


# LANSDOWNE 2.0 EVENT CENTRE (PHASE 1)

Transportation Impact Assessment Report Step 4 – Strategy Report

07/08/2024



## **DOCUMENT CONTROL ISSUE SHEET**

## **Project & Document Details**

| Project Name Lansdowne 2.0 Event Centre TIA (Phase 1) |                                                                     |  |
|-------------------------------------------------------|---------------------------------------------------------------------|--|
| Project Number                                        | C000218                                                             |  |
| Document Title                                        | Lansdowne 2.0 Phase 1 Event Centre Transportation Impact Assessment |  |

### **Document History**

| Issue | Status                | Reason for Issue                         | Issued to      |
|-------|-----------------------|------------------------------------------|----------------|
| 0.1   | Initial<br>Submission | Site Plan Control Application Submission | City of Ottawa |
|       |                       |                                          |                |
|       |                       |                                          |                |
|       |                       |                                          |                |

#### **Issue Control**

| leave | Data       | Author     | Cantributana            | Authorization |           |  |
|-------|------------|------------|-------------------------|---------------|-----------|--|
| Issue | Date       | Author     | uthor Contributors Name |               | Signature |  |
| 0.1   | 07/08/2024 | AA, AD, HM | CA, AD, KL              | Hassan M.     | the Make  |  |
|       |            |            |                         |               |           |  |
|       |            |            |                         |               |           |  |
|       |            |            |                         |               |           |  |
|       |            |            |                         |               |           |  |
|       |            |            |                         |               |           |  |

# **TABLE OF CONTENTS**

| 1. | Scr               | reening                                                                                           | 1                     |
|----|-------------------|---------------------------------------------------------------------------------------------------|-----------------------|
|    | 1.2<br>1.3<br>1.4 | Summary of Development Trip Generation Trigger Location Triggers Safety Triggers Summary          | 1<br>2<br>2<br>3<br>3 |
| 2. | Sco               | pping                                                                                             | 4                     |
|    | 2.1               | Existing and Planned Conditions                                                                   | 4                     |
|    |                   | Proposed Development Existing Conditions Planned Conditions                                       | 4<br>12<br>40         |
|    | 2.2               | Study Area and Time Periods                                                                       | 42                    |
|    |                   | Study Area Time Periods Horizon Years                                                             | 42<br>42<br>42        |
|    | 2.3               | Exemptions Review                                                                                 | 43                    |
| 3. | For               | recasting                                                                                         | 44                    |
|    | 3.1               | Development Generated Travel Demand                                                               | 44                    |
|    |                   | Existing Trip Generation Future Trip Generation and Mode Shares Trip Distribution Trip Assignment | 44<br>44<br>50<br>51  |
|    | 3.2               | Background Network Travel Demand                                                                  | 56                    |
|    |                   | Transportation Network Plans Background Growth Other Developments                                 | 56<br>56<br>56        |
|    | 3.3               | Demand Rationalization                                                                            | 56                    |
|    |                   | 2028 Total Future Traffic Volumes<br>2033 Total Future Traffic Volumes                            | 57<br>66              |
| 4. | Stra              | ategy Report                                                                                      | 72                    |
|    | 4.1               | Development Design                                                                                | 72                    |
|    |                   | Design for Sustainable Modes Circulation and Access New Street Networks                           | 72<br>73<br>73        |
|    | 4.2               | Parking                                                                                           | 77                    |
|    |                   | Parking Supply Spillover Parking                                                                  | 77<br>77              |
|    | 4.3               | Boundary Street Design                                                                            | 78                    |

|       |      | Design Concept                                                                    | 78  |
|-------|------|-----------------------------------------------------------------------------------|-----|
|       | 4.4  | Access Intersection Design                                                        | 83  |
|       |      | Access Location                                                                   | 83  |
|       |      | Intersection Control                                                              | 83  |
|       | 4.5  | Transportation Demand Management                                                  | 83  |
|       |      | TDM Program                                                                       | 84  |
|       | 4.6  | Neighbourhood Traffic Management                                                  | 84  |
|       |      | Transit                                                                           | 84  |
|       |      | Route Capacity                                                                    | 84  |
|       | 4.8  | Intersection Design                                                               | 86  |
|       |      | Intersection Control                                                              | 86  |
|       |      | Intersection Design                                                               | 86  |
| 5.    | Sur  | nmary and Conclusions                                                             | 126 |
|       |      | ,                                                                                 |     |
| Tab   | les  |                                                                                   |     |
| Table | 1.1: | Summary of Development                                                            | 1   |
| Table | 1.2: | Trip Generation Trigger                                                           | 2   |
| Table | 1.3: | Trip Generation Triggers                                                          | 2   |
| Table | 1.4: | Safety Triggers                                                                   | 3   |
| Table | 1.5: | Summary                                                                           | 3   |
|       |      | Collision Summary                                                                 |     |
|       |      | City of Ottawa Transportation Master Plan Projects                                |     |
|       |      | Background Developments                                                           |     |
|       |      | Exemptions Review                                                                 |     |
|       |      | Lansdowne 2.0 Land Uses and Trip Generation Rates                                 |     |
|       |      | Internal Capture Trips                                                            |     |
|       |      | Lansdowne 2.0 Person Trips Generated by Land Use                                  |     |
|       |      | Assumed Mode Share by Land Use                                                    |     |
|       |      | Lansdowne 2.0 Future Trip Generation by Travel Mode                               |     |
|       |      | Site Trip Directional Distribution                                                |     |
|       |      | Refined Directional Trip Distribution Assumptions                                 |     |
|       |      | Trip Assignment for Newly Generated Trips                                         |     |
|       |      | MMLOS Targets and Results (Segments)                                              |     |
|       |      | Existing Weekday AM and PM Peak Hour Conditions (Study Area Intersections)        |     |
|       |      | Existing Weekend Saturday Peak Hour Conditions (Study Area Intersections)         | •   |
|       |      | Existing Weekend Saturday Peak Hour Conditions (Study Area Intersections)         |     |
|       |      | Existing Weekend Sunday Peak Hour Conditions (Study Area Intersections)           |     |
|       |      | Existing Weekend Saturday Peak Hour Conditions (Internal Lansdowne Intersections) |     |
|       |      | Existing Minor Event (Arena at TD Place) Peak Hour Conditions                     |     |
|       |      | Existing Minor Event (Arena at TD Place) Internal Lansdowne Intersections         |     |
|       |      | D: Existing Major Event (Stadium at TD Place) Peak Hour Conditions                |     |
|       |      | 1: 2028 Future Weekday AM and PM Peak Hour                                        |     |
|       |      | 2: 2028 Future Weekday AM and PM Peak (Internal Lansdowne Intersections)          |     |
|       |      | 3: 2028 Future Weekend Saturday Peak Hour (Study Area Intersections)              |     |
|       |      | 4: 2028 Future Weekend Saturday Peak Hour (Internal Lansdowne Intersections)      |     |

| Table 4.15: 2028 Future Weekend Sunday Peak Hour (Study Area Intersections)         | 108 |
|-------------------------------------------------------------------------------------|-----|
| Table 4.16: 2028 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections) |     |
| Table 4.17: 2028 Future Minor Event Peak Hour (Study Area Intersections)            |     |
| Table 4.18: 2028 Future Minor Event Peak Hour (Internal Lansdowne Intersections)    |     |
| Table 4.19: 2033 Future Weekday AM and PM Peak Hour                                 |     |
| Table 4.20: 2033 Future Weekend Saturday Peak Hour (Study Area Intersections)       |     |
| Table 4.21: 2033 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections) |     |
| Table 4.22: 2033 Future Minor Event Peak Hour (Study Area Intersections)            |     |
| Table 4.23: 2033 Future Major Event Peak Hour (Study Area Intersections)            |     |
|                                                                                     |     |
|                                                                                     |     |
|                                                                                     |     |
| Figures                                                                             |     |
| Figure 2.1: Site Location                                                           | 5   |
| Figure 2.2: Lansdowne 2.0 Event Centre Site Plan                                    |     |
| Figure 2.3: Lansdowne 2.0 Redevelopment Concept                                     |     |
| Figure 2.4: Existing Site Zoning                                                    |     |
| Figure 2.5: Existing Lane Configuration and Traffic Control                         |     |
| Figure 2.6: Existing Pedestrian and Cycling Network                                 |     |
| Figure 2.7: Study Area Transit Route and Stops                                      |     |
| Figure 2.8: Carleton U Park & Shuttle Route (Ottawa 67's and PWHL Ottawa)           |     |
| Figure 2.9: Enhanced Transit and Shuttle Service to TD Place                        |     |
| Figure 2.10: Existing Internal Site Circulation                                     |     |
|                                                                                     |     |
| Figure 2.11: Existing Internal Site Circulation (Minor Events)                      |     |
| Figure 2.12: Existing Internal Site Circulation (Major Events)                      |     |
| Figure 2.13: Existing Weekday AM and PM Traffic Volumes                             |     |
| Figure 2.14: Existing Weekday AM and PM On-site Traffic Volumes                     |     |
| Figure 2.15: Existing Weekday/Weekend Pedestrian Volumes                            |     |
| Figure 2.16: Existing Weekday/Weekend Bicycle Volumes                               |     |
| Figure 2.17: Existing Saturday PM Traffic Volumes                                   |     |
| Figure 2.18: Existing Saturday PM On-site Traffic Volumes                           |     |
| Figure 2.19: Existing Sunday PM Traffic Volumes                                     |     |
| Figure 2.20: Existing Sunday PM On-site Traffic Volumes                             |     |
| Figure 2.21: Existing Minor Event Traffic Volumes                                   |     |
| Figure 2.22: Existing Minor event Ingress/Egress On-site Traffic Volumes            |     |
| Figure 2.23: Existing Minor Event Pedestrian Volumes                                |     |
| Figure 2.24: Existing Minor Event Bicycle Volumes                                   |     |
| Figure 2.25: Existing Major Event Traffic Volumes                                   |     |
| Figure 2.26: Existing Major Event Pedestrian Volumes                                |     |
| Figure 2.27: Existing Major Event Bicycle Volumes                                   |     |
| Figure 2.28: Background Developments Key Plan                                       |     |
| Figure 3.1: Lansdowne 2.0 Site Traffic Assignment Assumptions                       |     |
| Figure 3.2: Lansdowne 2.0 Site Volumes (Weekday AM/PM Peak)                         |     |
| Figure 3.3: Lansdowne 2.0 Site Volumes (Saturday Peak)                              |     |
| Figure 3.4: Lansdowne 2.0 Site Volumes (Sunday Peak)                                |     |
| Figure 3.5: 2028 Total Future Traffic Volumes (Weekday AM / PM)                     |     |
| Figure 3.6: 2028 Total Future Traffic Volumes On-site (Weekday AM / PM)             |     |
| Figure 3.7: 2028 Total Future Traffic Volumes (Saturday PM)                         |     |
| Figure 3.8: 2028 Total Future Traffic Volumes on-site (Saturday PM)                 |     |
| Figure 3.9: 2028 Total Future Traffic Volumes (Sunday PM)                           | 62  |

| Figure 3.10: 2028 Total Future Traffic Volumes on-site (Sunday PM)              | . 63 |
|---------------------------------------------------------------------------------|------|
| Figure 3.11: 2028 Total Future Traffic Volumes Minor Event                      | . 64 |
| Figure 3.12:2028 Total Future Traffic Volumes on-site Minor Event               | . 65 |
| Figure 3.13: 2033 Total Future Traffic Volumes (Weekday AM / PM)                | . 67 |
| Figure 3.14: 2033 Total Future Traffic Volumes (Saturday PM)                    | . 68 |
| Figure 3.15: 2033 Total Future Traffic Volumes (Sunday PM)                      | . 69 |
| Figure 3.16: 2033 Total Future Traffic Volumes Minor Event (Ingress and Egress) | . 70 |
| Figure 3.17: 2033 Total Future Traffic Volumes Major Event (Ingress and Egress) | . 71 |
| Figure 4.1: Lansdowne 2.0 Internal Site Circulation Plan (Regular Operations)   | . 74 |
| Figure 4.2: Lansdowne 2.0 Internal Site Circulation Plan (Minor Events)         | . 75 |
| Figure 4.3: Lansdowne 2.0 Internal Site Circulation Plan (Major Events)         | . 76 |
| Figure 4.4: Study Area MMLOS Segments                                           | . 79 |

