patersongroup

Consulting Engineers

154 Colonnade Road South Ottawa, Ontario Canada, K2E 7J5

> Tel: (613) 226-7381 Fax: (613) 226-6344

Geotechnical Engineering Environmental Engineering Hydrogeology Geological Engineering Materials Testing Building Science

November 17, 2021 File: PE4737-LET.02

8417709 Canada Inc.

310 – 430 de l'Hopital Boulevard Gatineau, Quebec J8V 1T7

Attention: Mr. Paul-Andre Charbonneau

www.patersongroup.ca

Subject: Phase II - Environmental Site Assessment Update 3459 and 3479 St. Joseph Boulevard Ottawa, Ontario

Dear Sir,

Further to your request, Paterson Group (Paterson) carried out a Phase II - Environmental Site Assessment (ESA) Update for the aforementioned properties. This report updates a previous Phase II-ESA report entitled, "Phase II Environmental Site Assessment, 3459 and 3479 St. Joseph Boulevard Ottawa, Ontario," completed by Paterson, dated January 9, 2020. This Phase II ESA Update has been completed in accordance with O.Reg. 153/04, as amended, under the Environmental Protection Act. This report is to be read in conjunction with the Phase II ESA Report (PE4737-2).

Background Information

Physical Setting

The Phase II Property is located on the north side of St Joseph Boulevard, approximately 350m west of the intersection with 2nd Avenue and is located at the northeast corner of the intersection between St. Joseph Boulevard and an onramp of Regional Road 174. The subject site has remained largely undeveloped with only two residential dwellings, constructed around 1972/73. One of these buildings was demolished between 2002 and 2005.

Past Investigations

□ 'Phase I Environmental Site Assessment, 3459 and 3479 St. Joseph Boulevard Ottawa, Ontario', dated November 5, 2019, prepared by Paterson Group;

The 2019 Phase I ESA identified potentially historical on- and off-site potentially contaminating activities (PCAs) and were considered to result in areas of potential environmental concern (APECs) on the Phase I and Phase II Property, as presented in Table 1.

Table 1 Area of Pote	ntial Environme	ental Concern			
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	kMedia Potentially Impacted (Groundwater, Soil, and/or Sediment)
RV servicing	Southwestern portion of the site.	Item 52 - Commercial vehicle servicing	On-site	PHCs, BTEX	Soil/ Groundwater
Landfill	Western portion of the site.	Item 58 - Landfilling	Off-site	PHCs, BTEX, Metals	Soil, Groundwater

Paterson subsequently completed a Phase II ESA in January 2020 to address the aforementioned APECs.

□ 'Phase II Environmental Site Assessment, 3459 and 3479 St. Joseph Boulevard Ottawa, Ontario.'

The subsurface investigation consisted of drilling three (3) boreholes, all of which were constructed with groundwater monitoring well installations. Additional boreholes were conducted on site for geotechnical purposes.

Twenty (20) soil samples were obtained from the boreholes and screened using visual observations and organic vapour measurements. A total of three (3) soil samples were submitted for laboratory analysis of a combination of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), petroleum hydrocarbons (PHCs, F₁-F₄), and/or metals. The vanadium concentrations in soil samples BH2-SS4 and BH3-SS5, marginally exceeded the MECP Table 3 standard. Vanadium is known to occur naturally at concentrations in excess of the Table 3 standards in the Ottawa Region clays and as such the results are not considered to be indicative of contamination.

Mr. Paul-Andre Charbonneau Page 3 File: PE4737-LET.02

Groundwater samples obtained from three (3) monitoring wells were submitted for laboratory analysis of PHC (F1-F4), BTEX and/or metal parameters. The groundwater results were in compliance with the MECP Table 3 Standards.

A Phase I ESA Update was completed by Paterson in October of 2021. Based on the findings of the assessment, no new or materially changed APECs were identified on the subject property. As such, the findings of the 2020 Phase II ESA were considered to be representative of the current site conditions. It was recommended that the 2020 Phase II ESA be updated in accordance with O.Reg. 153/04, as amended.

Impediments

No impediments were encountered during this Phase II ESA Update.

Investigation Method

A groundwater and soil sampling event took place on October 5, 2021, as well as groundwater monitoring from all three (3) wells. A groundwater sample and duplicate were collected from BH1 and submitted for benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbons (PHCs, F1-F4) analysis. A soil sample and duplicate were collected near BH1 and submitted for benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbons (PHCs, F1-F4).

Review and Evaluation

Geology

The soil profile consists of surficial grass and topsoil overlying silty clay glaciomarine deposits. Bedrock is inferred to be around 21.87 m below the existing grade.

Groundwater at the Phase II Property was encountered within the overburden soil. This unit is interpreted to function as a local aquifer at the subject site.

Groundwater Elevations, Flow Direction and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling event on October 5, 2021, using an electronic water level meter. Groundwater levels are summarized below in Table 2. All elevations are relative to the catch basin located on St. Joseph Boulevard with a geodetic elevation of 61.30 m asl.

Table 2 Groundwater	Level Measure	ments		
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement
BH1	58.69	1.12	57.57	October 5, 2021
BH2	57.33	0.960	56.37	
BH3	58.23	0.940	57.29	

Based on the groundwater levels recorded, the groundwater flow direction is to the west as shown on Drawing PE4737-4A – Groundwater Contour Plan.

Soil Quality

A soil sample (TP1-G1) and a duplicate were collected near the APEC associated with the former vehicle servicing location and were submitted for laboratory analysis of BTEX and PHCs (F1-F4). The results of the analytical testing are presented in Table 3. The laboratory certificate of analysis is appended to this report.

Parameter	MDL (µg/g)		oles (µg/g) ^ 5, 2021	MECP Table 3 Residential
		TP1-G1	DUPA (TP1-G1)	Standards (μg/g)
Benzene	0.02	nd	nd	0.21
Ethylbenzene	0.05	nd	nd	2
Toluene	0.05	nd	nd	2.3
Xylenes (Total)	0.05	nd	nd	3.1
PHC F1	7	nd	nd	55
PHC F2	4	nd	nd	98
PHC F3	8	nd	nd	300
PHC F4	6	nd	nd	2800
Notes: MDL – Method Detect nd – not detected abo				

No detectable BTEX or PHCs (F1-F4) concentrations were identified in the soil samples analyzed. The results comply with the selected MECP Table 3 Standards.

Groundwater Quality

A groundwater sample and a duplicate sample were recovered from monitoring well BH1 and were submitted for laboratory analysis of BTEX and PHCs, F1-F4. The results of the

analytical testing are presented in Table 4. The laboratory certificate of analysis is appended to this report.

TABLE 4: Analytical Te	est Resu	Ilts – Groundwa	ter – BTEX and	PHCs (F1-F4)					
Parameter	MDL	Groundwater S		MECP Table 3					
	(µg/L)	October	5, 2021	Residential					
		BH1-GW2	DUPA (BH1-GW2)	Standards (µg/L)					
Benzene	0.5	nd	nd	44					
Ethylbenzene	0.5	nd	nd	2300					
Toluene	0.5	nd	nd	18000					
Xylenes (Total)	0.5	nd nd		4200					
PHC F1	25 100					nd	nd	750	
PHC F2						100	100	100	100
PHC F3	100	nd	nd	500					
PHC F4	100	nd	nd	500					
Notes: MDL – Method Detection L nd – not detected above th	-								

No detectable BTEX or PHCs (F1-F4) concentrations were identified in the groundwater samples analyzed. The results comply with the selected MECP Table 3 Standards.

Quality Assurance and Quality Control Results

All samples submitted as part of this recent sampling event were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

A duplicate of a soil sample was submitted for BTEX and PHC (F1-F4). No detectable concentrations were identified in the original sample, or the duplicate sample recovered from TP1.

A duplicate of a groundwater Sample was submitted for BTEX and PHC (F1-F4). No detectable concentrations were identified in the original sample, or the duplicate sample recovered from BH1.

As per Subsection 47(3) of O.Reg. 153/04 as amended by O.Reg. 269/11, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Mr. Paul-Andre Charbonneau Page 6 File: PE4737-LET.02

Phase II Conceptual Site Model

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Table 1 in the Past Investigations Section of this report, PCAs considered to result in APECs on the Phase II Property include:

- □ Item 52: Commercial vehicle servicing, resulting in APEC 1 with in the southeast corner of the Phase II Property.
- Item 58: Unnamed landfill, resulting in APEC 2 on the northwest portion of the Phase II Property.

Contaminants of Potential Concern

Contaminants of potential concern identified in association with the aforementioned APECs include BTEX and PHCs (F1-F4) and/or Metals in the soil and/or groundwater.

