

FINAL REPORT

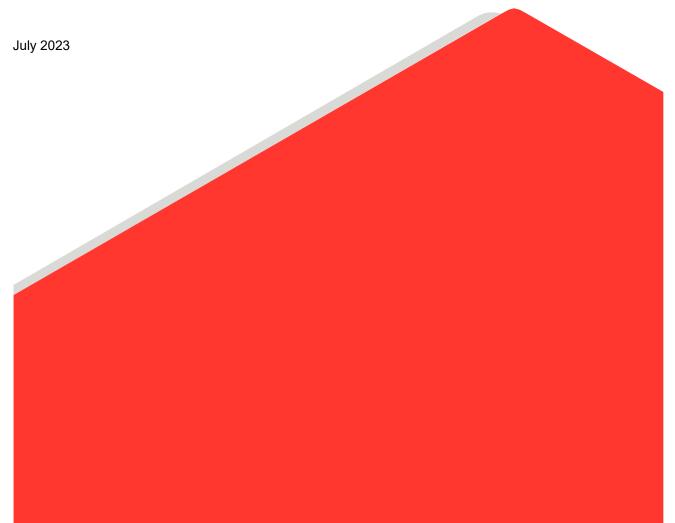
Phase Two Environmental Site Assessment

170 Slater Street, Ottawa, Ontario

Submitted to:

The Canada Life Assurance Company c/o GWL Realty Advisors Inc.

33 Yonge Street, Suite 1000 Toronto, ON M5E 1G4


Submitted by:

WSP Canada Inc.

1931 Robertson Road, Ottawa, Ontario, K2H 5B7, Canada

+1 613 592 9600

23592402

i

Distribution List

1 copy (.pdf) - GWL Realty Advisors Inc.

1 copy (.pdf) - WSP Canada Inc.

Record of Issue

Company	Version	Date Issued	Comment
GWL	Draft	May 12, 2023	Issued for Client Review
GWL	Draft_Rev1	June 12, 2023	Issued to Client
GWL	Final	July 3, 2023	Issued to Client

Table of Contents

1.0	EXEC	EXECUTIVE SUMMARY1					
2.0	INTRO	DDUCTION	.2				
	2.1	Site Description	.2				
	2.2	Property Ownership	.2				
	2.3	Current and Proposed Future Uses	.2				
	2.4	Applicable Site Condition Standard	.2				
3.0	BACK	GROUND INFORMATION	.3				
	3.1	Physical Setting	.3				
	3.2	Past Investigations	.3				
	3.2.1	Phase One ESA, May 2023	.3				
	3.2.2	2015 Phase II ESA	.5				
	3.2.3	2013 Phase I ESA	.6				
4.0	SCOP	E OF THE INVESTIGATION	.7				
	4.1	Overview of Site Investigation	.7				
	4.2	Media Investigated	.8				
	4.3	Phase One Conceptual Site Model	.8				
	4.4	Deviations from Sampling and Analysis Plan	.9				
	4.5	Impediments	.9				
5.0	INVES		.9				
	5.1	General	.9				
	5.2	Drilling	.9				
	5.3	Soil: Sampling	10				
	5.4	Field Screening Measurements	10				
	5.5	Groundwater: Monitoring Well Installation	11				
	5.6	Groundwater: Sampling	11				
	5.7	Sediment: Sampling	12				
	5.8	Analytical Testing	12				
	5.9	Residue Management Procedures	12				
	5.10	Elevation Surveying	12				

July 2023

	5.11	Quality Assurance and Quality Control Measures	.12
6.0	REVIE	W AND EVALUATION	.13
	6.1	Geology	.13
	6.2	Groundwater: Elevations and Flow Direction	.14
	6.3	Groundwater: Hydraulic Gradients	.15
	6.4	Soil: Field Screening	.15
	6.5	Soil: Quality	.15
	6.6	Groundwater: Quality	.16
	6.7	Sediment: Quality	.16
	6.8	Data Quality Review	.16
	6.9	Phase Two Conceptual Site Model	.18
7.0	CONC	LUSIONS	.25
8.0	REFE	RENCES	.26
9.0	LIMIT	ATIONS AND USE OF REPORT	.26
10.0	SIGNA	ATURES	.27

APPENDED TABLES

- Table 1: Monitoring Well Construction Details
- Table 2: Groundwater Elevation Monitoring
- Table 3: Summary of Soil Samples Submitted for Analysis
- Table 4: Summary of Groundwater Samples Submitted for Analysis
- Table 5A: Soil Analytical Results Metals and Inorganics
- Table 5B: Soil Analytical Results Polycyclic Aromatic Hydrocarbons (PAH)
- Table 5C: Soil Analytical Results Petroleum Hydrocarbons (PHC)
- Table 5D: Soil Analytical Results Volatile Organic Compounds (VOC)
- Table 6A: Groundwater Analytical Results Polycyclic Aromatic Hydrocarbons (PAH)
- Table 6B: Groundwater Analytical Results Petroleum Hydrocarbons (PHC)
- Table 6C: Groundwater Analytical Results Volatile Organic Compounds (VOC)
- Table 6D: Groundwater Analytical Results Metals
- Table 7A: Relative Percent Difference in Metals in Soil
- Table 7B: Relative Percent Difference in Metals in Groundwater

FIGURES

Figure 1: Key Plan

Figure 2: Phase Two Property Site Plan

Figure 3: Potentially Contaminating Activities

Figure 4: Investigation Locations and Areas of Potential Environmental Concern

Figure 5: Shallow Groundwater Elevations and Interpreted Groundwater Flow Direction

Figure 6: Metals Analysis and Exceedances in Soil

Figure 7: Petroleum Hydrocarbons, Polycyclic Aromatic Hydrocarbons, Volatile Organic Compounds Analysis and Exceedances in Soil

Figure 8: Volatile Organic Compounds Analysis and Exceedances in Groundwater

Figure 9: Metals, Petroleum Hydrocarbons, Polycyclic Aromatic Hydrocarbons, Analysis and Exceedances in Groundwater

Figure 10: Cross Section A-A' Parameters in Soil

Figure 11: Cross Section B-B' Parameters in Soil

Figure 12: Cross Section A-A' Parameters in Groundwater

Figure 13: Cross Section B-B' Parameters in Groundwater

APPENDICES

APPENDIX A Plan of Survey

APPENDIX B Borehole Logs

APPENDIX C Certificates of Analysis

1.0 EXECUTIVE SUMMARY

WSP Canada (WSP) was retained by The Canada Life Assurance Company c/o GWL Realty Advisors Inc.(GWL) to conduct a Phase Two Environmental Site Assessment (Phase Two ESA) of the property located at 170 Slater Street in Ottawa, Ontario, (the "Site" or "Phase Two Property") as shown on Figure 1 (Site Plan). It is WSP's understanding that GWL intends to redevelop the Phase Two Property into a mixed-use commercial-residential development with two stories of underground parking. The site is currently developed with a three and a half story above ground parking garage.

WSP previously completed a Phase One ESA for the Site, the results of which were documented in the report titled "*Phase One Environmental Site Assessment, 170 Slater Street, Ottawa, Ontario*", dated May 2023. Based on the findings of the Phase One ESA, WSP recommended a Phase Two ESA investigation to investigate the six identified areas of potential environmental concern (APECs).

The six APECs were investigated as part of the Phase Two ESA. Concentrations of electrical conductivity (EC), sodium adsorption ratio (SAR), Petroleum hydrocarbon (PHC) fractions 1 and 2 (F1 and F2), boron (Hot Water Soluble), barium, cobalt, lead, selenium, mercury, thallium and vanadium in soil, and chloroform in groundwater were identified at the Phase Two Property exceeding the applicable Ministry of Environment, Conservation and Parks (MECP) Table 3 Site Condition Standards, for residential land use and coarse textured soil(Table 3 SCS). The following parameters identified at concentrations above the Table 3 SCS are not attributed to past contaminating activities on the Phase Two Property or in the surrounding area and are therefore not considered exceedances of the Table 3 SCS as per section 49(1) of O.Reg. 153/04:

- Concentrations of barium, cobalt, thallium, and vanadium above the Table 3 SCS that were detected in native soil samples from the site are considered representative of background concentrations in marine clay deposits that are common throughout the Ottawa region (Geofirma, 2018).
- Concentrations of EC and SAR in soil above the Table 3 SCS in soil are attributed to the extensive use of road salt both on and off the site to maintain safe driving/walking conditions. In addition, elevated concentrations of these parameters are relatively common in the Champlain Sea deposits (Geofirma, 2018).
- Chloroform detected in groundwater collected from both monitoring wells installed in APEC 5 is attributed to the use of treated municipal water during drilling. No other parameters at concentrations above the Table 3 SCS were identified in groundwater samples analysed as part of the Phase Two investigation.

Some additional assessment of soil and groundwater conditions at the site is recommended to refine impacted areas and determine the influence of seasonal groundwater variations on groundwater contamination (if any).

Remediation of the Site to address the identified exceedances of the Table 3 SCS would be required in order to obtain a Record of Site Condition.

2.0 INTRODUCTION

2.1 Site Description

WSP was retained by The Canada Life Assurance Company c/o GWL Realty Advisors Inc. (GWL) to conduct a Phase Two Environmental Site Assessment ("Phase Two ESA") of the following property:

Municipal Address	170 Slater Street
Size of the Phase Two Property	0.42 hectares

The location of the Phase Two Property is provided in the appended Figure 1. A plan of survey for the Site is provided in Appendix A. The boundaries of the Phase Two Property are provided in Figure 2.

2.2 Property Ownership

The Phase Two Property is owned by The Canada Life Assurance Company as represented by Andrew Hanna. The contact information for Andrew Hanna is provided in the following table.

Project Contact:	Andrew Hanna
Address:	33 Yonge Street, Suite 1000, Toronto, ON, M5G 1G4
Phone Number:	416-507-2809

2.3 Current and Proposed Future Uses

The Site is currently occupied by a three and a half or seven staggered storey commercial aboveground parking garage with the lower level set one half storey below grade. The parking garage was reportedly constructed in 1985.

WSP understands that the Site will be undergoing future redevelopment to a multi-use high-rise commercial and residential building with two levels of underground parking.

2.4 Applicable Site Condition Standard

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 3 generic site condition standards in a non-potable groundwater condition (residential/parkland use, coarse soil texture) presented in the MECP document *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"*, dated April 15, 2011, herein referred to as the Table 3 SCS. The Table 3 SCS were selected based on the following rationale:

- The closest water body is The Ottawa River, located approximately 0.5 km north of the Site.
- No Areas of Natural or Scientifical Interest (ANSI) are known to be present within the Phase Two Property.
- There are no water supply wells present on the Phase Two Property and potable water for the surrounding area is supplied by the piped municipal (City of Ottawa) water distribution system.
- No features have been identified at the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41 of O.Reg 153/04.
- The pH of surface soil is between 5 and 9 and the pH of sub-surface soil meets the requirement of being between 5 and 11 (Section 6.4).
- The intended use for the Phase Two Property is commercial and residential.
- The overburden thickness is greater than 2 metres across the Phase Two Property.

3.0 BACKGROUND INFORMATION

This section presents the background conditions of the Phase Two Property including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in or under the Site. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Phase Two Property.
- Conducting field sampling for all contaminants of concern ("COCs") associated with each APEC identified in the Phase One ESA.

3.1 Physical Setting

The nearest surface water body the Ottawa River, located approximately 0.5 km north of the Phase Two Property. There are no areas of natural significance within the 250 m of the Phase Two Property. Land uses surrounding the Phase Two Property include mostly commercial and residential, as shown in Figure 2.

Bedrock in the area consists of shale of the Billings Formation, and a significant fault extends in a northwestsoutheast direction across the middle of the Phase Two Property. Overburden at the Site and in the surrounding area is described as offshore marine deposits consisting of clay, silty clay and Groundwater flow direction is inferred to be towards the north toward the Ottawa River.

The topography of the Site and surrounding areas is generally flat. The Site grade is at the same level relative to adjoining properties. Site specific geologic and hydrogeologic information is presented in Section 6.

3.2 Past Investigations

WSP completed a Phase One ESA for the Site in May 2023. The Phase One ESA was conducted and reported in accordance with O.Reg 153/04. As part of the Phase One ESA, past reports completed by Golder Associates (now WSP) were consulted to develop an understanding of the environmental condition at the Site and surrounding properties. All of the past investigations/reports completed for the Site by WSP/Golder were conducted under the supervision of a Qualified Person (QP) employed by WSP/Golder who meets the requirements to oversee Phase One and Two ESAs in Ontario as specified by O.Reg. 153/04. The reports can therefore be relied upon by WSP for the purposes of this Phase Two ESA.

3.2.1 Phase One ESA, May 2023

WSP conducted a Phase One ESA entitled, "*Phase One Environmental Site Assessment, 170 Slater Street, Ottawa, Ontario*", dated May 2023, to assess the likelihood of soil and/or groundwater contamination resulting from historical or present activities at the Site and/or in the surrounding area. This included a review of available historical information for the Site and the surrounding area within 250 m, and a Site reconnaissance.

As part of the historical information review, WSP referenced the following two reports which were completed by Golder (now WSP):

- Phase I Environmental Site Assessment 269 Laurier Avenue West & 170 Slater Street, Ottawa, Ontario", project number 12-1185-0092 (6900), prepared by Golder for Great-West Life Assurance Company and London Life Insurance Company c/o GWL Realty Advisors Inc, dated December 2013 (2013 Phase I ESA).
- Phase II Environmental Site Assessment 269 Laurier Avenue West & 170 Slater Street, Ottawa, Ontario", project number 12-1185-0092 (6900), prepared by Golder for Great-West Life Assurance Company and London Life Insurance Company c/o GWL Realty Advisors Inc, dated August 2015 (2015 Phase II ESA).

More detailed information from the 2015 Phase II ESA, which is relevant to the current Phase Two ESA is provided in Section 3.2.2.

Based on the information obtained through the completion of the Phase One ESA, multiple on and off-Site (within the phase one study area) potentially contaminating activities (PCAs) with the potential to generate contaminants of potential concern (COPC) including petroleum hydrocarbons (PHC), benzene, toluene, ethylbenzene, and xylenes (BTEX), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), and metals were identified. Given the location of PCAs and known/inferred geologic and hydrogeologic conditions at the Site, WSP identified six areas of potential environmental concern (APECs) on the Site as summarized in the following table. As APECs were identified on the Phase One Property, a Phase Two ESA was recommended.

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (groundwater, soil and/or sediment)
APEC 1 – Fill of unknown quality.	Entire Site	#30. Importation of Fill Material of Unknown Quality (on-Site).	On-Site	Metals, PAHs, PHCs/BTEX	Soil
APEC 2 – Location of former Mid-City Ribbon and Carbon Manufacturing Ltd Eclipse Plating Service c. 1920-1940, and unnamed printer c. 1901	NW Corner of Site	#31. Ink Manufacturing, Processing and Bulk Storage #33. Metal treatment, coating plating and finishing	On-Site/ Off-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
Offsite PCAs to the west and south.		#8. Chemical Manufacturing, Processing and Bulk Storage			
APEC 3 – Previous location of auto repair garage. Historical PHC impacts to the north.	West side of property, laneway	#10. Commercial Autobody Shops (on-site)	On-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
APEC 4 – Previous location of USTs. Former dry-cleaning facilities up-gradient (SE) of Site.	NE Corner of Site	#28. Gasoline and Associated Products Storage in Fixed Tanks (on-site)	On-Site/ Off-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
		#37. Operation of Dry-Cleaning Equipment (where chemicals are used) (off-site)			

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (groundwater, soil and/or sediment)
APEC 5 – Previous on-Site machine shop, manufacturing, and auto repair garage.	Centre of Site	#10. Commercial Autobody Shops (on-site) #34. Metal Fabrication	On-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
APEC 6 – Previously documented VOC impacts in groundwater. Three former USTs south of the Site.	South central part of Site	#28. Gasoline and Associated Products Storage in Fixed Tanks (off-site)	On-Site/ Off-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater

3.2.2 2015 Phase II ESA

A Phase II ESA was completed for 170 Slater Street (Phase Two Property), and the adjacent property at 269 Laurier Avenue West with field work being completed in 2014-2015. The purpose of the Phase II ESA was to determine the presence/albescence of contaminants of potential concern (COPC) in soil and groundwater in accordance with the recommendations of a Phase I ESA that was completed by Golder in 2013.

Field investigations supporting the Phase II ESA were carried out between October 2014 and May 2015. The following salient points were noted from the review of the 2015 Phase II ESA:

- A total of five boreholes were drilled in fall 2014, three of which were completed as monitoring wells. One borehole was located in the laneway between the two properties, while the four other boreholes were located inside of the parking structure at 170 Slater Street.
- Soil samples were collected at regular intervals from each of the boreholes, and one or two worst case (based on screen results) soil samples from each borehole were submitted for laboratory analysis of the following parameters: petroleum hydrocarbon (PHC) fractions 1 to 4 (F1-F4), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and select metals.
- Groundwater sampling was conducted in November 2014 and May 2015. All three monitoring wells were found to be dry in 2014. In 2015, only MW14-02 contained enough groundwater to collect a sample. The sample collected from MW14-02 was analysed for PHCs F1 to F4, VOCs, PAHs, and dissolved metals,

Based on the results of the 2015 Phase II ESA Golder offered the following conclusions:

Based on the 2014 soil sample results, no soil impacts above the MOE Table 3 Standards were identified in fill and native soil below the parking garage at 170 Slater Street which was historically occupied by industrial works and an automobile repair garage, and potentially adjacent to USTs.

- Shallow soil samples recovered from the fill below the laneway between 269 Laurier and 170 Slater, from BH14-01, did not contain concentrations of PHCs F1 to F4, VOCs, PAHs or metals above the Ministry of Environment (MOE) Table 3 Standards. However, native soil recovered at BH14-01 between 3.81 4.24 meters below ground surface (mbgs) did contain concentrations of PHC fractions F1 and F2 above the MOE Table 3 Standards.
- Groundwater quality at 170 Slater Street was not assessed in 2014, as all installed monitoring wells were dry, or blocked. In 2015, MW14-01 and MW14-03 were dry, but a groundwater sample was collected from MW14-02 (located near the south Site boundary) and contained measurable concentrations of VOCs (cis-1,2-dichloroethylene, tetrachloroethylene and trichloroethylene) above the MOE Table 3 Standards.

3.2.3 2013 Phase I ESA

A Phase I ESA was completed for 170 Slater Street and the adjacent property to the west at 269 Laurier Avenue West. Based on the review of the 2013 ESA the 170 Slater Street property, or the Site, was occupied by a three and a half storey, or seven staggered level aboveground parking garage.

The following previous environmental site assessment and remediation reports were provided to, and reviewed by Golder as part of the 2013 Phase I ESA:

- Phase II Environmental Site Assessment, Parking Garage and Adjacent Parking Lot, 170 and 190 Slater Street, Ottawa, Ontario (E2434-1), dated June 24, 2002, completed by John D. Paterson and Associates Limited (Paterson) and prepared for Arnon Corporation (Arnon) (2002 Paterson Phase One-II ESA Report).
- Supplemental Phase II ESA, 269 Laurier Avenue West (E2434-2), dated February 17, 2003, completed by Paterson and prepared for GWLRA (2003 Paterson Phase II ESA Report).
- Environmental Site Remediation, 269 Laurier Avenue West, Ottawa, Ontario (E2434-3), dated November 6, 2003, completed by Paterson and prepared for GWLRA (2003 Paterson Site Remediation Report).
- Phase I Environmental Site Assessment, 269 Laurier Avenue West, Ottawa, Ontario, March 4, 2008, completed by RiskCheck Environmental Ltd. ("RiskCheck") and prepared for GWLRA (2008 RiskCheck Phase One ESA Report).
- Phase I Environmental Site Assessment Update, 269 Laurier Avenue West, Ottawa, Ontario, January 7, 2011, completed by RiskCheck and prepared for GWLRA (2011 RiskCheck Phase One ESA Update Report).

Based on the information obtained as described in the 2013 Phase I ESA, Golder identified the following issues of potential environmental concern:

- Historical Site Summary: The presence of a former repairs garage, a former machine shop, a former gasoline service station (identified in the 2002 Paterson Phase II ESA Report but this finding could not be corroborated by Golder during the historical review), and the former generation of oil skimmings and sludges as waste.
- Historical Summary (Surrounding Properties): The former/current presence of multiple dry cleaners, retail fuel outlets, auto repair garages, industrial facilities, USTs, and generators of many types of registered wastes, as well as spills of various types of contaminants, including diesel fuel, furnace oil, and hydraulic oil.

Golder recommended that a Phase II ESA be conducted at the Site to further assess the above-noted issues of concern related to the historical uses of the site and surrounding properties, and to confirm current site conditions that were previously assessed over 10 years previous as documented in the 2002 Paterson Phase II ESA Report, 2003 Paterson Supplemental Phase I Report and 2003 Paterson Site Remediation Report. Additionally, the issues of concern related to then current and historical records of underground storage tanks, generation of various types of registered wastes and spills of various contaminants on surrounding properties (in particular those to the south or west of the Site, inferred as up- and cross- to up-gradient of the Site, respectively, and to the east of the site, where USTs may have been very close to the Site boundary).

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The Phase Two ESA investigation activities were completed between March 9, 2023, and April 4, 2023. The investigation included the following tasks:

- Health and Safety Plan: Preparation of a Health and Safety Plan for internal and subcontractor use prior to initiating any field work at the Site.
- **Utility Clearances**: Coordination of utility clearances with local utility companies along with retaining the services of a private locator to assess for possible services in the areas of the proposed test locations.
- Borehole Advancement and Monitoring Well Installation: The borehole drilling and monitoring well installation program included drilling of six boreholes, each completed as groundwater monitoring wells, all of which were used for groundwater sampling at the Site. The locations of the boreholes and monitoring wells are provided in Figure 4. The monitoring well construction details are presented in the appended Table 1.
- Soil Sampling: Soil samples were collected during the advancement of the boreholes. Selected soil samples were submitted for chemical analysis of one or more of the following: petroleum hydrocarbons ("PHCs"), volatile organic compounds ("VOCs"), polycyclic aromatic hydrocarbons ("PAHs") and metals.
- Groundwater Monitoring and Sampling: Groundwater samples were collected on March 22, March 29, April 3, and April 4, 2023. Groundwater samples were submitted for analysis of one or more of the following: PHCs, PAHs, VOCs, and metals.
- **Surveying**: An elevation survey of the monitoring wells ground surface and top of pipe was completed on March 22, 2023.
- Reporting: WSP compiled and assessed the field and laboratory results from the above noted activities into this report.

The Phase Two investigation was carried out in general accordance with WSP's standard operating procedures, which conform to the requirements of O. Reg. 153/04. The data from the Phase Two ESA investigation completed by WSP at the Site were incorporated into a single Phase Two ESA report following the Phase Two ESA report format required by O. Reg. 153/04.

There were no impediments or access limitations that in the opinion of the Qualified Person ("QP") would affect the conclusions of this Phase Two ESA report.

4.2 Media Investigated

To address the potential environmental issues identified in the Phase One ESA, the Phase Two ESA field program included sampling of soil and of groundwater from boreholes and monitoring wells completed within the overburden at the Site. No sediment was present at the Site and therefore no sediment sampling was completed. Summaries of media investigated, and the applicable contaminants of potential concern are provided in the appended Tables 3 and 4.

4.3 Phase One Conceptual Site Model

The following describes the Phase One ESA Conception Site Model (CSM) for the Site based on the information obtained and reviewed as part of this Phase One ESA:

- The Phase One Property consisted of a rectangular parcel of land measuring 0.42 hectares in area.
 An aboveground parking garage was present on the Site.
- A plan of survey was not available for review and would be required to satisfy the requirements of O.Reg. 153/04.
- No areas of natural significance were identified on or within 30 m of the Phase One Property.
- Potable water in the vicinity of the Phase One Property is provided by the city municipal water system.
- At the time of the Phase One ESA, the neighbouring properties within the Phase One Study Area consisted of commercial and residential land uses.
- Overburden at the Site consists of a clayey silty clay over a gravelly sand.
- Bedrock beneath the site consists of shale.
- Groundwater flow is inferred to be to the north, toward the Ottawa River.
- The closest water body is the Ottawa River, located approximately 0.5 km north of the Site.
- At the time of the Phase One ESA, the surrounding properties within the Phase One Study Area included:
 - West: 19 storey BMO building with outdoor and underground parking.
 - North: To the north of the property is Slater Street, followed by a hotel with underground parking, a hair salon, an architectural firm, and a Tim Hortons restaurant.
 - South: Laurier Ave, followed by an indoor shopping mall/market.
 - East: A commercial building with several retail stores.
- Fifty-Eight Potentially Contaminating Activities (PCAs) were identified in the Phase One Study Area, four of which were on the Phase One Property, as shown on Figure 3. Based on site characteristics and the locations of the PCAs, a total of six Areas of Potential Environmental Concern ("APECs") were identified for the Phase One Property as shown on Figure 4.
- Electrical power is distributed through underground services.
- Soil at the Site consists primarily of offshore marine deposits consisting of clay, silty clay, and silt. Bedrock in the area consists of shale of the Billings Formation, and that a significant fault extends in a northwest-southeast direction across the middle of the Site.

4.4 Deviations from Sampling and Analysis Plan

There were no material deviations to the Phase Two ESA requirements set out in O.Reg. 153/04. All soil and groundwater sampling was conducted in accordance with WSP standard operating procedures. It is noted that PAHs were not included in the initial analysis plan for groundwater samples collected from all monitoring wells. The analytical suit was expanded to include PAHs after additional information was gathered through record review being conducted as part of the concurrent Phase One ESA (WSP, 2023). Monitoring wells MW22-02 and MW22-05, which were initially sampled on March 22, 2023, were therefore re-sampled to facilitate the collection PAH samples on March 29, 2023.

Monitoring well MW14-02, which was installed as part of the 2015 Phase II ESA (Golder, 2015) was sampled twice for VOC parameters as part of the Phase Two ESA. The initial sample was collected on March 22, 2023, and an additional sample was collected on April 4, 2023, to confirm the initial analytical result. The re-sampling was deemed necessary as groundwater from MW14-02 had historically contained concentrations of several VOC parameters exceeding the applicable Table 3 SCS.

4.5 Impediments

Physical impediments to the Phase Two ESA investigation were encountered on February 14, 2023, when locating the groundwater wells. Due to underground utilities the location of MW23-02 that was proposed in the sampling plan had to be moved from the outdoor laneway to the inside of the garage.

5.0 INVESTIGATION METHOD

5.1 General

The following sections describe the field investigation methods employed during the Phase Two ESA. The field work was conducted between March 7, 2023, and April 4, 2023. Some field activities occurred concurrently with the completion of the Phase One ESA.

Prior to initiating the field work, WSP developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. An assessment of potential health and safety hazards at the Phase Two Property and those associated with the proposed work was completed each day of the field program. A health and safety tailgate meeting was held with WSP's subcontractors each day prior to commencement of the field work. The document was reviewed and signed on-Site by field personnel prior to commencing work. Additionally, prior to any intrusive investigations, including drilling, WSP completed public and private utility clearances.

5.2 Drilling

Between March 7 and March 24, 2023, seven boreholes (MW23-01, MW23-02, BH23-02A, MW23-03, MW23-04, MW23-04A, and MW23-05) were advanced to depths of 4.80 to 16.86 metres below ground surface (mbgs). Six of the seven boreholes were completed as monitoring wells. Borehole BH23-02A was advanced to obtain SPT N values; it was backfilled upon completion. Borehole locations are provided on the appended Figure 4 and borehole logs are provided in Appendix B. A description of the quality assurance/quality control (QA/QC) measures taken to minimize the potential for cross-contamination between sampling locations is provided in Section 5.11.

Boreholes were advanced under the supervision of WSP personnel by Strata Drilling Group (Strata). Exterior boreholes were advanced using a track mounted Massenza MI3 drill rig, interior boreholes were advanced using either a Massenza MSPT portable drill rig or a Geoprobe 420m portable drill rig. At each drilling location, continuous soil cores were collected using a dual tube sampler for field screening (including visual inspection and field measurement of headspace concentration), soil sample collection and stratigraphic logging by WSP field personnel. Bedrock drilling was accomplished using a combination of coring and hammering techniques.

5.3 Soil: Sampling

Soil samples were collected from the dual tube samplers and split in the field into two components. One component was placed into laboratory-prepared containers with minimal headspace and stored in a cooler for potential laboratory analysis. The second component was placed inside a plastic bag for field screening including noting the soil description, and the presence of any staining, odour and/or debris. A photoionization detector (RKI Eagle 2) calibrated to 100 parts per million (ppm) isobutylene was used to measure the total organic vapour concentration in the headspace in the sealed plastic bag. Samples were collected approximately once for every 0.61 m of borehole advancement in addition to whenever there was an observed change in soil stratigraphy and/or evidence of potential contamination (e.g. staining, debris).

At least three soil samples were submitted from each test location. Where the results of field screening indicated the presence of potentially impacted soil, an additional soil sample at greater depth was submitted for laboratory analysis in effort to vertically delineate impacts.

Soil samples representing potential "worst-case" conditions based on the field headspace screening measurements, visual observations (e.g., staining, discoloration and/or free product, if any), and olfactory observations (if any) and fill material collected from each borehole location were selected for laboratory analysis. Three to four samples were selected from each borehole for laboratory analysis. Soil samples were submitted to the analytical laboratory under chain-of-custody procedures. A summary of the soil samples submitted for analysis is provided in the appended Table 3.

5.4 Field Screening Measurements

Field measurements of sample headspace concentrations were made using the equipment specified in the table below:

Equipment	Parameters Detected	Detection Limit	Precision	Accuracy	Calibration Standard
RKI Eagle 2	Combustible gas (CG)	0-50,000 ppm	NA	±5%	Hexane (100 ppm)
RKI Eagle 2	Total organic vapour (TOV)	0-2,000 ppm	NA	±5%	Isobutylene (100 ppm)

Instruments were calibrated daily, with daily calibration checks completed by WSP.

One soil sample representing "worst-case" conditions at each sampling location was selected for laboratory analysis based on the soil headspace screening measurements, visual observations (e.g., staining, discoloration and/or free product, if any), and olfactory observations (if any). Soil screening results are provided in the following table.

Location	Sample ID	Depth	TOV (ppm)	CG (ppm)	Observations
MW23-01	SA01	0.15-0.46	0	0	
	SA02	0.76 – 1.37	0	0	
	SA03	1.52 – 2.13	0	0	
	SA04	2.29 – 2.91	0	0	
	SA05	3.05 – 3.66	0	0	
	SA06	3.81 – 4.22	0	0	
MW23-02	SA01	0.05 – 0.46	0	1	
	SA02	0.61 – 1.22	0	1	
	SA03	1.22 – 1.83	0	1	
	SA04	1.83 – 2.08	0	0	
	SA05	2.44 - 3.66	0	0	

Location	Sample ID	Depth	TOV (ppm)	CG (ppm)	Observations
MW23-03	SA01	0.05 – 0.36	0	0	
	SA02	0.61 – 1.22	0	0	
	SA03	1.22 – 1.83	10	0	
	SA04	1.83 – 2.44	5	0	
	SA05	2.44 - 3.05	5	0	
	SA06	3.05 – 3.66	5	0	
	SA07	3.66 - 3.86	10	0	
MW23-04A	SA01	0.05 – 0.38	0	0	
	SA02	0.61 –1.07	0	0	
	SA03	1.07 – 1.22	0	1	
	SA04	1.22 – 1.83	0	2	
	SA05	1.83 – 2.44	10	0	
	SA06	2.59 – 3.05	15	0	
	SA07	3.05 – 3.66	35	0	
	SA08	3.66 – 4.27	10	0	
	SA09	4.27 – 4.88	20	0	
	SA10	4.88 – 5.18	20	1	
MW23-05	SA01	0.05 – 0.46	0	0	
	SA02	0.61 – 1.07	0	0	
	SA03	1.07 – 1.83	0	0	
	SA04	2.44 - 3.66	135	1	
	SA05	3.66 – 4.27	0	0	
	SA06	4.27 – 4.50	0	0	

5.5 Groundwater: Monitoring Well Installation

Groundwater monitoring wells were installed by Strata using threaded, schedule 40, polyvinyl chloride ("PVC") well screens and riser pipe, which were brought to the Site in sealed plastic bags. The annular space was filled with silica filter sand to at least 0.3 m above the well screen. The monitoring well was sealed with bentonite from the top of the sand pack to ground level and completed with a flush mount protective well casing. The riser pipes were sealed with a J-plug. A description of the QA/QC measures taken to minimize the potential for cross-contamination between sampling locations is provided in Section 5.11.

Following drilling, the monitoring wells were developed by removing ten well volumes using dedicated Waterra® pumps (tubing with foot valves). During monitoring well development, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odours. Water purged from all of the well locations was observed to have a high amount of suspended sediment; however, no evidence of potential contamination was noted.

5.6 Groundwater: Sampling

The six newly installed monitoring wells and previously installed monitoring well MW14-02 were included in the groundwater sampling program. MW14-02 was installed as part of the 2015 Phase II ESA (Golder, 2015) and was found to be in good condition in 2023. Concentrations of several VOC parameters exceeding the applicable regulatory limits were identified in this well during the previous Phase II ESA.

Each monitoring well was purged prior to sample collection. During purging, qualitative observations were made of water colour, clarity, and the presence of hydrocarbon sheen or odour. Purging was completed by pumping at least three well volumes or, where the well was considered a "low-yield" monitoring well, by

purging at least one half of the well volume. Groundwater sampling was carried out on March 22, March 29, April 3, and April 4, 2023. Multiple sampling deployments were required due to low yields of wells, additional information obtained through the concurrent Phase One ESA process which identified the need to analyse additional parameters, and/or to resample wells to confirm initial analytical results. Sampling deployments are summarised in the table below:

Date	Wells Sampled	Parameters
March 22, 2023	MW23-02, MW23-05	VOC, metals, PHC, BTEX
	MW14-02	VOC
March 29, 2023	MW23-03, MW23-04, MW23-04A	VOC, metals, PHC, BTEX, PAH
	MW23-02, MW23-05	РАН
April 3, 2023	MW23-01	VOC, metals, PHC, BTEX, PAH
April 4, 2023	MW14-02	VOC

Groundwater samples were placed in laboratory-prepared containers and stored in a cooler until delivery to the analytical laboratory under chain-of-custody procedures. A summary of the groundwater samples submitted for analysis is presented in the appended Table 4.

5.7 Sediment: Sampling

No sediment samples were collected as part of this investigation.

5.8 Analytical Testing

The contact information for the analytical laboratory: AGAT Laboratories, 5835 Coopers Avenue, Mississauga, Ontario, L4Z 1Y2 (905-712-5100).

The analytical laboratory is accredited in accordance with the International Standard ISO/IEC 17025 (General Requirement for the Competence of Testing and Calibration Laboratories, May 5, 2005, as amended) and the standards for proficiency testing developed by the Standards Council of Canada, the Canadian Association for Laboratory Accreditation (CALA) or another accreditation body accepted by the MECP.

5.9 Residue Management Procedures

All residues produced during the investigation (e.g., soil cuttings from drilling, groundwater from well development purging, wash water from equipment decontamination) were placed in sealed drums and stored at the Phase Two Property for eventual disposal by the owner.

5.10 Elevation Surveying

Elevations were determined relative to a Temporary Benchmark. The Temporary Benchmark was set as the top of the catch basin located outside the main garage entrance.

5.11 Quality Assurance and Quality Control Measures

WSP's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities.
- All monitoring wells were developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling.

- Monitoring wells were appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable.
- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples.
- Initial calibration of field equipment was performed at the start of each field day, with a daily check of calibration, as needed, using a standard of known concentration.
- Soil and groundwater samples were handled and stored in accordance with the sample collection and preservation requirement of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act", July 1, 2011. Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody.
- Dedicated sampling equipment (tubing and foot valves) and clean disposable Nitrile[™] gloves were used at each sampling location to prevent potential cross-contamination. All non-dedicated sampling equipment (e.g., water level meters, split spoons) was decontaminated between sampling locations. Sampling equipment in contact with soil, or groundwater was: cleaned by mechanical means; washed with a phosphate-free, laboratory-grade detergent (e.g., Alconox) and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analyte-free water.
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses.
- The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

Date	Media	Sample ID	Duplicate ID	Trip Blanks
March 10, 2023	Soil	MW23-02 SA06	DUP-01	NA
March 15, 2023	Soil	MW23-04 SA06	DUP-01	NA
March 22, 2023	Groundwater	MW23-05 (Metals, PHCs, VOCs)	DUP-01	NA
March 22, 2023	Groundwater	MW23-03 (PAHs only)	DUP-01	NA

A summary of the primary and duplicate samples is found below in the following table:

6.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, monitoring, and sampling activities conducted as part of the Phase Two ESA.

6.1 Geology

The soil conditions encountered during the borehole drilling program are presented in the borehole logs (Appendix B). The following presents a summary of the subsurface soil conditions encountered during the investigation.

The ground surface at all the borehole locations was asphalt covered with asphalt thickness ranging from 0.05 to 0.10 m. Asphalt was underlain by sandy gravel fill material and sand fill material that extended to

depths ranging from 0.46 mbgs at MW23-02 to 1.98 mbgs at MW23-04. Fill material was underlain by native clayey silt and silty clay at all locations except MW23-03 and MW23-05; where encountered, the clayey silt and silty clay extended to depths ranging from 1.83 mbgs at MW23-02/02A to 2.90 mbgs at MW23-01. The native clayey silt/silty clay was underlain by glacial till with varying content of sand, gravel, and silt at all locations except MW23-03 and MW23-05, the glacial till was encountered directly beneath the sand and gravel fill material. Where encountered, the glacial till material extended to the bedrock surface at depths ranging from 2.90 mbgs at MW23-01 to 5.18 mbgs at MW23-04. Bedrock consisted of weathered shale of the Billings formation. The bedrock surface elevation is highest at MW23-01 (69.07 masl) which is located near the northwest corner of the Site in the laneway west of the parking garage, and lowest at MW23-05 (66.12) which is located near the south Site boundary on lower level of the parking garage.

No groundwater was encountered in the overburden at the Site and the permanent water table was present in the weathered/fractured shale bedrock. Given the onsite PCAs identified through the Phase One ESA (WSP, 2023), and known subsurface conditions as described in the 2015 Phase II ESA, assessment of the upper shale aquifer was considered appropriate for most monitoring well locations. At locations MW23-04 and MW23-05, well screens were placed deeper (i.e., below the water table) into the shale aquifer to assess the potential presence of VOC contamination from off-site sources. Shallow wells at these locations (MW23-04A an MW14-02) were also included in the investigation to evaluate the potential presence of light non-aqueous phase liquids (LNAPL) that may have been generated from on or off-Site sources.

6.2 Groundwater: Elevations and Flow Direction

All shallow monitoring wells were used in the interpretation of shallow groundwater contours and shallow groundwater flow direction. Any temporary/seasonal fluctuation in water levels on the Phase Two Property is not anticipated to affect the conclusions of the Phase Two ESA.

The base of the newly installed groundwater monitoring well screens were installed at elevations ranging from approximately 53.93 to 59.02 masl (16.46 to 12.95 mbgs). The location and depth of the screens for the six new monitoring wells were selected based on the issues being investigated and shallow wells were installed based on the perceived location of the water table during drilling. The potentiometric surface at shallow monitoring well MW23-04A was above the top of the well screen on March 29, 2023. A summary of the monitoring well construction details are presented in the appended Table 1. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed during development, purging, or sampling activities.

The elevations of the potentiometric surface at each monitoring well are summarized in the appended Table 2. Groundwater elevations ranged from 59.63 masl at MW23-01 to 62.59 masl at MW23-04A (12.19 to 9.32 mbgs) on March 29, 2023. The measured groundwater elevations suggest a west-north-west flow beneath the site. Groundwater flow direction beneath the Site has not been previously determined as elevation data collected as part of the 2015 Phase II ESA was not considered suitable to determine a flow direction (Golder, 2015), Based on local topography and the position of the Ottawa River relative to the Site, the flow direction was previously assumed to be toward the north. Inferred groundwater elevation contours and groundwater flow direction are shown on the appended Figure 5.

Seasonal fluctuation in water levels and flow direction on the Site should be expected. Given the limited number of monitoring events, seasonal trends could not be identified; however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

The presence of subsurface utilities such as electrical conduits at the Site are not expected to act as preferential pathways promoting the migration of contaminants as the water table is not inferred to intercept buried utilities and subsurface structures at the Phase Two Property.

6.3 Groundwater: Hydraulic Gradients

Based on the groundwater elevations measured on March 29, 2023, the approximate horizontal gradient to the west-northwest across the site is 0.05 m/m.

Vertical gradients at the site are downward based on elevations measured at nested pair MW23-04A/04 which indicate a vertical gradient of 0.38 m/m.

6.4 Soil: Field Screening

The results of headspace vapour measurements are presented in Section 5.4.

6.5 Soil: Quality

The analytical results for soil samples are summarized in the appended Tables 5a to 5d. Certificates of analysis are provided in Appendix C.

All soil samples were analysed for VOCs, PHCs F1-F4, BTEX, PAHs, metals, electrical conductivity (EC) and sodium absorption ratio (SAR). Results for EC exceeded the Table 3 SCS value (0.7 mS/cm) for all of the analysed samples except MW23-01 SA02 (0.15-0.45 mbgs). Results for SAR exceeded the Table 3 SCS value (5) in 11 of the 20 soil samples submitted for analysis. Elevated EC ad SAR in soil are attributed to long term winter road salting activities both at the Site and in the surrounding area but may also be, in part, naturally occurring.

Exceedances of PHC F1 and F2, and various metals parameters were also identified in the on-Site soil as summarized in the table below.

Date	Borehole ID	Sample ID	Sample Depth (mbgs)	Stratigraphy	COC Exceeding SCS	Table 3 SCS (µg/g)	Sample Concentration (µg/g)
March 23, 2023	MW23-01	SA06	3.81 - 4.22	Weathered	Molybdenum	6.9	21.8
				shale	PHC F1	55	113
					PHC F2	98	189
March 10, 2023	MW23-02	SA02	0.61 - 1.22	Silt to clayey silt	Boron (Hot Water Soluble)	1.5	2.19
		SA03	1.22 - 1.83	Clayey silt	Barium	390	504
					Vanadium	86	102
		SA06	3.66 - 4.70	Glacial till	Molybdenum	6.9	12.2
		Dup-01	-				10.3
March 16, 2023	MW23-03	SA06	3.05 - 3.66	Glacial till	Cobalt	22	22.3
					Molybdenum	6.9	18.1
					Thallium	1	1.2
March 14, 2023	MW23-04	SA03	1.22 - 1.83	Sand fill	Barium	390	420
					Lead	120	1290
					Selenium	2.4	2.8
					Mercury	0.27	1.53
March 15, 2023	MW23-04	N23-04 SA04	1.83 - 2.44	Clayey silt to	Barium	390	853
		silty clay		Vanadium	86	88.1	

Based on the groundwater quality results (Section 6.6), the soil does not serve as a contaminant mass contributing to groundwater. The soil quality results are not indicative of the presence of light or dense non-aqueous phase liquids at the site.

6.6 Groundwater: Quality

Monitoring well construction details are summarized in the appended Table 1 and a list of groundwater samples submitted for laboratory analysis is provided in the appended Table 4. The analytical results for groundwater samples are summarized in the appended Tables 6a to 6d. Laboratory certificates of analysis are provided in Appendix C.

The reported concentrations of all contaminants of potential concern in groundwater met the applicable Table 3 SCS except for chloroform in MW22-04A and MW22-04 as shown on the following table.

Date	Borehole ID	Sample ID	Screen Interval (mbgs)	Stratigraphy	COC Exceeding SCS	Table 3 SCS (µg/l)	Sample Concentration (µg/l)
March 29, 2023	MW23-04A	22-04 Shallow	10.06 - 13.10	Weathered/ Fractured Shale	Chloroform	2.4	3.8
March 29, 2023	MW23-04	22-04 Deep	15.34 - 16.86	Weathered/ Fractured Shale	Chloroform	2.4	7.17

Chloroform concentrations measured at these locations are attributed to the breakdown of disinfection agents (chlorine) in municipal water used during drilling. A low concentration of bromodichloromethane, another by-product of water disinfection, was detected in the groundwater sample collected from MW23-04. No other VOCs were detected in groundwater samples collected from the site including samples from previously installed monitoring well MW14-02 where concentrations exceeding the Table 3 SCS were previously detected.

The groundwater results do not indicate that soil serves as a contaminant mass contributing to groundwater. No evidence of free product or sheen in groundwater was observed.

6.7 Sediment: Quality

No sediment samples were collected as part of this investigation.

6.8 Data Quality Review

The quality assurance assessment of the field duplicate sample results was conducted according to the document entitled Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004 (Ontario Ministry of the Environment, Conservation, and Parks) amended in July 2009 and effective as of July 1, 2011) (Analytical Protocol).

Field duplicate samples were collected as part of the sampling program (soil, groundwater). Analytical results for the field duplicate samples are provided in the appended tables 7a (soil) and 7b (groundwater), where the duplicate information is presented along with the primary sample data for comparison. The purpose was to assess the integrity of the samples. The relative percent difference (RPD) between the sample and its duplicate is expressed as an absolute value and is calculated using the following formula:

$$RPD (\%) = \frac{|C_o - C_{dup}|}{(C_o + C_{dup})} x \ 100$$

Where:

Co = Detected concentration in the original sample

 C_{dup} = Detected concentration in the field duplicate sample

RPDs are calculated only if the concentrations of a parameter are greater than the laboratory reported detection limit (RDL) in both the duplicate and original samples. In addition, lower precision in the RPD calculation is expected when concentrations of the analytes are less than five (5) times the RDL. Therefore, RPDs were calculated for the original and duplicate groundwater and soil samples only in cases where the measured concentrations of analytes in both samples were five (5) times greater than the RDL.

The following RPD limits were considered reasonable and are based on Analytical Protocol: RPDs in soil, 50% for metals, 30% for PHCs and PAHs, and in groundwater, 20% for metals, 30% for VOCs and 30% for PHCs and PAHs. Calculated RPDs are provided in Tables 7a and 7b, appended to this report. A summary of RPDs for samples and their corresponding duplicate samples are provided in the table below:

Field Duplicato	Original Sample	Relative percent difference (RPD)					
Duplicate Sample ID	ID	РНС	VOC	РАН	Metals		
	Soil						
DUP-01	MW23-02 SA06	Not calculated due to parameters being less than 5X RDL	Not calculated due to parameters being less than RDL	Not calculated due to parameters being less than RDL	0 – 77.9 %		
DUP-01	MW23-04 SA06		Not calculated due to parameters being less than RDL	Not calculated due to parameters being less than RDL	0 – 40.00 %		
	Groundwater						
DUP-01	MW23-05	Not calculated due to parameters being less than RDL	Not calculated due to parameters being less than RDL	Not calculated due to parameters being less than RDL	5.93 – 12.2 %		

One exceedance of the relevant RPD threshold was reported for copper concentrations in the soil duplicate pair MW23-02 SA06/DUP-01. All other calculated RPDs met the applicable thresholds and/or RPDs were not calculated because parameter concentrations we below 5x the RDL.

Given the RPDs for all other metals parameters in the sample duplicate pair MW23-02 SA06/DUP-01 met the applicable threshold and that the copper concentration did not exceed the Table 3 SCS in either sample from the pair, the elevated RPD result does not materially impact the results of this Phase Two ESA or the conclusions and recommendations predicated on said results.

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of O.Reg 153/04 comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix C. The laboratory did not qualify any of the sample results.

6.9 Phase Two Conceptual Site Model

The Phase Two conceptual site model is presented in the following sections.

POTENTIAL SOURCES OF CONTAMINATION

Potentially Contaminating Activities

Based on the information obtained as part of the Phase One ESA, several on-site potentially contaminating activities (PCAs) were identified as summarised in the table below. A detailed table of PCAs within the Phase One Study Area is provided in Appendix D. PCA locations are shown on Figure 3. PCAs identified on the Phase Two property are summarized in the table below:

Location	ID Number	PCA Description	PCA# (O.Reg, 153/04 Table 2)	Information Source	Rationale for Potential Contribution of the PCA to an APEC
1	1	Campbell Motors (Ottawa) Ltd., 1948- 1963 Frederick Campbell Electric Manufacturing Company, 1920 Automobile Repair Garage, c. 1925- 1956	#10. Commercial autobody shop#28. Gasoline and associated products storage in fixed tanks#34.Metal fabrication.	HLUI, FIPs	Automobile repair shop, and Machine shop (earlier). Two USTs present for gasoline c. 1948. 1 UST present for gasoline c. 1963. Automobile Repair Shop onsite 1925 to 1956 (FIPs). PCA is on-Site and therefore considered as an APEC.
Phase Two Property	2	Mid-City Ribbon and Carbon Manufacturing Limited, 1960. Eclipse Plating Service c. 1920-1940	 #31. Ink Manufacturing, Processing and Bulk Storage #33. Metal Treatment, Coating, Plating and finishing #8. Chemical Manufacturing, Processing and Bulk Storage 	HLUI	Former manufacturing use on Phase One Property considered as a higher risk activity and is therefore considered as an APEC.
3	Automobile Repair Garage, c. 1925- 1956	#10. Commercial autobody shop #28. Gasoline and associated products storage in fixed tanks.	Fire Insurance Plans	PCA is on-Site and therefore considered as an APEC.	
	4	Fill material identified during 2015 Phase II ESA.	#30. Importation of fill of unknown quality	Previous Reports (2015 Phase II ESA)	Fill was likely placed during the development of the Site and is on-Site and therefore considered as an APEC.

Areas of Potential Environmental Concern

A summary of the APECs identified at the Phase One Property is provided in the table below. The location of each APEC is presented in Figure 4.