## **Appendices**

**Appendix A - Turning Movement Count Data** 

Appendix B - Intersection Collision Data

Appendix C - TDM CheckList

Appendix D - Synchro Summary Sheets

## 1. SCREENING

## 1.1 Summary of Development

Table 1.1: Summary of Development

| Municipal Address                      | 1015 Bank Street, Ottawa, K1S 3W7                                                                                                                                                                                                                                                                                                                    |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description of Location                | TD Place at Lansdowne, situated at the southeast quadrant of the intersection of Bank Street and Holmwood Avenue.                                                                                                                                                                                                                                    |  |  |
| Land Use Classification                | Mixed-Use Sports & Entertainment District (High-rise residential, retail, office, outdoor stadium, indoor arena and event centre)                                                                                                                                                                                                                    |  |  |
| Development Size (m²) [sq-ft] {unites} | Phase 1:  Indoor Multi-Purpose Event Centre: 5,500 seats (6,500 spectators)  Phase 2:  New North Stadium Stands: 11,200 seats (12,100 spectators)  Phase 3:  Office: 2,323 m² [25,000 sq-ft] (net increase of 1324 m² or 14,240 sq-ft)  Retail: 4,611 m² [49,635 sq-ft] (net increase of 802 m² or 8,635 sq-ft)  Residential: 770 new dwelling units |  |  |
| Number of Accesses and Locations       | Four existing site access locations:  1. Bank Street / Exhibition Way 2. Bank Street / Marché Way 3. Queen Elizabeth Driveway / Princess Patricia Way 4. Holmwood Parking Garage Ramp (Private, Residents Only Access)  Phase 1 - Event Center (2028) Existing Land Use                                                                              |  |  |
| Phase of Development                   | Phase 1 - Event Center (2026) Existing Land Use  Phase 2 - North Stadium Stands + Retail Podium (2029/2030) Existing Land Use  Phase 3 - Residential Towers (2031)                                                                                                                                                                                   |  |  |
| Buildout Year                          | 2032 to 2036                                                                                                                                                                                                                                                                                                                                         |  |  |

If available, <u>please attach a sketch of the development or site plan</u> to this form.

## 1.2 Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Table 1.2: Trip Generation Trigger

| Land Use Type                       | Minimum Development Size | Triggered |
|-------------------------------------|--------------------------|-----------|
| Single-family homes                 | 40 units                 | ×         |
| Townhomes or apartments             | 90 units                 | ✓         |
| Office                              | 3,500 m <sup>2</sup>     | ×         |
| Industrial                          | 5,000 m <sup>2</sup>     | ×         |
| Fast-food restaurant or coffee shop | 100 m <sup>2</sup>       | ×         |
| Destination retail                  | 1,000 m <sup>2</sup>     | ✓         |
| Gas station or convenience market   | 75 m <sup>2</sup>        | ×         |

<sup>\*</sup> If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. If the proposed development size is greater than the sizes identified above, the Trip Generation Trigger is satisfied.

## 1.3 Location Triggers

Table 1.3: Trip Generation Triggers

|                                                                                                                                                                      | Yes      | No |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|
| Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks? |          | ×  |
| Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *                                                                     | <b>√</b> |    |

<sup>\*</sup>DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

## 1.4 Safety Triggers

Table 1.4: Safety Triggers

|                                                                                                                                                                                                                           | Yes | No |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Are posted speed limits on a boundary street are 80 km/hr or greater?                                                                                                                                                     |     | ×  |
| Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?                                                                                                              |     | ×  |
| Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)? |     | ×  |
| Is the proposed driveway within auxiliary lanes of an intersection?                                                                                                                                                       |     | ×  |
| Does the proposed driveway make use of an existing median break that serves an existing site?                                                                                                                             |     | ×  |
| Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?                                                                                        |     | ×  |
| Does the development include a drive-thru facility?                                                                                                                                                                       |     | ×  |

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

## 1.5 Summary

Table 1.5: Summary

|                                                           | Yes      | No |
|-----------------------------------------------------------|----------|----|
| Does the development satisfy the Trip Generation Trigger? | <b>√</b> |    |
| Does the development satisfy the Location Trigger?        | ✓        |    |
| Does the development satisfy the Safety Trigger?          |          | ×  |

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

## 2. SCOPING

## 2.1 Existing and Planned Conditions

#### PROPOSED DEVELOPMENT

The City of Ottawa is proceeding with a Site Plan Control application for a new multi-purpose event centre at Lansdowne Park.

Lansdowne Park is located within the Glebe neighbourhood of Ottawa, Ontario and is bounded by Bank Street to the west, Holmwood Avenue to the north, and Queen Elizabeth Driveway along the Rideau Canal to the east and south.

The new event centre replaces the existing TD Place Arena (previously known as the Ottawa Civic Centre) with a multi-purpose venue with a seated capacity of 5,500 seats (total spectator capacity of 6,500 including standing-only).

This Site Plan Application for the new event centre represents the first phase of development for the Lansdowne 2.0 project, which seeks to demolish the existing functionally obsolete north stadium stands and arena complex at Lansdowne Park and build a new world-class event centre.

The Lansdown 2.0 redevelopment plan features a new multi-purpose event centre, new north stadium stands, as well as additional residential housing, destination retail, and office space.

Lansdowne Park currently consists of:

- TD Place Stadium: a 24,000-seat outdoor stadium that is home to the Canadian Football League's (CFL) Ottawa RedBlacks and Canadian Premier League's (CPL) Ottawa Atlético;
- TD Place Arena: a 9,800-seat indoor multipurpose venue and arena (formerly known as the Ottawa Civic Centre) home to the Ontario Hockey League's (OHL) Ottawa 67's, the Canadian Elite Basketball League's (CEBL) Ottawa BlackJacks, and the Professional Women's Hockey League's (PWHL) Ottawa team;
- 280 residential units within two condominium towers and townhomes;
- Approximately 360,000 ft<sup>2</sup> of destination-based commercial retail and office space;
   and
- An 18-acre urban park that includes the historic Aberdeen Pavilion exhibition hall and Horticulture Building.
- 1,380 space underground parking garage for public and residential use.

Figure 2.1 illustrates the site location and Lansdowne 2.0 redevelopment footprint.

Figure 2.1: Site Location



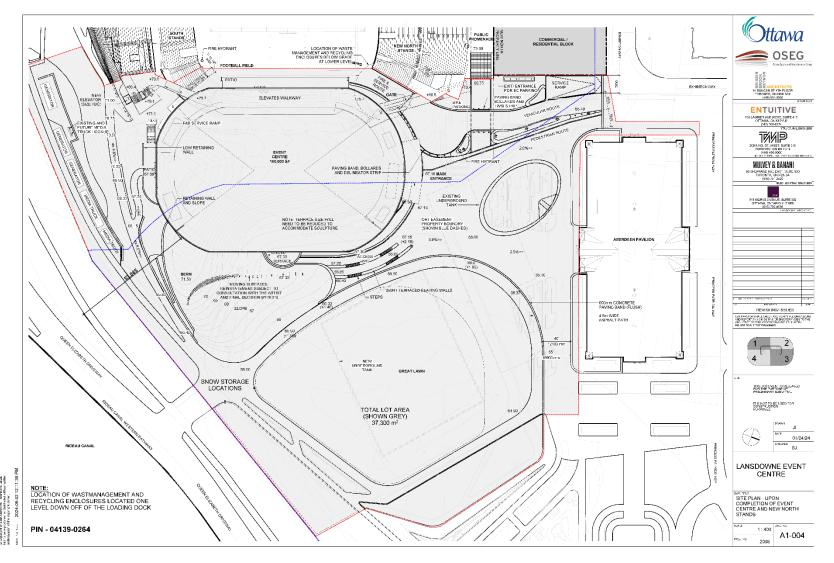
This Transportation Impact Assessment (TIA) is submitted in support of the Site Plan Application for Phase 1 of the Lansdowne 2.0 redevelopment plan.

The proposed improvements include the construction of a new 5,550 seat (6,500 attendee) multi-purpose event centre and associated public realm improvements at the Great Lawn south of the Aberdeen Pavilion. Other improvements include the provision of a dedicated layby for media and broadcast trucks south of the new event centre.

Spectator access to the new event centre will be provided at the North Main Entrance facing the Aberdeen Pavilion and Exhibition Way.

Additional gateway entrances are provided at the South Entrance (Patio) and East Entrance (Terrace) which will be used for evacuation egress, and when required for events with expanded capacity inclusive of additional floor seating and standing-only tickets (i.e. 6,500 attendees).

All event centre entrance locations connect to multi-use pathways within Lansdowne with connections to existing external pathways located on Queen Elizabeth Driveway and sidewalks on Bank Street and Holmwood Drive.


Similar to the current vehicle access and circulation arrangements at Lansdowne, vehicular access is restricted to Bank Street at Exhibition Way and Marche Way, as well as Queen Elizabeth Driveway at Princess Patricia Way.

Limited special use access is also provided at Queen Elizabeth Driveway and the Great Lawn to facilitate emergency vehicle access and limited special use by shuttle buses when permitted.

Truck deliveries and the load-in / load-out of shows and concerts at the new event centre will be facilitated at the existing service ramp located on Exhibition Way. The new event centre will feature a 15.4m wide entrance at Exhibition Way to provide access to the new event centre and Great Lawn, including a limited use vehicle route to allow for AODA pick-up and drop-off by ParaTranspo for patrons with mobility needs.

Figure 2.2 illustrates the proposed Site Plan for the new event centre at Lansdowne.

Figure 2.2: Lansdowne 2.0 Event Centre Site Plan



The Lansdowne 2.0 redevelopment plan is anticipated to occur over three phases:

#### Phase 1:

*Phase 1* consists of building a new 5,500 seat (up to 6,500 spectators) multipurpose event centre that will be home to the OHL's Ottawa 67's, the CEBL's Ottawa BlackJacks, the PWHL Ottawa, and other indoor events such as shows and concerts.

Other improvements include landscaping and public realm improvements at the Great Lawn located south of the Aberdeen Pavilion to accommodate the new event centre and allow for additional programming opportunities at Lansdowne Park.

As this phase of Lansdowne 2.0 replaces the programming provided at the existing 9,800 seat TD Place Arena, it is not expected to generate additional transportation demands to Lansdowne.

Phase 1 is anticipated to be completed in 2028.

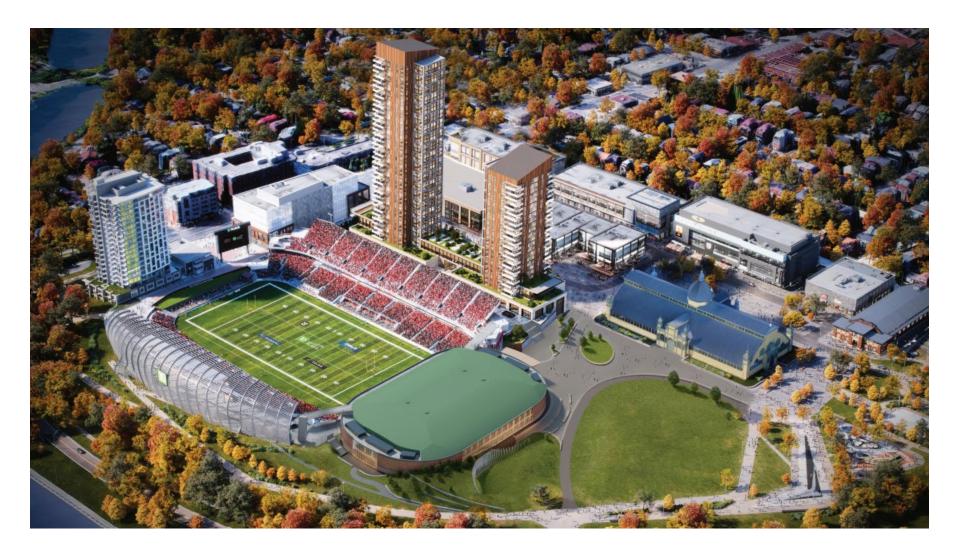
#### Phase 2:

Phase 2 consists of replacing the existing functionally obsolete north stadium stands and arena complex at TD Place Stadium with a new 11,200 seat (12,100 spectator) north stand structure. This new facility replaces the existing north stadium stands, which currently has a capacity of 14,028 spectators, and would result in a reduction of approximately 2,000 spectator capacity at TD Place Stadium. This venue will continue to be the home of the CFL's Ottawa RedBlacks and the CPL's Ottawa Atlético.

