on February 3, 2022	w ground surface																
	12 —	- - -																				
	13 —	- 4.0 -													\vdash	+	+		+			
	14 —	-													$\left \right $	+			+			
	- 15 —	- - 4.5 -																				
	- 16 —	-																	+	_		
É	10	-																				

LOG Date: 24/3/22 а С 110 Ľ 100 0 File: \\GHDNE

-	REFEREN	CE No.		12566614																
					BOREHOLE	No	o.: _	В	H04	-22			BOREHOLE REPORT							
					ELEVATION			79.	3 m	(G	BEOD	DETIC)	_	-			e 1			
	CLIENT:		No	kia									LEC	GEN	D					
	PROJECT	:	Ge	otechnical Investigati	on-Nokia Campus	Re	zonir	ig						SS ST	- S		SPC BY TI			
	LOCATION	N:	57	0 and 600 March Roa	d, Ottawa, Ontario									VA	- V	ANE	SHE	AR		
	DESCRIBE	ED BY:	Da	thon Ash	CHECKED	CHECKED BY: Sahar Soleimani									- A - G					
	DATE (ST/	ART):	28	January 2022	DATE (FIN	ISI	H): _	28 Janu	ary 2	2022	2		⊻ - WATER LEVEL							
	NORTHIN	G:	50	21867.201	EASTING:			427996.	294				ELEV							
27101-27	Depth	Elevation (m) BGS	Stratigraphy	DESCRI Si	d swolg d swolg d swold strute Monstrue						Blows per 15cm/ RQD(%)	'N' Value SCR(%)	Oundisturbed Vane Value (kPa) Remoulded Field Vane Value (kPa) ᡭ Number refer to Sensitivity Water content (%) Water content (%) W, W, Atterberg limits (%) ""N" Value (blows / 12 in30 cm)						PIEZOMETER/ STANDPIPE INSTALLATION	
	Feet Metres				SURFACE			%	MPa	%	%	%	%	10	20 30	40 5	0 60	70 80) 90	ł
	- 0.1 1 - 0.5	79.7		ASPHALT FILL - Gravelly SAN clay, grey, moist, de	D, some silt and nse		GS1	23-58-(19)												
	2 0.6 3	79.2		Silty CLAY, some sa brown, moist, stiff	and, greyish															-
	4 — 1.0					$\ $	SS1	0-10-44-46		77.0	29	5-6-7-7	13		• •					
	5 <u>-</u> 1.5					r1													.0	
	6 — 1.7	78.1	11	END OF BOREHOL (Auger Refusal)	E															
	7 – 2.0 7 –																			-
	8 2.5																			
000710000	9 -																			
	10 - 3.0																			
11-10000711	11 3.5																			-
	12 —															_			_	
	13 — 4.0															-				
																			+	
	15 — 4.5																		+	•
	 16															_			_	
ĺ																				

14 SOIL LOG Date: 24/3/22 50 V10.GLB OTECH Ц Ę Ū 125 2 I ibrar OG.GP.J 000 File: \\GHDNET\GHD\(

	REFE	REN	ICE No.	:	12566614																					
						BOREHOLE No.: BH05-22								BOREHOLE REPORT												
	ELEVATION:									ON: 81.1 m (GEODETIC) Page 1 of 1																
	CLIEN	IT:	T: Nokia LEGEND																							
	PROJ	ECT	:	eotechnical Investigati	on-Nokia Campus	on-Nokia Campus Rezoning											SS - SPLIT SPOON									
	LOCA	TIO	N:	57	0 and 600 March Roa	d, Ottawa, Ontario	d, Ottawa, Ontario 🛛 🧰 VA - VANE SHEAR																			
	DESC	RIB	ED BY:	Da	thon Ash	CHECKED) B,	Y: _	S	ahar S	olei	man	i						BER F							
	DATE (START): <u>1 February 2022</u>			DATE (FIN	IISI	H): _	1	Februa	ary 2	2022	2		▼ - WATER LEVEL													
	NORTHING:			50	21890.495	EASTING:			4	27830.			1		ELEVATION: 81.1											
24/3/22	Depth	PTION OF DIL	State	Type and Number	Gravel	Sand Silt Clay	Unconfined Compressive Strength	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	□ ⊿ 0	Remou Numbe Wate	ulded F er refer	to Ser	ane Va nsitivit <u>i</u>	alue (kP	(kPa)								
Date:	Feet Me	etres				SURFACE				%	MPa	%	%	%	%						80 90					
FIIE: \\GHDNET\GHD\CA\OTTAWA\PROJECTS\6611/12566614TECH\GINT_LOGS\72566614_LOG.GPJ_LIbray FIIE: 12566614_GHD_GEOTECH_V10.GLB_Report: 12566614 SOIL_LOG_Date: 24/3/22	1	0.1	81.0	\bigotimes	ASPHALT FILL - Sandy SILT, greyish brown, mois	some gravel, it, dense	$\left \right $	GS1														_				
port: 125666		0.5 0.6	80.5		CLAY, some silt and gravel, greyish brow																					
V10.GLB R		0.9 1.0	80.2		stiff END OF BOREHOL (Auger Refusal)	E		SS1	1-'	15-50-34		100.0	23	13-50/76mm	1 50/76 mm											
GEOTECH	4	4 5																				_				
14 GHD	5	1.5														$\left \right $	_	$\left \right $	_							
125666	6 —																									
ibrary File:	7 -	2.0																								
LOG.GPJ L	8 -	2.5																								
S\12566614	9 -																					_				
H\GINT LOG	10 -	3.0																				_				
566614\TEC	11 -	3.5																								
S\661\12	12 —																									
PROJECT	13 -	4.0																								
OTTAWA	 14															$\left \right $						\neg				
GHD/CA/		4.5														\mid						_				
GHDNET/	15																									
File: //	16 —																									

	RE	FEREN	CE No.	:	12566614																			
GHD					BOREHOLE		BH0	6-22	2		BOREHOLE REPORT													
			9			ELEVATION: 79.6 m (GEODETIC)								Page 1 of 1										
	CLI	ENT:		Nc	okia									<u>LE</u>	GEN	<u>ND</u>								
	PR	OJECT	:	Ge	eotechnical Investigati	on-Nokia Campus I	SS - SPLIT SPOON ST - SHELBY TUBE																	
	LO	CATION	N:	57	0 and 600 March Roa	ad, Ottawa, Ontario									☑ ST - SHELBY TUBE ☑ VA - VANE SHEAR									
	DE	SCRIB	ED BY:	Da	athon Ash	CHECKED	B	Y:	Sahar	Sole	man	i		AU - AUGER PROBE										
	DA	TE (ST	ART): _	2 F	Eebruary 2022	DATE (FIN	ISI	H): _	2 Febr	uary	2022	2												
	NO	RTHIN	G:	50	21952.611	EASTING:			42792	4.443	6													
Depth Elevation (m) BGS			Elevation (m) BGS	Stratigraphy	DESCRII Si	PTION OF OIL	State	Type and Number	Gravel Sand Silt	Uray Unconfined Compressive Strendth	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	ロ ゴ 0	Remou Numbe Wate	ulded Fi er refer f	to Sensitivent (%)	Value (kPa		PIEZOM STANE INSTALL	IETER/ IPIPE ATION		
	Feet	Metres				SURFACE			%	MPa	%	%	%	%	1(20 3			70 80 90)	~			
	_	- 0.1	79.5	$\times\!\!\!\times$	ASPHALT FILL - Sandy SILT, s	some gravel,		GS1					_				5	Sand and	Concrete 0.2 m	-	¥	Ň		
	1 —	-		\bigotimes	brown, moist, dense)	$ \rangle$	631																
	_	- 0.4 - 0.5	79.2	X	DOLOMITIC SAND with yellow bands, f	STONE, light grey	T																	
	2 —	-			with yollow burldo, i	con, good quality														_				
202	- -	-		Ũ															 Bentonite=					
10.0	3 —	- 1.0		X													$\left \right $		$\left \right $	_				
2	4 —	-		X				Run1			97		87	97		_				_				
	_	-		X																				
	5 —	- 1.5																	1.5 m-					
	-	-																	Sand-					
. 140	6 —	-		Ũ			H	-																
aiy	7	- 2.0 -		X															2.1 m-	;				
	' _	-		X																-				
5.0.0	8	-		S												_	$\left \right $		$\left \right $					
	_	- 2.5 -																						
00071	9 —	-						Run2		94.:	90		75	90					Carrow	!				
	-	- 3.0		Ũ															Screen- 2/3/20	22 .				
	10 —	-		Ŵ																				
	11 —	-		X																ļ				
- 0000	-	- - 3.5		\bigotimes											$ \uparrow $									
211100	12 —	- 3.6	76.0		END OF BOREHOL	E	┦										+	+	-3.6 m=	=		<u> </u>		
	-	-			NOTE:											+	+		$\left \right $	-				
	13 —	- 4.0			1. Water level at a c (Elev. 79.15 m) belo	w ground surface									\mid				$\left \right $	-				
2002	-	-			on February 3, 2022	<u>.</u>										_		+		-				
	14 —	-													Ц	_								
	15 —	- 4.5																						
	-	-																						
	16 —	_																						

File: \\GHDNET\GHD\CA\OTTAWA\PROJECTS\661\12566614\TECH\GINT_LOGS\12566614_LOG.GPJ Library File: 12566614_GHD_GEOTECH_V10.GLB_Report: 12566614_SOIL_LOG_Date: 24/3/22

	REFEREN	ICE No.	:	12566614																		
					BOREHOLE No.:BH07-22								BOREHOLE REPORT									
		2	ELEVATION										ge 1 of 1									
	CLIENT: <u>Nokia</u>																					
	PROJECT	:	Ge	otechnical Investigat	on-Nokia Campus	Re	zonin	g						SS ST			I SPC					
	LOCATION	N:	570) and 600 March Roa	id, Ottawa, Ontario									VA			SHE					
	DESCRIBE	ED BY:	Dat	thon Ash	CHECKED	B	Y:	Sahar S	oleir	nan	i			AU GS			ER PF 3 SAN					
	DATE (ST	ART):	31	January 2022	DATE (FIN	ISI	H): _	31 Janu	ary 2	2022	2		GS - GRAB SAMPLE - WATER LEVEL									
	NORTHIN	G:	502	22030.466	EASTING:			427695.					ELEVATION: 82.5									
24/3/22	Depth Elevation (m) BGS Stratigraphy			PTION OF OIL	State	Type and Number	Gravel Sand Silt Clay	Unconfined Compressive Strength	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	ロ ゴ 0	Remou Numbe Wate	Ided Fie r refer te	ane Valu eld Vane o Sensit nt (%) its (%) (blows /	Value vity	e (kPa)	PIEZOMETER/ STANDPIPE INSTALLATION			
ate:	Feet Metres				SURFACE			%	MPa	%	%	%	%	10	20 3	30 40	50 60	708	090	1		
66614 SOIL LOG D	1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOPSOIL - Clayey s rootlets and organic brown, moist	SILT, contains : matter, dark	$\left \right $	GS1					-								-		
10.GLB Report: 125	2 0.6 	81.9 81.5		Silty CLAY to Claye sand and gravel, da soft, organics matte	rk brown, moist, r		SS1			41.7		3-5-50/0	>50									
SHD_GEOTECH_V	4 5 1.5			weathered, light gre yellow bands, fair to	y to grey with		Run1			100		66	100							-		
File: \\CHDNET\GHD\CA\OTTAWA\PROJECTS\6614\7266614\7ECH\GINT LOGS\7266614 LOG.GPJ Libray File: 1256614 GHD_GEOTECH_V10.GLB Report: 12566614 SOIL LOG Date: 24/3/22	6 2.0 7 						-													-		
3S/12566614 LOG.GPJ	8 8 2.5 9 -						Run2			96		89	96							-		
66614/TECH/GINT LO	10 - 3.0 + 11 - 3.5						-													-		
)JECTS/661/125	12 -						Run3		111.8	100		88	88							-		
<u>\OTTAWA\PRC</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78.4		END OF BOREHOL	E																	
T/GHD/CA	 4.5																					
le: \\GHDNE	 - 16																			-		
πl						1	1		1		1		1							1		

	REFER	ENCE No).:	12566614																
					BOREHOLE	No	o.: _	В	H08	3-22			B	OF	REF	IOL	E	RE	EPC	RT
					ELEVATION	: _		79.	8 m	(0	GEOD	DETIC)					je 1			
	CLIENT		No	okia									LEC							
	PROJE	CT:	Ge	eotechnical Investigati	on-Nokia Campus	Re	zonin	g						SS ST		SPLIT SHEL				
	LOCATI	ON:	57	0 and 600 March Roa	d, Ottawa, Ontario									VA	- \	/ANE	SHE	AR		
	DESCR	BED BY	Da	athon Ash	CHECKED) B,	Y:	Sahar S	olei	man	i					AUGE GRAB				
	DATE (S	START):	2 F	Eebruary 2022	DATE (FIN	IISI	H): _	2 Febru	ary 2	2022	2		Ţ			NATE				
	NORTH	NG:	50	22071.843	EASTING:	_		427843.	1					-			9.8			1
	Depth	Elevation (m) BGS	Stratigraphy		PTION OF DIL	State	Type and Number	Gravel Sand Silt Clay	Unconfined Compressive Strength			Blows per 15cm/ RQD(%)	'N' Value SCR(%)		Remoul Number Wate Attert	refer to r conter berg limi alue (ld Vane Sensit nt (%) ts (%) blows /	e Valu ivity 12 in.	e (kPa) -30 cm)	PIEZOMETER/ STANDPIPE INSTALLATION
	Feet Metr	es			SURFACE			%	MPa	%	%	%	%	10	20 3	0 40 5	50 60	70 8	30 90	+
	0.	1 79.7	\bigotimes	ASPHALT FILL - Sandy SILT, 1	trace gravel,	1														
	1 —			greyish brown, mois	t, dense		GS1													
0000	- 0.																			
	2 - 0.	6 79.2		END OF BOREHOL (Auger Refusal)	E															
	3 —			(, (ago) - (o) aoa)																
2	_⊢ 1. }	0																		-
	4 —																			-
	5 _ 1.	5																		_
	+																			-
	6 —																			-
l di b	2. 7	0																		-
																				-
	8 - 2.	5																		
- 00007	9 —																			
	10 - 3.																			
	11 —																			
000071	- 3.	5																		
000	12 -																			_
	13 - 4.	0																		
	-	-																		-
	14 —													\square						-
	15 - 4.	5																		-
	÷																			-
	16 —																			

14 SOIL LOG Date: 24/3/22 50 V10.GLB OTECH Ц Ę Ū 125 2 I ibrar OG.GP.J 000 File: \\GHDNET\GHD\(

	REFEREN	ICE No.	:	12566614																	
					BORE	IOLE	Nc	o.: _	В	H09)-22			В	OF	REF	101	.E	RE	EPO	RT
					ELEVA	TION	:_		82.	1 m	_(G	EOE	DETIC)						of		
	CLIENT:		No	kia										LE	GEN	D					
	PROJECT	:	Ge	eotechnical Investigat	ion-Nokia Ca	mpus	Re	zonin	g					\boxtimes	SS ST		SPLIT SHEL				
	LOCATIO	N:	57	0 and 600 March Roa	ad, Ottawa, C	Ontario									VA	- `	VANE	SH	EAR		
	DESCRIB	ED BY:	Da	thon Ash	CHE	CKED	B	Y:	Sahar S	oleii	man	i			AU GS		AUGE GRAE				
	DATE (ST	ART):	31	January 2022	_ DAT	E (FIN	IISH	H): _	31 Janu	ary	2022	2		Ţ			WATE				
	NORTHIN	G:	502	22131.544	EAS	TING:			427632.						-		8 Irbed Va	32.1	lue (kE	20)	1
24/3/22	Depth	Elevation (m) BGS	Stratigraphy	DESCRI S	PTION OF OIL		State	Type and Number	Gravel Sand Silt Clay	Unconfined Compressive Strength	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	⊡ F ⊿ª N	Remou Iumbei Wate	Ided Fie refer to	ld Var Sens	ne Valu itivity	'	PIEZOMETER/ STANDPIPE INSTALLATION
ate:	Feet Metres				SURFACE				%	MPa	%	%	%	%			0 40 5				
LOG			2117	TOPSOIL- SILT, tra gravel, contains roo	tlets and org	anic	N														
SOIL I	1 -		<u>}</u>	matter, dark brown,	moist		$\left \right $	GS1													
566614	- 0.5		\mathbb{X}																		
ort: 12	2						Ľ														-
B Rep	3 - 0.9	81.2	<u>K</u> 1X				X	SS1			25.0		2-50/0mm	>50	H						-
V10.GL				END OF BOREHOL (Auger Refusal)	_E										\vdash				-		-
ECH_	4 —														\vdash						-
GEO	-																				-
14 GHD	5 1.5																				-
25666	6 —																				-
File:	- 2.0														\square						-
Library	7 —																				-
GPJ																					-
4 LOG	8 - 2.5																				
256661	9 —																				
-OGS/1	10 - 3.0																				
\GINT	10 - 3.0																				
4\TECH	11 -																				
256661	- 3.5																				
\$\661\1:	12 —																				
DJECTS																					-
VA\PR(13 - 4.0																				-
\OTTA	14 —														\vdash			$\left \right $	-		-
HD/CA															+	+		$\left \right $	+		-
NET/G	15 - 4.5														\vdash	+		$\left \right $	_		-
FIIE: \\GHDNET\GHD\CA\OTTAWA\PROJECTS\6614\TECH\GINTLOGS\7266614\TECH\GINTLOGS\7266614 LOG.GPJ LIbray FIIE: 1266614 GHD_GEOTECH_V10.GLB Report: 12666614 SOILLOG Date: 24/3/22	 16														\vdash				_		-
File:																					