Subsurface Structures and Utilities

Underground utilities on the Phase II Property include electrical, and sewage services. No active private potable water wells or septic systems are present on the Phase II Property. Based on the municipally supplied area and age of the wells, all domestic water wells are assumed to be obsolete.

Physical Setting

Site Stratigraphy

The site stratigraphy consists of:

- Approximately 0.4 m of topsoil.
- Brown and grey silty clay (glaciomarine deposits) found to a depth of 6.4 m.
- □ A DCP test was completed in one geotechnical borehole, terminating on the inferred bedrock surface at 21.87 m below the existing grade during a 2019 geotechnical study on site.

Hydrogeological Characteristics

Groundwater was encountered in the silty clay beneath the Phase II Property. This unit is interpreted to function as a local aquifer at the subject site.

Mr. Paul-Andre Charbonneau Page 7 File: PE4737-LET.02

Water levels were measured at the subject site on October 5, 2021, at depths ranging from 0.94 to 1.12 m below grade. The groundwater is believed to be flowing in a generally north-ward direction.

Approximate Depth to Bedrock

Bedrock is inferred to be present at 21.87 m below the existing grade.

Approximate Depth to Water Table

Depth to water table at the subject site varies between approximately 0.94 to 1.12 m below existing grade.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation (Site Condition Standards, Environmentally Sensitive Areas) does not apply to the Phase II Property.

Section 43.1 of the Regulation does not apply to the subject site in that the subject site is not a Shallow Soil Property.

Fill Placement

No fill was identified in any of the boreholes.

Proposed Buildings and Other Structures

It is our understanding that the site is to be redeveloped with three blocks of stacked townhouses and six blocks of terraced back-to-back townhouses.

Existing Buildings and Structures

The subject site is largely vacant except for a single-storey residential dwelling constructed around 1972/73, located on the southern portion of the subject site, fronting on to St. Joseph Boulevard.

Water Bodies

Two drainage ditches lie 70 m and 80 m east and west of the subject site, flowing north to enter the Ottawa River near Taylors Creek

Mr. Paul-Andre Charbonneau Page 8 File: PE4737-LET.02

Areas of Natural Significance

There are no areas of natural or scientific interest on the subject site. Areas of natural or scientific interest within the Phase I ESA study area consist of two areas of woodland; one located 45 m south and the other 130 m west of the subject site.

Environmental Condition

Areas Where Contaminants are Present

The soil and groundwater were determined to be in compliance with the MECP Table 3 Standards except the vanadium concentrations identified in two samples which are considered to be naturally occurring and therefore they are not representative of contamination. Analytical test results are shown Drawing PE4737-5A– Analytical Testing Plan- Soil and Drawing PE4737-6A- Analytical Testing Plan-Groundwater.

No concentrations were identified in the October 2021 sampling analysis.

Types of Contaminants

The soil and groundwater at the Phase II Property is in compliance with the selected MECP Standards.

Contaminated Media

The soil and groundwater at the Phase II Property are in compliance with the selected MECP Standards.

Known Areas Where Contaminants Are Present

The soil and groundwater at the Phase II Property are in compliance with the selected MECP Standards.

Distribution and Migration of Contaminants

All soil and groundwater samples were in compliance with MECP Standards.

Discharge of Contaminants

The soil and groundwater were determined to be in compliance with the MECP Table 3 Standards.

Mr. Paul-Andre Charbonneau Page 9 File: PE4737-LET.02

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Leaching is not considered an issue since the groundwater is in compliance with MECP Table 3 Standards.

The fluctuation of groundwater levels is not considered to have significantly affected contaminant transport as the soil and groundwater beneath the Phase II Property are in compliance with MECP Table 3 Standards.

Potential for Vapour Intrusion

Based on the findings of the Phase II ESA, there is no potential for vapour intrusion on the Phase II Property.

Conclusions

Based on the findings of the Phase II ESA, soil and groundwater concentrations are in compliance with MECP Table 3 Standards. No further Phase II ESA work is required.

It is expected that the groundwater monitoring wells will be abandoned in accordance with O.Reg.903, at the time of construction excavation. It is recommended that the integrity of the monitoring wells be maintained, prior to future construction, for possible further groundwater monitoring purposes.

Statement of Limitations

This Phase II - Environmental Site Assessment Update report has been prepared under the supervision of a Qualified Person in general accordance with Ontario Regulation 153/04, as amended, by O.Reg. 269/11 under the Environmental Protection Act. The conclusions presented herein are based on information gathered from a limited historical review and field inspection program. The findings of the Phase II - ESA Update are based on a review of readily available geological, historical and regulatory information and a cursory review made at the time of the field assessment. Mr. Paul-Andre Charbonneau Page 10 File: PE4737-LET.02

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of 8417709 Canada Inc. Notification from the 8417709 Canada Inc. and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Berieschner