This phase of Lansdowne 2.0 replaces existing programming currently provided at TD Place Stadium. As a result, it is not expected to generate additional transportation demands to Lansdowne.

Phase 2 is anticipated to be completed between 2030 and 2031.

#### Phase 3:


*Phase 3* consists of replacing the existing 41,000 ft<sup>2</sup> of commercial retail and box office annex to the Stadium on Exhibition Way with 49,635 ft<sup>2</sup> of new podium-level commercial retail space. This represents a net increase of 8,635 ft<sup>2</sup> of commercial retail space from what is currently provided today.

In addition, this phase includes the construction of two new residential towers with a total of 770 new dwelling units. Additional underground parking space will be constructed by extending the existing facility to accommodate an additional 386 parking spaces to service the new residential units and additional retail space, resulting in a total of 1,766 underground parking spaces at Lansdowne. Underground parking will continue be accessed at existing access ramps located on Exhibition Way, and Princess Patricia Way near Queen Elizabeth Driveway.

Phase is anticipated to be completed between 2032 and 2036.

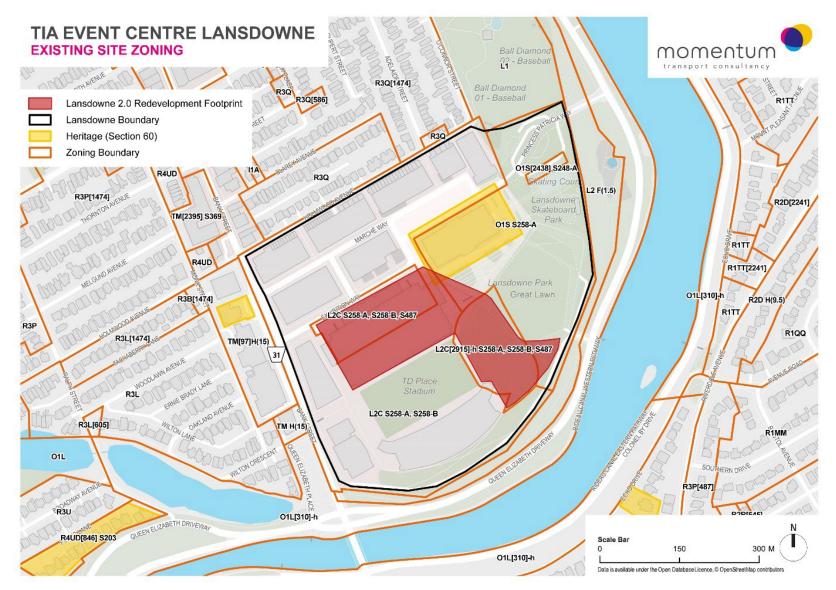
Figure 2.3 illustrates a rendering of the Lansdowne 2.0 redevelopment concept.

Figure 2.3: Lansdowne 2.0 Redevelopment Concept



The site currently carries three different zoning designations. The western portion of the proposed site is zoned L2C S258-A S258-B and as outlined in the City of Ottawa's Zoning By-Law, the purpose of the L2 – Major Leisure Facility Zone is to:

- Accommodate major, urban City-wide sports, recreational and cultural facilities addressed under the Major Urban Facilities policies of the Official Plan.
- · Permit a broad range and intensity of leisure, recreational, cultural and related uses; and
- Allow a moderate density and scale of development.


The eastern portion of the proposed site is zoned O1S S258-A and as outlined in the City of Ottawa's Zoning By-Law, the purpose of the O1- Parks and Open Space Zone is to:

- Permit parks, open space and related and compatible uses to locate in areas designated as General Urban Area, General Rural Area, Major Open Space, Mixed Use Centre, Village, Greenbelt Rural and Central Area as well as in Major Recreational Pathway areas and along River Corridors as identified in the Official Plan, and
- Ensure that the range of permitted uses and applicable regulations is in keeping with the low scale, low intensity open space nature of these lands.

Following the Lansdowne 2.0 Zoning By-Law Amendment (ZBA) application and subsequent changes made in November 2023, the parcel east of TD Place Stadium was zoned as L2C[2915]-h S258-A, S258-B, S487 to permit a broad range and intensity of leisure, recreational, cultural and related uses including sports arenas.

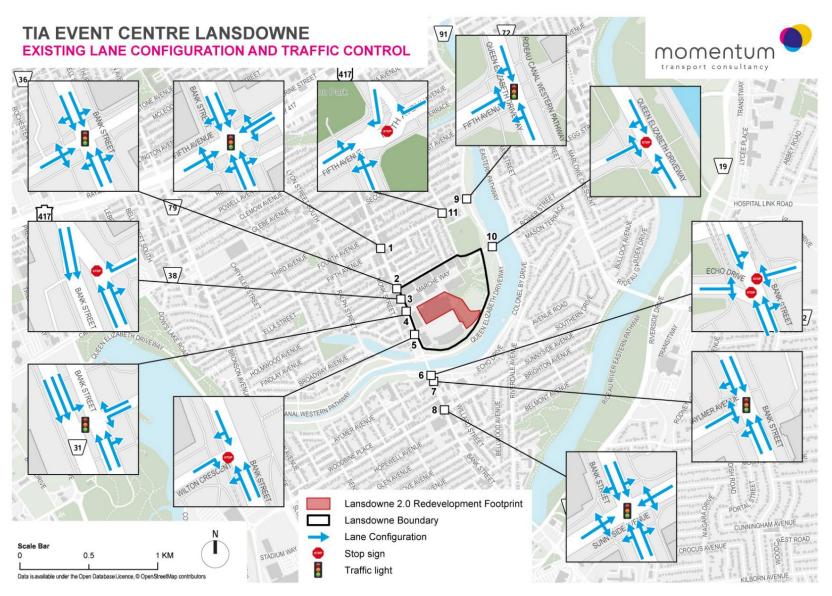
Figure 2.4 illustrates the existing site zoning at Lansdowne.

Figure 2.4: Existing Site Zoning



#### **EXISTING CONDITIONS**

#### 2.1.1 Roads and Traffic Control


The roadways and intersections under consideration in the study area are described below:

- Bank Street: Bank Street is a four-lane arterial roadway with a posted speed limit of 40 km/h. The street is under the jurisdiction of the City of Ottawa. Sidewalks are provided on both sides of Bank Street. The roadway is designated as a Local Cycling Route as per the City of Ottawa's Bike Plan and is also designated as a truck route. Bank Street currently provides two access connections to Lansdowne with a signalized, full access movement at Exhibition Way, and an unsignalized right-in/right-out only access at Marché Way. On-Street parking is permitted north of Holmwood Avenue. On-street parking on Bank Street across the frontage of the subject site is prohibited at all times. As part of the Bank Street Canal Bridge Rehabilitation Project, 1.5m cycle tracks have been implemented on both sides of the Bank Street Bridge between Exhibition Way and Aylmer Avenue in conjunction with a 3-lane cross-section (2 northbound lanes, 1 southbound lane). Other than the newly installed cycling lanes on the Bank Street Bridge, there is a northbound bike lane on Bank Street across the frontage of the site.
- Queen Elizabeth Driveway: Queen Elizabeth Driveway is a two-lane scenic parkway that runs along the Rideau Canal and has a posted speed limit of 40 km/h. The parkway is a federal roadway under the jurisdiction of the National Capital Commission (NCC). In the vicinity of Lansdowne, the parkway features multi-use pathways on both sides. Queen Elizabeth Driveway is designated as a Major Pathway as per the City of Ottawa Bike Plan. The parkway currently provides two access connections to Lansdowne with an unsignalized, full-movements intersection at Princess Patricia Way, as well as a restricted special-use access located on the south side at the Great Lawn. On-street parking on Queen Elizabeth Driveway is prohibited at all times.
- **Fifth Avenue:** Fifth Avenue is a two-lane collector roadway with a posted speed limit of 40 km/h east of Bank Street, and a posted speed limit of 30km/h west of the Bank Street. There are existing sidewalks along both sides of the roadway. The south side of Fifth Avenue features an on-street cycling lane. The roadway is designated as a Local Route per the City of Ottawa Bike Plan. On-street parking on Fifth Avenue in the vicinity of the subject site is permitted on the northside of the roadway.
- Holmwood Avenue: Holmwood Avenue is a two-lane local road with a default speed limit of 30 km/h. East of the intersection with Bank Street, Holmwood Avenue is a one-way street providing access in the eastbound direction. The road features a cycling lane on the northside. West of the Bank Street intersection, Holmwood Avenue is a two-way street. On-street parking on Holmwood Avenue in the vicinity of the subject site is permitted on the southside of the roadway. Holmwood Avenue also includes access to the underground parking garage at Lansdowne what is restricted for residential uses only, and occasionally provides limited exit from the site during major events at Lansdowne.
- Exhibition Way: Exhibition Way is a two-way private roadway that functions as the primary access point to Lansdowne and TD Place. The intersection with Bank Street is signalized with an auxiliary left turn lane in the southbound direction. There are existing sidewalks along both sides of the roadway. There are auxiliary left and right turn lanes in the west bound direction. Designated on-street parking spaces are provided with varying time limits.

- Marché Way: Marché Way is a two-way private roadway that functions as the secondary access point to Lansdowne and TD Place. The intersection with Bank Street is unsignalized and functions as a right-in/right-out only access connection. There are existing sidewalks along both sides of the roadway. Designated on-street parking spaces are provided with varying time limits.
- Wilton Crescent: Wilton Crescent is a two-lane local roadway with a posted speed limit of 30 km/h. Left turn movements from Wilton Crescent to Bank Street are prohibited at all times. The intersection with Bank Street is stop controlled along Wilton Crescent. There are existing sidewalks along both sides of the roadway. Across the frontage of the subject site, Wilton Crescent is designated as a local route as per the City of Ottawa Bike Plan. On-street parking is permitted on the northside of the roadway at specific times.
- **Echo Drive:** Echo Drive is a one-lane local roadway with a default speed limit of 40 km/h. Through and left turns off Echo Drive are prohibited. Echo Drive is a one-way road stop controlled along Echo Drive. The roadway has a sidewalk on the northside. Echo Drive is designated as a local route as per the City of Ottawa's ultimate Cycling Plan.
- **Aylmer Avenue:** Aylmer Avenue is a two-lane local roadway with a posted speed limit of 30 km/h. Sidewalks are provided along both sides of Aylmer Avenue. On-street parking is permitted on the northside of the roadway.
- Sunnyside Avenue: Sunnyside Avenue is a two-lane collector roadway with a posted speed limit of 30 km/h. The roadway west of the intersection with Bank Street is designated as local route as per the City of Ottawa Bike Plan. On-street parking is permitted on the southside of the roadway west of the intersection with Bank Street.
- O'Connor Street: O'Connor Street is a two-lane local roadway with a posted speed limit of 30 km/h. The roadway is designated as a local route as per the City of Ottawa Bike Plan. South of Fifth Avenue, O'Connor Street is a one-way local road with a dedicated bike lane on the northside, and on-street parking permitted on the southside of the roadway. North of Fifth Avenue, O'Connor Street is a two-way local road with on-street parking permitted on the eastside.