_	REF	FEREN	CE No.	:	12566614																
						BOREHOLE	N	o.: _	В	H10)- <u>22</u>		_	B	OR	EF	IOI	_E	RE	EPC	ORT
						ELEVATION	: .		80.4	4 m	(G	EOE	DETIC)					je 1			
	CLI	ENT:		No	kia									LEC	GEN	D					
	PR	OJECT	:	Ge	otechnical Investigati	on-Nokia Campus	Re	zonin	g						SS ST						
	LOC	CATION	N:	570	0 and 600 March Roa	id, Ottawa, Ontario								🔟 VA - VANE SHEAR							
	DES	SCRIB	ED BY:	Da	thon Ash	CHECKED	B	Y:	Sahar S	oleiı	nan	i			AU						
	DA	TE (ST	ART):	2 F	ebruary 2022	DATE (FIN	IIS	H): _	2 Febru	ary 2	2022				GS		GRAE VATE				
ŀ	NO	RTHIN	G:	502	22166.631	EASTING:			427726.	321				ELEV	ATIO	N:	8	30.4			
24/3/22	Denth		Elevation (m) BGS	Stratigraphy		PTION OF OIL	State	Type and Number	Gravel Sand Silt Clay	Unconfined Compressive Strength	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value SCR(%)	□ R Ճ N O	emoul umber Water Atterb	rbed Va ded Fie refer to conter erg lim alue (eld Van o Sensi nt (%) its (%)	e Valu tivity	ie (kPa	PIEZOMETEF STANDPIPE INSTALLATIO
Date:	Feet	Metres				SURFACE	_		%	MPa	%	%	%	%	10	20 3	0 40 3				
I: 12566614 SOIL LOG E	1	- 0.1 - - - 0.5 -	80.3	\bigotimes	ASPHALT FILL - Sandy SILT, brown, moist, dense			GS1									S	and an	d Ċon 0	crete – .2 m –	
OTECH_V10.GLB Repor	3	- - 0.9 - 1.0 - -	79.5		DOLOMITIC SAND weathered, exceller			SS1			0.0		50/152mm	50/152 mm					Bent	onite –	
rary File: 12566614 GHD_GE	5	- - - - - - - - - 2.0			joint, perpendicular	to core axis		Run1		113.3	100		81	100					1	.9 m—	
JGS/12566614 LOG.GPJ Lib	8	- - - 2.5 - - - -						Run2			100		95	100						Sand –	
661/12566614/1 ECH/GIN1_L0	10 — 11 — 12 —	- 3.0 - - - - - - 3.5 -																		2/3/202	
FIIE: WGHDNE/WGHD/CA/OTTAWA/PKOJECTS/06/14/TECH/G/NT LOGS/12566614 LOG.GPJ LIDRAY FIIE: 12566614 GHD GEOTECH 710.GLB Report: 12566614 SOIL LOG DATE: 24372		- - - - - - - - - 4.5 -	76.3		END OF BOREHOL NOTE: 1. Water level at a c (Elev. 77.43 m) belo on February 3, 2022	lepth of 3.00 m ow ground surface		Run3			50		36	50					4	.1 m-	
File: \\GH	16 —	-																			-

Appendix B Rock Core Photos

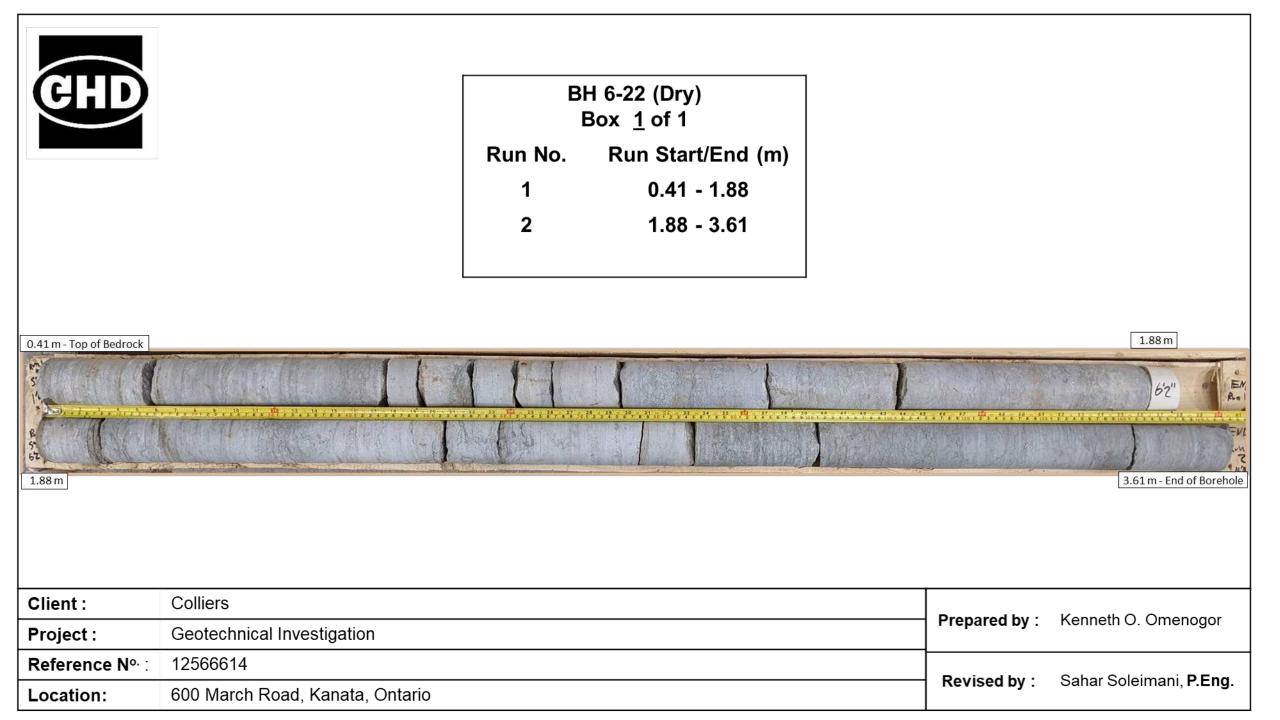
GHD			H 2-22 (Dry) Box <u>1</u> of 3		
		Run No.	Run Start/End (m)		
		1	2.39 - 3.10		
		2	3.10 - 3.45		
		3	3.45 - 4.93		
57AFT 7'10		<u>, 1, 1, 2, 1, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14</u>			4.93 m
3.45 m					
3.45 m Client :	Colliers			 Prepared by :	Kenneth O. Omenogor
	Colliers Geotechnical Investigation 12566614			 Prepared by :	

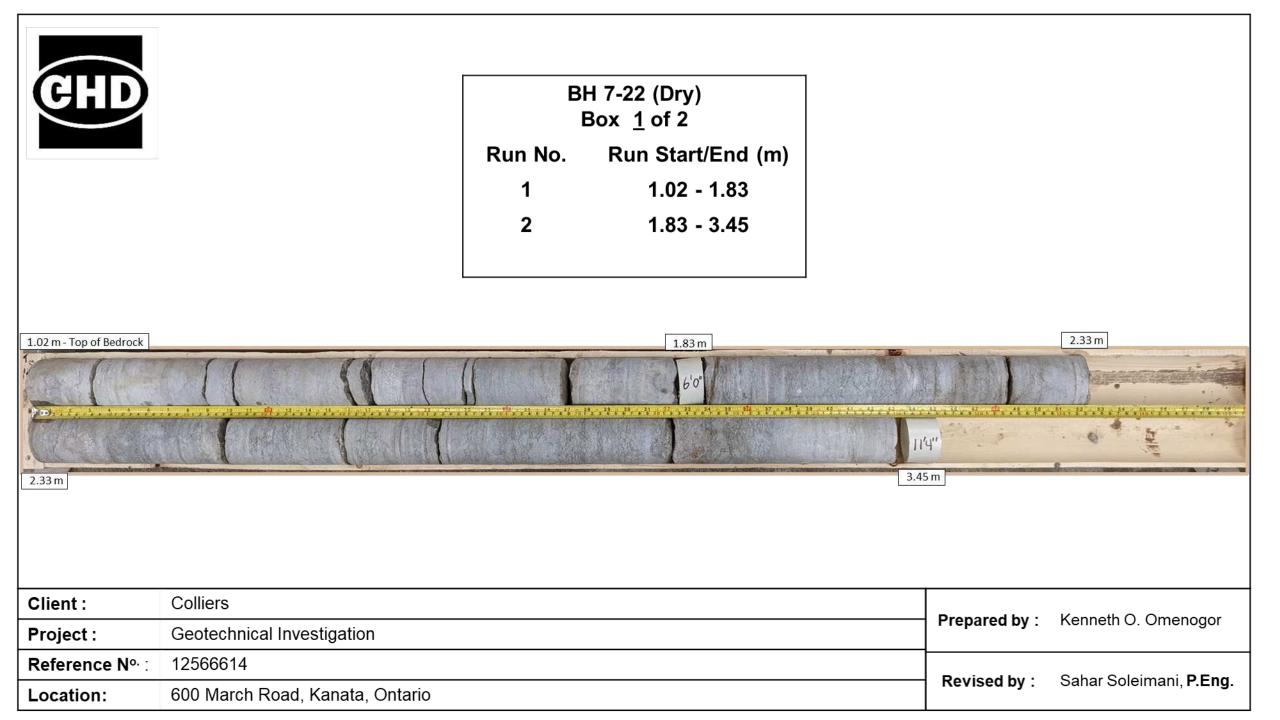
GHD			H 2-22 (Wet) Box <u>1</u> of 3		
		Run No.	Run Start/End (m)		
		1	2.39 - 3.10		
		2	3.10 - 3.45		
		3	3.45 - 4.93		
2.39 m - Top of Bedrock			3.10 m	3.45 m	
7/10 3.45 m					16'2" (F 4.93 m
Client :	Colliers			Prepared by :	Kenneth O. Omenogor
Project :	Geotechnical Investigation			 	
Reference N ^{o.} :	12566614			 Revised by :	Sahar Soleimani, P.Eng.
Location:	600 March Road, Kanata, Ontario			····· ····	

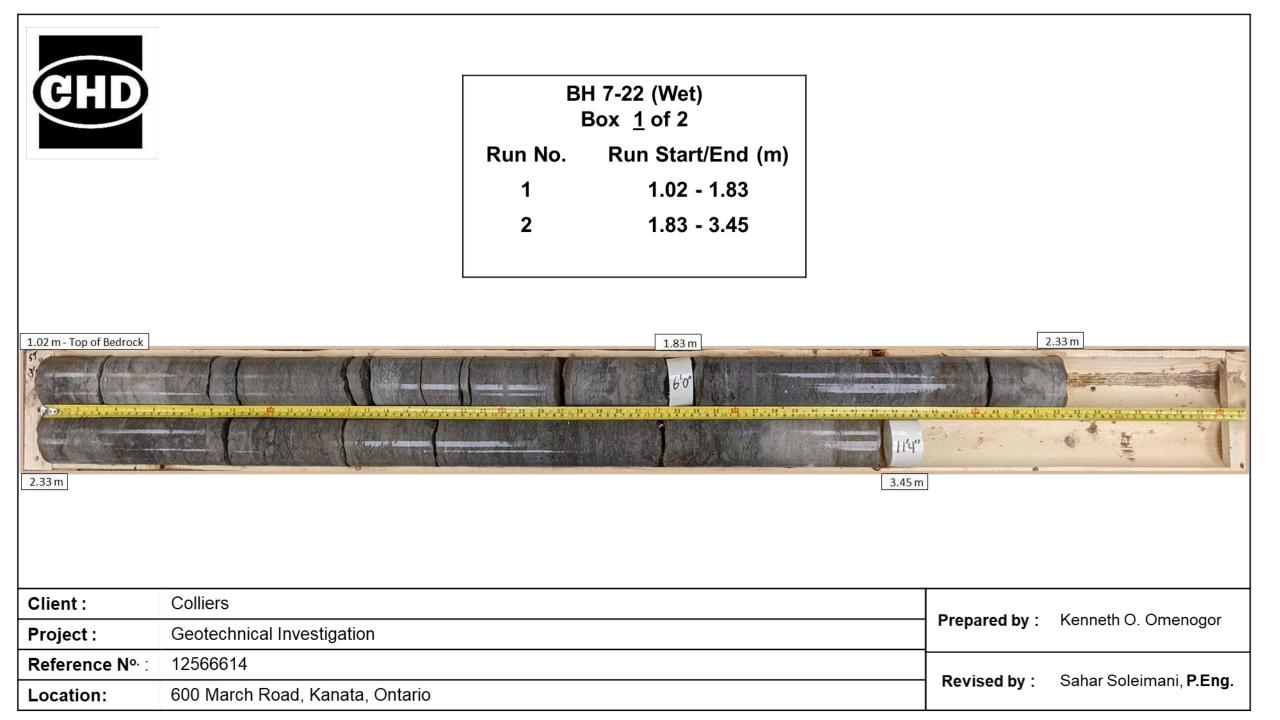
GHD	BH 2-22 (Dry) Box <u>2</u> of 3 Run No. Run Start/End (m) 4 4.93 - 6.50 5 6.50 - 7.49		
4.93 m	44 ⁴	24'7" 7.49 m	6.30 m
Client :	Colliers	Prepared by :	Kenneth O. Omenogor
Project :	Geotechnical Investigation		Renneur O. Omenogol
Reference Nº. :	12566614	Boyisod by :	Sabar Salaimani D Eng
Location:	600 March Road, Kanata, Ontario	Revised by :	Sahar Soleimani, P.Eng.

(-	D)
V	

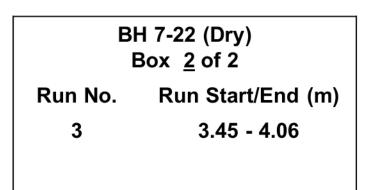
	BH 2-22 (Wet) Box <u>2</u> of 3							
Run No. Run Start/End (m)								
4	4.93 - 6.50							
5	6.50 - 7.49							

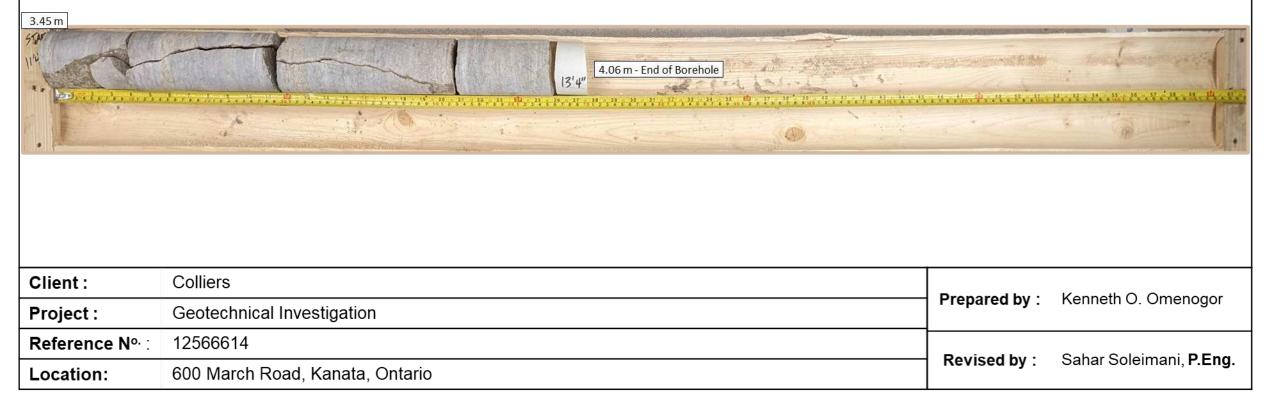


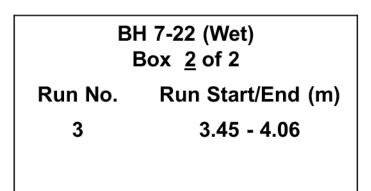

7.49 m	8.03 7254	E Run No. 5 6	H 2-22 (Wet) Box <u>3</u> of 3 Run Start/End (m) 7.49 - 8.03 8.03 - 8.61	- End of Borehole	
Client :	Colliers			Prepared by ·	Kenneth O. Omenogor
Project :	Geotechnical Investigation			Prepared by :	Kenneth O. Omenogor
				Prepared by : Revised by :	Kenneth O. Omenogor Sahar Soleimani, P.Eng.

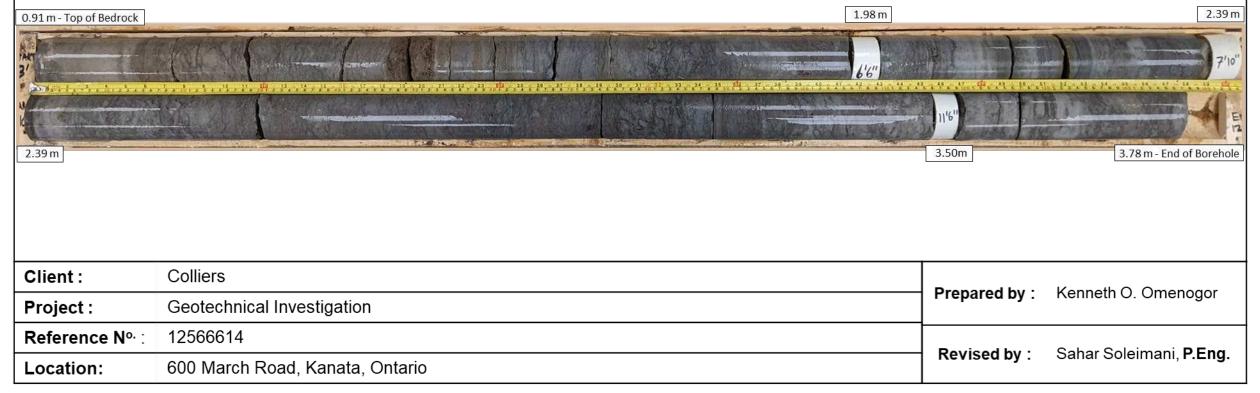

CHD			H 3-22 (Dry) Box <u>1</u> of 1			
		Run No.	Run Start/End (m)			
		1	1.37 - 2.03			
		2	2.03 - 3.00			
1.37 m - Top of Bedrock		2.03	3 m			
2.03 m		6'8"		0 ⁰ 3.00 m - End of Bord		
Client :	Colliers					Kenneth O. Omenogor
Project :	Geotechnical Investigation				Prepared by :	Kenneth O. Omenogor
Reference N ^{o.} :	12566614					Sahar Soleimani, P.Eng.
					Revised by :	

1.37 m- Top of Bedrock	Run No. 1 2	H 3-22 (Wet) Box <u>1</u> of 1 Run Start/End (m) 1.37 - 2.03 2.03 - 3.00	910 3.00 m - End of Borehole	
Client : Colliers				
Project : Geotechnical I	nvestigation		Prepared by :	Kenneth O. Omenogor
Reference Nº .: 12566614				
Location: 600 March Ro			Revised by :	Sahar Soleimani, P.Eng.




0.41 m - Top of Bedrock	BH 6-22 (Wet) Box 1 of 1 Run No. Run Start/End (m) 1 0.41 - 1.88 2 1.88 - 3.61		1.88 m 62 3.61 m - End of Borehole
Client :	Colliers	Prepared by :	Kenneth O. Omenogor
Project :	Geotechnical Investigation		
Reference No. :	12566614	Revised by :	Sahar Soleimani, P.Eng.
Location:	600 March Road, Kanata, Ontario		




 Location:
 600 March Road, Kanata, Ontario

Revised by : Sahar Soleimani, P.Eng.

GHD	BH	l 10-22 (Dry) Box <u>1</u> of 1		
	Run No.	Run Start/End (m)		
	1	0.91 - 1.98		
	2	1.98 - 3.50		
	3	3.50 - 3.78		
0.91 m - Top of Bedrock			1.98 m 6'6' 11'6' 3.50 m 3.	2.39 m 7'lo" 78 m - End of Borehole

Client :	Colliers	Dran ared by	Kannath O. Omanagar
Project :	Geotechnical Investigation	Prepared by :	Kenneth O. Omenogor
Reference No. :	12566614	Deviced by a	Sahar Salaimani DEng
Location:	600 March Road, Kanata, Ontario	Revised by :	Sahar Soleimani, P.Eng.

