Performance Assessment Report

CMHC Loan Insurance Application MLI Select for New Construction



**Merivale Apartment** 

917 Merivale Road Ottawa, ON



EVNA Engineering & Consulting Ltd. 150 Elgin Street – Suite 1000 Ottawa, ON K2P 1L4 Prepared for Y Street Capital Date: July 17, 2024 Issued for: MLI-Select Application Revision: 0

#### TABLE OF CONTENTS

| ENGINEERING DECLARATION                         | 3 |
|-------------------------------------------------|---|
| EXECUTIVE SUMMARY                               | 4 |
| 1.0 PROPOSED BUILDING SIMULATION OVERVIEW       | 5 |
| 2.0 CMHC ENERGY MODELLING SUMMARY               | 6 |
| 2.1 Building Envelope                           | 6 |
| 2.2 Interior & Exterior Loads                   | 7 |
| 2.3 Air-side HVAC Systems                       |   |
| 2.4 Water-side HVAC Systems1                    |   |
| 3.0 PROPOSED AND REFERENCE BUILDING ENERGY USE1 | 3 |
| 3.1 Energy Use Breakdown1                       |   |
| 3.1.1 Electricity Use1                          | 3 |
| 3.1.2 Gas Use                                   |   |
| 3.1.3 Building Energy Use Summary1              |   |
| 4.0 MLI-SELECT – RELATIVE PERFORMANCE1          | 6 |
| 4.1 MLI SELECT – SUMMARY OF PERFORMANCE RESULTS | 7 |

# **ENGINEERING DECLARATION**

#### Issued for CMHC MLI-Select

This is to confirm that the Merivale Apartment project to be located at 917 Merivale Road in Ottawa, ON, is projected to result in a 44.7% reduction in annual energy use and a 62.6% reduction in annual greenhouse gas emissions relative to the CMHC Reference Building. The proposed project meets the energy efficiency criteria to achieve 50 points under CMHC's MLI-Select program.

#### **EVNA Engineering – Energy Modeler**

| erformance Analyst |
|--------------------|
| prized Signatory   |
|                    |
|                    |
| 4                  |
| 2                  |

#### **EVNA Engineering – Project Engineer**

| Sean Sirgi, P.Eng.                             | Building Performance Analyst  |
|------------------------------------------------|-------------------------------|
| Full Name                                      | Title of Authorized Signatory |
| PEO License #: 100619121                       |                               |
| S. I. SIRGI<br>100619121<br>ROLINCE OF ONTARIO | 17/07/2024                    |
|                                                | 1//0//2024                    |

# **EXECUTIVE SUMMARY**

EVNA Engineering was commissioned to prepare energy models for Merivale Apartment multi-unit residential building, located at 917 Merivale Road in Ottawa, to demonstrate the designed performance improvement relative to a CMHC NECB 2017 compliant reference building —as part of the CMHC MLI-Select program environmental efficiency requirement.

The proposed Merivale Apartment Apartments project is a 6-storey multi-residential building with 20 dwelling units, located in Ottawa, Ontario. The building has a total Modeled Floor Area (MFA) of approximately 1,455 m<sup>2</sup> (15,655 ft<sup>2</sup>). Energy simulations were prepared using eQUEST 3.65.

#### <u>CMHC – MLI Select Multi-Unit Residential Building – New Construction</u>

The energy analysis evaluates the performance of the Proposed Building design relative to a static CMHC NECB 2017 Compliant Reference Building, hereinafter referred to as Reference Building, or CMHC Reference Building.

This report aims to confirm that the proposed design will achieve an energy use and greenhouse gas emissions reduction of at least 40% relative to the Reference Building, qualifying the property for 50 MLI Select points.

The proposed project site demonstrates a 44.7% reduction in annual energy use and an 62.6% reduction in annual greenhouse gas emissions over the Reference Building.

| Description                                                              | Proposed Building | Reference Building | Savings |
|--------------------------------------------------------------------------|-------------------|--------------------|---------|
| Total Annual Energy Consumption<br>(GJ/year)                             | 999.1             | 1,806.0            | 44.7%   |
| Total Annual Greenhouse Gas<br>Emission (tons of eCO <sub>2</sub> /year) | 29.5              | 79.1               | 62.6%   |

#### Table 1.1 – Energy Use and Greenhouse Gas Emissions Reduction Summary

### **1.0 PROPOSED BUILDING SIMULATION OVERVIEW**

The proposed Merivale Apartment Apartments project is a 6-storey plus basement multi-residential building with 20 dwelling units, located in Ottawa, Ontario. The building has a total Buildable Floor Area (BFA) of approximately 1,455 m<sup>2</sup> (15,655 ft<sup>2</sup>). The Modeled Floor Area (MFA) is equal to the BFA.