Beau Drieschner, B.Sc

12

Mark S. D'Arcy, P. Eng., QPESA

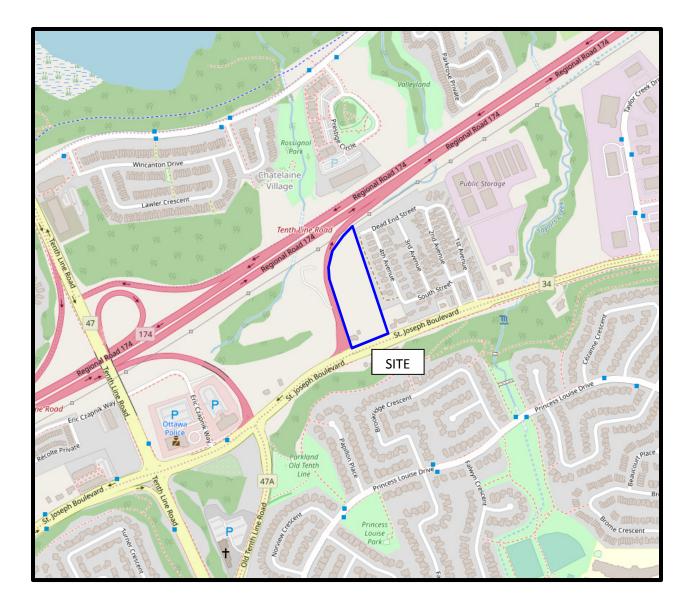
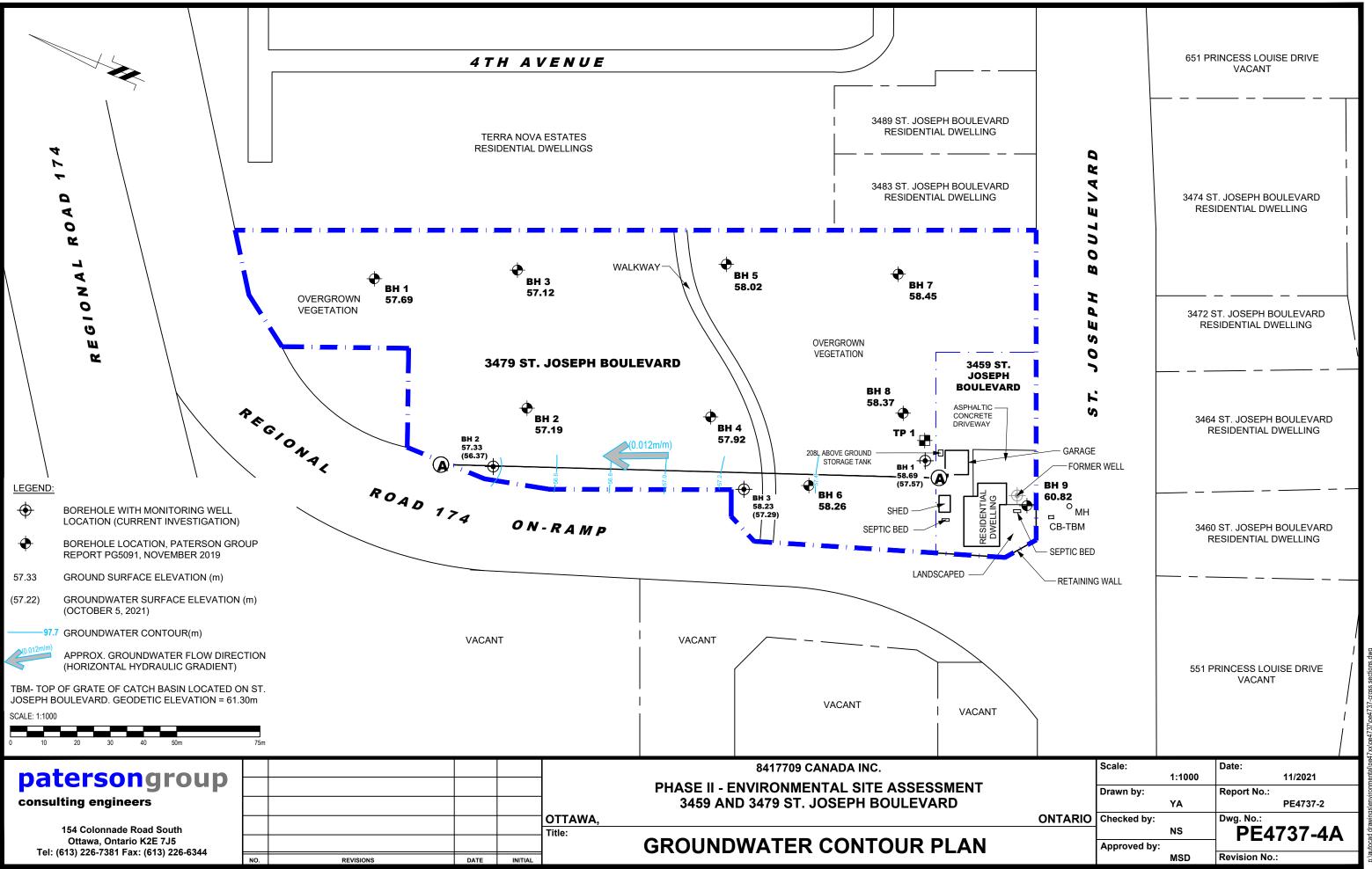
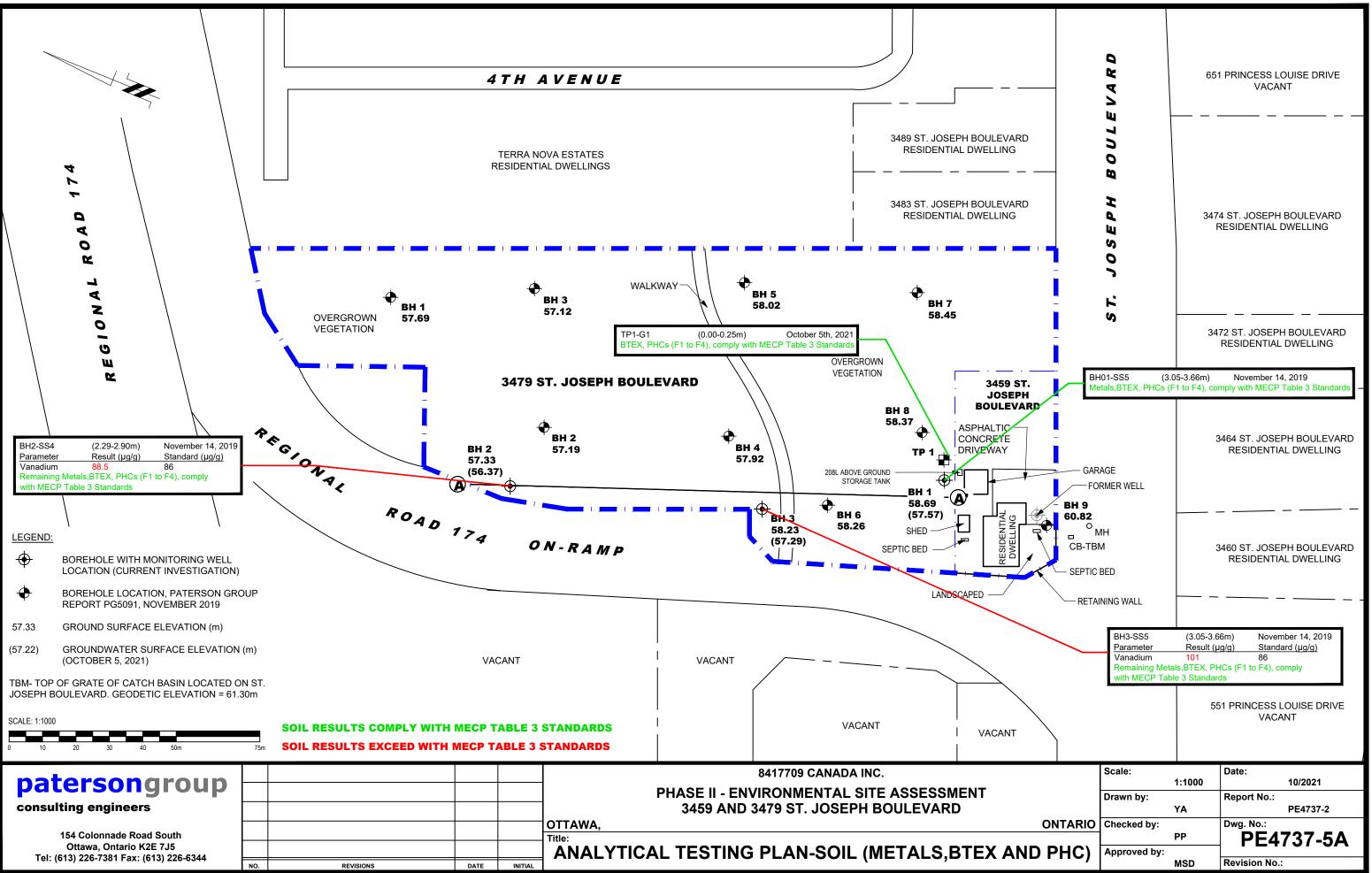
Report Distribution

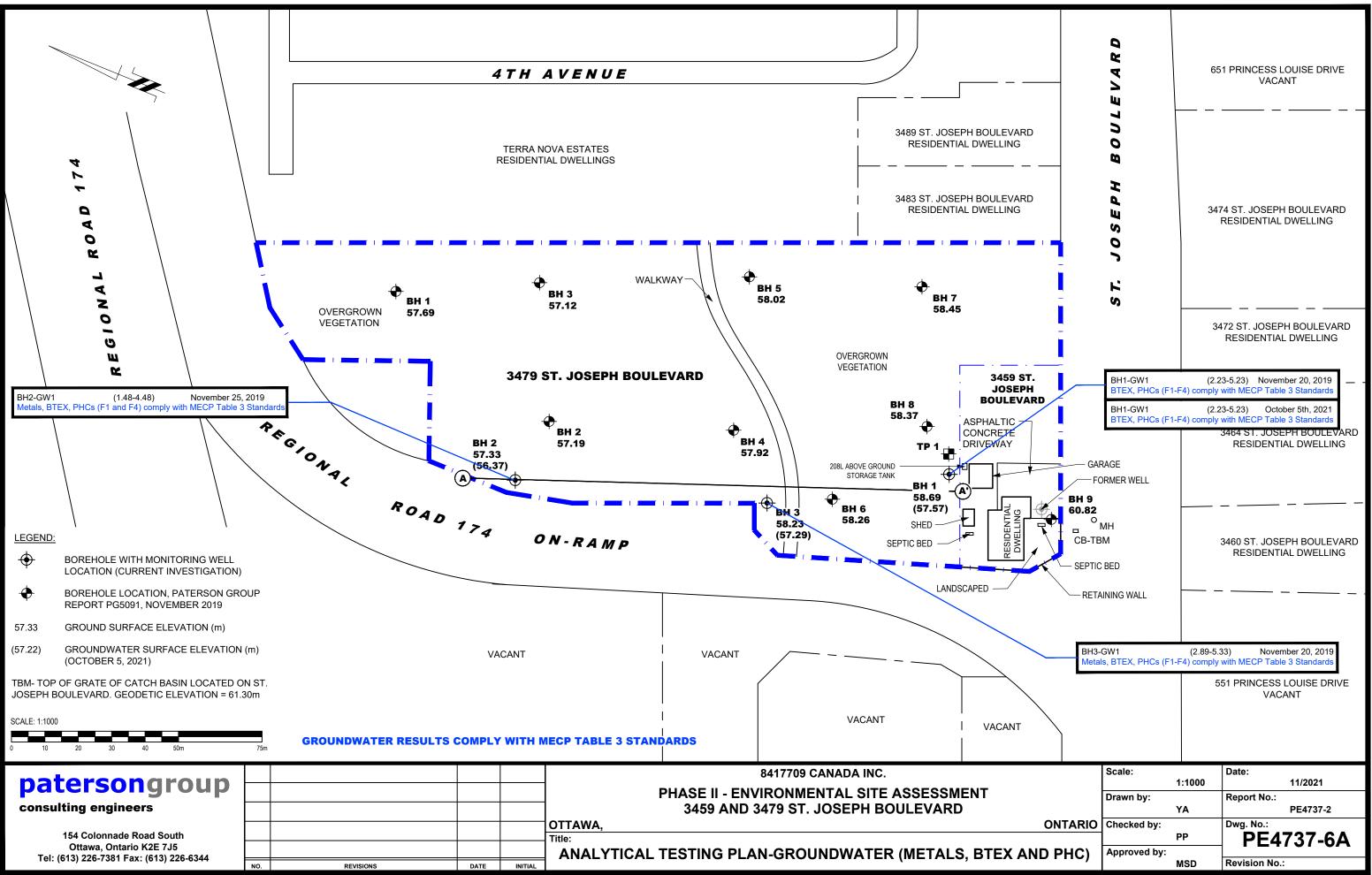
□ 8417709 Canada Inc.