GHD	BH	10-22 (Wet) Box <u>1</u> of 1
	Run No.	Run Start/End (m)
	1	0.91 - 1.98
	2	1.98 - 3.50
	3	3.50 - 3.78

Appendix C Summary Table and Laboratory Results

Borehole	Sample	Depth (m)	Material	WC	LL	PL	PI	Grain Siz	e Distributio	on		UCS (MPa)
	No.			(%)	(%)	(%)	(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
BH01-22	GS1	0-0.6	Gravelly silty sand	13	-	-	-	29	37	22	12	-
BH01-22	SS1	0.8 – 1.4	Clay	36	-	-	-	-	-	-	-	-
BH01-22	SS2	2.3 – 2.9	Clay	54	64	24	40	-	-	-	-	-
BH02-22	SS1	0.8 – 1.4	Clay	29	58	25	33	2	5	48	45	-
BH02-22	R5	7.3 – 8.3	Sandstone bedrock	-	-	-	-	-	-	-	-	122.5
BH03-22	GS1	0.1 – 0.6	Sandy gravel	10	-	-	-	45	29	18	8	-
BH03-22	SS1	0.8 – 1.4	Silty clay	30	-	-	-	1	28	71	-	-
BH03-22	R2	2.4 - 3.4	Sandstone bedrock	-	-	-	-	-	-	-	-	91.1
BH04-22	GS1	0.1 – 0.6	Gravelly sand	-	-	-	-	23	58	19		-
BH04-22	SS1	0.8 – 1.4	Silty clay	29	-	-	-	0	10	44	46	-
BH05-22	SS1	0.8 – 1.4	Clay	23	57	17	40	1	15	50	34	-
BH06-22	R2	2.0 - 3.0	Sandstone bedrock	-	-	-	-	-	-	-	-	94.2
BH07-22	R3	4.0 – 5.0	Sandstone bedrock	-	-	-	-	-	-	-	-	111.8
BH10-22	R1	0.9 – 1.9	Sandstone bedrock	-	-	-	-	-	-	-	-	113.3

Table C1 Summary of Geotechnical Laboratory Test Results

1

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:			Nokia			Lab no.:	G-22-01
Project/Site:		600 Ma	arch Road, Kana	ta, Ontario		Project no.:	12566614
Borehole no.:	BH-01-22	2	Sample no.:		SS-2	_Depth:	2,29 - 2,90 m
Soil Description:	O	rganic Clay (O⊦	I)-PI plots on or ab	ove "A" line.		Date sampled:	January 28, 2022
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	8-04645	_Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1	_	
	Liquid Limit	(LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µ	m 🗆	Dry preparation
Number of blows	38	24	17		Cohesive >425 µ	m 🧳	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.	37	2	44			Results	
Wet soil+tare, g	31.60	36.00	41.60	66.0			
Dry soil+tare, g	23.90	26.20	29.60				
Mass of water, g	7.70	9.80	12.00	(%) ± 64.0			
Tare, g	11.30	11.00	11.30	tueut tueut			
Mass of soil, g	12.60	15.20	18.30	Water Content (%)			
Water content %	61.1%	64.5%	65.6%	≥ 62.0			
Plastic Limit (Pl	L) - Water Cont	tent:					
Tare no.	21	12					•
Wet soil+tare, g	18.20	18.60		60.0			
Dry soil+tare, g	16.90	17.20			15 17 19 21	23 25 27 29 31 Nb Blows	1 33 35 37 39 41
Mass of water, g	1.30	1.40			Soil	Plasticity Chart AST	M D2487
Tare, g	11.30	11.50		70		LL 50	
Mass of soil, g	5.60	5.70		60 -	Lean clay (CL)	Fat clay (CH)
Water content %	23.2%	24.6%		4 		Organic cla	
Average water content %	23.	.9%		1- 150			ay ()
Natural Wate	r Content (W ⁿ):			Org	anic clay	
Tare no.	S32	S43		ast	Ity clay CL ML	EI	lastic silt (MH)
Wet soil+tare, g	58.30	60.40				Org	Janic silt OH
Dry soil+tare, g	43.20	44.10				Organic silt	
Mass of water, g	15.10	16.30				30 40 50 60	70 80 90 100
Tare, g	14.30	14.80				Liquid Limit LL	
Mass of soil, g	28.90	29.30		Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	52.2%	55.6%		64	24	40	53.9
Remarks:							
Performed by:		L	alonde		Date:	Feb	ruary 18, 2022
Verified by:	(XX	xel		Date:	Feb	ruary 23, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:			Nokia			Lab no.:	G-22-01
Project/Site:		600 Ma	arch Road, Kana	ta, Ontario		Project no.:	12566614
Borehole no.:	BH-02-22	2	Sample no.:		SS-1	Depth:	0,76 - 1,37 m
Soil Description:						Date sampled:	January 31, 2022
Apparatus:	Hand	Crank	Balance no.:	8033	8031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1		
	Liquid Limit	(LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µı	m 🗆	Dry preparation
Number of blows	38	28	15		Cohesive >425 µı	n 🗸	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.	42	48	39			Results	
Wet soil+tare, g	25.20	27.10	29.80	62.0			
Dry soil+tare, g	20.30	21.40	22.90				
Mass of water, g	4.90	5.70	6.90	<i>⊛</i> 60.0			
Tare, g	11.40	11.40	11.40	0.06 Mater Content (%)			
Mass of soil, g	8.90	10.00	11.50	O 58.0 بة			
Water content %	55.1%	57.0%	60.0%	Wa			
Plastic Limit (Pl	L) - Water Cont	ent:		56.0			
Tare no.	S19	15					
Wet soil+tare, g	22.10	18.30		54.0			
Dry soil+tare, g	20.60	16.90			15 17 19 21	23 25 27 29 31 Nb Blows	33 35 37 39 41
Mass of water, g	1.50	1.40			Soil	Plasticity Chart AST	M D2487
Tare, g	14.80	11.30		70		LL 50	
Mass of soil, g	5.80	5.60		60 -	Lean clay (CL)	Fat clay (сн)
Water content %	25.9%	25.0%				Organic cla	
Average water content %	25	4%		a 40			
Natural Wate	r Content (W ⁿ):			Orga	inic clay OL	
Tare no.	32	38		ast	Ity clay CL ML	Eli	astic silt MH
Wet soil+tare, g	35.60	36.60			7	Org	anic silt OH
Dry soil+tare, g	30.20	30.90		10 +	Silt	Organic silt	
Mass of water, g	5.40	5.70		0 10		0 40 50 60	70 80 90 100
Tare, g	11.40	11.30				Liquid Limit LL	
Mass of soil, g	18.80	19.60		Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	28.7%	29.1%		58	25	33	28.9
Remarks:							
Performed by:		J.L	alonde		Date:	Febr	ruary 18, 2022
Verified by:	\sim	chr	$\sim \chi$		Date:		ruary 23, 2022
-	170.01			Ontoria	24.0.		
Laboratory Location:	179 Col	orinade Rd. S	uite 400, Ottawa	, Untario			

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:			Nokia			Lab no.:	G-22-01
Project/Site:		600 Ma	arch Road, Kana	ta, Ontario		Project no.:	12566614
Borehole no.:	BH-05-22	2	Sample no.:		SS-1	Depth:	0,76 - 1,37 m
Soil Description:	Organ	ic Clay (OL)- Pl	> 4 and plots on c	or above "A" line		Date sampled:	February 1, 2022
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:	-	1	Oven no.:	B23	3-04645	Spatula no.:	1
Sieve no.:		5690	Glass plate no.:		1	-	
	Liquid Limit	Test No. 2	Test No. 3	Soil Preparati		~	Devenuention
Number of blows					Cohesive <425 µr		Dry preparation
	42 Water Conte	15	30		Cohesive >425 µr Non-cohesive		Wet preparation
Tare no.	15	37	12		Non-conesive		
				60.0		Results	
Wet soil+tare, g	28.10	29.00	29.80	-			
Dry soil+tare, g	22.20	22.40	23.30	-			
Mass of water, g	5.90	6.60	6.50	58.0 (%) Mater Content (%) 56.0			
Tare, g	11.30	11.30	11.50	Conter			
Mass of soil, g	10.90	11.10	11.80	0.63 O			
Water content %	54.1%	59.5%	55.1%	>		•	
Plastic Limit (Pl	L) - Water Cont	ent:	-	54.0			
Tare no.	48		-				
Wet soil+tare, g	14.20			52.0	15 17 19 21 2	3 25 27 29 31 33	35 37 39 41 43 45
Dry soil+tare, g	13.80					Nb Blows	
Mass of water, g	0.40			70	Soil	Plasticity Chart AST	M D2487
Tare, g	11.40			70		LL 50	
Mass of soil, g	2.40			60	Lean clay (CL)	Fat clay (СН
Water content %	16.7%			- - - - - - - - - - - - - - - - - - -		Organic cla	
Average water content %	16	7%		- 50			
Natural Wate	r Content (W ⁿ):			Orga	inic clay OL	
Tare no.	43			30 - Si 20 - Si	Ity clay CL ML	P EI	astic silt MH
Wet soil+tare, g	29.60					Org	anic silt OH
Dry soil+tare, g	26.80			10 +-		Organic silt	
Mass of water, g	2.80			0 	10 20 3	0 40 50 60	70 80 90 100
Tare, g	14.80					Liquid Limit LL	
Mass of soil, g	12.00			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	23.3%			57	17	40	23.3
Remarks:							
Performed by:		<u> </u>	alonde		Date:	Feh	ruary 23, 2022
	-		$\overline{\mathbf{v}}$		F (·
Verified by:		25	\geq		Date:	Feb	ruary 23, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

Moisture Content of Soils (ASTM D 2216)

Client:		Nokia			Lab No.:		G-2	2-01
Project/Site:	600 March Ro	oad, Kanata,	Ontario		Project No.	:	1256	6614
Apparatus Used for Testing	Oven No.:	B23-	04645	Scale No.:	80330	31049		
BH No.:	BH-01-22	BH-01-22	BH-03-22	BH-03-22	BH-04-22			
Sample No.:	GS-1	SS-1	GS-1	SS-1	SS-1			
Depth:	0,0-0,6 m	0,8-1,4m	0,0-0,6 m	0,8-1,4 m	0,0-0,6 m			
Container no.	54	19	68	59	64			
Mass of container + wet soil (g)	914.40	68.40	1040.20	634.00	765.20			
Mass of container + dry soil (g)	873.20	55.20	996.30	576.60	715.70			
Mass of container (g)	543.20	18.30	546.40	386.30	543.10			
Mass of dry soil (g)	330.0	36.9	449.9	190.3	172.6			
Mass of water (g)	41.2	13.2	43.9	57.4	49.5			
Moisture content (%)	12.5	35.8	9.8	30.2	28.7			
BH No.:								
Sample No.:								
Depth:								
Container no.								
Mass of container + wet soil (g)								
Mass of container + dry soil (g)								
Mass of container (g)								
Mass of dry soil (g)								
Mass of water (g)								
Moisture content (%)								
Remarks:								
Performed By:	J. Lal	onde		Date:		February	22, 2022	
Verified by :				Date:		-	23, 2022	

Clie	nt:			Noki	а			Lab No.:		G-22-01		
Proj	ect, Site:		600 Ma	rch Road, I	Kanata, O	ntario		_Project No.:		12566614		
	Borehole No	o.:		BH-01-22	2			Sample No.:		GS-1		
	Depth:			0,00 - 0,61	m			Enclosure:		-		
	100										• •	
	90								/		10	
	80										20	
	70										30	
Bu	60										40	peu
Percent Passing											40	Percent Retained
Perce	50										50	Perce
	40										60	
	30										70	
	20										80	
	10										90	
	0.001		0.01		0.1		1		10		100 100	
	0.001		0.01		Diam	eter (mm)			10		100	
		C	lay & Silt		Fine	9	Sand Medi	um Coarse	Fine	Gravel Coarse		
				Particle-S	ize Limits	as per U	SCS (ASTN	I D-2487)]	
			Soil Descripti	on		Gra	vel (%)	Sand (%)		Clay & Silt (%)		
							29	37		34		
			t-size particles						2			
		Clay-siz	e particles (%)) (<0.002 mr	n):			1	2			
Ren	narks: <u> </u> -	More informa	ation is availabl	e upon requ	est.							
Perf	ormed by:			J. Lalo	nde			Date:	F	ebruary 17, 202	2	
Veri	fied by:		\sim	$b \alpha$	X			Date:	F	ebruary 23, 202	2	

Client:	Nokia			Lab No.:		G-22-01		
Project, Site:	600 March Road, K	anata, Ontario		Project No.:		12566614		
Borehole No.:	BH-02-22			Sample No.:		SS-1		
Depth:	0,76 - 1,37 r	n		Enclosure:		-		
100							• 0	
			╺					
90							10	
80							20	
70							30	
50							40 etained	diam.cc
Bercent Passing							Percent Retained	
<u>۵</u> 40							60	-
30							70	
20							80	
0.001	0.01	0.1 Diameter (mm			10		100 <u>100</u>	
	Clay & Silt		Sand		Gra	vel		
		Fine e Limits as per L	Mediu JSCS (ASTM		Fine	Coarse		
	Soil Description	Gra	avel (%)	Sand (%)	Cla	ay & Silt (%)		
			2	5		93		
CI	Silt-size particles (%) : lay-size particles (%) (<0.002 mm):		48				
		,						
Remarks: <u>More i</u>	information is available upon reque	st.						
Performed by:	J. Lalon	de		Date:	Febr	uary 17, 2022	2	
Verified by:	$\frac{1}{2}$	2		Date:	Febr	uary 23, 2022	2	

Clie	ent:		_								No	oki	а									La	b N	lo.:						G	22-	01				
Pro	ject	, Site:	_				60	0 N	larc	h R	load	1, k	۲aı	nat	a, (Ont	aric)				_Pr	oje	ct I	No.:	:				125	5666	514			_	
	Bor	ehole No.	: _							Bŀ	1-03	-22	2									Sa	mpl	e N	o.:					(GS-´	1				
	Dep	oth:	_						C	0,00	- 0,	61	m									En	clos	sure	:						-					
	100																_													-	∙┌─		• • •	•⊤⊤	0	
	90																			+									_/	-					10	
	80																												1						20	
	70																																		30	
Bu	60																										$\boldsymbol{\lambda}$	1							40	ned
Percent Passing																										\boldsymbol{A}										Percent Retained
Perce	50																			T															50	Perce
	40																			-	-							T						+++	60	
	30																			1															70	
	20																																		80	
	10	-															+						-				+							+++	90	
	0 0.	001).01						0).1	Diar	nete	r (m	 m)			1							10						10	100 0)
															-				Sai	nd						-			Gr	avel						
					Cla	y 8	Silt			Der	tiol			Lin	Fir							um /I D-2	497		arse		F	ine			Coa	arse				
										Fai	licit	-3	IZe		mis		per	03		(A	511	1 0-2	407)											_	
					s	oil	Des	crip	otior	1							G	irav	vel ((%))		Sa	and	(%))			С	lay	& Si	ilt (%	%)			
																		4	45					29)						26					
		Silt-size particles (%) : Clay-size particles (%) (<0.002 mm):																							18 8	-										
			Clay-size particles (%) (<0.002 mm):																							-										
Rer	narl	ks: <u>M</u>	lore in	forn	nat	ion	is a	vaila	ble	upo	n re	que	est	t																						
Per	forr	ned by:	_				(~		7	. La	alor	nd	e ()							_	C	Date	ə:				Feb	rua	ry 1	7, 2	2022	2		
Ver	ified	d by:	_				_	\geq		K	$\frac{2}{2}$	2	2	<u>ر</u>	<u>}</u>							_	C	Date	e:				Feb	rua	ry 2	3, 2	2022	2		

Cli	ent:									N	oki	ia								I	Lab	No) .:						G	-22	-01				
Pro	oject	, Site:					600	Marc	ch R	loa	d, ł	Ka	nata	a, C	Onta	ario				I	Pro	ject	t N	o.:					12	566	614	1			
	Bor	ehole No.	: _						BH	H-03	3-22	2							_	ę	Sam	nple	No	.:						SS-	1				
	Dep	oth:	_						0,76	i - 1	,37	m							_	I	Encl	losu	re:							-					
	100																					-	-	_	11	TT	-	•	•	•	•	••	●┌┬	0	
	90																																	- 10	
	80																																	- 20	
	70													~																				- 30	
g																																			
Percent Passing	60															+									Ħ					1				- 40	Percent Retained
Percent	50																							-	+					-				- 50	Percent
	40																												- 60						
	30																							_										- 70	
	20																																	- 80	
	10																																	- 90	
	0 0.	001				0.01	1					C).1	Diam	neter	(mn	 n)			1							10						1(L 10 00	0
																		San	d									Gi	ave				1		
				С	lay	& S	ilt							Fin						diun			oar	rse		F	ine			Co	arse	e			
									Pai	rticl	e-S	ize	Lin	nits	as	per	USC	:s (AST		D-24	87)													
					So	il D	escr	iptio	n							Gr	ave	I (%	6)			Sar	nd (%)				С	lay	& S	ilt (%)			
		_														1						28							71						
		Silt-size particles (%) :																																	
			Ciay	lay-size particles (%) (<0.002 mm):																															
Re	marl	ks: <u>N</u>	More information is available upon request.																																
Pe	forn	ned by:							J	J. La	alo	nd	е									Da	ite:					Feb	orua	ry 1	18, 2	202	2		
Ve	rifiec	d by:																				Da	te:	:				Feb	orua	ry 2	23, 2	202	2		

Clie	ent:										N	oki	ia								La	bl	No.	:		_				G-2	22-(01				
Project, Site:							600) M	arc	h R	load	d, I	Ka	ina	ta,	On	tari	0			_Pr	oje	ct	No	:	_			1	25	666	514				
	Borehole No.: BH-04							1-04	-22	2					Sa	mp	le N	o.:		_				G	iS-1											
	Dept	th:								0,0	- 0,	61	m								En	clo	sure	:		-					-					
Percent Passing	100 - 90 - 80 - 70 - 60 - 50 - 40 - 20 - 10 - 0.C								0.1 Diameter (mm)										0 10 20 30 40 50 60 70 80 90 0	Percent Retained																
				с	lay	&	Silt							Sand								Gravel Fine Coarse														
										Pa	rticl	e-S	Size	e Li		ine s a:	s pe	er US	scs		um VID-2	248		ars	e		Fir	10			Соа	rse				
	ſ				Sc	oil	Des	crip	otio									Grav					and	I (%	5)				Cla	ay 8	Sil	lt (%	6)		7	
	-												23	 			5	8							19											
				Sil	t-s	ize	par	ticl	es (%)	:																									
	l		Clay	/-siz	e p	bar	ticle	es (º	%) (<0.(002	m	m)	:																						
Rer	Remarks: More information is available upon request.																																			
Per	form	ned by:	_				_	م. م.	alc	ond	e / (G.	Be	eau	uch:	am	р				_	I	Dat	e:		_		Fe	ebr	uar	y 24	1, 2	022	2		
Ver	ified	by:	_				(\geq	\leq	2	k	$\frac{x}{<}$	2	2	X	/)					_	Date: February 24, 2022														