Space Type Area (m<sup>2</sup>) Area (ft<sup>2</sup>) 948 10,202 **Dwelling Units** Common Area (Corridor, Lobby, etc.) 482 5,188 Mechanical/Electrical 25 265 0 0 Parking 1,455 15,655 Total Buildable Floor Area (BFA) 1,455 15,655 Total Modelled Floor Area (MFA)

The following table summarizes the building's floor areas by space type:

The energy simulations were performed using eQUEST 3.65. The CWEC2020 weather file for Ottawa, Ontario was used in the simulations, on the basis this weather file was the most representative of the project's location.

NECB 2017 Climatic Zone 6 (4000°C  $\leq$  HDD18 < 5000°C) was applied to the Reference Building according to the 2017 NECB Division B Climatic Information, Table C-1.

The following is a list of Energy Conservation Measures (ECMs) that were incorporated into the Proposed Building design:

- In-suite heat recovery ventilators with a 65% sensible effectiveness @0°C
- High efficiency air-source heat pumps with a COP 4.1 (@47°F)
- Low window to wall ratio (≈ 21%).
- 90% efficient gas fired make-up air unit
- 96% efficient condensing gas fired domestic water heater
- Reduced domestic hot water load by 36.0% via low flow fixtures.
  - Lavatory: 0.5 gpm, Kitchen faucet: 1.0 gpm, Showerhead: 1.75 gpm

Lighting power densities were modeled using the Space-by-Space Area Method for a Multi-Unit Residential Building type per NECB 2017 Table 4.2.1.6.

The building operates 24 hours per day, 7 days per week. The NECB 2017 operating schedules applied are Type C, and G, per Table A-8.4.3.2. (2)-A.

## 2.0 CMHC ENERGY MODELLING SUMMARY

## 2.1 Building Envelope

The Reference Building envelope was modeled according to NECB 2017 for Climatic Zone 6. The energy simulations are based on the architectural design drawings dated June 24, 2024, prepared by the architectural design team at Biosis Design Inc.

The following tables are a side-by-side comparison of the building envelope input between the Reference and Proposed Building models:

| Building Envelope                                                                                           |                                                                                        |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Reference Building                                                                                          | Proposed Building                                                                      |
| Climatic Zone                                                                                               | Climatic Zone                                                                          |
| NECB 2017 Division B - Table C-1                                                                            | NECB 2017 Division B - Table C-1                                                       |
| Province: Ontario                                                                                           | Province: Ontario                                                                      |
| Location: Ottawa                                                                                            | Location: Ottawa                                                                       |
| Degree Days Below 18°C: 4500 HDD18                                                                          | Degree Days Below 18°C: 4500 HDD18                                                     |
| Design Temperature (Jan 2.5% °C): -25°C                                                                     | Design Temperature (Jan 2.5% °C): -25°C                                                |
| Exterior Walls <sup>1</sup>                                                                                 | Exterior Walls <sup>1</sup>                                                            |
| NECB 2017 Division B - Table 3.2.2.2. (Zone 6)                                                              | Exterior Wall                                                                          |
| Assembly Performance: USI-0.247   U-0.043                                                                   | Assembly Performance: USI-0.385   U-0.067<br>Including the effects of thermal bridging |
| Exterior Roof <sup>1</sup>                                                                                  | Exterior Roof <sup>1</sup>                                                             |
| NECB 2017 Division B - Table 3.2.2.2. (Zone 6)                                                              | Roof                                                                                   |
| Assembly USI: 0.156   U-0.027                                                                               | Assembly Performance: USI-0.144   U-0.025                                              |
| Slab Construction                                                                                           | Slab Construction                                                                      |
| NECB 2017 3.2.3.1.(5)                                                                                       | Uninsulated Concrete Slab                                                              |
| Same as Proposed Building.                                                                                  | Treated as an adiabatic surface by modeling                                            |
|                                                                                                             | software.                                                                              |
| Fenestration Type <sup>1</sup>                                                                              | Fenestration Type <sup>1</sup>                                                         |
| NECB 2017 Table 3.2.2.3. (Zone 6)                                                                           | Glazing                                                                                |
| Assembly Performance: USI-1.9                                                                               | Effective Assembly Performance: USI-1.9                                                |
| SHGC (Other): 0.40                                                                                          | SHGC-0.40                                                                              |
| Properties above include glazing and frame, and apply to fixed and operable windows, as well as glass doors | Properties above applies to fixed and operable windows, as well as glass doors         |
| Fenestration & Door to Wall Area Ratio (FDWR)                                                               | Fenestration & Door to Wall Area Ratio (FDWR)                                          |
| NECB 2017 Section 3.2.1.4 (4000 < HDD ≤ 7000)                                                               | Vision Glass, Glass Doors & Opaque Doors                                               |
| FDWR = (2000 - 0.2·HDD)/3000 = 36.6%                                                                        | Proposed Building FDWR = 21%                                                           |
| According to NECB 2017 8.4.4.5.(5)(c)                                                                       |                                                                                        |
| Infiltration                                                                                                | Infiltration                                                                           |
| Same as Proposed Building, no credit.                                                                       | NECB 2017 Allowance: 0.25 L/s-m <sup>2</sup> @ 5 Pa                                    |
|                                                                                                             | NECB Infiltration: 892 cfm                                                             |
|                                                                                                             | Air Changes @ 50 Pa: 1.52 ACH50                                                        |
|                                                                                                             | Air Changes @ 12.2 Pa: 0.61 ACH12.2                                                    |