Paterson Group

Appendix

- Gillia Figure 1 Key Plan
- Drawing PE4737-4A Groundwater Contour Plan
- Drawing PE4737 -5A -Analytical Testing Plan Soil
- Drawing PE4737-6A Analytical Testing Plan Groundwater
- □ Soil Profile and Test Data Sheets
- □ Laboratory Certificates of Analysis


FIGURE 1 KEY PLAN

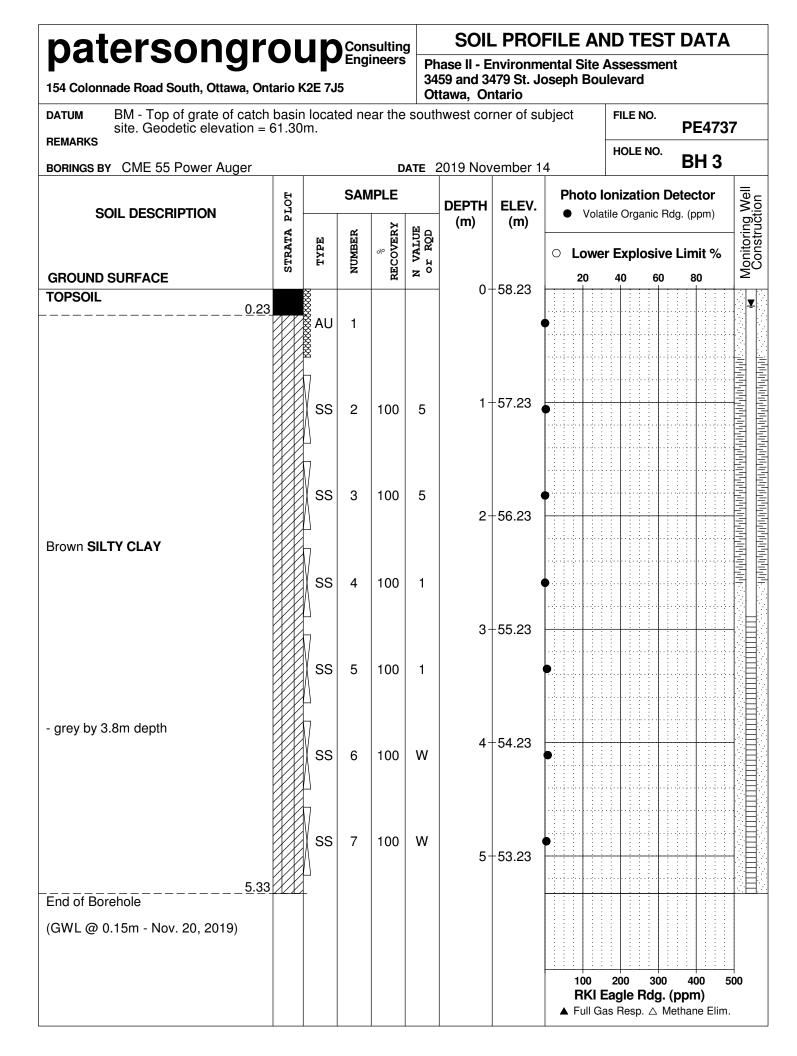
patersongroup

tocad drawings\environmental\pe47xx\pe4737\pe4737-cross sections.

utocad drawings\environmental\pe47xx\pe4737\pe4737-cross sections.d

patersongroup

SOIL PROFILE AND TEST DATA


Phase II - Environmental Site Assessment 3459 and 3479 St. Joseph Boulevard Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM BM - Top of grate of catch Geodetic elevation = 61.30	basir m.	locat	ed ne	ear the	sout	nwest cor	ner of su	ıbject site.	FILE NO.	PE4737	7
REMARKS BORINGS BY Hand Shovel				п	ATE (October 5	2021		HOLE NO.	TP 1-2	21
	H		SAN	/PLE				Photo le	onization		
SOIL DESCRIPTION	PLOT				M	DEPTH (m)	ELEV. (m)		ile Organic F		Monitoring Well Construction
	STRATA	ЛҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD			• Lowe	r Explosiv	e Limit %	nitori onstr
GROUND SURFACE	LS	L	NN	REC	N N	0-	_	20	40 60		δO
TOPSOIL trace organics		G	1			. 0-	-	Δ			
End of Test Pit									200 300 agle Rdg.		00

SOIL PROFILE AND TEST DATA patersongroup Phase II - Environmental Site Assessment 3459 and 3479 St. Joseph Boulevard 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario BM - Top of grate of catch basin located near the southwest corner of subject FILE NO. DATUM site. Geodetic elevation = 61.30m. **PE4737** REMARKS HOLE NO. **BH 1** BORINGS BY CME 55 Power Auger DATE 2019 November 14 SAMPLE **Photo Ionization Detector** Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Lower Explosive Limit % \cap **GROUND SURFACE** 80 20 40 60 0+58.69TOPSOIL 0.25 Ŧ AU 1 1+57.69 SS 2 92 6 SS 3 5 96 2+56.69Brown SILTY CLAY SS 4 88 1 3+55.69SS 5 100 1 - grey by 3.8m depth 4+54.69 SS 6 100 W SS 7 100 1 5+53.695.33 End of Borehole (GWL @ 0.22m - Nov. 20, 2019) 100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongr 154 Colonnade Road South, Ottawa, O		-		sulting	34	hase II - E	invironm 479 St. J	FILE AN nental Site A loseph Bou	Assessn	ST DATA nent	<u>۲</u>
DATUM BM - Top of grate of catc site. Geodetic elevation = REMARKS	h basir = 61.30	n locat m.	ed ne	ear the				ubject	FILE NO	PE473	57
-				_	A.T.E.	2019 Nov	iomhor 1	HOLE N	^{o.} BH 2		
BORINGS BY CME 55 Power Auger					AIE	2019100					
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)			n Detector c Rdg. (ppm)	We We
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			○ Lowe	r Explos	sive Limit %	Monitoring Well
GROUND SURFACE	ß	~	N	RE	o N	- 0-	-57.33	20	40	60 80	Ē
TOPSOIL 0.4	1		1				07.00	•			
Brown SILTY CLAY		ss	2	100	3	1-	-56.33	•			
reddish brown by 1.7m depth		ss	3	100	3	2-	-55.33	•			
		ss	4	100	2	3-	-54.33	•			
- grey by 3.4m depth		ss	5	100	1			•			
4 6		ss	6	100	W	4-	-53.33	•			
End of Borehole 4.5											<u> :</u>
(GWL @ 0.11m - Nov. 20, 2019)											
									Eagle Rd	300 400 5 I g. (ppm) ∆ Methane Elim	500

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 33244 Project: PE4737 Custody: 131541

Report Date: 12-Oct-2021 Order Date: 6-Oct-2021

Order #: 2141398

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2141398-01 TP1-G1 2141398-02 DUP A

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 12-Oct-2021 Order Date: 6-Oct-2021

Order #: 2141398

Project Description: PE4737

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	7-Oct-21	8-Oct-21
PHC F1	CWS Tier 1 - P&T GC-FID	7-Oct-21	8-Oct-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	6-Oct-21	8-Oct-21
Solids, %	Gravimetric, calculation	7-Oct-21	7-Oct-21

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33244

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

	T				
	Client ID:	TP1-G1	DUP A	-	-
	Sample Date:	05-Oct-21 10:30	05-Oct-21 10:30	-	-
	Sample ID:	2141398-01	2141398-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	62.0	60.4	-	-
Volatiles					
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene-d8	Surrogate	118%	118%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	-	-