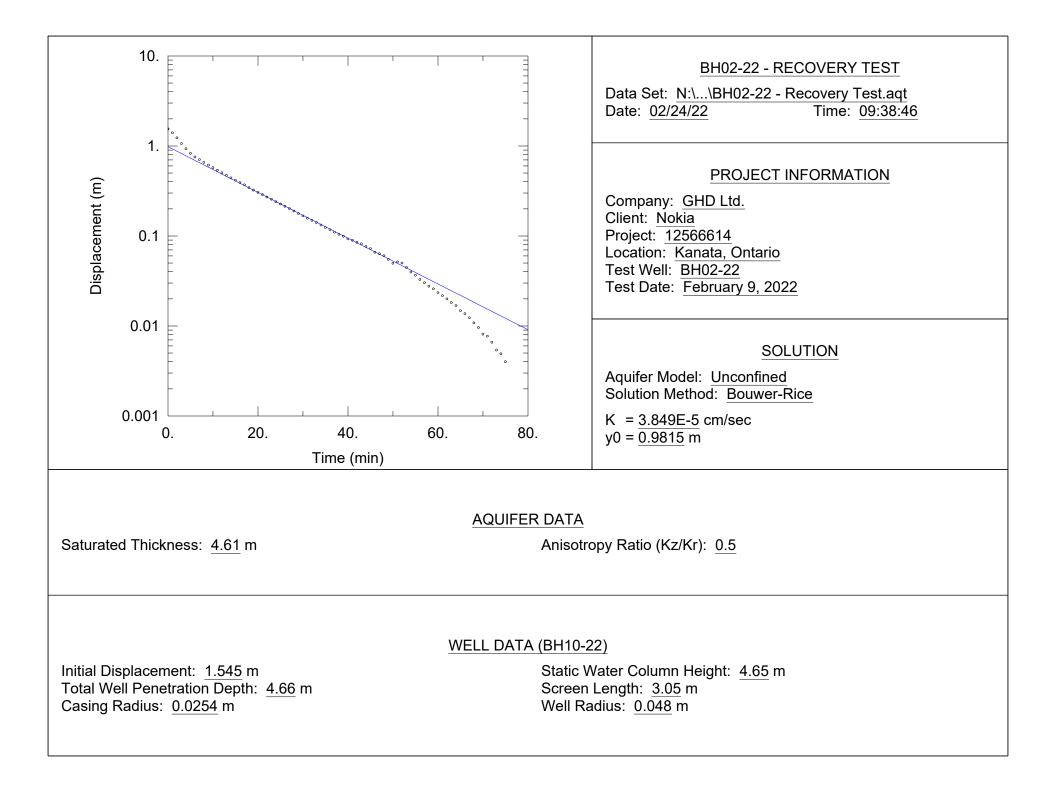
Client:	Nokia		Lab No.:	G-22-01					
Project, Site:	600 March Road, Kanat	, Ontario	_Project No.:	12566614					
Borehole No.: Depth:	BH-04-22 0,00 - 0,61 m		Sample No.: Enclosure:	SS-1					
Remarks: Mo	Clay & Silt	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	um Coarse	Image: Color of the second	0 10 20 30 0 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0				
Performed by:	J. Lalonde		_ Date:	February 17, 2022	2				
Verified by:			Date:	2					

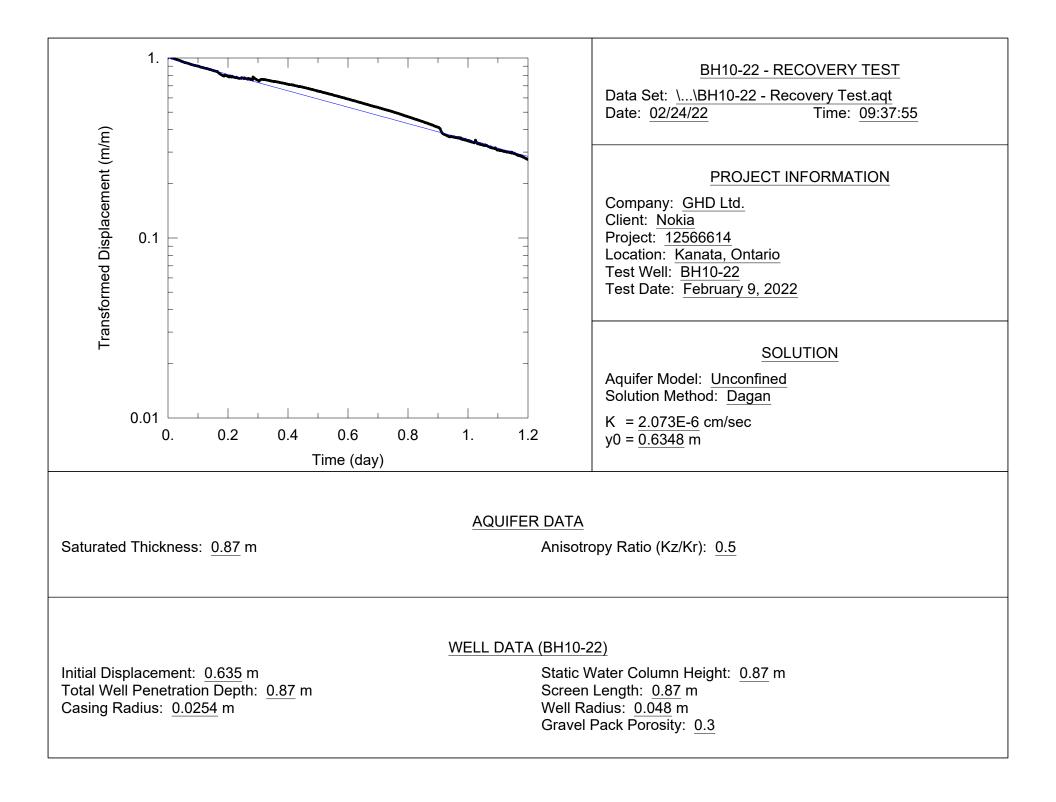
Client:					Noki	а				Lab	No.:		G-22-01						
Project	t, Site:		600 N	larch Ro	oad, I	Kanata,	Ontario)		_Proj	ect No	.:		1	25666	614			
	ehole No.:				-05-22					Sam	ole No.:				SS-1				
Dep	oth:			0,76				Enclo	osure:		<u>-</u>								
100 90 80 70 60 50 40 30 20 10 0 0		Clay &	0.01	Part	icle-S		meter (mi	Sa	Ind Med	ium	Coars		10	Grav	rel			0 10 20 40 50 60 70 80 90 100	C Percent Retained
				Part	icle-S	ize Limits	as per	USCS	(ASTI	M D-248	/)								
	Soil Description							ravel	(%)	5	Sand (%	6)	Clay & Silt (%))		
								1			15				84				
	Silt-size particles (%) : Clay-size particles (%) (<0.002 mm):											50 34							
		Ciay-size pa	articles (%) (<0.0	02 mi	n):						34							
Remarks: More information is available upon request.																			
Perforr	ned by:			J.	Lalo	nde				_	Date:			Febru	uary 1	7, 20	22		
Verified by:											Date: February 23, 2022				22				

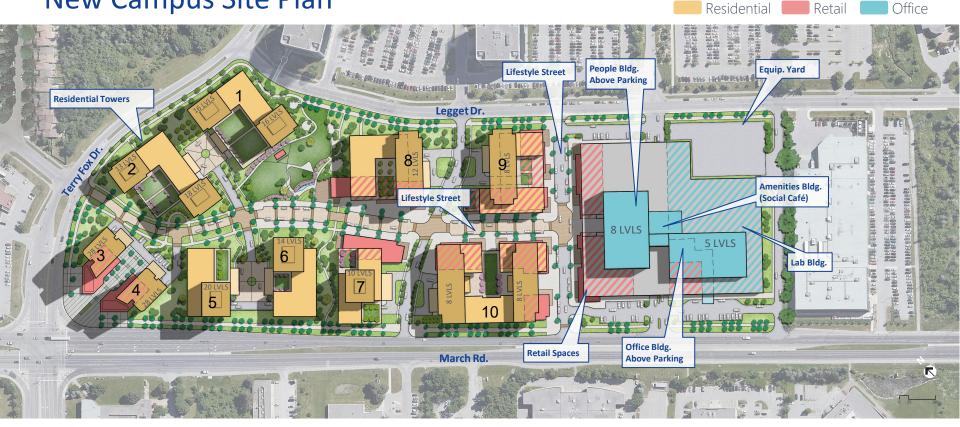
Client :	Nokia					Project N°	: 125666	14
Project :		ad, Kanata, Ont					: BH-02-22 r.	
							: 7,26 - 7,38 r	
						Sampling Date	: 2022-01-	-31
Testing Appar	atus Used :			Loadir	ng device N°_	9130	Caliper I	N°_1
			Technical Data					View of Specimen
					Average		Before Test :	
Diameter :		63.02	63.10	63.16	63.09	(mm)		
Length :		124.08	124.12	124.12	124.11	(mm)		
Straightness (0.5mm m	naximum) (S1) :	0.0	0.0	0.0	0.0	(mm)		and the second s
Flatness (25µm maxim	um) (FP2) :	Ok	Ok	Ok	Ok	(μm)		
Parallelism (0.25 ° max	timum) (FP2) :	0.00	0.00	0.00	0.00	(°)	After Test :	11 4 20
Mass :	97	73.5	_(g) Volume:	38	8018	_(mm ³)		(John y
Density :			250)9	(kg/m ³)			
Moisture Conditions	:		Dr	у				a second
Loading Rate (0.5 to	1.0 MPa / sec) :		0.5	59	(MPa/sec)		N	lacroscopic Description
Type of Fracture :			Axial S	plitting	_			
Test Duration (2-15 I	Minutes) :		20	8	(seconds)			
Maximum Applied Lo	bad :		383.	.12	(kN)			
Compressive Stre	ength :		122	2.5	(MPa)			
Remarks :								
Analysed by :	J. Lalonde					Date	: 2022-02-	15
Verified by :						Date	: 2022-02	23

Client :	Nokia				Project N°	: 125666	514	
Project :	600 March Roa						: BH-03-22 r.:	
							: 2,36 - 2,48 ı	
						Sampling Date	2022-01	-31
Testing Appa	ratus Used :			Loadir	ng device N°_	9130	Caliper	N°_1
			Technical Data					View of Specimen
					Average		Before Test :	
Diameter :		62.96	62.92	62.94	62.94	(mm)		
Length :		123.96	123.86	124.02	123.95	(mm)		
Straightness (0.5mm n	naximum) (S1) :	0.0	0.1 0.0 0.0			(mm)		
Flatness (25µm maxim	um) (FP2) :	Ok	Ok	Ok	Ok	(μm)		
Parallelism (0.25 ° max	ximum) (FP2) :	0.01	0.10	0.07	0.06	(°)	After Test :	all
Mass :	10	17.5	_(g) Volume:	38	5637	(mm ³)		10 =
Density :			263	38	_(kg/m ³)			
Moisture Conditions	:		Dr	У	_			
Loading Rate (0.5 to	o 1.0 MPa / sec) :		0.5	51	(MPa/sec)		N	Acroscopic Description
Type of Fracture :			Axial S	plitting	_			
Test Duration (2-15	Minutes) :		17	'8	(seconds)			
Maximum Applied Lo	oad :		283	.42	(kN)			
Compressive Str	ength :		91	.1	_(MPa)			
Remarks :								
Analysed by :	J. Lalonde					Date	: 2022-02	-15
Verified by :						Date	: 2022-02	-23

Client :	Nokia				Project N°	: 12566614	4	
Project :		ad, Kanata, Ont					: BH-06-22 r.2	
							: 1,97 - 2,09 m	
						Sampling Date	: 2022-02-02	2
Testing Appa	ratus Used :			Loadin	g device N°_	9130	Caliper N ^o	_1
			Technical Data					View of Specimen
		Γ			Average		Before Test :	
Diameter :		63.08	63.16	63.00	63.08	(mm)		
Length :		120.70	120.58	120.42	120.57	(mm)		
Straightness (0.5mm n	naximum) (S1) :	0.1	0.0 0.1 0.1			(mm)		
Flatness (25µm maxim	ium) (FP2) :	Ok	Ok	Ok	Ok	(μm)		
Parallelism (0.25 ° max	ximum) (FP2) :	0.11	0.01	0.13	0.08	(°)	After Test :	1 Alexandress of the second se
Mass :	99	91.7	_(g) Volume:	37	6791	(mm ³)		B
Density :			263	32	(kg/m ³)			
Moisture Conditions	:		Dr	У	_			
Loading Rate (0.5 to	o 1.0 MPa / sec) :		0.5	51	(MPa/sec)		Ма	croscopic Description
Type of Fracture :			Axial S	plitting	_			
Test Duration (2-15	Minutes) :		18	6	(seconds)			
Maximum Applied Lo	oad :		294	.47	_(kN)			
Compressive Str	ength :		94	.2	(MPa)			
Remarks :								
Analysed by :	J. Lalonde					Date	: 2022-02-1	5
Verified by :						Date	: 2022-02-2	3




Client :	Nokia					Project N°	: 12566614
Project :		ad, Kanata, On					: BH-07-22 r.3
							: 3,96 - 4,07 m
						Sampling Date	: 2022-01-31
Testing Appara	atus Used :			Loadin	ng device N°_	9130	Caliper N°_1
			Technical Data				View of Specimen
					Average		Before Test :
Diameter :		63.14	63.10	63.14	63.13	(mm)	
Length :		107.94	107.84	108.02	107.93	(mm)	
Straightness (0.5mm m	aximum) (S1) :	0.1	0.0	0.0	0.0	(mm)	
Flatness (25µm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok	(μm)	
Parallelism (0.25 ° maxi	imum) (FP2) :	0.01	0.10	0.08	0.06	(°)	After Test :
Mass :	8	77.9	_(g) Volume:	33	7809	(mm ³)	
Density :			259	99	(kg/m ³)		
Moisture Conditions :			Dr	у	_		No. of the second secon
Loading Rate (0.5 to	1.0 MPa / sec) :		0.5	6	(MPa/sec)		Macroscopic Description
Type of Fracture :			Multiple F	racture	_		
Test Duration (2-15 N	/linutes) :		19	8	(seconds)		
Maximum Applied Lo	ad :		350	.01	(kN)		
Compressive Stre	ength :		111	.8	(MPa)		
Remarks :							
Analysed by :	J. Lalonde					Date	:2022-02-15
Verified by :						Date	:2022-02-23


Client :	Nokia					Project N°	: 125666	14
Project :	600 March Roa	ad, Kanata, Ont	tario				: BH-10-22 r.1	
							: 0,94 - 1,07 n	
						Sampling Date	: 2022-02-	02
Testing Appa	ratus Used :			Loadin	ig device N°_	9130	Caliper N	l°_1
			Technical Data					View of Specimen
					Average		Before Test :	
Diameter :		63.12	63.10	63.10	63.11	(mm)		The second se
Length :		123.94	123.78	123.86	123.86	(mm)		
Straightness (0.5mm n	naximum) (S1) :	0.1	0.1	0.0	0.1	(mm)		
Flatness (25µm maxim	um) (FP2) :	Ok	Ok	Ok	Ok	(μm)		
Parallelism (0.25 ° max	ximum) (FP2) :	0.07	0.09	0.00	0.05	(°)	After Test :	
Mass :	10	24.9	_(g) Volume:	38	7411	(mm ³)		
Density :			264	46	(kg/m ³)			1 Contraction
Moisture Conditions	:		Dr	у	_			
Loading Rate (0.5 to	o 1.0 MPa / sec) :		0.5	58	(MPa/sec)		М	acroscopic Description
Type of Fracture :			Axial S	plitting	_			
Test Duration (2-15	Minutes) :		19	7	(seconds)			
Maximum Applied Lo	oad :		354	.38	_(kN)			
Compressive Str	ength :		113	8.3	(MPa)			
Remarks :								
Analysed by :	J. Lalonde					Date	: 2022-02-	15
Verified by :						Date	: 2022-02-	23

Appendix D Hydrogeological Assessment and Results

New Campus Site Plan

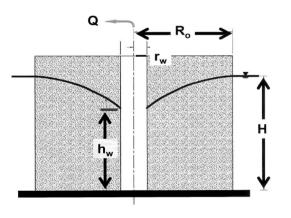
APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 1- Block 1

NOKIA CAMPUS KANATA, ON

Flow to a Shaft in an Unconfined Aquifer

Information


Steady State flow to a shaft within an unconfined aquifer. Use this equation when a/b < 1.5. Equation 1.0

 $Q = \frac{\pi K \left(H^2 - h_w^2\right)}{\ln R_0 / r_w}$

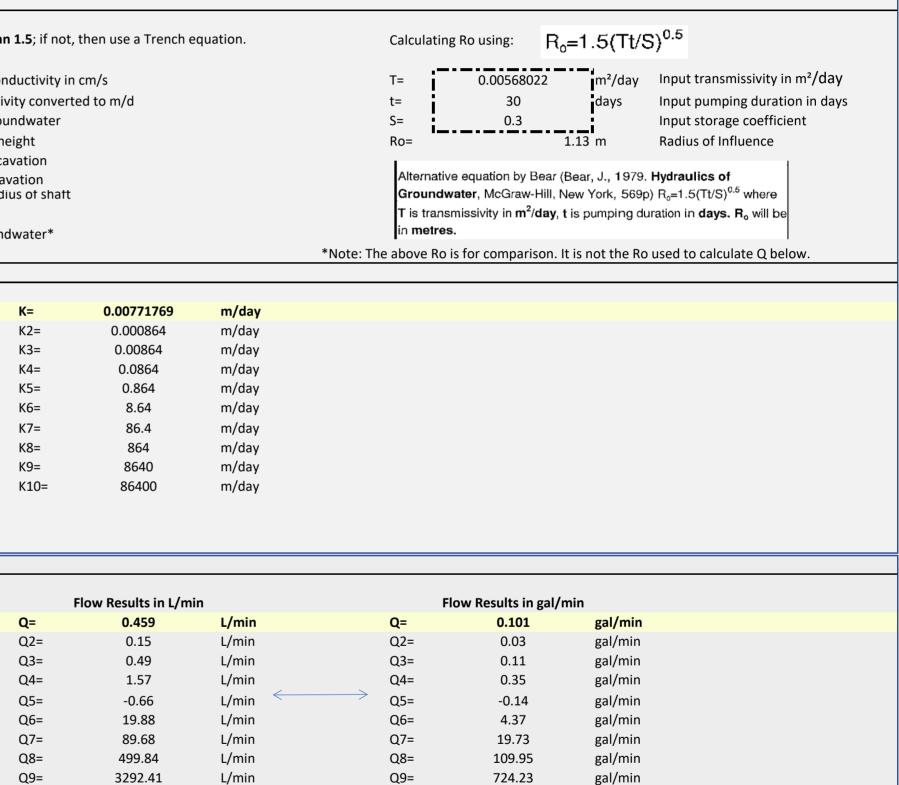
Equation 1.1

$$r_w = \sqrt{\frac{ab}{\pi}}$$

Ro is determined by the Siechardt Equation: $Ro = 3000(H-hw)K^{0.5}$ when K is in m/s