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	PCA (O.Reg, 153/04 Table 2)	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted
APEC 1 - Fill of unknown quality.	Entire Site	#30. Importation of Fill Material of Unknown Quality (on-site)	On-Site	Metals, PAHs, PHCs/BTEX	Soil
APEC 2 - Location of former Mid-City Ribbon and Carbon Manufacturing Ltd.(1960), Eclipse Plating Service c. 1920-1940, and unnamed printer c. 1901	NW Corner of Site	 #31. Ink Manufacturing, Processing and Bulk Storage #33. Metal treatment, coating plating and finishing #8. Chemical Manufacturing, Processing and Bulk Storage 	On-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
APEC 3 - Previous location of auto repair garage. Historical PHC impacts to the north.	West side of property, laneway	#10. Commercial Autobody Shops (on-site)	On-Site / Off-site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
APEC 4 - Previous location of USTs. Former dry-cleaning facilities up-gradient (SE) of Site.	NE Corner of Site	#28. Gasoline and Associated Products Storage in Fixed Tanks (on-site) #37. Operation of Dry Cleaning Equipment (where chemicals are used) (off-site)	On-Site/ Off-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
APEC 5 - Previous On-Site machine shop, manufacturing, and auto repair garage.	Centre of Site	#10. Commercial Autobody Shops (on-site) #34. Metal Fabrication	On-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater
APEC 6 - Previously documented VOC impacts in groundwater. Three former USTs south of the Site.	South central part of Site	#28. Gasoline and Associated Products Storage in Fixed Tanks (off-site)	On-Site/ Off-Site	Metals, PAHs, PHCs/BTEX, VOCs	Soil and Groundwater

A summary of the investigation for each APEC conducted as part of the Phase Two ESA is as follows:

APEC 1 – The investigation included the collection of five fill samples from APEC 1 (MW23-01 SA02, MW23-03 SA03, MW23-04 SA03, M23-05 SA01, and MW23-05 SA03). The reported concentrations of all COCs for fill samples were below the applicable site condition standards with the exception of the reported concentrations of barium, selenium, lead and mercury from MW23-04 SA03 (1.22-1.83 mbgs).

APEC 2 – The investigation included installation of one monitoring well (MW23-01), collection of three soil samples and one groundwater sample from APEC 2. The reported concentrations of all COCs in soil met the applicable Table 3 SCS with the exception of the reported concentration of PHC F1 and F2, and molybdenum in the soil sample collected from a depth of 3.81 – 4.22 mbgs (MW23-01 SA06). The impacted soil sample was collected from the weathered shale horizon. Concentrations of all COCs met the applicable Table 3 SCS in the groundwater sample collected from MW23-01.

APEC 3 – The investigation included the installation of one monitoring well (MW23-02), collection of three soil samples and one groundwater sample from APEC 3. The reported concentrations of all COCs were below the applicable Table 3 SCS with the exception of boron (hot water soluble) in the soil sample collected from a depth of 0.61 - 1.22 mbgs (MW23-02 SA02), barium and vanadium from a depth of 1.22 – 1.83 mbgs (MW23-02 SA03), and Molybdenum from a depth of 3.66 – 4.70 mbgs (MW23-02 SA06). All the impacted samples were collected from the native silty clay/clayey silt, or glacial till horizons. Concentrations of all COCs met the applicable Table 3 SCS in the groundwater sample collected from MW23-02.

APEC 4 – The investigation included the installation of one monitoring well (MW23-03), collection of four soil samples and one groundwater sample from APEC 4. The reported concentrations of all COCs were below the applicable Table 3 SCS with the exception of cobalt, molybdenum and thallium in the soil sample collected from a depth of 3.05 - 3.66 mbgs (MW23-03 SA06). The impacted soil sample was collected from the native glacial till horizon. Concentrations of all COCs met the applicable Table 3 SCS in the groundwater sample collected from MW23-03.

APEC 5 – The investigation included the installation of two monitoring wells (MW23-04A and MW23-04), collection of four soil samples and two groundwater samples from APEC 5. The reported concentrations of all COCs were below the applicable Table 3 SCS in the soil samples with the exception of barium, selenium, lead and mercury in the soil sample collected from a depth of 1.22 – 1.83 mbgs (MW23-04 SA03), and barium and vanadium from a depth of 3.05 – 3.66 (MW23-04 SA04). The impacted soil samples were respectively collected from the sand fill, and native clayey silt to silty clay horizons. The concentration of chloroform in the groundwater samples collected from MW23-04A and MW23-04 exceeded the Table 3 SCS.

APEC 6 – The investigation included the installation of one monitoring well (MW23-05), the collection of four soil samples and two groundwater samples (one from pre-existing monitoring well MW14-02) from APEC 6. The reported concentrations of all COCs in soil and groundwater were below the applicable site condition standards.

Subsurface Structures and Utilities

There are no significant subsurface utilities at the Site. The south half of the parking garage building is half a story below ground. Subsurface structures and utilities are not expected to affect contaminant distribution and transport at the Phase Two Property. All COCs at concentrations exceeding the Table 3 SCS were identified in soil, no COCs were identified in groundwater and as such any subsurface utilities/structures are not expected to create preferential pathways for contaminant migration.

PHYSICAL SETTING

Stratigraphy

The ground surface at all the borehole locations was asphalt covered with asphalt thickness ranging from 0.05 to 0.10 m. Asphalt was underlain by sandy gravel fill material and sand fill material that extended to depths ranging from 0.46 mbgs at MW23-02 to 1.98 mbgs at MW23-04. Fill material was underlain by native clayey silt and silty clay at all locations except MW23-03 and MW23-05. Where encountered, the clayey silt and silty clay extended to depths ranging from 1.83 mbgs at MW23-02/02A to 2.90 mbgs at MW23-01. The native clayey silt/silty clay was underlain by glacial till with varying content of sand, gravel, and silt at all locations except MW23-03 and MW23-05, the glacial till was encountered directly beneath the sand and gravel fill material. Where encountered, the glacial till material extended to the bedrock surface at depths ranging from 2.90 mbgs at MW23-01 to 5.18 mbgs at MW23-04. Bedrock consisted of weathered shale of the Billings formation. The bedrock surface elevation is highest at MW23-01 (69.07 masl) which is located near the northwest corner of the Site in the laneway west of the parking garage, and lowest at MW23-05 (66.12) which is located near the south Site boundary on lower level of the parking garage.

The depth to bedrock at the site ranged from 2.9 to 5.18 mbgs. The bedrock surface generally slopes downward from northwest to south-southeast.

Given that the average thickness of overburden is greater than 2 m, the Phase Two Property is not considered to be a shallow soil property as defined by O.Reg. 153/04 (as amended).

Hydrogeological Characteristics

No groundwater was encountered in the overburden at the Site, groundwater is present in the weathered shale bedrock, Groundwater flow beneath the Site is inferred to be to the west based on groundwater elevation measured on March 29, 2023. The regional groundwater flow direction is inferred to be towards the Ottawa River.

Depth to Groundwater

Depth to groundwater ranged from 9.32 to 12.19 mbgs (59.63 to 62.59 masl) on March 29, 2023).

SITE CONDITION STANDARDS

Environmentally Sensitive Areas

No areas of natural significance are located within the Phase Two Property. Accordingly, Section 43.1 of the Regulation does not apply to the Phase Two Property.

Shallow Soil Property or Water Body

The depth to beneath the Site ranges from 2.9 to 5.18 mbgs. The Site does not include all or part of a water body and is not adjacent to a water body or include land that is within 30 metres of a water body. Accordingly, Section 43.1 of the Regulation does not apply to the Phase Two Property.

Imported Soil

As identified in previous reports, fill is present across the Site beneath the garage building and the laneway. No other soil has been brought from another property and placed on, in or under the Phase Two Property as part of the Phase Two ESA. Fill samples analysed as part of the Phase Two ESA indicate that fill materials along the east site of the site contain barium, lead, selenium, and mercury at concentrations exceeding the Table 3 SCS.

Proposed Buildings and Other Structures

WSP understands that the Site will be undergoing future redevelopment to a multi-use high-rise commercial and residential building with two levels of underground parking.

DELINEATION OF CONTAMINANT IMPACTS

APEC Where Contaminants are Present at a Concentration Above the Applicable Site Condition Standard

Soil with concentrations of one or more metals COCs exceeding the applicable Table 3 SCS was identified in APECs, 1, 2,3, and 4. Soil with PHCs exceeding the Table 3 SCS was identified in APEC 2. Soil with EC and/or SAR exceeding the Table 3 SCS was identified in all six APECs.

Groundwater collected from APEC 4 contained chloroform above the applicable Table 3 SCS.

Contaminant Distribution

Metals in Soil

Metals COCs at concentrations above the Table 3 SCS including barium, boron (hot water soluble), cobalt, mercury, molybdenum, lead, selenium, thallium, and/or vanadium were identified in soil samples MW23-01 SA06, MW23-02 SA02, MW23-02 SA03, MW23-02 SA06, MW23-03 SA06, MW23-04 SA03 and MW23-04 SA04. Elevated concentrations were detected in soils from all areas of the Site with the exception of the area near the south Site boundary (APEC 6).

Barium, cobalt, and vanadium in the on-Site soil are inferred to originate from the natural deposition of the marine clay (Champlain Sea Deposits) common to the Ottawa region. The maximum concentrations of these parameters detected on-Site fall within the expected range of natural concentrations found in the Champlain Sea deposits as determined through the assessment background samples collected across the Ottawa region (Geofirma, 2018). As such, the concentrations of barium, cobalt, and vanadium are not considered to represent exceedances of the Table 3 SCS at the site as per section 49(1).3 of O. Reg.153/04.

Elevated concentrations of lead, selenium, and mercury in soil are attributed to the placement of poor quality fill materials. Lead, selenium, and mercury concentrations exceeding the Table 3 SCS were only detected in a sample collected from the sand fill on the east side of the Site at MW23-04 (1.22-1.83 mbgs). Boron exceeding the Table 3 SCS at MW23-02 (0.61-1.22 mbgs), may also be associated with fill placement.

Thallium above the Table 3 SCS was detected in one soil sample collected from MW23-03 at a depth 3.05-3.66 mbgs in the native soil; thallium was not detected in soil above this depth indicating that it may be attributed to a natural source; however additional investigation into the source of Thallium at the site is required.

Molybdenum concentrations exceeding the Table 3 SCS were detected in the native soil horizons at depths below 3 mbgs at MW23-01, MW23-02 and MW23-03. Molybdenum concentrations increased with depth at all of the sampling locations included in the Phase Two ESA indicating that molybdenum may be naturally occurring and not the result of former on-Site or off-Site activities; however additional investigation into the source of molybdenum in on-Site soil is required.

The lateral extent of all metals at concentrations exceeding the Table 3 SCS in soil has been coarsely delineated to the south as no exceedances were identified at MW23-05. Concentrations of lead, selenium, and mercury at concentrations above the Table 3 SCS in fill material have been coarsely delineated to the north, south, and west around MW23-04 and have also been vertically delineated at this location as no concentrations of these parameters exceeding the Table 3 SCS were detected in soil samples collected below 1.83 mbgs. The distribution of elevated metals concentrations in soil at the site is shown on the appended Figure 6.

PHCs in Soil

Concentrations of PHC F1 and F2 were identified in a soil sample collected from the weathered shale unit at MW23-01 (MW23-01 SA06) at a depth of 3.81-4.22 mbgs. MW23-01 is located at the northwest corner of the Site, adjacent to where PHC F1 and F2 impacts were previously identified in soil during the 2015 Phase II ESA. Elevated PHC F1 and F2 concentrations are attributed to past on and/or off-Site activities that occurred before the construction of the current parking garage in 1985.

No PHC concentrations were identified in soil above 2.90 mbgs at MW23-01. PHC F1 and F2 impacts in soil have been coarsely delineated to the south and west of MW23-01. The distribution of elevated PHC concentrations in soil is shown on the appended Figure 7.

EC & SAR in Soil

Concentrations of EC and SAR in soil above the Table 3 SCS in soil are attributed to the extensive use of road salt both on and off the site to maintain safe driving/walking conditions. In addition, elevated concentrations of these parameters are relatively common in the Champlain Sea deposits (Geofirma, 2018). As such, the elevated EC and SAR in soil are therefore not considered to represent exceedances of the Table 3 SCS as per section 49(1).1 of O. Reg. 153/04.

Chloroform in Groundwater

Chloroform at concentrations above the Table 3 SCS in groundwater collected from APEC 4 (east side of site), is interpreted to be the result of municipal water used during the drilling process and not the result of any on or off Site PCAs. Chloroform is therefore not considered to represent an exceedance of the Table 3 SCS as per section 49(1).2 of O. Reg. 153/04.

The distribution of VOCs in groundwater is shown on the appended Figure 8.

O. Reg 153/04, Section 49(1)

It is the opinion of the QP based on available data that the following parameters identified in soil or groundwater at the site solely exceeded the Table 3 SCS for one of the reasons specified under section 49(1) of O.Reg 153/04:

- EC and SAR in soil
- Cobalt, barium, and vanadium in soil
- Chloroform in groundwater

The Table 3 SCS is therefore deemed to not have been exceeded for the above noted parameters in the specified media.

Potential Reason for Discharge into the Environment at the Site

Concentrations of lead, selenium, mercury and PHC F1 and F2 exceeding the Table 3 SCS are likely associated with past on-Site activities as described in the APEC table.

Concentrations of molybdenum and thallium exceeding the Table 3 SCS in soil may be attributed to naturally occurring sources given their distribution, however further investigation is required.

Contaminant Migration

None of the COCs were detected in groundwater samples at concentrations exceeding the Table 3 SCS and therefore contaminant migration to groundwater from soil, and in groundwater to off-Site locations is not considered to be an issue at the Site.

Meteorological and Climatic Considerations

Seasonal fluctuation in groundwater levels and flow direction on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified; however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter. VOCs at concentrations exceeding the Table 3 SCS were historically identified in monitoring well MW14-02 near the southern site boundary. Elevated concentrations at this location were attributed to off-site sources in the upgradient area (Golder, 2015). Minor seasonal changes in groundwater flow direction over time could alter the concentrations of COCs detected in wells. It is therefore possible that VOCs could be detected at MW14-02 and/or the deeper nested well MW23-05 in the future. Additional groundwater sampling at the site to assess for VOCs is recommended to evaluate potential seasonal impacts on contaminant distributions.

Soil Vapour Intrusion Pathways

The concentration of PHC F2 detected in soil at MW3-01 exceeds the component value for vapour intrusion into residential indoor air and human exposure via inhalation (98 μ g/g) as specified by the MECP (MECP, 2011). The concentration of PHC F1 detected in soil does not exceed the component value for vapour intrusion and indoor air inhalation.

As all soil is to be removed from the site as part of the future site redevelopment, vapour intrusion and subsequent inhalation resulting from the limited area of PHC F2 impacts at the northwest corner of the Site is not considered a potential issue for the future mixed residential-commercial development.

Given that the above ground parking structure is open-air, and the current site use is commercial, the potential for vapour intrusion and subsequent inhalation is not considered relevant at the Site if the property use remains the same.

POTENTIAL EXPOSURE PATHWAYS AND RECEPTORS

The Site is currently developed with three and a half story above ground parking garage. The ground surface at the site is entirely asphalt covered and the current Site use is commercial. As the entire surface of the site is covered with an impermeable surface and the parking garage is an open-air structure, there are currently no complete potential exposure pathways at the Site by which human or ecological receptors could be exposed to the identified soil contaminants. As no COCs were detected in groundwater at the Site, the soil to groundwater pathway (S-GW3) is considered to be incomplete in relation to COCs above the Table 3 SCS in soil.

The proposed development of the Site will include a mixed commercial-residential development with two stories of underground parking. All of the soil on the Site will be removed as part of the redevelopment. As the impacted soil material will be removed, potential exposure pathways for human and ecological receptors after the Site is redeveloped (including inhalation of indoor air) are considered incomplete.

There is potential for human and/or ecological receptors to be exposed to contaminated soil during the Site redevelopment/remediation. The following receptors and exposure pathways are considered operable during the site redevelopment/remediation:

Human Health

- Inhalation of dust sourced from soil and exposure by a subsurface worker, outdoor worker, and site visitor.
- Dermal exposure to contaminated soil by a subsurface worker, outdoor worker, and site visitor.

Ecological Health

Dermal exposure to contaminated soil by mammals & birds.

7.0 CONCLUSIONS

The Phase Two ESA investigated the six APECs identified in the 2023 Phase One ESA. Soil with concentrations of EC, SAR, multiple metals parameters, and PHC F1 and F2 concentrations exceeding the Table 3 SCS were identified by the Phase Two investigation:

- Concentrations of barium, cobalt, and vanadium above the Table 3 SCS that were detected in native soil samples from the site are considered representative of background concentrations in marine clay deposits that are common throughout the Ottawa region (Geofirma, 2018). As such, concentrations of barium, cobalt, and vanadium on site are not considered exceedances of the Table 3 SCS as per section 49(1).3 of O.Reg. 153/04.
- Concentrations of molybdenum and thallium above the Table 3 SCS were detected in native soil samples at depths greater than 3 mbgs. Detected concentrations of these parameters increased with depth and they were not detected in surficial fill materials. Elevated molybdenum and thallium concentration detected in soil at the site may be attributed to natural sources; however further investigation is required.
- Concentrations of EC and SAR in soil above the Table 3 SCS in soil are attributed to the extensive use of road salt both on and off the site to maintain safe driving/walking conditions. In addition, elevated concentrations of these parameters are relatively common in the Champlain Sea deposits (Geofirma, 2018). As such, the elevated EC and SAR in soil are not considered to represent exceedances of the Table 3 SCS as per section 49(1).1 of O.Reg. 153/04.
- Chloroform detected in groundwater collected from both monitoring wells installed in APEC 5 is attributed to the use of treated municipal water during drilling. As such, concentrations of chloroform detected in groundwater are not considered exceedances of the Table 3 SCS as per section 49(1).2 of O.Reg 153/04. No other parameters at concentrations above the Table 3 SCS were identified in groundwater samples analysed as part of the Phase Two investigation.

Based on the results of the soil and groundwater samples submitted as part of this Phase Two ESA, the reported soil results were above the applicable Table 3 SCS at the following locations and depths:

- APEC 1/APEC 5 West side of site (fill material):
 - Selenium, lead, and mercury in the soil sample collected from a depth of 1.22 1.83 mbgs (MW23-04 SA03)
- APEC 2 Northwest corner of Site:
 - PHC F1 and F2, and molybdenum in the soil sample collected from a depth of 3.81 4.22 mbgs (MW23-01 SA06).
- APEC 3 West side of Site:
 - Boron (hot water soluble) in the soil sample collected from a depth of 0.61 1.22 mbgs (MW23-02 SA02).
 - Molybdenum from a depth of 3.66 4.70 mbgs (MW23-02 SA06).
- APEC 4 Northeast corner of site:
 - Molybdenum and thallium in the soil sample collected from a depth of 3.05 3.66 mbgs (MW23-03 SA06).

Additional investigation to better delineate the extent of fill materials along the west side of the site impacted with lead, selenium, and mercury, and to evaluate the source of molybdenum and thallium exceeding the Table 3 SCS would refine the results of this Phase Two ESA and assist in remedial/redevelopment planning.

It is recommended that additional groundwater sampling be conducted at the Site to assess the potential for VOC concentrations in groundwater to be seasonably variable.

Remediation of the Site to address the identified exceedances of the Table 3 SCS would be required to obtain a Record of Site Condition.

Although no COCs at concentrations above the Table 3 SCS were identified in groundwater by the Phase Two ESA, it is recommended that any groundwater encountered during the Site remediation be tested for the appropriate COCs prior to being discharge to the environment and/or the municipal sewer system (if permitted). Any water with concentrations exceeding the Table 3 SCS and/or applicable sewer discharge limits must be appropriately treated prior to discharge or taken offsite for disposal at an appropriate facility.

The data presented in this report follows the O. Reg. 153/04 Phase Two ESA report format.

8.0 REFERENCES

Geofirma Engineering Ltd. (Geofirma), 2018. Elevated Background Metals Concentrations in Fine-Grained Champlain Sea Deposits, Eastern Ontario - Ottawa Region, project number 15-201-10, ,prepared for the City of Ottawa.

Golder Associates (Golder), 2013. Phase I Environmental Site Assessment 269 Laurier Avenue West & 170 Slater Street, Ottawa, Ontario, project number 12-1185-0092 (6900)), prepared by Golder for Great-West Life Assurance Company and London Life Insurance Company c/o GWL Realty Advisors Inc.

Golder, 2015. Phase II Environmental Site Assessment 269 Laurier Avenue West & 170 Slater Street, Ottawa, Ontario", project number 12-1185-0092 (6900)), prepared by Golder for Great-West Life Assurance Company and London Life Insurance Company c/o GWL Realty Advisors Inc.

WSP Canada (WSP), 2023. Phase One Environmental Site Assessment 170 Slater Street, Ottawa, Ontario, project number 21493887, prepared by WSP for The Canada Life Assurance Company c/o GWL Realty Advisors Inc.

9.0 LIMITATIONS AND USE OF REPORT

This report was prepared pursuant to and in accordance with the master services agreement (the "MSA") dated May 2, 2019 between WSP Canada Inc. ("Consultant") and the other parties listed thereto, and the project specific agreement dated February 15, 2023 between Consultant and The Canada Life Assurance Company c/o GWL Realty Advisors Inc. The report was prepared by Consultant for the use of Owner and Manager (as those terms are defined under the MSA). In addition to the use of and reliance on this report by Owner and Manager, any person who has received a reliance letter for this report may use and rely on this report as if was prepared for such persons. Any use of or reliance on this report by any other person (i.e., a person other than any Owner Manager or otherwise permitted person) is the sole and exclusive responsibility of such other person. Consultant accepts no responsibility for damages, if any, suffered by such other person as a result of the use of or reliance on this report.

This report is based on the best information available to Consultant at the time of preparing this report after Consultant has used best industry practices, in the circumstances, to obtain information. To the extent that Consultant was required to rely on information from other persons, Consultant has verified such information to the extent reasonably possible in the circumstances. The material provided in this report reflects best industry judgement in light of the information available at the time of preparation of this report.

10.0 SIGNATURES

The undersigned Qualified Person confirms that he/she was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust that you will find the contents of this report satisfactory for your current needs. Should you require clarification of the information provided, please do not hesitate to contact the undersigned.

WSP Canada Inc.

Rep

Paul Jackson, BSc Environmental Scientist

Kristina Small, MSc, PGeo (ON), QP_{ESA} *Sr. Contaminant Hydrogeologist*

Mike Cleverdon *Director, Contaminated Lands,* Ontario, Earth & Environment

PJ/KPH/KS/MC/sg https://golderassociates.sharepoint.com/sites/170393/project files/6 deliverables/phase two esa - 170 slater street/23592402-170 slater st phase two_july2023_final.docx

Tables

Monitoring Well ID	Ground Surface Elevation (mASL)	Top of Pipe Elevation (mASL)	Borehole Depth (mbgs)	Screen Interval (mbgs)	Screened Media	Date of well Completion
MW23-01	71.97	71.82	12.95	12.04 - 12.95	Gravelly Sand	24-Mar-23
MW23-02	71.06	70.96	12.42	9.37 - 12.42	Gravelly Sand	15-Mar-23
MW23-03	71.54	71.47	13.59	10.24 - 13.59	Gravelly Sand	21-Mar-23
MW23-04A	72.04	71.91	13.10	10.06 - 13.10	Sand with silt and gravel	22-Mar-23
MW23-04	72.09	72.01	16.86	15.34 - 16.86	Sand to silty sand	17-Mar-23
MW23-05	70.39	70.27	16.46	14.94 - 16.46	Sand to silty sand	10-Mar-23

Notes:

mASL- metres above sea level

mbgs-metres below ground surface

No evidence of free product was observed during well development or sampling events.

Monitoring Well	Ground Surface Elevation (mASL)	Top of Pipe Elevation (mASL)	Screen Interval (mbgs)	Depth to Groundwater (mbTOP)	Groundwater Elevation (mASL)	Date of Measurement
MW23-01	71.97	71.82	12.04 - 12.95	12.19	59.63	29-Mar-23
MW23-02	71.06	70.96	9.37 - 12.42	10.38	60.58	29-Mar-23
MW23-03	71.54	71.47	10.24 - 13.59	11.15	60.32	29-Mar-23
MW23-04A	72.04	71.91	10.06 - 13.10	9.32	62.59	29-Mar-23
MW23-04	72.09	72.01	15.34 - 16.86	11.10	60.91	29-Mar-23
MW23-05	70.39	70.27	14.94 - 16.46	9.52	60.75	29-Mar-23

Notes:

mbgs- metres below ground surface

mASL- metres above sea level

n/a - Not surveyed, elevation unavailable

No evidence of free product was observed during any elevation or sampling events.

Location	Soil Samples Analyzed	Sample Depth (mbgs)	Parameters Analyzed	MECP Table 3 Exceedances ⁽¹⁾
	MW23-01 SA02	0.15 - 0.45	PHCs, BTEX, PAHs, Metals, VOCs	-
MW23-01	MW23-01 SA04	2.29 - 2.90	PHCs, BTEX, PAHs, Metals, VOCs	-
	MW23-01 SA06	3.81 - 4.22	PHCs, BTEX, PAHs, Metals, VOCs	Molybdenum, F1 and F2 Hydrocarbons
	MW23-02 SA02	0.61 - 1.22	PHCs, BTEX, PAHs, Metals, VOCs	Boron (Hot water soluble)
MW23-02	MW23-02 SA03	1.22 -1.83	PHCs, BTEX, PAHs, Metals, VOCs	Barium, Vanadium
1010023-02	MW23-02 SA06	3.66 - 4.70	PHCs, BTEX, PAHs, Metals, VOCs	Molybdenum
	DUP-01	3.66 - 4.70	PHCs, BTEX, PAHs, Metals, VOCs	Molybdenum
	MW23-03 SA03	1.22 - 1.83	PHCs, BTEX, PAHs, Metals, VOCs	-
MW23-03	MW23-03 SA04	1.83 -2.44	PHCs, BTEX, PAHs, Metals, VOCs	-
1010023-03	MW23-03 SA05	2.44 - 3.05	PHCs, BTEX, PAHs, Metals, VOCs	-
	MW23-03 SA06	3.05 - 3.66	PHCs, BTEX, PAHs, Metals, VOCs	Cobalt, Molybdenum, Thallium
	MW23-04 SA03	1.22 - 1.83	PHCs, BTEX, PAHs, Metals, VOCs	Barium, Lead, Selenium, Mercury
	MW23-04 SA04	1.83 -2.44	PHCs, BTEX, PAHs, Metals, VOCs	Barium, Vanadium
MW23-04A	MW23-04 SA06	3.05 - 3.66	PHCs, BTEX, PAHs, Metals, VOCs	-
	Dup-01	3.05 - 3.66	PHCs, BTEX, PAHs, Metals, VOCs	-
	MW23-04 SA09	4.88 - 5.18	PHCs, BTEX, PAHs, Metals, VOCs	-
	MW23-05 SA01	0.05 - 0.46	PHCs, BTEX, PAHs, Metals, VOCs	-
MW22.05	MW23-05 SA03	1.07 - 1.83	PHCs, BTEX, PAHs, Metals, VOCs	-
MW23-05	MW23-05 SA04	2.44 - 3.66	PHCs, BTEX, PAHs, Metals, VOCs	-
	MW23-05 SA05	3.66 - 4.27	PHCs, BTEX, PAHs, Metals, VOCs	-

Notes:

(1) MECP Table 3 Standards: Table 3- Full Depth Generic Site Condition Standards for Soils in a None-Potable Ground Water Condition, Residential/Parkland Property Use, Coarse Grained Soils; as per Ontario Regulation 153/04 (2011) under the Environmental Protection Act of the Ministry of the Environment, Conservation and Parks (MECP)

PHCs: Petroleum Hydrocarbons (F1-F4)

PAHs: Polycyclic Aromatic Hydrocarbons

VOC: Volatile Organic Compounds

BTEX: Benzene, Toluene, Ethylbenzene, and Xylene

Monitoring Well ID	Water Levels (mbtop)	Screen Interval (mbgs)	Groundwater Samples Submitted for Analysis	Analytical Parameters	MECP Table 2 Exceedances ⁽¹⁾
MW23-01	12.19	12.04 - 12.95	MW23-01	PHCs, BTEX, PAHs, Metals, VOCs	None
MW23-02	10.38	9.37 - 12.42	MW23-02/ Duplicate analysis (DUP- 01)	PHCs, BTEX, PAHs, Metals, VOCs (Dup-01 PAHs only)	None
MW23-03	11.15	10.24 - 13.59	MW23-03	PHCs, BTEX, PAHs, Metals, VOCs	None
MW23-04A	9.32	10.06 - 13.10	MW23-04 Shallow	PHCs, BTEX, PAHs, Metals, VOCs	Chloroform
MW23-04	11.10	15.34 - 16.86	MW23-04 Deep	PHCs, BTEX, PAHs, Metals, VOCs	Chloroform
MW23-05	9.52	14.94 - 16.46	MW23-05/ Duplicate analysis (DUP- 01)	PHCs, BTEX, PAHs, Metals, VOCs (Dup-01 PHCs, BTEX, VOCs, Metals)	None
MW14-02	9.42	7.95 - 12.59	MW14-02, MW14-02 Dup (not a duplicate sample)	VOCs	None

Notes:

(1) MECP Table 3 Standards: Table 3- Full Depth Generic Site Condition Standards for Soils in a None-Potable Ground Water Condition, Residential/Parkland Property Use, Coarse Grained Soils; as per Ontario Regulation 153/04 (2011) under the Environmental Protection Act of the Ministry of the Environment, Conservation and Parks (MECP)

VOCs: Volatile Organic Compounds

PHCs: Petroleum Hydrocarbons (F1-F4)

BTEX: Benzene, Toluene, Ethylbenzene, and Xylene

PAHs: Polycyclic Aromatic Hydrocarbons

23592402	2
----------	---

		Sample Location		MW23-01			MW	23-02		MW23-03			
		WSP Sample ID	MW23-01	MW23-01	MW23-01	MW23-02	MW23-02	MW23-02	Dup-01	MW23-03	MW23-03	MW23-03	MW23-03
		•	SA02	SA04	SA06	SA02	SA03	SA06	•	SA03	SA04	SA05	SA06
		Lab Sample ID		4888965	4888969	4858521	4858522	4858523	4858524	4876885	4876887	4876888	4876889
	Certificate of Analysis Numb					23Z006407					23Z008517		23Z008517
			23-Mar-23			10-Mar-23	10-Mar-23		10-Mar-23		16-Mar-23	10-Mar-23	16-Mar-23
	-rr	Sample Depth (m)	0.15 - 0.45	2.29 - 2.90	3.81 - 4.22	0.61 - 1.22	1.22 -1.83	3.66 - 4.70	3.66 - 4.70	1.22 - 1.83	1.83 -2.44	2.44 - 3.05	3.05 - 3.66
Parameter	Unit	MOE Table 3 Standard											
Falameter	Onit	(Residential) ^{(1) (2)}											
Metals and Inorganics													
Antimony	µg/g	7.5	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	<1	<1	9	1.0	1.0	9.0	7.0	1	1	5	13
Barium	µg/g	390	34.9	294	282	315.0	504	284.0	255.0	35.6	117	217.00	176
Beryllium	µg/g	4	<0.4	0.4	0.6	0.6	0.8	0.5	0.5	<0.4	<0.4	0.4	0.8
Boron	µg/g	120	<5	6.0	16.0	22.0	13.0	9.0	7.0	<5	<5	6.0	9.0
Boron (Hot Water Soluble)	µg/g	1.5	<0.10	0.11	0.47	2.19	1.35	0.23	0.24	<0.10	0.20	0.27	0.29
Cadmium	µg/g	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	9.0	27	23	68	75	15	13	8.0	17	12	18
Cobalt	µg/g	22	4.1	8.2	19.0	12.9	18.8	12.7	10.7	4.6	5.1	9.0	22.3
Copper	µg/g	140	8.0	16.8	60.2	31.9	36.6	70.3	30.9	10.8	12.7	21.1	68.8
Lead	µg/g	120	2.0	5.0	21.0	5.0	8.0	15.0	15.0	3.0	9.0	9.0	26.0
Molybdenum	µg/g	6.9	<0.5	<0.5	21.8	<0.5	<0.5	12.2	10.3	0.6	<0.5	5.7	18.1
Nickel	µg/g	100	7.0	16	84.0	33	39	46.0	38.0	7.0	10	31.0	85.0
Selenium	µg/g	2.4	<0.8	<0.8	1.7	<0.8	<0.8	1.1	0.8	<0.8	<0.8	<0.8	2.0
Silver	µg/g	20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	<0.5	<0.5	0.9	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	1.2
Uranium	µg/g	23	0.58	0.63	6.20	0.58	0.59	3.66	2.77	0.60	0.52	2.24	6.73
Vanadium	µg/g	86	16.7	42.3	33.3	79.2	102	28.2	22.5	17.3	25.3	22.8	34.2
Zinc	µg/g	340	16.0	42.0	110.0	95.0	116.00	55.0	46.0	15.0	31.0	22	51.0
Chromium, Hexavalent	µg/g	8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	µg/g	0.051	<0.040	<0.040	<0.040	<0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.531	8.27	1.21	8.27	6.20	1.23	0.986	2.81	1.81	2.57	4.64
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	7.16	68.1	28.7	28.1	6.20	2.05	1.64	32.3	20.1	8.08	4.93
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	7.00	7.46	7.55	7.62	7.20	7.50	7.53	8.31	8.23	7.94	7.72

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use, Coarse Grained Soils

		Sample Location			MW23-04			MW23-05					
		WSP Sample ID	SA03	MW23-04 SA04	MW23-04 SA06	Dup-01	MW23-04 SA09	MW23-05 SA01	MW23-05 SA03	MW23-05 SA04	MW23-05 SA05		
		Lab Sample ID		4858526	4858527	4858529	4858528	4858516	4858518	4858519	4858520		
	Cei	rtificate of Analysis Number	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407		
		Date	14-Mar-23	15-Mar-23	15-Mar-23	15-Mar-23	15-Mar-23	7-Mar-23	7-Mar-23	8-Mar-23	8-Mar-23		
		Sample Depth (m)	1.22 - 1.83	1.83 -2.44	3.05 - 3.66	3.05 - 3.66	4.88 - 5.18	0.05 - 0.46	1.07 - 1.83	2.44 - 3.66	3.66 - 4.27		
		MOE Table 3 Standard											
Parameter	Unit	(Residential) (1) (2)											
Metals and Inorganics													
Antimony	µg/g	7.5	1.9	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8		
Arsenic	µg/g	18	18.0	2	2	3	7	<1	2	2	3		
Barium	µg/g	390	424.0	853.0	129	105	200	118	104	41.5	123.00		
Beryllium	µg/g	4	0.6	0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4		
Boron	µg/g	120	8.0	7.0	<5	5	5	6	<5	<5	<5		
Boron (Hot Water Soluble)	µg/g	1.5	0.58	0.43	0.18	0.19	0.30	0.28	0.19	<0.10	<0.10		
Cadmium	µg/g	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Chromium	µg/g	160	30	64	10	13	10	7.0	23	7.0	8.0		
Cobalt	µg/g	22	11.4	16.8	6.2	7.5	9.5	4.4	7.3	4.6	4.8		
Copper	µg/g	140	48.1	36.1	12.2	13.4	28.2	9.2	23.7	7.7	10.7		
Lead	µg/g	120	1290.0	14.0	7.0	7.0	14.0	3.0	24.0	3.0	16.0		
Molybdenum	µg/g	6.9	2.2	1.0	2.6	3.1	6.5	<0.5	0.5	1.2	2.6		
Nickel	µg/g	100	25.0	37.0	14.0	17.0	31.0	6	15.0	9.0	11.0		
Selenium	µg/g	2.4	2.8	<0.8	<0.8	0.9	0.8	<0.8	<0.8	<0.8	<0.8		
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Thallium	µg/g	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Uranium	µg/g	23	0.57	0.55	0.93	0.83	2.54	<0.50	0.51	0.53	0.83		
Vanadium	µg/g	86	41.6	88.1	16.2	18.2	17.4	11.3	32.5	12.5	13.6		
Zinc	µg/g	340	255.0	105	18	22.0	32.0	10	46	10	17		
Chromium, Hexavalent	µg/g	8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
Cyanide, WAD	µg/g	0.051	<0.040	< 0.040	< 0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040		
Mercury	µg/g	0.27	1.53	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
Electrical Conductivity (2:1)	mS/cm	0.7	10.5	5.09	8.57	6.65	4.96	3.34	3.12	0.983	2.19		
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	21.3	5.08	0.414	0.518	0.522	2.60	40.0	1.70	2.47		
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	7.37	7.27	7.38	7.51	7.47	7.61	7.64	7.39	7.46		

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection li

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are obse (1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Condition: (2) Bolded and Grayed = Parameter concentration greater than MOE Table

		Sample Location		MW23-01			MW:	23-02			MW23-03			
	Sample II					MW23-02 SA02	MW23-02 SA03	MW23-02 SA06	Dup-01	MW23-03 SA03	MW23-03 SA04	MW23-03 SA05	MW23-03 SA06	
		Lab Sample ID	4888965	4888965	4888969	4858521	4858522	4858523	4858524	4876885	4876887	4876888	4876889	
	23Z010329	23Z010329	23Z010329	23Z006407	23Z006407	23Z006407	23Z006407	23Z008517	23Z008517	23Z008517	23Z008517			
	Dat					10-Mar-23	10-Mar-23	10-Mar-23	10-Mar-23	16-Mar-23	16-Mar-23	10-Mar-23	16-Mar-23	
		Sample Depth (m)	0.15 - 0.45	2.29 - 2.90	3.81 - 4.22	0.61 - 1.22	1.22 -1.83	3.66 - 4.70	3.66 - 4.70	1.22 - 1.83	1.83 -2.44	2.44 - 3.05	3.05 - 3.66	
Parameter	unit	MOE Table 3 Standard (Residential) ^{(1) (2)}												
PAHs														
Naphthalene	µg/g	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	7.9	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	62	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	6.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.67	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Pyrene	µg/g	78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benz(a)anthracene	µg/g	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Chrysene	µg/g	7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1 and 2 Methlynaphthalene	µg/g	0.99	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	

\\SD

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use, Coarse Grained Soils

		Sample Location			MW23-04				MW2	23-05	
		Sample ID	MW23-04 SA03	MW23-04 SA04	MW23-04 SA06	Dup-01	MW23-04 SA09	MW23-05 SA01	MW23-05 SA03	MW23-05 SA04	MW23-05 SA05
		Lab Sample ID	4858525	4858526	4858527	4858529	4858528	4858516	4858518	4858519	4858520
	Ce	ertificate of Analysis Number	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407
		Date	14-Mar-23	15-Mar-23	15-Mar-23	15-Mar-23	15-Mar-23	7-Mar-23	7-Mar-23	8-Mar-23	8-Mar-23
		Sample Depth (m)	1.22 - 1.83	1.83 -2.44	3.05 - 3.66	3.05 - 3.66	4.88 - 5.18	0.05 - 0.46	1.07 - 1.83	2.44 - 3.66	3.66 - 4.27
Parameter	unit	MOE Table 3 Standard (Residential) ^{(1) (2)}									
PAHs											
Naphthalene	µg/g	0.6	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	µg/g	0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthene	µg/g	7.9	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	µg/g	62	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	µg/g	6.2	0.27	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	µg/g	0.67	0.07	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	µg/g	0.69	0.29	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	µg/g	78	0.24	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	µg/g	7	0.13	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	µg/g	0.78	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	µg/g	0.78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	µg/g	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	µg/g	0.38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	µg/g	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	µg/g	6.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1 and 2 Methlynaphthalene	µg/g	0.99	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection lim

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observ

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions

		Sample Location		MW23-01			MW	23-02			MW23-03			
	Sample I					MW23-02 SA02	MW23-02 SA03	MW23-02 SA06	Dup-01	MW23-03 SA03	MW23-03 SA04	MW23-03 SA05	MW23-03 SA06	
		Lab Sample ID	4888965	4888965	4888969	4858521	4858522	4858523	4858524	4876885	4876887	4876888	4876889	
	Certi	ficate of Analysis Number	23Z010329	23Z010329	23Z010329	23Z006407	23Z006407	23Z006407	23Z006407	23Z008517	23Z008517	23Z008517	23Z008517	
	23-Mar-23	23-Mar-23	23-Mar-23	10-Mar-23	10-Mar-23	10-Mar-23	10-Mar-23	16-Mar-23	16-Mar-23	10-Mar-23	16-Mar-23			
		Sample Depth (m)	0.15 - 0.45	2.29 - 2.90	3.81 - 4.22	0.61 - 1.22	1.22 -1.83	3.66 - 4.70	3.66 - 4.70	1.22 - 1.83	1.83 -2.44	2.44 - 3.05	3.05 - 3.66	
Parameter	Unit	MOE Table 3 Standard (Residential) ^{(1) (2)}												
BTEX	•													
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Toluene	µg/g	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	µg/g	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	µg/g	3.1	<0.05	<0.05	0.64	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Petroleum Hydrocarbons														
F1 (C6 - C10)	µg/g	55	<5	<5	113	<5	<5	7	6	<5	<5	5	<5	
F2 (C10 to C16)	µg/g	98	<10	<10	189	<10	<10	36	41	<10	<10	45	97	
F3 (C16 to C34)	µg/g	300	<50	<50	224	<50	<50	72	80	<50	<50	<50	173	
F4 (C34 to C50)	µg/g	2800	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	2800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Moisture Content	%		14.7	19.3	9.2	24.4	27.7	8.1	9.0	3.3	9.0	8.6	10.8	

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use, Coarse Grained Soils

		Sample Location			MW23-04				MW2	23-05	04 SA05 519 4858520 6407 232006407 r-23 8-Mar-23 3.66 3.66 - 4.27 02 <0.02 05 <0.05 05 <0.05	
		Sample ID	MW23-04 SA03	MW23-04 SA04	MW23-04 SA06	Dup-01	MW23-04 SA09	MW23-05 SA01	MW23-05 SA03	MW23-05 SA04		
		Lab Sample ID	4858525	4858526	4858527	4858529	4858528	4858516	4858518	4858519	4858520	
	Certificate of Analysis Numbe					23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	
		Date	14-Mar-23	15-Mar-23	15-Mar-23	15-Mar-23	15-Mar-23	7-Mar-23	7-Mar-23	8-Mar-23	8-Mar-23	
		Sample Depth (m)	1.22 - 1.83	1.83 -2.44	3.05 - 3.66	3.05 - 3.66	4.88 - 5.18	0.05 - 0.46	1.07 - 1.83	2.44 - 3.66	3.66 - 4.27	
Parameter	1	MOE Table 3 Standard (Residential) ^{(1) (2)}										
BTEX												
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Toluene	µg/g	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	µg/g	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	µg/g	3.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Petroleum Hydrocarbons												
F1 (C6 - C10)	µg/g	55	<5	<5	<5	<5	<5	<5	<5	<5	5	
F2 (C10 to C16)	µg/g	98	<10	22	20	75	20	<10	<10	<10	28	
F3 (C16 to C34)	µg/g	300	<50	<50	<50	<50	67	<50	<50	<50	<50	
F4 (C34 to C50)	µg/g	2800	<50	<50	<50	<50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	2800	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Moisture Content	%		12.2	27.9	6.7	8.3	5.2	3.4	6.6	8.4	8.4	

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detectior

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are ob (1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditi

23592402)
----------	---

		Sample Location		MW23-01			MW	23-02		MW23-03				
		Sample ID	MW23-01 SA02	MW23-01 SA04	MW23-01 SA06	MW23-02 SA02	MW23-02 SA03	MW23-02 SA06	Dup-01	MW23-03 SA03	MW23-03 SA04	MW23-03 SA05	MW23-03 SA06	
		Lab Sample ID	4888965	4888965	4888969	4858521	4858522	4858523	4858524	4876885	4876887	4876888	4876889	
-	Cert	ificate of Analysis Number	23Z010329	23Z010329	23Z010329	23Z006407	23Z006407	23Z006407	23Z006407	23Z008517	23Z008517	23Z008517	23Z008517	
	0011	Date	23-Mar-23	23-Mar-23	23-Mar-23	10-Mar-23	10-Mar-23	10-Mar-23	10-Mar-23	16-Mar-23	16-Mar-23	10-Mar-23	16-Mar-23	
		Sample Depth (m)	0.15 - 0.45	2.29 - 2.90	3.81 - 4.22	0.61 - 1.22	1.22 -1.83	3.66 - 4.70	3.66 - 4.70	1.22 - 1.83	1.83 -2.44	2.44 - 3.05	3.05 - 3.66	
	-	MOE Table 3 Standard	0.15 - 0.45	2.29 - 2.90	3.01 - 4.22	0.01 - 1.22	1.22 -1.03	3.00 - 4.70	3.00 - 4.70	1.22 - 1.03	1.03 -2.44	2.44 - 3.05	3.05 - 3.00	
Parameter	Unit													
		(Residential) ⁽¹⁾⁽²⁾												
VOCs (with PHC)														
Dichlorodifluoromethane	µg/g	16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Vinyl Chloride	µg/g	0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	
Bromomethane	µg/g	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	
Trichlorofluoromethane	µg/g	4	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Acetone	µg/g	16	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	
1,1-Dichloroethylene	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methylene Chloride	µg/g	0.1	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	µg/g	0.084	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	µg/g	0.75	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	µg/g	3.5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	µg/g	16	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	µg/g	3.4	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	µg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	µg/g	0.05	<0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	
1,1,1-Trichloroethane	µg/g	0.38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	µg/g	0.05	<0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	
Trichloroethylene	µg/g	0.061	<0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	
Bromodichloromethane	µg/g	13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	µg/g	1.7	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	µg/g	0.05	<0.04	< 0.04	<0.04	< 0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04	
Toluene	µg/g	2.3	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	
Dibromochloromethane	µg/g	9.4	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Ethylene Dibromide	µg/g	0.05	<0.04	< 0.04	<0.04	< 0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04	
Tetrachloroethylene	µg/g	0.28	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	µg/g	0.058	<0.04	< 0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	µg/g	2.4	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	µg/g	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
m & p-Xylene	µg/g		<0.05	<0.05	0.48	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Bromoform	µg/g	0.27	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Styrene	µg/g	0.7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	µg/g		<0.05	<0.05	0.16	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
1,3-Dichlorobenzene	µg/g	4.8	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	
1,4-Dichlorobenzene	µg/g	0.083	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	µg/g	3.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	µg/g	3.1	<0.05	<0.05	0.64	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
n-Hexane	µg/g	2.8	< 0.05	< 0.05	0.60	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	
Footnotes:		•		•	•	•	•	•	•		•	•	•	

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use, Coarse Grained Soils

23592402)
----------	---

		Sample Location			MW23-04			MW23-05			
	Sample ID			MW23-04 SA04	MW23-04 SA06	Dup-01	MW23-04 SA09	MW23-03 SA01	MW23-03 SA03	MW23-03 SA04	MW23-03 SA05
		Lab Sample ID	4858525	4858526	4858527	4858529	4858528	4858516	4858518	4858519	4858520
	Cort	ificate of Analysis Number	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407	23Z006407
		Date		15-Mar-23	15-Mar-23	15-Mar-23	15-Mar-23	7-Mar-23	7-Mar-23	8-Mar-23	8-Mar-23
		Sample Depth (m)		1.83 -2.44	3.05 - 3.66	3.05 - 3.66	4.88 - 5.18	0.05 - 0.46	1.07 - 1.83	2.44 - 3.66	3.66 - 4.27
		MOE Table 3 Standard	1.22 - 1.00	1.00 -2.44	0.00 - 0.00	0.00 - 0.00	4.00 - 0.10	0.00 - 0.40	1.07 - 1.00	2.44 - 3.00	5.00 - 4.27
Parameter	Unit	(Residential) (1) (2)									
VOCs (with PHC)		(Residential)									
		10	10.05	10.05	-0.05	-0.05	-0.05	10.05	10.05	10.05	10.05
Dichlorodifluoromethane Vinyl Chloride	µg/g	16 0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02
Bromomethane	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	µg/g										
Trichlorofluoromethane	µg/g	4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acetone	µg/g	16	<0.50	<0.50	<0.50	<0.50 <0.05	<0.50	<0.50	<0.50 <0.05	< 0.50	<0.50 <0.05
1,1-Dichloroethylene	µg/g	0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05
Methylene Chloride Trans- 1,2-Dichloroethylene	µg/g	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	µg/g					<0.05		< 0.05			<0.05
Methyl tert-butyl Ether	µg/g	0.75	< 0.05	< 0.05	< 0.05		< 0.05		< 0.05	< 0.05	
1,1-Dichloroethane	µg/g	3.5	< 0.02	<0.02 <0.50	<0.02 <0.50	<0.02 <0.50	< 0.02	< 0.02	<0.02 <0.50	< 0.02	<0.02 <0.50
Methyl Ethyl Ketone	µg/g	16	< 0.50				< 0.50	<0.50		< 0.50	
Cis- 1,2-Dichloroethylene	µg/g	3.4	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloroform	µg/g	0.05	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
1,2-Dichloroethane 1,1,1-Trichloroethane	µg/g	0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05
	µg/g										
Carbon Tetrachloride	µg/g	0.05	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02
Benzene	µg/g					<0.02	<0.02		< 0.02		
1,2-Dichloropropane	µg/g	0.05	<0.03	<0.03	<0.03 <0.03	<0.03	< 0.03	<0.03 <0.03	< 0.03	<0.03 <0.03	<0.03 <0.03
Trichloroethylene	µg/g			< 0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03
Bromodichloromethane Methyl Isobutyl Ketone	µg/g µq/q	13 1.7	<0.05 <0.50	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane		0.05	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Toluene	µg/g	2.3	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04
	µg/g	2.3	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Dibromochloromethane Ethylene Dibromide	µg/g	9.4	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Tetrachloroethylene	µg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04
1,1,1,2-Tetrachloroethane	µg/g µq/q	0.28	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene		2.4	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04
Ethylbenzene	µg/g	2.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
m & p-Xylene	µg/g	2	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
Bromoform	µg/g	0.27	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05
Styrene	µg/g	0.27	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
1.1.2.2-Tetrachloroethane	µg/g µq/q	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
o-Xylene		0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
0-Xylene 1.3-Dichlorobenzene	µg/g µg/g	4.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
1.4-Dichlorobenzene	µg/g	0.083	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05
1,4-Dichlorobenzene	µg/g	3.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05
Xvlenes (Total)		3.4	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
n-Hexane	µg/g	2.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05
Footnotes:	µg/g	2.0	NU.U0	NU.U0	NU.UU	NU.U0	NU.UU	NU.UD	NU.U 0	NU.UU	∼0.0 5