Order #: 2141398

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	9.61		ug/g		120	50-140			

Client PO: 33244

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g wet	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND			NC	30	
F3 PHCs (C16-C34)	80	8	ug/g dry	109			30.0	30	
F4 PHCs (C34-C50)	115	6	ug/g dry	165			35.6	30	QR-04
Physical Characteristics									
% Solids	92.5	0.1	% by Wt.	92.1			0.4	25	
Volatiles									
Benzene	ND	0.02	ug/g wet	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g wet	ND			NC	50	
Toluene	ND	0.05	ug/g wet	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g wet	ND			NC	50	
o-Xylene	ND	0.05	ug/g wet	ND			NC	50	
Surrogate: Toluene-d8	9.58		ug/g wet		120	50-140			

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	191	7	ug/g	ND	95.6	80-120			
F2 PHCs (C10-C16)	121	4	ug/g	ND	112	60-140			
F3 PHCs (C16-C34)	412	8	ug/g	109	114	60-140			
F4 PHCs (C34-C50)	362	6	ug/g	165	117	60-140			
Volatiles									
Benzene	4.14	0.02	ug/g	ND	103	60-130			
Ethylbenzene	4.80	0.05	ug/g	ND	120	60-130			
Toluene	4.79	0.05	ug/g	ND	120	60-130			
m,p-Xylenes	8.49	0.05	ug/g	ND	106	60-130			
o-Xylene	3.94	0.05	ug/g	ND	98.4	60-130			
Surrogate: Toluene-d8	8.29		ug/g		104	50-140			

Qualifier Notes:

QC Qualifiers :

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

		Para					rd. 8 com	Parac (L	ab Us	se Or	ıly)	r			(Lab l	of Cus Use On 315	ly)	
Client Name: PaterSon			F	roject l	Ref:	PE4737										eo	and the second second	
Contact Name: Mark D'Arc	. /			Juote #		33244								T	urnar	ound		
Contact Name: Mark D'Arc Address: 154 Colonnade R	DSwith			PO #:										1 day				3 day
154 Colonnade K	J 2000-1			E-mail:	Μ	darcy @	Paterso	ngr	ou	ρ.(a			2 day			Ø.	Regular
Telephone: (12 210 -17				Bo	Irie	dar <i>uy @</i> Schner@F	aterson	900	up.	4	λ		Date	e Requir	red:			
1012 1012 1012 1012 1012 1012 1012 1012		lation						T		and the second		Construct to			- hurle			
Regulation 153/04	Other Regu	PWQ0	M	atrix Ty M (Suri	i <mark>pe: S</mark> face W	(Soil/Sed.) GW (Gro ater) SS (Storm/Sani	und Water) itary Sewer)						Requ	ired Ai	narysis			
Table 1 Res/Park Med/Fine Table 2 Ind/Comm Coarse			,	19 (201		iint) A (Air) O (Othe			Π		4							
		SU - Storm			ž			BTEX			7							
a labe y in high other	Mun:			ē	Containers	Sample	Taken	PHCs F1-F4+BTEX										
	Other:		rix	Air Volume				Cs F1	S	Чs	Merely !!	5	B (HWS)					
Sample ID/Location	Name		Matrix	AirV	to #	Date	Time	H	vocs	PAHS		20	В					
1 TPI-GI			ς		2	Oct S, Jorl	1030	X			X	_					_	_
2 DUPA			S		2	OCt5, 2021	1030	Х			X							
3																		
4																		
5		an ar a subset of the subset o																
6																		
7																		
8	enterententine i vez agir gi bel diga bila	Construction of the second second																
9			-		\top													
10					1													
Comments: No Metal Ana	lysis Re	uired	1									N	vethod	of Deliv	iery: 91151	- 6	00	CEL
Relinquished Bry(Sign):		Received By ()river/	Depot:	1	TRAISE	Received at L	a fic					/erified	i By:	-	fa	Л	
Relinguisted By (Print):	1	Date/Time:	~	-	7	7. 201	Date/Time:	1+6	do	9	5:0	Ω	Date/T	100 m	+6	,202	(17:5
Sean Hesc	hace	Temperature	de	//	9	21 2°	 Temperature 	()	1	°C				ritied: D	-	And the second distance		
oct 5, 2021	(1135 Ar					Revision 3.0		0	۲									

RELIABLE.

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 29137 Project: PE4737 Custody: 51698

Report Date: 21-Nov-2019 Order Date: 15-Nov-2019

Order #: 1946585

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1946585-01	BH1-SS5
1946585-02	BH2-SS4
1946585-03	BH3-SS5

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	18-Nov-19	19-Nov-19
PHC F1	CWS Tier 1 - P&T GC-FID	18-Nov-19	19-Nov-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-Nov-19	19-Nov-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	19-Nov-19	19-Nov-19
Solids, %	Gravimetric, calculation	18-Nov-19	18-Nov-19

Order #: 1946585

Report Date: 21-Nov-2019 Order Date: 15-Nov-2019

Project Description: PE4737

Report Date: 21-Nov-2019 Order Date: 15-Nov-2019

Project Description: PE4737

	Client ID: Sample Date:	BH1-SS5 14-Nov-19 09:00	BH2-SS4 14-Nov-19 09:00	BH3-SS5 14-Nov-19 09:00	-
	Sample Date:	1946585-01	1946585-02	1946585-03	-
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	61.0	99.6	93.1	-
Metals			-		
Antimony	1.0 ug/g dry	-	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	-	3.0	2.9	-
Barium	1.0 ug/g dry	-	254	291	-
Beryllium	0.5 ug/g dry	-	0.8	0.7	-
Boron	5.0 ug/g dry	-	7.4	<5.0	-
Cadmium	0.5 ug/g dry	-	<0.5	<0.5	-
Chromium	5.0 ug/g dry	-	108	108	-
Cobalt	1.0 ug/g dry	-	20.7	20.0	-
Copper	5.0 ug/g dry	-	43.4	49.7	-
Lead	1.0 ug/g dry	-	8.1	5.8	-
Molybdenum	1.0 ug/g dry	-	<1.0	<1.0	-
Nickel	5.0 ug/g dry	-	56.4	58.4	-
Selenium	1.0 ug/g dry	-	<1.0	<1.0	-
Silver	0.3 ug/g dry	-	<0.3	<0.3	-
Thallium	1.0 ug/g dry	-	<1.0	<1.0	-
Uranium	1.0 ug/g dry	-	<1.0	<1.0	-
Vanadium	10.0 ug/g dry	-	88.5	101	-
Zinc	20.0 ug/g dry	-	108	108	-
Volatiles					
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene-d8	Surrogate	103%	110%	103%	-
Hydrocarbons			-		
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	-

Order #: 1946585

Report Date: 21-Nov-2019

Order Date: 15-Nov-2019

Project Description: PE4737

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	8.07		ug/g		101	50-140			

Order #: 1946585

Report Date: 21-Nov-2019

Order Date: 15-Nov-2019

Project Description: PE4737

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	34			0.0	30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	43			0.0	30	
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	6.4	1.0	ug/g dry	6.4			0.7	30	
Barium	71.0	1.0	ug/g dry	65.3			8.3	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron	11.2	5.0	ug/g dry	10.3			7.9	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	17.5	5.0	ug/g dry	17.3			0.9	30	
Cobalt	6.9	1.0	ug/g dry	6.9			1.1	30	
Copper	14.1	5.0	ug/g dry	14.6			3.6	30	
Lead	8.4	1.0	ug/g dry	8.8			5.3	30	
Molybdenum	2.7	1.0	ug/g dry	2.6			3.9	30	
Nickel	18.1	5.0	ug/g dry	19.7			8.4	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	25.4	10.0	ug/g dry	25.3			0.5	30	
Zinc	276	20.0	ug/g dry	288			4.2	30	
Physical Characteristics									
% Šolids	89.6	0.1	% by Wt.	89.1			0.6	25	
Volatiles			-						
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	9.11		ug/g dry		104	50-140			
canegater relative de	0.11		ug, g u, y			00 1 10			