Figure 2.5 illustrates the existing lane configuration and traffic control

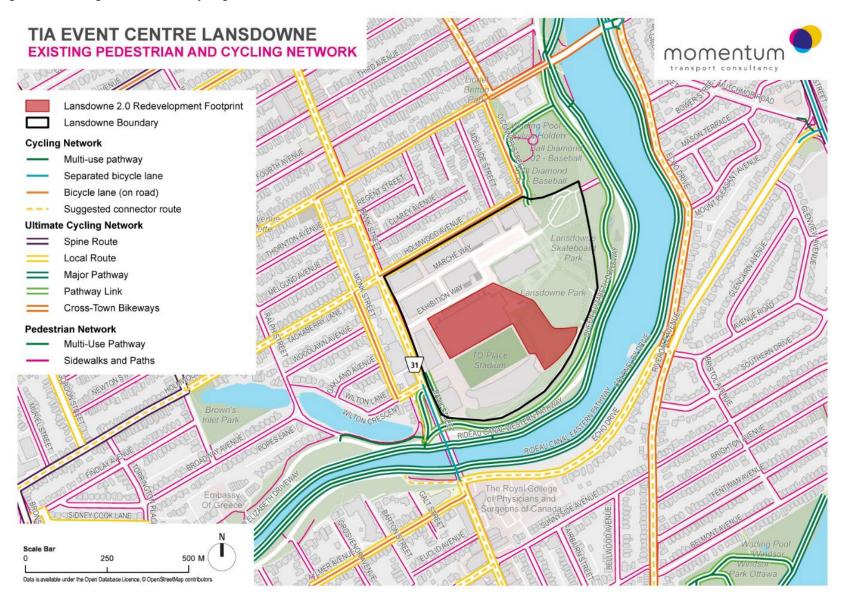
Figure 2.5: Existing Lane Configuration and Traffic Control



#### 2.1.2 Walking and Cycling

The study area is adequately connected to pedestrian facilities with sidewalks along all study area roadways.

All study area corridors are currently designated as Suggested Cycling routes as per the City of Ottawa Bike Plan. Queen Elizabeth Driveway, which is under the jurisdiction of the NCC, features off-street multi-use pathways.


There are currently dedicated bike lanes on Fifth Avenue (east of Bank Street), Aylmer Avenue, and Holmwood Avenue (east of the Bank Street) which forms a connection to the O'Connor Street bike lanes and cycle tracks.

The Flora Footbridge connection, which was opened in June 2019, provides a cycling and walking connection on both sides of the Rideau Canal at Fifth Avenue / Clegg Street. 1.5m cycle tracks have been implemented on both sides of the Bank Street Bridge between Exhibition Way and Aylmer Avenue.

Under the Ultimate Cycling Network, all study area roadways are envisioned as Local Cycling Routes that form connections to nearby Spine Routes including O'Conner Street and Glebe Avenue, as well as multi-use pathways along Queen Elizabeth Driveway.

Figure 2.6 illustrates existing and planned pedestrian and cycling facilities within the vicinity of Lansdowne.

Figure 2.6: Existing Pedestrian and Cycling Network



#### 2.1.3 Transit

OC Transpo transit service is currently provided at Lansdowne through OC Transpo bus routes 6 and 7.

Route 6 is a Frequent Route that runs 7 days per week in all time periods between Greenboro and Rockcliffe. It runs with 15-minute headways or less during the weekday peak periods and 15-minute or less headways during the weekend peak periods.

Route 7 is a Frequent Route that runs 7 days per week in all time periods between Carleton University and St. Laurent. It runs with 15-minute headways or less during both peak periods during weekdays and 15-minutes or less headways during the weekend peak.

Bus stops are provided at the intersection of Bank Street and Exhibition Way.

Figure 2.7 illustrates transit routes in the vicinity of Lansdowne.

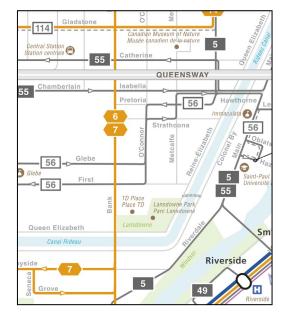



Figure 2.7: Study Area Transit Route and Stops

Enhanced transit services are provided to support special events at Lansdowne and TD Place. This includes the provision of free transit to ticketholders for all events held at Lansdowne through an innovative program that is the first of its kind for large venues. The cost of transit service is free of charge for event goers and is bourn by the Ottawa Sports and Entertainment Group (OSEG) for any service enhancements provided for events with 5,000 or more attendees. Transit service for special events includes providing supplemental trips on OC Transpo routes 6 and 7 for minor events with attendance levels of 10,000 or less.

For Ottawa 67's and PHWL Ottawa games, park & shuttle service is provided to ticket holders from Carleton University. Ticket holders can park at Carleton University starting 90 minutes before the start of Ottawa 67's and PHWL Ottawa games with services provided until 60 minutes post-games. The cost of parking and shuttle service is free to ticket holders and is bourn by OSEG. Shuttle bus service is provided from Carleton University's P18 Parkade with service provided to Lansdowne provided through Sunnyside Avenue and Bank Street.

Figure 2.8 illustrates the Carleton U shuttle route for Ottawa 67's and PWHL Ottawa games.



Figure 2.8: Carleton U Park & Shuttle Route (Ottawa 67's and PWHL Ottawa)

For major events, which include events with 10,000 or more attendees, dedicated Park & Shuttle services is provided with event day services provided from OC Transpo Park & Ride locations, as well as privately run shuttles operated by OSEG. Major event transit service typically starts two hours prior to the start of a ticketed evet for ingress service, and two hours after the end of a ticketed event for egress service.

Figure 2.9 illustrates special event transit and shuttle services to TD Place.

Figure 2.9: Enhanced Transit and Shuttle Service to TD Place



#### 2.1.4 Traffic Management Measures

Traffic management measures are deployed at Lansdowne to manage traffic flow for day-to-day operations as well as during special events. Under regular day-to-day operations, vehicle access to the site is permitted on both Bank Street and Queen Elizabeth Driveway. Internal vehicle circulation is permitted through the site on Exhibition Way, Marche Way, and Princess Patricia Way, with the exception of a portion of Princess Patricia Way near the Aberdeen Pavilion that is a pedestrian-only zone. Other internal circulation pathways including Frank Clare Lane and the Great Lawn which are restricted use-only for emergency vehicles, deliveries, and accessible transit service (i.e. ParaTranspo) when required.

For minor events, such as events at TD Place Arena, vehicle access is permitted on both Bank Street and Queen Elizabeth Driveway. Depending on programming activities at TD Place and Lansdowne Park, traffic management measures to reduce vehicular through traffic on Exhibition Way are deployed to re-route internal traffic circulation to Marche Way, where pedestrian activity is lower.

For major events, traffic management measures include the deployment of traffic control devices and police point duty along Bank Street and Queen Elizabeth Driveway to help manage traffic flow and accommodate safe pedestrian crossings. Vehicle access to the site is restricted during major events at the stadium, such as football games, to minimize pedestrian and vehicle conflicts. Vehicle access from Bank Street is restricted at both Exhibition Way and Marche Way. Vehicle access is only permitted at the Queen Elizabeth Driveway access for underground parking garage and pick-ups / drop-offs at the shuttle loop. Vehicle circulation through the site is restricted. While access to Lansdowne is restricted during major events, existing retail patrons and residents continue to access the underground parking facility at Lansdowne from Queen Elizabeth Driveway, which will remain an important arterial road in the city's transportation network. In addition, residents are able to access underground parking through a residents-only underground garage ramp on Holmwood Avenue. In addition, onstreet parking on Bank Street is temporarily prohibited during large events in order to support special event enhanced transit and shuttle service operations to TD Place.

Lansdowne is designated as a pedestrian-priority zone and features many pedestrian-only pathways and connections. This includes pathway connections from Queen Elizabeth Driveway, a stairway gate entrance on Bank Street by TD Place Gate 1, and several laneways connecting to Holmwood Avenue at the northern side of the district.

Existing site access and internal circulation areas during normal operations, minor events, and major events are illustrated in Figure 2.10 through Figure 2.12.

Figure 2.10: Existing Internal Site Circulation

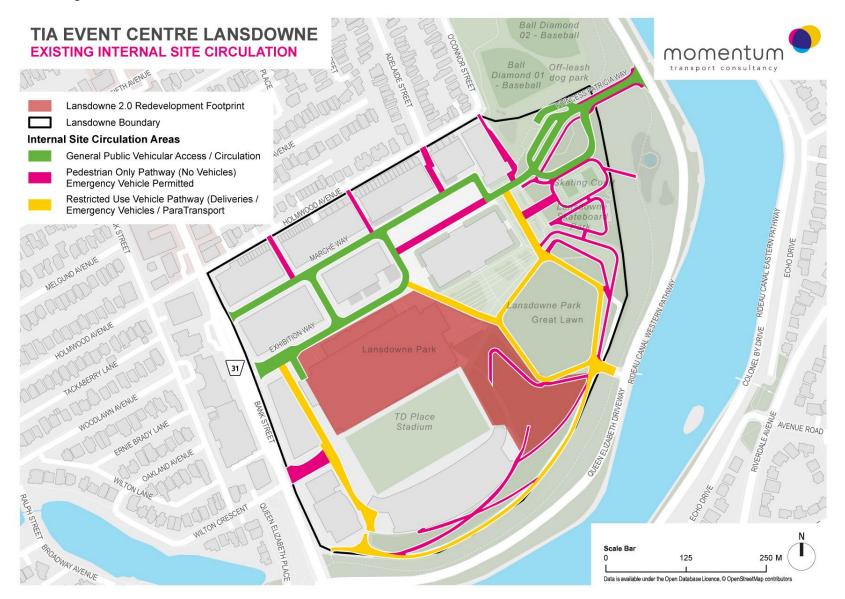



Figure 2.11: Existing Internal Site Circulation (Minor Events)

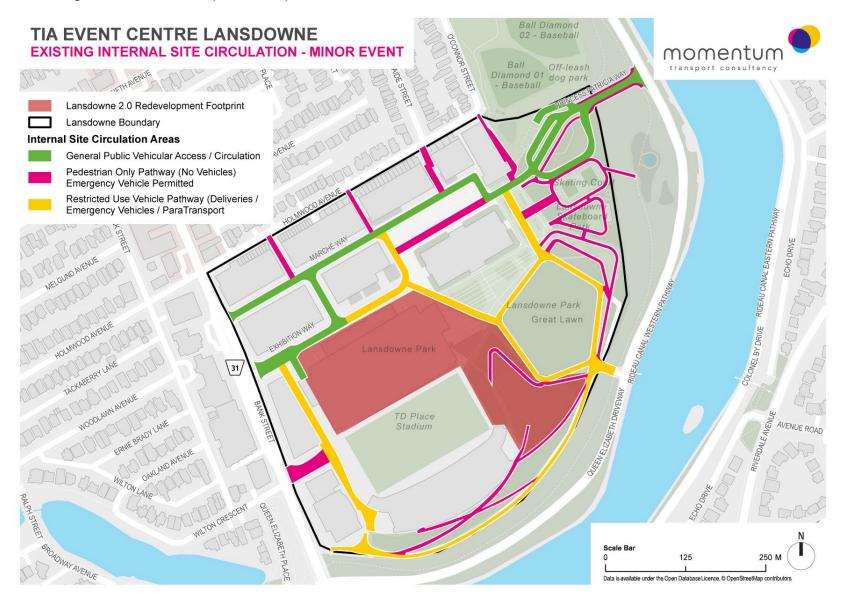
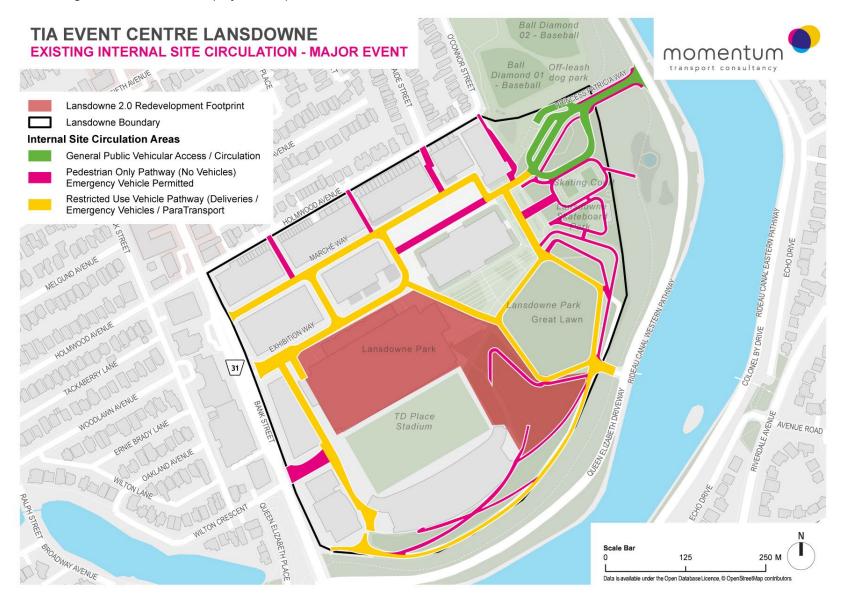




Figure 2.12: Existing Internal Site Circulation (Major Events)



#### 2.1.5 Traffic Volumes

Recently collected intersection traffic data were obtained from the City of Ottawa. This included traffic data captured for regular weekdays (AM and PM peak periods), a weekday minor event at TD Place Arena, a weekday major event at TD Place Stadium, as well as the Saturday and Sunday weekend mid-day peaks with concurrent programming and events at TD Place and Lansdowne Park. Traffic data was obtained for the following periods:

#### Typical Weekday Period (AM/PM Peak):

Tuesday, May 3<sup>rd</sup>, 2022 / Wednesday, May 11<sup>th</sup>, 2022 (Weekday AM and PM).