All Reference Building space loads not addressed in NECB 2017 standard were modeled the same as the Proposed Building design. <sup>1</sup> Effective thermal performance: USI units:  $W/m^2$ -K | U-value unit: Btu/hr-°F-ft<sup>2</sup> | RSI units:  $m^2$ -K/W | R-value units: hr-ft<sup>2</sup>-°F/Btu

## 2.2 Interior & Exterior Loads

The Reference Building's lighting system was modeled using the lighting power allowances prescribed by the NECB 2017 Space-by-Space Method. The Proposed Building's interior and exterior lighting loads were modeled in compliance with NECB 2017.

The following tables are a side-by-side comparison of the building electrical load input between the Reference and Proposed Building models:

| Miscellaneous Plug Loads                                                   |                                                                             |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Reference Building                                                         | Proposed Building                                                           |
| Interior (Dwelling Units)                                                  | Interior (Dwelling Units)                                                   |
| NECB 2017 Table A-8.4.3.2.(2)-B                                            | NECB 2017 Table A-8.4.3.2.(2)-B                                             |
| Reference Equipment Power Density (EPD) input                              | Proposed Equipment Power Density (EPD) input for                            |
| for dwelling units set to 5 W/m <sup>2</sup> (0.46 W/ft <sup>2</sup> ) per | dwelling units set to 5 W/m <sup>2</sup> (0.46 W/ft <sup>2</sup> ) per NECB |
| NECB 2017 Part 8.                                                          | 2017 Part 8.                                                                |

| Exhaust Fans                           |  |  |
|----------------------------------------|--|--|
| Proposed Building                      |  |  |
| Dwelling Units Exhaust                 |  |  |
| Power per fan: 0.5 W/cfm               |  |  |
| Total Exhaust Power: 2.55 kW (2 h/day) |  |  |
|                                        |  |  |

| Lighting                                                                    |                                                                             |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Reference Building                                                          | Proposed Building                                                           |
| Interior (Dwelling Units)                                                   | Interior (Dwelling Units)                                                   |
| Reference Lighting Power Density (LPD) input for                            | Proposed Lighting Power Density (LPD) input for                             |
| dwelling units set to 5 W/m <sup>2</sup> (0.46 W/ft <sup>2</sup> ) per NECB | dwelling units set to 5 W/m <sup>2</sup> (0.46 W/ft <sup>2</sup> ) per NECB |
| Interior (Other)                                                            | Interior (Other)                                                            |
| Reference Lighting Power Densities (LPDs) set to                            | Space-by-Space Method was followed, as the                                  |
| NECB 2017 prescribed Space-by Space LPD                                     | electrical design drawings were not available at time                       |
| allowances. No credit taken for occupancy                                   | of writing. Input was set to the LPDs prescribed in                         |
| controls.                                                                   | NECB 2017.                                                                  |
| Average adjusted LPD: <u>4.3 W/m<sup>2</sup></u> (0.40 W/ft <sup>2</sup> )  | Average adjusted LPD: <u>4.3 W/m<sup>2</sup></u> (0.40 W/ft <sup>2</sup> )  |

All Reference Building space interior/exterior loads not addressed in NECB 2017 standard were modeled the same as the Proposed Building design.

## 2.3 Air-side HVAC Systems

The Reference Building's air-side HVAC systems were modeled according to the minimum compliance requirements defined by the NECB 2017, per the CMHC MLI Select program allowance.

The Proposed Building's air-side HVAC systems were modeled based on the mechanical design briefs dated May 1, 2024, prepared by the mechanical design team at LRL Engineering, as well as energy savings measures recommended by EVNA Engineering.