Shaft or Tren	ch Eq'n Check:	1.348387097	This num	nber must be less than
	, · · ·		— 1	
	K=	8.93E-06	cm/s	Input Hydraulic Cond
	=>	0.00771769	m/day	Hydraulic Conductiv
	H=	0.736	m	Input height of grou
	hw=	0	m	Input dewatering he
	a=	67.716	m	Input length of excav
	b=	50.22	m	Input width of excav
	rw=	32.90	m	Input/calculate radio
	π=	3.141592654		Pi
	*Note: Heigh	nt measurements ar	re relative to	base of active ground

• •	•		
К=	8.93E-06	cm/s	
K2=	1.00E-06	cm/s	
КЗ=	1.00E-05	cm/s	
К4=	1.00E-04	cm/s	
K5=	1.00E-03	cm/s	
K6=	1.00E-02	cm/s	\leftarrow
K7=	1.00E-01	cm/s	
K8=	1.00E+00	cm/s	
К9=	1.00E+01	.cm/s	
К10=	1.00E+02	cm/s	
		-	

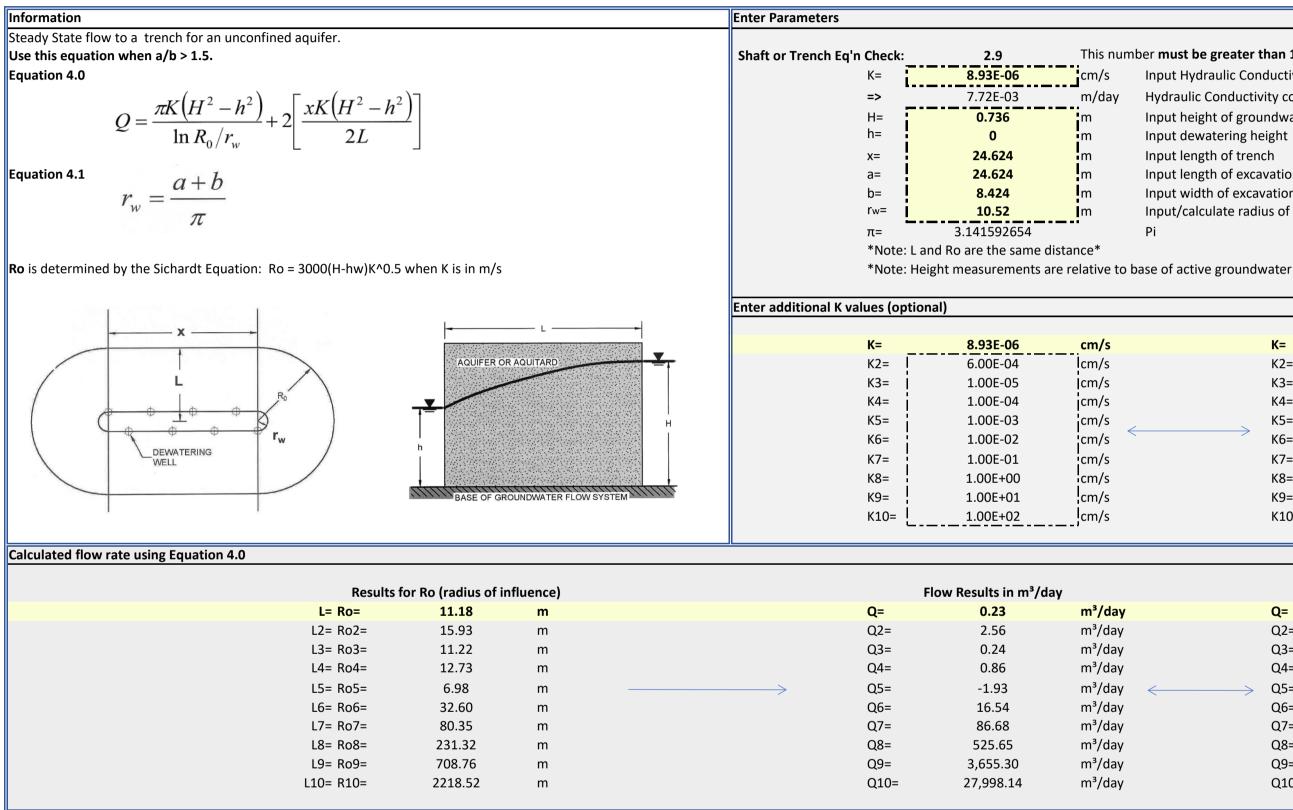

Calculated flow rate using Equation 1.0

R	esults for Ro (radius o	of influence)		Flow Results in	n m³/day	
Ro=	33.56	m	C	.661	m³/day	
Ro2=	33.12	m	C	0.22	m³/day	
Ro3=	33.60	m	C	0.70	m³/day	
Ro4=	35.11	m	C	2.26	m³/day	
Ro5=	6.98	m	> C	-0.95	m³/day	\longleftrightarrow
Ro6=	54.98	m	C	28.63	m³/day	
Ro7=	102.72	m	C	129.14	↓ m³/day	
Ro8=	253.70	m	C	8= 719.82	2 m³/day	
Ro9=	731.13	m	C	9= 4741.3	8 m³/day	
R10=	2240.90	m	C	34832.9	97 m³/day	

Q10=

24188.01

L/min



Q10=

5320.61

KANATA, ON

Flow to a Trench for a Unconfined Aquifer

APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 1- Block 2

Q8=

Q9=

Q10=

365.01

2,538.24

19,441.91

L/min

L/min

L/min

NOKIA CAMPUS

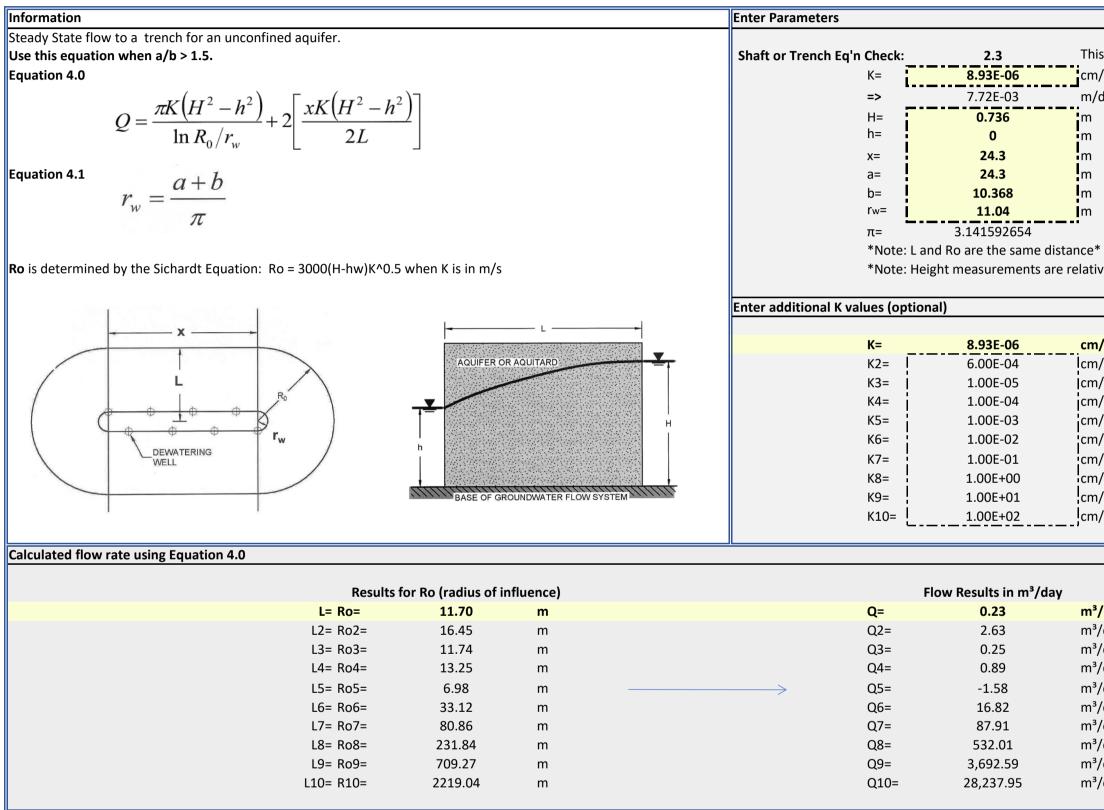
R_o=1.5(Tt/S)^{0.5} This number **must be greater than 1.5**; if not, then use a Shaft equation. Calculating L and Ro using: Input Hydraulic Conductivity in cm/s _ _ . _ . _ . _ . _ . _ . _ . m²/day Input transmissivity in m²/day Hydraulic Conductivity converted to m/day m/day 0.00568022 T= Input height of groundwater pressure t= 365 days Input pumping duration in days 0.21 S= Input dewatering height Input storage coefficient L=Ro= Input length of trench 4.71 m Line source distance; distance of influence Input length of excavation Input width of excavation Alternative equation by Bear (Bear, J., 1979. Hydraulics of Groundwater, McGraw-Hill, New York, 569p) R₀=1.5(Tt/S)^{0.5} where Input/calculate radius of trench T is transmissivity in m^2/day , t is pumping duration in days. R_o will be Pi in metres. *Note: The above Ro is for comparison. It is not the Ro used to calculate Q below. К= 0.00771769 m/day K2= 0.5184 m/day КЗ= 0.00864 m/day K4= 0.0864 m/day K5= 0.864 m/day K6= 8.64 m/day K7= 86.4 m/day K8= 864 m/day К9= 8640 m/day K10= 86400 m/day Flow Results in L/min Flow Results in gal/min m³/day Q= 0.16 L/min Q= 0.03 gal/min m³/day Q2= Q2= 1.78 L/min 0.39 gal/min m³/day Q3= 0.17 L/min Q3= 0.04 gal/min m³/day Q4= 0.60 L/min Q4= 0.13 gal/min m³/day Q5= -1.34 Q5= -0.30 L/min gal/min m³/day Q6= 11.48 L/min Q6= 2.53 gal/min Q7= Q7= 13.24 60.19 L/min gal/min

Q8=

Q9=

Q10=

80.29


558.33

4,276.62

gal/min

gal/min

Flow to a Trench for a *Unconfined Aquifer*

APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 1- Block 3

NOKIA CAMPUS

This num	nber must be greater	than 1.5; if	not, then use a Sh	aft equation.	Calculating L a	and Ro using:	D + c	(T+/C)0.5	
cm/s	Input Hydraulic Cor					(Tt/S) ^{0.5}			
m/day	Hydraulic Conducti				T=	0.00568022	m ² /day Input transmissivity in m ² /day		
m	, Input height of grou	-			t=	365	days	Input pumping duration in days	
m	Input dewatering h				S=	0.21	ŕ	Input storage coefficient	
m	Input length of trer	nch			L=Ro=		4.71 m	Line source distance; distance of influence	
m	Input length of exca	avation							
m	Input width of exca	ivation				uation by Bear (Bear, J.,			
m	Input/calculate rad	ius of trend	ch			, McGraw-Hill, New York,			
	Pi					ivity in m²/day , t is pumpi	ng duration in d	lays. R _o will be	
ce*					in metres .				
ative to	base of active ground	water							
					*Note: The above Ro is f	or comparison. It is no	ot the Ro used	to calculate Q below.	
cm/s		К=	0.00771769	m/day					
cm/s		K2=	0.5184	m/day					
cm/s		КЗ=	0.00864	m/day					
cm/s		K4=	0.0864	m/day					
cm/s	\longleftrightarrow	K5=	0.864	m/day					
cm/s		K6=	8.64	m/day					
cm/s		K7=	86.4	m/day					
cm/s		K8=	864	m/day					
cm/s		К9=	8640	m/day					
cm/s		K10=	86400	m/day					
			ow Results in L/m			Flow Results in gal/r			
m³/day		Q=	0.16	L/min	Q=	0.04	gal/min		
m³/day		Q2=	1.82	L/min	Q2=	0.40	gal/min		
m³/day		Q3=	0.17	L/min	Q3=	0.04	gal/min		
m³/day		Q4=	0.62	L/min	Q4=	0.14	gal/min		
m³/day	\longleftrightarrow	Q5=	-1.10	L/min <	Q5=	-0.24	gal/min		
m³/day		Q6=	11.68	L/min	Q6=	2.57	gal/min		
m³/day		Q7=	61.04	L/min	Q7=	13.43	gal/min		
m³/day		Q8=	369.43	L/min	Q8=	81.26	gal/min		
m³/day		Q9=	2,564.13	L/min	Q9=	564.03	gal/min		
m³/day		Q10=	19,608.43	L/min	Q10=	4,313.25	gal/min		

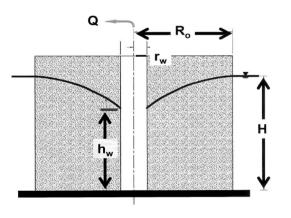
APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 2- Block 1

NOKIA CAMPUS KANATA, ON

Flow to a Shaft in an Unconfined Aquifer

Information


Steady State flow to a shaft within an unconfined aquifer. Use this equation when a/b < 1.5. Equation 1.0

 $Q = \frac{\pi K \left(H^2 - h_w^2\right)}{\ln R_0 / r_w}$

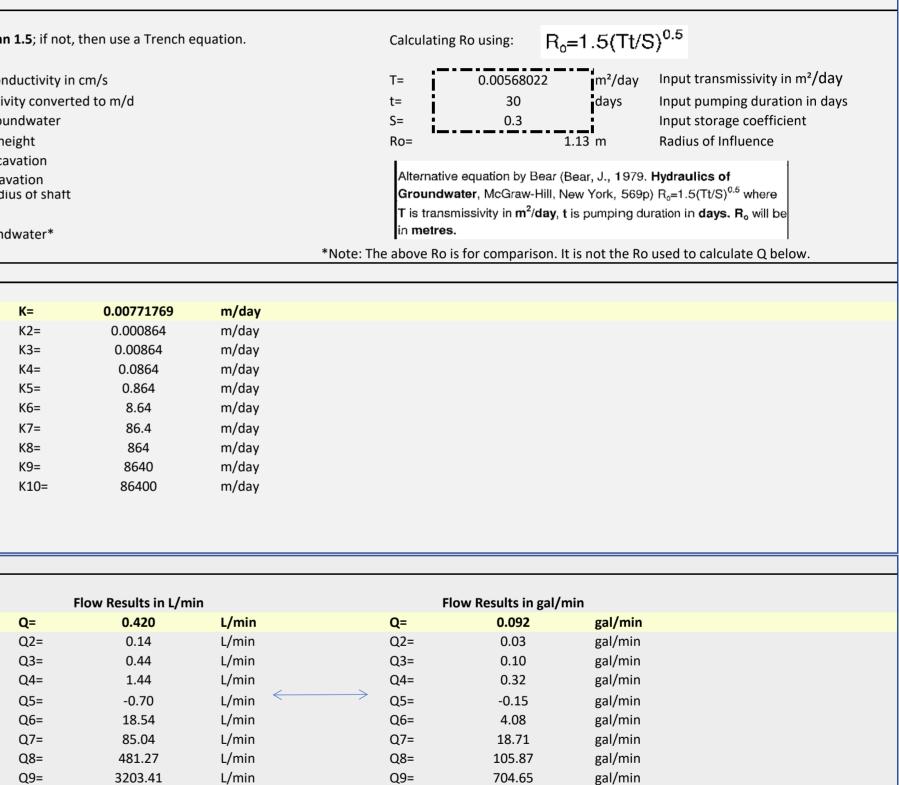
Equation 1.1

$$r_w = \sqrt{\frac{ab}{\pi}}$$

Ro is determined by the Siechardt Equation: $Ro = 3000(H-hw)K^{0.5}$ when K is in m/s

Shaft or Tre	ench Eq'n Check:	1.171052632	This num	nber must be less than
	K=	8.93E-06	cm/s	Input Hydraulic Cond
	=>	0.00771769	m/day	Hydraulic Conductiv
	H=	0.736	m	Input height of grou
	hw=	0	m	Input dewatering he
	a=	57.672	m	Input length of excar
	b= rw=	49.248 30.07	m m	Input width of excav Input/calculate radio
	π=	3.141592654		Pi
	*Note: Heigh	nt measurements ar	re relative to	base of active ground

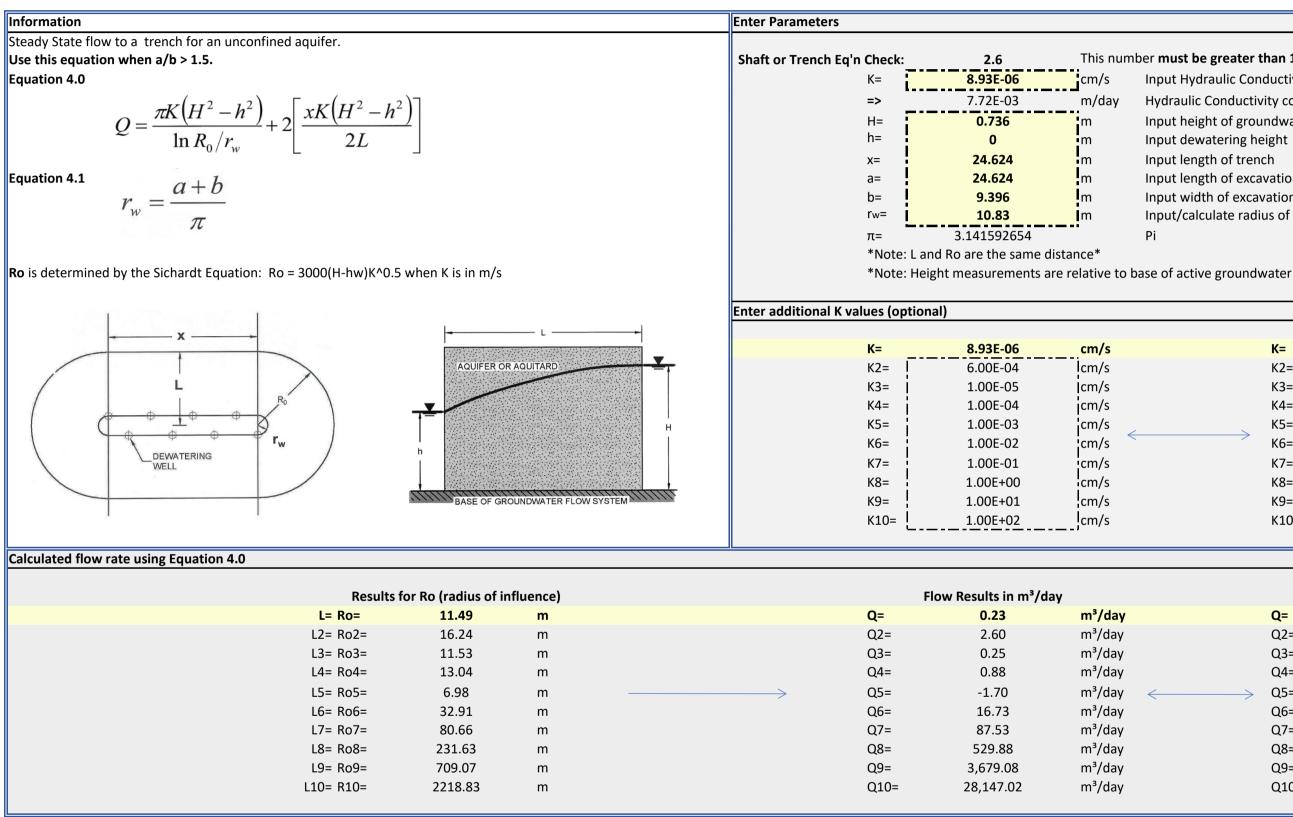
K=	8.93E-06	cm/s	
K2=	1.00E-06	cm/s	
K3=	1.00E-05	cm/s	
K4=	1.00E-04	cm/s	
K5=	1.00E-03	cm/s	
K6=	1.00E-02	cm/s	\leftarrow
K7=	1.00E-01	cm/s	
K8=	1.00E+00	cm/s	
K9=	1.00E+01	cm/s	
K10=	1.00E+02	cm/s	