Method Quality Control: Spike

Report Date: 21-Nov-2019

Order Date: 15-Nov-2019

Project Description: PE4737

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	172	7	ug/g		85.9	80-120			
F2 PHCs (C10-C16)	96	4	ug/g	ND	95.0	60-140			
F3 PHCs (C16-C34)	295	8	ug/g	34	105	60-140			
F4 PHCs (C34-C50)	223	6	ug/g	43	115	60-140			
Metals									
Antimony	39.5		ug/L	ND	78.8	70-130			
Arsenic	50.4		ug/L	2.6	95.6	70-130			
Barium	70.2		ug/L	26.1	88.0	70-130			
Beryllium	45.8		ug/L	ND	91.3	70-130			
Boron	43.1		ug/L	ND	77.9	70-130			
Cadmium	45.0		ug/L	ND	90.0	70-130			
Chromium	55.7		ug/L	6.9	97.6	70-130			
Cobalt	49.5		ug/L	2.8	93.5	70-130			
Copper	51.8		ug/L	5.9	91.8	70-130			
Lead	45.8		ug/L	3.5	84.4	70-130			
Molybdenum	47.1		ug/L	1.0	92.2	70-130			
Nickel	53.6		ug/L	7.9	91.5	70-130			
Selenium	46.2		ug/L	ND	92.1	70-130			
Silver	42.8		ug/L	ND	85.6	70-130			
Thallium	44.5		ug/L	ND	88.9	70-130			
Uranium	47.7		ug/L	ND	94.6	70-130			
Vanadium	57.4		ug/L	10.1	94.6	70-130			
Zinc	151		ug/L	115	70.9	70-130			
Volatiles									
Benzene	3.73	0.02	ug/g		93.2	60-130			
Ethylbenzene	4.54	0.05	ug/g		113	60-130			
Toluene	4.43	0.05	ug/g		111	60-130			
m,p-Xylenes	8.58	0.05	ug/g		107	60-130			
o-Xylene	4.49	0.05	ug/g		112	60-130			
Surrogate: Toluene-d8	8.31		ug/g		104	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

						946585	m		icel Or (Lab U		umber Iy)	_			ab Use	Custo only) 698		
client Name: Patersch Gun	p			Project	t Ref:	DE4737					_			F	age .	Lof_	Į	
Contact Name: Mark DIA				Quote										Turr	arou	nd Tin	ne	
Address: 154 (alannade	Rd, CH	tone, ON		PO #: E-mail		137 Idoney @P	ratersons	renj	ŋ. c	ы		_	□ 1 d □ 2 d Date Ree	ау			C 3 C	
Telephone: 613 - 224 - 73 Regulation 153/04	1	egulation	_					T							_			-
Table 1 Res/Park Med/Fine				Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other)							Req	Required Analysis						
Table 2 Ind/Comm Coarse Table 3 Agri/Other Table Table	SU - Sani Mun:	SU - Storm		ле	Containers	Sample	Taken	NWAR	(F F.)	retals								
For RSC: Ves	Other:		trix	Air Volume	f Con			BLEX	PHCS	0								
Sample ID/Locatio	on Name		Matrix	Air	# of	Date	Time	13	d	+0		_	_	0.		<u> </u>	_	
1 BH1-555			5		2	New 14/19		1	V		/	_		- 40	Omi	+1vi	11	1
2 042-554			S		3	Nev 4/19		\checkmark	~	~	/			22	120	mlt	11	11
3 B1+3 - 555			5		3	Nov 14/19		1	-	/								
4																		
5																		
6																		
7																		
8																		
9																		
10																		
Comments:							C					Method	of Delive	ry: All	el			
Relinquished By (Sign): And	mat	Received By D	river/C	Depot:	En	SE	Received at Lab:	226	tim	1	bin	Verified श्वी	By:	the	/	b	2	11
Relinquished By (Print): Nrcho	as Dove	Date/Time:	5/	14	19	11.00 Ad	Date/Timery	5, 20	19		110	Date/Ti	me: fied: 🗗	1		51	9	17
Date/Time:		remperature.				Revision 3.0						po ren				P	7	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

Client ID

BH1-GW2

DUP A

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 33244 Project: PE4737 Custody: 131541

Report Date: 12-Oct-2021 Order Date: 6-Oct-2021

Order #: 2141399

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2141399-01 2141399-02

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 12-Oct-2021 Order Date: 6-Oct-2021

Order #: 2141399

Project Description: PE4737

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	8-Oct-21	8-Oct-21
PHC F1	CWS Tier 1 - P&T GC-FID	8-Oct-21	8-Oct-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Oct-21	10-Oct-21

Client PO: 33244

Order #: 2141399

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

DUP A Client ID: BH1-GW2 -Sample Date: 05-Oct-21 10:00 05-Oct-21 10:00 _ -2141399-01 2141399-02 Sample ID: -Water Water MDL/Units _ _ Volatiles 0.5 ug/L Benzene <0.5 <0.5 --0.5 ug/L Ethylbenzene <0.5 <0.5 --0.5 ug/L Toluene <0.5 <0.5 -_ 0.5 ug/L m,p-Xylenes <0.5 <0.5 --0.5 ug/L o-Xylene <0.5 < 0.5 -_ 0.5 ug/L Xylenes, total <0.5 < 0.5 --Toluene-d8 Surrogate 81.5% 81.1% -_ Hydrocarbons F1 PHCs (C6-C10) 25 ug/L <25 <25 --100 ug/L F2 PHCs (C10-C16) <100 <100 --100 ug/L F3 PHCs (C16-C34) <100 <100 _ -100 ug/L F4 PHCs (C34-C50) -<100 <100 _

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	66.5		ug/L		83.1	50-140			

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2141399

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	65.2		ug/L		81.6	50-140			

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Report Date: 12-Oct-2021

Order Date: 6-Oct-2021

Project Description: PE4737

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2090	25	ug/L	ND	104	68-117			
F2 PHCs (C10-C16)	1500	100	ug/L	ND	94.0	60-140			
F3 PHCs (C16-C34)	4440	100	ug/L	ND	113	60-140			
F4 PHCs (C34-C50)	2900	100	ug/L	ND	117	60-140			
Volatiles									
Benzene	30.8	0.5	ug/L	ND	77.0	60-130			
Ethylbenzene	32.3	0.5	ug/L	ND	80.7	60-130			
Toluene	37.2	0.5	ug/L	ND	92.9	60-130			
m,p-Xylenes	57.4	0.5	ug/L	ND	71.8	60-130			
o-Xylene	36.0	0.5	ug/L	ND	90.0	60-130			
Surrogate: Toluene-d8	58.5		ug/L		73.1	50-140			

Qualifier Notes:

Login Qualifiers :

Container and COC sample IDs don't match - Id on voc vials read: "BH1-GW" Applies to samples: BH1-GW2

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

		Par	acel	ID:	214		bm		ab Us	e Or		r			(Lab I	of Cus Use Or 315	nly)	
Client Name: PaterSon			p	roject	Ref:	PE 4737									and the second se	ge		
			C)uote #	l;	332	44							T	urnar	round		
Contact Name: Mark D'Arc Address: 154 Colonnade RD Offawa ON	У (Ц		P	0#:										1 day				3 day
154 Colonnade KU	Sowry		Ε	-mail:	aha	- barn Q.	Paterso	nah	suf) <i>.</i> C	a			2 day			×	Regular
Telephone: 613 219-17				ľ	Ida	rcy Bdr:	eschner	Pater	Song	ro	P.C	a	Date	Requir	red:			
Regulation 153/04	O ther Reg	ulation						1					Dogu	irod A	nalysis			
Table 1 Res/Park Med/Fine	And the second se		Ma SV	itrix Ty V (Sur	/pe: S face W	(Soil/Sed.) GW (Gro ater) SS (Storm/San	itary Sewer)						nequi	Teurn	iui joio			
	CCME	□ MISA				aint) A (Air) O (Othe												
Table 3 Agri/Other	🗍 SU - Sani	SU - Storm			sts			BTE			ICP							
Table	Mun:			a	Containers	Sample	Taken	F1-F4+BTEX					(5)					
For RSC: Yes No	Other:		Matrix	Air Volume	of Cor			PHCs F	VOCS	PAHS	Metals by	Cr2	(HWS)					
Sample 1D/Locatio	n Name			Air	0 #	Date	Time		ž	PA	Me	0	co					
1 BHI-GW2			GW		3	00+5,2021	1000					+						
2 DUPA			GW		3	OCts, 2021	(0 00	рγ				_						
3												_						
4												_	\square					
5									1	-		_						
6																		
7																		
8	ngonau ana ang ang ang ang ang ang ang ang ang																	
9															_			
10																		
Comments:												M	lethod	of Deliv	ery:		1	CIEC
								~							VEL	. (, an	CIEC
Relinquished By (Sign):		Received By	Driver/C)epot:		Court	Received at	6				V	erified	DY.	\leq	66	M	
Relinquished By (Print):	hards	Date/Time:	N	110	1-	(ast. , 3.02	Date/Time	C+ 6	709		5:0	0)ate/Tir	194 () 194	¢	6,20	22	17:5,
Date/Time: Date / S Date	<u>chnor</u> (1130)	Temperature	/	10		°C PH.	Temperatur	e: 69	V V 1	°C		ſ	pH Veri	hed: [] B	Ŷ		
Chain of Custody (Env.) xlsx	(1,50)	11				Revision 3.0												

RELIABLE.