The following tables are a side-by-side comparison of the building air-side HVAC input between the Reference and Proposed Building models:

| Secondary Systems (Air-side HVAC)                          |                                                            |  |
|------------------------------------------------------------|------------------------------------------------------------|--|
| Reference Building                                         | Proposed Building                                          |  |
| Supply & Ventilation Air                                   | Supply & Ventilation Air                                   |  |
| <ul> <li>Total supply air flow = 20,535 cfm</li> </ul>     | <ul> <li>Total supply air flow = 20,040 cfm</li> </ul>     |  |
| <ul> <li>Total min outdoor air flow = 2,000 cfm</li> </ul> | <ul> <li>Total min outdoor air flow = 2,000 cfm</li> </ul> |  |
| <ul> <li>Total fan power = 2.9 kW (CS)</li> </ul>          | <ul> <li>Total fan power = 2.1 kW (VFD)</li> </ul>         |  |

| Secondary Systems (Air-side HVAC)                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fresh Air Systems                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |  |
| Reference Building                                                                                                                                                                                                                                                                   | Proposed Building                                                                                                                                                                                                                                                                                         |  |
| System                                                                                                                                                                                                                                                                               | System                                                                                                                                                                                                                                                                                                    |  |
| <u>NECB 2015 Table 8.4.4.7-B Note (2)</u><br>"For HVAC systems serving dwelling units,<br>outside air requirements shall be met by a<br>ventilation system identical to that of the<br>proposed building."                                                                           | System - Make-Up Air (MUA) Unit<br>One (1) 100% outdoor air MUA unit with air-cooled<br>DX cooling and gas heating serving the building<br>fresh air needs. MUA unit to supply supplementary<br>outdoor air to dwelling units via corridor<br>pressurization, at a rate of approximately 35<br>cfm/suite. |  |
| System Properties - Fans & Outdoor Air<br>• Outdoor Air Supply: 600 cfm (to dwelling units)<br>• SF Control: Variable Volume<br>SF Power: 1.00 kW (Per NECB 2015 8.4.4.18.(5))<br>• No heat recovery required (Per SB-10 (2017)<br>5.2.10.1.)                                        | System Properties - Fans & Outdoor Air<br>• Outdoor Air Supply: 2,000 cfm<br>• SF Control: Variable Volume<br>SF Power: 0.50 W/cfm<br>• No heat recovery installed                                                                                                                                        |  |
| <ul> <li>System Properties - Cooling &amp; Heating</li> <li>Cooling: Air-cooled DX coils</li> <li>Cooling Cap: Sized to meet loads</li> <li>Cooling Efficiency: COP 3.17</li> <li>Heating: Gas</li> <li>Heating Cap: Sized to meet loads</li> <li>Heating Efficiency: 80%</li> </ul> | <ul> <li>System Properties - Cooling &amp; Heating</li> <li>Cooling: Air-cooled DX coils</li> <li>Cooling Cap: Sized to meet loads</li> <li>Cooling Efficiency: COP 3.43</li> <li>Heating: Gas</li> <li>Heating Cap: Sized to meet loads</li> <li>Heating Efficiency: 90%</li> </ul>                      |  |
| <u>System Properties - Control Setpoints</u><br>Cooling Supply Air Temperature = 72°F<br>Heating Supply Air temperature = 72°F<br>Economizer: n/a (fixed fraction)                                                                                                                   | System Properties - Control Setpoints<br>Cooling Supply Air Temperature = 72°F<br>Heating Supply Air temperature = 72°F<br>Economizer: n/a (fixed fraction)                                                                                                                                               |  |

| Secondary Systems (Air-side HVAC)                                |                                                                |  |
|------------------------------------------------------------------|----------------------------------------------------------------|--|
| Lobby Systems                                                    |                                                                |  |
| Reference Building                                               | Proposed Building                                              |  |
| System                                                           | System                                                         |  |
| NECB 2017 System 3 (Tables 8.4.4.7.A & 8.4.4.7.B)                | Air-Source Heat Pumps (ASHPs)                                  |  |
| Space Type: General Area max 2 storeys                           | Amenities and lobbies are served by ASHPs,                     |  |
| System Type: Packaged Single Zone Rooftop Unit w/                | operating down to an outdoor temperature of -15°C              |  |
| gas-fired furnace and electric baseboards                        | with electric resistance backup. Fresh air to be               |  |
|                                                                  | supplied by MUA unit.                                          |  |
| Supply & Return Fans                                             | Supply & Return Fans                                           |  |
| <ul> <li>Total air supply: 650 cfm (auto sized)</li> </ul>       | <ul> <li>Total air supply: 800 cfm</li> </ul>                  |  |
| <ul> <li>Supply Air per unit: 650 cfm/unit</li> </ul>            | <ul> <li>Supply Air per unit: 800 cfm/unit</li> </ul>          |  |
| <ul> <li>SF Control: Constant Volume</li> </ul>                  | • SF Control: Variable                                         |  |
| <ul> <li>SF Power: Fan power (kW) equal to Proposed</li> </ul>   | <ul> <li>SF Power: 0.2 W/cfm per suite</li> </ul>              |  |
| (Per NECB Sentence 8.4.4.18.(5))                                 |                                                                |  |
| Ventilation                                                      | <u>Ventilation</u>                                             |  |
| <ul> <li>Outdoor Air Supply: 400 cfm</li> </ul>                  | <ul> <li>Outdoor Air Supply: 400 cfm (MUA Unit)</li> </ul>     |  |
| ERVs                                                             | <u>ERVs</u>                                                    |  |
| <ul> <li>No heat recovery installed</li> </ul>                   | <ul> <li>Not installed</li> </ul>                              |  |
| In accordance with NECB Table 5.2.10.4.                          |                                                                |  |
| Cooling & Heating                                                | Cooling & Heating                                              |  |
| <ul> <li>Cooling Source: DX cooling coil</li> </ul>              | <ul> <li>Cooling Source: Air-source DX cooling coil</li> </ul> |  |
| <ul> <li>Cooling Cap: Sized to meet load (Auto sized)</li> </ul> | <ul> <li>Cooling Cap: 24 MBH per unit</li> </ul>               |  |
| <ul> <li>Cooling Efficiency: EER 11.8</li> </ul>                 | <ul> <li>Cooling Efficiency: EER 13.1</li> </ul>               |  |
| <ul> <li>Heating Source: Gas furnace</li> </ul>                  | <ul> <li>Heating Source: Air-source DX heating coil</li> </ul> |  |
| <ul> <li>Heating Cap: Sized to meet load (Auto sized)</li> </ul> | <ul> <li>Heating Cap: 24 MBH per unit</li> </ul>               |  |
| <ul> <li>Heating Efficiency: 81%</li> </ul>                      | <ul> <li>Heating Efficiency: COP 4.1 (@47°F)</li> </ul>        |  |
| Control Setpoints                                                | Control Setpoints                                              |  |
| Cooling Supply Air Temperature = 55°F                            | Cooling Supply Air Temperature = 55°F                          |  |
| Heating Supply Air temperature = 109.4°F                         | Heating Supply Air temperature = 109.4°F                       |  |
| (Per NECB Sentence 8.4.4.18.(2)(a)(b))                           |                                                                |  |