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are ob:

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Condition

(2) Bolded and Grayed = Parameter concentration greater than MOE Tab

wsp

Created by: PJ Checked by: CJK Page 2 of 2

		Sample Location	MW23-01	MW23-02	MW2	3-03	MW23-04A	MW23-04	MW23-05
	23-01	23-02-GW01	23-03-GW01	Dup-01	22-04 Shallow	22-04 Deep	23-05		
	4896256	4889161	4889145	4889162	488915	4889151	4889158		
Certificate of Analysis Number			23Z011205	23Z010333	23Z010333	23Z010333	23Z010333	23Z010333	23Z010333
Sample Date and Time			3-Apr-23	29-Mar-23	29-Mar-23	29-Mar-23	29-Mar-23	29-Mar-23	29-Mar-23
Parameter	Unit	MOE Table 3 Standard (Residential) ^{(1) (2)}							
PAHs									
Naphthalene	µg/L	1400	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	µg/L	1.8	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthene	µg/L	600	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fluorene	µg/L	400	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	µg/L	580	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	µg/L	2.4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	µg/L	130	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Pyrene	µg/L	68	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	4.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrysene	µg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.75	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.81	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	µg/L	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.52	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-and 1-methyl Naphthalene	µg/L	1800	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Naphthalene-d8	%		92	92	108	98	97	117	108
Acridine-d9	%		83	110	113	113	112	116	114
Terphenyl-d14	%		75	87	101	83	89	75	107

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use

		Sample Location	MW23-01	MW23-02	MW23-03	MW23-04A	MW23-04	MW2	3-05	FB-01
	WSP Sample ID			23-02-GW01	23-03-GW01	22-04 Shallow	22-04 Deep	23-05-GW01	Dup-01	-
	Lab Sample ID			4876966	4889145	488915	4889151	4876962	4876963	4876951
	Certif	icate of Analysis Number	23Z011205	23Z008519	23Z010333	23Z010333	23Z010333	23Z008519	23Z008519	23Z008519
		Sample Date and Time	3-Apr-23	22-Mar-23	29-Mar-23	29-Mar-23	29-Mar-23	22-Mar-23	22-Mar-23	22-Mar-23
Parameter	Unit	MOE Table 3 Standard (Residential) ^{(1) (2)}								
BTEX										
Benzene	µg/L	44	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	18000	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	μg/L	2300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Xylenes (Total)	μg/L	4200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Petroleum Hydrocarbons										
F1 (C6-C10)	µg/L	750	<25	<25	<25	<25	<25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	<100	<100	<100	<100	<100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	<100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L		NA	NA	NA	NA	NA	NA	NA	NA

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use

		Sample Location	MW23-01	MW23-02	MW23-03	MW23-04A	MW23-04	MW2	3-05	MW	14-02	FB-01
	WSP Sample ID			23-02-GW01	23-03-GW01	22-04 Shallow	22-04 Deep	23-05-GW01	Dup-01	MW14-02-GW	MW14-02 Dup	-
Lab Sample ID			4896256	4876966	4889145	488915	4889151	4876962	4876963	4876964	4903901	4876951
	Certif	icate of Analysis Number	23Z011205	23Z008519	23Z010333	23Z010333	23Z010333	23Z008519	23Z008519	23Z008519	23T012619	23Z008519
		Sample Date and Time	3-Apr-23	22-Mar-23	29-Mar-23	29-Mar-23	29-Mar-23	22-Mar-23	22-Mar-23	22-Mar-23	4-Apr-23	22-Mar-23
Parameter	Unit	MOE Table 3 Standard (Residential) ^{(1) (2)}										
VOCs												
Dichlorodifluoromethane	µg/L	4400	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	5.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	2500	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	130000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	610	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	190	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	320	<0.30	<0.30	< 0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	< 0.30
Methyl Ethyl Ketone	µg/L	470000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2.4	<0.20	<0.20	<0.20	3.08	7.17	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	640	<0.30	<0.30	< 0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	44	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	85000	<0.20	<0.20	<0.20	<0.20	0.54	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	140000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	4.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	18000	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	µg/L	82000	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.25	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	3.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	630	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	2300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	µg/L		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	µg/L	380	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	µg/L	1300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	µg/L	9600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	4200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
n-Hexane	µg/L	51	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use

	Sample Location			MW23-01	MW23-02	MW23-03	MW23-04A	MW23-04	MW2	3-05	FB-01
WSP Sample ID			23-01	23-02-GW01	22-03	22-04 Shallow	22-04 Deep	23-05-GW01	Dup-01	-	
			Lab Sample ID	4896256	4876966	4889145	488915	4889151	4876962	4876963	4876951
		Cer	tificate of Analysis Number	23Z011205	23Z008519	23Z010333	23Z010333	23Z010333	23Z008519	23Z008519	23Z008519
			Sample Date and Time	3-Apr-23	22-Mar-23	29-Mar-23	29-Mar-23	29-Mar-23	22-Mar-23	22-Mar-23	22-Mar-23
Р	arameter	Unit	MOE Table 3 Standard (Residential) ^{(1) (2)}								
Metals (Including Hydrides	s)										
Dissolved Antimony		µg/L	20000	2.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dissolved Arsenic		µg/L	1900	2.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dissolved Barium		µg/L	29000	108.0	25.8	31.0	88.8	39.9	19.1	18.0	<2.0
Dissolved Beryllium		µg/L	67	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dissolved Boron		µg/L	45000	146	51.9	98.3	29.3	45.4	68.8	62.5	<10.0
Dissolved Cadmium		µg/L	2.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dissolved Chromium		µg/L	810	27.6	<2.0	<2.0	<2.0	<2.0	2.6	<2.0	<2.0
Dissolved Cobalt		µg/L	66	1.44	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dissolved Copper		µg/L	87	1.0	<1.0	<1.0	1.9	<1.0	<1.0	<1.0	<1.0
Dissolved Lead		µg/L	25	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dissolved Molybdenum		µg/L	9200	139	5.02	6.66	8.24	7.31	11.7	10.4	<0.50
Dissolved Nickel		µg/L	490	16.3	2.4	1.3	2.3	2.0	1.9	1.6	<1.0
Dissolved Selenium		µg/L	63	26.2	<1.0	1.9	<1.0	<1.0	<1.0	<1.0	9.8
Dissolved Silver		µg/L	1.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dissolved Thallium		µg/L	510	0.54	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Dissolved Uranium		µg/L	420	16.7	5.76	3.78	4.75	3.75	5.31	4.70	<0.50
Dissolved Vanadium		µg/L	250	1.73	<0.40	0.40	<0.40	0.46	<0.40	<0.40	<0.40
Dissolved Zinc		µg/L	1100	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances. In this case no exceedances are observed.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a None-Potable Groundwater Condition, Residential/Parkland Property Use

Commite ID			MW23-02			MW23-04	
Sample ID	11	MW23-02 SA06	DUP-1		MW23-04 SA06	DUP-1	
Date Collected	Units	03/10/2023	03/10/2023	RPD (%)	03/15/2023	03/15/2023	RPD (%)
Sample Depth (mbgs)		3.66 - 4.70	3.66 - 4.70		3.05 - 3.66	3.05 - 3.66	
Antimony	µg/g	<0.8	<0.8	-	<0.8	<0.8	-
Arsenic	µg/g	9	7	25.0	2	3	NA
Barium	µg/g	284	255	10.8	129	105	20.5
Beryllium	µg/g	0.5	0.5	NA	<0.4	<0.4	-
Boron	µg/g	9	7	NA	<5	5	NA
Boron (Hot Water Soluble)	µg/g	0.23	0.24	NA	0.18	0.19	NA
Cadmium	µg/g	<0.5	<0.5	-	<0.5	<0.5	-
Chromium	µg/g	15	13	NA	10	13	NA
Cobalt	µg/g	12.7	10.7	17.1	6.2	7.5	19.0
Copper	µg/g	70.3	30.9	77.9	12.2	13.4	9.4
Lead	µg/g	15	15	0.0	7	7	0.0
Molybdenum	µg/g	12.2	10.3	16.9	2.6	3.1	17.5
Nickel	µg/g	46	38	19.0	14	17	19.4
Selenium	µg/g	1.1	0.8	NA	<0.8	0.9	NA
Silver	µg/g	<0.5	<0.5	-	<0.5	<0.5	-
Thallium	µg/g	0.6	<0.5	NA	<0.5	<0.5	-
Uranium	µg/g	3.66	2.77	27.7	0.93	0.83	NA
Vanadium	µg/g	28.2	22.5	22.5	16.2	18.2	11.6
Zinc	µg/g	55	46	17.8	18	22	NA
Chromium, Hexavalent	µg/g	<0.2	<0.2	-	<0.2	<0.2	-
Cyanide, WAD	µg/g	<0.040	<0.040	-	<0.040	<0.040	-
Mercury	µg/g	<0.10	<0.10	-	<0.10	<0.10	-

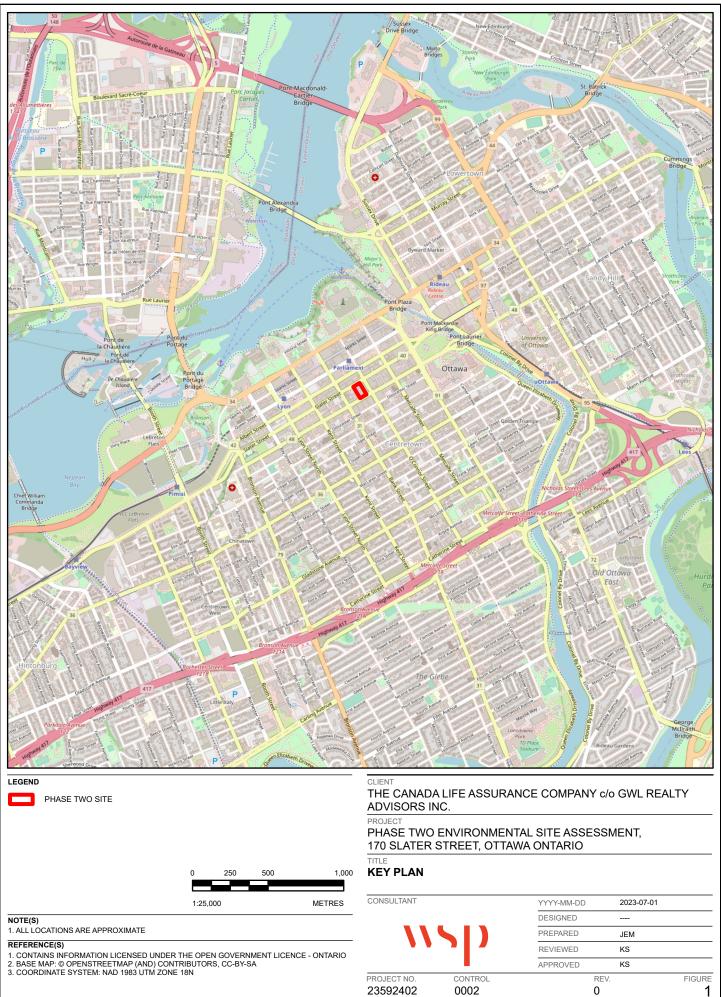
Notes:

" - " = RPD not calculated due to parameters being equal or less than 5 times RDL

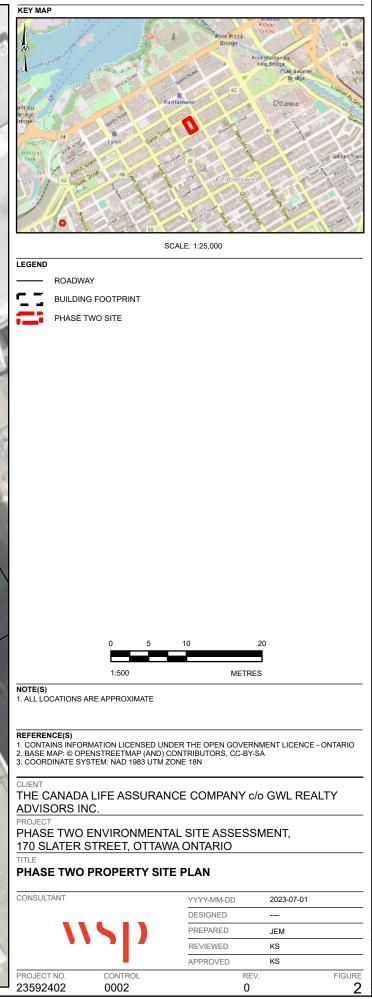
mbgs = metres below ground surface

< = concentration is below Reportable Detection Limit (RDL)

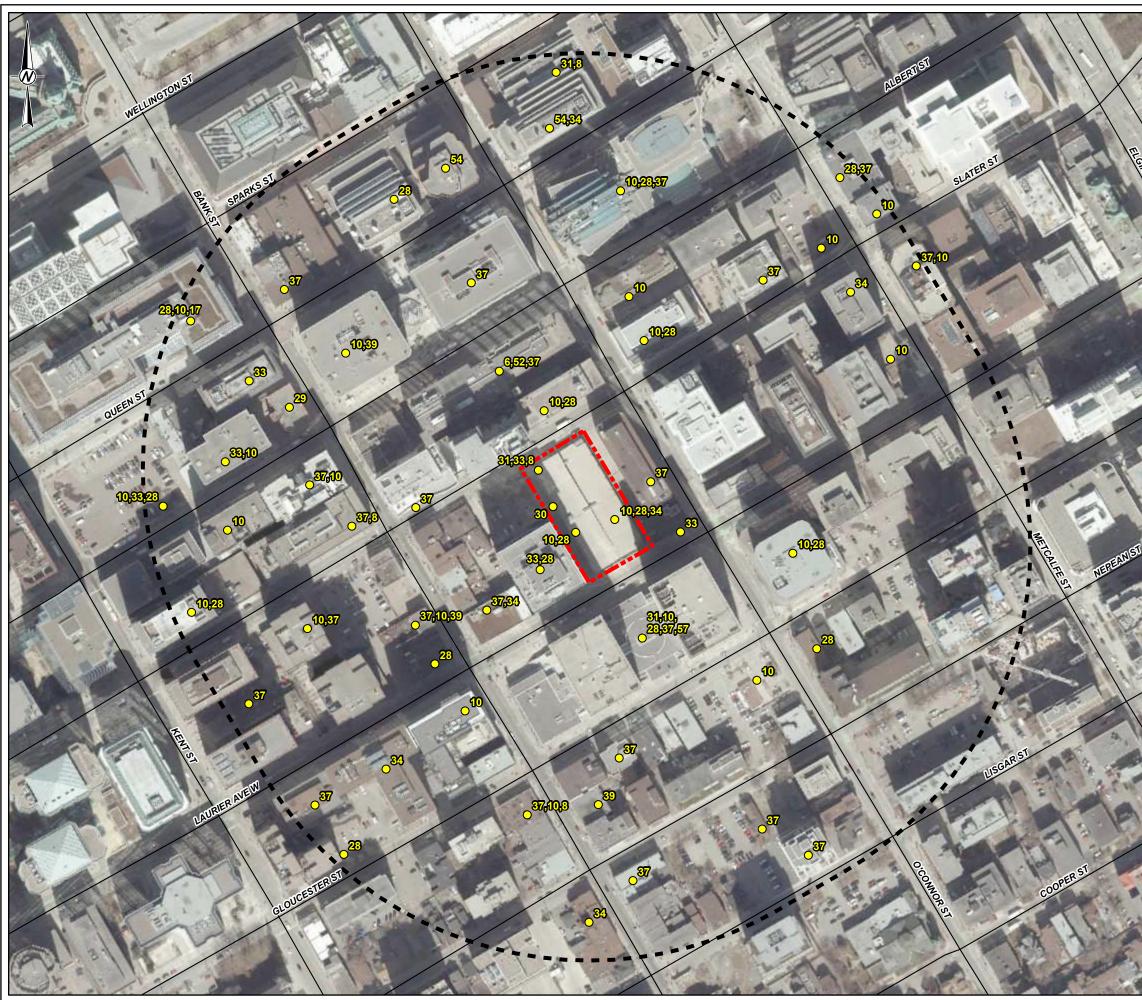
RPD over 50% limit


Comple ID			MW23-05	
Sample ID	Units	MW23-05	DUP-1	
Date Collected		03/22/2023	03/22/2023	RPD (%)
Dissolved Antimony	µg/L	<1.0	<1.0	-
Dissolved Arsenic	µg/L	<1.0	<1.0	-
Dissolved Barium	μg/L	19.1	18	5.9
Dissolved Beryllium	µg/L	<0.50	<0.50	-
Dissolved Boron	µg/L	68.8	62.5	9.6
Dissolved Cadmium	µg/L	<0.20	<0.20	-
Dissolved Chromium	µg/L	2.6	<2.0	NA
Dissolved Cobalt	μg/L	<0.50	<0.50	-
Dissolved Copper	µg/L	<1.0	<1.0	-
Dissolved Lead	µg/L	<0.50	<0.50	-
Dissolved Molybdenum	µg/L	11.7	10.4	11.8
Dissolved Nickel	µg/L	1.9	1.6	NA
Dissolved Selenium	µg/L	<1.0	<1.0	-
Dissolved Silver	µg/L	<0.20	<0.20	-
Dissolved Thallium	µg/L	<0.30	<0.30	-
Dissolved Uranium	μg/L	5.31	4.7	12.2
Dissolved Vanadium	µg/L	<0.40	<0.40	-
Dissolved Zinc	µg/L	<5.0	<5.0	-

Notes:

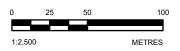

" - " = RPD not calculated due to parameters being equal or less than 5 times RDL

< = concentration is below Reportable Detection Limit (RDL)


Figures

....

LEGEND


O POTENTIALLY CONTAMINATING ACTIVITY (PCA) LOCATION

ROADWAY

PHASE TWO SITE

PHASE ONE STUDY AREA

Identification	
Number	Potentially Contaminating Activity
6	PCA #6. Battery Manufacturing, Recycling and Bulk Storage
8	PCA #8. Chemical Manufacturing, Processing and Bulk Storage
10	PCA #10. Commercial Autobody Shops
17	PCA #17. Dye Manufacturing, Processing and Bulk Storage
28	PCA #28. Gasoline and Associated Products Storage in Fixed Tanks
29	PCA #29. Glass Manufacturing
30	PCA #30. Importation of Fill Material of Unknown Quality
31	PCA #31. Ink Manufacturing, Processing and Bulk Storage
32	PCA #32. Iron and Steel Manufacturing and Processing
33	PCA #33. Metal Treatment, Coating, Plating and Finishing
34	PCA #34. Metal Fabrication
37	PCA #37. Operation of Dry Cleaning Equipment (where chemicals
57	are used)
39	PCA #39. Paints Manufacturing, Processing and Bulk Storage
52	PCA #52. Storage, maintenance, fuelling and repair of equipment,
52	vehicles, and material used to maintain transportation systems
54	PCA #54. Textile Manufacturing and Processing
57	PCA #57. Vehicles and Associated Parts Manufacturing

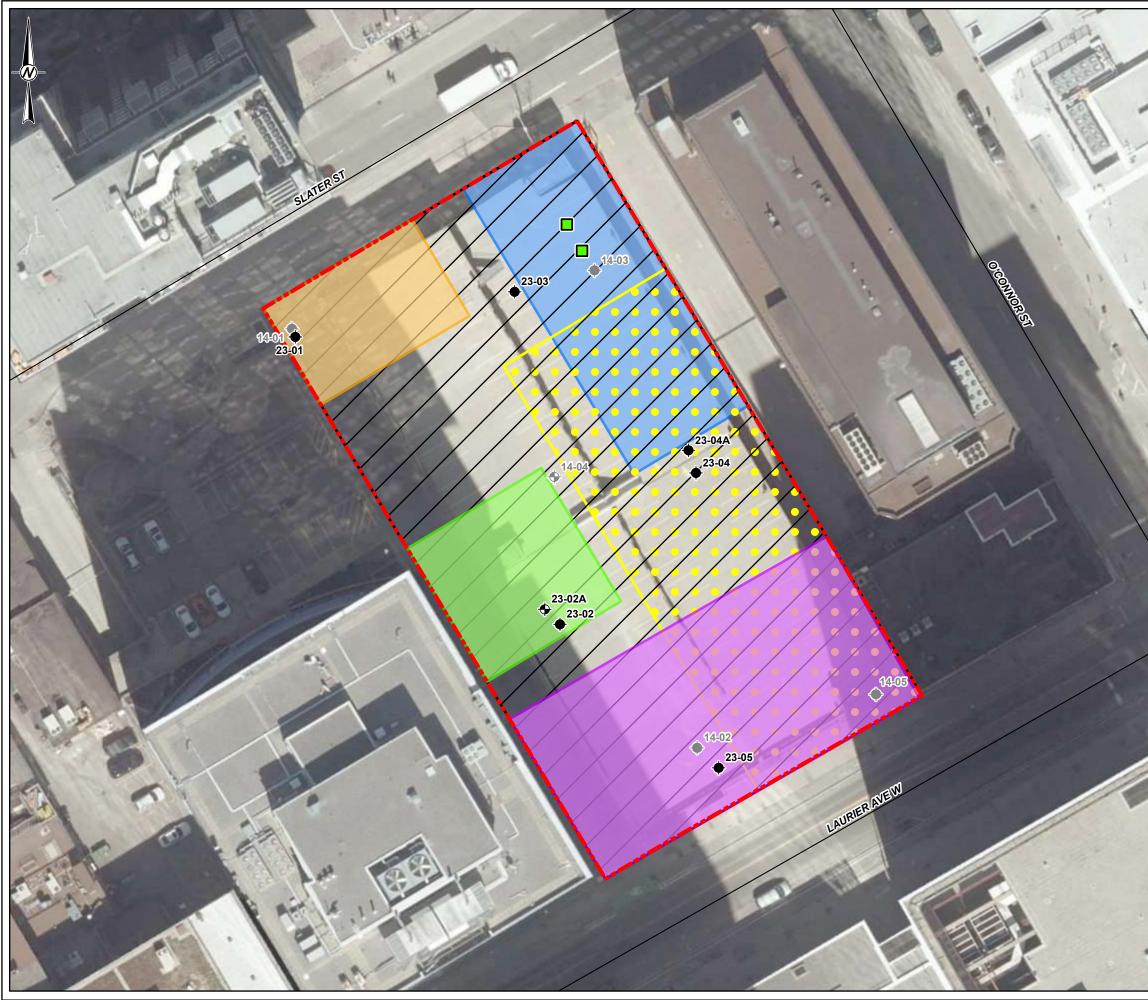
NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. COORDINATE SYSTEM: NAD 1983 UTM ZONE 18N

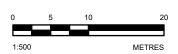
CLIENT THE CANADA LIFE ASSURANCE COMPANY C/O GWL REALTY ADVISORS INC.

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT, 170 SLATER STREET, OTTAWA ONTARIO

TITLE


PROJECT

POTENTIALLY CONTAMINATING ACTIVITIES


CONSULTANT

11	5)
PROJECT NO.	CONTR	ROL
23592402	0002	

	0	3
	REV.	FIGURE
APPROVED	KS	Ē
REVIEWED	KS	
PREPARED	JEM	
DESIGNED		
YYYY-MM-DD	2023-07-0)1

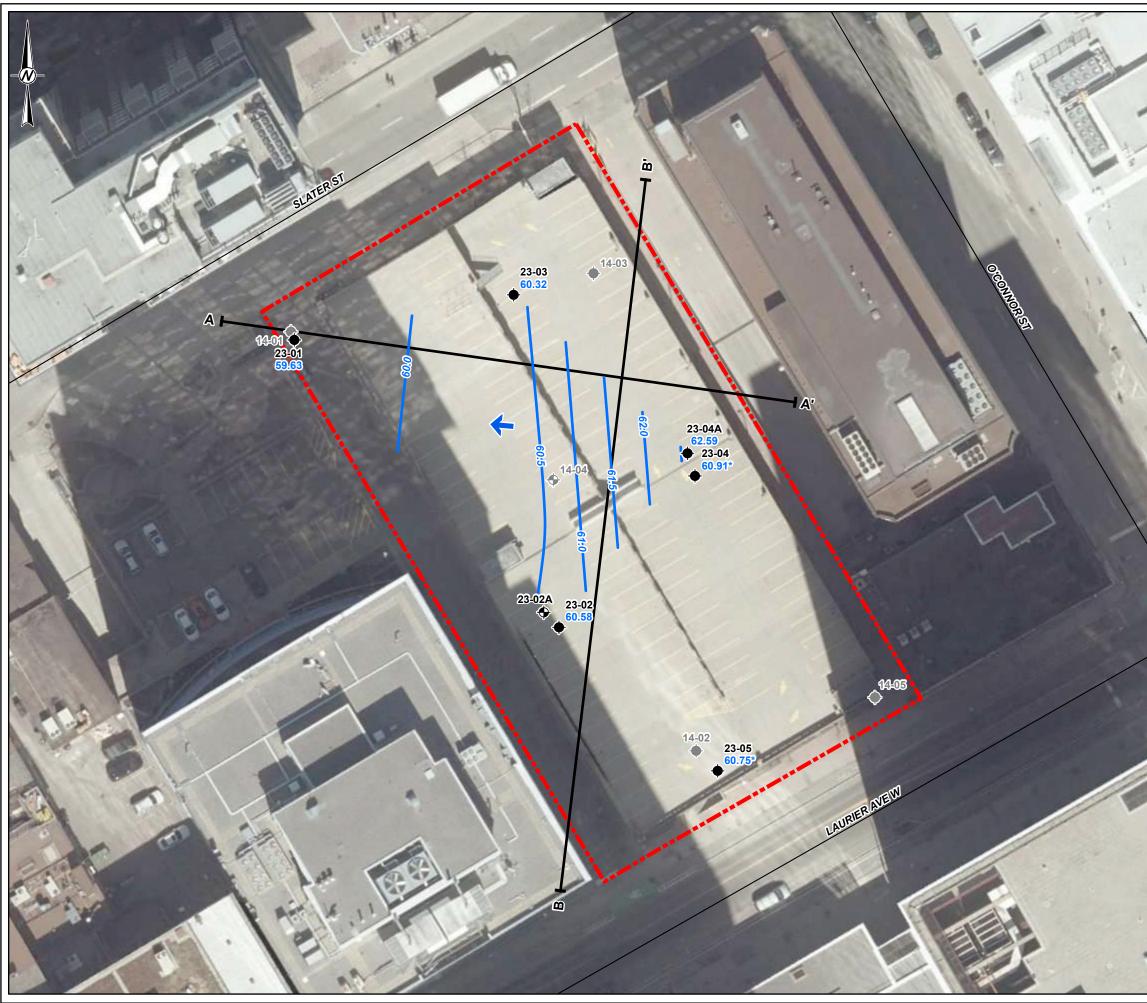
LEGEN)						
•	BOREHOLE LOCATION						
•	MONITORING WELL LOCATION						
•	BOREHOLE LOCATION, PREVIOU	S INVESTIGATION					
•	MONITORING WELL LOCATION, P	REVIOUS INVESTIGATION					
·	ROADWAY						
	PHASE TWO SITE						
	APPROXIMATE LOCATION OF FO	RMER UST					
AREAC	OF POTENTIAL ENVIRONMENTAL CO	DNCERN					
	APEC 1						
	APEC 2						
	APEC 3						
	APEC 4	APEC 4					
	APEC 5						
	APEC 6						
Area of	Potential Environmental Concern	Potentially Contaminating Activity					
APEC 1	– Fill of unknown quality.	#30. Importation of Fill Material of Unknown Quality (on-site)					
and Car Plating	- Location of former Mid-City Ribbon rbon Manufacturing Ltd., Eclipse Service c. 1920-1940, and unnamed c. 1901. Off-site PCAs to the west.	431 - Ink Manufacturing, Processing and Bulk Storage, #33 Metal treatment, coating plating and finishing, #8 - Chemical Manufacturing, Processing and Bulk Storage					
	- Previous location of auto repair Historical PHC impacts to the north.	#10. Commercial Autobody Shops (on-site)					
	- Previous location of USTs. Former aning facilities up-gradient (SE) of	#28.Gasoline and Associated Products Storage in Fixed Tanks (on-site), #37. Operation of Dry Cleaning Equipment (where chemicals are used) (off-site)					
	 Previous on-Site machine shop, acturing, and auto repair garage. 	#10. Commercial Autobody Shops (on-site) #34. Metal Fabrication					
APEC 6 impacts	-Previously documented VOC s in groundwater. Three former USTs of the Site.	#28.Gasoline and Associated Products Storage in Fixed Tanks (on-site)					

NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. COORDINATE SYSTEM: NAD 1983 UTM ZONE 18N

CLIENT THE CANADA LIFE ASSURANCE COMPANY c/o GWL REALTY ADVISORS INC.

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT, 170 SLATER STREET, OTTAWA ONTARIO


TITLE INVESTIGATION LOCATIONS AND AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

CONSULTANT

115 PROJECT NO. 23592402 CONTROL

0002

YYYY-MM-DD	20	23-07-01
DESIGNED		-
PREPARED	JE	M
REVIEWED	KS	3
APPROVED	KS	3
	REV.	FIGURE
	0	4

LEGEND	
•	BOREHOLE LOCATION
•	MONITORING WELL LOCATION
\bullet	BOREHOLE LOCATION, PREVIOUS INVESTIGATION
•	MONITORING WELL LOCATION, PREVIOUS INVESTIGATION
	ROADWAY
H	CROSS-SECTION LOCATION
	PHASE TWO SITE
99.99	GROUNDWATER ELEVATION, mASL (MARCH 29, 2023)
_	GROUNDWATER ELEVATION CONTOUR, mASL
÷	INTERPRETED GROUNDWATER FLOW DIRECTION

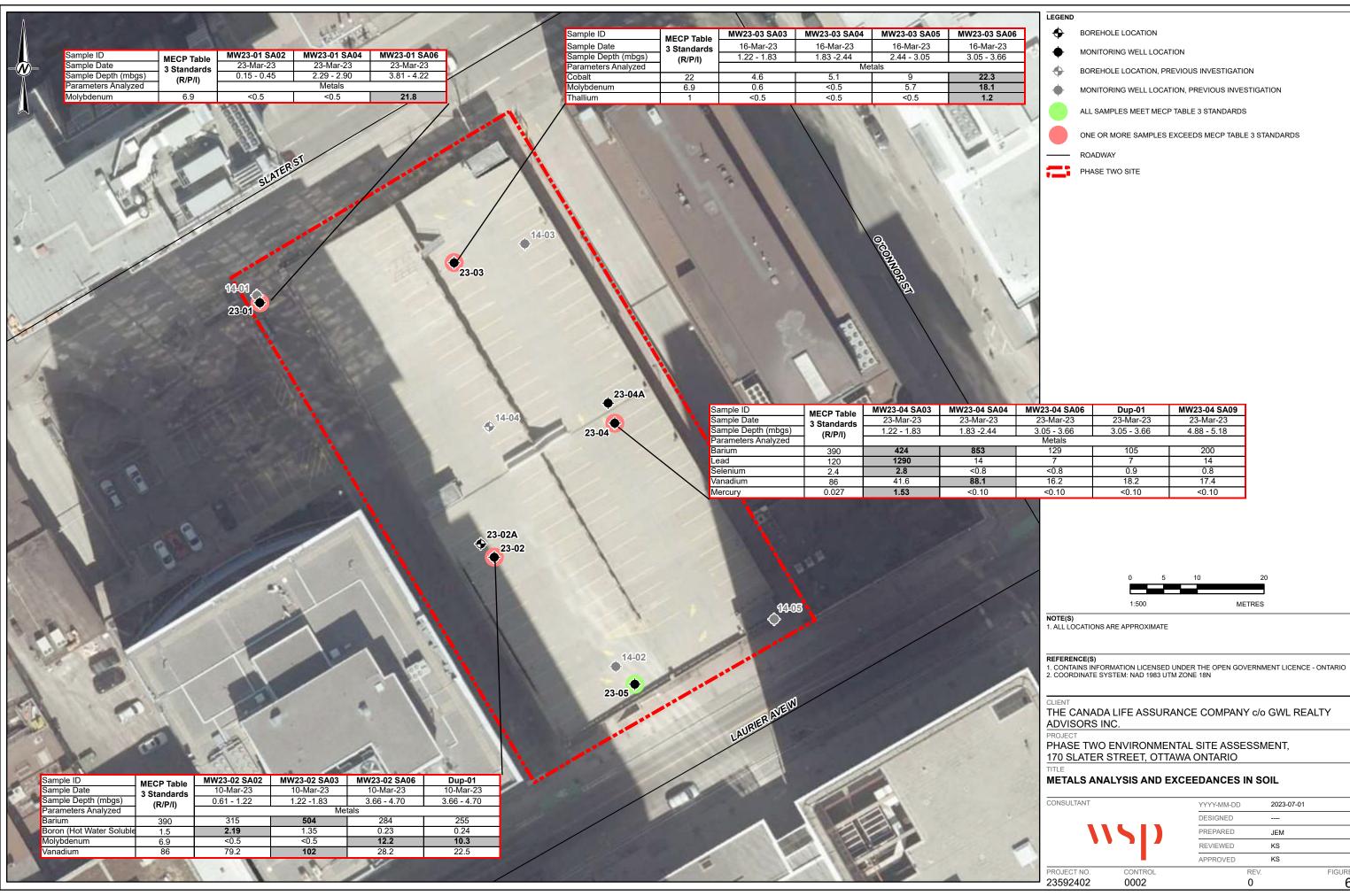
NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE 2. * INDICATES DEEP GROUNDWATER ELEVATION NOT INCLUDED IN GROUNDWATER INTERPOLATION CONTOURS

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. COORDINATE SYSTEM: NAD 1983 UTM ZONE 18N

CLIENT THE CANADA LIFE ASSURANCE COMPANY C/O GWL REALTY ADVISORS INC.

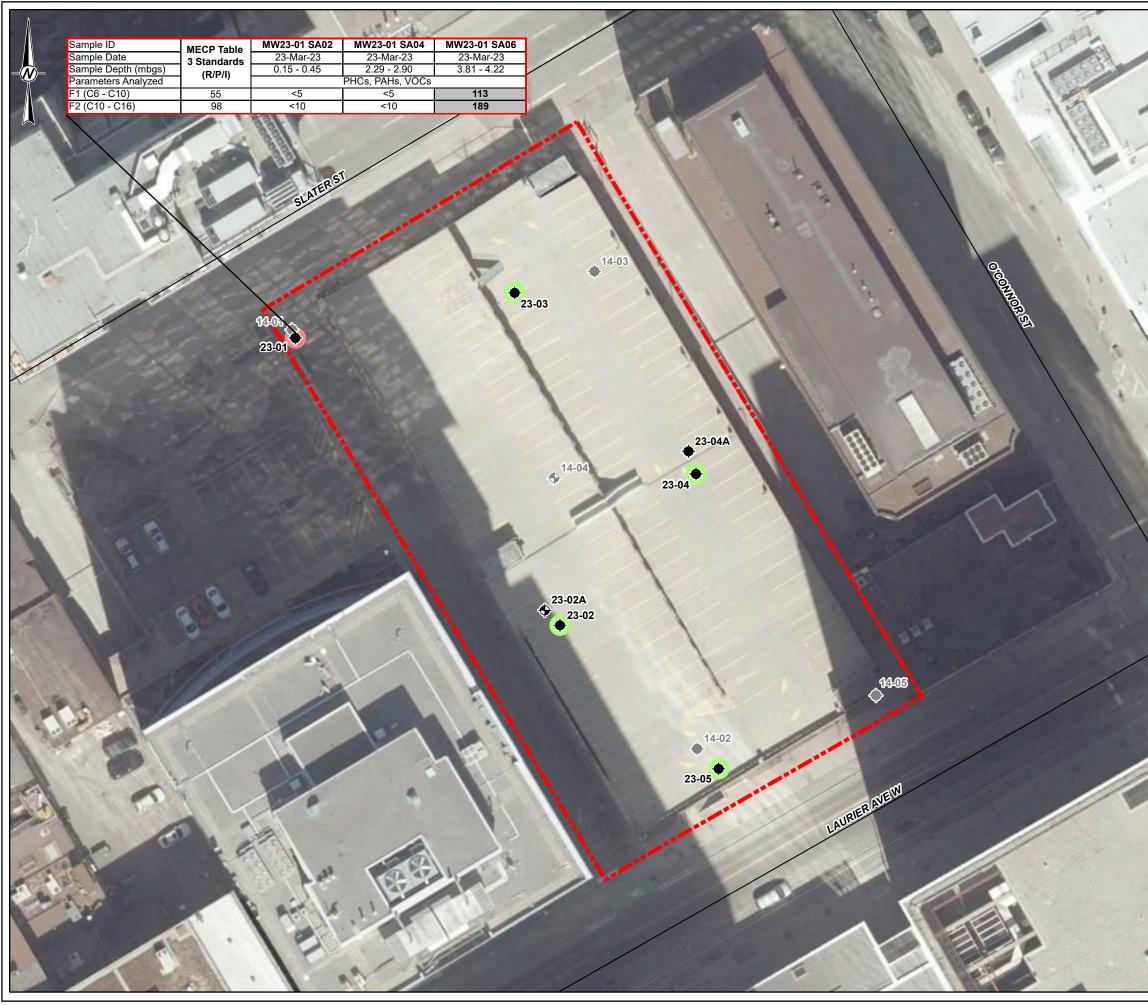
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT, 170 SLATER STREET, OTTAWA ONTARIO

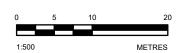
TITLE


SHALLOW GROUNDWATER ELEVATIONS AND INTERPRETED GROUNDWATER FLOW DIRECTION

CONSULTANT

0002


YYYY-MM-DD		2023-07-01	
DESIGNED			
PREPARED		JEM	
REVIEWED		KS	
APPROVED		KS	
	REV.		FIGURE
	0		5

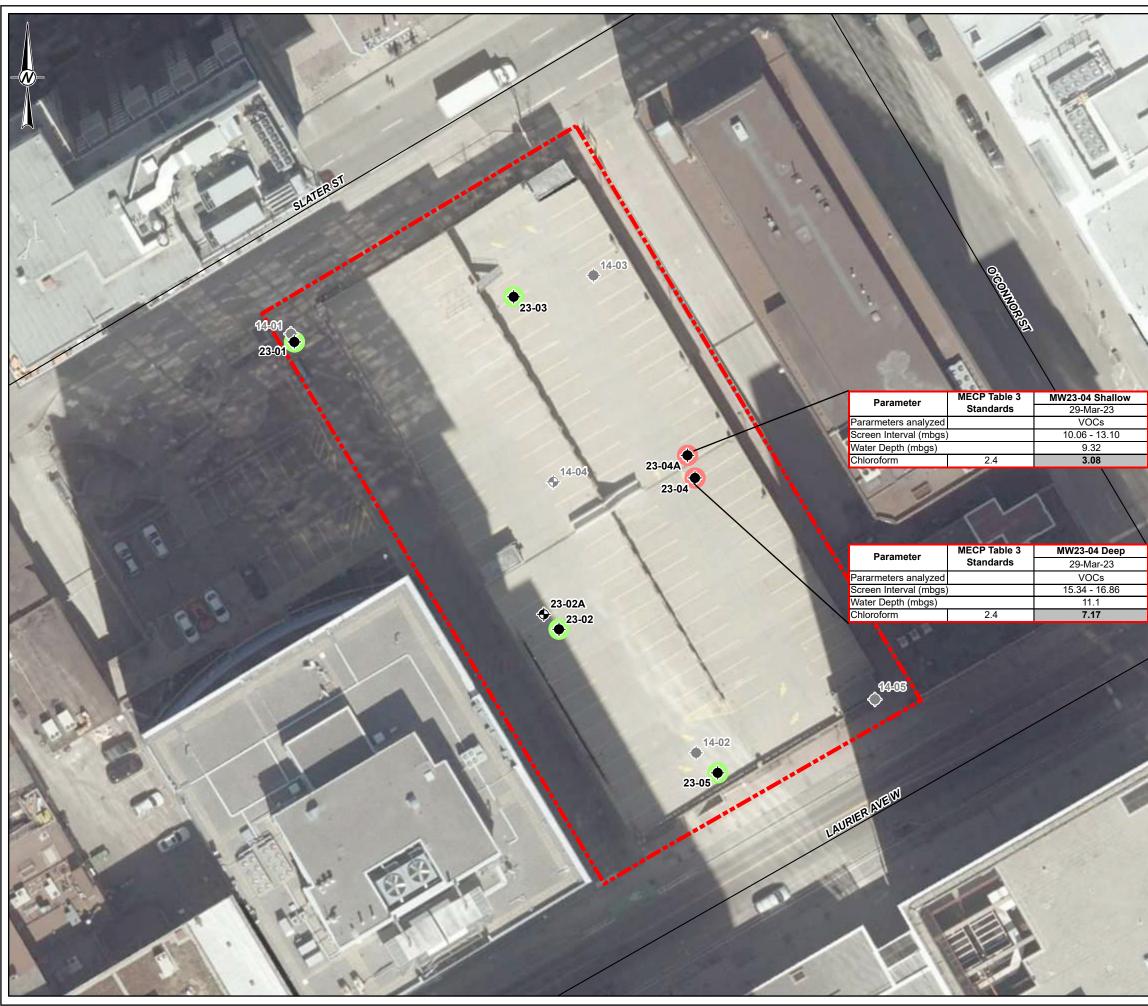

MW23-04 SA06	Dup-01	MW23-04 SA09
23-Mar-23	23-Mar-23	23-Mar-23
3.05 - 3.66	3.05 - 3.66	4.88 - 5.18
Metals		
129	105	200
7	7	14
<0.8	0.9	0.8
16.2	18.2	17.4
<0.10	<0.10	<0.10

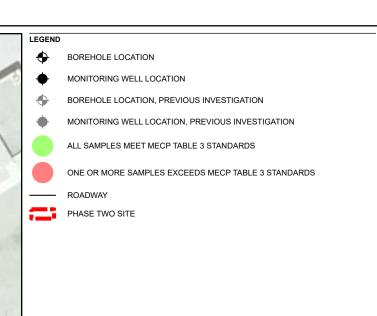
THE CANADA LIFE ASSURANCE COMPANY c/o GWL REALTY

YYYY-MM-D	D 2023	3-07-01
DESIGNED		
PREPARED	JEM	
REVIEWED	KS	
APPROVED	KS	
	REV.	FIGURE
	0	6

NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. COORDINATE SYSTEM: NAD 1983 UTM ZONE 18N


CLIENT


THE CANADA LIFE ASSURANCE COMPANY c/o GWL REALTY ADVISORS INC.

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT, 170 SLATER STREET, OTTAWA ONTARIO

PETROLEUM HYDROCARBONS, POLYCYCLIC AROMATIC HYDROCARBONS, VOLATILE ORGANIC COMPOUNDS ANALYSIS AND EXCEEDANCES IN SOIL

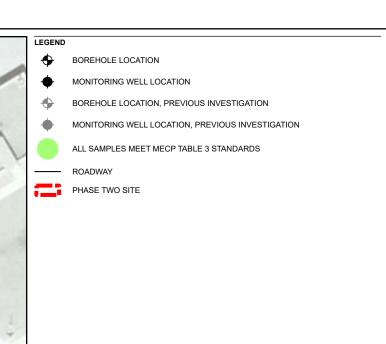
CONSULTANT	YYYY-MM-DD	2023-07-01	
	DESIGNED		
	PREPARED	JEM	
	REVIEWED	KS	
•	APPROVED	KS	
PROJECT NO. CONTROL	RE	EV.	FIGURE
23592402 0002	0		7

1:500

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. COORDINATE SYSTEM: NAD 1983 UTM ZONE 18N

METRES

CLIENT


THE CANADA LIFE ASSURANCE COMPANY c/o GWL REALTY ADVISORS INC.