#### Weekend Saturday Peak Period (Mid-Day Peak):

 Saturday, May 7<sup>th</sup>, 2022 (Saturday Mid-Day), representative of multi-event activity at Lansdowne including an Atlético Ottawa soccer match at TD Place Stadium (6:00 pm kick-off) with an attendance of 3,555 spectators.

#### Weekend Sunday Peak Period:

 Sunday, June 9<sup>th</sup>, 2024 (Sunday Mid-Day), representative of multi-event activity at Lansdowne inclusive of the weekly Ottawa Farmer's Market, retail activity, and three back-to-back events at TD Place Arena for the Volleyball Nations League (VNL) featuring tournament games throughout the day (11:00 am, 2:30 pm, and 6:00 pm matches).

#### **Minor Arena Event:**

 Monday, May 9<sup>th</sup>, 2022 (Special Event Concert at the Arena at TD Place. Start time of 7:30 pm, End time of 10:30 pm.

#### **Major Stadium Event:**

• Friday, October 14th, 2022 (REDBLACKS Football Game at TD Place. Start time of 7:30pm, End time of approximately 10:30pm.

Intersection turning movement count summary data for the various time periods collected are Illustrated in Figure 2.13 through Figure 2.27.

Turning movement count data is documented in **Appendix A**.

Figure 2.13: Existing Weekday AM and PM Traffic Volumes

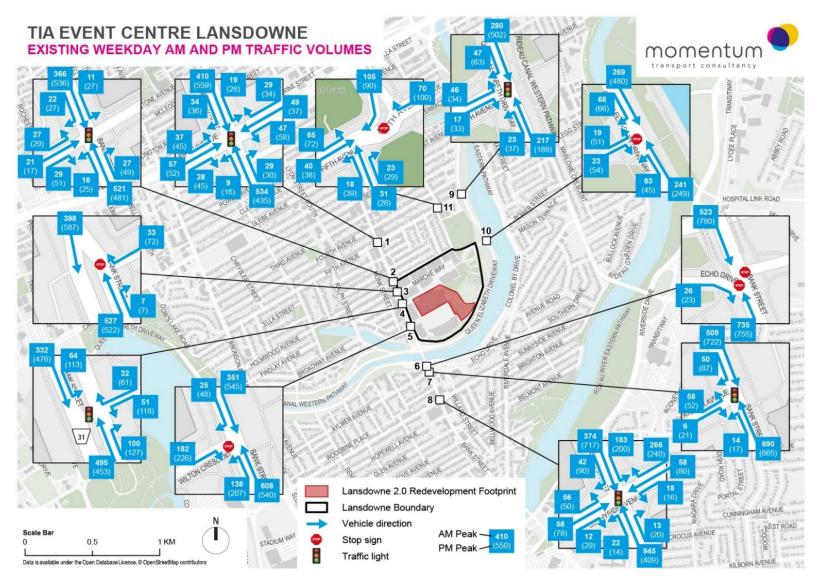



Figure 2.14: Existing Weekday AM and PM On-site Traffic Volumes

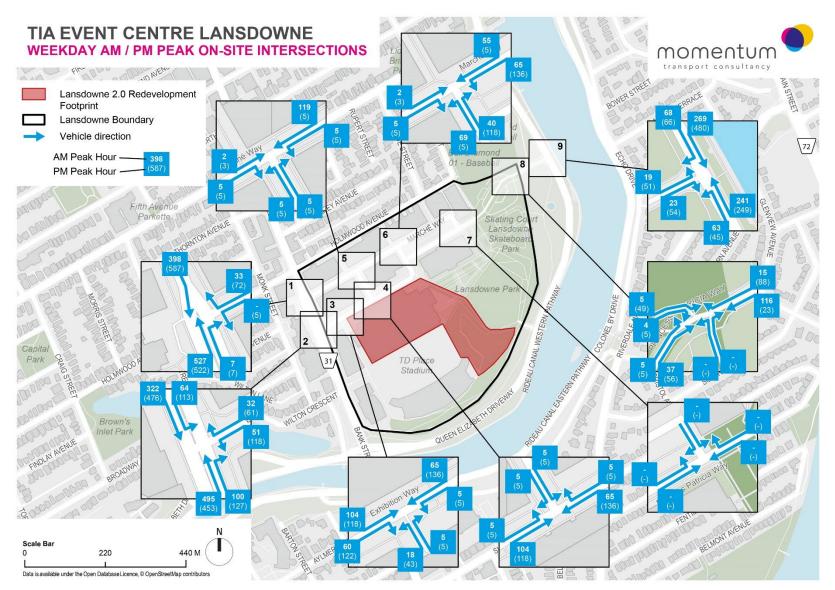



Figure 2.15: Existing Weekday/Weekend Pedestrian Volumes

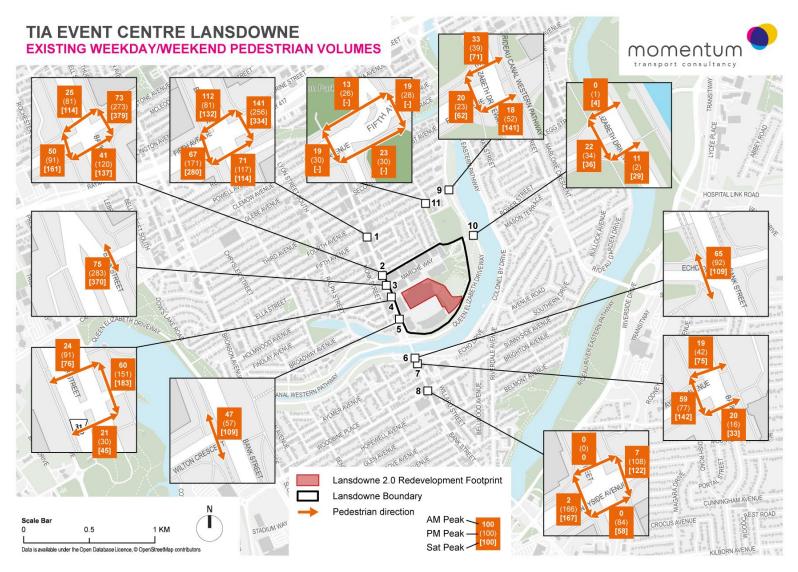



Figure 2.16: Existing Weekday/Weekend Bicycle Volumes

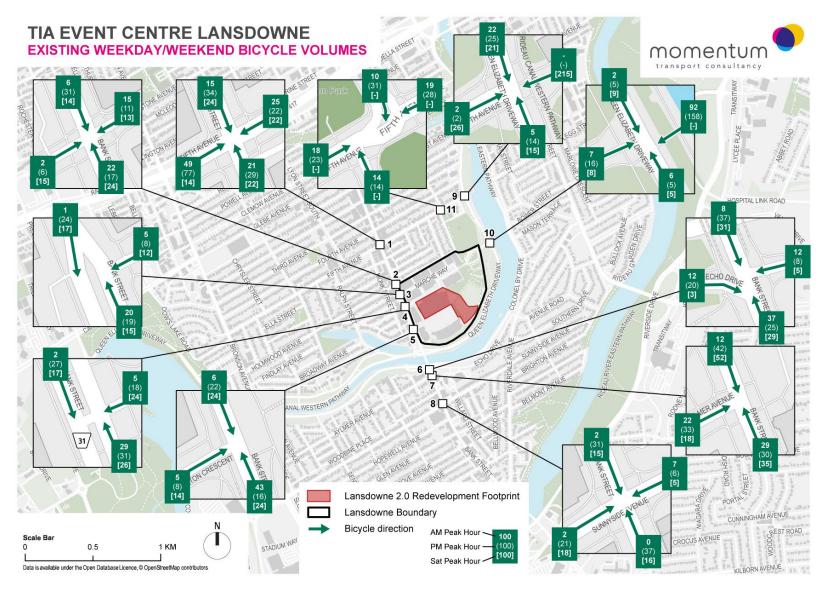



Figure 2.17: Existing Saturday PM Traffic Volumes

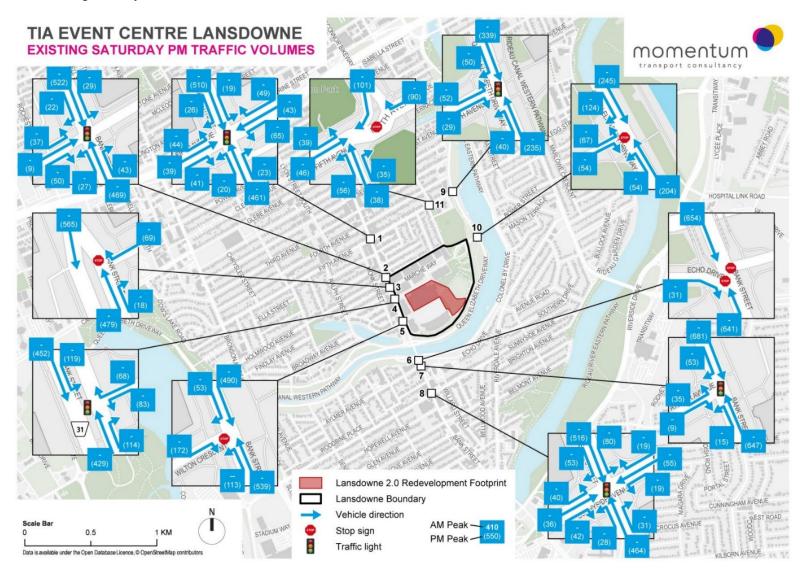



Figure 2.18: Existing Saturday PM On-site Traffic Volumes

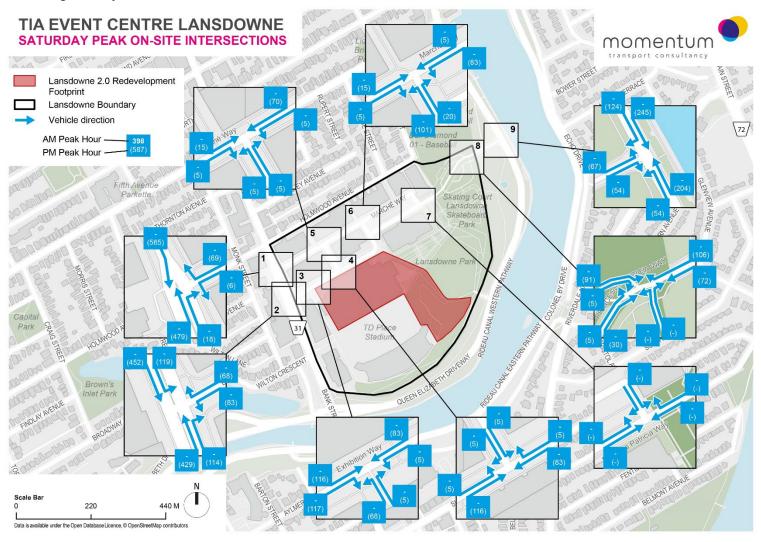



Figure 2.19: Existing Sunday PM Traffic Volumes

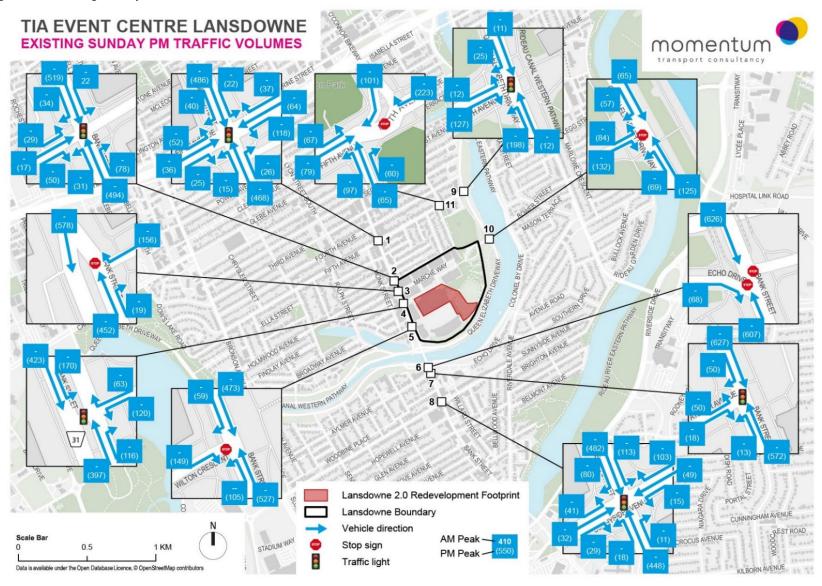



Figure 2.20: Existing Sunday PM On-site Traffic Volumes

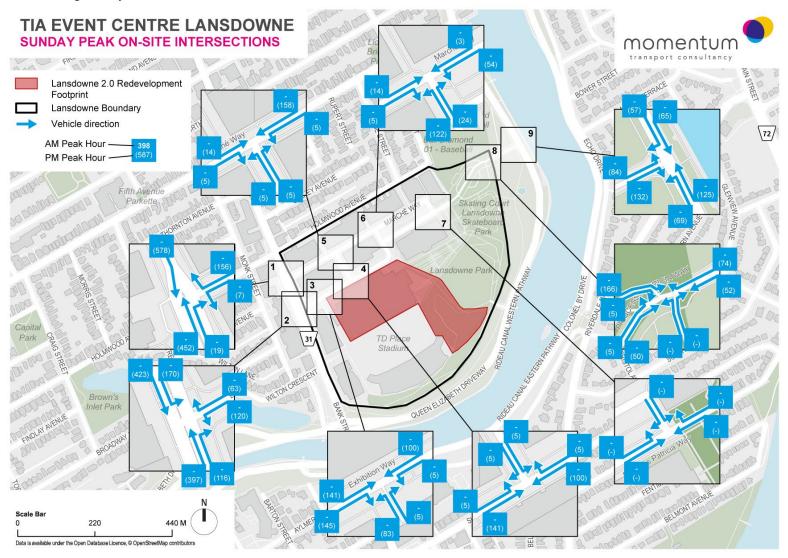
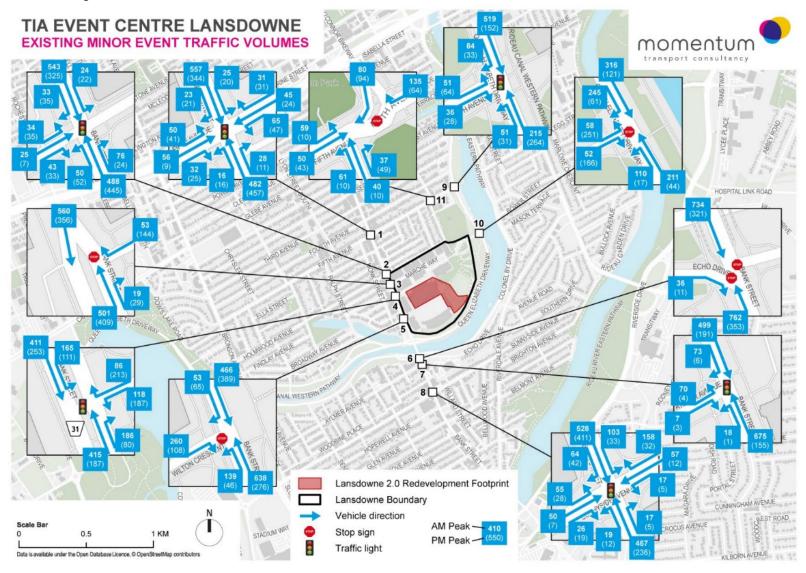




Figure 2.21: Existing Minor Event Traffic Volumes



TIA EVENT CENTRE LANSDOWNE **MINOR EVENT INGRESS / EGRESS ON-SITE** momentum **INTERSECTIONS** Lansdowne 2.0 Redevelopment Footprint Lansdowne Boundary Vehicle direction Ingress 01 - Baseb Egress Skating C Lansdov Skateboa Park Brown's QUEENELIZA Inlet Park