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 28467 Project: PE4737 Custody: 51715

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Order #: 1948052

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1948052-01	BH1-GW1
1948052-02	BH3-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Project Description: PE4737

Order #: 1948052

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	26-Nov-19 26-Nov-19
Metals, ICP-MS	EPA 200.8 - ICP-MS	28-Nov-19 29-Nov-19
PHC F1	CWS Tier 1 - P&T GC-FID	25-Nov-19 26-Nov-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	27-Nov-19 28-Nov-19

Order	#:	194	80	52
-------	----	-----	----	----

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

	Client ID:	BH1-GW1	BH3-GW1	-	-
	Sample Date:	20-Nov-19 13:00	20-Nov-19 13:30	-	-
	Sample ID:	1948052-01 Water	1948052-02 Water	-	-
Metals	MDL/Units	Water	Waler	-	-
Antimony	0.5 ug/L		<0.5		_
Arsenic	1 ug/L		1		-
Barium	1 ug/L	-	128		-
Beryllium	0.5 ug/L		<0.5	-	-
Boron	10 ug/L	-	71		-
Cadmium	0.1 ug/L		<0.1		
Chromium	1 ug/L		<1		-
	0.5 ug/L	-		-	-
Cobalt	0.5 ug/L	-	<0.5	-	-
Copper	0.5 ug/L	-	2.7	-	-
Lead	_	-	0.2	-	-
Molybdenum	0.5 ug/L	-	7.3	-	-
Nickel	1 ug/L	-	1	-	-
Selenium	1 ug/L	-	<1	-	-
Silver	0.1 ug/L	-	<0.1	-	-
Sodium	200 ug/L	-	66600	-	-
Thallium	0.1 ug/L	-	<0.1	-	-
Uranium	0.1 ug/L	-	1.6	-	-
Vanadium	0.5 ug/L	-	2.5	-	-
Zinc	5 ug/L	-	6	-	-
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	103%	106%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Order #: 1948052

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Project Description: PE4737

Method Quality Control: Blank

F2 PHCs (C10-C16) ND 100 F3 PHCs (C16-C34) ND 100 F4 PHCs (C34-C50) ND 100	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
F1 PHCs (C6-C10) ND 25 F2 PHCs (C10-C16) ND 100 F3 PHCs (C16-C34) ND 100 F4 PHCs (C34-C50) ND 100							
F2 PHCs (C10-C16) ND 100 F3 PHCs (C16-C34) ND 100 F4 PHCs (C34-C50) ND 100	ug/L						
F3 PHCs (C16-C34)ND100F4 PHCs (C34-C50)ND100	ug/L						
F4 PHCs (C34-C50) ND 100	ug/L						
	ug/L						
Metals	•						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
	ug/L						
Selenium ND 1	ug/L						
Silver ND 0.1	ug/L						
Sodium ND 200	ug/L						
Thallium ND 0.1	ug/L						
Uranium ND 0.1	ug/L						
	ug/L						
Zinc ND 5	ug/L						
Volatiles							
Benzene ND 0.5	ug/L						
	ug/L						
Toluene ND 0.5	ug/L						
m,p-Xylenes ND 0.5	ug/L						
	ug/L						
	ug/L						
Surrogate: Toluene-d8 92.4	ug/L		116	50-140			

Order #: 1948052

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Project Description: PE4737

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
· ·····,	Result	Luun	UTIILS	Result		LIIIII	INFU		NULES
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Antimony	1.20	0.5	ug/L	ND			0.0	20	
Arsenic	1.4	1	ug/L	1.4			2.4	20	
Barium	13.7	1	ug/L	13.9			1.6	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	70	10	ug/L	69			1.8	20	
Cadmium	ND	0.1	ug/L	ND				20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	4.23	0.5	ug/L	4.27			0.8	20	
Copper	1.62	0.5	ug/L	1.57			2.9	20	
Lead	0.19	0.1	ug/L	0.16			17.7	20	
Molybdenum	1.12	0.5	ug/L	1.03			8.8	20	
Nickel	3.9	1	ug/L	3.8			2.3	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	23600	200	ug/L	23900			1.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	0.9	0.1	ug/L	0.9			6.2	20	
Vanadium	1.33	0.5	ug/L	1.31			1.3	20	
Zinc	12	5	ug/L	14			16.6	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	81.5		ug/L		102	50-140			

Method Quality Control: Spike

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2000	25	ug/L		100	68-117			
F2 PHCs (C10-C16)	1550	100	ug/L		96.9	60-140			
F3 PHCs (C16-C34)	4260	100	ug/L		109	60-140			
F4 PHCs (C34-C50)	3040	100	ug/L		122	60-140			
Metals									
Antimony	49.1		ug/L	ND	97.4	80-120			
Arsenic	60.4		ug/L	1.4	118	80-120			
Barium	67.5		ug/L	13.9	107	80-120			
Beryllium	54.2		ug/L	ND	108	80-120			
Boron	109		ug/L	69	81.2	80-120			
Cadmium	52.3		ug/L	ND	105	80-120			
Chromium	59.0		ug/L		118	80-120			
Cobalt	53.4		ug/L	4.27	98.3	80-120			
Copper	54.2		ug/L	1.57	105	80-120			
Lead	45.5		ug/L	0.16	90.6	80-120			
Molybdenum	53.6		ug/L	1.03	105	80-120			
Nickel	57.4		ug/L	3.8	107	80-120			
Selenium	49.6		ug/L	ND	98.7	80-120			
Silver	43.0		ug/L	ND	86.1	80-120			
Sodium	32500		ug/L	23900	86.2	80-120			
Thallium	45.1		ug/L	ND	90.2	80-120			
Uranium	45.2		ug/L	0.9	88.6	80-120			
Vanadium	58.1		ug/L		116	80-120			
Zinc	59		ug/L	14	88.5	80-120			
Volatiles									
Benzene	33.6	0.5	ug/L		83.9	60-130			
Ethylbenzene	38.4	0.5	ug/L		95.9	60-130			
Toluene	36.1	0.5	ug/L		90.2	60-130			
m,p-Xylenes	75.7	0.5	ug/L		94.7	60-130			
o-Xylene	36.9	0.5	ug/L		92.3	60-130			
Surrogate: Toluene-d8	69.4		ug/L		86.7	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

	Paracel ID: 1948(Head Office 300-2319 St. Lau Ottawa, Ontario p: 1-800-749-19- e: paracel@para www.paracellab:	K1G 4J8 17 cellabs.com			der Nun se Only				in Of C Lab Use (51	Only)	У
Client Name: Paterson Grea	n n		Project	t Ref:	PE 4737			0					Page /	of _	
Contact Name: Mark D'Ara			Quote									Tu	naroun	d Time	
New moves the second second second	0.00	-	PO #:		28467	1						l 1 day			3 day
Address: 154 Coloner	inde Koad		E-mail	Í,	mdary	Doater	orta	1.	En			l 2 day			Regular
Telephone: 613 - 226 -	7381		1		maary	e per en	d	1		_	Date	e Require	d:		
Regulation 153/04	lation 153/04 Other Regulation N				S (Soil/Sed.) GW (G						lequire	d Analys	is		
Table 1 Res/Park Med/Fine			SW (Surface Water) SS (Storm/Sanitary Sewer)					-1	1	i i	-				
Table 2 Ind/Comm Coarse		F	-		1		-		(cP						
Table 3 Agri/Other	□ SU - Sani □ SU - Storm		1	Containers	Samol	e Taken	1		tels						
Table	Mun:	×	Iume	onta	Jampi	- Tunch	BIEX	PH C.	2 to						
For RSC: Ves No Sample ID/Locatio		Matrix	Air Volume	# of C	Date	Time	aó –	0	2						
1 BHI- GWI		GW	Ì	3	Nov 20/2019	1.00 94	6	V							
2 BH3- GW1		GW		4	+	1. 30 PM	V	1	\checkmark	\top	1				
3				1								Ħ			
4		1	-	1							T	\square			
5		1										Ħ			
6		1	-	-						1	1	$^{++}$			
7		-	-	-			\top				1	Ħ			
8		-					1				1				
9		-		1			+	-				\uparrow			
10		1	-	1			+				+	\square			
Comments:					1				II	Me	thod of t	elivery: JVQC	el		
Relinquished By (Sign): and	Received By	Driver/C	Depot:	Ta	aust.	Received at Lab	eav	η	De	Wi	ified By:	Mat		k	1
Relinquished By (Print):	Doy cofte Date/Time:	25	111	119	ause 9 10 45	Dath And &	5,190	1	11.1	17	e/Time:	11	-2	5-1	9 121
Date/Time:	Temperature	1	1		°C AN	Temperature:	8.2	°(pH	Verified	X	By: M	À	
Chain of Custody (Blank) xisx				-	Revision 3.0										

RELIABLE.