| Secondary Systems (Air-side HVAC)                                |                                                                       |
|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Residential Systems                                              |                                                                       |
| Reference Building                                               | Proposed Building                                                     |
| System                                                           | System                                                                |
| NECB 2017 Table 8.4.4.7-A & B                                    | Air-Source Heat Pumps (ASHPs)                                         |
| Dwelling Units are served PTACs. Outdoor air                     | Dwelling Units are served ASHPs. Fresh air to be                      |
| dampers provide 50 cfm of outdoor air per suite,                 | supplied by ERVs at a rate of 50 cfm/suite, with                      |
| with supplemental fresh air supplied by MUA unit                 | supplemental fresh air supplied by MUA unit via                       |
| via corridor pressurization at a rate of 30 cfm/suite.           | corridor pressurization at a rate of 30 cfm/suite.                    |
| Supply & Return Fans                                             | Supply & Return Fans                                                  |
| <ul> <li>Total air supply: 18,456 cfm (auto sized)</li> </ul>    | <ul> <li>Total air supply: 16,000 cfm</li> </ul>                      |
| <ul> <li>Supply Air per Suite: 326-710 cfm/suite</li> </ul>      | <ul> <li>Supply Air per Suite: 800 cfm/suite</li> </ul>               |
| <ul> <li>SF Control: Constant Volume</li> </ul>                  | <ul> <li>SF Control: Variable</li> </ul>                              |
| <ul> <li>SF Power: Fan power (kW) equal to Proposed</li> </ul>   | <ul> <li>SF Power: 0.2 W/cfm per suite</li> </ul>                     |
| (Per NECB Sentence 8.4.4.18.(5))                                 |                                                                       |
| Ventilation                                                      | <u>Ventilation</u>                                                    |
| • Outdoor Air Supply: 1,000 cfm (50 cfm /suite)                  | <ul> <li>Outdoor Air Supply: 1,000 cfm (ERV: 50 cfm/suite)</li> </ul> |
| ERVs                                                             | <u>ERVs</u>                                                           |
| <ul> <li>No heat recovery installed</li> </ul>                   | <ul> <li>HRVs with a 65% sensible effectiveness @0°C</li> </ul>       |
| In accordance with NECB Table 5.2.10.4.                          | recovery w/ power consumption of 38 W/ERV                             |
| Cooling & Heating                                                | Cooling & Heating                                                     |
| <ul> <li>Cooling Source: DX cooling coil</li> </ul>              | <ul> <li>Cooling Source: Air-source DX cooling coil</li> </ul>        |
| <ul> <li>Cooling Cap: Sized to meet load (Auto sized)</li> </ul> | <ul> <li>Cooling Cap: 24 MBH per suite</li> </ul>                     |
| <ul> <li>Cooling Efficiency: EER 12.0</li> </ul>                 | <ul> <li>Cooling Efficiency: EER 13.1</li> </ul>                      |
| <ul> <li>Heating Source: Hydronic heating</li> </ul>             | <ul> <li>Heating Source: Air-source DX heating coil</li> </ul>        |
| <ul> <li>Heating Cap: Sized to meet load (Auto sized)</li> </ul> | <ul> <li>Heating Cap: 24 MBH per suite</li> </ul>                     |
|                                                                  | <ul> <li>Heating Efficiency: COP 4.1 (@47°F)</li> </ul>               |
| Control Setpoints                                                | Control Setpoints                                                     |
| Cooling Supply Air Temperature = 55°F                            | Cooling Supply Air Temperature = 55°F                                 |
| Heating Supply Air temperature = 109.4°F                         | Heating Supply Air temperature = 109.4°F                              |
| (Per NECB Sentence 8.4.4.18.(2)(a)(b))                           |                                                                       |