Figure 2.22: Existing Minor event Ingress/Egress On-site Traffic Volumes

Scale Bar

220

Data is available under the Open Database Licence, © OpenStreetMap contributors

440 M

Figure 2.23: Existing Minor Event Pedestrian Volumes

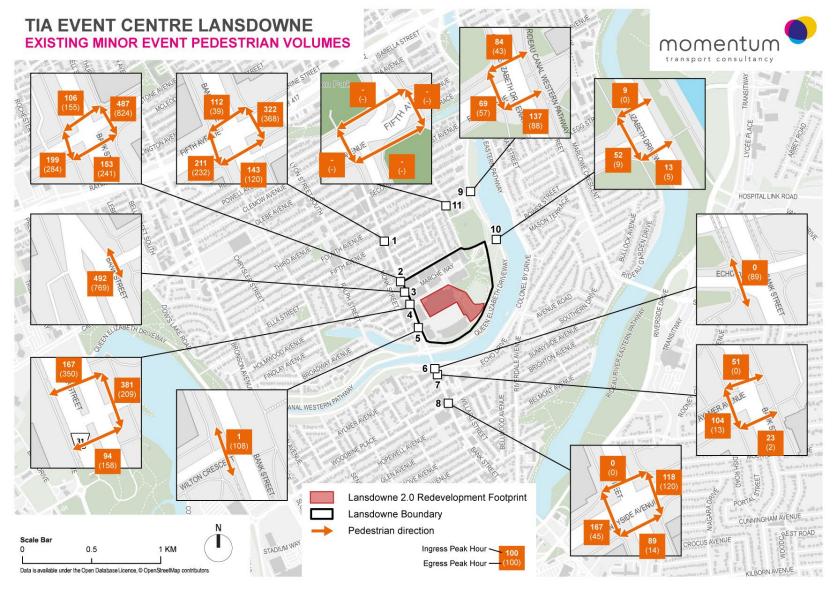



Figure 2.24: Existing Minor Event Bicycle Volumes

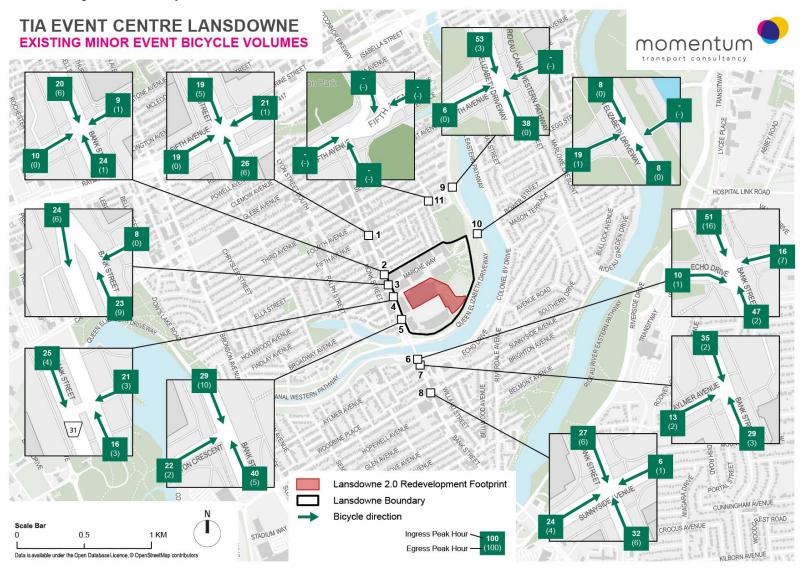



Figure 2.25: Existing Major Event Traffic Volumes

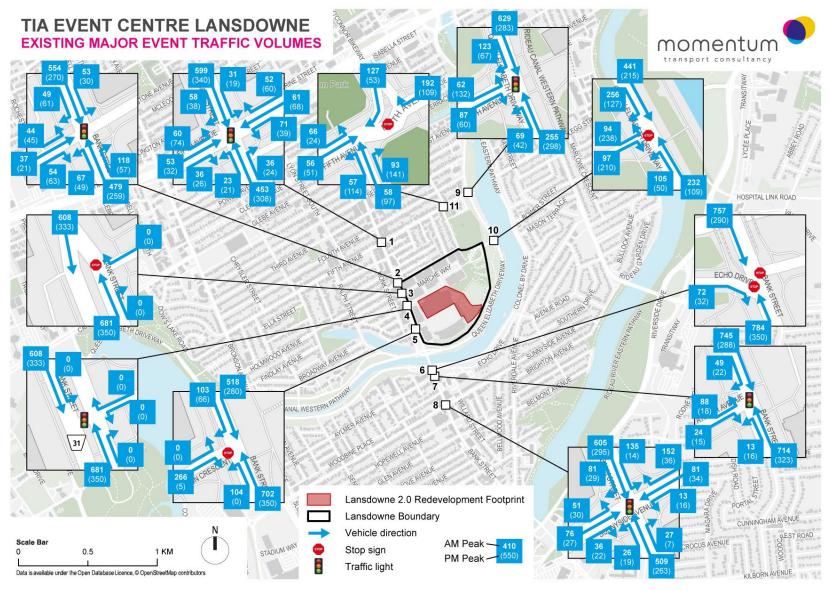



Figure 2.26: Existing Major Event Pedestrian Volumes

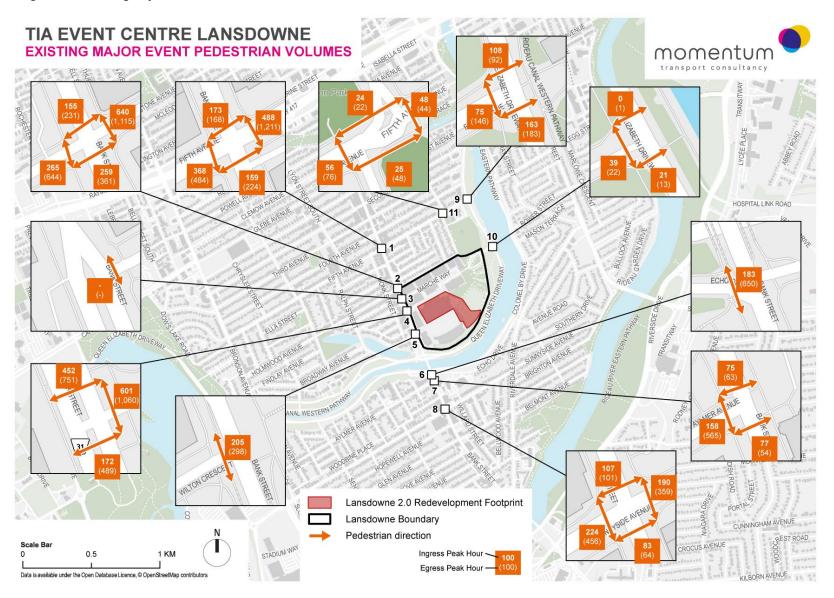
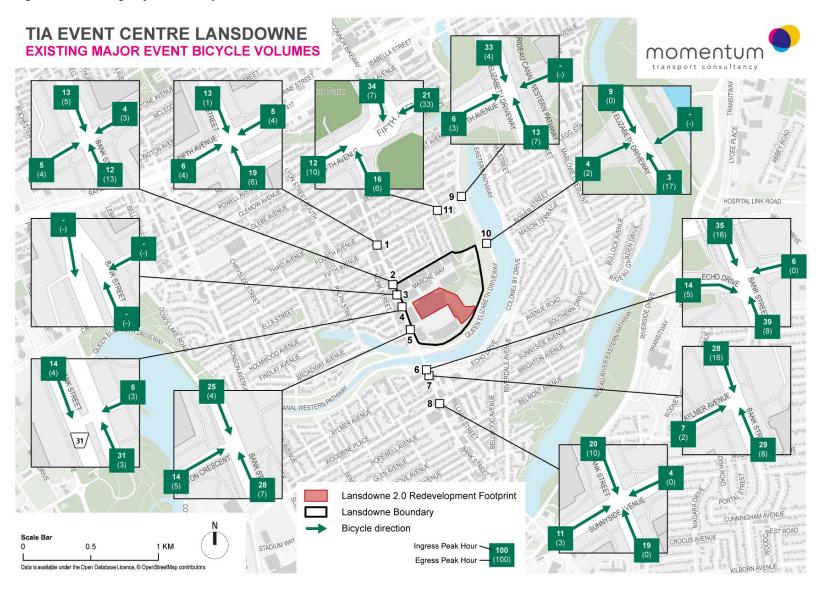




Figure 2.27: Existing Major Event Bicycle Volumes



# 2.1.6 Collision History

Collision data was provided by the City of Ottawa for the period January 2017 to December 2021 in the vicinity of Lansdowne and TD Place. The data was reviewed to determine if any intersections exhibited identifiable collision patterns.

Table 2.1 summarizes the collision class and impact types for study area intersections.

Table 2.1: Collision Summary

|                                             |                  |           | IM                 | PACT TYPE   | <b>=</b>          |       |
|---------------------------------------------|------------------|-----------|--------------------|-------------|-------------------|-------|
| LOCATION                                    | CLASS            | Sideswipe | Angle /<br>Turning | Rear<br>End | Single<br>Vehicle | Other |
| Bank Street at                              | Property Damage  | 1         |                    | 4           | 1                 |       |
| Exhibition Way                              | Non-Fatal Injury |           |                    |             |                   |       |
| Bank St at                                  | Property Damage  |           |                    | 1           |                   |       |
| Marche Way                                  | Non-Fatal Injury |           |                    |             | 1                 |       |
| Bank St at                                  | Property Damage  | 3         | 2                  | 3           | 1                 |       |
| Fifth Ave                                   | Non-Fatal Injury |           | 3                  | 1           | 2                 |       |
| Bank St at                                  | Property Damage  | 3         | 6                  | 2           |                   |       |
| Holmwood Ave                                | Non-Fatal Injury |           | 1                  |             |                   |       |
| Bank St at                                  | Property Damage  | 2         | 3                  | 3           | 1                 |       |
| Wilton Cres                                 | Non-Fatal Injury | 1         | 3                  | 1           |                   |       |
| Bank St at                                  | Property Damage  | 1         | 2                  |             |                   | 1     |
| Echo Dr                                     | Non-Fatal Injury |           |                    |             |                   |       |
| Bank St at                                  | Property Damage  | 4         | 2                  | 4           |                   |       |
| Aylmer Ave                                  | Non-Fatal Injury |           |                    | 1           | 1                 |       |
| Bank St at                                  | Property Damage  | 7         | 5                  | 1           |                   |       |
| Sunnyside Ave                               | Non-Fatal Injury |           | 3                  | 1           | 3                 |       |
| Queen<br>Elizabeth Dr at                    | Property Damage  |           |                    | 3           |                   |       |
| Fifth Ave                                   | Non-Fatal Injury |           |                    |             |                   |       |
| Queen                                       | Property Damage  | 1         | 2                  | 1           |                   |       |
| Elizabeth Dr at<br>Princess<br>Patricia Way | Non-Fatal Injury |           | 2                  |             |                   | 1     |
| Fifth Avenue at                             | Property Damage  |           |                    |             |                   | 2     |
| O'Connor Street                             | Non-Fatal Injury |           |                    |             |                   |       |
|                                             | Property Damage  | 22        | 22                 | 22          | 3                 | 3     |
| TOTAL                                       | Non-Fatal Injury | 1         | 12                 | 4           | 7                 | 1     |

Based on the collision data summarized above, the majority of collisions are classified as Property Damage only (74%), suggesting that the majority of collisions occurred at low speeds. No intersection or signal timing modifications are recommended. Collision summary data can be found in **Appendix B**.

# **PLANNED CONDITIONS**

# 2.1.7 Road Network Modifications

Table 2.2 identifies the City of Ottawa's Transportation Master Plan (TMP) projects located in the vicinity of the subject site, as well as projects that are anticipated to influence modal share characteristics in the future.

Table 2.2: City of Ottawa Transportation Master Plan Projects

| Project     | Description                                                                                                                                                                   | TMP Phase          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|             | Transit signal priority between Wellington Street and Highway 417. May also include parking lane conversion in the immediate vicinity of selected intersections               |                    |
| Bank Street | Transit signal priority between Highway 417 and Billings Bridge Station, including limited installation of queue jump lanes (in one direction only) at selected intersections | Affordable Network |

The City of Ottawa is currently undertaking the *Bank Street Active Transportation and Transit Priority Feasibility Study* between Highway 417 to the Rideau Canal. The project, which is currently underway, seeks to identify options to improve transit service efficiency and reliability along the corridor, with improvements to the travel environment for walking and cycling. Recommendations to City of Ottawa Transportation Committee are expected to be provided in Spring 2025.

# 2.1.8 Future Background Developments

Several new developments are proposed in the vicinity of Lansdowne. The location of background developments are described in Table 2.3 and illustrated in Figure 2.28

Table 2.3: Background Developments

| Plan<br>Reference | Development               | Location                                                                                          | Description                                                                                                                       |  |  |  |  |