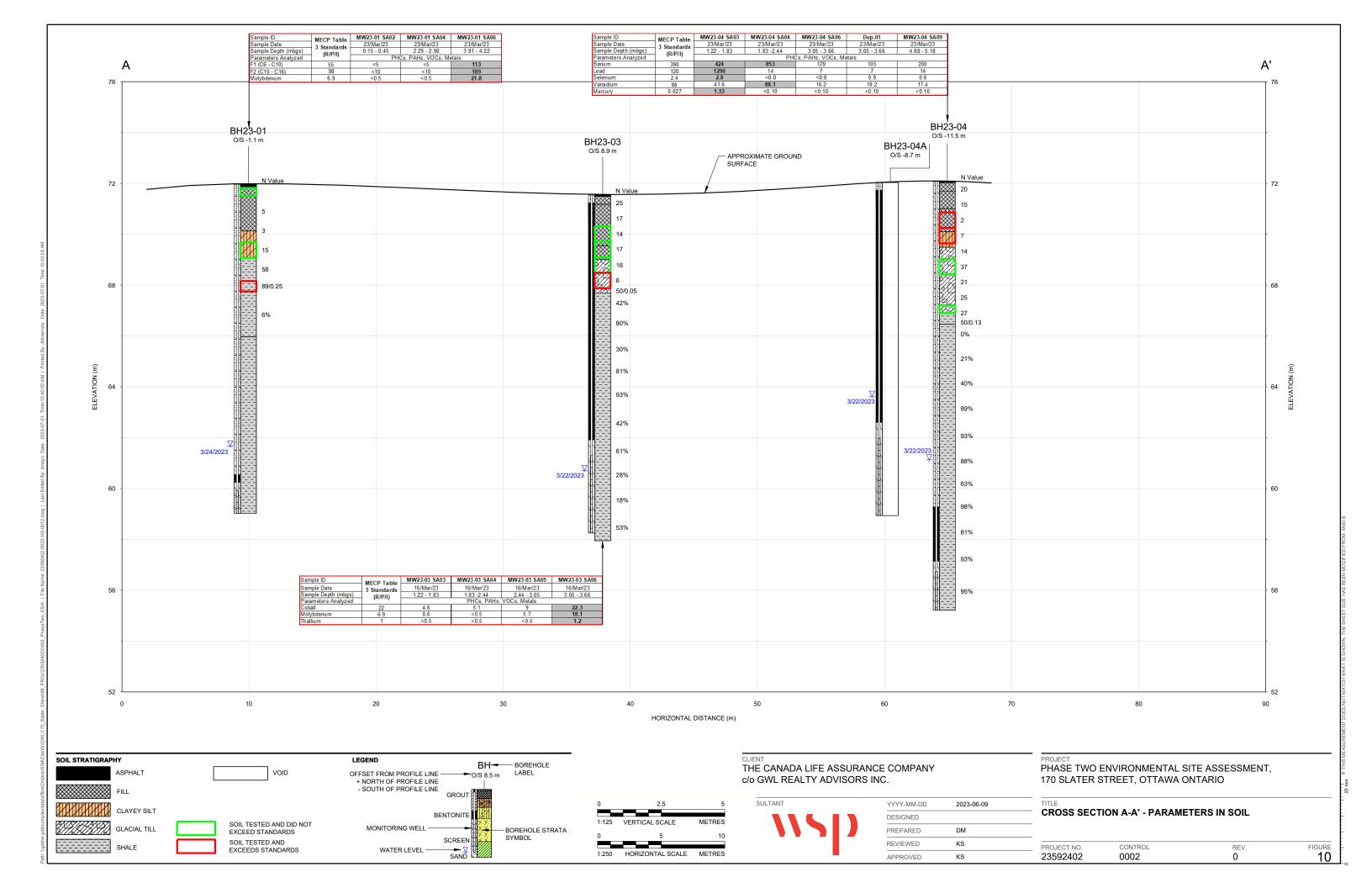
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT, 170 SLATER STREET, OTTAWA ONTARIO

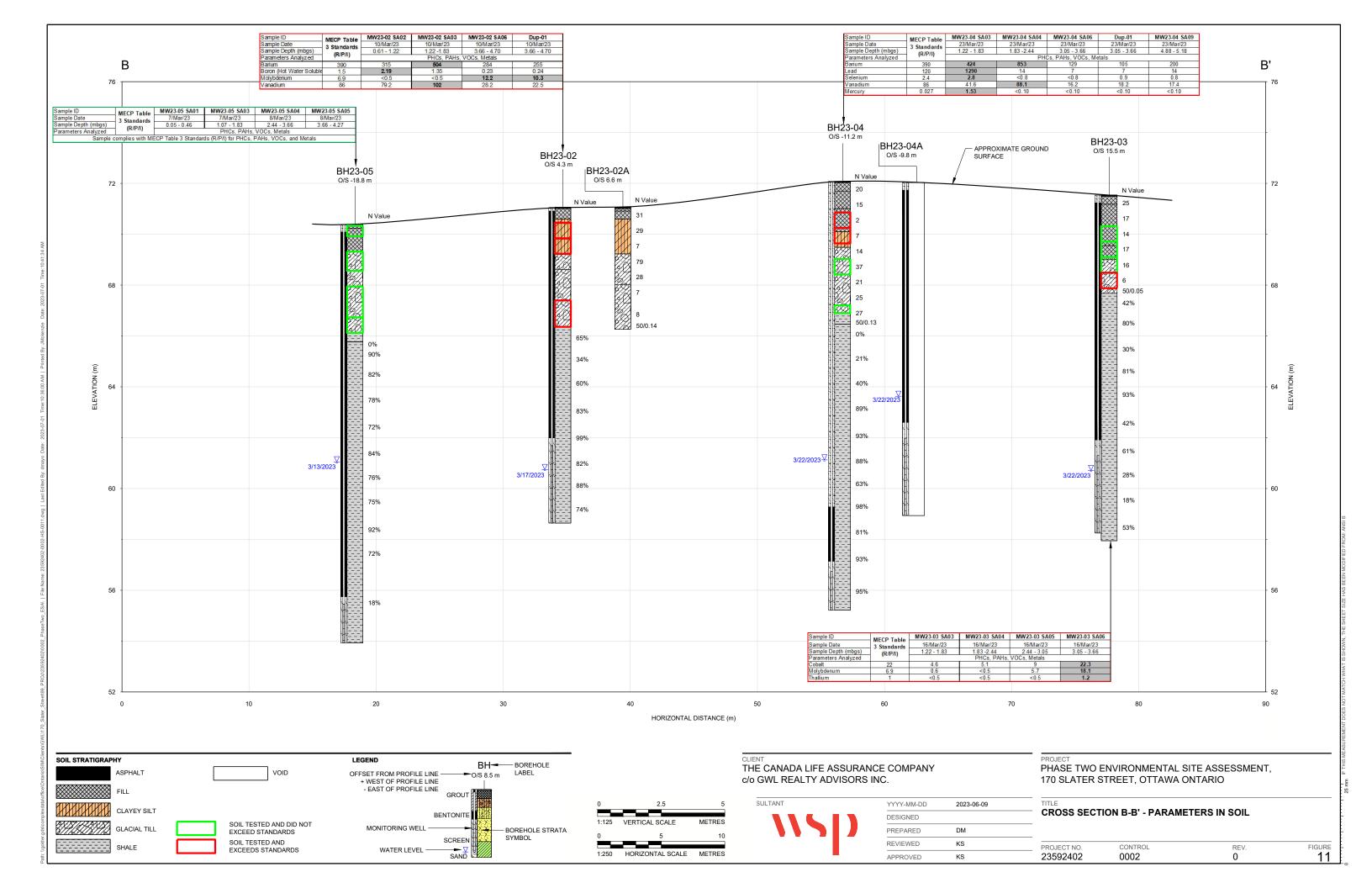
VOLATILE ORGANIC COMPOUNDS ANALYSIS AND EXCEEDANCES IN GROUNDWATER

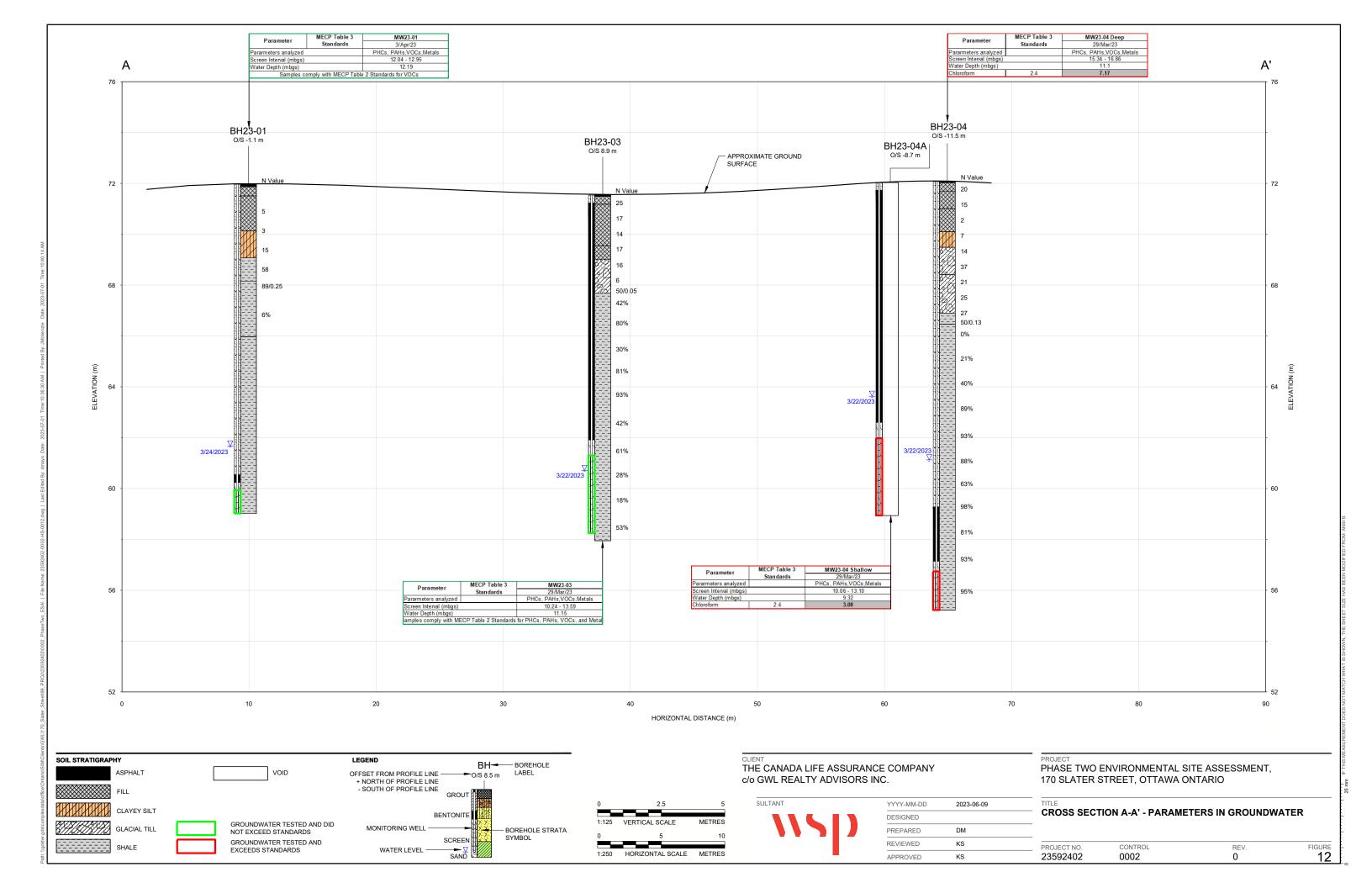
CONSULTANT 2023-07-01 YYYY-MM-DD DESIGNED -----116 PREPARED JEM REVIEWED KS APPROVED KS PROJECT NO. FIGURE CONTROL REV. 0 23592402 0002 8

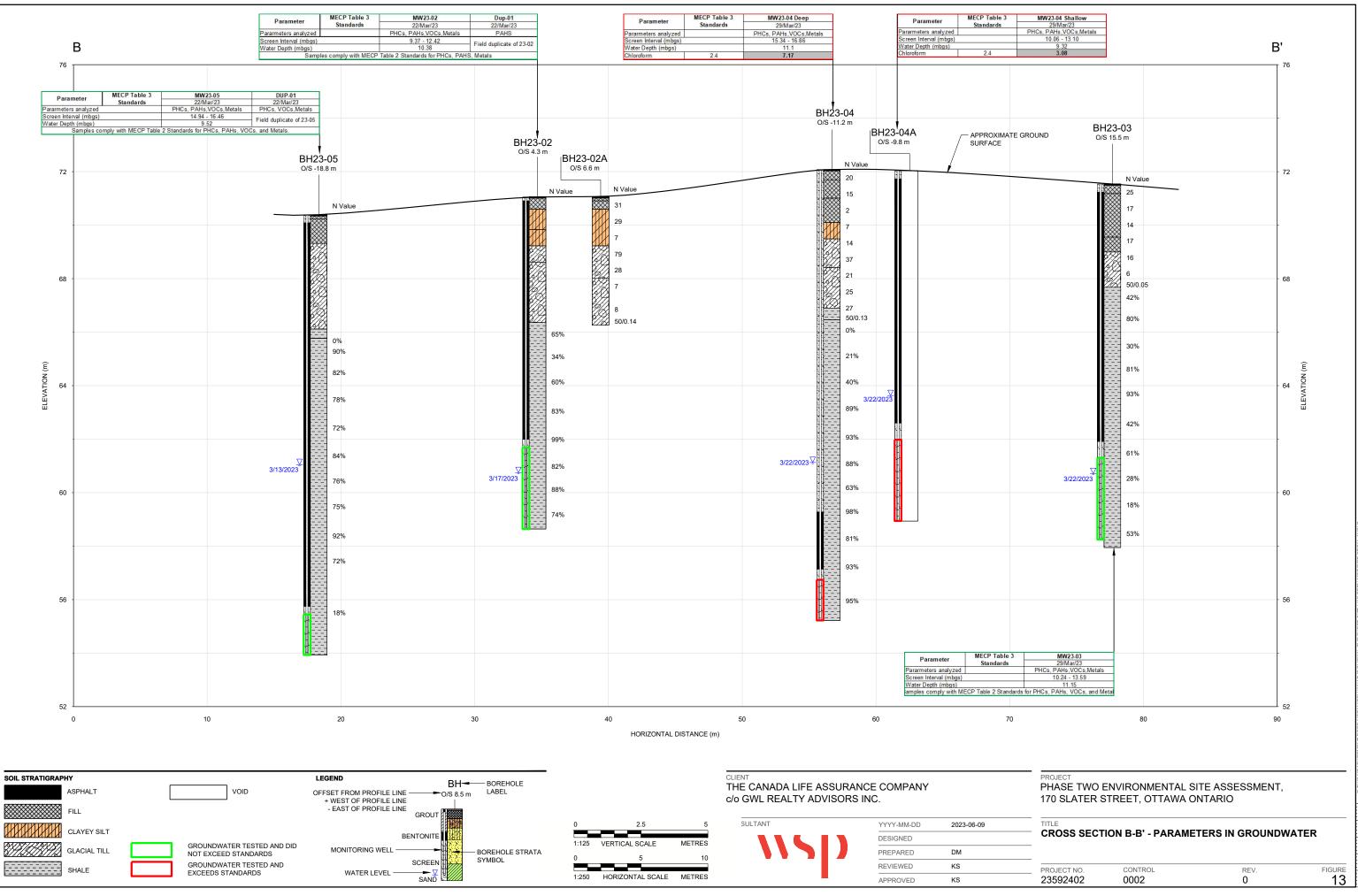
NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. COORDINATE SYSTEM: NAD 1983 UTM ZONE 18N

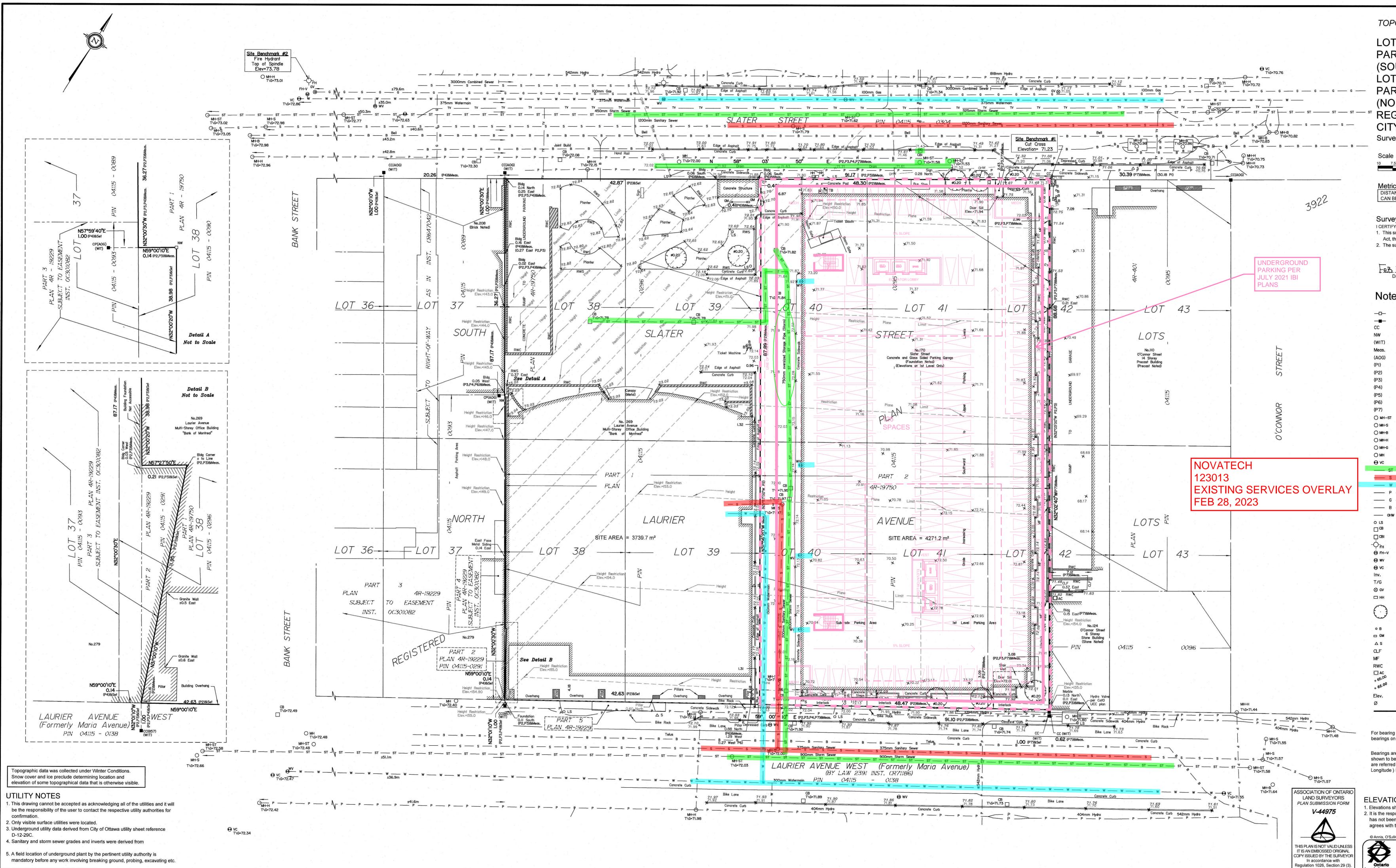

CLIENT


THE CANADA LIFE ASSURANCE COMPANY c/o GWL REALTY ADVISORS INC.


PHASE TWO ENVIRONMENTAL SITE ASSESSMENT, 170 SLATER STREET, OTTAWA ONTARIO


METALS, PETROLEUM HYDROCARBONS, AND POLYCYCLIC AROMATIC HYDROCARBONS ANALYSIS AND EXCEEDANCES IN GROUNDWATER

CONSULTANT YYYY-MM-DD 2023-07-01 DESIGNED -----**** \ PREPARED JEM REVIEWED KS APPROVED KS FIGURE PROJECT NO. CONTROL REV. 0 23592402 0002 9



APPENDIX A

Plan of Survey

POGRAPH	IC PLAN OF SURVEY OF
TS 39, 4	0 AND 41
RT OF L	OTS 38 AND 42
	ATER STREET)
	0 AND 41
	URIER AVENUE) ED PLAN 3922
TY OF O	
	nis, O'Sullivan, Vollebekk Ltd.
e 1:250	
7.5 5.0 2.5	0 5 10 Metres
	ON THIS PLAN ARE IN METRES AND TO FEET BY DIVIDING BY 0.3048
BE CONVERTED	TO FEET BY DIVIDING BY 0.3048
eyor's Certifi	cate
	re correct and in accordance with the Surveys
	and the regulations made under them. eted on the 24th day of February, 2023.
	1.0
24,2023	T. Hartwick
	Ontario Land Surveyor
es & Leg	jend
Denotes "	Survey Monument Planted
	Survey Monument Found Cut Cross
	Nail and Washer Witness
	Measured
u	Annis, O'Sullivan, Vollebekk Ltd. Plan 4R-401
эн н	Plan 4R-19750 Plan 4R-19229
	(AOG) Plan Dated May 27, 2019 (857) Plan Dated February 13, 2004
	(857) Plan Dated March 14, 2006 (AOG) Plan Dated September 5, 2019
	Maintenance Hole (Storm Sewer)
	Maintenance Hole (Sanitary) Maintenance Hole (Bell)
	Maintenance Hole (Hydro) Maintenance Hole (Gas)
	Maintenance Hole (Unidentified) Valve Chamber (Watermain)
T "	Underground Storm Sewer Underground Sanitary Sewer
W "	Underground Water Underground Power
i "	Underground Gas
³ " ₩ "	Bell/Telus Overhead Wires
	Light Standard Catch Basin
	Catch Basin Inlet Fire Hydrant
	Fire Hydrant Valve Water Valve
	Valve Chamber
	Invert Top of Grate
	Gas Valve Handhole
	Deciduous Tree
	Bollard
	Gas Meter
	Sign Chain Link Fence
	Metal Fence Concrete Retaining Wall
	Air Conditioner Location of Elevations
	Top of Concrete Curb and Retaining Wall Elevation Elevation
	Diameter
	Property Line
ng comparisons, a r on plan P2, P3 and	rotation of 0°00'50" clockwise was applied to P6.
	m the northerly limit of Laurier Avenue West
be N59° 00'10"E o ed to the Central M	n a Plan by (AOG) Dated May 24, 2019, and eridian of MTM Zone 9 (76°30' West
e) NAD-83 (original).
ION NOTES	c and are referred to the CGVD28 geodetic datum.
sponsibility of the u	c and are referred to the CGVD28 geodetic datum. ser of this information to verify that the job benchmark bed and that it's relative elevation and description
h the information sl	nown on this drawing.
	D23. "THIS PLAN IS PROTECTED BY COPYRIGHT" D'SULLIVAN, VOLLEBEKK LTD. 14 Concourse Gate, Suite 500
Ph	Nepean, Ont. K2E 7S6 none: (613) 727-0850 / Fax: (613) 727-1079
ors Jo	Email: Nepean@aovitd.com b No. 22881-23 RWL RealtyAdvisor Lts38,41 PtLt42 Pl3922 T D3 FL

23592402

APPENDIX B

Borehole Logs

July 2023

	me: Ge 17 No	eotechnical Investigation - 170 Slater Stree 0 Slater Street, Ottawa, ON 0 orthwest, outside the parking garage. e Canada Life Assurance Company c/o GV			 	Revi Proj Gec Surl	ewed ect l ograp	Num Num bhic	James S Prosper nber: Coordir vation: imuth:	Ahir	nbe Kitar	23 X = 4 Y = 5	D 5 924 44534 50298	ate (Sta ate (End	rt): 2 1): 2	e 1 o 2023-0: 2023-0:	3-23
Drilling Co Drilling Eq Drilling Me Borehole I Drilling Flu	uipment: ethod: Diameter	Wash bore / HW + air hammer	COPIN SCRE WATE WATE	JETAILS IG Elevation : EN Bottom Dep Length : Opening : R Elevation: R Date: er Level	pth: (0.91 51 m 61.67 2023	5 m m m 7 m -03-24		SAMPLE TV DC - Diamor SS - Split Sp PS - Piston S TC - Hollow 1 MA - Manual TR - Trowel ST - Shelby 1 TT - DT-32 L	nd Cor oon Sample Tube Auge Tube	GSA PENT PL Sg SPT UCS w	- Atterber - Grain S EST - Bit - Point Lo - Specific - N Value (Blow C - Uniaxia Strength	pad Test c Gravity e counts/300 l Compre n c Content r Limit	ysis ts/300mm 0mm) essive		_	disturbec moulded st
<u>DEPTH</u> ELEVATION (m)	STRATIGRAPHY	GEOLOGY / LITHOLOGY DESCRIPTION	NUMBER	TANY LABORATORY TESTING	DUPLICATE SISK	TYPE & NO.	STATE	% RECOVERY (RQD)	Blows Counts/6" (N Value = SPT)		SPT=N Value PLASTIC LIM 20	Shear (60 le RQD (©	90 PE			DIAGRAM	
$\begin{array}{c} 0.10 \\ 71,87 \\ 0.5 \\ -71,51 \\ 1.0 \\ 1.5 \\ 1.0 \\ 2.5 \\ 2.90 \\ 3.0 \\ -69,07 \\ 3.5 \\ -3.81 \\ 4.0 \\ -68,16 \\ 4.5 \\ -68,16 \\ 4.5 \\ -68,16 \\ -68,16 \\ -68,16 \\ -68,16 \\ -68,16 \\ -68,16 \\ -68,16 \\ -68,16 \\ -68,16 \\ -7.0 \\ -68,16 \\ -7.0 \\ -7.5 \\ -8.0 \\ -7.5 \\ -8.0 \\ -7.5 \\ -8.0 \\ -7.5 \\ -7.0 \\ -7.0 \\ -7.5 \\ -7.$		Ground surface. ASPHALTIC CONCRETE. FILL (PAVEMENT STRUCTURE): GRAVELLY SAND, grey to brown, non-cohesive, moist. FILL: SAND, fine to medium, brown, non-cohesive, moist, loose. CLAYEY SILT, some sand, brown-grey, mottled, cohesive, w ~ PL, firm to stiff. WEATHERED SHALE. WEATHERED and FRACTURED SHALE BEDROCK. INFERRED SHALE. Air hammer from 6.0 mbgs to 12.95 mbgs, no sampling.			- - - - - - - - - - - - -	GR-1 SS-2 SS-3 SS-6 SS-6 RC-1		42 0 50 8 13 64 (6)	6 (5) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (4) 2 (58) 3 (7) 2 (58) 3 (7) 3 (7) 2 (7) 3 (7) 2 (7) 3 (7) 2 (7) 3 (7)								0,5 1,0 2,0 3,5 3,5 4,0 4,5 5,5 5,5 6,0 7,0 8,5 8,5

	١	15			BORE	ΗC	DL	ΕC	RILLI	NG F	RECORD : I	BH23-01 Page 2 of 2	
	•	•	17						y: James S by: Prosper			art): 2023-03-2	23
Projec Site: Secto Client	or:	170 No:	otechnical Investigation - 170 Slater Street) Slater Street, Ottawa, ON rthwest, outside the parking garage. e Canada Life Assurance Company c/o GW			r	Geo	ograpi face E	umber: hic Coordin Elevation: Azimuth:	nates:	23592402 X = 445341 mE Y = 5029810 m 71.97 m <i>(Geode</i>	N	
Drillin Drillin	ig Equ ig Met nole D	iameter	Wash bore / HW + air hammer	SCREI	IG Elevation EN Bottom De Length : Opening : R Elevation: R Date:	pth :		5 m m m 7 m -03-24	SAMPLE T DC - Diamo SS - Split SJ PS - Piston TC - Hollow MA - Manua TR - Trowel ST - Shelby TT - DT-32	nd Core A boon G Sample F Tube F I Auger S Tube L Liner w	NALYSIS L Atterberg Limits SSA - Grain Size Analysis 'ENTEST - Blow Counts/300mm' L Point Load Test g Specific Gravity (Blow Counts/300mm) (CS - Uniaxial Compressive Strength v Moisture Content v Liquidity Limit /P - Plasticity Limit	SAMPLE STATE Undistu Undistu Remou Lost Cored	
		~	GEOLOGY / LITHOLOGY			LYSIS				GEOTI R C 30	ECHNICAL Shear (kPa) I 60 90 120	WELL	
<u>DEPTH</u> ELEVATI (m)		STRATIGRAPHY	DESCRIPTION	NUMBER	LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE % DECOVEDV	Blows Counts/6" (N Value = SPT)	SPT=N PLASTIC	Value PENTEST	DIAGRAM	
Project: 23592402 - BOREHOLE LOGS: GPU 1ype or report: WSP_EN_WELL-GEOTECHNICAL ONLY Data Template: WSP_TEMPLATE_GEOTECH.GDT 2023-4-27 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2,95		INFERRED SHALE. Air hammer from 6.0 mbgs to 12.95 mbgs, no sampling.										9,5 0,0 1,0 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,5 1,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5

		•							by: James S by: Prosper	Sullivan Ahimbe Kitan		art): 2023-03- 1 id): 2023-03- 1
Project Nai Site: Sector: Client:	33.3						Geo Surl	ograp face	Number: phic Coordi Elevation: Azimuth:	nates:	23592402 X = 445376 mE Y = 5029772 m 71.06 m <i>(Geode</i>	Ν
Drilling Cor Drilling Equ Drilling Me ⁻ Borehole D Drilling Flui	uipment thod:)iamete	Direct push + wash bore / B + W		SCREE	G Elevation : N Bottom De Length : Opening : R Elevation: R Date:	pth :	70.96 12.42 3.05 30 m 60.65 2023	5 m 2 m m 5 m -03-17	SAMPLE T DC - Diamo SS - Split S PS - Piston TC - Hollow MA - Manua TR - Trowel ST - Shelby TT - DT-32	nd Core AL - poon GSA - Sample PENTT Tube PL - al Auger SPT - Liner W - wL - wL -	YSIS Atterberg Limits Grain Size Analysis SST - Blow Counts/300mm Point Load Test Specific Gravity - N Value (Blow Counts/300mm) Uniaxial Compressive Strength Moisture Content Liquidity Limit Plasticity Limit	SAMPLE STATE
-		GEOLOGY / LITHOLOGY			ANAL	YSIS					Shear (kPa)	WELL
<u>DEPTH</u> ELEVATION (m)	STRATIGRAPHY	DESCRIPTION		NUMBER	LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE	% RECOVERY (RQD) Blows Counts/6" (N Value = SPT)	SPT=N Value	PENTEST RQD (%) △	DIAGRAM
		Ground surface.										
- 71,01		ASPHALTIC CONCRETE.	_	SA-01			DO-	\mathbb{N}	58			
0,5 <u>- 0,46</u> - 70,60		FILL (PAVEMENT STRUCTURE): SAND and GRAVEL to GRAVELLY SAND, brown, non-cohesive, moist.	∬				1 DO- 2	M	100			•
,0 - 1,22 - 69,84 ,5 -		SILT to CLAYEY SILT, mostly non-plastic silt, some to trace sand, brown, slightly mottled, non-cohesive, moist.	ſ				2 DO- 3	M	100			
1,83 .,0 - 69,23		CLAYEY SILT, mostly silt with plastic fines, trace sand, brown, cohesive, w ~ PL, stiff.					DO- 4	A	50			
2,5 - 2,44 68,62		GLACIAL TILL: CLAYEY SILT, some sand, some gravel, contains cobbles and boulders, brown, cohesive, w ~ PL.					DO- 5		50			
3,0 — - - - - - - - - - - - - - - - - - - -		GLACIAL TILL: GRAVELLY SILTY SAND to GRAVELLY SAND, some silt, some clay, contains cobbles and boulders, dark-brown,						M				
,0 - - -		non-cohesive, moist to wet.					DO- 6	M	73			
,5 - - 4,70 - 66,36		WEATHERED TO FRESH SHALE, bedded,					RC-	$\left(\right)$	97	_		
i,0 - - - i,5 -		black, fine-grained, slightly to non-porous, brittle, Billings Shale, sulfide rich.					1		(65)		65 •	
5,0 - - - - - -							RC- 2		99 (34)	34_		
,5 <u>-</u> -							RC- 3	11 /1	95 (60)			
- 0, 		 0.03 m void at approximately 6.9 m. 						\mathbb{N}				
,5 — - - ,0 —							RC- 4		100 (83)		83 •	
,5 -		1			1			v V	1			:

		15			BORE	HC	DL	ΕD	RILLI	NG RECO		H23-02	
	•	•	·] ·						: James S /: Prosper	ullivan Ahimbe Kitandala): 2023-03-10	0
Project Site: Sector: Client:		170 We	otechnical Investigation - 170 Slater Street) Slater Street, Ottawa, ON est, inside the parking garage. e Canada Life Assurance Company c/o GW			•	Geo Surf	ace El	mber: c Coordir evation: zimuth:	nates: X = Y = :	592402 445376 mE 5029772 mN 6 m <i>(Geodeti</i>	c)	
Drilling Drilling Drilling Boreho Drilling	Equi Meth le Dia	ipment: nod: ameter:	Direct push + wash bore / B + W	SCREE	G Elevation : N Bottom De Length : Opening : R Elevation: R Date: r Level J	pth : Free	70.96 12.42 3.05 i 30 mi 60.65 2023	5 m ? m m 5 m -03-17	SAMPLE TY DC - Diamon SS - Spilt Sp PS - Piston S TC - Hollow MA - Manual TR - Trowel ST - Shelby TT - DT-32 L	d Core Sample Auger Auger Tube Auger Tube Auger Tube Auger Tube Auger Auge	rg Limits Size Analysis low Counts/300mm oad Test c Gravity e bounts/300mm) il Compressive h c Content / Limit	Cored	
DEPTH ELEVATIO (m)	NN	STRATIGRAPHY	GEOLOGY / LITHOLOGY DESCRIPTION	NUMBER	LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE % RECOVERY	(אעזט) Blows Counts/6" (N Value = SPT)	GEOTECHNICAL	PENTEST	DIAGRAM	
Project: 23592402- BOREHOLE LOGS GPJ Type of report: WSP_EN_WEL-GEOTECHNICAL ONLY Data Template: WSP_TEMPLATE_GEOTECH.GDT 20234-27 2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	42 64		WEATHERED TO FRESH SHALE, bedded, black, fine-grained, slightly to non-porous, brittle, Billings Shale, sulfide rich. End of borehole at 12,42 m.				RC- 6 RC- 7 RC- 8		2)		80 80 880	10 10 10 11 11 11 12 13 13 14 14 14 14 15 16 16 16 17	

		1								James Si Prosper /			lala	Date (Sta Date (En	urt): 2023 d): 2023	-03-13 -03-13
Project Nar Site: Sector: Client:	17(1m	otechnical Investigation - 170 Slater Stree 0 Slater Street, Ottawa, ON 1 south of BH23-02. e Canada Life Assurance Company c/o GV				(Geo Surf	ogra face	phic Ele	nber: Coordin vation: imuth:	ates:		X = 44 Y = 50)2402 5374 mE 29774 mN easured	1	
Drilling Cor Drilling Equ Drilling Met Borehole D Drilling Flui	uipment: thod: viameter	SPT / DO casing / B + W		REEM	B Elevation : N Bottom Dep Length : Opening : Elevation: Date:					SAMPLE TY DC - Diamoni SS - Split Spc PS - Piston S TC - Hollow T MA - Manual ST - Shelby T TT - DT-32 Li	d Core con ample Tube Auger	GSA - PENTE PL - Sg - SPT - UCS - SW - WL -	Atterberg L Grain Size ST - Blow Point Load Specific Gr N Value Blow Cour	Analysis Counts/300mm Test avity avity ats/300mm) ompressive ontent nit		TATE Undistu Remou Lost Cored
-		GEOLOGY / LITHOLOGY			ANAL	YSIS					i		ICAL Shear (kP:	a) l	WEL	
<u>DEPTH</u> ELEVATION (m)	STRATIGRAPHY	DESCRIPTION	NUMBER		LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE	% RECOVERY (RQD)	Blows Counts/6" (N Value = SPT)	SP' PLA	30 6 T=N Value	RQD (%)	PENTEST	DIAGRAM	
0.05		Ground surface.												r r		
0,9 <u>9</u> 0,46		ASPHALTIC CONCRETE.	SA-0 SA-0	_			SS- 1	X	67	13 (31) 15 16 7			· · · · · · · · · · · · · · · · · · ·			
0		some gravel, grey, non-cohesive, moist. FILL (PAVEMENT STRUCTURE): GRAVELLY SAND, trace silt, brown,					SS- 2	M	42	7 (29) 14 15 11			· · ·			
5		non-cohesive, moist.					SS- 3	M	92	3 (7) 4 4			· · · · · · · · · · · · · · · · · · ·			
0 <u>1,83</u>		sand, trace gravel, brown, slightly mottled, cohesive, w < PL to ~ PL.	Г				SS- 4	M	83	4 (79) 25 54 65			· · ·	A		
5 -		GLACIAL TILL: SILTY SAND, some gravel to GRAVELLY SAND, some silt, some to trace clay, contains cobbles, brown, non-cohesive,					SS- 5	M	83	05 20 (28) 14 14 11			· · ·			
0 - 3,05		moist, dense to compact. GLACIAL TILL: SILTY SAND to GRAVELLY				ŀ	SS- 6	M	50	5 (7)			· · ·			
5 -		SAND, some silt, trace clay, contains cobbles, dark-brown to black, non-cohesive, moist.					0			32			· · · · · · · · · · · · · · · · · · ·			
0		 Contains shale fragments. 					SS- 7	M	42	3 (8) 5 8			· · · · · · · · · · · · · · · · · · ·			
- <u>4,80</u>		BH23-02A was drilled next to BH23-02 for	-				SS- 8	М	78	50/5"			· · ·			
5 -		SPT "N" values purposes. End of borehole at 4,80 m.											· · · · · · · · · · · · · · · · · · ·			
0												· · · · · · · · · · · · · · · · · · ·				
5 -													· · ·			
0												· · · · · · · · · · · · · · · · · · ·				
5 -													· · · · · · · · · · · · · · · · · · ·			
0													· · ·			
- 1			1					i I		1		• •	• •		· 1	

								James S Prosper		Kitandala	Date (Start) Date (End):): 2023-03-; : 2023-03-;
Project Na Site: Sector: Client:	17 No	eotechnical Investigation - 170 Slater Street '0 Slater Street, Ottawa, ON ortheast, inside the parking garage. ne Canada Life Assurance Company c/o GW			r i	Gec Surl	face El	mber: c Coordir evation: zimuth:	ates:	X = 44 Y = 50	92402 45370 mE 029816 mN m <i>(Geodetic</i>	;)
Drilling Co Drilling Eq Drilling Me Borehole D Drilling Flu	uipment thod: Diamete	t: Massenza SPT SPT / direct push / B + W	COP SCR WAT WAT	DETAILS ING Elevation : EEN Bottom De Length : Opening : ER Elevation: ER Date: ater Level	pth :		9 m m mm 11 m -03-22	SAMPLE TY DC - Diamon SS - Split Sp PS - Piston S TC - Hollow ' MA - Manual TR - Trowel ST - Shelby ' TT - DT-32 L	d Core oon Sample Tube Auger Tube iner	ANALYSIS AL - Atterberg GSA - Grain Size PENTEST - Blow PL - Point Load Sg - Specific G SPT - N Value (Blow Cou UCS - Uniaxial C Strength w - Moisture C - Musiture C - View - Strength w - Plasticity L	Limits Analysis Counts/300mm J Test iravity Ints/300mm) compressive Content mit	AMPLE STATE Undiss Remo Lost Cored
		GEOLOGY / LITHOLOGY		ANA	LYSIS				GEOT	ECHNICAL Shear (kF	Pa) I 🔳	WELL
<u>DEPTH</u> ELEVATION (m)	STRATIGRAPHY	DESCRIPTION	NUMBER	LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE % RECOVERY	(אשט) Blows Counts/6" (N Value = SPT)	30 SPT=N	Value RQD (% C LIMIT w (%	90 120 PENTEST ₀) △	DIAGRAM
		Ground surface.										
- <u>71,49</u> - <u>0,36</u> - <u>71,18</u>		ASPHALTIC CONCRETE.	SA-01			SS- 1	67	16 (25) 14 11 10				
0		GRAVEL, grey, non-cohesive, moist, compact.				SS- 2	75	8 (17) 9 11				
5 - -		FILL: SAND, fine to medium, brown, non-cohesive, moist, compact.				SS- 3	83	10 (14) 8 6 4				
,0 <u>- 1,98</u> - 69,56		FILL: SANDY SILT to SILT, some clay,	-			SS- 4	75	_				
5 <mark>- 2,54</mark> - 69,00		gravel, brown-grey, mottled, non-cohesive, moist, compact. GLACIAL TILL: GRAVELLY SAND to	-			SS- 5	100					
- - - - -		GRAVELLY SILTY SAND, some clay, contains cobbles, contains shale, brown to				SS- 6	63	3 (6)				
5 - - - <u>3,86</u> - 67,68	A A A	dark-brown to black, non-cohesive, moist, loose to compact.	-			SS-		2 (0) 4 8 10 50/2"				
0 07,08		WEATHERED to FRESH SHALE, bedded, black, fine grained, brittle, non-porous to slightly porous, Billings Shale, sulfide rich.				7 RC- 1	82 (42			42 ©		
0						RC- 2	98 (80				80. •	
,5 - -							Δ_					
0						RC- 3	(30			3α. ●		
5 - - - -						RC-	100				81	
- - - - -						4	(81				81 •	
5 — - - 0 —						RC- 5	(93				93 •	
.0 — — — — 5 —												
						RC- 6	92		: :	: : :	: : : :	

	١	15			BORE	HC	DL	ΕD	RILLI	NG R	ECORD : I	
			' '						: James S /: Prosper	ullivan Ahimbe Kit		Page 2 of 2 art): 2023-03-20 ad): 2023-03-21
Si Se	oject Na te: ector: ient:	17) No	otechnical Investigation - 170 Slater Street, 0 Slater Street, Ottawa, ON rtheast, inside the parking garage. e Canada Life Assurance Company c/o GWI				Geo Surf	ace El	mber: c Coordir evation: zimuth:	nates:	23592402 X = 445370 mE Y = 5029816 m 71.54 m (<i>Geode</i>	N
Di Di Bo	illing Me	uipment: ethod: Diameter	SPT / direct push / B + W	SCREE	G Elevation : N Bottom De Length : Opening : R Elevation: R Date:	pth :	71.47 13.29 3.05 25.4 60.64 2023	/1 m) m m mm I1 m -03-22	SAMPLE TY DC - Diamon SS - Spiti Sp PS - Piston S TC - Hollow ' MA - Manual TR - Trowel ST - Shelby ' TT - DT-32 L	d Core AL oon GS ample PE Tube PL Auger SF Tube U	g - Specific Gravity PT - N Value (Blow Counts/300mm) CS - Uniaxial Compressive Strength - Moisture Content L - Liquidity Limit	SAMPLE STATE
	<u>EPTH</u> VATION (m)	STRATIGRAPHY	GEOLOGY / LITHOLOGY DESCRIPTION	NUMBER	LABORATORY TESTING		TYPE & NO.	STATE % RECOVERY	(אכעט) Blows Counts/6" (N Value = SPT)	GEOTE R I 30 SPT=N V A PLASTIC 20	60 90 120 √alue PENTEST RQD (%) △	DIAGRAM
Project: 235292402 - BOREHOLE LOGS.GPJ Type of report: WSP_EN_WELL-GEOTECHNICAL ONLY Data Template: WSP_TEMPLATE_GEOTECH.GDT 2023-4.27 8 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 1 -0 -0 1 -0 1 -0 -0 1 -0	13.59		WEATHERED to FRESH SHALE, bedded, black, fine grained, brittle, non-porous to slightly porous, Billings Shale, sulfide rich. -More weathered. End of borehole at 13,59 m.				RC- 7 RC- 8 RC- 9 RC- 10	99 (28 85 (18 96 (53	() () () () () () () () () () () () () (9,5 10,0 10,0 10,5 11,0 11,5 11,5 12,0 12,5 13,0 13,5 14,0 14,0 14,5 15,5 16,0 16,5 17,0 17,5

		•								James S Prosper			Kitandala	Date (Sta Date (En		2023-03 2023-03	
Project Na Site: Sector: Client:	17 Ea	eotechnical Investigation - 170 Slater Stree 70 Slater Street, Ottawa, ON ast, inside the parking garage. ne Canada Life Assurance Company c/o G\					Geo Surf	face	ohic Elev	iber: Coordir vation: muth:	nates	s:	X = 4 Y = 5	5 92402 145394 mE 5029792 m i 8 m <i>(Geode</i>			
Drilling Co Drilling Eq Drilling Me Borehole I Drilling Flu	uipment ethod: Diamete	SPT / direct push / B + W		SCREE	Elevation : N Bottom Dep Length : Opening : Elevation: Date:	pth :	72.00 16.86 1.52 i 25.4 i 61.05 2023	08 m 5 m m mm 58 m -03-22		SAMPLE TY DC - Diamon SS - Split Sp PS - Piston S TC - Hollow ^T MA - Manual TR - Trowel ST - Shelby ^T TT - DT-32 L	nd Core oon Sample Tube Auger Tube		PL - Point Lo Sg - Specific SPT - N Value (Blow Co	ize Analysis ww Counts/300mm ad Test Gravity bounts/300mm) Compressive Content Limit		_	disturb moulde st
		GEOLOGY / LITHOLOGY			ANAL	YSIS						GEO R	ECHNICAL Shear (I	kPa) I		WELL	
<u>DEPTH</u> ELEVATION (m)	STRATIGRAPHY	DESCRIPTION		NUMBER	LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE	% RECOVERY (RQD)	Blows Counts/6" (N Value = SPT)		30 SPT=I	V Value RQD (C LIMIT w (90 120 PENTEST %)	-	DIAGRAM	
		Ground surface.															
- <u>72,03</u> - 0,38		ASPHALTIC CONCRETE.	∫ s/	A-01			SS-	\mathbb{M}	63	11 (20) 9 11 9							
,5 - 71,70		FILL (PAVEMENT STRUCTURE): GRAVELLY SAND, grey-brown, non-cohesive, moist, compact.	SA	4-02A			1 SS-	A	75	$\frac{11}{9}$ $\frac{1}{7}$ (15)							0
0 <u>1,07</u> 71,01		FILL: SAND, fine to medium, trace gravel,		4-02B			2	Д		8 5							1
5 -		brown, non-cohesive, moist, compact.		-02D			SS- 3	M	50	3 (2) 1		:					1
0 <u>- 1,98</u>		FILL: SAND, some silt, some gravel, trace clay, contains debris, contains glass, brown,					SS-	$\left\{ \right\}$	58	1 2 2 (7)							2
,0 _ 70,10		mottled, non-cohesive, moist, compact to loose.					4	X	50	2 (7) 4 5							
⁵ <u>2,59</u> 69,49		WEATHERED CRUST: CLAYEY SILT to		A-05A			SS-	M	83	1 (14) 3 (14)							2
,0		SILTY CLAY, trace sand, brown-grey, mottled, non-cohesive, w < PL, stiff.	SA	\-05 ₿			5	Д		1 (14) 3 11 18		•					3
		GLACIAL TILL: SAND, some silt, some gravel, trace to some clay, contains cobbles,					SS- 6	X	83	14 (37) 16 21 21							
,5 <u>3,66</u> 68,42		brown, non-cohesive, moist, compact to dense.	Л				SS-	$\left\{ \right\}$	92			:					3
,0		GLACIAL TILL: SAND to SILTY SAND, some gravel, some clay, contains cobbles, contains					7	M	02	13 (21) 10 (21) 11 11		*					4
5 —		shale, dark-brown to black, non-cohesive, moist, compact.					SS- 8	X	63	9 (25) 11 14 14 18							4
,0 <u>-</u> - <u>5,18</u>							SS-	M	83								5
⁵ 5,61		WEATHERED SHALE, with sand, gravel, black, bedded.					9	\square		7 (27) 7 20 22/50/5"							5
66,47		WEATHERED to FRESH SHALE bedded,	7				SS- 10	N /M=	100 72	C		:					
0		black, fine grained, brittle, non-porous to slightly porous, Billings Shale.					RC- 1	M	(0)			:					6
5 -							RC-		95								6
,0							2	X '	(21)			21 ©				1 🕅	7
_								\mathbb{N}									
,5 - - -							RC-	1 \ / I	90								7
,0 							3	$ \lambda $	(40)			:	40. •				8
,5 —								$\left\{ \right\}$	40.5								ξ
1							RC- 4		100 (89)			:			:	1 🕅	1`

•	l r			BOREH	IOL	E C	RILLI	NG F	RECOR	D : B	H23-04
							by: James S by: Prosper		Kitandala	P Date (Start) Date (End):	
Project Na Site: Sector: Client:	17 Ea	otechnical Investigation - 170 Slater Street, 0 Slater Street, Ottawa, ON st, inside the parking garage. e Canada Life Assurance Company c/o GWI			Pro Ge Su	oject N ograpi	lumber: hic Coordin Elevation:		2359 X = 445 Y = 502	2402	
Drilling Co Drilling Eq Drilling Me Borehole I Drilling Flu	mpany: uipment: thod: Diameter	Strata Drilling Group Massenza SPT SPT / direct push / B + W	WELL DE COPINO SCREE	TAILS G Elevation : N Bottom Depth Length : Opening : R Elevation: R Date:	72.0 16.3 1.5 25.4 61.0	008 m 36 m 2 m 4 mm 058 m 3-03-22	Azimuth: SAMPLE TY DC - Diamon SS - Split Sp- PS - Piston S TC - Hollow7 MA - Manual TR - Trowel ST - Shelby7 TT - DT-32 L	d Core // con d ample l Tube l Auger d Tube l ner	ANALYSIS AL - Atterberg Lin GSA - Grain Size A PENTEST - Blow Cr. PL - Point Load T G - Specific Grav SPT - N Value (Blow Counts UCS - Uniaxial Com Strength w - Moisture Com Liquidity Limit W - Plasticity Lim	its ialysis unts/300mm isst ity 300mm) pressive ent	AMPLE STATE Undisturbed Remoulded Lost Cored
DEPTH ELEVATION (m)	STRATIGRAPHY	GEOLOGY / LITHOLOGY DESCRIPTION	NUMBER	LABORATORY	DUPLICATE	STATE %	% RECOVERT (RQD) Blows Counts/6" (N Value = SPT)	R E 30 SPT=N	60 90		WELL MURAN
Project: 23592402 - BOREHOLE LOGS.GPJ Type of report: WSP_EN_VELL-GEOTECHNICAL ONLY Data Template: WSP_TEMPLATE_GEOTECH.GDT 2023.427 0 1 <td< td=""><td></td><td>WEATHERED to FRESH SHALE bedded, black, fine grained, brittle, non-porous to slightly porous, Billings Shale. Image: state stat</td><td></td><td></td><td>RC 5</td><td>$\begin{array}{c c} & & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ &$</td><td>00 933 94 880 90 933 90 938 939 931 932 933 933 935 937 938 939 931 932 933 935 936 937 938 939 931 932 933 934 935 935</td><td></td><td>ea</td><td></td><td>9,5 - 10,0 - 10,5 - 11,0 - 11,0 - 11,0 - 12,0 - 12,5 - 13,0 - 13,5 - 14,0 - 14,5 - 14,5 - 14,5 - 15,5 - 16,0 - 16,5 - 17,0 - 17,5 -</td></td<>		WEATHERED to FRESH SHALE bedded, black, fine grained, brittle, non-porous to slightly porous, Billings Shale. Image: state stat			RC 5	$\begin{array}{c c} & & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & $	00 933 94 880 90 933 90 938 939 931 932 933 933 935 937 938 939 931 932 933 935 936 937 938 939 931 932 933 934 935 935		ea		9,5 - 10,0 - 10,5 - 11,0 - 11,0 - 11,0 - 12,0 - 12,5 - 13,0 - 13,5 - 14,0 - 14,5 - 14,5 - 14,5 - 15,5 - 16,0 - 16,5 - 17,0 - 17,5 -

	17			BOREH								Page 1	
		I							James Sulliva Prosper Ahim		Date (Sta Date (Enc		3-03-15 3-03-15
Project Nar Site: Sector:	170	otechnical Investigation - 170 Slater Str) Slater Street, Ottawa, ON north of BH23-04.	eet, Ottawa,	ON		Geo	ograp	phio	mber: c Coordinates	: X = 44 Y = 50)2402 5393 mE 29795 mN		
Client:		e Canada Life Assurance Company c/o	GWL Realty	Advisors In	IC.				evation: zimuth:	72.04	m <i>(Geodel</i>	tic)	
Drilling Equ Drilling Met Borehole D	rilling Company: Strata Drilling Group rilling Equipment: Massenza SPT rilling Method: - / - orehole Diameter: 82.5 mm rilling Fluid: Water GEOLOGY / ⊔THOLOGY			DETAILS NG Elevation EN Bottom D Length : Opening : ER Elevation: ER Date: ter Level	epth :	71.90 13.1 3.04 30 m 63.49 2023	06 m m m 1m 96 m 3-03-2:		SAMPLE TYPE DC - Diamond Core SS - Split Spoon PS - Piston Sample TC - Hollow Tube MA - Manual Auger TR - Trowel ST - Shelby Tube TT - DT-32 Liner	ANALYSIS AL - Atterberg L GSA - Grain Size PENTEST - Blowi PL - Point Load Sg - Specific Gr SPT - N Value (Blow Coun UCS - Uniaxial Cc Strength w - Moisture Cc wL - Liquidity Lin wP - Plasticity Lin	Counts/300mm Test avity its/300mm) ompressive ontent nit	SAMPLE S	Undisturi Remould Lost Cored
		GEOLOGY / LITHOLOGY		ANA	LYSIS		1 1			GEOTECHNICAL		WEI	L
<u>DEPTH</u> ELEVATION (m)	STRATIGRAPHY	DESCRIPTION	NUMBER	LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE	% RECOVERY (ROD)	Blows Counts/6" (N Value = SPT)	R □ Shear (kPa 30 60 9 PT=N Value ▲ RQD (%) ASTIC LIMIT w (%) 20 40 66	PENTEST	DIAGRAM	
		Ground surface.									<u>г т</u>		
- 72,04 		BH23-04A was drilled for monitoring well installation purposes only.											0,
													1
.5													2
5 -													2
0													3
- - - - -													Ę
													Ę
													6
													-
5-													7
													8
						1						Σ	2