Calculated flow rate using Equation 1.0

Resu	Ilts for Ro (radius of i	nfluence)			Flow Results in m ³ /c	lay	
Ro=	30.73	m		Q=	0.605	m³/day	
Ro2=	30.29	m		Q2=	0.20	m³/day	
Ro3=	30.77	m		Q3=	0.64	m³/day	
Ro4=	32.28	m		Q4=	2.07	m³/day	
Ro5=	6.98	m	>	Q5=	-1.01	m³/day	\longleftrightarrow
Ro6=	52.15	m		Q6=	26.70	m³/day	
Ro7=	99.89	m		Q7=	122.47	m³/day	
Ro8=	250.87	m		Q8=	693.08	m³/day	
Ro9=	728.30	m		Q9=	4613.20	m³/day	
R10=	2238.07	m		Q10=	34115.42	m³/day	

Q10=

23689.75


L/min

Q10=

5211.01

Flow to a Trench for a Unconfined Aquifer

APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 2- Block 2

NOKIA CAMPUS KANATA, ON

> R_o=1.5(Tt/S)^{0.5} This number **must be greater than 1.5**; if not, then use a Shaft equation. Calculating L and Ro using: Input Hydraulic Conductivity in cm/s _ _ . _ . _ . _ . _ . _ . _ . m²/day Input transmissivity in m²/day Hydraulic Conductivity converted to m/day m/day 0.00568022 T= Input height of groundwater pressure t= 365 days Input pumping duration in days 0.21 S= Input dewatering height Input storage coefficient L=Ro= Input length of trench 4.71 m Line source distance; distance of influence Input length of excavation Input width of excavation Alternative equation by Bear (Bear, J., 1979. Hydraulics of Groundwater, McGraw-Hill, New York, 569p) R₀=1.5(Tt/S)^{0.5} where Input/calculate radius of trench T is transmissivity in m^2/day , t is pumping duration in days. R_o will be Pi in metres. *Note: The above Ro is for comparison. It is not the Ro used to calculate Q below. К= 0.00771769 m/day K2= 0.5184 m/day КЗ= 0.00864 m/day K4= 0.0864 m/day K5= 0.864 m/day K6= 8.64 m/day K7= 86.4 m/day K8= 864 m/day К9= 8640 m/day K10= 86400 m/day Flow Results in L/min Flow Results in gal/min m³/day Q= 0.16 L/min Q= 0.04 gal/min m³/day Q2= Q2= 1.81 L/min 0.40 gal/min m³/day Q3= 0.17 L/min Q3= 0.04 gal/min m³/day Q4= 0.61 L/min Q4= 0.13 gal/min m³/day Q5= -1.18 Q5= -0.26 L/min gal/min m³/day Q6= 11.62 L/min Q6= 2.56 gal/min m³/day Q7= 60.78 Q7= 13.37 L/min gal/min m³/day Q8= 367.95 L/min Q8= 80.94 gal/min m³/day Q9= 2,554.75 L/min Q9= 561.97 gal/min Q10= 19,545.29 L/min Q10= 4,299.36 gal/min

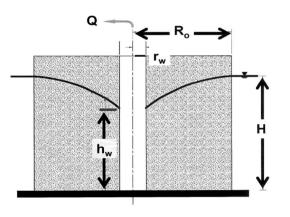
APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 2- Block 3

NOKIA CAMPUS KANATA, ON

Flow to a Shaft in an Unconfined Aquifer

Information


Steady State flow to a shaft within an unconfined aquifer. Use this equation when a/b < 1.5. Equation 1.0

 $Q = \frac{\pi K \left(H^2 - h_w^2\right)}{\ln R_0 / r_w}$

Equation 1.1

$$r_w = \sqrt{\frac{ab}{\pi}}$$

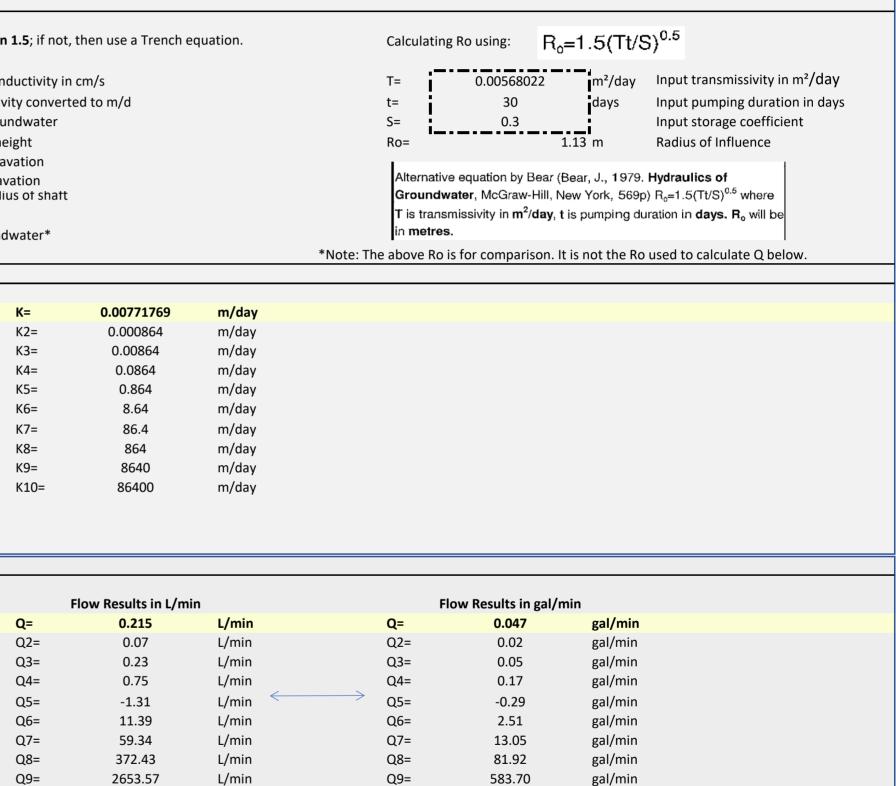
Ro is determined by the Siechardt Equation: $Ro = 3000(H-hw)K^{0.5}$ when K is in m/s

Shaft or Trencl	n Fa'n Check:	1.168831169	This num	nber must be less than		
Share of Frence	r Eq il ellecia	1100001105				
	К=	8.93E-06	cm/s	Input Hydraulic Cond		
	=>	0.00771769	m/day	Hydraulic Conductivi		
	H=	0.736	m	Input height of grou		
	hw=	0	m	Input dewatering he		
	a=	29.16	m	Input length of excav		
	b=	24.948	m	Input width of excav		
	rw=	15.22	m	Input/calculate radiu		
	π=	3.141592654		Pi		
	*Note: Heigh	nt measurements ar	e relative to	base of active ground		
Enter additional K	values (optiona	1)				

К=	8.93E-06	cm/s	
K2=	1.00E-06	cm/s	
K3=	1.00E-05	cm/s	
K4=	1.00E-04	cm/s	
K5=	1.00E-03	cm/s	
К6=	1.00E-02	cm/s	\leftarrow
K7=	1.00E-01	cm/s	
K8=	1.00E+00	cm/s	
К9=	1.00E+01	cm/s	
K10=	1.00E+02	cm/s	

....

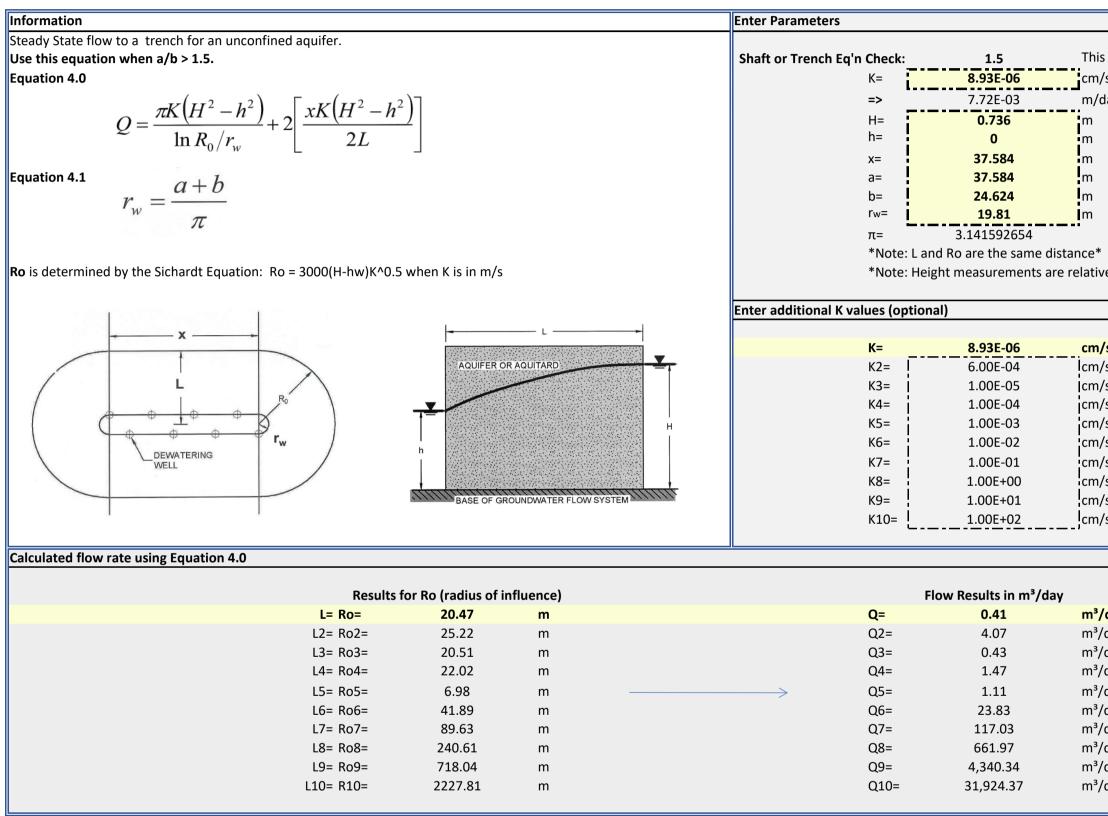
. .. - -


Calculated flow rate using Equation 1.0

Results	for Ro (radius of in	fluence)			Flow Results in m ³ /c	lay	
Ro=	15.88	m		Q=	0.309	m³/day	
Ro2=	15.44	m		Q2=	0.10	m³/day	
Ro3=	15.92	m		Q3=	0.33	m³/day	
Ro4=	17.43	m		Q4=	1.09	m³/day	
Ro5=	6.98	m	>	Q5=	-1.89	m³/day	\longleftrightarrow
Ro6=	37.30	m		Q6=	16.40	m³/day	
Ro7=	85.04	m		Q7=	85.45	m³/day	
Ro8=	236.02	m		Q8=	536.33	m³/day	
Ro9=	713.45	m		Q9=	3821.38	m³/day	
R10=	2223.22	m		Q10=	29499.65	m³/day	

Q10=

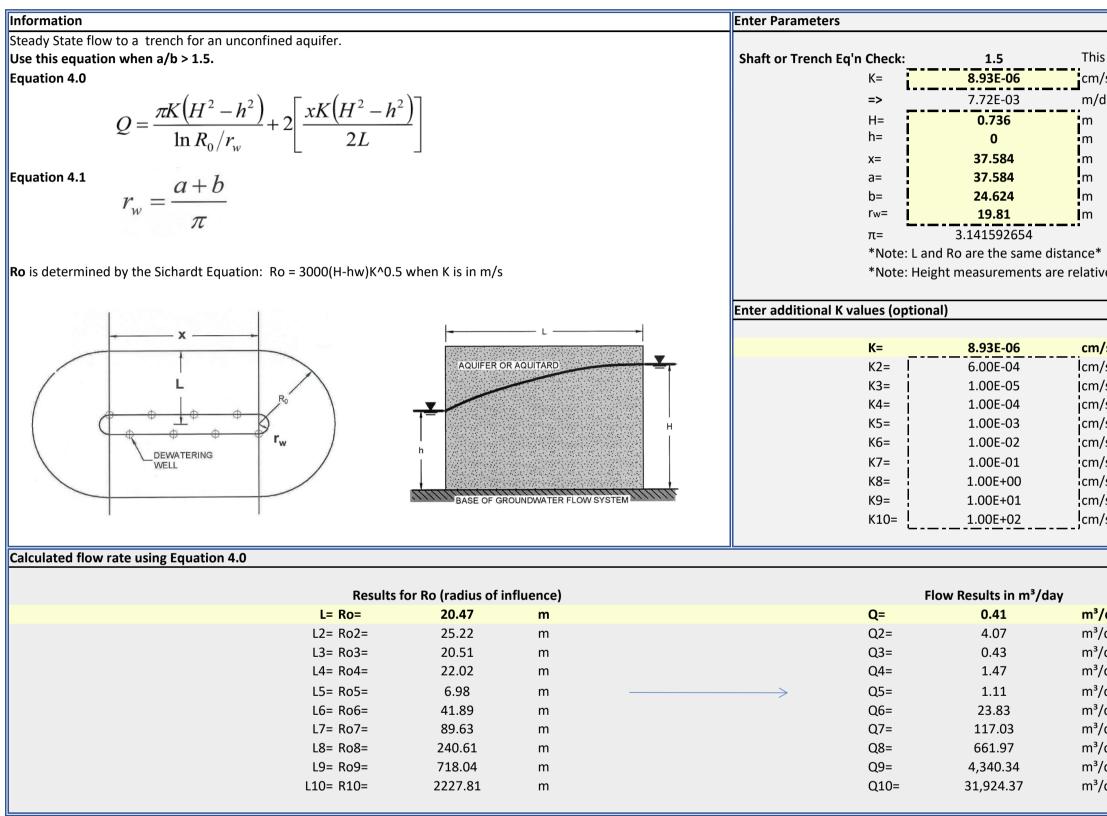
20484.56


L/min

Q10=

4505.97

Flow to a Trench for a *Unconfined Aquifer*

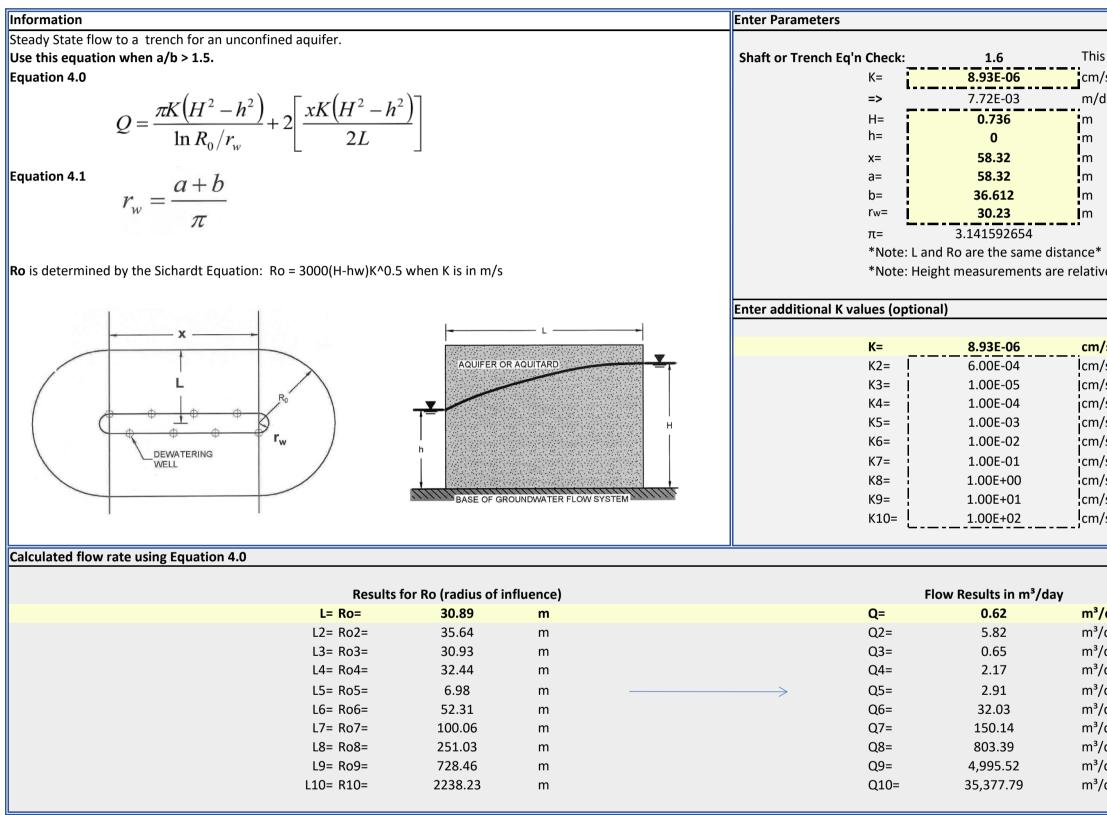


APPENDIX D.3

NOKIA CAMPUS

	ber must be greater			naft equation.	Calculating L and F	o using:	R₀=1.5	(Tt/S) ^{0.5}
cm/s	Input Hydraulic Co	-						
m/day	Hydraulic Conduct	-			T=	0.00568022	m²/day	Input transmissivity in m ² /day
m	Input height of gro		oressure		t=	365	days	Input pumping duration in days
m	Input dewatering h	-			S=	0.21		Input storage coefficient
m	Input length of tre				L=Ro=		4.71 m	Line source distance; distance of influence
m	Input length of exc							. 1
m	Input width of exca Input/calculate rac		-h		Alternative equation Groundwater, McC			
m		ilus or trent	.11		T is transmissivity i			
ce*	Pi				in metres.	in /day, tis pump		
	base of active ground	water						
	base of active ground	water			*Note: The above Ro is for co	mparison. It is no	ot the Ro used	to calculate Q below.
						•		
cm/s		K=	0.00771769	m/day				
cm/s		K2=	0.5184	m/day				
cm/s		K3=	0.00864	m/day				
cm/s		K4=	0.0864	m/day				
cm/s		K5=	0.864	m/day				
cm/s	$\langle \rangle$	K6=	8.64	m/day				
cm/s		K7=	86.4	m/day				
cm/s		K8=	864	m/day				
cm/s		К9=	8640	m/day				
cm/s		K10=	86400	m/day				
		FI	ow Results in L/m		Flo	w Results in gal/		
m³/day		Q=	0.28	L/min	Q=	0.06	gal/min	
m³/day		Q2=	2.83	L/min	Q2=	0.62	gal/min	
m³/day		Q3=	0.30	L/min	Q3=	0.07	gal/min	
m³/day		Q4=	1.02	L/min	Q4=	0.22	gal/min	
m³/day	\longleftrightarrow	Q5=	0.77	L/min <	> Q5=	0.17	gal/min	
m³/day		Q6=	16.55	L/min	Q6=	3.64	gal/min	
m³/day		Q7=	81.27	L/min	Q7=	17.88	gal/min	
m³/day		Q8=	459.67	L/min	Q8=	101.11	gal/min	
m³/day m³/day		Q9=	3,013.93	L/min	Q9=	662.97	gal/min	
		Q10=	22,168.28	L/min	Q10=	4,876.33	gal/min	