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 29196 Project: PE4737 Custody: 51719

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Order #: 1948127

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1948127-01 BH2-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Project Description: PE4737

Order #: 1948127

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	27-Nov-19 27-Nov-19
Metals, ICP-MS	EPA 200.8 - ICP-MS	28-Nov-19 29-Nov-19
PHC F1	CWS Tier 1 - P&T GC-FID	26-Nov-19 27-Nov-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	27-Nov-19 28-Nov-19

Report Date: 29-Nov-2019

Order Date: 25-Nov-2019

Client ID: Sample Date: Sample ID: Sample ID: MDL/Units BH2-GW1 25-Nov-19 11:30 1948/127-01 Water -	
Sample ID: MDL/Units 1948127-01 Water -	
Metals	
Antimony 0.5 ug/L <0.5	
Arsenic 1 ug/L 1 - - Barium 1 ug/L 177 - - - Beryllium 0.5 ug/L <0.5	
Barium 1 ug/L 177 - - - - - - Beryllium 0.5 ug/L <0.5 - - - - Beryllium 0.5 ug/L <0.5 - - - - Beryllium 0.5 ug/L <0.5 -	
Beryllium 0.5 ug/L <0.5 -	
Boron 10 ug/L 56 - - - Cadmium 0.1 ug/L <0.1	
Cadmium 0.1 ug/L <0.1 -	
Chromium 1 ug/L <1 -	
Cobalt 0.5 ug/L <0.5 -	
Copper 0.5 ug/L 1.6 - - - - Lead 0.1 ug/L <0.1	
Lead 0.1 ug/L <0.1 -	
Molybdenum 0.5 ug/L 4.9 - - - - Nickel 1 ug/L 2 - - - - - Selenium 1 ug/L <1	
Nickel 1 ug/L 2 - - - Selenium 1 ug/L <1	
Selenium 1 ug/L <1 - - - Silver 0.1 ug/L <0.1	
Silver 0.1 ug/L <0.1 -	
Sodium 200 ug/L 51200 - - - Thallium 0.1 ug/L <0.1	
Thallium 0.1 ug/L <0.1 -	
Uranium 0.1 ug/L 0.6 - - - Vanadium 0.5 ug/L 1.5 - - - Zinc 5 ug/L 7 - - - Volatiles - - - - -	
Vanadium 0.5 ug/L 1.5 -	
Zinc 5 ug/L 7 - - - Volatiles -	
Volatiles	
Benzene 0.5 ug/L <0.5	
Ethylbenzene 0.5 ug/L <0.5 -	
Toluene 0.5 ug/L <0.5 -	
m,p-Xylenes 0.5 ug/L <0.5	
o-Xylene 0.5 ug/L <0.5	
Xylenes, total 0.5 ug/L <0.5 - <td></td>	
Toluene-d8Surrogate95.2%	
Hydrocarbons	
F1 PHCs (C6-C10) 25 ug/L <25 - <td></td>	
F2 PHCs (C10-C16) 100 ug/L <100	
F3 PHCs (C16-C34) 100 ug/L <100	
F4 PHCs (C34-C50) 100 ug/L <100	

Order #: 1948127

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Project Description: PE4737

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals			0						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	77.0		ug/L		96.2	50-140			

Order #: 1948127

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Project Description: PE4737

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals		20	49/2	ne -				00	
	1.00	0.5					0.0	20	
Antimony	1.20	0.5	ug/L	ND			0.0	20	
Arsenic	1.4	1	ug/L	1.4			2.4	20	
Barium	13.7	•	ug/L	13.9			1.6	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	70	10	ug/L	69			1.8	20	
Cadmium	ND	0.1	ug/L	ND				20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	4.23	0.5	ug/L	4.27			0.8	20	
Copper	1.62	0.5	ug/L	1.57			2.9	20	
Lead	0.19	0.1	ug/L	0.16			17.7	20	
Molybdenum	1.12	0.5	ug/L	1.03			8.8	20	
Nickel	3.9	1	ug/L	3.8			2.3	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	23600	200	ug/L	23900			1.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	0.9	0.1	ug/L	0.9			6.2	20	
Vanadium	1.33	0.5	ug/L	1.31			1.3	20	
Zinc	12	5	ug/L	14			16.6	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	76.6	0.0	ug/L		95.7	50-140			

Method Quality Control: Spike

Report Date: 29-Nov-2019 Order Date: 25-Nov-2019

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1900	25	ug/L		95.2	68-117			
F2 PHCs (C10-C16)	1550	100	ug/L		96.9	60-140			
F3 PHCs (C16-C34)	4260	100	ug/L		109	60-140			
F4 PHCs (C34-C50)	3040	100	ug/L		122	60-140			
Metals									
Antimony	49.1		ug/L	ND	97.4	80-120			
Arsenic	60.4		ug/L	1.4	118	80-120			
Barium	67.5		ug/L	13.9	107	80-120			
Beryllium	54.2		ug/L	ND	108	80-120			
Boron	109		ug/L	69	81.2	80-120			
Cadmium	52.3		ug/L	ND	105	80-120			
Chromium	59.0		ug/L		118	80-120			
Cobalt	53.4		ug/L	4.27	98.3	80-120			
Copper	54.2		ug/L	1.57	105	80-120			
Lead	45.5		ug/L	0.16	90.6	80-120			
Molybdenum	53.6		ug/L	1.03	105	80-120			
Nickel	57.4		ug/L	3.8	107	80-120			
Selenium	49.6		ug/L	ND	98.7	80-120			
Silver	43.0		ug/L	ND	86.1	80-120			
Sodium	32500		ug/L	23900	86.2	80-120			
Thallium	45.1		ug/L	ND	90.2	80-120			
Uranium	45.2		ug/L	0.9	88.6	80-120			
Vanadium	58.1		ug/L		116	80-120			
Zinc	59		ug/L	14	88.5	80-120			
Volatiles									
Benzene	46.3	0.5	ug/L		116	60-130			
Ethylbenzene	40.9	0.5	ug/L		102	60-130			
Toluene	41.7	0.5	ug/L		104	60-130			
m,p-Xylenes	83.1	0.5	ug/L		104	60-130			
o-Xylene	41.3	0.5	ug/L		103	60-130			
Surrogate: Toluene-d8	73.4		ug/L		91.7	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 19.				48127 Laurent Blvd. ario K1G 4J8 -1947 aracellabs.com							Chain Of Custody (Lab Use Only) Nº 51719			
Client Name: Pote Com Gus			Projec	t Ref.	PE4737			10	1 - 1			Page <u>1</u>	of _[
Client Name: Paterson Gu Contact Name: Mark D'A	4 m		Quote								Tur	naround	Time	
Address: 154 Colonna Telephone: 613 - 226 - 7	inde Roud		PO #: E-mail		196 mdauga)pateuscu	Sven	n, (A	6		□ 1 day □ 2 day te Required	d:	□ 3 day D Y Regular	
Regulation 153/04	Other Regulation	Ι.	L	uno:	s (Soil/Sort) GW (G	round Water)				Domik	and Anabusi			
Table 1 Res/Park Med/Fin			Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer)							Required Analysis				
	CCME MISA SU - Sani SU - Storn Mun: Other:	100	Air Volume	of Containers	aint) A (Air) O (Oth		BTEK	+ C 1	p Metals					
Sample ID/Locati	on Name	Matrix	Air	# of	Date	Time	3	4d	10					
1 BH2 - GW1		GW		4	Na 25/19	11.30	V	1	~	_				
2							-	-		_	++			
3		-		-			-	-		_	++	+		
4		-	-	-			+			_	_			
5		-	-	_			+			_	++-			
6		-	-				+			_	++			
7		-	-	-			-			-	+++			
8		+	-	-			-			-	++	+		
9		_	-	-			-	-			++	+		
10 Comments:										Method o	PD./c	2Cp1		
Relinquished By (Sign)	Received By	Driver/C		Ea	ne	Received at Lab:	N	1	br	Verified B	m	1/00	1	
Relinquished By (Print): Nick St. Date/Time: Nov. 25.19 62	Ulivan Date/Time:	-	111	119	H and	Date/Time:	1-2	P/	1///	Date/Time pH Verifie	11-0	26-1 By:	99138	

Chain of Custody (Blank) xlsx

Revision 3.0