)	E	OREF	IOL	E	DR	ILLIN	G RECOR		
		· <i>*</i>						James S	ullivan Ahimbe Kitandala	Date (Sta Date (Enc	,
Project Na Site: Sector: Client:	17 2m	eotechnical Investigation - 170 Slater Stree 0 Slater Street, Ottawa, ON 1 north of BH23-04. e Canada Life Assurance Company c/o GV			~	Proj Gec Surl	ject Nu ographi	-	235 nates: X = 4 Y = 5	92402 45393 mE 029795 mN m <i>(Geodel</i>	
Drilling Co Drilling Eq Drilling Me Borehole I Drilling Flu	uipment thod: Diameter	- / -	SCREE	G Elevation : N Bottom De Length : Opening : R Elevation: R Date:	pth :	71.90 13.1 3.04 30 m 63.49 2023	06 m m m m 96 m -03-22	SAMPLE TY DC - Diamon SS - Split Sp PS - Piston S TC - Hollow 1 MA - Manual TR - Trowel ST - Shelby 1 TT - DT-32 L	d Core oon GSA - Grain Siz sample PENTEST - Blov PLube Sg - Specific SPT - N Value (Blow Co LUSe - Linavial	Limits te Analysis w Counts/300mm di Test Gravity unts/300mm) Compressive Content imit	SAMPLE STATE Undisturber Remoulded Lost Cored
		GEOLOGY / LITHOLOGY		ANAI	YSIS				GEOTECHNICAL R C Shear (ki 30 60	Pa) I I	WELL
DEPTH ELEVATION (m)	STRATIGRAPHY	DESCRIPTION	NUMBER	LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE % RECOVERY	(KUU) Blows Counts/6" (N Value = SPT)	30 60 SPT=N Value RQD (0 PLASTIC LIMIT w (9 20 40	PENTEST	DIAGRAM
9,5 10,0 10,5 11,0 11,5 12,5 13,0 13,5 14,0 14,5 15,5 16,0 17,5 17,5 18,0		BH23-04A was drilled for monitoring well installation purposes only.									9,5 10,0 10,5 11,5 11,0 11,5 12,0 12,5 13,0 12,5 13,0 14,0 14,5 15,0 16,0 16,5 16,0 16,5 17,0 17,5 18,0

•									: James Si /: Prosper /	ullivan Ahimbe Kitandala	Pa Date (Start): Date (End):		3-07
Project Na Site: Sector: Client:	17 S	eotechnical Investigation - 170 Slater Stre 70 Slater Street, Ottawa, ON outh, inside the parking garage. he Canada Life Assurance Company c/o G					Gec Surl	graph ace El	imber: ic Coordin levation: zimuth:	ates: X = 44 Y = 50	92402 5397 mE 29753 mN m <i>(Geodetic)</i>)	
Drilling Co Drilling Eq Drilling Me Borehole I Drilling Flu	uipmen ethod: Diamete	t: Geoprobe 420M Drive open - direct push - wash / B	- + W	SCREE	G Elevation : N Bottom Dep Length : Opening : Elevation: Date:	oth :		6 m m mm 27 m -03-13	SAMPLE TY DC - Diamon SS - Split Spy PS - Piston S TC - Hollow 1 MA - Manual TR - Trowel ST - Shelby 1 TT - DT-32 Li	d Core AL - Atterberg con GSA - Grain Size iample PENTEST - Blow PL - Point Loa Auger Sg - Specific BFT - N Value (Blow Cou UCS - Uniaxial C	Limits Analysis Counts/300mm Trest ravity hts/300mm) ompressive		listurbe noulde t
DEPTH ELEVATION (m)	STRATIGRAPHY	GEOLOGY / LITHOLOGY DESCRIPTION		NUMBER	LABORATORY TESTING		TYPE & NO.	STATE % RECOVERY	(RQD) Blows Counts/6" (N Value = SPT)	GEOTECHNICAL R □ Shear (kF 30 60 SPT=N Value A ROD (% PLASTIC LIMIT w (% 20 40	PENTEST	DIAGRAM	
		Ground surface.									<u>r r</u>		
- <u>0,95</u> - 70,24 0,5		ASPHALTIC CONCRETE. FILL (PAVEMENT STRUCTURE): GRAVELLY SAND, granular B, brown,		SA-01			DO- 1	75					0,
1,0 <u>1,07</u> 69,32		Inon-cohesive, moist. FILL: SAND, fine to medium, trace gravel, light-brown, non-cohesive, moist.					DO- 2 DO- 3	80					1
1,5 — - - 2,0 — - -		GLACIAL TILL: SAND to SILTY SAND, some silt, some gravel, trace clay, brown, non-cohesive, moist.						Δ_					1
2,5							DO- 4	50)				2
3,5 -		-Dark brown, moist to wet.					DO-	10					3
4,0 - - 4,27 - 66,12		WEATHERED SHALE wet.					5 DO-						4
4,62 - 65,77 5,0 -		WEATHERED to FRESH SHALE bedded, black, fine grained, brittle, non-porous to					6 RC- 1 RC-	40		•	90 [.]		4
5,5 -		slightly porous, Billings Shale.					2 RC- 3	92	D) 2		82 ®2		ę
5,0 - - - 5,5 -								Å_					6
7,0 -							RC- 4	(78			78. •		
7,5 - - - -							RC- 5	10			79		7
3,0 - - - 3,5 -								Å			72 •		8
,° -							RC- 6	98	3				ľ

ſ	١	15				BORE	HC	DL	E	DF	RILLI	NG	RE	СО	RD :		H23-(
	-		1-								James S Prosper		Kitano	dala		(Start) (End):	2023-0	3-07
	Project Na Site: Sector: Client:	170 So	otechnical Investigation - 170 Slater Street,) Slater Street, Ottawa, ON uth, inside the parking garage. e Canada Life Assurance Company c/o GW					Geo Suri	ogra face	phic Ele	nber: Coordin vation: imuth:	ates:		X = 44 Y = 50	9240 45397 r 029753 m (Geo	nE mN	;)	
	Drilling Co Drilling Eq Drilling Me Borehole [Drilling Flu	uipment: ethod: Diameter	Drive open - direct push - wash / B +	W W	PING REEN TER TER	TAILS Elevation : N Bottom De Length : Opening : Elevation: Date: Level	pth :	70.26 16.46 1.52 25.4 60.92 2023	67 m 6 m m mm 27 m -03-1		SAMPLE TY DC - Diamon SS - Split Sp PS - Piston S TC - Hollow 1 MA - Manual TR - Trowel ST - Shelby 1 TT - DT-32 L	d Core con ample fube Auger fube	GSA - PENTE PL - Sg - SPT - UCS - W -I WL -I	Atterberg Grain Size ST - Blow Point Load Specific G N Value (Blow Cou	e Analysis / Counts/300 d Test Gravity (Ints/300mm) Compressive Content mit		Re Lo	idisturbed moulded
		~	GEOLOGY / LITHOLOGY			ANAL	YSIS				100	F	CTECHN	IICAL Shear (kF 60	Pa)	1	WELL	
	<u>DEPTH</u> ELEVATION (m)	STRATIGRAPHY	DESCRIPTION	NUMBER		LABORATORY TESTING	DUPLICATE	TYPE & NO.	STATE	% RECOVERY (RQD)	Blows Counts/6" (N Value = SPT)	PLAS	TIC LIMI	RQD (%	PENTE	20 ST IUID 0	DIAGRAM	
╞	-		WEATHERED to FRESH SHALE bedded,		_							:	::	::	: :	³⁴		-
2023-4-27	9,5		black, fine grained, brittle, non-porous to slightly porous, Billings Shale.					RC- 7	X	95 (76)					.76		Ţ	9,5 - - - - - 10,0 -
OTECH.GDT	0,5 -							RC- 8		92 (75)								10,5
<u>TEMPLATE_GE</u>	1,0 - - - 1,5 -								Å	(,					75 •			11,0
emplate : WSP	2,0							RC- 9	X	97 (92)						⁹² 0		12,0 -
LUNLY Data I	2,5 - - - 3,0 -							RC- 10		89 (72)					72			12,5 - - - 13,0 -
GEUIECHNICA	3,5 - - - 4,0 -		 Drilling issues, shale recovery and RQD not representative below 13.36 m. 					RC- 11		51 (18)								13,5 - - - 14,0 -
VSP_EN_WELL	4,5											18						14,5 -
/pe of report : w	5,0 - - - 5,5 -								$\left \right\rangle$			18						15,0 -
E LOGS.GPJ T	6,0																	16,0
12 - BOREHOLE	6,5 <u>- 16,46</u> - 53,93 - 7,0 <u>-</u>		End of borehole at 16,46 m.															16,5 - - - - 17,0 -
Project : 23592402 - BOREHOLE LOGS GPJ Type of report: WSP_EN_WELL-GEOTECHNICAL ONLY Data Template : WSP_TEMPLATE_GEOTECH GDT 2023 4-27	7,5 -																	17,5 -

APPENDIX C

Certificates of Analysis

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 170 Slater St. Phase Two 23592402 AGAT WORK ORDER: 23T012616 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Apr 12, 2023 PAGES (INCLUDING COVER): 9 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Envire Agricultural Laboratory Association (M/EALA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 9

AGAT WORK ORDER: 23T012616 PROJECT: 170 Slater St. Phase Two 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St., Ottawa ON

ATTENTION TO: Keith Holmes

SAMPLED BY:Paul Jackson

					Ignitability in Soil
DATE RECEIVED: 2023-04-04					DATE REPORTED: 2023-04-12
		SAMPLE DES	CRIPTION:	Soil Cuttings	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2023-04-04	
Parameter	Unit	G / S	RDL	4903902	
Ignitability				Ν	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4903902 N = Non-Flammable Solid

Non-ignitable-Wet soil sample with pebbles

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 23T012616 PROJECT: 170 Slater St. Phase Two 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St., Ottawa ON

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 558 Metals and Inorganics

DATE RECEIVED: 2023-04-04

	ક	SAMPLE DES		Sail Cuttings
1			CHIF HON.	Soil Cuttings
		SAM	PLE TYPE:	Soil
		DATES	SAMPLED:	2023-04-04
Parameter	Unit	G / S	RDL	4903902
Arsenic Leachate	mg/L	2.5	0.010	<0.010
Barium Leachate	mg/L	100	0.010	2.03
Boron Leachate	mg/L	500	0.050	0.057
Cadmium Leachate	mg/L	0.5	0.010	<0.010
Chromium Leachate	mg/L	5	0.050	<0.050
Lead Leachate	mg/L	5	0.010	0.021
Mercury Leachate	mg/L	0.1	0.01	<0.01
Selenium Leachate	mg/L	1	0.010	<0.010
Silver Leachate	mg/L	5	0.010	<0.010
Uranium Leachate	mg/L	10	0.050	<0.050
Fluoride Leachate	mg/L	150	0.10	0.29
Cyanide Leachate	mg/L	20	0.05	<0.05
(Nitrate + Nitrite) as N Leachate	mg/L	1000	0.70	<0.70

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2023-04-12

Certified By:

AGAT WORK ORDER: 23T012616 PROJECT: 170 Slater St. Phase Two 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St., Ottawa ON

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 558 - Benzene

DATE RECEIVED: 2023-04-04

	SA	MPLE DES	CRIPTION:	Soil Cuttings
		SAM	PLE TYPE:	Soil
		DATES	SAMPLED:	2023-04-04
Parameter	Unit	G / S	RDL	4903902
Benzene Leachate	mg/L	0.5	0.020	<0.020
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-1	40	102

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
 Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Results relate only to the items tested.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2023-04-12

AGAT WORK ORDER: 23T012616 PROJECT: 170 Slater St. Phase Two 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St., Ottawa ON

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 558 - Benzo(a) pyrene

DATE RECEIVED: 2023-04-04

	:	SAMPLE DES	CRIPTION:	Soil Cuttings	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2023-04-04	
Parameter	Unit	G / S	RDL	4903902	
Benzo(a)pyrene Leachate	mg/L	0.001	0.001	<0.001	
Surrogate	Unit	Acceptab	le Limits		
Acridine-d9	%	50-1	40	67	
Naphthalene-d8	%	50-1	40	89	
Terphenyl-d14	%	50-1	40	115	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4903902 The sample was leached according to Regulation 558 protocol. Analysis was performed on the leachate.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2023-04-12

Quality Assurance

--

- -_

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St. Phase Two 23592402

AGAT WORK ORDER: 23T012616

ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater St., Ottawa ON

SAMPLED BY:Paul Jackson

				Soi	l Ana	alysis	5								
RPT Date: Apr 12, 2023			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	tch Sample Du		Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery		eptable nits
							value	Lower	Upper		Lower	Upper	_	Lower	Upper
Ignitability in Soil															
Ignitability	4839401		Ν	Ν	NA										
Comments: N = Non-Flammable So NA = Not Applicable	lid														
O. Reg. 558 Metals and Inorganie	cs														
Arsenic Leachate	4887793		<0.010	<0.010	NA	< 0.010	100%	70%	130%	110%	80%	120%	101%	70%	130%
Barium Leachate	4887793		0.456	0.414	9.6%	< 0.010	101%	70%	130%	112%	80%	120%	109%	70%	130%
Boron Leachate	4887793		<0.050	<0.050	NA	< 0.050	95%	70%	130%	93%	80%	120%	77%	70%	130%
Cadmium Leachate	4887793		<0.010	<0.010	NA	< 0.010	96%	70%	130%	98%	80%	120%	95%	70%	130%
Chromium Leachate	4887793		<0.050	<0.050	NA	< 0.050	95%	70%	130%	98%	80%	120%	77%	70%	130%
Lead Leachate	4887793		<0.010	<0.010	NA	< 0.010	99%	70%	130%	104%	80%	120%	93%	70%	130%
Mercury Leachate	4887793		<0.01	<0.01	NA	< 0.01	92%	70%	130%	92%	80%	120%	85%	70%	130%
Selenium Leachate	4887793		<0.010	<0.010	NA	< 0.010	103%	70%	130%	105%	80%	120%	97%	70%	130%
Silver Leachate	4887793		<0.010	<0.010	NA	< 0.010	92%	70%	130%	94%	80%	120%	80%	70%	130%
Uranium Leachate	4887793		<0.050	<0.050	NA	< 0.050	94%	70%	130%	97%	80%	120%	89%	70%	130%
Fluoride Leachate	4887793		0.14	0.14	NA	< 0.10	97%	90%	110%	95%	90%	110%	98%	70%	130%
Cyanide Leachate	4887793		<0.05	<0.05	NA	< 0.05	96%	70%	130%	99%	80%	120%	99%	70%	130%
(Nitrate + Nitrite) as N Leachate	4887793		<0.70	<0.70	NA	< 0.70	102%	80%	120%	94%	80%	120%	98%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St. Phase Two 23592402

SAMPLING SITE:170 Slater St., Ottawa ON

AGAT WORK ORDER: 23T012616

ATTENTION TO: Keith Holmes

SAMPLED BY:Paul Jackson

			Trac	ce Or	gani	cs Ar	nalysi	is							
RPT Date: Apr 12, 2023			[DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Lin	eptable mits
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 558 - Benzene															
Benzene Leachate	4903902		<0.020	<0.020	NA	< 0.020	98%	50%	140%	97%	60%	130%	88%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

Page 7 of 9

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St. Phase Two 23592402

SAMPLING SITE:170 Slater St., Ottawa ON

AGAT WORK ORDER: 23T012616 ATTENTION TO: Keith Holmes

SAMPLED BY:Paul Jackson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		1	
Ignitability	INOR-93-6063	EPA SW-846 1030	BURN MOLD
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Fluoride Leachate	INOR-93-6000	EPA SW 846-1311; SM 4500F-C	ION SELECTIVE ELECTRODE
Cyanide Leachate	INOR-93-6052	EPA 1311 modified from MOE 3015 SM 4500 CN-I,G387	TECHNICON AUTO ANALYZER
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & modified from SM 4500 - NO3- I	LACHAT FIA
Trace Organics Analysis			
Benzene Leachate	VOL-91-5001	EPA 1311, EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzo(a)pyrene Leachate	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS

Chain of Custody Record If this is a		tories	Mississauga, O Ph: 905,712,5100 Fax: webeart	th agatlabs.com	Laboratory Use Only Work Order #:
Report Information: WSP CANADA		Regulatory Requireme			2.3 2.5 2.6 Custody Seal Intact: Yes No N/A Notes:
Address: 1931 ROBERTSON NEPEAN, ON K	2H537	Table Indicate One Table Indicate One	ess Soils R406 Sewer Usu	Storm	Turnaround Time (TAT) Required: Regular TAT (Most Analysis)
Phone: Reports to be sent to: 1. Email: 2. Email: C 13-592-9600 KEITH. P. HOLMESCU Jaul. Jackson Cus		Res/Park Agriculture Soil Texture (Check Onc) Coarse	gulation 558 Prov. Wate Objectives		Rush TAT (Rush Surcharges Apply)
Designed Informations		Fine		eline on	Days Days Days Day OR Date Required (Rush Surcharges May Apply):
Project Information: Project: 170 Slate-St. Phase T Site Location: 170 Slate-St. OttAm Sampled By: Paul Jackson	A ONTARIO	Record of Site Condition	Certificate of Yes	f Analysis	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM
AGAT ID #:PO: _PO:	I be billed full price for analysis. Bill To Same: Yes Yo 🗆	Sample Matrix Legend B Biota GW Ground Water	0. Reg 15 00 ・シン シン シン シン シン の の の の に を度 15 のの の の の の の の の の の の の の の の の の の	2 D	Eaglan TCLP: 12ation TCLP: 12ation TCLP: 12ation PCB8 953-0 rater Leach 853-0 ISVOCs 900 583 0 F1-F4 900 583 0 F1-F4 900 583 0 Concentration (Y/N)
Company: Contact: Address: Email:		0 Oil P Paint S Soil SD Sediment SW Surface Water	Metals & Inorganics Metals - CrVI, DH, DH, B Metals - CrVI, DH, DH, DH, CrVI, DOC	+ (7)	Landfill Disposal Characterization TCLP: TCLP: □M&II □VOG: □ABNs □&B(a)P□PCB8 Excess Soils SPLP Rainwater Leach SPLP: □Metals, □VOCS □ SVOCs Excess Soils Characterization Package DH, ICPMS Metals, BTEX, F1-F4 Saft - EC/SAR Saft - EC/SAR Saft - EC/SAR Caracterization Package Caracterization Package Caracterization Package Caracterization of High Concentration (Y
Sample Identification Date Sampled	Time # of Sampled Containers	Sample Comments/ Matrix Special Instruction	Metals Suc	BILX, F1-F- Analyze F44 PAHs Total PCBs VOC	Landfill True: D Excess Selte: E Salt - E Salt - E Salt - E PH, iCP
Soil Cuttings 4/4/2>	AM PM PM AM PM AM PM AM PM AM PM AM PM AM PM				
Samples Relinquished By (Productione and Sign): Bumples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	AM AM AM PM Date /5/23 Units Time 23 00/106 Date Time	Samples Received By (Print Name as Samples Received By (Print Name as Samples Received By (Print Name as Samples Received By (Print Name as		APR Date APR Date	2023 Pine 2023 Time 2023 Time (0:19am Page of

Pink Copy - Client I Ye

Pink Copy - Client I Yellow Copy - AGAT I White Copy - AGAT Date iss Page 9 of 9 2020

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 170 Slater St. Phase Two, 23592402 AGAT WORK ORDER: 23T012619 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Apr 12, 2023 PAGES (INCLUDING COVER): 8 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes		

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 8

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 23T012619 PROJECT: 170 Slater St. Phase Two, 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE: 170 Slater St., Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - VOCs (Water) DATE RECEIVED: 2023-04-04 **DATE REPORTED: 2023-04-12** SAMPLE DESCRIPTION: MW14-02 DUP SAMPLE TYPE: Water DATE SAMPLED: 2023-04-04 G/S RDL 4903901 Parameter Unit Dichlorodifluoromethane μg/L 0.40 < 0.40 Vinyl Chloride μg/L 0.17 < 0.17 Bromomethane μg/L 0.20 <0.20 Trichlorofluoromethane μg/L 0.40 < 0.40 Acetone μg/L 1.0 <1.0 0.30 1,1-Dichloroethylene μg/L <0.30 Methylene Chloride μg/L 0.30 < 0.30 trans- 1,2-Dichloroethylene μg/L 0.20 <0.20 Methyl tert-butyl ether μg/L 0.20 <0.20 1,1-Dichloroethane μg/L 0.30 < 0.30 Methyl Ethyl Ketone μg/L 1.0 <1.0 cis- 1,2-Dichloroethylene μg/L 0.20 <0.20 Chloroform 0.20 <0.20 μg/L 1.2-Dichloroethane 0.20 μg/L < 0.20 1,1,1-Trichloroethane μg/L 0.30 < 0.30 Carbon Tetrachloride μg/L 0.20 <0.20 0.20 Benzene μg/L <0.20 1,2-Dichloropropane μg/L 0.20 <0.20 0.20 Trichloroethylene μg/L < 0.20 Bromodichloromethane μg/L 0.20 <0.20 Methyl Isobutyl Ketone μg/L 1.0 <1.0 1,1,2-Trichloroethane μg/L 0.20 <0.20 Toluene μg/L 0.20 <0.20 Dibromochloromethane μg/L 0.10 < 0.10 Ethylene Dibromide μg/L 0.10 <0.10 Tetrachloroethylene 0.20 <0.20 μg/L μg/L 0.10 1,1,1,2-Tetrachloroethane <0.10 Chlorobenzene μg/L 0.10 <0.10 0.10 <0.10 Ethylbenzene μg/L

Certified By:

NPopukolof

μg/L

0.20

<0.20

m & p-Xylene

AGAT WORK ORDER: 23T012619 PROJECT: 170 Slater St. Phase Two, 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE: 170 Slater St., Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2023-04-04

	SA	MPLE DESCRIPTION:	MW14-02 DUP
1		SAMPLE TYPE:	Water
		DATE SAMPLED:	2023-04-04
Parameter	Unit	G/S RDL	4903901
Bromoform	μg/L	0.10	<0.10
Styrene	μg/L	0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	0.10	<0.10
o-Xylene	μg/L	0.10	<0.10
1,3-Dichlorobenzene	μg/L	0.10	<0.10
1,4-Dichlorobenzene	μg/L	0.10	<0.10
1,2-Dichlorobenzene	μg/L	0.10	<0.10
1,3-Dichloropropene	μg/L	0.30	<0.30
Xylenes (Total)	μg/L	0.20	<0.20
n-Hexane	μg/L	0.20	<0.20
Surrogate	Unit	Acceptable Limits	
Toluene-d8	% Recovery	50-140	97
4-Bromofluorobenzene	% Recovery	50-140	80

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

4903901

Certified By:

NPopukolof

DATE REPORTED: 2023-04-12

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St. Phase Two, 23592402

SAMPLING SITE:170 Slater St., Ottawa, Ontario

AGAT WORK ORDER: 23T012619 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

Trace Organics Analysis

			rrac	e Or	yanno	cs Ar	larys	15							
RPT Date: Apr 12, 2023			0	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	4896383		<0.40	<0.40	NA	< 0.40	106%	50%	140%	101%	50%	140%	103%	50%	140%
Vinyl Chloride	4896383		<0.17	<0.17	NA	< 0.17	108%	50%	140%	104%	50%	140%	94%	50%	140%
Bromomethane	4896383		<0.20	<0.20	NA	< 0.20	86%	50%	140%	75%	50%	140%	76%	50%	140%
Trichlorofluoromethane	4896383		<0.40	<0.40	NA	< 0.40	106%	50%	140%	107%	50%	140%	101%	50%	140%
Acetone	4896383		<1.0	<1.0	NA	< 1.0	96%	50%	140%	91%	50%	140%	111%	50%	140%
1,1-Dichloroethylene	4896383		<0.30	<0.30	NA	< 0.30	108%	50%	140%	96%	60%	130%	113%	50%	140%
Methylene Chloride	4896383		<0.30	<0.30	NA	< 0.30	119%	50%	140%	105%	60%	130%	95%	50%	140%
trans- 1,2-Dichloroethylene	4896383		<0.20	<0.20	NA	< 0.20	107%	50%	140%	99%	60%	130%	105%	50%	140%
Methyl tert-butyl ether	4896383		<0.20	<0.20	NA	< 0.20	71%	50%	140%	74%	60%	130%	73%	50%	140%
1,1-Dichloroethane	4896383		<0.30	<0.30	NA	< 0.30	110%	50%	140%	104%	60%	130%	98%	50%	140%
Methyl Ethyl Ketone	4896383		<1.0	<1.0	NA	< 1.0	78%	50%	140%	103%	50%	140%	90%	50%	140%
cis- 1,2-Dichloroethylene	4896383		<0.20	<0.20	NA	< 0.20	110%	50%	140%	99%	60%	130%	98%	50%	140%
Chloroform	4896383		<0.20	<0.20	NA	< 0.20	112%	50%	140%	117%	60%	130%	98%	50%	140%
1,2-Dichloroethane	4896383		<0.20	<0.20	NA	< 0.20	103%	50%	140%	100%	60%	130%	95%	50%	140%
1,1,1-Trichloroethane	4896383		<0.30	<0.30	NA	< 0.30	99%	50%	140%	113%	60%	130%	74%	50%	140%
Carbon Tetrachloride	4896383		<0.20	<0.20	NA	< 0.20	75%	50%	140%	88%	60%	130%	75%	50%	140%
Benzene	4896383		<0.20	<0.20	NA	< 0.20	103%	50%	140%	107%	60%	130%	87%	50%	140%
1,2-Dichloropropane	4896383		<0.20	<0.20	NA	< 0.20	85%	50%	140%	94%	60%	130%	79%	50%	140%
Trichloroethylene	4896383		<0.20	<0.20	NA	< 0.20	90%	50%	140%	100%	60%	130%	101%	50%	140%
Bromodichloromethane	4896383		<0.20	<0.20	NA	< 0.20	99%	50%	140%	101%	60%	130%	91%	50%	140%
Methyl Isobutyl Ketone	4896383		<1.0	<1.0	NA	< 1.0	90%	50%	140%	93%	50%	140%	90%	50%	140%
1,1,2-Trichloroethane	4896383		<0.20	<0.20	NA	< 0.20	107%	50%	140%	95%	60%	130%	92%	50%	140%
Toluene	4896383		<0.20	<0.20	NA	< 0.20	99%	50%	140%	100%	60%	130%	77%	50%	140%
Dibromochloromethane	4896383		<0.10	<0.10	NA	< 0.10	108%	50%	140%	102%	60%	130%	98%	50%	140%
Ethylene Dibromide	4896383		<0.10	<0.10	NA	< 0.10	99%	50%	140%	96%	60%	130%	97%	50%	140%
Tetrachloroethylene	4896383		<0.20	<0.20	NA	< 0.20	105%	50%	140%	116%	60%	130%	85%	50%	140%
1,1,1,2-Tetrachloroethane	4896383		<0.10	<0.10	NA	< 0.10	90%	50%	140%	88%	60%	130%	74%	50%	140%
Chlorobenzene	4896383		<0.10	<0.10	NA	< 0.10	105%	50%	140%	96%	60%	130%	79%	50%	140%
Ethylbenzene	4896383		<0.10	<0.10	NA	< 0.10	93%	50%	140%	92%	60%	130%	77%	50%	140%
m & p-Xylene	4896383		<0.20	<0.20	NA	< 0.20	100%	50%	140%	99%	60%	130%	118%	50%	140%
Bromoform	4896383		<0.10	<0.10	NA	< 0.10	118%	50%	140%	103%	60%	130%	104%	50%	140%
Styrene	4896383		<0.10	<0.10	NA	< 0.10	86%	50%	140%	85%	60%	130%	77%	50%	140%
1,1,2,2-Tetrachloroethane	4896383		<0.10	<0.10	NA	< 0.10	115%	50%	140%	101%	60%	130%	80%	50%	140%
o-Xylene	4896383		<0.10	<0.10	NA	< 0.10	114%	50%	140%	107%	60%	130%	84%	50%	140%
1,3-Dichlorobenzene	4896383		<0.10	<0.10	NA	< 0.10	117%	50%	140%	103%	60%	130%	88%	50%	140%
1,4-Dichlorobenzene	4896383		<0.10	<0.10	NA	< 0.10	112%	50%	140%	103%	60%	130%	86%	50%	140%
1,2-Dichlorobenzene	4896383		<0.10	<0.10	NA	< 0.10	109%	50%	140%	92%	60%	130%	82%	50%	140%
n-Hexane	4896383		<0.20	<0.20	NA	< 0.20	85%	50%	140%	99%	60%	130%	86%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 4 of 8

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St. Phase Two, 23592402

SAMPLING SITE:170 Slater St., Ottawa, Ontario

AGAT WORK ORDER: 23T012619

ATTENTION TO: Keith Holmes

SAMPLED BY:Paul Jackson

Trace Organics Analysis (Continued) DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE

RPT Date: Apr 12, 2023		C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PABAMETER		Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper]	Lower	Upper

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

Page 5 of 8

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St. Phase Two, 23592402

AGAT WORK ORDER: 23T012619 ATTENTION TO: Keith Holmes

FROJECT. 170 Stater St. Fliase Th	70, 23392402	ATTENTION TO.	Neith Hollines
SAMPLING SITE:170 Slater St., Ott	awa, Ontario	SAMPLED BY:P	aul Jackson
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 Slater St. Phase Two, 23592402 SAMPLING SITE: 170 Slater St. Ottawa Optario

AGAT WORK ORDER: 23T012619 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater St., Ot	tawa, Ontario	SAMPLED BY:Pa	aul Jackson
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Chain of Custody Record		_		-	Ph: 9 King Water Chain of Custody Form (potable	05.71	ssissau 2,5100 we	ga, C Fax: beart	Coopers , Intario L : 905,71; th agatla umans)	4Z 1Y 2.512	2 2	Co	ork Ord oler Qu		2 one	0nly -3TC - 100 5-9	SCI	0		Ę
Report Information:				(Picaso	gulatory Requirements:								stody S otes:	Seal Inta	ict:	Yes	10	°∑]No	0	 □N/A
Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email: KEITIH KEITIH MEIEAN 613 - 546 - 9600 KEITIH KEITIH MEIEAN 613 - 546 - 9600 KEITIH Address: MEIEAN 613 - 546 - 9600 KEITIH MEIEAN 613 - 546 - 9600 KEITIH	Fax:	~ PD < 24537		Ta Ta Soil Ta	egulation 153/04 Excess Soils R406 Table Indicate One Indicate One Res/Park Agriculture exture (Check One) Fine Exture (Check One) Fine	-	Prov. Obje	Regio Wate Ctives	er Quality s (PWQO)	,		Re	gular sh TA Da	TAT (M F (Rush Su Busines: Nys	ost Analys rcharges S	La	5 to 7	Busines	Next Bu Day	isiness
Project Information: Project: 170 Stute S Site Location: 170 Stute S Sampled By: PAU SACK	7. Phase	Tue, 2350 A, ONTA	12402 RIO	Red T	this submission for a cord of Site Condition? Yes INO	Cer			f Analy	sis				T is exc	lusive o	le prior not of weekend sis, please	ds and st	tatutory	holida	1.1
AGAT ID #: Please note: If quotation number is Invoice Information: Company: Contact: Address: Email:	PO:		nalysis.		nple Matrix Legend Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	Metals & Inorganics	Metals - CrVI, CHg, CHWSB	PHCs if required C Yes C No	CRs D Aroclor	1	Landfill: Disposal Characterization TCLP: Condition of the Characterization of the Condition of the Conditio	s SPLP Rainwater Leach	aracteri IIs, BTE						Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled		Sample Matrix	Comments/ Special Instructions	Y / N	Metals	Metals	BTEX, F1-F4 Analyze F4G	Total PCRs	VOC	Landfill Disp	Excess	Excess Solls pH, ICPMS N	Salt - E					Potentia
MW14-02 Dup		AM AM AM AM AM AM AM AM AM AM AM AM AM A	3																	
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):) 73	Date 1/5/2 Date Date		3 nd 3 nd 00 4	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print, Kame and Sign):	hi	- 5	X			10 4 5 R	20 8 2		2h03 10	:12	<mark>am</mark> Pa №: Т]	nge	of 8 7	4	

Document ID: DIV 78-1511.020 Pink Cop	opy - Client Yellow Copy - AGAT	White Copy- AGAT	Dute Is Pape 8 0 2020
---------------------------------------	-----------------------------------	------------------	-----------------------

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 170 SLATER STREET, PHASE TWO ESA AGAT WORK ORDER: 23Z006407 SOIL ANALYSIS REVIEWED BY: Chuandi Zhang, Lab Team Lead TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Mar 27, 2023 PAGES (INCLUDING COVER): 22 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 22

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY: JAMES SULLIVAN

ATTENTION TO: Keith Holmes

			0.	Reg. 153(3	orr) - metar	s & morgan	ics (5011)				
DATE RECEIVED: 2023-03-16								[DATE REPORTI	ED: 2023-03-27	
			CRIPTION: PLE TYPE: SAMPLED:	23-05 - SA01 Soil 2023-03-07 11:40	23-05 - SA03 Soil 2023-03-07 12:10	23-05 - SA04 Soil 2023-03-08 11:00	23-05 - SA05 Soil 2023-03-08 11:20	23-02 - SA02 Soil 2023-03-10 11:10	23-02 - SA03 Soil 2023-03-10 11:15	23-02 - SA06 Soil 2023-03-10 14:45	23-02 - Dup01 Soil 2023-03-10 14:45
Parameter	Unit	G/S	RDL	4858516	4858518	4858519	4858520	4858521	4858522	4858523	4858524
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	<1	2	2	3	1	1	9	7
Barium	µg/g	390	2.0	118	104	41.5	123	315	504	284	255
Beryllium	µg/g	4	0.4	<0.4	<0.4	<0.4	<0.4	0.6	0.8	0.5	0.5
Boron	µg/g	120	5	6	<5	<5	<5	22	13	9	7
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.28	0.19	<0.10	<0.10	2.19	1.35	0.23	0.24
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	7	23	7	8	68	75	15	13
Cobalt	µg/g	22	0.5	4.4	7.3	4.6	4.8	12.9	18.8	12.7	10.7
Copper	µg/g	140	1.0	9.2	23.7	7.7	10.7	31.9	36.6	70.3	30.9
Lead	µg/g	120	1	3	24	3	16	5	8	15	15
Molybdenum	µg/g	6.9	0.5	<0.5	0.5	1.2	2.6	<0.5	<0.5	12.2	10.3
Nickel	µg/g	100	1	6	15	9	11	33	39	46	38
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	1.1	0.8
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5
Uranium	µg/g	23	0.50	<0.50	0.51	0.53	0.83	0.58	0.59	3.66	2.77
Vanadium	μg/g	86	0.4	11.3	32.5	12.5	13.6	79.2	102	28.2	22.5
Zinc	µg/g	340	5	10	46	10	17	95	116	55	46
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	3.34	3.12	0.983	2.19	8.27	6.20	1.23	0.986
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	2.60	40.0	1.70	2.47	28.1	6.20	2.05	1.64
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.61	7.64	7.39	7.46	7.62	7.20	7.50	7.53

O Reg. 153(511) - Metals & Inorganics (Soil)

Certified By:

Chund Shan

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY: JAMES SULLIVAN

			0.	100(orr) - wetas	s a morgan			
DATE RECEIVED: 2023-03-16									DATE REPORTED: 2023-03-27
			CRIPTION: PLE TYPE: SAMPLED:	23-04 - SA03 Soil 2023-03-14 11:05	23-04 - SA04 Soil 2023-03-15 14:10	23-04 - SA06 Soil 2023-03-15 15:10	23-04 - SA09 Soil 2023-03-15 17:00	23-04 - Dup01 Soil 2023-03-15 15:10	
Parameter	Unit	G/S	RDL	4858525	4858526	4858527	4858528	4858529	
Antimony	µg/g	7.5	0.8	1.9	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	18	2	2	7	3	
Barium	µg/g	390	2.0	424	853	129	200	105	
Beryllium	µg/g	4	0.4	0.6	0.8	<0.4	<0.4	<0.4	
Boron	μg/g	120	5	8	7	<5	5	5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.58	0.43	0.18	0.30	0.19	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	30	64	10	10	13	
Cobalt	μg/g	22	0.5	11.4	16.8	6.2	9.5	7.5	
Copper	μg/g	140	1.0	48.1	36.1	12.2	28.2	13.4	
ead	μg/g	120	1	1290	14	7	14	7	
lolybdenum	μg/g	6.9	0.5	2.2	1.0	2.6	6.5	3.1	
lickel	μg/g	100	1	25	37	14	31	17	
Selenium	µg/g	2.4	0.8	2.8	<0.8	<0.8	0.8	0.9	
Silver	µg/g	20	0.5	0.5	<0.5	<0.5	<0.5	<0.5	
hallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Iranium	µg/g	23	0.50	0.57	0.55	0.93	2.54	0.83	
'anadium	μg/g	86	0.4	41.6	88.1	16.2	17.4	18.2	
linc	µg/g	340	5	255	105	18	32	22	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
lercury	µg/g	0.27	0.10	1.53	<0.10	<0.10	<0.10	<0.10	
lectrical Conductivity (2:1)	mS/cm	0.7	0.005	10.5	5.09	8.57	4.96	6.65	
odium Adsorption Ratio (2:1) Calc.)	N/A	5	N/A	21.3	5.08	0.414	0.522	0.518	
H, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.37	7.27	7.38	7.47	7.51	

O. Reg. 153(511) - Metals & Inorganics (Soil)

Certified By:

Chund Than

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY: JAMES SULLIVAN

ATTENTION TO: Keith Holmes

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-03-16

DATE REPORTED: 2023-03-27

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4858516-4858529 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Chund Shan

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:JAMES SULLIVAN

DATE RECEIVED: 2023-03-16							[DATE REPORTI	ED: 2023-03-27	
		SAMPLE DESCRIPTION	DN: 23-05 - SA01	23-05 - SA03	23-05 - SA04	23-05 - SA05	23-02 - SA02	23-02 - SA03	23-02 - SA06	23-02 - Dup01
		SAMPLE TY	PE: Soil	Soil						
		DATE SAMPL	ED: 2023-03-07 11:40	2023-03-07 12:10	2023-03-08 11:00	2023-03-08 11:20	2023-03-10 11:10	2023-03-10 11:15	2023-03-10 14:45	2023-03-10 14:45
Parameter	Unit	G / S RDL	4858516	4858518	4858519	4858520	4858521	4858522	4858523	4858524
Naphthalene	µg/g	0.6 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	µg/g	0.15 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthene	µg/g	7.9 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Fluorene	µg/g	62 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Phenanthrene	µg/g	6.2 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	µg/g	0.67 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	µg/g	0.69 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	µg/g	78 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Benz(a)anthracene	µg/g	0.5 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	µg/g	7 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	µg/g	0.78 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	µg/g	0.78 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	µg/g	0.3 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	µg/g	0.38 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	µg/g	0.1 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	µg/g	6.6 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1 and 2 Methlynaphthalene	µg/g	0.99 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%	0.1	3.4	6.6	8.4	8.4	24.4	27.7	8.1	9.0
Surrogate	Unit	Acceptable Limit	s							
Naphthalene-d8	%	50-140	80	85	95	75	95	90	110	90
Acridine-d9	%	50-140	105	100	80	90	95	100	95	80
Terphenyl-d14	%	50-140	105	70	95	85	75	90	120	100

O. Reg. 153(511) - PAHs (Soil)

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:JAMES SULLIVAN

DATE RECEIVED: 2023-03-16								DATE REPORTED: 2023-03-27
		SAMPLE DESCRIPTI	ON: 23-04 - SA03	23-04 - SA04	23-04 - SA06	23-04 - SA09	23-04 - Dup01	
		SAMPLE TY	PE: Soil	Soil	Soil	Soil	Soil	
		DATE SAMPL	ED: 2023-03-14 11:05	2023-03-15 14:10	2023-03-15 15:10	2023-03-15 17:00	2023-03-15 15:10	
Parameter	Unit	G / S RDI	4858525	4858526	4858527	4858528	4858529	
Naphthalene	µg/g	0.6 0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.15 0.05	ō <0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	7.9 0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	62 0.05	ō <0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	6.2 0.05	5 0.27	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.67 0.05	5 0.07	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69 0.05	5 0.29	<0.05	<0.05	<0.05	<0.05	
Pyrene	µg/g	78 0.0	5 0.24	<0.05	<0.05	<0.05	<0.05	
Benz(a)anthracene	µg/g	0.5 0.0	5 0.05	<0.05	<0.05	<0.05	<0.05	
Chrysene	µg/g	7 0.05	5 0.13	<0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78 0.05	5 0.08	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78 0.05	ō <0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3 0.0	ō <0.05	<0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.38 0.05	ō <0.05	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1 0.0	ō <0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6 0.05	ō <0.05	< 0.05	<0.05	< 0.05	<0.05	
1 and 2 Methlynaphthalene	µg/g	0.99 0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%	0.1	12.2	27.9	6.7	5.2	8.3	
Surrogate	Unit	Acceptable Limi	s					
Naphthalene-d8	%	50-140	90	90	115	90	80	
Acridine-d9	%	50-140	100	85	100	75	90	
Terphenyl-d14	%	50-140	100	95	95	115	115	

O. Reg. 153(511) - PAHs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4858516-4858529 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY: JAMES SULLIVAN

ATTENTION TO: Keith Holmes

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2023-03-16

DATE NEOENED. 2020 00 10								L		LD. 2020 00 27	
		SAMPLE DES	CRIPTION:	23-05 - SA01	23-05 - SA03	23-05 - SA04	23-05 - SA05	23-02 - SA02	23-02 - SA03	23-02 - SA06	23-02 - Dup01
		SAM	PLE TYPE:	Soil							
		DATE	SAMPLED:	2023-03-07 11:40	2023-03-07 12:10	2023-03-08 11:00	2023-03-08 11:20	2023-03-10 11:10	2023-03-10 11:15	2023-03-10 14:45	2023-03-10 14:45
Parameter	Unit	G / S	RDL	4858516	4858518	4858519	4858520	4858521	4858522	4858523	4858524
F1 (C6 - C10)	µg/g	55	5	<5	<5	<5	5	<5	<5	7	6
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	5	<5	<5	7	6
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10	28	<10	<10	36	41
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	<10	<10	28	<10	<10	36	41
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	<50	<50	<50	72	80
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	<50	<50	<50	<50	72	80
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA							
Moisture Content	%		0.1	3.4	6.6	8.4	8.4	24.4	27.7	8.1	9.0
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-	140	106	104	109	105	101	101	97	100
Terphenyl	%	60-	140	81	75	88	89	81	81	83	71

Certified By:

NPopukolof

DATE REPORTED: 2023-03-27

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY: JAMES SULLIVAN

ATTENTION TO: Keith Holmes

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2023-03-16

		SAMPLE DESC	CRIPTION:	23-04 - SA03	23-04 - SA04	23-04 - SA06	23-04 - SA09	23-04 - Dup01	
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2023-03-14 11:05	2023-03-15 14:10	2023-03-15 15:10	2023-03-15 17:00	2023-03-15 15:10	
Parameter	Unit	G / S	RDL	4858525	4858526	4858527	4858528	4858529	
F1 (C6 - C10)	µg/g	55	5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	µg/g	98	10	<10	<10	22	75	20	
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	<10	22	75	20	
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	67	<50	
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	<50	67	<50	
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	12.2	27.9	6.7	5.2	8.3	
Surrogate	Unit	Acceptab	le Limits						
Toluene-d8	%	50-1	40	105	98	104	98	101	
Terphenyl	%	60-1	40	81	86	94	83	79	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4858516-4858529 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2023-03-27

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY: JAMES SULLIVAN

ATTENTION TO: Keith Holmes

DATE RECEIVED: 2023-03-16							I	DATE REPORT	ED: 2023-03-27	
		SAMPLE DESCRIPTI	ON: 23-05 - SA01	23-05 - SA03	23-05 - SA04	23-05 - SA05	23-02 - SA02	23-02 - SA03	23-02 - SA06	23-02 - Dup01
		SAMPLE TY	PE: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPL	11:40	2023-03-07 12:10	2023-03-08 11:00	2023-03-08 11:20	2023-03-10 11:10	2023-03-10 11:15	2023-03-10 14:45	2023-03-10 14:45
Parameter	Unit	G / S RD		4858518	4858519	4858520	4858521	4858522	4858523	4858524
Dichlorodifluoromethane	µg/g	16 0.0		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	0.02 0.0		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	ug/g	0.05 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	ug/g	4 0.0		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acetone	ug/g	16 0.5	0 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	ug/g	0.1 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	ug/g	0.75 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	ug/g	3.5 0.0	2 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	ug/g	16 0.5	0 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	3.4 0.0	2 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chloroform	ug/g	0.05 0.0	4 <0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	ug/g	0.05 0.0	3 <0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
1,1,1-Trichloroethane	ug/g	0.38 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzene	ug/g	0.21 0.0	2 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	ug/g	0.05 0.0	3 <0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03
Trichloroethylene	ug/g	0.061 0.0	3 <0.03	<0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03
Bromodichloromethane	ug/g	13 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	ug/g	1.7 0.5	0 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05 0.04	4 <0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Toluene	ug/g	2.3 0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	ug/g	9.4 0.0		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	ug/g	0.05 0.04	4 <0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethylene	ug/g	0.28 0.0		< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058 0.0		< 0.04	<0.04	< 0.04	< 0.04	<0.04	< 0.04	< 0.04
Chlorobenzene	ug/g	2.4 0.0		< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Ethylbenzene	ug/g	2 0.0		< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05

O. Reg. 153(511) - VOCs (with PHC) (Soil)

NPopukoloj

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY: JAMES SULLIVAN

			(D. Reg. 153	8(511) - VOC	s (with PHC	C) (Soil)				
DATE RECEIVED: 2023-03-16								I	DATE REPORTI	ED: 2023-03-27	
	:	SAMPLE DES	CRIPTION:	23-05 - SA01	23-05 - SA03	23-05 - SA04	23-05 - SA05	23-02 - SA02	23-02 - SA03	23-02 - SA06	23-02 - Dup01
		SAM	PLE TYPE:	Soil							
		DATE	SAMPLED:	2023-03-07 11:40	2023-03-07 12:10	2023-03-08 11:00	2023-03-08 11:20	2023-03-10 11:10	2023-03-10 11:15	2023-03-10 14:45	2023-03-10 14:45
Parameter	Unit	G / S	RDL	4858516	4858518	4858519	4858520	4858521	4858522	4858523	4858524
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	3.4	6.6	8.4	8.4	24.4	27.7	8.1	9.0
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-	140	106	104	109	105	101	101	97	100
4-Bromofluorobenzene	% Recovery	50-	140	91	92	96	97	86	88	79	76

NPopukolof

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY: JAMES SULLIVAN

ATTENTION TO: Keith Holmes

				()		/ /		
DATE RECEIVED: 2023-03-16								DATE REPORTED: 2023-03-27
		SAMPLE DESCRIPTIC	N: 23-04 - SA03	23-04 - SA04	23-04 - SA06	23-04 - SA09	23-04 - Dup01	
		SAMPLE TYF	E: Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLE		2023-03-15	2023-03-15	2023-03-15	2023-03-15	
			11:05	14:10	15:10	17:00	15:10	
Parameter	Unit	G / S RDL	4858525	4858526	4858527	4858528	4858529	
Dichlorodifluoromethane	µg/g	16 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acetone	ug/g	16 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.05 0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzene	ug/g	0.21 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Trichloroethylene	ug/g	0.061 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Bromodichloromethane	ug/g	13 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Toluene	ug/g	2.3 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	
Ethylene Dibromide	ug/g	0.05 0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	
Tetrachloroethylene	ug/g	0.28 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

O. Reg. 153(511) - VOCs (with PHC) (Soil)

Certified By:

NPopukoloj

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:JAMES SULLIVAN

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-03-16

DATE RECEIVED. 2023-03-10								1	JATE REFORTED. 2023-03-27
	:	SAMPLE DESCF	RIPTION:	23-04 - SA03	23-04 - SA04	23-04 - SA06	23-04 - SA09	23-04 - Dup01	
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SA	MPLED:	2023-03-14 11:05	2023-03-15 14:10	2023-03-15 15:10	2023-03-15 17:00	2023-03-15 15:10	
Parameter	Unit	G / S	RDL	4858525	4858526	4858527	4858528	4858529	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	12.2	27.9	6.7	5.2	8.3	
Surrogate	Unit	Acceptable	Limits						
Toluene-d8	% Recovery	50-140	0	105	98	104	98	101	
4-Bromofluorobenzene	% Recovery	50-140	0	91	88	91	100	94	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4858516-4858529 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2023-03-27

Exceedance Summary

AGAT WORK ORDER: 23Z006407 PROJECT: 170 SLATER STREET, PHASE TWO ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4858516	23-05 - SA01	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	3.34
4858518	23-05 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	3.12
4858518	23-05 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	40.0
4858519	23-05 - SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.983
4858520	23-05 - SA05	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	2.19
4858521	23-02 - SA02	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Boron (Hot Water Soluble)	µg/g	1.5	2.19
4858521	23-02 - SA02	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	8.27
4858521	23-02 - SA02	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	5	28.1
4858522	23-02 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	µg/g	390	504
4858522	23-02 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	6.20
4858522	23-02 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	6.20
4858522	23-02 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Vanadium	µg/g	86	102
4858523	23-02 - SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.23
4858523	23-02 - SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	µg/g	6.9	12.2
4858524	23-02 - Dup01	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.986
4858524	23-02 - Dup01	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	µg/g	6.9	10.3
4858525	23-04 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	µg/g	390	424
4858525	23-04 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	10.5
4858525	23-04 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Lead	µg/g	120	1290
4858525	23-04 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	µg/g	0.27	1.53
4858525	23-04 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Selenium	µg/g	2.4	2.8
4858525	23-04 - SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	5	21.3
4858526	23-04 - SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	µg/g	390	853
4858526	23-04 - SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	5.09
4858526	23-04 - SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	5.08
4858526	23-04 - SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Vanadium	µg/g	86	88.1
4858527	23-04 - SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	8.57
4858528	23-04 - SA09	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	4.96
4858529	23-04 - Dup01	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	6.65