|-------------------|---------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| А                 | 1050 – 1060 Bank Street   | West side of Bank Street<br>between Aylmer and Euclid<br>Avenue in the south portion of<br>Ottawa | 6 storey residential apartment (44) units and 825m² retail space (Buildout – 2024)                                                |  |  |  |  |
| В                 | 178 – 200 Isabella Street | South of Highway 417 between<br>Bank Street and O'Connor<br>Street                                | 16 storey mixed-use building with 251 dwellings units and approximately 355 m² of ground floor commercial space (Buildout – 2025) |  |  |  |  |
| С                 | 30-48 Chamberlain Avenue  | South of Chamberlain Avenue, west of Bank Street                                                  | 150 apartment units and approximately 400 m <sup>2</sup> of ground floor retail space (Buildout – 2024)                           |  |  |  |  |
| D                 | 770 – 774 Bronson Avenue  | Southwest corner of Bronson<br>Avenue and Carling Avenue<br>intersection                          | 257 apartment dwelling unit and 71 student housing dwelling units (Buildout-2025)                                                 |  |  |  |  |
| Е                 | 1040 Bank Street          | Northwest corner of Bank Street and Aylmer Avenue intersection                                    | Redevelopment of the Southminister United Church including a six-storey condominium building adjacent to the church               |  |  |  |  |

Figure 2.28: Background Developments Key Plan



# 2.2 Study Area and Time Periods

# **STUDY AREA**

- **2.2.1** The following study area intersections are proposed for analysis:
  - 1. Bank Street at Fifth Avenue
  - 2. Bank Street at Holmwood Avenue
  - 3. Bank Street at Exhibition Way
  - 4. Bank Street at Wilton Crescent
  - 5. Bank Street at Echo Drive
  - 6. Bank Street at Aylmer Avenue
  - 7. Bank Street at Sunnyside Avenue
  - 8. Queen Elizabeth Driveway at Princess Patricia Way
  - 9. Queen Elizabeth Driveway at Fifth Avenue
  - 10. Bank Street at Marché Way
  - 11. Fifth Avenue at O'Connor Street

# **TIME PERIODS**

- **2.2.2** The proposed scope of the transportation assessment includes the following analysis time periods:
  - Weekday AM Peak Hour of roadway
  - Weekday PM Peak Hour of roadway
  - Saturday Mid-Day Peak Hour of roadway
  - Sunday Mid-Day Peak Hour of roadway
  - · Weekday Minor and Major Events: Ingress and Egress Peak Hour

# **HORIZON YEARS**

- **2.2.3** The proposed scope of the transportation assessment includes the following horizon years:
  - **2024 –** Existing Conditions;
  - 2028 Representing the anticipated completion and interim operating conditions of the during the construction of subsequent phases of Lansdowne 2.0 (i.e. – new North Stadium Stands and podium retail / residential towers).
    - **2033 –** Representing the anticipated full build-out of Lansdowne 2.0, inclusive of the new Event Centre, North Stadium Stands, podium retail, and residential towers.

# 2.3 Exemptions Review

Table 2.4 summarizes the Exemptions Review table from the City of Ottawa's 2017 *Transportation Impact Assessment Guidelines*.

Table 2.4: Exemptions Review

| Module                                     | Element                          | Exemption Considerations                                                                                                                                             | Exempted? |  |
|--------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Design Review Compo                        | nent                             |                                                                                                                                                                      |           |  |
| 4.1 Development<br>Design                  | 4.1.2 Circulation and Access     | Only required for site plans                                                                                                                                         | No        |  |
|                                            | 4.1.3 New Street Networks        | Only required for plans of subdivision                                                                                                                               | Yes       |  |
| 4.2 Parking                                | 4.2.1 Parking Supply             | Only required for site plans                                                                                                                                         | No        |  |
|                                            | 4.2.2 Spillover Parking          | Only required for site plans where parking supply is 15% below unconstrained demand                                                                                  | Yes       |  |
| Network Impact Compo                       | onent                            |                                                                                                                                                                      |           |  |
| 4.5 Transportation<br>Demand<br>Management | All Elements                     | Not required for site plans<br>expected to have fewer than 60<br>employees and/or students on<br>location at any given time                                          | No        |  |
| 4.6 Neighbourhood<br>Traffic Management    | 4.6.1 Adjacent<br>Neighbourhoods | Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds                                  | Yes       |  |
| 4.8 Network Concept                        |                                  | Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning | Yes       |  |
| 4.9 Intersection<br>Design                 | All Elements                     | Not required if site generation trigger is not met                                                                                                                   | No        |  |

# 3. FORECASTING

# 3.1 Development Generated Travel Demand

# **EXISTING TRIP GENERATION**

Lansdowne is currently an active site featuring a variety of land uses including the Stadium at TD Place, the Arena at TD Place, 280 residential townhome and condo units, an 18-acre urban park, and approximately 360,000 ft<sup>2</sup> of commercial retail and office space.

The current vehicular trip generation characteristics of the site are captured through Turning Movement Count (TMC) data. Existing peak hour traffic volumes under Weekday AM, Weekday PM, and Weekend Saturday and Sunday peak hour conditions are summarized in Section 2.1.5.

# **FUTURE TRIP GENERATION AND MODE SHARES**

**Phase 1** of Lansdowne 2.0, which represents the construction of the new 5,500 seat multipurpose Event Centre, is not expected to generate any additional transportation demands or new travel patterns as the activities and programming associated with this new facility are currently in place at the Arena at TD Place.

**Phase 2** of Lansdowne 2.0, which includes the demolition of the old north stadium stands and the construction of a new one is not expected to generate any new transportation demands or changes in travel patterns.