Flow to a Trench for a *Unconfined Aquifer*

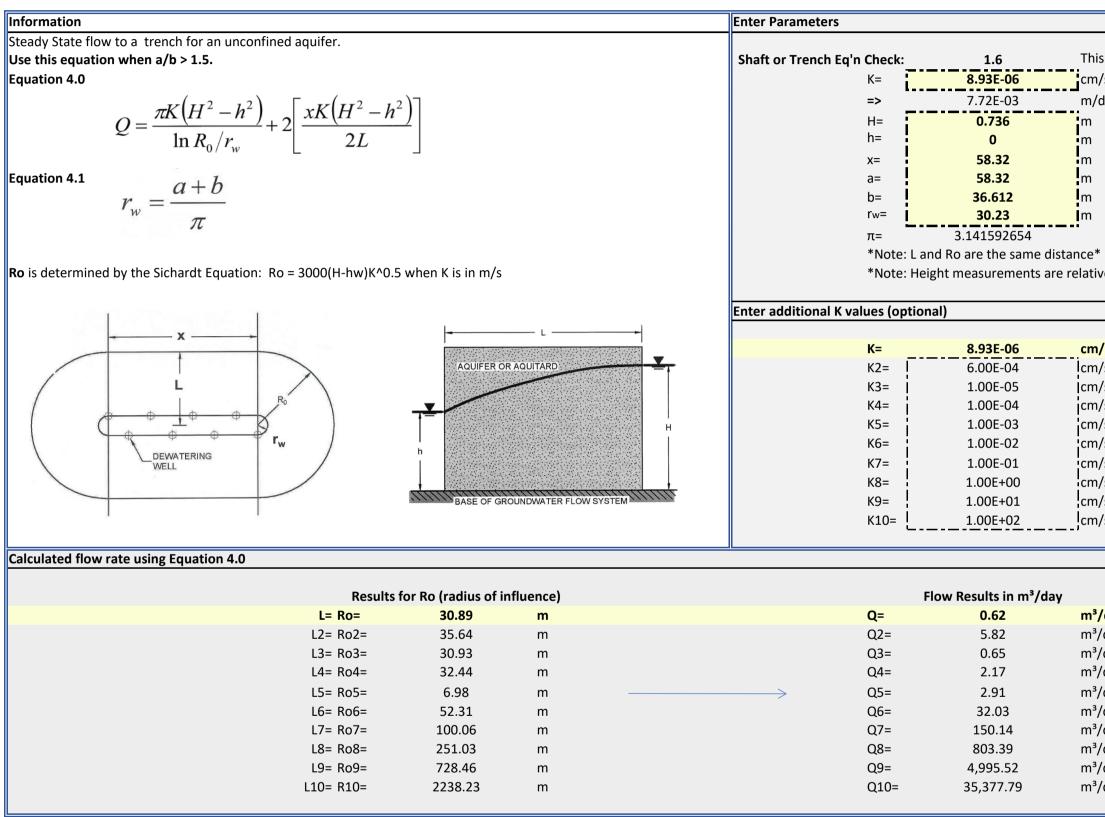


APPENDIX D.3

NOKIA CAMPUS

	nber must be greater			aft equation.	Calculating L and	Ro using:	R₀=1.5	(Tt/S) ^{0.5}
cm/s	Input Hydraulic Co	-				0.005600000	—	Input transmissivity in m ² /day
m/day	Hydraulic Conducti	•	•		T=	0.00568022	m²/day	
m	Input height of gro		oressure		t=	365	days	Input pumping duration in days
m	Input dewatering h	-			S=	0.21		Input storage coefficient
m	Input length of tree				L=Ro=	4	.71 m	Line source distance; distance of influence
m	Input length of exc				Luc a second			. 1
m m	Input width of exca Input/calculate rad		h			ion by Bear (Bear, J., <mark>1</mark> cGraw-Hill, New York,		
m	Pi	inds of them	.11			y in m²/day , t is pumpir		
ce*	FI				in metres.	y in in Aday, t is pumpi	ig daration in u	
	base of active ground	lwater						
	Suse of delive ground	water			*Note: The above Ro is for	comparison. It is no	t the Ro used	to calculate Q below.
cm/s		K=	0.00771769	m/day				
cm/s		K2=	0.5184	m/day				
cm/s		КЗ=	0.00864	m/day				
cm/s		K4=	0.0864	m/day				
cm/s		K5=	0.864	m/day				
cm/s 🕺		К6=	8.64	m/day				
cm/s		K7=	86.4	m/day				
cm/s		К8=	864	m/day				
cm/s		К9=	8640	m/day				
cm/s		K10=	86400	m/day				
			ow Results in L/m			low Results in gal/m		
m ³ /day		Q=	0.28	L/min	Q=	0.06	gal/min	
m³/day		Q2=	2.83	L/min	Q2=	0.62	gal/min	
m³/day		Q3=	0.30	L/min	Q3=	0.07	gal/min	
m ³ /day		Q4=	1.02	L/min	Q4=	0.22	gal/min	
m ³ /day	\longleftrightarrow	Q5=	0.77	L/min	Q5=	0.17	gal/min	
m³/day		Q6=	16.55	L/min	Q6=	3.64	gal/min	
m³/day		Q7=	81.27	L/min	Q7=	17.88	gal/min	
m ³ /day		Q8=	459.67	L/min	Q8=	101.11	gal/min	
m³/day		Q9=	3,013.93	L/min	Q9=	662.97	gal/min	
m³/day		Q10=	22,168.28	L/min	Q10=	4,876.33	gal/min	

Flow to a Trench for a *Unconfined Aquifer*

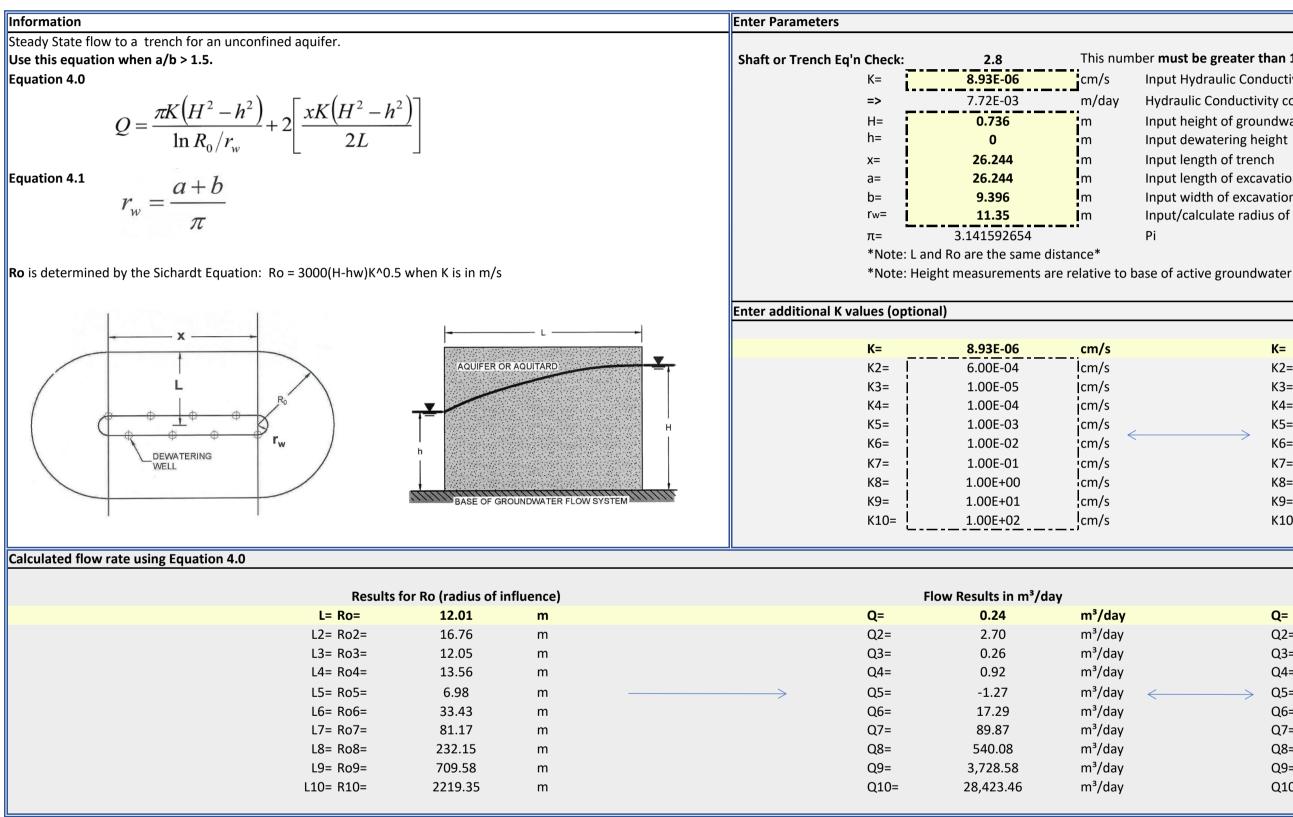


APPENDIX D.3

NOKIA CAMPUS

	ber must be greater			haft equation.		Calculating	L and R	o using:	R₀=1.5	(Tt/S) ^{0.5}
cm/s m/day m m m m	Input Hydraulic Cor Hydraulic Conducti Input height of grou Input dewatering h Input length of trer Input length of exca	vity conver undwater p eight nch	ted to m/day			T= t= S= L=Ro=		0.00568022 365 0.21	m²/day days 4.71 m	Input transmissivity in m ² /day Input pumping duration in days Input storage coefficient Line source distance; distance of influence
m m ce*	Input width of excavation Input/calculate radius of trench Pi				Alternative equation by Bear (Bear, J., 1 979. Hydraulics of Groundwater , McGraw-Hill, New York, 569p) $R_0=1.5(Tt/S)^{0.5}$ where T is transmissivity in m ² / day , t is pumping duration in days. R _o will be in metres .					۲t/S) ^{0.5} where
ative to b	base of active ground	water			*Note: Th	ie above Ro i	is for co	mparison. It is nc	ot the Ro used	to calculate Q below.
cm/s		K=	0.00771769	m/day						
cm/s		K2=	0.5184	m/day						
cm/s		K3=	0.00864	m/day						
cm/s		K4=	0.0864	m/day						
cm/s		K5=	0.864	m/day						
cm/s <	\rightarrow	K6=	8.64	m/day						
cm/s		K7=	86.4	m/day						
cm/s		K8=	864	m/day						
cm/s		K9=	8640	m/day						
cm/s		K10=	86400	m/day						
			ow Results in L/m				Flov	v Results in gal/r		
m³/day		Q=	0.43	L/min		Q=		0.09	gal/min	
m³/day		Q2=	4.04	L/min		Q2=		0.89	gal/min	
m³/day		Q3=	0.45	L/min		Q3=		0.10	gal/min	
m³/day		Q4=	1.51	L/min		Q4=		0.33	gal/min	
m³/day	\longleftrightarrow	Q5=	2.02	L/min	\longrightarrow	Q5=		0.44	gal/min	
m³/day		Q6=	22.24	L/min		Q6=		4.89	gal/min	
m³/day		Q7=	104.26	L/min		Q7=		22.93	gal/min	
m³/day		Q8=	557.87	L/min		Q8=		122.71	gal/min	
m³/day		Q9=	3,468.89	L/min		Q9=		763.05	gal/min	
m³/day		Q10=	24,566.34	L/min		Q10=		5,403.83	gal/min	

Flow to a Trench for a *Unconfined Aquifer*


APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 6- Block 1

NOKIA CAMPUS

	ber must be greater			aft equation.	Calculating L and	Ro using:	R _o =1.5	(Tt/S) ^{0.5}
cm/s	Input Hydraulic Con				т=	0.00568022		Input transmissivity in m ² /day
m/day	Hydraulic Conducti	-					m²/day	· · · · ·
m	Input height of gro		oressure		t= c_	365	days	Input pumping duration in days
m	Input dewatering h	-			S=	0.21	71	Input storage coefficient
m	Input length of trer				L=Ro=	4	.71 m	Line source distance; distance of influence
m	Input length of exca Input width of exca				Alternetive equation	n by Boor (Boor 1 1		a at
m m	Input/calculate rad		'n			on by Bear (Bear, J., 1 Graw-Hill, New York,		
	Pi					in m ² /day, t is pumpir		
ce*	FI				in metres.	in monage to pointpi	ig duration in L	
	base of active ground	water			•			
		Water			*Note: The above Ro is for a	comparison. It is no	t the Ro used	to calculate Q below.
		K _	0.00771760	res (dans				
cm/s cm/s		K= K2=	0.00771769 0.5184	m/day m/day				
cm/s		K2= K3=	0.00864	m/day				
cm/s		K3= K4=	0.0864	m/day				
cm/s		K5=	0.864	m/day				
cm/s	\longleftrightarrow	K6=	8.64	m/day				
cm/s		K7=	86.4	m/day				
cm/s		K8=	864	m/day				
cm/s		K9=	8640	m/day				
cm/s		K10=	86400	m/day				
, e				,,				
		FI	ow Results in L/m		FI	ow Results in gal/m		
m³/day		Q=	0.43	L/min	Q=	0.09	gal/min	
m³/day		Q2=	4.04	L/min	Q2=	0.89	gal/min	
m³/day		Q3=	0.45	L/min	Q3=	0.10	gal/min	
m³/day		Q4=	1.51	L/min	Q4=	0.33	gal/min	
m³/day	\longleftrightarrow	Q5=	2.02	L/min	Q5=	0.44	gal/min	
m³/day		Q6=	22.24	L/min	Q6=	4.89	gal/min	
m³/day		Q7=	104.26	L/min	Q7=	22.93	gal/min	
m³/day		Q8=	557.87	L/min	Q8=	122.71	gal/min	
m³/day		Q9=	3,468.89	L/min	Q9=	763.05	gal/min	
m³/day		Q10=	24,566.34	L/min	Q10=	5 <i>,</i> 403.83	gal/min	

Flow to a Trench for a Unconfined Aquifer

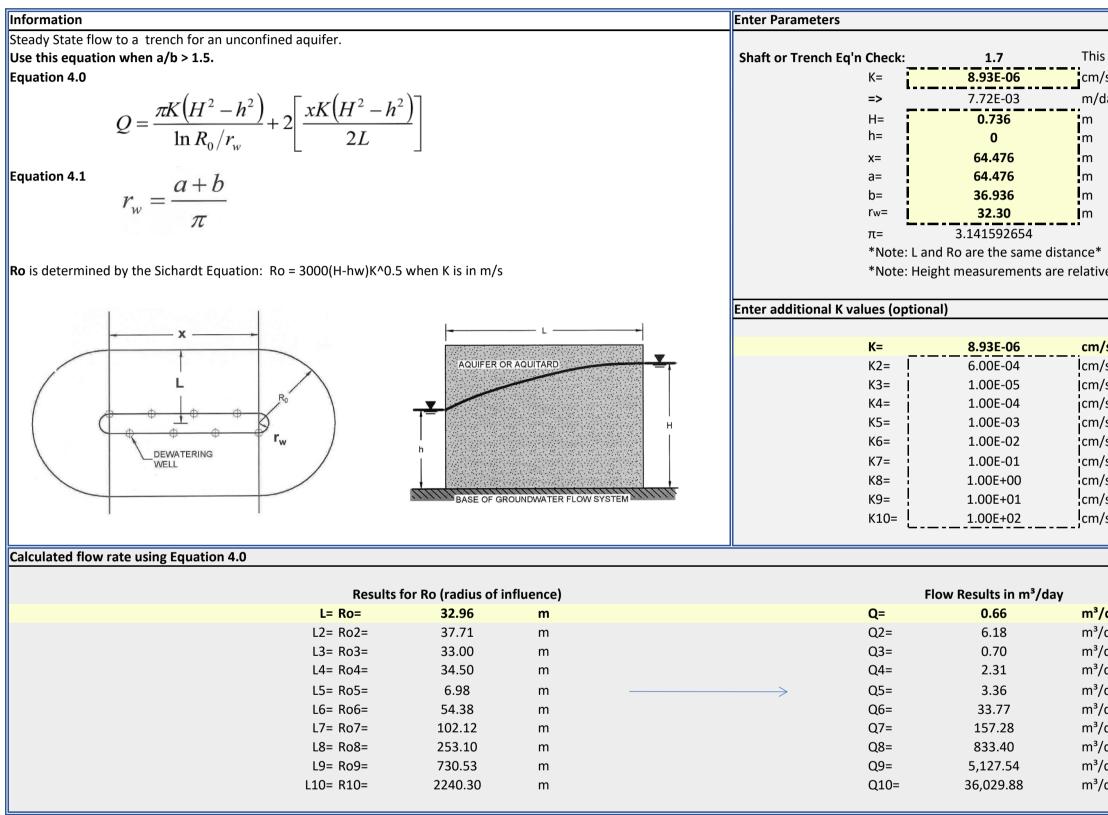
APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE Building 6- Block 2