Quality Assurance

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET, PHASE TWO ESA

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z006407 ATTENTION TO: Keith Holmes SAMPLED BY:JAMES SULLIVAN

Soil Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Mar 27, 2023 MATRIX SPIKE Acceptable Method Acceptable Acceptable Sample Measured Blank Limits Limits Limits Dup #1 Dup #2 PARAMETER Batch RPD Recovery Recovery ld Value Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - Metals & Inorganics (Soil) 99% 70% 77% 130% Antimony 4858516 4858516 130% 83% 80% 120% 70% <0.8 <0.8 NA < 0.8 130% Arsenic 4858516 4858516 <1 NA < 1 127% 70% 130% 108% 80% 120% 115% 70% 1 Barium 4858516 4858516 118 113 3.8% < 2.0 102% 70% 130% 100% 80% 120% 98% 70% 130% Beryllium 4858516 4858516 <0.4 <0.4 NA < 0.4 96% 70% 130% 97% 80% 120% 109% 70% 130% 4858516 4858516 NA 87% 70% 130% 99% 80% 120% 105% 70% 130% Boron 6 7 < 5 Boron (Hot Water Soluble) 4858516 4858516 0.27 94% 60% 140% 130% 97% 140% 0.28 NA < 0.10 97% 70% 60% Cadmium 4858516 4858516 <0.5 <0.5 NA < 0.5 86% 70% 130% 105% 80% 120% 97% 70% 130% Chromium 4858516 4858516 7 9 NA < 5 101% 70% 130% 93% 80% 120% 104% 70% 130% 4858516 4858516 4.4 5.2 16.9% < 0.5 109% 70% 130% 108% 80% 120% 113% 70% 130% Cobalt 4858516 4858516 9.8 6.5% 100% 70% 130% 101% 120% 9.2 < 1.0 80% 95% 70% 130% Copper 4858516 4858516 3 4 NA 109% 120% 97% 130% Lead < 1 70% 130% 101% 80% 70% <0.5 130% 4858516 4858516 NA 113% 70% 100% 120% 109% 130% Molybdenum < 0.5 < 0.5 80% 70% Nickel 4858516 4858516 6 8 16.7% < 1 103% 70% 130% 100% 80% 120% 100% 70% 130% Selenium 4858516 4858516 <0.8 <0.8 NA < 0.8 89% 70% 130% 102% 80% 120% 118% 70% 130% Silver 4858516 4858516 <0.5 <0.5 NA < 0.5 103% 70% 130% 94% 80% 120% 96% 70% 130% Thallium 4858516 4858516 <0.5 <0.5 NA < 0.5 92% 70% 130% 107% 80% 120% 101% 70% 130% Uranium 4858516 4858516 < 0.50 < 0.50 NA < 0.50 97% 70% 130% 104% 80% 120% 100% 70% 130% Vanadium 4858516 4858516 113 129 13.4% < 0.4 103% 70% 130% 106% 80% 120% 114% 70% 130% Zinc 4858516 4858516 10 13 NA < 5 109% 70% 130% 97% 80% 120% 106% 70% 130% Chromium, Hexavalent 4858523 4858523 <0.2 <0.2 NA < 0.2 95% 70% 130% 89% 80% 120% 94% 70% 130% Cyanide, WAD 4865251 < 0.040 < 0.040 < 0.040 92% 70% 130% 105% 101% 130% NA 80% 120% 70% 70% 130% 4858516 4858516 <0.10 107% 70% 130% 104% 80% 120% 103% Mercurv < 0.10NA < 0.10Electrical Conductivity (2:1) 88% 4850926 0.219 0.216 1.2% < 0.005 80% 120% Sodium Adsorption Ratio (2:1) 4851036 3.41 3.37 1.2% NA (Calc.) pH, 2:1 CaCl2 Extraction 4860197 7.14 7.28 2.0% NA 101% 80% 120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

pH, 2:1 CaCl2 Extraction 4858525 4858525	7.37	7.40	0.4%	NA	103%	80%	120%
--	------	------	------	----	------	-----	------

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Chund Shang

Page 14 of 22

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 SLATER STREET, PHASE TWO ESA

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z006407 ATTENTION TO: Keith Holmes SAMPLED BY:JAMES SULLIVAN

Trace Organics Analysis

RPT Date: Mar 27, 2023			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery		eptable nits
	Daton	ld	5 ap # .	50p #2			Value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs	and VOC)	(Soil)												
F1 (C6 - C10)	4858521	4858521	<5	<5	NA	< 5	95%	60%	140%	124%	60%	140%	85%	60%	1409
F2 (C10 to C16)	4858516	4858516	<10	<10	NA	< 10	100%	60%	140%	112%	60%	140%	101%	60%	1409
F3 (C16 to C34)	4858516	4858516	<50	<50	NA	< 50	100%	60%	140%	106%	60%	140%	113%	60%	1409
⁻⁴ (C34 to C50)	4858516	4858516	<50	<50	NA	< 50	85%	60%	140%	89%	60%	140%	87%	60%	1409
D. Reg. 153(511) - PHCs F1 - F4	l (with PAHs	and VOC)	(Soil)												
² (C10 to C16)	4854121		<10	<10	NA	< 10	94%	60%	140%	99%	60%	140%	90%	60%	140
F3 (C16 to C34)	4854121		<50	<50	NA	< 50	97%	60%	140%	89%	60%	140%	84%	60%	1409
F4 (C34 to C50)	4854121		<50	<50	NA	< 50	67%	60%	140%	110%	60%	140%	91%	60%	1409
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	4858516	4858516	<0.05	<0.05	NA	< 0.05	96%	50%	140%	75%	50%	140%	105%	50%	1409
Acenaphthylene	4858516	4858516	<0.05	<0.05	NA	< 0.05	82%	50%	140%	98%	50%	140%	73%	50%	1409
Acenaphthene	4858516	4858516	<0.05	<0.05	NA	< 0.05	87%	50%	140%	73%	50%	140%	98%	50%	1409
Fluorene	4858516	4858516	<0.05	<0.05	NA	< 0.05	82%	50%	140%	105%	50%	140%	100%	50%	140
Phenanthrene	4858516	4858516	<0.05	<0.05	NA	< 0.05	84%	50%	140%	78%	50%	140%	110%	50%	1409
Anthracene	4858516	4858516	<0.05	<0.05	NA	< 0.05	89%	50%	140%	83%	50%	140%	85%	50%	140
Fluoranthene	4858516	4858516	<0.05	<0.05	NA	< 0.05	77%	50%	140%	73%	50%	140%	75%	50%	140
Pyrene	4858516	4858516	<0.05	<0.05	NA	< 0.05	70%	50%	140%	88%	50%	140%	85%	50%	140
Benz(a)anthracene	4858516	4858516	<0.05	<0.05	NA	< 0.05	75%	50%	140%	85%	50%	140%	113%	50%	140
Chrysene	4858516	4858516	<0.05	<0.05	NA	< 0.05	89%	50%	140%	90%	50%	140%	103%	50%	1409
Benzo(b)fluoranthene	4858516	4858516	<0.05	<0.05	NA	< 0.05	102%	50%	140%	115%	50%	140%	108%	50%	1409
Benzo(k)fluoranthene	4858516	4858516	<0.05	<0.05	NA	< 0.05	116%	50%	140%	90%	50%	140%	78%	50%	140
Benzo(a)pyrene	4858516	4858516	<0.05	<0.05	NA	< 0.05	98%	50%	140%	95%	50%	140%	93%	50%	140
ndeno(1,2,3-cd)pyrene	4858516		<0.05	<0.05	NA	< 0.05	68%	50%	140%	103%	50%	140%	113%	50%	140
Dibenz(a,h)anthracene	4858516	4858516	<0.05	<0.05	NA	< 0.05	78%	50%	140%	95%	50%	140%	80%	50%	1409
Benzo(g,h,i)perylene	4858516	4858516	<0.05	<0.05	NA	< 0.05	79%	50%	140%	73%	50%	140%	108%	50%	1409
O. Reg. 153(511) - VOCs (with F	PHC) (Soil)														
Dichlorodifluoromethane	4858521	4858521	<0.05	<0.05	NA	< 0.05	75%	50%	140%	80%	50%	140%	75%	50%	140
/inyl Chloride	4858521	4858521	<0.02	<0.02	NA	< 0.02	113%	50%	140%	105%	50%	140%	112%	50%	140
Bromomethane	4858521	4858521	<0.05	<0.05	NA	< 0.05	84%	50%	140%	78%	50%	140%	77%	50%	140
Trichlorofluoromethane	4858521	4858521	<0.05	<0.05	NA	< 0.05	109%	50%	140%	85%	50%	140%	90%	50%	140
Acetone	4858521	4858521	<0.50	<0.50	NA	< 0.50	105%	50%	140%	109%	50%	140%	87%	50%	140
I,1-Dichloroethylene	4858521		<0.05	<0.05	NA	< 0.05	85%	50%	140%	75%	60%	130%	95%	50%	
Methylene Chloride	4858521	4858521	<0.05	<0.05	NA	< 0.05	115%	50%	140%	103%	60%	130%	103%	50%	140
Frans- 1,2-Dichloroethylene	4858521		<0.05	<0.05	NA	< 0.05	100%		140%	92%		130%	83%	50%	
Methyl tert-butyl Ether	4858521		<0.05	<0.05	NA	< 0.05	107%		140%	90%		130%	73%	50%	
1,1-Dichloroethane	4858521	4858521	<0.02	<0.02	NA	< 0.02	116%	50%	140%	102%	60%	130%	95%	50%	140
Methyl Ethyl Ketone	4858521		<0.50	<0.50	NA	< 0.50	83%		140%	99%		140%	103%	50%	
Cis- 1,2-Dichloroethylene	4858521	4858521	<0.02	<0.02	NA	< 0.02	119%	50%	140%	98%	60%	130%	98%	50%	1409

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET, PHASE TWO ESA

SAMPLING SITE: 170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z006407 ATTENTION TO: Keith Holmes SAMPLED BY:JAMES SULLIVAN

Trace Organics Analysis (Continued)

			0			,	`			/					
RPT Date: Mar 27, 2023			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1	eptable nits	Recovery	Lin	ptable nits
		iù	-				value	Lower	Upper	_	Lower	Upper	-	Lower	Uppe
Chloroform	4858521	4858521	<0.04	<0.04	NA	< 0.04	106%	50%	140%	113%	60%	130%	99%	50%	140%
1,2-Dichloroethane	4858521	4858521	<0.03	<0.03	NA	< 0.03	118%	50%	140%	96%	60%	130%	98%	50%	140%
1,1,1-Trichloroethane	4858521	4858521	<0.05	<0.05	NA	< 0.05	108%	50%	140%	91%	60%	130%	86%	50%	140%
Carbon Tetrachloride	4858521	4858521	<0.05	<0.05	NA	< 0.05	109%	50%	140%	103%	60%	130%	76%	50%	140%
Benzene	4858521	4858521	<0.02	<0.02	NA	< 0.02	92%	50%	140%	91%	60%	130%	83%	50%	140%
1,2-Dichloropropane	4858521	4858521	<0.03	<0.03	NA	< 0.03	107%	50%	140%	88%	60%	130%	72%	50%	140%
Trichloroethylene	4858521	4858521	<0.03	<0.03	NA	< 0.03	107%	50%	140%	85%	60%	130%	100%	50%	140%
Bromodichloromethane	4858521	4858521	<0.05	<0.05	NA	< 0.05	109%	50%	140%	99%	60%	130%	88%	50%	140%
Methyl Isobutyl Ketone	4858521	4858521	<0.50	<0.50	NA	< 0.50	86%	50%	140%	102%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	4858521	4858521	<0.04	<0.04	NA	< 0.04	113%	50%	140%	111%	60%	130%	115%	50%	140%
Toluene	4858521	4858521	<0.05	<0.05	NA	< 0.05	113%	50%	140%	110%	60%	130%	94%	50%	140%
Dibromochloromethane	4858521	4858521	<0.05	<0.05	NA	< 0.05	108%	50%	140%	94%	60%	130%	103%	50%	140%
Ethylene Dibromide	4858521	4858521	<0.04	<0.04	NA	< 0.04	112%	50%	140%	112%	60%	130%	112%	50%	140%
Tetrachloroethylene	4858521	4858521	<0.05	<0.05	NA	< 0.05	106%	50%	140%	99%	60%	130%	86%	50%	140%
1,1,1,2-Tetrachloroethane	4858521	4858521	<0.04	<0.04	NA	< 0.04	96%	50%	140%	91%	60%	130%	85%	50%	140%
Chlorobenzene	4858521	4858521	<0.05	<0.05	NA	< 0.05	119%	50%	140%	109%	60%	130%	94%	50%	140%
Ethylbenzene	4858521	4858521	<0.05	<0.05	NA	< 0.05	116%	50%	140%	107%	60%	130%	82%	50%	140%
m & p-Xylene	4858521	4858521	<0.05	<0.05	NA	< 0.05	116%	50%	140%	109%	60%	130%	86%	50%	140%
Bromoform	4858521	4858521	<0.05	<0.05	NA	< 0.05	106%	50%	140%	87%	60%	130%	103%	50%	140%
Styrene	4858521	4858521	<0.05	<0.05	NA	< 0.05	119%	50%	140%	107%	60%	130%	88%	50%	140%
1,1,2,2-Tetrachloroethane	4858521	4858521	<0.05	<0.05	NA	< 0.05	106%	50%	140%	115%	60%	130%	80%	50%	140%
o-Xylene	4858521	4858521	<0.05	<0.05	NA	< 0.05	105%	50%	140%	115%	60%	130%	96%	50%	140%
1,3-Dichlorobenzene	4858521	4858521	<0.05	<0.05	NA	< 0.05	117%	50%	140%	109%	60%	130%	96%	50%	140%
1,4-Dichlorobenzene	4858521	4858521	<0.05	<0.05	NA	< 0.05	118%	50%	140%	113%	60%	130%	100%	50%	140%
1,2-Dichlorobenzene	4858521	4858521	<0.05	<0.05	NA	< 0.05	120%	50%	140%	109%	60%	130%	96%	50%	140%
n-Hexane	4858521	4858521	<0.05	<0.05	NA	< 0.05	86%	50%	140%	79%	60%	130%	82%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 16 of 22

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET, PHASE TWO ESA

AGAT WORK ORDER: 23Z006407

ATTENTION TO: Keith Holmes

THOSEOT. TO SEATER STREET, TH		ATTENTION TO: Reith Holmes						
SAMPLING SITE:170 Slater Street, Of	tawa, Ontario	SAMPLED BY: JAMES SULLIVAN						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Soil Analysis								
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES					
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER					
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER					
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS					
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE					
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES					
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE					

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET, PHASE TWO ESA

AGAT WORK ORDER: 23Z006407 ATTENTION TO: Keith Holmes SAMPLED BY:JAMES SULLIVAN

SAMPLING SITE:170 Slater Street, Ot	tawa. Ontario	SAMPLED BY: JAMES SULLIVAN						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis								
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID					
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET, PHASE TWO ESA

AGAT WORK ORDER: 23Z006407 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater Street,	Ottawa, Ontario	SAMPLED BY:JAMES SULLIVAN						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET, PHASE TWO ESA

AGAT WORK ORDER: 23Z006407 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater Street, C	ttawa, Ontario	SAMPLED BY:JAMES SULLIVAN						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS					
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS					

Chain of Custody Record If this is a Dril		Ph: DrieS use Drinking Water Chain of Custody Form (potab	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 905,712,5100 Fax: 905,712,5122 webearth.agatlabs.com le water consumed by humans)	Laboratory Use Only Work Order #: 232006407 Cooler Quantity: 012-0056106 Arrival Temperatures: 1811-912.0 Coler States 15.9					
Report Information: Company: WSP CANADA INC. Contact: KEITH HOLMES Address: 1931 ROBERTSON ROA NEFEAN. ON K2H5B Phone: 613-592-9600 Reports to be sent to: Fax:	7	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Indicate One Ind/Com Res/Park Agriculture	Sanitary Storm	Custody Seal Intact: Yes No N/A Notes: Dent CUS Leeined Turnaround Time (TAT) Required: Regular TAT (Most Analysis) 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)					
1. Email: KEITH. P. HULMES C. WSP, CO. 2. Email: PAUL, JACKSON C. WSP, CO. Project Information: Project: 170 SLATER STREET, PHAS Site Location: Site Location: 170 SLATER STREET, OTTAM Sampled By: JAMES SULLIVAN	E TWO ESA	Soil Texture (Check One) Coarse Fine Is this submission for a Record of Site Condition? Yes No	Certificate on Analysis Yes No	Comparison of the second statutory holidays Comparison of the second statutory holidays					
AGAT ID #:PO: Please note: If quotation number is not provided, client will be b	billed full price for analysis.	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	A Field Filtered - Metals, Hg, CrWi, DOC Metals & Inorganics Metals - G CrWi, Q Hg, I HWSB Metals - G CrWi, Q Hg, I HWSB Metals - G CrWi, PHCs BIEX, F1-F4 PHCs Analyze F4G if required I Yes I No PAHs PAHs Total PCBs I Aroctor	VOC Landfill Disposal Characterization TCLP: TCLP:					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sampled Containers N 1140 M 4 1 210 M 4 1 1100 M 4 1 1170 M 4 1 1110 M 4 1 1115 M 4 1 1445 M 4 1 1445 M 4 1 AM 4 1 1 AM 4 1 1 AM 4 1 1	Sample Comments/ Matrix Special Instructions S S S S S S S S S S S S S S S S S S S	Image: Second state of the se						
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Document ID: DIV-78-1513.020	$\begin{array}{c c} Date \\ \hline 3 \\ \hline 1 \\ \hline 5 \\ \hline 2023 \\ \hline 1 \\ \hline 5 \hline$	C Clima Pille		6 2023 Time IF Time Page 1 of 2 Time N°: T114864 Ime N°: T114864 Vellow Copy - AGAT 1 White Copy- AGAT Dompare: 9777199 2020					

CAGAT Laborate	5835 Mississauga, (Ph: 905,712,5100 Fax webear	Cooler Quantity: ONC - 10056 i Ce
	se Drinking Water Chain of Custody Form (potable water consumed by I	humans)
Report Information: Company: WSP CANADA INC, Contact: KEITH HOLMES Address: 1931 ROBERTSON ROAD NEPEAN, ON K2H5B7 6)3-592-9600 Fax: Reports to be sent to: 1. Email: KEITH, P. HOLMES WSP, COM 2. Email:	Soil Texture (Check One)	y Storm Turnaround Time (TAT) Required: ian Regular TAT (Most Analysis) 5 to 7 Business Days
Project Information: Project: 176 SLATER STREET, PHASE TWO ESA Site Location: 170 SLATER STREET, OTLAWA, ONTARIO	Is this submission for a Report Gull Record of Site Condition? Certificate of Cer	
Sampled By: SAMES SULVAN AGAT ID #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis, Invoice Information: Bill To Same: Yes IN O Company:	Sample Matrix Legend 0. Reg : B Biota GW Ground Water 0 Oil P Paint S Soil SD Sediment SW Surface Water	if required T Yes DNo Seal Characterization TCLP: Dvocs DABNs DB(a)PDPceas s SPLP Rainwater Leach als Dvocs Dsvocs ocharacterization Package Metals, BTEX, F1-F4
Sample Identification	ample Comments/ Y/N Image: Second Instructions Matrix Special Instructions Y/N Image: Second Instructions S V V S V V S V V S V V S V V	
Samples Reinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Date	Samples Receivers By (Print Name and Sign):	Date Time Page

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 170 SLATER STREET PHASE TWO ESA AGAT WORK ORDER: 23Z008517 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer DATE REPORTED: Mar 31, 2023 PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 16

AGAT WORK ORDER: 23Z008517 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

			0.	100(0		s a morgan		
DATE RECEIVED: 2023-03-23								DATE REPORTED: 2023-03-31
	S		CRIPTION: PLE TYPE: SAMPLED:	23-03-SA03 Soil 2023-03-16	23-03-SA04 Soil 2023-03-16	23-03-SA05 Soil 2023-03-16	23-03-SA06 Soil 2023-03-16	
Parameter	Unit	G/S	RDL	10:50 4876885	11:00 4876887	11:35 4876888	12:05 4876889	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	
rsenic	μg/g	18	1	1	1	5	13	
arium	μg/g	390	2.0	35.6	117	217	176	
eryllium	μg/g	4	0.4	<0.4	<0.4	0.4	0.8	
oron	µg/g	120	5	<5	<5	6	9	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	<0.10	0.20	0.27	0.29	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	8	17	12	18	
obalt	µg/g	22	0.5	4.6	5.1	9.0	22.3	
Copper	μg/g	140	1.0	10.8	12.7	21.1	68.8	
ead	µg/g	120	1	3	9	9	26	
lolybdenum	μg/g	6.9	0.5	0.6	<0.5	5.7	18.1	
lickel	µg/g	100	1	7	10	31	85	
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	2.0	
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	
hallium	μg/g	1	0.5	<0.5	<0.5	<0.5	1.2	
Iranium	µg/g	23	0.50	0.60	0.52	2.24	6.73	
/anadium	µg/g	86	0.4	17.3	25.3	22.8	34.2	
linc	µg/g	340	5	15	31	22	51	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	
Syanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	
lercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	
lectrical Conductivity (2:1)	mS/cm	0.7	0.005	2.81	1.81	2.57	4.64	
odium Adsorption Ratio (2:1) Calc.)	N/A	5	N/A	32.3	20.1	8.08	4.93	
H, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	8.31	8.23	7.94	7.72	

O. Reg. 153(511) - Metals & Inorganics (Soil)

AGAT WORK ORDER: 23Z008517 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-03-23

DATE REPORTED: 2023-03-31

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876885-4876889 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23Z008517 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

DATE RECEIVED: 2023-03-23								DATE REPORTED: 2023-03-31
		SAMPLE DESCI		23-03-SA03	23-03-SA04	23-03-SA05	23-03-SA06	
			E TYPE:	Soil	Soil	Soil	Soil	
		DATE SA	MPLED:	2023-03-16 10:50	2023-03-16 11:00	2023-03-16 11:35	2023-03-16 12:05	
Parameter	Unit	G / S	RDL	4876885	4876887	4876888	4876889	
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	6.2	0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.67	0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	<0.05	<0.05	
Pyrene	µg/g	78	0.05	<0.05	<0.05	<0.05	<0.05	
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	<0.05	<0.05	
Chrysene	µg/g	7	0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	< 0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05	
ndeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	<0.05	<0.05	<0.05	
1 and 2 Methlynaphthalene	µg/g	0.99	0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	3.3	9.0	8.6	10.8	
Surrogate	Unit	Acceptable	Limits					
Naphthalene-d8	%	50-14	0	105	85	75	70	
Acridine-d9	%	50-14	0	100	85	95	95	
Terphenyl-d14	%	50-14	0	115	100	100	95	

O. Reg. 153(511) - PAHs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876885-4876889 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Amkal Jata

Certified By:

AGAT WORK ORDER: 23Z008517 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2023-03-23

		SAMPLE DES	CRIPTION:	23-03-SA03	23-03-SA04	23-03-SA05	23-03-SA06
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	2023-03-16 10:50	2023-03-16 11:00	2023-03-16 11:35	2023-03-16 12:05
Parameter	Unit	G/S	RDL	4876885	4876887	4876888	4876889
F1 (C6 - C10)	µg/g	55	5	<5	<5	5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10	45	97
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	<10	45	97
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	173
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	<50	173
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA	NA
Moisture Content	%		0.1	3.3	9.0	8.6	10.8
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	%	50-1	140	101	105	100	102
Terphenyl	%	60-	140	70	75	94	80

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876885-4876889 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2023-03-31

AGAT WORK ORDER: 23Z008517 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

DATE RECEIVED: 2023-03-23 DATE REPORTED: 2023-03-31 SAMPLE DESCRIPTION: 23-03-SA03 23-03-SA04 23-03-SA05 23-03-SA06 SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 2023-03-16 2023-03-16 2023-03-16 2023-03-16 12:05 10:50 11:00 11:35 Parameter Unit G/S RDL 4876885 4876887 4876888 4876889 0.05 <0.05 <0.05 Dichlorodifluoromethane µg/g 16 < 0.05 < 0.05 Vinyl Chloride ug/g 0.02 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.05 0.05 < 0.05 < 0.05 <0.05 <0.05 Bromomethane ug/g Trichlorofluoromethane 4 0.05 < 0.05 < 0.05 <0.05 < 0.05 ug/g 16 0.50 < 0.50 <0.50 <0.50 <0.50 Acetone ug/g 1,1-Dichloroethylene 0.05 0.05 < 0.05 < 0.05 <0.05 < 0.05 ug/g <0.05 Methylene Chloride ug/g 0.1 0.05 < 0.05 < 0.05 <0.05 Trans- 1,2-Dichloroethylene 0.084 0.05 < 0.05 < 0.05 < 0.05 < 0.05 ug/g Methyl tert-butyl Ether 0.75 0.05 < 0.05 < 0.05 <0.05 < 0.05 ug/g <0.02 < 0.02 1.1-Dichloroethane ug/g 0.47 0.02 < 0.02 < 0.02 Methyl Ethyl Ketone ug/g 16 0.50 < 0.50 < 0.50 <0.50 <0.50 <0.02 <0.02 Cis- 1,2-Dichloroethylene ug/g 1.9 0.02 < 0.02 < 0.02 Chloroform 0.05 0.04 < 0.04 < 0.04 <0.04 < 0.04 ug/g 1.2-Dichloroethane 0.05 0.03 < 0.03 < 0.03 < 0.03 < 0.03 ug/g 1.1.1-Trichloroethane 0.38 0.05 < 0.05 < 0.05 < 0.05 < 0.05 ug/g Carbon Tetrachloride 0.05 0.05 < 0.05 < 0.05 <0.05 < 0.05 ug/g Benzene 0.21 0.02 < 0.02 < 0.02 <0.02 <0.02 ug/g 0.03 < 0.03 <0.03 < 0.03 1,2-Dichloropropane ug/g 0.05 < 0.03 Trichloroethylene ug/g 0.061 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <0.05 Bromodichloromethane 1.5 0.05 < 0.05 < 0.05 <0.05 ug/g Methyl Isobutyl Ketone 1.7 0.50 < 0.50 < 0.50 <0.50 <0.50 ug/g 1.1.2-Trichloroethane 0.05 0.04 < 0.04 <0.04 < 0.04 ug/g < 0.04 < 0.05 Toluene ug/g 2.3 0.05 < 0.05 < 0.05 < 0.05 Dibromochloromethane 2.3 0.05 < 0.05 < 0.05 <0.05 < 0.05 ug/g Ethylene Dibromide ug/g 0.05 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Tetrachloroethylene ug/g 0.28 0.05 < 0.05 < 0.05 <0.05 < 0.05 1,1,1,2-Tetrachloroethane 0.058 0.04 < 0.04 < 0.04 <0.04 < 0.04 ug/g Chlorobenzene ug/g 2.4 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene ug/g 1.1

O. Reg. 153(511) - VOCs (with PHC) (Soil)

Certified By:

Page 6 of 16

AGAT WORK ORDER: 23Z008517 PROJECT: 170 SLATER STREET PHASE TWO ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE: 170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY: James Sullivan

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-03-23

t (0.27	TYPE:	23-03-SA03 Soil 2023-03-16 10:50 4876885 <0.05	23-03-SA04 Soil 2023-03-16 11:00 4876887 <0.05	23-03-SA05 Soil 2023-03-16 11:35 4876888	23-03-SA06 Soil 2023-03-16 12:05 4876889	
)))	DATE SAM G / S 0.27	IPLED: RDL 0.05	2023-03-16 10:50 4876885 <0.05	2023-03-16 11:00 4876887	2023-03-16 11:35 4876888	2023-03-16 12:05 4876889	
)))	G / S 0.27	RDL 0.05	10:50 4876885 <0.05	11:00 4876887	11:35 4876888	12:05 4876889	
)))	0.27	0.05	<0.05				
9	0.27			<0.05	0.05		
9		0.05			<0.05	<0.05	
,	07		<0.05	<0.05	<0.05	<0.05	
	0.7	0.05	<0.05	<0.05	<0.05	<0.05	
9	0.05	0.05	<0.05	<0.05	<0.05	<0.05	
9		0.05	<0.05	<0.05	<0.05	<0.05	
9	4.8	0.05	<0.05	<0.05	<0.05	<0.05	
g (0.083	0.05	<0.05	<0.05	<0.05	<0.05	
9	1.2	0.05	<0.05	<0.05	<0.05	<0.05	
9	3.1	0.05	<0.05	<0.05	<0.05	<0.05	
9	0.05	0.05	<0.05	<0.05	<0.05	<0.05	
9	2.8	0.05	<0.05	<0.05	<0.05	<0.05	
		0.1	3.3	9.0	8.6	10.8	
t A	cceptable L	imits.					
very	50-140		101	105	100	102	
very	50-140		83	86	90	85	
	9 9 9 9 9 9 9	g g 4.8 g 0.083 g 1.2 g 3.1 g 0.05 g 2.8 t Acceptable L overy 50-140	g 0.05 g 4.8 0.05 g 0.083 0.05 g 1.2 0.05 g 3.1 0.05 g 0.05 0.05 g 2.8 0.05 0.1 t Acceptable Limits overy 50-140	g 0.05 <0.05 g 4.8 0.05 <0.05 g 0.083 0.05 <0.05 g 1.2 0.05 <0.05 g 3.1 0.05 <0.05 g 0.05 0.05 <0.05 g 2.8 0.05 <0.05 0.1 3.3 t Acceptable Limits overy 50-140 101	g 0.05 <0.05 <0.05 g 4.8 0.05 <0.05	g 0.05 <0.05	g 0.05 <0.05 <0.05 <0.05 <0.05 g 4.8 0.05 <0.05

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -Comments:

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876885-4876889 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

finkal Jata

DATE REPORTED: 2023-03-31

AGAT CERTIFICATE OF ANALYSIS (V1)

Exceedance Summary

AGAT WORK ORDER: 23Z008517 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4876885	23-03-SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	2.81
4876885	23-03-SA03	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	5	32.3
4876887	23-03-SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.81
4876887	23-03-SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	20.1
4876888	23-03-SA05	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	2.57
4876888	23-03-SA05	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	5	8.08
4876889	23-03-SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Cobalt	µg/g	22	22.3
4876889	23-03-SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	4.64
4876889	23-03-SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	µg/g	6.9	18.1
4876889	23-03-SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Thallium	µg/g	1	1.2

Quality Assurance

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z008517 ATTENTION TO: Keith Holmes

SAMPLED BY: James Sullivan

Soil Analysis

				001			,									
RPT Date: Mar 31, 2023			DUPLICATE				REFEREN	REFERENCE MATERIAL		METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery	1.10	eptable nits	
							Value	Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & Inor	ganics (Soil)															
Antimony	4881549		<0.8	<0.8	NA	< 0.8	105%	70%	130%	83%	80%	120%	76%	70%	130%	
Arsenic	4881549		1	1	NA	< 1	112%	70%	130%	97%	80%	120%	103%	70%	130%	
Barium	4881549		17.7	18.2	2.8%	< 2.0	101%	70%	130%	100%	80%	120%	102%	70%	130%	
Beryllium	4881549		<0.4	<0.4	NA	< 0.4	81%	70%	130%	97%	80%	120%	97%	70%	130%	
Boron	4881549		<5	<5	NA	< 5	79%	70%	130%	98%	80%	120%	91%	70%	130%	
Boron (Hot Water Soluble)	4881549		0.13	0.12	NA	< 0.10	100%	60%	140%	99%	70%	130%	99%	60%	140%	
Cadmium	4881549		<0.5	<0.5	NA	< 0.5	107%	70%	130%	102%	80%	120%	105%	70%	130%	
Chromium	4881549		5	<5	NA	< 5	99%	70%	130%	101%	80%	120%	98%	70%	130%	
Cobalt	4881549		1.8	1.8	NA	< 0.5	92%	70%	130%	97%	80%	120%	97%	70%	130%	
Copper	4881549		3.3	3.3	NA	< 1.0	91%	70%	130%	104%	80%	120%	95%	70%	130%	
Lead	4881549		8	7	13.3%	< 1	106%	70%	130%	105%	80%	120%	103%	70%	130%	
Molybdenum	4881549		<0.5	<0.5	NA	< 0.5	102%	70%	130%	105%	80%	120%	108%	70%	130%	
Nickel	4881549		4	4	NA	< 1	96%	70%	130%	100%	80%	120%	99%	70%	130%	
Selenium	4881549		<0.8	<0.8	NA	< 0.8	122%	70%	130%	102%	80%	120%	107%	70%	130%	
Silver	4881549		<0.5	<0.5	NA	< 0.5	96%	70%	130%	99%	80%	120%	95%	70%	130%	
Thallium	4881549		<0.5	<0.5	NA	< 0.5	114%	70%	130%	105%	80%	120%	104%	70%	130%	
Uranium	4881549		<0.50	<0.50	NA	< 0.50	106%	70%	130%	103%	80%	120%	107%	70%	130%	
Vanadium	4881549		10.5	9.4	11.1%	< 0.4	98%	70%	130%	95%	80%	120%	94%	70%	130%	
Zinc	4881549		18	19	NA	< 5	99%	70%	130%	106%	80%	120%	113%	70%	130%	
Chromium, Hexavalent	4879034		<0.2	<0.2	NA	< 0.2	96%	70%	130%	96%	80%	120%	94%	70%	130%	
Cyanide, WAD	4869954		<0.040	<0.040	NA	< 0.040	90%	70%	130%	105%	80%	120%	99%	70%	130%	
Mercury	4881549		<0.10	<0.10	NA	< 0.10	110%	70%	130%	99%	80%	120%	100%	70%	130%	
Electrical Conductivity (2:1)	4881549		0.147	0.143	2.8%	< 0.005	103%	80%	120%							
Sodium Adsorption Ratio (2:1) (Calc.)	4881549		0.780	0.777	0.4%	NA										
pH, 2:1 CaCl2 Extraction	4875913		7.76	7.59	2.2%	NA	102%	80%	120%							

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 SLATER STREET PHASE TWO ESA SAMPLING SITE:170 Slater Street, Ottawa, Ontario AGAT WORK ORDER: 23Z008517 ATTENTION TO: Keith Holmes

SAMPLED BY:James Sullivan

Trace Organics Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Mar 31, 2023 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Measured Blank Limits Limits Limits PARAMETER Batch Dup #1 Dup #2 RPD Recovery Recovery ld Value Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil) F1 (C6 - C10) < 5 105% 140% 4881876 <5 NA 115% 60% 140% 109% 60% 140% 60% <5 F2 (C10 to C16) 4875895 131% 140% <10 <10 NA < 10 100% 60% 140% 60% 140% 129% 60% F3 (C16 to C34) 4875895 <50 <50 NA < 50 112% 60% 140% 125% 60% 140% 121% 60% 140% F4 (C34 to C50) 4875895 <50 <50 NA < 50 95% 60% 140% 127% 60% 140% 134% 60% 140% O. Reg. 153(511) - VOCs (with PHC) (Soil) 50% Dichlorodifluoromethane 4881876 < 0.05 < 0.05 NA < 0.05 117% 50% 140% 72% 140% 85% 50% 140% Vinyl Chloride 4881876 50% 94% 140% < 0.02 < 0.02 NA < 0.0285% 140% 50% 140% 102% 50% 4881876 < 0.05 50% 107% 140% Bromomethane < 0.05 NA < 0.05 106% 140% 50% 140% 83% 50% Trichlorofluoromethane 4881876 < 0.05 < 0.05 NA < 0.05 74% 50% 140% 74% 50% 140% 88% 50% 140% Acetone 4881876 <0.50 <0.50 NA < 0.50 105% 50% 140% 89% 50% 140% 84% 50% 140% 1,1-Dichloroethylene 4881876 <0.05 <0.05 NA < 0.05 73% 50% 140% 95% 60% 130% 109% 50% 140% Methylene Chloride 4881876 <0.05 <0.05 NA < 0.0571% 50% 140% 74% 130% 72% 50% 140% 60% Trans- 1,2-Dichloroethylene 4881876 < 0.05 <0.05 NA < 0.05101% 50% 140% 84% 60% 130% 87% 50% 140% Methyl tert-butyl Ether 4881876 < 0.05 < 0.05 NΑ < 0.05 78% 50% 140% 71% 60% 130% 80% 50% 140% 1.1-Dichloroethane 130% 50% 140% 4881876 < 0.02 < 0.02 NA < 0.02 86% 50% 140% 91% 60% 80% < 0.50 140% Methyl Ethyl Ketone 4881876 <0.50 < 0.50 NA 104% 50% 140% 89% 50% 140% 70% 50% Cis- 1,2-Dichloroethylene 4881876 < 0.02 < 0.02 NA < 0.02 70% 50% 140% 85% 60% 130% 87% 50% 140% Chloroform 4881876 < 0.04 < 0.04 NA < 0.04 90% 50% 140% 101% 60% 130% 92% 50% 140% 4881876 < 0.03 NA < 0.03 102% 50% 140% 112% 98% 50% 140% 1.2-Dichloroethane < 0.03 60% 130% 1,1,1-Trichloroethane 140% 4881876 < 0.05 < 0.05 NA < 0.05 76% 50% 140% 88% 60% 130% 116% 50% Carbon Tetrachloride 4881876 < 0.05 < 0.05 NA < 0.05 79% 50% 140% 92% 60% 130% 109% 50% 140% Benzene 4881876 <0.02 <0.02 NA < 0.02 73% 50% 140% 87% 60% 130% 89% 50% 140% 1.2-Dichloropropane 4881876 < 0.03 <0.03 NA < 0.03 101% 50% 140% 79% 60% 130% 100% 50% 140% Trichloroethylene 82% 96% 4881876 < 0.03 < 0.03 NA < 0.03 50% 140% 60% 130% 80% 50% 140% Bromodichloromethane 72% 77% 130% 140% 4881876 < 0.05 < 0.05 NA < 0.05 50% 140% 60% 118% 50% <0.50 Methyl Isobutyl Ketone 4881876 < 0.50NA < 0.50 106% 50% 140% 101% 50% 140% 98% 50% 140% 1.1.2-Trichloroethane 4881876 < 0.04 < 0.04 NA < 0.0475% 50% 140% 81% 60% 130% 91% 50% 140% Toluene 4881876 < 0.05 < 0.05 NA < 0.05 78% 50% 140% 89% 60% 130% 99% 50% 140% Dibromochloromethane 4881876 < 0.05 < 0.05 NA < 0.05 79% 50% 140% 78% 60% 130% 75% 50% 140% Ethylene Dibromide 4881876 50% 140% 71% 130% 83% 50% 140% < 0.04 < 0.04 NA < 0.04 82% 60% Tetrachloroethylene 98% 140% 4881876 < 0.05 < 0.05 NA < 0.05 83% 50% 140% 60% 130% 117% 50% 1,1,1,2-Tetrachloroethane 4881876 < 0.04 < 0.04 NA < 0.04 74% 50% 140% 87% 60% 130% 90% 50% 140% Chlorobenzene 4881876 < 0.05 <0.05 NA < 0.05 84% 50% 140% 88% 60% 130% 98% 50% 140% Ethylbenzene 4881876 < 0.05 < 0.05 NA < 0.05 76% 50% 140% 80% 60% 130% 91% 50% 140% m & p-Xylene 4881876 <0.05 <0.05 NA < 0.0550% 140% 88% 60% 130% 94% 50% 140% 115% 74% 140% Bromoform 4881876 <0.05 <0.05 < 0.05 70% 130% 74% NA 50% 140% 60% 50% 74% 50% 73% 140% 73% 130% 50% Stvrene 4881876 < 0.05 < 0.05 NA < 0.05 140% 60% 50% 73% 4881876 73% 140% 1,1,2,2-Tetrachloroethane < 0.05 < 0.05 NA < 0.05 74% 140% 60% 130% 50% o-Xylene 4881876 < 0.05 < 0.05 NA < 0.05 77% 50% 140% 86% 60% 130% 93% 50% 140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 SLATER STREET PHASE TWO ESA

AGAT WORK ORDER: 23Z008517 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY:James Sullivan

Trace Organics Analysis (Continued)

			- 3				(/					
RPT Date: Mar 31, 2023			0	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	< SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 5	eptable mits	Recovery	1 1 1 1	ptable nits
		Ia					Value	Lower	Upper		Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	4881876		<0.05	<0.05	NA	< 0.05	88%	50%	140%	91%	60%	130%	97%	50%	140%
1,4-Dichlorobenzene	4881876		<0.05	<0.05	NA	< 0.05	78%	50%	140%	85%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	4881876		<0.05	<0.05	NA	< 0.05	84%	50%	140%	84%	60%	130%	90%	50%	140%
n-Hexane	4881876		<0.05	<0.05	NA	< 0.05	103%	50%	140%	91%	60%	130%	98%	50%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	4876315		<0.05	<0.05	NA	< 0.05	89%	50%	140%	95%	50%	140%	105%	50%	140%
Acenaphthylene	4876315		<0.05	<0.05	NA	< 0.05	86%	50%	140%	85%	50%	140%	95%	50%	140%
Acenaphthene	4876315		<0.05	<0.05	NA	< 0.05	88%	50%	140%	98%	50%	140%	113%	50%	140%
Fluorene	4876315		<0.05	<0.05	NA	< 0.05	81%	50%	140%	90%	50%	140%	85%	50%	140%
Phenanthrene	4876315		<0.05	<0.05	NA	< 0.05	83%	50%	140%	90%	50%	140%	73%	50%	140%
Anthracene	4876315		<0.05	<0.05	NA	< 0.05	91%	50%	140%	85%	50%	140%	73%	50%	140%
Fluoranthene	4876315		<0.05	<0.05	NA	< 0.05	78%	50%	140%	80%	50%	140%	73%	50%	140%
Pyrene	4876315		<0.05	<0.05	NA	< 0.05	76%	50%	140%	78%	50%	140%	78%	50%	140%
Benz(a)anthracene	4876315		<0.05	<0.05	NA	< 0.05	84%	50%	140%	85%	50%	140%	95%	50%	140%
Chrysene	4876315		<0.05	<0.05	NA	< 0.05	84%	50%	140%	90%	50%	140%	70%	50%	140%
Benzo(b)fluoranthene	4876315		<0.05	<0.05	NA	< 0.05	68%	50%	140%	90%	50%	140%	110%	50%	140%
Benzo(k)fluoranthene	4876315		<0.05	<0.05	NA	< 0.05	82%	50%	140%	110%	50%	140%	75%	50%	140%
Benzo(a)pyrene	4876315		<0.05	<0.05	NA	< 0.05	72%	50%	140%	83%	50%	140%	78%	50%	140%
Indeno(1,2,3-cd)pyrene	4876315		<0.05	<0.05	NA	< 0.05	84%	50%	140%	83%	50%	140%	100%	50%	140%
Dibenz(a,h)anthracene	4876315		<0.05	<0.05	NA	< 0.05	82%	50%	140%	95%	50%	140%	88%	50%	140%
Benzo(g,h,i)perylene	4876315		<0.05	<0.05	NA	< 0.05	80%	50%	140%	98%	50%	140%	110%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Pinkal Jota

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 16

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA

AGAT WORK ORDER: 23Z008517

ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater Street, Ottawa, Onta	rio
---	-----

SAMPLED	BY:James	Sullivan

		Sittin EEB B1.84	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		modified from EPA 3050B and EPA	
Antimony	MET-93-6103	6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z008517 ATTENTION TO: Keith Holmes

CAMPLING SITE 170 Slatar Street Of	towa Optaria	SAMPLED RV: James Sulliven					
SAMPLING SITE:170 Slater Street, Ot	,	SAMPLED BY:James Sullivan					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE				
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID				
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE				
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA SAMPLING SITE: 170 Slater Street, Ottawa, Ontario,

AGAT WORK ORDER: 23Z008517

ATTENTION TO: Keith Holmes

	Ottawa, Ontario	SAMPLED BY:James Sullivan					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z008517

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

SAMELING SITE. 170 Stater Street, O	ttawa, Ontano	SAMPLED DT. James Sumvan					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS				
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS				

Chain of Custody Record If this is a Drinking Water sample, plea	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth,agatlabs.com e use Drinking Water Chain of Custody Form (potable water consumed by humans)	Laboratory Use Only Work Order #: 237008517 Cooler Quantity: 019-10050100 Arrival Temperatures: 2.812.212.5 2.814.815.4
Report Information: SP CANADA Company: KEITH HOLMES Contact: KEITH HOLMES Address: 1971 ROBERTSON RD NEPEAN, ON K2H 5B7 613-592-9600 Phone: 613-592-9600 Reports to be sent to: 1. Email: 1. Email: KEITH, P. HOLMES & WSP, Com 2. Email: PAU. JACKSON & WSP, Com Project Information: Project: 170 SLATER STREET PHASE TWO ES	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Excess Soils R406 Table Indicate One Indicate One Regulation 558 Or Res/Park Regulation 558 Agriculture Regulation 558 Soil Textore (check One) CCME Coarse Other Is this submission for a Report Guideline on Certificate of Analysis	Custody Seal Intact: Ves No N/A Notes: bagg collage Turnaround Time (TAT) Required: Regular TAT (Most Analysio) 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT * TAT is exclusive of weekends and statutory holidays
Site Location: 170 SLATER STREET, OTTAWA, ONTAR Sampled By: JAMES OUL/VAN AGAT ID #: PO:	Yes No Sample Matrix Legend O O O Reg 153 B Biota O O Reg 153 O GW Ground Water O O O Reg 153 O Oil P Paint Soil Soil Soil Soil SD Sediment Sw Surface Water Surface Water Surface Water Surface Water	VOC Cucher James Characterization TCLP: TCLP: JM&II Disposal Characterization TCLP: TCLP: JM&II Disposal Characterization TCLP: Excess Soils SPLP Rainwater Leach Ph/ICPMS Metals: BTEX; F1-F4 Salt - EC/SAR Salt - EC/SAR Paradous or High Concentration (V/N)
Sample Identification Date Sampled Time Sampled # of Containers 23-03 - \$A03 3/14/23 1050 44 23-03 - \$A04 1110 44 73-03 - \$A05 1135 44 73-03 - \$A05 1135 47 73-03 - \$A06 1205 44 8 8 47 73-03 - \$A06 1205 44 8 8 47 73-03 - \$A06 1205 44 8 8 47 8 8 48 8 8 48 8 8 48 8 8 48 8 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 9 8 9 9 9 9 9 8		Control Contro Control Control Control Control Control Control Control Control
Samples Relinquished By (Print Name and Sign):	Samples Received By (Print Name and Sign):	Time Page of 10:30 A Page of Time Nº: T 1 1 4 8 3 9

Document ID: DIV-78 1511 020

Pink Copy - Client I Yellow Copy - AGAT I White Copy- AGAT Dapage 146 of 56 2020

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 170 SLATER STREET PHASE TWO ESA AGAT WORK ORDER: 23Z008519 TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Mar 31, 2023 PAGES (INCLUDING COVER): 15 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Envire Agricultural Laboratory Association (M/EALA)	

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 15

AGAT WORK ORDER: 23Z008519 PROJECT: 170 SLATER STREET PHASE TWO ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE: 170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY: James Sullivan

DATE REPORTED: 2023-03-31

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

DATE RECEIVED: 2023-03-23

	S	AMPLE DESCRI	PTION:	FB-01	23-05-GW01	DUP-01	23-02-GW01	
		SAMPLE	TYPE:	Water	Water	Water	Water	
		DATE SAM	IPLED:	2023-03-22 11:30	2023-03-22 11:45	2023-03-22 11:45	2023-03-22 14:00	
Parameter	Unit	G/S I	RDL	4876951	4876962	4876963	4876966	
F1 (C6 - C10)	μg/L	750	25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	
Sediment				1	1	1	3	
Surrogate	Unit	Acceptable L	imits					
Toluene-d8	%	50-140		101	98	102	103	
Terphenyl	% Recovery	60-140		70	65	72	66	

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876951-4876966 The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client. NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 23Z008519 PROJECT: 170 SLATER STREET PHASE TWO ESA

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY: James Sullivan

				O. Reg.	. 153(511) - VOCs (Water)
DATE RECEIVED: 2023-03-23					DATE REPORTED: 2023-03-31
	5	SAMF	CRIPTION: PLE TYPE: SAMPLED:	MW-14-02-GW Water 2023-03-22 12:30	
Parameter	Unit	G/S	RDL	4876964	
Dichlorodifluoromethane	μg/L	4400	0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	

Certified By:

Page 3 of 15

Jinkal Jota

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 23Z008519 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2023-03-23

	SA	AMPLE DES	CRIPTION:	MW-14-02-GW
		SAM	PLE TYPE:	Water
		DATES	SAMPLED:	2023-03-22
_				12:30
Parameter	Unit	G/S	RDL	4876964
m & p-Xylene	μg/L		0.20	<0.20
Bromoform	μg/L	380	0.10	<0.10
Styrene	μg/L	1300	0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10
o-Xylene	μg/L		0.10	<0.10
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30
Xylenes (Total)	μg/L	4200	0.20	<0.20
n-Hexane	μg/L	51	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-1	40	102
4-Bromofluorobenzene	% Recovery	50-1	40	72

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876964 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Amkal Jata