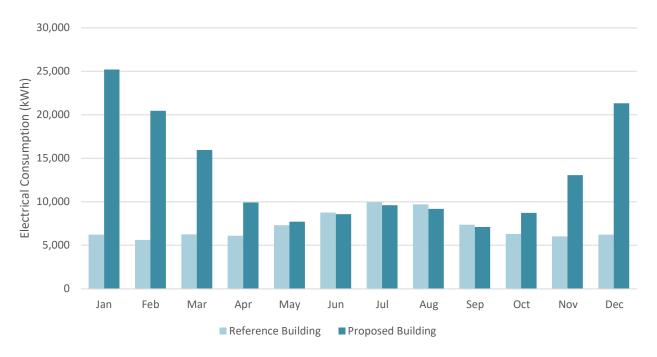
### 2.4 Water-side HVAC Systems

The Reference Building's water-side HVAC systems were modeled according to the minimum compliance requirements defined by the NECB 2017, per the CMHC MLI Select program allowance.

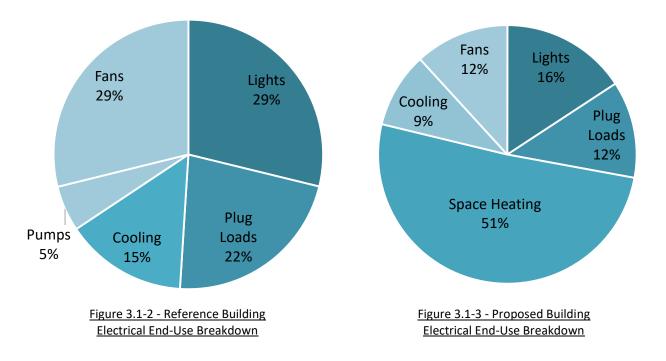
The Proposed Building's water-side HVAC systems were modeled based on the mechanical design briefs dated May 1, 2024, prepared by the mechanical design team at LRL Engineering, as well as energy savings measures recommended by EVNA Engineering.

The following tables are a side-by-side comparison of the building water-side HVAC input between the Reference and Proposed Building models:

| Building Plant Equipment (Water-side HVAC)                          |                                                       |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------|--|--|
| Reference Building                                                  | Proposed Building                                     |  |  |
| Plant Heating                                                       | Plant Heating                                         |  |  |
| Reference Hot Water (HW) Loop                                       | PB - Heating Plant Loop                               |  |  |
| Reference HW loop serves the heating needs of the                   | There is no hot water loop in the Proposed Building   |  |  |
| heating coils in the Reference Building. The loop is                | as the building is DX heated and cooled.              |  |  |
| served by atmospheric gas-fired boilers.                            |                                                       |  |  |
| <ul> <li>HW Loop Temperature: 180°F</li> </ul>                      |                                                       |  |  |
| <ul> <li>HW Loop Delta: 28.8°F</li> </ul>                           |                                                       |  |  |
| • Outdoor air reset: 180°F @ OA 3.2°F, 140°F @ OA                   |                                                       |  |  |
| 32°F                                                                |                                                       |  |  |
| Plant Heating Equipment                                             | Plant Heating Equipment                               |  |  |
| Reference Hot Water (HW) Loop                                       | There is no heating plant equipment in the Proposed   |  |  |
| Boiler                                                              | Building as the building is DX heated and cooled with |  |  |
| <ul> <li>Boiler Type: 1 Gas-fired atmospheric boiler</li> </ul>     | ASHPs.                                                |  |  |
| <ul> <li>Capacity: Sized to meet loads</li> </ul>                   |                                                       |  |  |
| <ul> <li>Efficiency: 83.0%</li> </ul>                               |                                                       |  |  |
| Loop Pumps (Per NECB 2017 8.4.4.14.(2))                             |                                                       |  |  |
| <ul> <li>Pump Quantity: 1 Pump</li> </ul>                           |                                                       |  |  |
| <ul> <li>Pump Control: Constant Speed</li> </ul>                    |                                                       |  |  |
| <ul> <li>Pump Head &amp; Efficiency: 75 ft @ 65% eff (22</li> </ul> |                                                       |  |  |
| W/gpm)                                                              |                                                       |  |  |