Q10=

19,737.25

L/min


NOKIA CAMPUS KANATA, ON

> R_o=1.5(Tt/S)^{0.5} This number **must be greater than 1.5**; if not, then use a Shaft equation. Calculating L and Ro using: Input Hydraulic Conductivity in cm/s _ _ . _ . _ . _ . _ . _ . _ . m²/day Input transmissivity in m²/day Hydraulic Conductivity converted to m/day m/day 0.00568022 T= Input height of groundwater pressure t= 365 Input pumping duration in days days 0.21 S= Input dewatering height Input storage coefficient L=Ro= Input length of trench 4.71 m Line source distance; distance of influence Input length of excavation Input width of excavation Alternative equation by Bear (Bear, J., 1979. Hydraulics of Groundwater, McGraw-Hill, New York, 569p) R₀=1.5(Tt/S)^{0.5} where Input/calculate radius of trench T is transmissivity in m^2/day , t is pumping duration in days. R_o will be Pi in metres. *Note: The above Ro is for comparison. It is not the Ro used to calculate Q below. К= 0.00771769 m/day K2= 0.5184 m/day КЗ= 0.00864 m/day K4= 0.0864 m/day K5= 0.864 m/day K6= 8.64 m/day K7= 86.4 m/day K8= 864 m/day К9= 8640 m/day K10= 86400 m/day Flow Results in L/min Flow Results in gal/min m³/day Q= 0.17 L/min Q= 0.04 gal/min m³/day Q2= Q2= 1.88 L/min 0.41 gal/min m³/day Q3= 0.18 L/min Q3= 0.04 gal/min m³/day Q4= 0.64 L/min Q4= 0.14 gal/min m³/day Q5= -0.88 Q5= -0.19 L/min gal/min m³/day Q6= 12.00 L/min Q6= 2.64 gal/min m³/day Q7= Q7= 13.73 62.41 L/min gal/min m³/day Q8= 375.03 L/min Q8= 82.50 gal/min m³/day Q9= 2,589.13 Q9= 569.53 L/min gal/min

> > Q10=

4,341.58

Flow to a Trench for a *Unconfined Aquifer*

APPENDIX D.3

NOKIA CAMPUS

	iber must be greater t			haft equation.	Calculatin	g L and Ro using:	R _o =1.5	(Tt/S) ^{0.5}				
cm/s m/day	Input Hydraulic Cor Hydraulic Conductiv				T=	0.00568022	m²/day	Input transmissivity in m ² /day				
m/day m		-				365						
m m	Input height of grou Input dewatering he		nessure		t= S=	0.21	days	Input pumping duration in days Input storage coefficient				
m		-				L	4 71 m					
m m	Input length of tren Input length of exca				L=Ro=	2	4.71 m	Line source distance; distance of influence				
m m	Input width of exca				Altornative	Alternative equation by Bear (Bear, J., 1979. Hydraulics of						
m m	Input/calculate radi		h			ater, McGraw-Hill, New York,						
	Pi					missivity in m ² /day, t is pumpi						
ce*	FI				in metres							
	base of active ground	water						'				
	suce of active ground				*Note: The above Ro	is for comparison. It is no	ot the Ro used	to calculate Q below.				
cm/s		K=	0.00771769	m/day								
cm/s		K2=	0.5184	m/day								
cm/s		K3=	0.00864	m/day								
cm/s		K4=	0.0864	m/day								
cm/s		K5=	0.864	m/day								
cm/s	\longleftrightarrow	К6=	8.64	m/day								
cm/s		K7=	86.4	m/day								
cm/s		К8=	864	m/day								
cm/s		К9=	8640	m/day								
cm/s		K10=	86400	m/day								
		FI	low Results in L/m	in		Flow Results in gal/r	nin					
m³/day		Q=		L/min	Q=	0.10	gal/min					
m³/day		Q2=	4.29	L/min	Q2=	0.94	gal/min					
m³/day		Q3=	0.48	L/min	Q3=	0.11	gal/min					
m³/day		Q4=	1.60	L/min	Q4=	0.35	gal/min					
m³/day	\longleftrightarrow	Q5=	2.33	L/min 🚽	> Q5=	0.51	gal/min					
m³/day		Q6=	23.45	L/min	Q6=	5.16	gal/min					
m³/day		Q7=	109.21	L/min	Q7=	24.02	gal/min					
m³/day		Q8=	578.72	L/min	Q8=	127.30	gal/min					
m³/day		Q9=	3,560.56	L/min	Q9=	783.21	gal/min					
m³/day		Q10=	25,019.15	L/min	Q10=	5,503.44	gal/min					

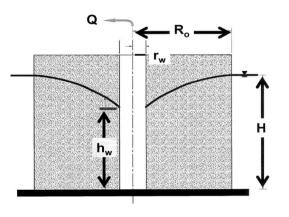
APPENDIX D.3

PRELIMINARY ESTIMATED WATER TAKING AND AREA OF INFLUENCE **Building 8**

NOKIA CAMPUS KANATA, ON

Flow to a Shaft in an Unconfined Aquifer

Information


Steady State flow to a shaft within an unconfined aquifer. Use this equation when a/b < 1.5. Equation 1.0

$$Q = \frac{\pi K \left(H^2 - h_w^2\right)}{\ln R_0 / r_w}$$

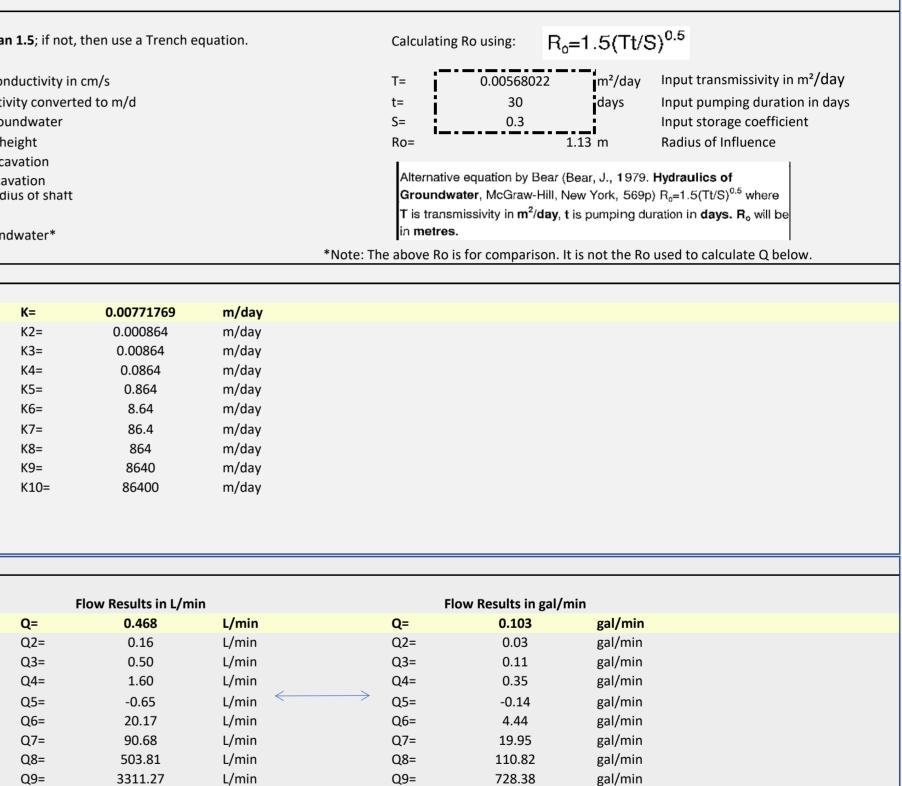
Equation 1.1

$$r_w = \sqrt{\frac{ab}{\pi}}$$

Ro is determined by the Siechardt Equation: Ro = 3000(H-hw)K^0.5 when K is in m/s

Enter P	Parameters			
Sha	aft or Trench Eq'n Check:	1.085227273	This num	nber must be less than
	К=	8.93E-06	cm/s	Input Hydraulic Con
	=>	0.00771769	m/day	Hydraulic Conductiv
	H=	0.736	m	Input height of grou
	hw=	0	m	Input dewatering he
	a=	61.884	m	Input length of exca
	b=	57.024	m	Input width of excav
	rw=	33.52	m	Input/calculate radio
	π=	3.141592654		Pi
	*Note: Hei	ght measurements ar	e relative to	base of active ground
Enter a	dditional K values (optior	nal)		

К=	8.93E-	06 cm/s	
K2=	1.00E-(06 cm/s	
K3=	1.00E-0	05 cm/s	
K4=	1.00E-0	04 cm/s	
K5=	1.00E-0	03 cm/s	
K6=	1.00E-(02 cm/s	\leftarrow
K7=	1.00E-(01 cm/s	
K8=	1.00E+	00 cm/s	
K9=	1.00E+	01 cm/s	
K10=	1.00E+	02 cm/s	


Calculated flow rate using Equation 1.0

F	Results for Ro (radius	of influence)		Flow Results in m ³ /day			
Ro=	34.18	m		Q=	0.674	m³/day	
Ro2=	= 33.74	m		Q2=	0.22	m³/day	
Ro3=	= 34.21	m		Q3=	0.71	m³/day	
Ro4=	= 35.72	m		Q4=	2.30	m³/day	
Ro5=	- 6.98	m	\longrightarrow	Q5=	-0.94	m³/day	\longleftrightarrow
Ro6=	= 55.60	m		Q6=	29.05	m³/day	
Ro7=	= 103.34	m		Q7=	130.58	m³/day	
Ro8=	= 254.32	m		Q8=	725.53	m³/day	
Ro9=	= 731.75	m		Q9=	4768.53	m³/day	
R10=	= 2241.52	m		Q10=	34984.01	m³/day	

Q10=

24292.90

L/min

Q10=

5343.68

APPENDIX D.4 PRELIMINARY WATER TAKING MODEL INPUTS AND OUTPUTS NOKIA CAMPUS KANATA, ON

BUILDING	DESCRIPTION		REC	TANGULAF	R BLOCK S	EGMENTS	OF EACH	PROPOSE		NG	
		BLOC	K 1	BLOC	K 2	BLOC	<u>K 3</u>	BLOC	K 4	BLOC	<u>< 5</u>
		а	b	а	b	а	b	а	b	а	b
1	North corner of Terry Fox & Legget (dual 16 levels)	67.716 SHAI	50.22 FT	24.624 TREN	8.424 CH	24.3 TREN	10.368 CH				
2	North site (13 & 18 levels)	57.672 SHAI	49.248 FT	24.624 TREN	9.396 CH	29.16 SHAI	24.948 FT				
3	NW Site (28 level twin North)	37.584 TREN	24.624 CH								
4	NW Site (28 level twin South)	37.584 TREN	24.624 CH								
5	West side (20 levels)	58.32 TREN	36.612 CH								
6	West side (14 levels)	58.32 TREN	36.612 CH	26.244 TREN	9.396 CH						
7	Mid west side (10 levels)	64.476 TREN	36.936 CH								
8	East side (12 levels)	61.884 SHAI	57.024 FT								
NO DEWATERING											
9	East side (8 levels)	72.252	46.008	21.06	9.072						
10	South (dual 8 levels)	38.88	24.948	39.852	24.948	42.444	22.68	42.444	21.384	41.796	22.68
OFFICE	OFFICE	153.9	100.116	93.96	31.104						

NOTES All proposed building measurements measured off conceptual site plan All measurements are in metres

APPENDIX D.4 PRELIMINARY WATER TAKING MODEL INPUTS AND OUTPUTS NOKIA CAMPUS KANATA, ON

BUILDING				DEWAT	ERING MOD	ELLING	OUTPUTS				3x SAFETY	FACTOR
	BLOC	K 1	BLOC	CK 2	BLOO	CK 3		тот	ALS			
	Q (m³/day)	R ₀ (m)	Q (m³/day)	R ₀ (m)	Q (m³/day)	R ₀ (m)	Q (m³/day)		Q (L/min)	Q (L/day)	Q (m³/day)	Q (L/day)
1	0.661	33.56	0.23	11.18	0.23	11.7	1.121	39.28	0.778	1,121	3.363	3,363
2	0.605	30.73	0.23	11.49	0.309	15.88	1.144	37.5725	0.794	1,144	3.432	3,432
3	0.41	20.47					0.41	20.47	0.285	410	1.23	1,230
4	0.41	20.47					0.41	20.47	0.285	410	1.23	1,230
5	0.62	30.89					0.62	30.89	0.431	620	1.86	1,860
6	0.62	30.89	0.24	12.01			0.86	36.895	0.597	860	2.58	2,580
7	0.66	32.96					0.66	32.96	0.458	660	1.98	1,980
8	0.674	34.18					0.674	34.18	0.468	674	2.022	2,022
NO DEWATERING 9								Total	Combined	5,899	Total Combined	17,697

10 - -

OFFICE - -

NOTES Q = Flow rate

R₀ = radius of influence

Appendix E Chemical Laboratory Results

Certificate of Analysis

Environment Testing

		-					
Client:	GHD Limited (Ottawa)			Report Nur	mber:	1971489	
	400-179 Colonnade Rd.			Date Subm	nitted:	2022-02-09	
	Ottawa, ON			Date Repo	rted:	2022-02-17	
	K2E 7J4			Project:		12566614 - Nokia	
Attention:	Mr. Kenneth Omenogor			COC #:		886034	
PO#:	735-002201						
Invoice to:	GHD Limited (Ottawa)		Page 1 of 3				
			0				

Dear Kenneth Omenogor:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

🛟 eurofins

Addrine Thomas 2022.02.17 14:49:49 -05'00'

APPROVAL:

Addrine Thomas, Inorganics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: <u>http://www.cala.ca/scopes/2602.pdf</u>.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Certificate of Analysis

Environment Testing

Client:	GHD Limited (Ottawa)
	400-179 Colonnade Rd.
	Ottawa, ON
	K2E 7J4
Attention:	Mr. Kenneth Omenogor
PO#:	735-002201
Invoice to:	GHD Limited (Ottawa)

Report Number: Date Submitted: 2022-02-09 Date Reported: 2022-02-17 Project: COC #: 886034

1971489 12566614 - Nokia

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1609628 Soil 2022-01-28 BH 01-22 SS2 (7.5ft - 9.5ft)
Group	Analyte	MRL	Units	Guideline	
Anions	SO4	0.01	%		0.04
CI in Concrete	CI	0.002	%		0.067
General Chemistry	Electrical Conductivity	0.05	mS/cm		0.86
	рН	2.00			7.79
	Resistivity	1	ohm-cm		1180
Redox Potential	REDOX Potential		mV		210
Subcontract	Moisture-Humidite	0.25	%		33.2
	S2-	0.2	ug/g		<0.20

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Environment Testing

Client:	GHD Limited (Ottawa)
	400-179 Colonnade Rd.
	Ottawa, ON
	K2E 7J4
Attention:	Mr. Kenneth Omenogor
PO#:	735-002201
Invoice to:	GHD Limited (Ottawa)

🛟 eurofins

Report Number: 1971489 Date Submitted: 2022-02-09 Date Reported: 2022-02-17 Project: COC #: 886034

12566614 - Nokia

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 416967 Analysis/Extraction Date 20 Method C SM2580B 20	ilyst MW		
REDOX Potential	191 mV	100	
Run No 416987 Analysis/Extraction Date 20 Method C CSA A23.2-4B	022-02-11 Ana	ilyst AA	
Chloride	<0.002 %		80-120
Run No 417077 Analysis/Extraction Date 20 Method Cond-Soil)22-02-14 Ana	ilyst MW	
Electrical Conductivity	<0.05 mS/cm	97	90-110
рН	8.68	101	90-110
Resistivity			
SO4	<0.01 %	98	70-130
Run No 417237 Analysis/Extraction Date 20 Method SUBCONTRACT-A)22-02-16 Ana	ilyst AET	
Moisture-Humidite	<0.25 %	100	
S2-	<0.20 ug/g	86	

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Certificate of Analysis

Environment Testing

		0					
Client:	GHD Limited (Ottawa)			Repor	t Number:	1971490	
	400-179 Colonnade Rd.			Date S	Submitted:	2022-02-09	
	Ottawa, ON			Date F	Reported:	2022-02-17	
	K2E 7J4			Projec		12566614 - Nokia	
Attention:	Mr. Kenneth Omenogor			COC a	#:	886034	
PO#:	735-002201						
Invoice to:	GHD Limited (Ottawa)		Page 1 of 4				
	. ,						

Dear Kenneth Omenogor:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

🛟 eurofins

Addrine Thomas 2022.02.17 07:29:51 -05'00'

APPROVAL:

Addrine Thomas, Inorganics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: <u>http://www.cala.ca/scopes/2602.pdf</u>.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Environment Testing

Client:	GHD Limited (Ottawa)
	400-179 Colonnade Rd.
	Ottawa, ON
	K2E 7J4
Attention:	Mr. Kenneth Omenogor
PO#:	735-002201
Invoice to:	GHD Limited (Ottawa)

🛟 eurofins

 Report Number:
 1971490

 Date Submitted:
 2022-02-09

 Date Reported:
 2022-02-17

 Project:
 12566614 - Nokia

 COC #:
 886034

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1609629 Water 2022-02-09 BH 02-22
Group	Analyte	MRL	Units	Guideline	
Anions	CI	1	mg/L		820
	SO4	1	mg/L		220
General Chemistry	Conductivity	5	uS/cm		3360
	pH	1.00			7.54
	Resistivity	0.2	Mohm-cm		298
	S2-	2	mg/L		<2
Redox Potential	REDOX Potential		mV		237

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	GHD Limited (Ottawa)
	400-179 Colonnade Rd.
	Ottawa, ON
	K2E 7J4
Attention:	Mr. Kenneth Omenogor
PO#:	735-002201
Invoice to:	GHD Limited (Ottawa)

🛟 eurofins

Report Number: 1971490 Date Submitted: 2022-02-09 Date Reported: 2022-02-17 Project: COC #: 886034

12566614 - Nokia

QC Summary

An	alyte	Blank		QC % Rec	QC Limits
Run No 416967 Method C SM2580B	Analysis/Extraction Date 20	022-02-10 A i	nalyst	MW	
REDOX Potential		191 mV		100	
Run No 416968 Method SM2320,2510	Analysis/Extraction Date 20 ,4500H/F	022-02-10 Ai	nalyst	AsA	
Conductivity		<5 uS/cm		99	90-110
pН				99	90-110
Run No 416971 Method SM 4110	Analysis/Extraction Date 20)22-02-11 Ai	nalyst	AaN	
Chloride		<20 mg/L			90-110
SO4		<20 mg/L		100	90-110
Run No 417051 Method C SM4500-S2	Analysis/Extraction Date 20)22-02-14 A i	nalyst	AsA	
S2-		<0.01 mg/L		86	80-120
Run No 417218 Method Resistivity - wa	Analysis/Extraction Date 20 ater	122-02-17 Ai	nalyst	AET	
Resistivity					

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Environment Testing

Client: GHD Limited (Ottawa) 400-179 Colonnade Rd. Ottawa, ON K2E 7J4 Attention: Mr. Kenneth Omenogor PO#: 735-002201 Invoice to: GHD Limited (Ottawa)

Report Number: Date Submitted: 2022-02-09 Date Reported: 2022-02-17 Project: COC #: 886034

1971490 12566614 - Nokia

Sample Comment Summary

Sample ID: 1609629 BH 02-22 CI, S2- & SO4 MRL elevated due to matrix interference (dilution was done).

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

ghd.com