DATE REPORTED: 2023-03-31

AGAT WORK ORDER: 23Z008519 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

DATE RECEIVED: 2023-03-23 DATE REPORTED: 2023-03-31 DUP-01 SAMPLE DESCRIPTION: FB-01 23-05-GW01 23-02-GW01 SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 2023-03-22 2023-03-22 2023-03-22 2023-03-22 11:30 11:45 11:45 14:00 Parameter Unit G/S RDL 4876951 4876962 4876963 4876966 4400 0.40 <0.40 Dichlorodifluoromethane μg/L < 0.40 < 0.40 < 0.40 Vinyl Chloride μg/L 0.5 0.17 < 0.17 < 0.17 < 0.17 < 0.17 5.6 0.20 <0.20 <0.20 <0.20 <0.20 Bromomethane μg/L Trichlorofluoromethane μg/L 2500 0.40 <0.40 < 0.40 <0.40 <0.40 μg/L 130000 1.0 <1.0 <1.0 <1.0 <1.0 Acetone 1,1-Dichloroethylene μg/L 1.6 0.30 <0.30 <0.30 <0.30 <0.30 <0.30 Methylene Chloride μg/L 610 0.30 <0.30 < 0.30 <0.30 trans- 1,2-Dichloroethylene μg/L 1.6 0.20 < 0.20 < 0.20 <0.20 < 0.20 Methyl tert-butyl ether μg/L 190 0.20 <0.20 <0.20 <0.20 <0.20 <0.30 <0.30 1.1-Dichloroethane µg/L 320 0.30 < 0.30 < 0.30 μg/L Methyl Ethyl Ketone 470000 1.0 <1.0 <1.0 <1.0 <1.0 <0.20 <0.20 <0.20 cis- 1,2-Dichloroethylene µg/L 1.6 0.20 <0.20 Chloroform μg/L 2.4 0.20 <0.20 <0.20 <0.20 <0.20 1.2-Dichloroethane μg/L 0.20 <0.20 <0.20 <0.20 <0.20 1.6 1.1.1-Trichloroethane µg/L 640 0.30 < 0.30 < 0.30 <0.30 < 0.30 Carbon Tetrachloride μg/L 0.79 0.20 <0.20 <0.20 <0.20 <0.20 Benzene μg/L 44 0.20 <0.20 <0.20 <0.20 <0.20 16 0.20 <0.20 <0.20 1,2-Dichloropropane μg/L < 0.20 < 0.20 Trichloroethylene μg/L 1.6 0.20 <0.20 <0.20 <0.20 <0.20 <0.20 Bromodichloromethane μg/L 85000 0.20 <0.20 <0.20 <0.20 μg/L Methyl Isobutyl Ketone 140000 <1.0 <1.0 1.0 <1.0 <1.0 1.1.2-Trichloroethane 0.20 <0.20 <0.20 <0.20 µg/L 4.7 <0.20 0.20 <0.20 Toluene μg/L 18000 < 0.20 < 0.20 <0.20 Dibromochloromethane μg/L 82000 0.10 <0.10 <0.10 <0.10 <0.10 Ethylene Dibromide μg/L 0.25 0.10 < 0.10 < 0.10 <0.10 < 0.10 Tetrachloroethylene μg/L 1.6 0.20 <0.20 <0.20 <0.20 <0.20 1,1,1,2-Tetrachloroethane μg/L 3.3 0.10 <0.10 <0.10 <0.10 < 0.10 Chlorobenzene μg/L 630 0.10 < 0.10 < 0.10 <0.10 < 0.10 µg/L 2300 0.10 <0.10 < 0.10 <0.10 <0.10 Ethylbenzene

O. Reg. 153(511) - VOCs (with PHC) (Water)

Jinkal Jata

AGAT WORK ORDER: 23Z008519 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-03-23

DATE NEOLIVED. 2020-00-20								DATE HEI ONTED. 2020-00-01
	S	SAMPLE DESC	CRIPTION:	FB-01	23-05-GW01	DUP-01	23-02-GW01	
		SAME	PLE TYPE:	Water	Water	Water	Water	
		DATES	SAMPLED:	2023-03-22 11:30	2023-03-22 11:45	2023-03-22 11:45	2023-03-22 14:00	
Parameter	Unit	G/S	RDL	4876951	4876962	4876963	4876966	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Bromoform	μg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30	<0.30	<0.30	<0.30	
Xylenes (Total)	μg/L	4200	0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	% Recovery	50-1	40	101	98	102	103	
4-Bromofluorobenzene	% Recovery	50-1	40	70	70	70	72	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876951-4876966 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Inkal Jata

DATE REPORTED: 2023-03-31

AGAT WORK ORDER: 23Z008519 PROJECT: 170 SLATER STREET PHASE TWO ESA 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - Metals (Including Hydrides) (Water) DATE RECEIVED: 2023-03-23 DATE REPORTED: 2023-03-31 DUP-01 SAMPLE DESCRIPTION: FB-01 23-05-GW01 23-02-GW01 SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 2023-03-22 2023-03-22 2023-03-22 2023-03-22 11:30 11:45 11:45 14:00 Parameter Unit G/S RDL 4876951 4876962 4876963 4876966 Dissolved Antimony μg/L 20000 1.0 <1.0 <1.0 <1.0 <1.0 **Dissolved Arsenic** μg/L 1900 1.0 <1.0 <1.0 <1.0 <1.0 2.0 <2.0 18.0 **Dissolved Barium** µg/L 29000 19.1 25.8 Dissolved Beryllium μg/L 67 0.50 <0.50 < 0.50 <0.50 <0.50 μg/L 45000 10.0 <10.0 68.8 62.5 51.9 Dissolved Boron Dissolved Cadmium μg/L 2.7 0.20 <0.20 <0.20 <0.20 <0.20 **Dissolved Chromium** 2.6 <2.0 μg/L 810 2.0 <2.0 <2.0 Dissolved Cobalt μg/L 66 0.50 < 0.50 < 0.50 <0.50 < 0.50 **Dissolved** Copper μg/L 87 1.0 <1.0 <1.0 <1.0 <1.0 Dissolved Lead µg/L 25 0.50 < 0.50 < 0.50 <0.50 < 0.50 μg/L Dissolved Molybdenum 9200 0.50 <0.50 11.7 10.4 5.02 Dissolved Nickel µg/L 490 1.0 <1.0 1.9 1.6 2.4 Dissolved Selenium 63 1.0 9.8 <1.0 <1.0 μg/L <1.0 Dissolved Silver μg/L 1.5 0.20 <0.20 <0.20 <0.20 <0.20 **Dissolved Thallium** µg/L 510 0.30 < 0.30 < 0.30 < 0.30 < 0.30 Dissolved Uranium μg/L 420 0.50 <0.50 5.31 4.70 5.76 Dissolved Vanadium µg/L 250 0.40 <0.40 < 0.40 < 0.40 <0.40 Dissolved Zinc 5.0 <5.0 μg/L 1100 <5.0 <5.0 <5.0

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4876951-4876966 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Page 8 of 15

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 SLATER STREET PHASE TWO ESA

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z008519 ATTENTION TO: Keith Holmes

SAMPLED BY: James Sullivan

			Trac	e Or	ganio	cs Ar	alys	is								
RPT Date: Mar 31, 2023			C	UPLICAT	E		REFERENCE MATERIAL			METHOD	METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		ptable nits			ptable nits	
	Daten	ld	Dup #1	Dup #2			Value	Value Lower L		Ticcovery	Lower	Upper	Tiecovery	Lower	Upper	
O. Reg. 153(511) - PHCs F1 - F	4 (with VOC) (Water)														
F1 (C6 - C10)	4876966 4	876966	<25	<25	NA	< 25	90%	60%	140%	85%	60%	140%	94%	60%	140%	
F2 (C10 to C16)	4875354		206	195	NA	< 100	111%	60%	140%	79%	60%	140%	71%	60%	140%	
F3 (C16 to C34)	4875354		<100	<100	NA	< 100	111%	60%	140%	72%	60%	140%	82%	60%	140%	
F4 (C34 to C50)	4875354		<100	<100	NA	< 100	75%	60%	140%	86%	60%	140%	83%	60%	140%	
O. Reg. 153(511) - VOCs (with	PHC) (Water)															
Dichlorodifluoromethane	4876966 4	876966	<0.40	<0.40	NA	< 0.40	104%	50%	140%	77%	50%	140%	76%	50%	140%	
Vinyl Chloride	4876966 4		<0.17	<0.17	NA	< 0.17	93%		140%	108%	50%	140%	107%	50%	140%	
Bromomethane	4876966 4		<0.20	<0.20	NA	< 0.20	97%		140%	80%	50%	140%	83%		140%	
Trichlorofluoromethane	4876966 4		<0.40	<0.40	NA	< 0.40	85%		140%	95%	50%	140%	115%	50%	140%	
Acetone	4876966 4		<1.0	<1.0	NA	< 1.0	88%		140%	117%	50%	140%	112%	50%	140%	
1 1 Disklaussthulaus	4070000 4	070000	0.00	0.00	NIA	0.00	000/	500/	1 400/	44.40/	000/	4000/	10.40/	500/	1 400/	
1,1-Dichloroethylene	4876966 4		<0.30	< 0.30	NA	< 0.30	86%		140%	114%	60%	130%	104%	50%	140%	
Methylene Chloride	4876966 4		<0.30	<0.30	NA	< 0.30	110%		140%	109%	60%	130%	107%	50%	140%	
trans- 1,2-Dichloroethylene	4876966 4		<0.20	<0.20	NA	< 0.20	97%		140%	100%	60%	130%	100%		140%	
Methyl tert-butyl ether	4876966 4		<0.20	<0.20	NA	< 0.20	87%	50%	140%	76%	60%	130%	77%	50%	140%	
1,1-Dichloroethane	4876966 4	876966	<0.30	<0.30	NA	< 0.30	109%	50%	140%	111%	60%	130%	103%	50%	140%	
Methyl Ethyl Ketone	4876966 4	876966	<1.0	<1.0	NA	< 1.0	89%	50%	140%	112%	50%	140%	95%	50%	140%	
cis- 1,2-Dichloroethylene	4876966 4	876966	<0.20	<0.20	NA	< 0.20	114%	50%	140%	111%	60%	130%	119%	50%	140%	
Chloroform	4876966 4	876966	<0.20	<0.20	NA	< 0.20	111%	50%	140%	106%	60%	130%	117%	50%	140%	
1,2-Dichloroethane	4876966 4	876966	<0.20	<0.20	NA	< 0.20	104%	50%	140%	104%	60%	130%	94%	50%	140%	
1,1,1-Trichloroethane	4876966 4	876966	<0.30	<0.30	NA	< 0.30	104%	50%	140%	105%	60%	130%	120%	50%	140%	
Carbon Tetrachloride	4876966 4	876966	<0.20	<0.20	NA	< 0.20	103%	50%	140%	97%	60%	130%	96%	50%	140%	
Benzene	4876966 4	876966	<0.20	<0.20	NA	< 0.20	79%	50%	140%	86%	60%	130%	88%	50%	140%	
1,2-Dichloropropane	4876966 4	876966	<0.20	<0.20	NA	< 0.20	80%	50%	140%	73%	60%	130%	78%	50%	140%	
Trichloroethylene	4876966 4	876966	<0.20	<0.20	NA	< 0.20	84%	50%	140%	76%	60%	130%	95%	50%	140%	
Bromodichloromethane	4876966 4	876966	<0.20	<0.20	NA	< 0.20	92%	50%	140%	89%	60%	130%	105%	50%	140%	
Methyl Isobutyl Ketone	4876966 4	876966	<1.0	<1.0	NA	< 1.0	92%	50%	140%	78%	50%	140%	84%	50%	140%	
1,1,2-Trichloroethane	4876966 4		<0.20	<0.20	NA	< 0.20	108%		140%	115%	60%	130%	103%	50%	140%	
Toluene	4876966 4	876966	<0.20	<0.20	NA	< 0.20	109%		140%	101%	60%	130%	118%	50%	140%	
Dibromochloromethane	4876966 4	876966	<0.10	<0.10	NA	< 0.10	104%	50%	140%	110%	60%	130%	116%	50%	140%	
Ethylene Dibromide	4876966 4	876966	<0.10	<0.10	NA	< 0.10	114%	50%	140%	104%	60%	130%	113%	50%	140%	
Tetrachloroethylene	4876966 4	876966	<0.20	<0.20	NA	< 0.20	105%	50%	140%	101%	60%	130%	116%	50%	140%	
1,1,1,2-Tetrachloroethane	4876966 4		<0.20 <0.10	<0.20	NA	< 0.20	99%		140%	93%		130%	102%		140%	
Chlorobenzene	4876966 4		<0.10 <0.10	<0.10	NA	< 0.10	99% 115%		140%	93% 100%		130%	118%		140%	
Ethylbenzene	4876966 4		<0.10 <0.10	<0.10	NA	< 0.10	99%		140%	88%		130%	105%		140%	
m & p-Xylene	4876966 4		<0.10	<0.10	NA	< 0.10	104%		140%	92%		130%	109%		140%	
Dromoform					N 1 A											
Bromoform	4876966 4		<0.10	<0.10	NA	< 0.10	101%		140%	110%		130%	111%		140%	
Styrene	4876966 4		<0.10	<0.10	NA	< 0.10	104%		140%	89%		130%	107%		140%	
1,1,2,2-Tetrachloroethane	4876966 4		<0.10	<0.10	NA	< 0.10	97%		140%	101%	60%	130%	108%		140%	
o-Xylene	4876966 4	010900	<0.10	<0.10	NA	< 0.10	115%	50%	140%	102%	60%	130%	117%	50%	140%	

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 9 of 15

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 SLATER STREET PHASE TWO ESA SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z008519 ATTENTION TO: Keith Holmes

SAMPLED BY:James Sullivan

Trace Organics Analysis (Continued)

RPT Date: Mar 31, 2023			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
	Detah	Sample	Dur #1	Dur #0	DDD	Method Blank	Measured		ptable nits	Deserve	Lir	ptable nits	Deserve	l Lin	ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower Upper		Recovery	Lower	Uppe
1,3-Dichlorobenzene	4876966	4876966	<0.10	<0.10	NA	< 0.10	115%	50%	140%	102%	60%	130%	113%	50%	140%
1,4-Dichlorobenzene	4876966	4876966	<0.10	<0.10	NA	< 0.10	115%	50%	140%	103%	60%	130%	116%	50%	140%
1,2-Dichlorobenzene	4876966	4876966	<0.10	<0.10	NA	< 0.10	114%	50%	140%	96%	60%	130%	110%	50%	140%
n-Hexane	4876966	4876966	<0.20	<0.20	NA	< 0.20	101%	50%	140%	107%	60%	130%	89%	50%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	4876966	4876966	<0.40	<0.40	NA	< 0.40	104%	50%	140%	77%	50%	140%	76%	50%	140%
Vinyl Chloride	4876966	4876966	<0.17	<0.17	NA	< 0.17	93%	50%	140%	108%	50%	140%	107%	50%	140%
Bromomethane	4876966	4876966	<0.20	<0.20	NA	< 0.20	97%	50%	140%	80%	50%	140%	83%	50%	140%
Trichlorofluoromethane	4876966	4876966	<0.40	<0.40	NA	< 0.40	85%	50%	140%	95%	50%	140%	115%	50%	140%
Acetone	4876966	4876966	<1.0	<1.0	NA	< 1.0	88%	50%	140%	117%	50%	140%	112%	50%	140%
1,1-Dichloroethylene	4876966	4876966	<0.30	<0.30	NA	< 0.30	86%	50%	140%	114%	60%	130%	104%	50%	140%
Methylene Chloride	4876966	4876966	<0.30	<0.30	NA	< 0.30	110%	50%	140%	109%	60%	130%	107%	50%	140%
trans- 1,2-Dichloroethylene	4876966	4876966	<0.20	<0.20	NA	< 0.20	97%	50%	140%	100%	60%	130%	100%	50%	140%
Methyl tert-butyl ether	4876966	4876966	<0.20	<0.20	NA	< 0.20	87%	50%	140%	76%	60%	130%	77%	50%	140%
1,1-Dichloroethane	4876966	4876966	<0.30	<0.30	NA	< 0.30	109%	50%	140%	111%	60%	130%	103%	50%	140%
Methyl Ethyl Ketone	4876966	4876966	<1.0	<1.0	NA	< 1.0	89%	50%	140%	112%	50%	140%	95%	50%	140%
cis- 1,2-Dichloroethylene	4876966	4876966	<0.20	<0.20	NA	< 0.20	114%	50%	140%	111%	60%	130%	119%	50%	140%
Chloroform	4876966	4876966	<0.20	<0.20	NA	< 0.20	111%	50%	140%	106%	60%	130%	117%	50%	140%
1,2-Dichloroethane	4876966	4876966	<0.20	<0.20	NA	< 0.20	104%	50%	140%	104%	60%	130%	94%	50%	140%
1,1,1-Trichloroethane	4876966	4876966	<0.30	<0.30	NA	< 0.30	104%	50%	140%	105%	60%	130%	120%	50%	140%
Carbon Tetrachloride	4876966	4876966	<0.20	<0.20	NA	< 0.20	103%	50%	140%	97%	60%	130%	96%	50%	140%
Benzene	4876966	4876966	<0.20	<0.20	NA	< 0.20	79%	50%	140%	86%	60%	130%	88%	50%	140%
1,2-Dichloropropane	4876966	4876966	<0.20	<0.20	NA	< 0.20	80%	50%	140%	73%	60%	130%	78%	50%	140%
Trichloroethylene	4876966	4876966	<0.20	<0.20	NA	< 0.20	84%	50%	140%	76%	60%	130%	95%	50%	140%
Bromodichloromethane	4876966	4876966	<0.20	<0.20	NA	< 0.20	92%	50%	140%	89%	60%	130%	105%	50%	140%
Methyl Isobutyl Ketone	4876966	4876966	<1.0	<1.0	NA	< 1.0	92%	50%	140%	78%	50%	140%	84%	50%	140%
1,1,2-Trichloroethane	4876966	4876966	<0.20	<0.20	NA	< 0.20	108%	50%	140%	115%	60%	130%	103%	50%	140%
Toluene	4876966	4876966	<0.20	<0.20	NA	< 0.20	109%	50%	140%	101%	60%	130%	118%	50%	140%
Dibromochloromethane	4876966	4876966	<0.10	<0.10	NA	< 0.10	104%	50%	140%	110%	60%	130%	116%	50%	140%
Ethylene Dibromide	4876966	4876966	<0.10	<0.10	NA	< 0.10	114%	50%	140%	104%	60%	130%	113%	50%	140%
Tetrachloroethylene	4876966	4876966	<0.20	<0.20	NA	< 0.20	105%	50%	140%	101%	60%	130%	116%	50%	140%
1,1,1,2-Tetrachloroethane	4876966	4876966	<0.10	<0.10	NA	< 0.10	99%	50%	140%	93%	60%	130%	102%	50%	140%
Chlorobenzene	4876966		<0.10	<0.10	NA	< 0.10	115%		140%	100%	60%	130%	118%		140%
Ethylbenzene	4876966		<0.10	<0.10	NA	< 0.10	99%		140%	88%		130%	105%	50%	
m & p-Xylene	4876966	4876966	<0.20	<0.20	NA	< 0.20	104%	50%	140%	92%	60%	130%	109%	50%	140%
Bromoform	4876966		<0.10	<0.10	NA	< 0.10	101%		140%	110%		130%	111%		140%
Styrene	4876966		<0.10	<0.10	NA	< 0.10	104%		140%	89%		130%	107%		140%
1,1,2,2-Tetrachloroethane	4876966		<0.10	<0.10	NA	< 0.10	97%		140%	101%		130%	108%	50%	
o-Xylene	4876966	4876966	<0.10	<0.10	NA	< 0.10	115%	50%	140%	102%	60%	130%	117%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 SLATER STREET PHASE TWO ESA

AGAT WORK ORDER: 23Z008519

ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

SAMPLED BY:James Sullivan

Trace	Organic	s Analys	is (Continued	(k

PARAMETER Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Palue Acceptable Limits Recovery Acceptable Limits Accept																
PARAMETER Batch Sample Id Dup #1 Dup #2 RPD Blank Measured Value Limits Recovery Limits Limits Lower Upper Limits Lower Upper Limits Lower Upper Limits Limits Limits Limits Limits Lower Upper Limits Lower	RPT Date: Mar 31, 2023			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
Image: Normal Schwart (Normal Schwart (PARAMETER	Batch								Recovery	Lin		Recovery	Lin		
1,4-Dichlorobenzene 4876966 4876966 <0.10			Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
1,2-Dichlorobenzene 4876966 4876966 <0.10 <0.10 NA < 0.10 114% 50% 140% 96% 60% 130% 110% 50% 140%	1,3-Dichlorobenzene	4876966 4	876966	<0.10	<0.10	NA	< 0.10	115%	50%	140%	102%	60%	130%	113%	50%	140%
	,															140%
	,															140% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Imkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 10 of 15

Quality Assurance

-

. .

. . .

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA

SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z008519 ATTENTION TO: Keith Holmes

SAMPLED BY: James Sullivan

				Wate	er Ar	alys	is								
RPT Date: Mar 31, 2023			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery		ptable nits
		iù	-				value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inclu	ding Hydride	s) (Water))												
Dissolved Antimony	4873610		<1.0	<1.0	NA	< 1.0	101%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Arsenic	4873610		3.5	3.9	NA	< 1.0	98%	70%	130%	107%	80%	120%	105%	70%	130%
Dissolved Barium	4873610		93.5	92.2	1.4%	< 2.0	103%	70%	130%	101%	80%	120%	96%	70%	130%
Dissolved Beryllium	4873610		<0.50	<0.50	NA	< 0.50	113%	70%	130%	116%	80%	120%	109%	70%	130%
Dissolved Boron	4873610		142	140	1.4%	< 10.0	105%	70%	130%	117%	80%	120%	114%	70%	130%
Dissolved Cadmium	4873610		<0.20	<0.20	NA	< 0.20	100%	70%	130%	100%	80%	120%	94%	70%	130%
Dissolved Chromium	4873610		<2.0	<2.0	NA	< 2.0	96%	70%	130%	104%	80%	120%	97%	70%	130%
Dissolved Cobalt	4873610		<0.50	0.51	NA	< 0.50	104%	70%	130%	102%	80%	120%	97%	70%	130%
Dissolved Copper	4873610		1.9	1.7	NA	< 1.0	100%	70%	130%	101%	80%	120%	94%	70%	130%
Dissolved Lead	4873610		<0.50	<0.50	NA	< 0.50	100%	70%	130%	106%	80%	120%	95%	70%	130%
Dissolved Molybdenum	4873610		8.41	7.29	14.3%	< 0.50	98%	70%	130%	107%	80%	120%	102%	70%	130%
Dissolved Nickel	4873610		<1.0	1.6	NA	< 1.0	105%	70%	130%	104%	80%	120%	97%	70%	130%
Dissolved Selenium	4873610		<1.0	<1.0	NA	< 1.0	101%	70%	130%	106%	80%	120%	106%	70%	130%
Dissolved Silver	4873610		<0.20	<0.20	NA	< 0.20	97%	70%	130%	97%	80%	120%	84%	70%	130%
Dissolved Thallium	4873610		<0.30	<0.30	NA	< 0.30	104%	70%	130%	110%	80%	120%	99%	70%	130%
Dissolved Uranium	4873610		1.44	1.42	NA	< 0.50	96%	70%	130%	102%	80%	120%	90%	70%	130%
Dissolved Vanadium	4873610		0.47	<0.40	NA	< 0.40	107%	70%	130%	114%	80%	120%	107%	70%	130%
Dissolved Zinc	4873610		<5.0	<5.0	NA	< 5.0	99%	70%	130%	104%	80%	120%	104%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 15 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may

not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA SAMPLING SITE: 170 Slater Street, Ottawa, Ontaria

AGAT WORK ORDER: 23Z008519 ATTENTION TO: Keith Holmes

////		
	BV. Jamos	Sullivan

SAMPLING SITE:170 Slater Street, O	ttawa, Ontario	SAMPLED BY: James Sullivan							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis			1						
F1 (C6 - C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID						
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE						
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
Sediment			N/A						
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA SAMPLING SITE:170 Slater Street, Ottawa, Ontario

AGAT WORK ORDER: 23Z008519 ATTENTION TO: Keith Holmes SAMPLED BY: James Sullivan

SAMPLING SITE:170 Slater Street,	Ottawa, Ontario	SAMPLED BY:Ja	ames Sullivan
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 SLATER STREET PHASE TWO ESA

AGAT WORK ORDER: 23Z008519

ATTENTION	TO: Keith Holmes

	Ottown Ontonio	SAMPLED BY: James Sullivan									
SAMPLING SITE:170 Slater Street		SAMPLED BY:James Sullivan									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Water Analysis											
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								

A G	tori	es Ph:	N 905.7	lississ: 12.510	auga, ()0 Fa;		L4Z	1Y2 5122		Worl	k Orde	er #: 💈	73	0nly 2008 U-10	X S	2100					
Chain of Custody Record Report Information:		Prinking Water	sample, pleas	Reg	king Water Chain of Custody Form (potab gulatory Requirements:	le water	consum	ned by I	humans)		-	Cust	tody S	nperat eal Int	act:	(e 7 2-2 □Yes	 		7.1 5.4 []N	
Contact: KEITH HOLMES Address: 1931 ROBERTSON RP NEPEAN, ON K2H5B7 613-592-9600 Fax: Reports to be sent to: 1. Email: Z. Email: Project Information:				Regulation 153/04 Excess Soils R406 Table Indicate One Ind/Com Table					-	Notes: boggedlice Turnaround Time (TAT) Required: Regular TAT (Most Analysis) 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Business Days Days Days Day OR Date Required (Rush Surcharges May Apply):							ness				
Project: 170 SLATER Site Location: 170 SLATER Sampled By: JAMES SULL	STREET,	HASE T	ONTAR	Re	cord of Site Condition? Yes No	Ce	rtifica] Ye:	ate o	of Ana		S		F -		T is ex	clusive	ide prior noti of weekend ysis, please	ls and st	tatutory h	olidays	
AGAT ID #:		ie billed full price for	1	San B GW O P S SD SW	nple Matrix Legend Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Metals - CrVI, CHg, CHWSB	-F4 PHCs F4G if required		Bs Daroclor		Landfill Disposal Characterization TCLP: Gro	Excess Soils SPLP Rainwater Leach O SPLP:	aracteri	5					Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled 3/22/23	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals		BTEX, F1 Analyze	PAHS	Total PCBs	VOC	Landfill Disp TCLP: DM&I	Excess SPLP: []	Excess	Salt - E					Potential
23-05-Gwol Dup-01 * MW14-02-GW 23-02-GWOl		1145 A 1145 A 1230 A 1400 A	9932	6 W 6 W 6 W	* Only VOCs analyss	NYYYY						5555									
* Only VOC3		An PN AN PN An PN An PN AN PN		,																	
Samples Religion shed By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Deconient (D; DiV-78-1511.020)	M	Date 3/23/ Pate Date	723 Time 2023 Time Time	uden UD	Samples Received By (Print Name and Sign): 	ily	Ju			25	Date -02 Date	8-6	023 202	Time C Time	がっこ 012 GAT 1	<u>C</u> A	Pag Nº: T1 Copy- AGAT	14	of 840		20

241

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 23592404 - 170 Slater Street Phase Two AGAT WORK ORDER: 23Z010329 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Apr 10, 2023 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 17

AGAT WORK ORDER: 23Z010329 PROJECT: 23592404 - 170 Slater Street Phase Two

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

SAMPLED BY:James Sullivan

ATTENTION TO: Keith Holmes

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-03-30							DATE REPORTED: 2023-04-10
		SAMPLE DES	CRIPTION:	23-01-SA02	23-01-SA04	23-01-SA06	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATES	SAMPLED:	2023-03-23 09:25	2023-03-23 09:55	2023-03-23 10:40	
Parameter	Unit	G/S	RDL	4888965	4888968	4888969	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	<1	<1	9	
Barium	µg/g	390	2.0	34.9	294	282	
Beryllium	µg/g	4	0.4	<0.4	0.4	0.6	
Boron	µg/g	120	5	<5	6	16	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	<0.10	0.11	0.47	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	
Chromium	µg/g	160	5	9	27	23	
Cobalt	µg/g	22	0.5	4.1	8.2	19.0	
Copper	µg/g	140	1.0	8.0	16.8	60.2	
Lead	µg/g	120	1	2	5	21	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	21.8	
Nickel	µg/g	100	1	7	16	84	
Selenium	µg/g	2.4	0.8	<0.8	<0.8	1.7	
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	
Thallium	µg/g	1	0.5	<0.5	<0.5	0.9	
Uranium	µg/g	23	0.50	0.58	0.63	6.20	
Vanadium	µg/g	86	0.4	16.7	42.3	33.3	
Zinc	µg/g	340	5	16	42	110	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.531	8.27	1.21	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	7.16	68.1	28.7	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.00	7.46	7.55	

Certified By:

AGAT WORK ORDER: 23Z010329 PROJECT: 23592404 - 170 Slater Street Phase Two 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-03-30

DATE REPORTED: 2023-04-10

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4888965-4888969 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 23Z010329 PROJECT: 23592404 - 170 Slater Street Phase Two

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

DATE RECEIVED: 2023-03-30							DATE REPORTED: 2023-04-10
		SAMPLE DESC	RIPTION:	23-01-SA02	23-01-SA04	23-01-SA06	
			LE TYPE:	Soil	Soil	Soil	
		DATE S	AMPLED:	2023-03-23 09:25	2023-03-23 09:55	2023-03-23 10:40	
Parameter	Unit	G / S	RDL	4888965	4888968	4888969	
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	6.2	0.05	<0.05	<0.05	<0.05	
Anthracene	μg/g	0.67	0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	<0.05	
Pyrene	μg/g	78	0.05	<0.05	<0.05	<0.05	
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	<0.05	
Chrysene	μg/g	7	0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	<0.05	<0.05	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	14.7	19.3	9.2	
Surrogate	Unit	Acceptable	e Limits				
Naphthalene-d8	%	50-14	40	80	95	100	
Acridine-d9	%	50-14	40	95	70	105	
Terphenyl-d14	%	50-14	40	95	80	75	

O. Reg. 153(511) - PAHs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4888965-4888969 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 23Z010329 PROJECT: 23592404 - 170 Slater Street Phase Two 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2023-03-30

		SAMPLE DES	CRIPTION:	23-01-SA02	23-01-SA04	23-01-SA06	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATES	SAMPLED:	2023-03-23 09:25	2023-03-23 09:55	2023-03-23 10:40	
Parameter	Unit	G/S	RDL	4888965	4888968	4888969	
F1 (C6 - C10)	µg/g	55	5	<5	<5	113	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	112	
F2 (C10 to C16)	µg/g	98	10	<10	<10	189	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	189	
F3 (C16 to C34)	μg/g	300	50	<50	<50	224	
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	224	
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA	
Moisture Content	%		0.1	14.7	19.3	9.2	
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	%	50-1	40	104	106	103	
Terphenyl	%	60-1	40	98	102	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4888965-4888969 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 23Z010329 PROJECT: 23592404 - 170 Slater Street Phase Two

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-03-30

DATE RECEIVED. 2023-03-30							DATE REPORTED. 2023-04-10
		SAMPLE DESC	RIPTION:	23-01-SA02	23-01-SA04	23-01-SA06	
		SAMP	LE TYPE:	Soil	Soil	Soil	
		DATE S	AMPLED:	2023-03-23	2023-03-23	2023-03-23	
				09:25	09:55	10:40	
Parameter	Unit	G / S	RDL	4888965	4888968	4888969	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	<0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	<0.05	
	ug/g	۷	0.05	<0.05	<0.05	<0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z010329 PROJECT: 23592404 - 170 Slater Street Phase Two 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-03-30

	S	SAMPLE DESC	CRIPTION:	23-01-SA02	23-01-SA04	23-01-SA06	
		SAMF	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2023-03-23 09:25	2023-03-23 09:55	2023-03-23 10:40	
Parameter	Unit	G/S	RDL	4888965	4888968	4888969	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	0.48	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	0.16	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05	0.64	
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	0.05	<0.05	<0.05	<0.05	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	0.60	
Moisture Content	%		0.1	14.7	19.3	9.2	
Surrogate	Unit	Acceptabl	e Limits				
Toluene-d8	% Recovery	50-1	40	104	106	103	
4-Bromofluorobenzene	% Recovery	50-1	40	83	80	96	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4888965-4888969 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

Exceedance Summary

AGAT WORK ORDER: 23Z010329 PROJECT: 23592404 - 170 Slater Street Phase Two 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4888965	23-01-SA02	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	7.16
4888968	23-01-SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	8.27
4888968	23-01-SA04	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	68.1
4888969	23-01-SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.21
4888969	23-01-SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	µg/g	6.9	21.8
4888969	23-01-SA06	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	5	28.7
4888969	23-01-SA06	ON T3 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F1 (C6 - C10)	µg/g	55	113
4888969	23-01-SA06	ON T3 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F1 (C6 to C10) minus BTEX	µg/g	55	112
4888969	23-01-SA06	ON T3 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F2 (C10 to C16)	µg/g	98	189

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 23592404 - 170 Slater Street Phase Two

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010329 ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

Soil Analysis

			001		<i>ary</i> 010	,								
RPT Date: Apr 10, 2023		[DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery	1 1 1 1	eptable mits
	lu					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)													
Antimony	4887749	<0.8	<0.8	NA	< 0.8	96%	70%	130%	71%	80%	120%	74%	70%	130%
Arsenic	4887749	4	4	NA	< 1	114%	70%	130%	97%	80%	120%	117%	70%	130%
Barium	4887749	51.0	51.9	1.7%	< 2.0	103%	70%	130%	100%	80%	120%	106%	70%	130%
Beryllium	4887749	0.4	0.6	NA	< 0.4	93%	70%	130%	92%	80%	120%	95%	70%	130%
Boron	4887749	9	10	NA	< 5	93%	70%	130%	103%	80%	120%	105%	70%	130%
Boron (Hot Water Soluble)	4887993	0.35	0.36	NA	< 0.10	90%	60%	140%	96%	70%	130%	99%	60%	140%
Cadmium	4887749	<0.5	<0.5	NA	< 0.5	87%	70%	130%	97%	80%	120%	108%	70%	130%
Chromium	4887749	20	20	NA	< 5	102%	70%	130%	100%	80%	120%	103%	70%	130%
Cobalt	4887749	7.7	7.8	1.3%	< 0.5	104%	70%	130%	108%	80%	120%	109%	70%	130%
Copper	4887749	14.1	14.3	1.4%	< 1.0	98%	70%	130%	106%	80%	120%	105%	70%	130%
Lead	4887749	11	11	0.0%	< 1	107%	70%	130%	106%	80%	120%	102%	70%	130%
Molybdenum	4887749	<0.5	<0.5	NA	< 0.5	103%	70%	130%	100%	80%	120%	110%	70%	130%
Nickel	4887749	15	15	0.0%	< 1	104%	70%	130%	108%	80%	120%	108%	70%	130%
Selenium	4887749	<0.8	<0.8	NA	< 0.8	127%	70%	130%	102%	80%	120%	108%	70%	130%
Silver	4887749	<0.5	<0.5	NA	< 0.5	113%	70%	130%	105%	80%	120%	102%	70%	130%
Thallium	4887749	<0.5	<0.5	NA	< 0.5	117%	70%	130%	112%	80%	120%	110%	70%	130%
Uranium	4887749	0.69	0.70	NA	< 0.50	113%	70%	130%	106%	80%	120%	109%	70%	130%
Vanadium	4887749	31.1	31.7	1.9%	< 0.4	105%	70%	130%	104%	80%	120%	104%	70%	130%
Zinc	4887749	47	48	2.1%	< 5	105%	70%	130%	101%	80%	120%	105%	70%	130%
Chromium, Hexavalent	4887592	<0.2	<0.2	NA	< 0.2	95%	70%	130%	92%	80%	120%	97%	70%	130%
Cyanide, WAD	4888965 4888965	<0.040	<0.040	NA	< 0.040	97%	70%	130%	110%	80%	120%	102%	70%	130%
Mercury	4887749	<0.10	<0.10	NA	< 0.10	108%	70%	130%	101%	80%	120%	102%	70%	130%
Electrical Conductivity (2:1)	4887993	1.85	1.92	3.7%	< 0.005	105%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	4887562	7.21	7.20	0.1%	NA									
pH, 2:1 CaCl2 Extraction	4888965 4888965	7.00	7.11	1.6%	NA	90%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Page 9 of 17

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 23592404 - 170 Slater Street Phase Two

SAMPLING SITE: 170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010329 ATTENTION TO: Keith Holmes

SAMPLED BY: James Sullivan Traco Organico Analysis

PARAMETER Batch Sample Web Dup #1 Dup #2 PrD Method Walke Computing Value Acceptable Value Acceptable				Trac	ce Or	ganio	cs Ar	nalysi	is							
PARAMETER Batch Sample b Dup rit Dup rit Pup di b Batch Measure Value Limits Lower Recovery Lower Limits Lower <thlower< th=""> <thlower< th=""> <thlower< t<="" th=""><th>RPT Date: Apr 10, 2023</th><th></th><th></th><th>[</th><th>UPLICAT</th><th>E</th><th></th><th>REFEREN</th><th>NCE MA</th><th>TERIAL</th><th>METHOD</th><th>BLANK</th><th>SPIKE</th><th>MAT</th><th>RIX SPI</th><th>KE</th></thlower<></thlower<></thlower<>	RPT Date: Apr 10, 2023			[UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
Lower Lower <th< th=""><th>PARAMETER</th><th>Batch</th><th></th><th>Dup #1</th><th>Dup #2</th><th>RPD</th><th></th><th></th><th></th><th></th><th>Recovery</th><th>1 1:4</th><th></th><th>Recovery</th><th></th><th></th></th<>	PARAMETER	Batch		Dup #1	Dup #2	RPD					Recovery	1 1:4		Recovery		
11 (Ci - Ci 0) 4891488 e.5 -5 NA < 5 120% 60% 140% NA 60% 140% 11% 60% 140% 11% 60% 140% 11% 60% 140% 11% 60% 140% 11% 60% 140% 11% 11% 60% 140% 10% 50% 140% 10% 50% 140% 10% <								Value	Lower	Upper		Lower	Upper		Lower	Upper
22 (C10 DC 16) 4988965 4889965 <10	O. Reg. 153(511) - PHCs F1 - F4	4 (with PAHs	and VOC)	(Soil)												
31 C16 D C34) 4988965 4889965 -50 -50 -50 NA < 50	F1 (C6 - C10)	4891488		<5	<5	NA	< 5	120%	60%	140%	86%	60%	140%	81%	60%	140%
F4 (C34 in C50) 4888965 4888965 N N <td>F2 (C10 to C16)</td> <td>4888965</td> <td>4888965</td> <td><10</td> <td><10</td> <td>NA</td> <td>< 10</td> <td>95%</td> <td>60%</td> <td>140%</td> <td>NA</td> <td>60%</td> <td>140%</td> <td>125%</td> <td>60%</td> <td>140%</td>	F2 (C10 to C16)	4888965	4888965	<10	<10	NA	< 10	95%	60%	140%	NA	60%	140%	125%	60%	140%
D. Reg. 153(51) - PAHs (Soli) taphthalene 4887820 -0.05 -0.05 NA -0.05 90% 50% 140% 90% 50% 140% 88% 50%	F3 (C16 to C34)	4888965	4888965	<50	<50	NA	< 50	99%	60%	140%	NA	60%	140%	126%	60%	140%
Maphthalene 4837820 -0.05 -0.05 NA -0.05 NA -0.05 SNA -0.05 NA -0.05 N	F4 (C34 to C50)	4888965	4888965	<50	<50	NA	< 50	86%	60%	140%	NA	60%	140%	113%	60%	140%
Maphthalene 4887820 -0.05 -0.05 NA -0.05 S0% 140% 90% 50% 140% 80% 50% 140	O. Reg. 153(511) - PAHs (Soil)															
Abenaphthylene4887820-0.05-0.05NA< 0.0590%50%140%80%5	Naphthalene	4887820		<0.05	<0.05	NA	< 0.05	110%	50%	140%	90%	50%	140%	105%	50%	140%
Absanaphthene 4887820 0.10 0.08 NA < 0.05 104% 50% 140% 50% 140% 7% 50% 140% Brenanthrene 4887820 0.01 0.06 NA < 0.05	•															
Eurorene 4887820 c.0.05 NA c.0.05 92% 50% 140% 50% 140% 94% </td <td></td>																
Phenanthrene 4887820 0.41 0.36 1.31% < 0.05 92% 50% 140% 50% 140% 94% 50% 140% Anthracene 4887820 0.76 0.61 1.9% <0.05	•															
Fluoranthene 4887820 0.76 0.61 21.9% < 0.05 81% 50% 140% 80% 50% 140% 88% 50% 140% Pyrene 4887820 0.67 0.55 19.9% < 0.05	Phenanthrene															
Fluoranthene 4887820 0.76 0.61 21.9% < 0.05 81% 50% 140% 80% 50% 140% 88% 50% 140% Pyrene 4887820 0.67 0.55 19.9% < 0.05	Anthracene	4887820		0 12	0.08	NA	< 0.05	111%	50%	140%	98%	50%	140%	82%	50%	140%
Paymene 4887820 0.67 0.55 19.9% < 0.05 79% 50% 140% 80% 50% 140% 97% 50% 140% 2hrz(a)anthracene 4887820 0.13 0.10 NA < 0.05																
Aberacial anthracene 4887820 0.13 0.10 NA < 0.05 110% 50% 140% 75% 50% 140% 92% 50% 140% 50% 140% 92% 50% 140% 50% 140% <																
Chrysene 4887820 0.26 0.24 NA < 0.05 104* 50% 140* 95% 50% 140% 92% 50% 140% Banzo(h)fluoranthene 4887820 0.06 0.07 NA < 0.05	-															
Benzo(k)fluoranthene 4887820 0.06 0.07 NA < 0.05	Chrysene															
Benzo(k)fluoranthene 4887820 0.06 0.07 NA < 0.05	Benzo(b)fluoranthene	1887820		0.22	0.20	NΔ	< 0.05	77%	50%	1/10%	95%	50%	1/10%	110%	50%	140%
Banzo(a)pyrene 4887820 <0.05																
ndero(1,2,3-cd)pyrene 4887820 0.09 0.08 NA < 0.05																
Dibenz(a,h)anthracene 4887820 <0.05 NA <0.05 NA <0.05 91% 50% 140% 88% 50% 140% 98% 50% 140% Benzo(g,h,i)perylene 4887820 0.15 0.14 NA <0.05																
D. Reg. 153(511) - VOCs (with PHC) (Soil) Dichlorodifluoromethane 4891488 <0.05	Dibenz(a,h)anthracene															
Dichlorodifluoromethane 4891488 <0.05	Benzo(g,h,i)perylene	4887820		0.15	0.14	NA	< 0.05	70%	50%	140%	88%	50%	140%	82%	50%	140%
Dichlorodifluoromethane 4891488 <0.05	O. Reg. 153(511) - VOCs (with I	PHC) (Soil)														
Vinyl Chloride4891488<0.02<0.02NA<0.0293%50%140%113%50%140%100%50%140%Bromomethane4891488<0.05	e () (, , ,		<0.05	<0.05	NA	< 0.05	96%	50%	140%	116%	50%	140%	88%	50%	140%
Aromomethane4891488<0.05<0.05NA<0.0598%50%140%119%50%140%99%50%140%Arcetone4891488<0.05																
Trichlorofluoromethane 4891488 <0.05 <0.05 NA <0.05 81% 50% 140% 50% 140% 110% 50% 140% Acetone 4891488 <0.05	Bromomethane															
Acetone4891488<0.50<0.50NA<0.50113%50%140%107%50%140%102%50%140%I,1-Dichloroethylene4891488<0.05	Trichlorofluoromethane															
Methylene Chloride 4891488 <0.05 <0.05 NA <0.05 95% 50% 140% 74% 60% 130% 81% 50% 140% Grans- 1,2-Dichloroethylene 4891488 <0.05	Acetone															
Methylene Chloride 4891488 <0.05 <0.05 NA <0.05 95% 50% 140% 74% 60% 130% 81% 50% 140% Grans- 1,2-Dichloroethylene 4891488 <0.05	1.1-Dichloroethylene	4891488		<0.05	<0.05	NA	< 0.05	107%	50%	140%	114%	60%	130%	106%	50%	140%
Trans-1,2-Dichloroethylene 4891488 <0.05	•															
Methyl tert-butyl Ether 4891488 <0.05	•															
1,1-Dichloroethane 4891488 <0.02	· · · ·															
Cis- 1,2-Dichloroethylene 4891488 <0.02 <0.02 NA < 0.02 102% 50% 140% 88% 60% 130% 79% 50% 140% Chloroform 4891488 <0.04	1,1-Dichloroethane															
Cis- 1,2-Dichloroethylene 4891488 <0.02 <0.02 NA < 0.02 102% 50% 140% 88% 60% 130% 79% 50% 140% Chloroform 4891488 <0.04	Methyl Ethyl Ketone	4891488		<0.50	<0.50	NA	< 0.50	110%	50%	140%	75%	50%	140%	101%	50%	140%
Chloroform 4891488 <0.04 <0.04 NA < 0.04 72% 50% 140% 97% 60% 130% 83% 50% 140% 1,2-Dichloroethane 4891488 <0.03																
1,2-Dichloroethane 4891488 <0.03	Chloroform															
I,1,1-Trichloroethane 4891488 <0.05 <0.05 NA < 0.05 94% 50% 140% 71% 60% 130% 78% 50% 140% Carbon Tetrachloride 4891488 <0.05																
	1,1,1-Trichloroethane															
AGAT QUALITY ASSURANCE REPORT (V1) Page 10 of 17	Carbon Tetrachloride	4891488		<0.05	<0.05	NA	< 0.05	72%	50%	140%	86%	60%	130%	85%	50%	140%
	AGAT QUALITY ASSUR	ANCE REPOF	RT (V1)											P	age 10	of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 23592404 - 170 Slater Street Phase Two

SAMPLING SITE: 170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010329 ATTENTION TO: Keith Holmes SAMPLED BY:James Sullivan

Trace Organics Analysis (Continued) DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Apr 10, 2023 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Measured Blank Limits Limits Limits Dup #2 PARAMETER Batch Dup #1 RPD Recover Recovery ld Value Lower Upper Lower Upper Lower Upper 4891488 <0.02 <0.02 NA 79% 50% 140% 88% 60% 130% 81% 50% 140% Benzene < 0.02140% 75% 140% 1.2-Dichloropropane 4891488 < 0.03 < 0.03 < 0.03 77% 50% 130% 95% NA 60% 50% 140% Trichloroethylene 4891488 < 0.03 < 0.03 NA < 0.03 104% 50% 140% 92% 60% 130% 83% 50% Bromodichloromethane 4891488 <0.05 < 0.05 NA < 0.05 100% 50% 140% 80% 60% 130% 109% 50% 140% < 0.50 Methyl Isobutyl Ketone 4891488 <0.50 < 0.50 NA 114% 50% 140% 88% 50% 140% 96% 50% 140% 1,1,2-Trichloroethane 4891488 < 0.04 < 0.04 NA < 0.04 70% 50% 140% 85% 60% 130% 91% 50% 140% Toluene 4891488 50% 98% 140% < 0.05 < 0.05 NA < 0.05 75% 140% 60% 130% 91% 50% Dibromochloromethane 4891488 < 0.05 < 0.05 NA < 0.05 72% 50% 140% 90% 60% 130% 79% 50% 140% Ethylene Dibromide 4891488 < 0.04 < 0.04 NA < 0.04 116% 50% 140% 78% 60% 130% 77% 50% 140% Tetrachloroethylene 4891488 < 0.05 < 0.05 NA < 0.05 78% 50% 140% 103% 60% 130% 101% 50% 140% 4891488 < 0.04 < 0.04 < 0.04 75% 50% 140% 115% 130% 86% 1.1.1.2-Tetrachloroethane NA 60% 50% 140% 140% Chlorobenzene 4891488 < 0.05 50% 140% 97% < 0.05 NA < 0.0571% 60% 130% 91% 50% 73% 140% 140% Ethylbenzene 4891488 < 0.05 50% 97% 50% < 0.05 NA < 0.05 60% 130% 76% 140% m & p-Xylene 4891488 < 0.05 < 0.05 NA < 0.05 93% 50% 140% 96% 60% 130% 108% 50% <0.05 75% Bromoform 4891488 < 0.05 NA < 0.05 72% 50% 140% 60% 130% 74% 50% 140% Styrene 4891488 <0.05 < 0.05 NA < 0.05 79% 50% 140% 69% 60% 130% 74% 50% 140% 1,1,2,2-Tetrachloroethane 4891488 <0.05 <0.05 NA < 0.05 97% 50% 140% 77% 130% 82% 50% 140% 60% o-Xvlene 4891488 < 0.05 < 0.05 NA < 0.05 77% 50% 140% 93% 60% 130% 81% 50% 140% 1,3-Dichlorobenzene 4891488 < 0.05 < 0.05 NA < 0.05 77% 50% 140% 97% 60% 130% 89% 50% 140% 1,4-Dichlorobenzene 4891488 < 0.05 < 0.05 NA < 0.05 73% 50% 140% 86% 60% 130% 81% 50% 140% 1,2-Dichlorobenzene 4891488 < 0.05 <0.05 NA < 0.05 75% 50% 140% 86% 60% 130% 83% 50% 140% 74% 130% 98% 140% n-Hexane 4891488 < 0.05 < 0.05 NA < 0.05 88% 50% 140% 60% 50%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukolog

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

QC Exceedance

CLIENT NAME: WSP CANADA INC.