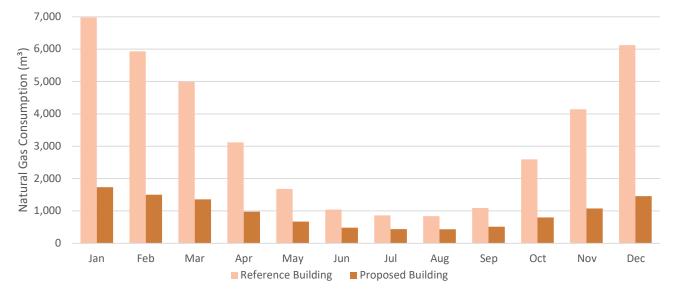

| Building Plant Equipment (Water-side HVAC)                           |                                                                      |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Reference Building                                                   | Proposed Building                                                    |  |  |  |
| Plant DHW Heating Loops                                              | Plant DHW Heating Loops                                              |  |  |  |
| Reference Domestic Hot Water (DHW) Loop                              | Proposed Domestic Hot Water (DHW) Loops                              |  |  |  |
| Reference DHW loop serves the building's service                     | Proposed DHW loop serves the building's service                      |  |  |  |
| water loads. Same as proposed.                                       | water loads.                                                         |  |  |  |
| In accordance with NECB 8.4.4.20                                     | <ul> <li>DHW Loop Design Temperature: 140°F</li> </ul>               |  |  |  |
| <ul> <li>DHW Loop Design Temperature: 140°F</li> </ul>               | ◦ Loop DT: 100°F                                                     |  |  |  |
| • Loop DT: 100°F                                                     |                                                                      |  |  |  |
| Domestic Hot Water Heating Equipment                                 | Domestic Hot Water Heating Equipment                                 |  |  |  |
| Equipment Serving Reference DHW Loop                                 | Equipment Serving DHW Loop                                           |  |  |  |
| Water Heaters                                                        | Water Heaters                                                        |  |  |  |
| <ul> <li>Boiler Type: Atmospheric gas fired water heater</li> </ul>  | <ul> <li>Boiler Type: Condensing gas fired water heater</li> </ul>   |  |  |  |
| • Heating Capacity: 240 MBH (12 MBH/suite assumed)                   | • Heating Capacity: 240 MBH (12 MBH/suite assumed)                   |  |  |  |
| <ul> <li>Storage Capacity: 120 gals (6 gal/suite assumed)</li> </ul> | <ul> <li>Storage Capacity: 120 gals (6 gal/suite assumed)</li> </ul> |  |  |  |
| <ul> <li>Efficiency: 80%</li> </ul>                                  | • Efficiency: 96%                                                    |  |  |  |
| Service Water Heating Loads                                          | Service Water Heating Loads                                          |  |  |  |
| Water Fixtures                                                       | Water Fixtures                                                       |  |  |  |
| No low flow faucets/showerheads. NECB 2017                           | 36.0% DHW reduction per LEED v4 calculator                           |  |  |  |
| values used for loads.                                               |                                                                      |  |  |  |
| Standard Fixtures:                                                   | Low Flow Fixtures:                                                   |  |  |  |
| <ul> <li>Residential Lavatory: 1.5 gpm</li> </ul>                    | <ul> <li>Residential Lavatory: 0.5 gpm</li> </ul>                    |  |  |  |
| <ul> <li>Residential Kitchen Faucet: 2.2 gpm</li> </ul>              | <ul> <li>Residential Kitchen Faucet: 1.0 gpm</li> </ul>              |  |  |  |
| <ul> <li>Residential Showerhead: 2.0 gpm</li> </ul>                  | <ul> <li>Residential Showerhead: 1.75 gpm</li> </ul>                 |  |  |  |
| • Reference Building DHW load = 2.325 GPM                            | <ul> <li>Proposed Building DHW load = 1.488 GPM</li> </ul>           |  |  |  |

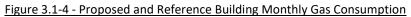
## 3.0 PROPOSED AND REFERENCE BUILDING ENERGY USE

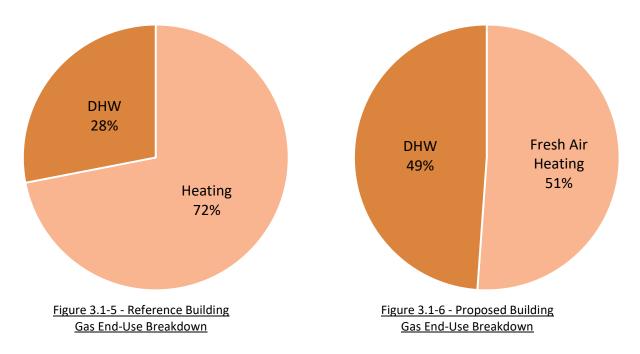

### 3.1 Energy Use Breakdown

## 3.1.1 Electricity Use

The following graphs show the monthly electrical consumption and end use breakdown of the Proposed and Reference Buildings.