PROJECT: 23592404 - 170 Slater Street Phase Two

AGAT WORK ORDER: 23Z010329

ATTENTION TO: Keith Holmes

RPT Date: Apr 10, 2023		REFERENC	E MATE	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PABAMETER	Sample Id	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
		Value	Lower	Upper	,		Upper			Upper
O. Reg. 153(511) - Metals & Inorganics (Soil)										
Antimony		96%	70%	130%	71%	80%	120%	74%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document. Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CL

Uranium

Vanadium

Chromium, Hexavalent

Electrical Conductivity (2:1)

pH, 2:1 CaCl2 Extraction

Sodium Adsorption Ratio (2:1) (Calc.)

Cyanide, WAD

Mercury

Zinc

CLIENT NAME: WSP CANADA INC	D.	AGAT WORK OF	DER: 23Z010329
PROJECT: 23592404 - 170 Slater \$	Street Phase Two	ATTENTION TO:	Keith Holmes
SAMPLING SITE:170 Slater St, Ott	awa, Ontario	SAMPLED BY:Ja	mes Sullivan
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	·	·	
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS

MET-93-6103

MET-93-6103

MET 93 -6103

INOR-93-6068

INOR-93-6052

MET-93-6103

INOR-93-6075

INOR-93-6007

INOR-93-6075

AGAT METHOD SUMMARY (V1)

modified from EPA 3050B and EPA

modified from EPA 3050B and EPA

modified from EPA 3050B and EPA

modified from EPA 3060 and EPA

modified from EPA 7471B and SM

modified from MSA PART 3, CH 14

modified from EPA 9045D,

MCKEAGUE 3.11 E3137

modified from EPA 6010D & Analytical

modified from ON MOECC E3015, SM

6020B and ON MOECC

6020B and ON MOECC

6020B and ON MOECC

4500-CN- I, G-387

and SM 2510 B

7196

3112 B

Protocol

ICP-MS

ICP-MS

ICP-MS

ICP-MS

ICP/OES

PC TITRATE

PC TITRATE

SPECTROPHOTOMETER

TECHNICON AUTO ANALYZER

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 23592404 - 170 Slater Street Phase Two

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010329 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater St, Ottaw	va, Ontario	SAMPLED BY:James Sullivan							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis									
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID						
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 23592404 - 170 Slater Street Phase Two

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010329 ATTENTION TO: Keith Holmes

SAMPLED BY:James Sullivan

SAMPLING SITE:170 Slater St, Otta	awa, Untario	SAMPLED BY:Ja				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS			
·						

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 23592404 - 170 Slater Street Phase Two

AGAT WORK ORDER: 23Z010329 ATTENTION TO: Keith Holmes

SAMPLED BY:James Sullivan

SAMPLING SITE:170 Slater St, Ottaw	va, Ontario	SAMPLED BY:James Sullivan								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS							
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS							

Chain of Custody Record If this is a Drinkin		Ph: B use Drinking Water Chain of Custody Form (potab	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 905,712,5100 Fax: 905,712.5122 webearth,agatlabs.com Ne water consumed by humans)	Laboratory Use Only Work Order #: 237010329 Cooler Quantity: 012-1005e1co Arrival Temperatures: 3.6 13.8 13.6 2-1,11.9,11.8			
Report Information: Company: WSP CANADA		Regulatory Requirements: (Please check all applicable boxes)		Custody Seal Intact: Yes No N/A Notes:			
Contact: KEITH HOLMES Address: 1931 ROBERTSON RJ NEPEAN, GN K2H 5 Phone: 613-592-9600 Fax: Reports to be sent to: KEITH, P. HOLMES@WSP.C 1. Email: PAVL, SACKSON@WSP.C	COM	Regulation 153/04 Excess Soils R4 Table Indicate One Ind/Com Indicate One Mes/Park Regulation 558 Soil Texture (Check One) CCME Mcoarse CCME	Sanitary Storm	Turnaround Time (TAT) Required: Regular TAT (Most Analysis) 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days 0R Date Required (Rush Surcharges May Apply):			
Project Information: 174 Slate Street PHAS Project: #150 73592404 Site Location: 170 SLATER ST, OTTAWA Sampled By: JAMES SULLIVAN	E ONTARIO	Is this submission for a Record of Site Condition ? Yes No	Report Guideline onCertificate of AnalysisYesNo	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM			
AGAT ID #:PO: _P	full price for analysis.	Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	A Field Filtered - Metals, Hg, CrVI, DOC Metals & Inorganics EST Metals - C CrVI, RHg, DHWSB Metals - C CrVI, RHg, DHWSB BTEX, F1-F4 PHCs Analyze F4G if required D Yes Analyze F4G if required D Yes No PAHs Total PCBs	Landfill Disposal Character/zation TCLP: Magaper 2006 Landfill Disposal Character/zation TCLP: Magaper 2006 Excess Solls SPLP Rainwater Leach 900 Faaa SPLP: I metals I vocs I svocs Solls SPLP Rainwater Leach Pht, iCPMS Metals, BTEX, F1-F4 900 Faaa Saft - EC/SAR Saft - EC/SAR			
Sample Identification		Sample Comments/ Matrix Special Instructions	Metals & In Metals & In Metals - K BTEX, F1-F, F1-F, Analyze F4i PAHS Total PCBS	Potentially Hazar			
23.01.5A02 3/23/23 92 23.01-5A04 3/23/23 95 23-01-5A06 3/23/23 104	5 9K 4	\$ \$ \$					
Samples Relinguished By (Print Name and Sign): Dat	5/30/22 Time 31	Samples Received By (Print Name and Sign):	MAR 3 Date Date Date	0 2022 IUn co ~ 31 ^{Time} Pageof Time Nº: T 114841			

Document ID: DIV-78-1511,020 Pink Copy - AGAT | White Copy - AGAT Dat Page: 17-07-07-07-2020

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 23592402 - 170 Slater St. PHASE TWO AGAT WORK ORDER: 23Z010333 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Apr 06, 2023 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 17

AGAT WORK ORDER: 23Z010333 PROJECT: 23592402 - 170 Slater St. PHASE TWO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

SAMPLED BY:Paul Jackson

ATTENTION TO: Keith Holmes

				O. neg	. 155(511)	- FAITS (Wall				
DATE RECEIVED: 2023-03-30								I	DATE REPORTE	D: 2023-04-06
		SAMPLE DES	CRIPTION:	22-03	22-04 Deep	22-04 Shallow	23-05	23-02	DUP-01	
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	
		DATE S	SAMPLED:	2023-03-29 14:25	2023-03-29 16:05	2023-03-29 16:40	2023-03-29 17:30	2023-03-29 18:00	2023-03-29 14:25	
Parameter	Unit	G / S	RDL	4889145	4889151	4889152	4889158	4889161	4889162	
Naphthalene	μg/L	1400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthylene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthene	μg/L	600	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Fluorene	μg/L	400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenanthrene	μg/L	580	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Fluoranthene	μg/L	130	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Pyrene	μg/L	68	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chrysene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.52	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2-and 1-methyl Naphthalene	μg/L	1800	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Sediment				NO	NO	NO	NO	NO	NO	
Surrogate	Unit	Acceptab	le Limits							
Naphthalene-d8	%	50-1	40	108	117	97	108	92	98	
Acridine-d9	%	50-1	40	113	116	112	114	110	113	
Terphenyl-d14	%	50-1	40	101	75	89	107	87	83	

O. Beg. 153(511) - PAHs (Water)

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z010333 PROJECT: 23592402 - 170 Slater St. PHASE TWO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes

SAMPLED BY: Paul Jackson

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-03-30

DATE REPORTED: 2023-04-06

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4889145-4889162 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 23Z010333 PROJECT: 23592402 - 170 Slater St. PHASE TWO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-03-30

	S	AMPLE DESCRIPTION	N: 22-03	22-04 Deep	22-04 Shallow	
		SAMPLE TYPI	E: Water	Water	Water	
		DATE SAMPLEI	D: 2023-03-29 14:25	2023-03-29 16:05	2023-03-29 16:40	
Parameter	Unit	G/S RDL	4889145	4889151	4889152	
F1 (C6-C10)	μg/L	750 25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750 25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	NA	NA	
Sediment			1	1	1	
Surrogate	Unit	Acceptable Limits				
Toluene-d8	%	50-140	103	105	109	
Terphenyl	% Recovery	60-140	71	78	78	

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z010333 PROJECT: 23592402 - 170 Slater St. PHASE TWO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-03-30

DATE REPORTED: 2023-04-06

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4889145-4889152 The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 23Z010333 PROJECT: 23592402 - 170 Slater St. PHASE TWO

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-03-30

DATE RECEIVED: 2023-03-30							DATE REPORTED: 2023-04-06
		SAMPLE DESCF	RIPTION:	22-03	22-04 Deep	22-04 Shallow	
		SAMPL	E TYPE:	Water	Water	Water	
		DATE SA	MPLED:	2023-03-29	2023-03-29	2023-03-29	
				14:25	16:05	16:40	
Parameter	Unit	G/S	RDL	4889145	4889151	4889152	
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30	<0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	7.17	3.08	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	0.54	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z010333 PROJECT: 23592402 - 170 Slater St. PHASE TWO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-03-30

	ę	SAMPLE DES	CRIPTION:	22-03	22-04 Deep	22-04 Shallow	
			SAMPLE TYPE:		Water	Water	
		DATES	SAMPLED:	2023-03-29 14:25	2023-03-29 16:05	2023-03-29 16:40	
Parameter	Unit	G / S	RDL	4889145	4889151	4889152	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	
Bromoform	μg/L	380	0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	
,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	
I,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	
,3-Dichloropropene	μg/L	5.2	0.30	<0.30	<0.30	<0.30	
(ylenes (Total)	μg/L	4200	0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits				
Foluene-d8	% Recovery	50-1	40	103	105	109	
4-Bromofluorobenzene	% Recovery	50-1	40	85	84	82	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4889145-4889152 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z010333 PROJECT: 23592402 - 170 Slater St. PHASE TWO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

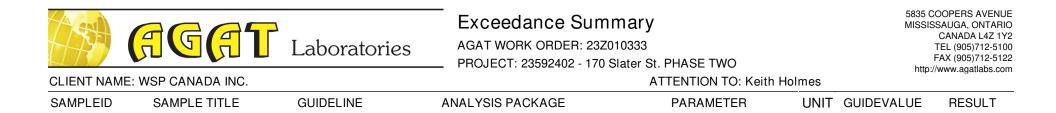
CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - Metals (Including Hydrides) (Water) DATE RECEIVED: 2023-03-30 DATE REPORTED: 2023-04-06 SAMPLE DESCRIPTION: 22-03 22-04 Deep 22-04 Shallow SAMPLE TYPE: Water Water Water DATE SAMPLED: 2023-03-29 2023-03-29 2023-03-29 14:25 16:05 16:40 Parameter Unit G/S RDL 4889145 4889151 4889152 Dissolved Antimony μg/L 20000 1.0 <1.0 <1.0 <1.0 Dissolved Arsenic μg/L 1900 1.0 <1.0 <1.0 <1.0 Dissolved Barium 29000 2.0 31.0 39.9 88.8 μg/L 67 <0.50 **Dissolved Beryllium** μg/L 0.50 <0.50 <0.50 **Dissolved Boron** 45000 10.0 98.3 45.4 29.3 μg/L Dissolved Cadmium μg/L 2.7 0.20 <0.20 <0.20 <0.20 <2.0 Dissolved Chromium µg/L 810 2.0 <2.0 <2.0 Dissolved Cobalt µg/L 66 0.50 < 0.50 <0.50 <0.50 **Dissolved** Copper μg/L 87 1.0 <1.0 <1.0 1.9 25 <0.50 Dissolved Lead µg/L 0.50 < 0.50 < 0.50 Dissolved Molybdenum μg/L 9200 0.50 6.66 7.31 8.24 2.3 Dissolved Nickel µg/L 490 1.0 1.3 2.0 Dissolved Selenium μg/L 63 1.0 1.9 <1.0 <1.0 Dissolved Silver μg/L 1.5 0.20 <0.20 <0.20 <0.20 **Dissolved Thallium** μg/L 510 0.30 < 0.30 < 0.30 <0.30 Dissolved Uranium μg/L 420 0.50 3.78 3.75 4.75 Dissolved Vanadium µg/L 250 0.40 0.40 0.46 <0.40 **Dissolved Zinc** 5.0 <5.0 μg/L 1100 <5.0 < 5.0

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils


Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4889145-4889152 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

O. Reg. 153(511) - VOCs (with PHC) (Water)

O. Reg. 153(511) - VOCs (with PHC) (Water)

4889151

4889152

22-04 Deep

22-04 Shallow

ON T3 NPGW CT

ON T3 NPGW CT

2.4

2.4

μg/L

μg/L

Chloroform

Chloroform

7.17

3.08

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 23592402 - 170 Slater St. PHASE TWO

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010333 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

Trace Organics Analysis

RPT Date: Apr 06, 2023			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Lir	ptable nits	Recovery	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Uppe
O. Reg. 153(511) - PAHs (Water)															
Naphthalene	4883465		<0.20	<0.20	NA	< 0.20	74%	50%	140%	91%	50%	140%	97%	50%	140%
Acenaphthylene	4883465		<0.20	<0.20	NA	< 0.20	88%	50%	140%	91%	50%	140%	100%	50%	1409
Acenaphthene	4883465		<0.20	<0.20	NA	< 0.20	99%	50%	140%	86%	50%	140%	97%	50%	1409
Fluorene	4883465		<0.20	<0.20	NA	< 0.20	95%	50%	140%	82%	50%	140%	101%	50%	1409
Phenanthrene	4883465		<0.10	<0.10	NA	< 0.10	92%	50%	140%	72%	50%	140%	106%	50%	1409
Anthracene	4883465		<0.10	<0.10	NA	< 0.10	117%	50%	140%	88%	50%	140%	96%	50%	140°
Fluoranthene	4883465		<0.20	<0.20	NA	< 0.20	115%	50%	140%	80%	50%	140%	101%	50%	1409
Pyrene	4883465		<0.20	<0.20	NA	< 0.20	115%	50%	140%	78%	50%	140%	97%	50%	1409
Benzo(a)anthracene	4883465		<0.20	<0.20	NA	< 0.20	72%	50%	140%	72%	50%	140%	91%	50%	1409
Chrysene	4883465		<0.10	<0.10	NA	< 0.10	78%	50%	140%	85%	50%	140%	96%	50%	140%
Benzo(b)fluoranthene	4883465		<0.10	<0.10	NA	< 0.10	87%	50%	140%	95%	50%	140%	101%	50%	1409
Benzo(k)fluoranthene	4883465		<0.10	<0.10	NA	< 0.10	81%	50%	140%	106%	50%	140%	90%	50%	140%
Benzo(a)pyrene	4883465		<0.01	<0.01	NA	< 0.01	70%	50%	140%	106%	50%	140%	91%	50%	140°
Indeno(1,2,3-cd)pyrene	4883465		<0.20	<0.20	NA	< 0.20	90%	50%	140%	82%	50%	140%	88%	50%	1409
Dibenz(a,h)anthracene	4883465		<0.20	<0.20	NA	< 0.20	69%	50%	140%	90%	50%	140%	86%	50%	1409
Benzo(g,h,i)perylene	4883465		<0.20	<0.20	NA	< 0.20	112%	50%	140%	103%	50%	140%	92%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 ((with PAHs a	and VOC)	(Water)												
F1 (C6-C10)	4889152 4	889152	<25	<25	NA	< 25	93%	60%	140%	98%	60%	140%	86%	60%	1409
F2 (C10 to C16)	4889145		< 100	< 100	0.0%	< 100	100%	60%	140%	80%	60%	140%	74%	60%	1409
F3 (C16 to C34)	4889145		< 100	< 100	0.0%	< 100	99%	60%	140%	72%	60%	140%	82%	60%	140
F4 (C34 to C50)	4889145		< 100	< 100	0.0%	< 100	85%	60%	140%	82%	60%	140%	89%	60%	140%
O. Reg. 153(511) - VOCs (with Pl	HC) (Water)														
Dichlorodifluoromethane	4889152 4	889152	<0.40	<0.40	NA	< 0.40	103%	50%	140%	89%	50%	140%	95%	50%	140%
Vinyl Chloride	4889152 4	889152	<0.17	<0.17	NA	< 0.17	113%	50%	140%	78%	50%	140%	90%	50%	140%
Bromomethane	4889152 4	889152	<0.20	<0.20	NA	< 0.20	92%	50%	140%	71%	50%	140%	87%	50%	1409
Trichlorofluoromethane	4889152 4	889152	<0.40	<0.40	NA	< 0.40	72%	50%	140%	81%	50%	140%	102%	50%	1409
Acetone	4889152 4	889152	<1.0	<1.0	NA	< 1.0	115%	50%	140%	85%	50%	140%	105%	50%	140%
1,1-Dichloroethylene	4889152 4	889152	<0.30	<0.30	NA	< 0.30	79%	50%	140%	102%	60%	130%	98%	50%	1409
Methylene Chloride	4889152 4	889152	<0.30	<0.30	NA	< 0.30	100%	50%	140%	116%	60%	130%	119%	50%	1409
trans- 1,2-Dichloroethylene	4889152 4	889152	<0.20	<0.20	NA	< 0.20	109%	50%	140%	96%	60%	130%	94%	50%	1409
Methyl tert-butyl ether	4889152 4	889152	<0.20	<0.20	NA	< 0.20	105%	50%	140%	90%	60%	130%	95%	50%	1409
1,1-Dichloroethane	4889152 4	889152	<0.30	<0.30	NA	< 0.30	84%		140%	102%		130%	98%	50%	1409
Methyl Ethyl Ketone	4889152 4	889152	<1.0	<1.0	NA	< 1.0	105%	50%	140%	93%	50%	140%	93%	50%	1409
cis- 1,2-Dichloroethylene	4889152 4		<0.20	<0.20	NA	< 0.20	74%		140%	93%		130%	93%	50%	
Chloroform	4889152 4	889152	3.08	3.23	4.8%	< 0.20	76%	50%	140%	100%		130%	100%	50%	140
1,2-Dichloroethane	4889152 4	889152	<0.20	<0.20	NA	< 0.20	86%	50%	140%	105%	60%	130%	116%	50%	140
1,1,1-Trichloroethane	4889152 4	889152	<0.30	<0.30	NA	< 0.30	90%	50%	140%	99%	60%	130%	89%	50%	140
Carbon Tetrachloride	4889152 4	889152	<0.20	<0.20	NA	< 0.20	83%	50%	140%	73%	60%	130%	78%	50%	140%
AGAT QUALITY ASSURA	NCE REPOR	T (V1)											Р	age 10	of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 23592402 - 170 Slater St. PHASE TWO

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010333 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

Trace Organics Analysis (Continued) DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Apr 06, 2023 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Measured Blank Limits Limits Limits Dup #2 PARAMETER Batch Dup #1 RPD Recover Recovery ld Value Lower Upper Lower Upper Lower Upper 4889152 4889152 <0.20 <0.20 71% 50% 140% 97% 130% 87% 50% 140% Benzene NA < 0.2060% 80% 140% 1.2-Dichloropropane 4889152 4889152 <0.20 <0.20 50% 140% 89% 130% 83% NA < 0.2060% 50% 140% Trichloroethylene 4889152 4889152 <0.20 <0.20 NA < 0.20 74% 50% 140% 88% 60% 130% 81% 50% Bromodichloromethane 4889152 4889152 <0.20 <0.20 NA < 0.20 76% 50% 140% 95% 60% 130% 92% 50% 140% Methyl Isobutyl Ketone 4889152 4889152 <1.0 <1.0 NA < 1.0 112% 50% 140% 97% 50% 140% 109% 50% 140% 1,1,2-Trichloroethane 4889152 4889152 <0.20 <0.20 NA < 0.20 119% 50% 140% 91% 60% 130% 95% 50% 140% Toluene 4889152 4889152 99% 130% 140% <0.20 <0.20 NA < 0.20 79% 50% 140% 60% 75% 50% Dibromochloromethane 4889152 4889152 < 0.10 <0.10 NA < 0.10 107% 50% 140% 102% 60% 130% 102% 50% 140% Ethylene Dibromide 4889152 4889152 <0.10 <0.10 NA < 0.10 108% 50% 140% 95% 60% 130% 102% 50% 140% Tetrachloroethylene 4889152 4889152 <0.20 <0.20 NA < 0.20 78% 50% 140% 104% 60% 130% 84% 50% 140% 4889152 4889152 <0.10 79% 50% 140% 90% 130% 82% 1.1.1.2-Tetrachloroethane <0.10 NA < 0.10 60% 50% 140% Chlorobenzene 4889152 4889152 < 0.10 89% 140% 99% 140% < 0.10 NA < 0.1050% 60% 130% 92% 50% 69% 140% Ethylbenzene 4889152 4889152 < 0.1050% 97% 50% < 0.10 NA < 0.10 140% 60% 130% 83% 140% m & p-Xylene 4889152 4889152 <0.20 <0.20 NA < 0.20 116% 50% 140% 98% 60% 130% 85% 50% Bromoform 4889152 4889152 < 0.10<0.10 NA < 0.10 104% 50% 140% 112% 60% 130% 110% 50% 140% Styrene 4889152 4889152 < 0.10 <0.10 NA < 0.10 72% 50% 140% 91% 60% 130% 80% 50% 140% 1,1,2,2-Tetrachloroethane 4889152 4889152 <0.10 <0.10 NA 109% 50% 140% 90% 130% 99% 50% 140% < 0.10 60% o-Xvlene 4889152 4889152 < 0.10 <0.10 NA < 0.10 84% 50% 140% 103% 60% 130% 92% 50% 140% 1,3-Dichlorobenzene 4889152 4889152 < 0.10<0.10 NA < 0.10 92% 50% 140% 103% 60% 130% 93% 50% 140% 1,4-Dichlorobenzene 4889152 4889152 < 0.10 <0.10 NA < 0.10 92% 50% 140% 102% 60% 130% 99% 50% 140% 1,2-Dichlorobenzene 4889152 4889152 <0.10 <0.10 NA < 0.10 92% 50% 140% 93% 60% 130% 91% 50% 140% 4889152 4889152 130% 140% n-Hexane <0.20 <0.20 NA < 0.20 105% 50% 140% 84% 60% 78% 50%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukolog

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 23592402 - 170 Slater St. PHASE TWO

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z010333 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

Water Analysis

					•••••										
Г Date: Арг 06, 2023			0	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	1 1 1 1	eptable nits	Recovery	1.10	eptable mits
		iù					value	Lower	Upper		Lower	Upper		Lower	Uppe
Reg. 153(511) - Metals (Ind	luding Hydrides	s) (Water))												
solved Antimony	4887646		<1.0	<1.0	NA	< 1.0	101%	70%	130%	104%	80%	120%	103%	70%	130%
solved Arsenic	4887646		<1.0	<1.0	NA	< 1.0	101%	70%	130%	102%	80%	120%	109%	70%	130%
solved Barium	4887646		190	185	2.7%	< 2.0	99%	70%	130%	101%	80%	120%	105%	70%	130%
solved Beryllium	4887646		<0.50	<0.50	NA	< 0.50	91%	70%	130%	96%	80%	120%	100%	70%	130%
solved Boron	4887646		27.3	25.9	NA	< 10.0	94%	70%	130%	95%	80%	120%	95%	70%	130%
solved Cadmium	4887646		<0.20	<0.20	NA	< 0.20	99%	70%	130%	101%	80%	120%	99%	70%	130%
solved Chromium	4887646		<2.0	<2.0	NA	< 2.0	105%	70%	130%	101%	80%	120%	104%	70%	130%
solved Cobalt	4887646		<0.50	<0.50	NA	< 0.50	109%	70%	130%	103%	80%	120%	104%	70%	130%
solved Copper	4887646		1.4	1.1	NA	< 1.0	105%	70%	130%	100%	80%	120%	98%	70%	130%
solved Lead	4887646		<0.50	<0.50	NA	< 0.50	98%	70%	130%	90%	80%	120%	89%	70%	130%
solved Molybdenum	4887646		2.42	2.18	NA	< 0.50	106%	70%	130%	106%	80%	120%	108%	70%	130%
solved Nickel	4887646		2.2	1.7	NA	< 1.0	108%	70%	130%	100%	80%	120%	102%	70%	130%
solved Selenium	4887646		1.4	<1.0	NA	< 1.0	105%	70%	130%	104%	80%	120%	115%	70%	130%
solved Silver	4887646		<0.20	<0.20	NA	< 0.20	104%	70%	130%	97%	80%	120%	93%	70%	130%
solved Thallium	4887646		<0.30	<0.30	NA	< 0.30	99%	70%	130%	97%	80%	120%	97%	70%	130%
solved Uranium	4887646		4.72	4.56	3.4%	< 0.50	102%	70%	130%	102%	80%	120%	105%	70%	130%
solved Vanadium	4887646		1.01	1.24	NA	< 0.40	109%	70%	130%	105%	80%	120%	109%	70%	130%
solved Zinc	4887646		<5.0	<5.0	NA	< 5.0	104%	70%	130%	107%	80%	120%	104%	70%	130%
solved Zinc	4887646		<5.0	<5.0	NA	< 5.0	104%	70%	130%	107%	80%	120%	104%		70%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 12 of 17

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 23592402 - 170 Slater St. PHASE TWO

AGAT WORK ORDER: 23Z010333

ATTENTION TO: Keith Holmes

		ATTENTION TO: Rollin Hollings						
SAMPLING SITE:170 Slater St, Ottaw	ra, Ontario	SAMPLED BY:Paul Jackson						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis			1					
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS					
Sediment			N/A					
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID					
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
()								
F3 (C16 to C34) F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
F3 (C16 to C34) minus PAHs	VOL-91-5010 VOL-91-5010	modified from MOE PHC-E3421 modified from MOE PHC-E3421	GC/FID					
F3 (C16 to C34) minus PAHs F4 (C34 to C50)								
()	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 23592402 - 170 Slater St. PHASE TWO SAMPLING SITE: 170 Slater St. Ottawa, Optario

AGAT WORK ORDER: 23Z010333 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater St, Otta	awa, Ontario	SAMPLED BY:Paul Jackson						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 23592402 - 170 Slater St. PHASE TWO SAMPLING SITE: 170 Slater St. Ottawa, Optario

AGAT WORK ORDER: 23Z010333 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater St, Ott	awa, Ontario	SAMPLED BY:P	aul Jackson
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 23592402 - 170 Slater St. PHASE TWO

AGAT WORK ORDER: 23Z010333

ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater St, Ott	awa. Ontario	SAMPLED BY:Paul Jackson							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis									
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						

Chain of Custody Record				_		Pi f Custody Form (pota	h: 905.71	ssissau 2.5100 we	uga, O) Fax: ebeart	h agat	L4Z 1 12.51	Y2 22	Wor	k Orde ler Qua	r #: 7	23 (M	Only 201 <u>8-</u> <u>3.0</u>	wse			1
Report Information: Company: W.SP CAN Contact: KEITH HI Address: 1931 ROBE NEPEAN	ADA DLMES RTSON R ON KZ	D. H 537		(Please c Reg Tab	ulatory Requ check all applicable boxes gulation 153/04 le <u>3</u> Indicate One nd/Com Res/Park	Table - Indicate Or		Sew	ver Us anitary Regio	⊡s	torm		Not Turi Reg	es: naroi ular *	TAT (M	Fime lost Ana		Requ	□No		SN/A
Phone: Reports to be sent to: 1. Email: 2. Email: Project Information: Phone: KE17H, P. HOL PAUL, JACKSO	NESOW	COM		Soil Te	Agriculture Agriculture Exture (<i>Check One</i>) Coarse Fine this submission cord of Site Co		Re	Obje	ective: er Indicati Guid	eline	0) ON	-	Rus	3 E Day 01	Busines ys R Date	s Requi	2 E Dai ired (Rusi	n Surcha	rges May		siness
Project: 170 slate-st.f Site Location: 170 slater st.f Sampled By: PAUL SAUC AGAT ID #:	07124A, SON PO:	ONTAR	(D			No		Yes					0. Reg	*7A or 'San O. Re	T is exc ne Day eg 406	lusive	of week	ends and	d statutor	y holidaj	PM
Please note: If quotation number is Invoice Information: Company: Contact: Address: Email:		ill To Same: Ye:		O P S SD	Biota Ground Water Oil Paint Soil Sediment Surface Water		L Field Filtered - Metals, Hg, CrVI, DOC	Metals & Inorganics	Metals - 🗆 CrVI, 🗆 Hg, 🗆 HWSB	BTEX, F1-F4 PHCs Analyze F4G if required		CBs Daroclor	Landfill Disposal Characterization TCLP: TCLP: DM&I DVOCS DABNS DB(a)PD PCBS	Excess Soils SPLP Rainwater Leach SPLP: D Metals D vocs D svocs	aracteri als RTF	EC/SAR			1111111111		Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		ments/ Instructions	Y/N	Metals	Metals	BTEX, F Analyze	PAHs	Total PCBs VOC	Landfill TCLP:	Excess SPLP: []	Excess nH ICP	Salt - E					Potentia
22-03 22-04 Deep 22-04 Shallow 23-05 23-02	3/29/23	1425 AM 1555 AM 1640 AM 1730 AM	11 11 2				Y Y Y			>>>											
Dup-01		1425 AM AM AM AM AM AM AM	2	6~~																	
Samples Relinquished Ab (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):		Date Date Date	73 Time	1315 huo	Samples Received By () Samples Received By () Samples Received By ()	Print Name and Sigg);	K,				IAR	Date 30 Date Date	20 2 -31	Time 14 Time Time	1000	, 2A7		Page	of		

Desimination 2014/78-1511.020 Pink Copy - AGAT | White Copy - AGAT Dip Stand Program 2020

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: 170 Slater St PHASE TWO 23592402 AGAT WORK ORDER: 23Z011205 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Apr 10, 2023 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 17

AGAT WORK ORDER: 23Z011205 PROJECT: 170 Slater St PHASE TWO 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-04-03

DATE RECEIVED: 2023-04-03					DATE REPORTED: 2023-04-10
		SAMPLE DES	CRIPTION:	23-01	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2023-04-03 12:00	
Parameter	Unit	G/S	RDL	4896256	
Naphthalene	μg/L	1400	0.20	<0.20	
Acenaphthylene	μg/L	1.8	0.20	<0.20	
Acenaphthene	μg/L	600	0.20	<0.20	
Fluorene	μg/L	400	0.20	<0.20	
Phenanthrene	μg/L	580	0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	
Fluoranthene	μg/L	130	0.20	<0.20	
Pyrene	μg/L	68	0.20	<0.20	
Benzo(a)anthracene	μg/L	4.7	0.20	<0.20	
Chrysene	μg/L	1	0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.52	0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	
2-and 1-methyl Naphthalene	μg/L	1800	0.20	<0.20	
Sediment				NO	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-1		92	
Acridine-d9	%	50-1		83	
Terphenyl-d14	%	50-1	40	75	

Certified By:

NPopukolof

DATE DEDODTED, 0000 04 40

AGAT WORK ORDER: 23Z011205 PROJECT: 170 Slater St PHASE TWO 23592402

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes

SAMPLED BY:Paul Jackson

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-04-03	3
---------------------------	---

DATE REPORTED: 2023-04-10

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4896256

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 23Z011205 PROJECT: 170 Slater St PHASE TWO 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-04-03

DATE NEOENED. 2020 04 00				DATE HEI OTTED. 2020 04 10
	SA	AMPLE DESCRIPTION	23-01	
		SAMPLE TYPE	Water	
		DATE SAMPLED	2023-04-03 12:00	
Parameter	Unit	G/S RDL	4896256	
F1 (C6-C10)	μg/L	750 25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750 25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	
Sediment			1	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	%	50-140	104	
Terphenyl	% Recovery	60-140	107	

Certified By:

NPopukolof

DATE REPORTED: 2023-04-10

AGAT WORK ORDER: 23Z011205 PROJECT: 170 Slater St PHASE TWO 23592402

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE: 170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-04-03

DATE REPORTED: 2023-04-10

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4896256 The C6-C10 fraction is calculated using toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoly

AGAT WORK ORDER: 23Z011205 PROJECT: 170 Slater St PHASE TWO 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes

SAMPLED BY: Paul Jackson

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-04-03					DATE REPORTED: 2023-04-10
	5	SAMPLE DESCR	RIPTION:	23-01	
		SAMPL	E TYPE:	Water	
		DATE SA	MPLED:	2023-04-03 12:00	
Parameter	Unit	G / S	RDL	4896256	
Dichlorodifluoromethane	μg/L	4400	0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z011205 PROJECT: 170 Slater St PHASE TWO 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-04-03

	S	AMPLE DES	CRIPTION:	23-01	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2023-04-03 12:00	
Parameter	Unit	G/S	RDL	4896256	
n & p-Xylene	μg/L		0.20	<0.20	
Bromoform	μg/L	380	0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30	
Xylenes (Total)	μg/L	4200	0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	104	
4-Bromofluorobenzene	% Recovery	50-1	40	79	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4896256 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2023-04-10

AGAT WORK ORDER: 23Z011205 PROJECT: 170 Slater St PHASE TWO 23592402 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:170 Slater St, Ottawa, Ontario

ATTENTION TO: Keith Holmes

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

			e		motale (motaling hydraee) (mater)
DATE RECEIVED: 2023-04-03					DATE REPORTED: 2023-04-10
	:	SAMPLE DES	CRIPTION:	23-01	
		SAM	PLE TYPE:	Water	
		DATE S	SAMPLED:	2023-04-03 12:00	
Parameter	Unit	G/S	RDL	4896256	
Dissolved Antimony	μg/L	20000	1.0	2.1	
Dissolved Arsenic	μg/L	1900	1.0	2.7	
Dissolved Barium	μg/L	29000	2.0	108	
Dissolved Beryllium	μg/L	67	0.50	<0.50	
Dissolved Boron	μg/L	45000	10.0	146	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	
Dissolved Chromium	μg/L	810	2.0	27.6	
Dissolved Cobalt	μg/L	66	0.50	1.44	
Dissolved Copper	μg/L	87	1.0	1.0	
Dissolved Lead	μg/L	25	0.50	<0.50	
Dissolved Molybdenum	μg/L	9200	0.50	139	
Dissolved Nickel	μg/L	490	1.0	16.3	
Dissolved Selenium	μg/L	63	1.0	26.2	
Dissolved Silver	μg/L	1.5	0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	0.54	
Dissolved Uranium	μg/L	420	0.50	16.7	
Dissolved Vanadium	μg/L	250	0.40	1.73	
Dissolved Zinc	μg/L	1100	5.0	<5.0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4896256 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St PHASE TWO 23592402

SAMPLING SITE: 170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

Trace Organics Analysis

			nac	e Ol	yann	CS AI	larys	15							
RPT Date: Apr 10, 2023			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lin	eptable nits
	Daten	ld	Dup #1	Dup #2	TH D		Value	Lower	Upper	litecovery	Lower	Upper	litecovery	Lower	Upper
O. Reg. 153(511) - PAHs (Wate	r)														
Naphthalene	4871094		<0.20	<0.20	NA	< 0.20	83%	50%	140%	80%	50%	140%	110%	50%	140%
Acenaphthylene	4871094		<0.20	<0.20	NA	< 0.20	82%	50%	140%	107%	50%	140%	99%	50%	140%
Acenaphthene	4871094		<0.20	<0.20	NA	< 0.20	84%	50%	140%	93%	50%	140%	103%	50%	140%
Fluorene	4871094		<0.20	<0.20	NA	< 0.20	102%	50%	140%	84%	50%	140%	92%	50%	140%
Phenanthrene	4871094		<0.10	<0.10	NA	< 0.10	68%	50%	140%	93%	50%	140%	91%	50%	140%
Anthracene	4871094		<0.10	<0.10	NA	< 0.10	109%	50%	140%	110%	50%	140%	107%	50%	140%
Fluoranthene	4871094		<0.20	<0.20	NA	< 0.20	106%	50%	140%	89%	50%	140%	83%	50%	140%
Pyrene	4871094		<0.20	<0.20	NA	< 0.20	108%	50%	140%	99%	50%	140%	97%	50%	140%
Benzo(a)anthracene	4871094		<0.20	<0.20	NA	< 0.20	72%	50%	140%	92%	50%	140%	102%	50%	140%
Chrysene	4871094		<0.10	<0.10	NA	< 0.10	79%	50%	140%	100%	50%	140%	101%	50%	140%
Benzo(b)fluoranthene	4871094		<0.10	<0.10	NA	< 0.10	96%	50%	140%	80%	50%	140%	97%	50%	140%
Benzo(k)fluoranthene	4871094		<0.10	<0.10	NA	< 0.10	70%	50%	140%	87%	50%	140%	95%	50%	140%
Benzo(a)pyrene	4871094		<0.01	<0.01	NA	< 0.01	94%		140%	97%		140%	98%	50%	140%
Indeno(1,2,3-cd)pyrene	4871094		<0.20	<0.20	NA	< 0.20	85%	50%	140%	92%	50%	140%	74%	50%	140%
Dibenz(a,h)anthracene	4871094		<0.20	<0.20	NA	< 0.20	112%	50%	140%	89%	50%	140%	91%	50%	140%
Benzo(g,h,i)perylene	4871094		<0.20	<0.20	NA	< 0.20	91%	50%	140%	109%	50%	140%	93%	50%	140%
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs a	and VOC)	(Water)												
F1 (C6-C10)	4900057	,	、 <25	<25	NA	< 25	124%	60%	140%	114%	60%	140%	88%	60%	140%
F2 (C10 to C16)	4890495		<100	<100	NA	< 100	96%	60%	140%	71%	60%	140%	64%	60%	140%
F3 (C16 to C34)	4890495		<100	<100	NA	< 100	99%	60%	140%	68%	60%	140%	64%	60%	140%
F4 (C34 to C50)	4890495		<100	<100	NA	< 100	76%	60%	140%	63%	60%	140%	71%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	4900057		< 0.40	< 0.40	NA	< 0.40	114%	50%	140%	100%	50%	140%	71%	50%	140%
Vinyl Chloride	4900057		< 0.17	< 0.17	NA	< 0.17	100%	50%	140%	119%		140%	105%	50%	140%
Bromomethane	4900057		< 0.20	< 0.20	NA	< 0.20	91%		140%	111%		140%	83%	50%	140%
Trichlorofluoromethane	4900057		< 0.40	< 0.40	NA	< 0.40	92%		140%	88%		140%	99%	50%	140%
Acetone	4900057		< 1.0	< 1.0	NA	< 1.0	98%	50%	140%	89%	50%	140%	90%	50%	140%
1,1-Dichloroethylene	4900057		<0.30	<0.30	NA	< 0.30	56%	50%	140%	44%	60%	130%	104%	50%	140%
Methylene Chloride	4900057		< 0.30	< 0.30	NA	< 0.30	88%	50%	140%	100%	60%	130%	109%	50%	140%
trans- 1,2-Dichloroethylene	4900057		< 0.20	< 0.20	NA	< 0.20	101%	50%	140%	89%	60%	130%	82%	50%	140%
Methyl tert-butyl ether	4900057		< 0.20	< 0.20	NA	< 0.20	92%	50%	140%	81%	60%	130%	90%	50%	140%
1,1-Dichloroethane	4900057		< 0.30	< 0.30	NA	< 0.30	91%		140%	93%		130%	105%		140%
Methyl Ethyl Ketone	4900057		< 1.0	< 1.0	NA	< 1.0	89%	50%	140%	113%	50%	140%	93%	50%	140%
cis- 1,2-Dichloroethylene	4900057		< 0.20	< 0.20	NA	< 0.20	116%		140%	77%		130%	109%		140%
Chloroform	4900057		< 0.20	< 0.20	NA	< 0.20	87%		140%	86%		130%	114%	50%	140%
1,2-Dichloroethane	4900057		< 0.20	< 0.20	NA	< 0.20	118%		140%	99%		130%	116%	50%	140%
1,1,1-Trichloroethane	4900057		< 0.30	< 0.30	NA	< 0.30	111%	50%	140%	92%	60%	130%	96%	50%	140%
Carbon Tetrachloride	4900057		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	82%	60%	130%	108%	50%	140%
AGAT QUALITY ASSUR	ANCE REPOF	RT (V1)												Page 9	of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St PHASE TWO 23592402

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

	Г	Frace	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Apr 10, 2023			0	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		iu					value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	4900057		< 0.20	< 0.20	NA	< 0.20	98%	50%	140%	97%	60%	130%	92%	50%	140%
1,2-Dichloropropane	4900057		< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	108%	60%	130%	111%	50%	140%
Trichloroethylene	4900057		1.24	1.43	14.2%	< 0.20	90%	50%	140%	77%	60%	130%	114%	50%	140%
Bromodichloromethane	4900057		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	96%	60%	130%	117%	50%	140%
Methyl Isobutyl Ketone	4900057		< 1.0	< 1.0	NA	< 1.0	104%	50%	140%	109%	50%	140%	100%	50%	140%
1,1,2-Trichloroethane	4900057		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	106%	60%	130%	116%	50%	140%
Toluene	4900057		< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	90%	60%	130%	111%	50%	140%
Dibromochloromethane	4900057		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	82%	60%	130%	85%	50%	140%
Ethylene Dibromide	4900057		< 0.10	< 0.10	NA	< 0.10	118%	50%	140%	95%	60%	130%	98%	50%	140%
Tetrachloroethylene	4900057		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	101%	60%	130%	90%	50%	140%
1,1,1,2-Tetrachloroethane	4900057		< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	79%	60%	130%	92%	50%	140%
Chlorobenzene	4900057		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	86%	60%	130%	110%	50%	140%
Ethylbenzene	4900057		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	79%	60%	130%	109%	50%	140%
m & p-Xylene	4900057		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	87%	60%	130%	117%	50%	140%
Bromoform	4900057		< 0.10	< 0.10	NA	< 0.10	78%	50%	140%	78%	60%	130%	79%	50%	140%
Styrene	4900057		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	81%	60%	130%	84%	50%	140%
1,1,2,2-Tetrachloroethane	4900057		< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	110%	60%	130%	104%	50%	140%
o-Xylene	4900057		< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	90%	60%	130%	117%	50%	140%
1,3-Dichlorobenzene	4900057		< 0.10	< 0.10	NA	< 0.10	113%	50%	140%	80%	60%	130%	100%	50%	140%
1,4-Dichlorobenzene	4900057		< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	79%	60%	130%	93%	50%	140%
1,2-Dichlorobenzene	4900057		< 0.10	< 0.10	NA	< 0.10	106%	50%	140%	76%	60%	130%	90%	50%	140%
n-Hexane	4900057		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	115%	60%	130%	120%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC. PROJECT: 170 Slater St PHASE TWO 23592402

SAMPLING SITE:170 Slater St, Ottawa, Ontario

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

Water Analysis

				mai		iai y o	.0								
RPT Date: Apr 10, 2023			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery		ptable nits
							Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inclu	uding Hydride	s) (Water))												
Dissolved Antimony	4896791		<1.0	<1.0	NA	< 1.0	100%	70%	130%	100%	80%	120%	103%	70%	130%
Dissolved Arsenic	4896791		<1.0	<1.0	NA	< 1.0	100%	70%	130%	99%	80%	120%	98%	70%	130%
Dissolved Barium	4896791		23.6	23.0	2.6%	< 2.0	104%	70%	130%	106%	80%	120%	105%	70%	130%
Dissolved Beryllium	4896791		<0.50	<0.50	NA	< 0.50	103%	70%	130%	104%	80%	120%	106%	70%	130%
Dissolved Boron	4896791		<10.0	<10.0	NA	< 10.0	101%	70%	130%	102%	80%	120%	103%	70%	130%
Dissolved Cadmium	4896791		<0.20	<0.20	NA	< 0.20	100%	70%	130%	99%	80%	120%	103%	70%	130%
Dissolved Chromium	4896791		<2.0	<2.0	NA	< 2.0	98%	70%	130%	99%	80%	120%	99%	70%	130%
Dissolved Cobalt	4896791		<0.50	<0.50	NA	< 0.50	96%	70%	130%	98%	80%	120%	97%	70%	130%
Dissolved Copper	4896791		<1.0	<1.0	NA	< 1.0	98%	70%	130%	101%	80%	120%	93%	70%	130%
Dissolved Lead	4896791		<0.50	<0.50	NA	< 0.50	98%	70%	130%	91%	80%	120%	87%	70%	130%
Dissolved Molybdenum	4896791		<0.50	<0.50	NA	< 0.50	101%	70%	130%	101%	80%	120%	102%	70%	130%
Dissolved Nickel	4896791		<1.0	<1.0	NA	< 1.0	95%	70%	130%	94%	80%	120%	98%	70%	130%
Dissolved Selenium	4896791		2.4	<1.0	NA	< 1.0	99%	70%	130%	91%	80%	120%	102%	70%	130%
Dissolved Silver	4896791		<0.20	<0.20	NA	< 0.20	95%	70%	130%	96%	80%	120%	95%	70%	130%
Dissolved Thallium	4896791		<0.30	<0.30	NA	< 0.30	100%	70%	130%	99%	80%	120%	96%	70%	130%
Dissolved Uranium	4896791		<0.50	<0.50	NA	< 0.50	89%	70%	130%	103%	80%	120%	98%	70%	130%
Dissolved Vanadium	4896791		<0.40	<0.40	NA	< 0.40	96%	70%	130%	101%	80%	120%	102%	70%	130%
Dissolved Zinc	4896791		<5.0	<5.0	NA	< 5.0	100%	70%	130%	90%	80%	120%	97%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

QC Exceedance

CLIENT NAME: WSP CANADA INC.

PROJECT: 170 Slater St PHASE TWO 23592402

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Holmes

RPT Date: Apr 10, 2023		REFERENC	E MATE	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Accer Lim	otable nits	Recovery	Lin	ptable nits	e Accep Recovery Lim		ptable nits
		Value	Lower	Upper	,	Lower	Upper		Lower	Upper

O. Reg. 153(511) - VOCs (with PHC) (Water) 1,1-Dichloroethylene

56% 50% 140% 44% 60% 130% 104% 50% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 Slater St PHASE TWO 23592402

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Holmes

PROJECT: 170 Slater St PHASE TWC	0 23592402	ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson									
SAMPLING SITE:170 Slater St, Ottaw	a, Ontario	SAMPLED BY:Pa	aul Jackson								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis											
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Sediment			N/A								
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID								
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE								
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 Slater St PHASE TWO 23592402 SAMPLING SITE: 170 Slater St. Ottawa, Optaria

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Holmes

SAMPLING SITE:170 Slater St, Ott	awa, Ontario	SAMPLED BY:P	aul Jackson
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 Slater St PHASE TWO 23592402 SAMPLING SITE:170 Slater St. Ottawa. Ontario

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Holmes SAMPLED BY:Paul Jackson

SAMPLING SITE: 170 Slater St, Ott	awa, Ontario	SAMPLED BY:P	aur Jackson
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 170 Slater St PHASE TWO 23592402

AGAT WORK ORDER: 23Z011205 ATTENTION TO: Keith Hole

ATT	ENTI	ON T	O:	Keith	Hol	mes

SAMPLING SITE:170 Slater St, Otta	awa, Ontario	SAMPLED BY:Paul Jackson									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Water Analysis	· ·	·									
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								

nain of Custody Record	If this is a	a Drinking Water	sample, plea	se use Drini	king Water Chain of Custody Form (pota	ble water (consumed	by human	5)		-1	Arrival Te	mperatur		3 19	.210	95
CA/	VADA			(Please	gulatory Requirements: e check all applicable boxes)							Custody 5 Notes:	Seal Intac	t: DYes	ia	∃No	En
ontact: KEITH Hold ig31 Roper hone: NEPEAN apports to be sent to: KEITH, P. I- . Email: PAUL: JAC	MES BON RO N KZH LOO FAX: -OLMES	SUM QU	sp. WM	- Ta	legulation 153/04 Excess Soils R able	8	Prov. Objec	itary 🗌 Region	ality		T	egular ush TA	Dund Ti TAT (Mos T(Rush Sure Business ays	me (TAT)	S to 7	ed: Business I	ext Busin ay
roject Information: roject: 170 SIGTe-ST; te Location: 170 SIGTe-ST;	PHASE T	no Z33 A, ONTA	592402 ARIO		s this submission for a cord of Site Condition?	Cei	aport G rtificat Yes	e of An					AT is exclu	provide prior n sive of weeke analysis, pleas	nds and s	tatutory ho	olidays
ampled By: PAUL JACKSof GAT ID #: Please note: If quotation number is	N P0:			-	nple Matrix Legend	CrVI, DOC	0. R	eg 153				Reg 58 0. F	Reg 406		Secontac		
nvoice Information: ompany: ontact: ddress: mail:		Bill To Same: Ye	no 🗆	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg.	& Inorganics	Metals - LI CIVI, LI RB, LI RWSB BTEX, F1-F4 PHCs Analwze F4G If required TYes D	- Contraction and a second	oCBs 🔲 Araclar	VOC Landfill Disposal Characterization TCLP:	TCLP: DM&I DVOGS DABNS DB(a)PDPCBS Excess Soils SPLP Rainwater Leach Sol D: Diversion Divide Divide	STLFL, LINETAINS LI VOUS LI SVOUS Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	EC/SAR		03(6) 2.4	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	BTEX, F1 Analvze (PAHs	Total PCBs	VOC	Excess Excess	Excess pH, ICI	Salt - I			
23-01	4/3/23	1200 2		GW	/	Y		V	V								
A	10.00	AM PM AM PM					1.1		\vdash					-	-		
		AM PM				2	nes					2	Te a l			1001	
		AM PM					id get				19						
		AM PM AM PM				10.3	82			_	1		100			-	10
		AM PM					101	1.12								11.000 C	
								2					74-3			1004	
		AM PM AM PM				-											
		AIM						110/20			-	_	-				