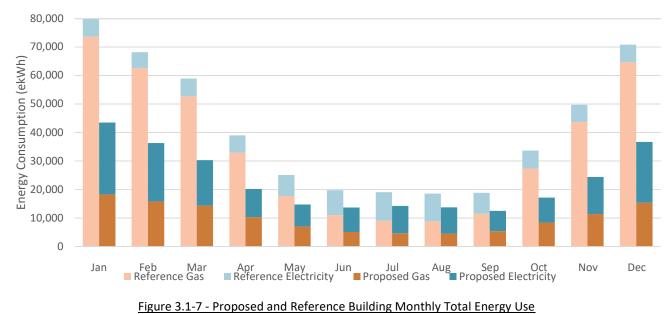



## 3.1.2 Gas Use

The following graphs show the monthly natural gas consumption and end use breakdown of the Proposed and Reference Buildings.








# 3.1.3 Building Energy Use Summary

The figure below shows the monthly total energy use of the Proposed and Reference Buildings.



## 4.0 MLI-SELECT – RELATIVE PERFORMANCE

CMHC's MLI-Select program for new and existing multi-unit residential buildings offers building owners access to reduced mortgage premiums and longer amortization periods based on building performance in three categories: affordability, accessibility, and energy efficiency.

The program has a point-based system and 3-levels of lending flexibilities. The insurance flexibilities for new construction are shown below:

|              | Premium                                        | LTC    | DCR <sup>3</sup> | Amortization   | Rental<br>Achievement | Recourse or<br>Limited<br>Recourse | Replacement<br>Reserve |
|--------------|------------------------------------------------|--------|------------------|----------------|-----------------------|------------------------------------|------------------------|
| Min. 50 pts  |                                                |        |                  | Up to 40 years |                       | Recourse                           |                        |
| Min. 70 pts  | Fees and<br>premiums at-<br>Up to 95% Min. 1.1 | Waived | Recourse         | Discretionary  |                       |                                    |                        |
| Min. 100 pts | <u>a-glance</u>                                |        |                  | Up to 50 years |                       | Limited-<br>Recourse               |                        |

#### **New Construction - Insurance Flexibilities**

#### Figure 4.1 - Select Insurance Flexibilities

To achieve the maximum 100 points available, building owners can implement measures from all three improvement categories: affordability, energy performance, and accessibility. The point distribution for energy performance is shown below:

|--|

| Energy Efficiency and GHGs Reduction over NECB 2017 |                             |               |  |
|-----------------------------------------------------|-----------------------------|---------------|--|
| 20 Points                                           | 20 Points 35 Points 50 poin |               |  |
| 20% reduction                                       | 25% reduction               | 40% reduction |  |

This project aims to achieve 50 points based only on the energy performance pathway by reducing energy consumption and greenhouse gas emissions by 40% or more relative to the Reference Building.


The following tables summarize the Proposed and Reference Building's annual energy use and greenhouse gas emissions.

#### Table 4.2- Energy Use and Greenhouse Gas Emissions Reduction Summary

| Description                                                              | Proposed Building | Reference Building | Savings |
|--------------------------------------------------------------------------|-------------------|--------------------|---------|
| Total Annual Energy Consumption<br>(GJ/year)                             | 999.1             | 1,806.0            | 44.7%   |
| Total Annual Greenhouse Gas<br>Emission (tons of eCO <sub>2</sub> /year) | 29.5              | 79.1               | 62.6%   |

## 4.1 MLI SELECT – SUMMARY OF PERFORMANCE RESULTS

The following graph and table summarize the energy by end-use and type of the Proposed and Reference Buildings:



| Energy Model       | Natural Gas<br>(m³) | Electricity<br>(kWh) | Total Energy<br>(ekWh) | CO₂ Emissions*<br>(ekg) |
|--------------------|---------------------|----------------------|------------------------|-------------------------|
| Reference Building | 39,391              | 85,820               | 501,659                | 79,095                  |
| Proposed Building  | 11,430              | 156,865              | 277,528                | 29,549                  |
| Savings            | 71.0%               | -82.8%               | 44.7%                  | 62.6%                   |

\*GHG Conversion: 1 kWh electricity = 0.05 ekg CO<sub>2</sub> | 1 m<sup>3</sup> gas = 1.899 ekg CO<sub>2</sub>. Reference: Ontario MMA Supplementary Standard SB-10 2016

Based on these energy simulations results, the Proposed Building is expected to achieve energy and greenhouse gas savings of 44.7% and 62.6%, respectively, relative to the Reference Building, qualifying the project for 50 MLI Points under the Energy Efficiency and GHGs Reduction pathway.