**Phase 3** of Lansdowne 2.0, which includes the construction of new podium level retail and additional high-rise residential units within two new towers are expected to generate additional transportation demands at Lansdowne.

As a result, development generated travel demands are forecasted for the ultimate build-out of Lansdowne 2.0 which is assumed to be achieved by the 2033-year horizon for this study.

The Institute of Transportation (ITE) Trip Generation Manual (11th Edition) was used to forecast the auto trip generation for the multifamily housing and shopping center land uses and the TRANS Trip Generation Manual was used to forecast the auto trip generation for the residential land use. Land use codes 222 – Multi-Unit High Rise Building, and 820 – Shopping Centre were thought to be the most representative of the proposed land uses.

Table 3.1 outlines the assumed land uses and the trip generation rates (ITE) for each land use.

Table 3.1: Lansdowne 2.0 Land Uses and Trip Generation Rates

| Phase 1                                                                | Phase 1 – New Event Centre (2028)                                                                           |                  |                |                         |                                                                    |                |                         |     |                |                               |     |                |                             |     |                |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------------------|--------------------------------------------------------------------|----------------|-------------------------|-----|----------------|-------------------------------|-----|----------------|-----------------------------|-----|----------------|
| N/A                                                                    | Indoor Arena /<br>Multi-Purpose<br>Event Centre                                                             | Person<br>Trips  | 5,500<br>Seats |                         | Existing Land Use at Lansdowne. No Additional New Trips Forecasted |                |                         |     |                |                               |     |                |                             |     |                |
| Phase 2 – New North Stadium Stands (2031)                              |                                                                                                             |                  |                |                         |                                                                    |                |                         |     |                |                               |     |                |                             |     |                |
| N/A                                                                    | N/A Football Stadium Person Trips 25,000 Existing Land Use at Lansdowne. No Additional New Trips Forecasted |                  |                |                         |                                                                    |                |                         |     |                |                               |     |                |                             |     |                |
| Phase 3 – Full Buildout / Podium Retail + New Residential Units (2033) |                                                                                                             |                  |                |                         |                                                                    |                |                         |     |                |                               |     |                |                             |     |                |
| LUC                                                                    | Land Use                                                                                                    | Trip Type        | Units /<br>GFA | Weekday AM<br>Peak Hour |                                                                    |                | Weekday PM<br>Peak Hour |     |                | Saturday Weekend<br>Peak Hour |     |                | Sunday Weekend<br>Peak Hour |     |                |
|                                                                        |                                                                                                             |                  | (ksf)          | In                      | Out                                                                | Total          | ln                      | Out | Total          | In                            | Out | Total          | ln                          | Out | Total          |
| 222                                                                    | Multi-unit<br>Residential<br>(High-Rise)                                                                    | Person<br>Trips  | 770<br>units   | 16%                     | 84%                                                                | 0.76 /<br>unit | 64%                     | 36% | 0.58 /<br>unit | 56%                           | 44% | 0.74 /<br>unit | 51%                         | 49% | 0.85 /<br>Unit |
| 820                                                                    | Shopping<br>Center                                                                                          | Vehicle<br>Trips | 8.6 ksf        | 55%                     | 45%                                                                | 2.87 /<br>ksf  | 50%                     | 50% | 4.09 /<br>ksf  | 52%                           | 48% | 4.40 /<br>ksf  | 49%                         | 51% | 2.35 /<br>ksf  |
| 710                                                                    | General<br>Office                                                                                           | Person<br>Trips  | 14.2 ksf       | 87%                     | 13%                                                                | 1.22 /<br>ksf  | 21%                     | 79% | 1.28 /<br>ksf  | 48%                           | 52% | 0.27 /<br>ksf  | 36%                         | 64% | 0.17 /<br>ksf  |

# 3.1.1 Trip Internalization

Trip Internalization refers to trips that are shared between two or more uses within the same site. This behaviour is typical for mixed-use developments that feature a variety of land uses that complement each other. When trip internalization occurs, a portion of the generated trips for each individual land use are drawn from other land uses within the same district, as opposed to new trips that are generated externally.

For new land uses proposed for Lansdowne 2.0, trip Internalization factors were applied to account for new site trips that are expected to be generated from within the site, or external trips that visit more than one land use within the subject development. Since these trips are contained within the district, accounting for each trip separately on the roadway network would result in double-counting trips. As a result, land uses with internal capture trips between one another ultimately had their net new trips adjusted consistent with acceptable industry standards.

For Lansdowne 2.0, a portion of the additional commercial retail land-uses are assumed to feature trip internalization with other land-uses and activities within the site include existing and future residential, office, and the existing retail land-uses.

Table 3.2 outlines the trip internalization rates assumed for the additional retail land uses assumed as part of the Lansdowne 2.0 development.

Trip internalization rates were developed based on the methodologies outlined in TRANS Trip Generation Manual and NCHRP Report 684 (Enhancing Internal Trip Capture Estimation for Mixed-Use Developments).

Table 3.2: Internal Capture Trips

| LUC | Land Use          | Trip                | W  | Weekday AM<br>Peak |       |     | eekday<br>Peak |       | Weekend Peak<br>Hour |     |       |  |
|-----|-------------------|---------------------|----|--------------------|-------|-----|----------------|-------|----------------------|-----|-------|--|
|     |                   | Conversion          | In | Out                | Total | In  | Out            | Total | In                   | Out | Total |  |
| 820 | Shopping<br>Plaza | Internal<br>Capture |    | 15%                |       | 30% |                |       | 15%                  |     |       |  |

# **Lansdowne 2.0 Additional Person Trips**

New transportation demands associated with Lansdowne 2.0 additional development is outlined in Table 3.3.

Forecasted person trips for the proposed multi-unit residential towers, additional commercial retail, and general office spaces were derived using the ITE Trip Generation Manual.

The trip internalization factors outlined above were applied to the shopping plaza land use to capture internal trips.

Table 3.3: Lansdowne 2.0 Person Trips Generated by Land Use

| LU<br>C | Land Use                                      | Trip Conversion                   |     | Weekday<br>AM Peak       |       |     | Weekday<br>PM Peak |       |     | Saturday<br>Peak Hour |       |     | Sunday<br>Peak Hour |       |  |
|---------|-----------------------------------------------|-----------------------------------|-----|--------------------------|-------|-----|--------------------|-------|-----|-----------------------|-------|-----|---------------------|-------|--|
|         |                                               |                                   | ln  | Out                      | Total | In  | Out                | Total | In  | Out                   | Total | In  | Out                 | Total |  |
| 222     | Multi-Unit<br>Residential<br>(High-Rise)      | Person Trips                      | 94  | 492                      | 585   | 286 | 161                | 447   | 319 | 251                   | 570   | 334 | 321                 | 655   |  |
|         |                                               | Auto Trips<br>(Peak Hour)         |     | 11                       | 25    | 18  | 18                 | 35    | 20  | 18                    | 38    | 19  | 19                  | 38    |  |
|         | Auto Trip to<br>Person Trip Factor            |                                   |     | 1.28 persons per vehicle |       |     |                    |       |     |                       |       |     |                     |       |  |
| 820     | Shopping                                      | Initial Person Trips              | 17  | 14                       | 32    | 32  | 23                 | 45    | 25  | 23                    | 49    | 24  | 25                  | 49    |  |
| 020     | Plaza                                         | Internalization Factor            | 15% |                          |       | 30% |                    |       | 15% |                       |       | 15% |                     |       |  |
|         |                                               | Internalization Trip<br>Reduction | -3  | -2                       | -5    | -7  | -7                 | -14   | -4  | -4                    | -7    | -4  | -4                  | -7    |  |
|         |                                               | Person Trips                      | 14  | 12                       | 27    | 16  | 16                 | 31    | 21  | 19                    | 42    | 20  | 21                  | 42    |  |
| 710     | General Office                                | Person Trips                      | 15  | 2                        | 17    | 4   | 14                 | 18    | 2   | 2                     | 4     | 1   | 2                   | 2     |  |
|         | Lansdowne 2.0 New Person Trips<br>(Peak Hour) |                                   |     | 506                      | 629   | 305 | 191                | 496   | 342 | 272                   | 615   | 354 | 343                 | 699   |  |

It is estimated that the Lansdowne 2.0 development is projected to result in a net increase of 629 person trips in the AM Peak Hour, 496 person trips in the PM Peak Hour, 615 trips during the Saturday Weekend Peak Hour, and 699 trips during the Sunday Weekend Peak Hour.

To reflect local travel characteristics, forecasted person trips were assigned and distributed to various travel modes (i.e., auto, passenger, transit, cycling and walking). Modal share percentages were adopted from the TRANS Trip Generation Manual.

The TRANS Trip Generation Manual provides trip generation and modal share rates for 26 geographic regions within Ottawa-Gatineau. For Lansdowne, the modal shares for the *Ottawa Inner Area (050)* were adopted for the High-Rise Multifamily Housing and Commercial landuses.

The Lansdowne 2.0 assumed modal shares are summarized below in Table 3.4.

Table 3.4: Assumed Mode Share by Land Use

| Mode      | 222 - | Multiuse Fa | amily   | 820 - 0 | 710 - |         |        |  |  |  |
|-----------|-------|-------------|---------|---------|-------|---------|--------|--|--|--|
|           | AM    | РМ          | Average | AM      | PM    | Average | Office |  |  |  |
| Auto      | 26%   | 25%         | 26%     | 39%     | 22%   | 31%     | 45%    |  |  |  |
| Passenger | 7%    | 9%          | 8%      | 2%      | 4%    | 3%      | 7%     |  |  |  |
| Transit   | 28%   | 21%         | 25%     | 16%     | 12%   | 14%     | 29%    |  |  |  |
| Cycling   | 5%    | 6%          | 6%      | 3%      | 4%    | 4%      | 8%     |  |  |  |
| Walking   | 34%   | 39%         | 37%     | 40%     | 58%   | 49%     | 11%    |  |  |  |

# Residential Trips - Mode Shares

Section 4.2 (Table 8) of the *TRANS Trip Generation Manual (October 2020)* was utilized to determine the residential mode share for high rise multi-family housing for the Ottawa Inner Area district. The mode shares for the district, which is based on blended AM and PM peak period rates, include a 26% auto mode share, a 25% transit mode share, and a combined 43% modal share for walking and cycling.

# **Commercial Trips - Mode Shares**

Section 6.3 (Table 13) of the *TRANS Trip Generation Summary Manual (October 2020)* was utilized to determine the commercial retail mode share for the Ottawa Inner Area district. The mode shares for the district, which is based on blended AM and PM peak period rates, include a 31% auto mode share, a 14% transit mode share, and a combined 53% modal share for walking and cycling.

Table 3.5 outlines the adjusted future trip generation estimate for Lansdowne 2.0 by travel mode.

Table 3.5: Lansdowne 2.0 Future Trip Generation by Travel Mode

| LUC | Land Use                          | Modal Share % |         | Al  | Weekday<br>M Peak Ho | ur    |     | Weekday<br>PM Peak Hour |       |     | Weekend<br>Saturday Peak Hour |       |     | Weekend<br>Sunday Peak Hour |       |  |
|-----|-----------------------------------|---------------|---------|-----|----------------------|-------|-----|-------------------------|-------|-----|-------------------------------|-------|-----|-----------------------------|-------|--|
|     |                                   |               |         | In  | Out                  | Total | In  | Out                     | Total | In  | Out                           | Total | In  | Out                         | Total |  |
|     |                                   | Auto Driver   | 26%     | 24  | 125                  | 149   | 73  | 41                      | 114   | 81  | 64                            | 145   | 85  | 82                          | 167   |  |
|     | Multi – Unit                      | Passenger     | 8%      | 7   | 39                   | 47    | 23  | 13                      | 36    | 26  | 20                            | 46    | 27  | 26                          | 52    |  |
| 222 | (High-Rise)                       | Transit       | 25%     | 23  | 120                  | 143   | 70  | 39                      | 109   | 78  | 61                            | 140   | 82  | 79                          | 160   |  |
|     | (i.i.g.i i i.i.o.)                | Cycling       | 6%      | 5   | 27                   | 32    | 16  | 9                       | 25    | 18  | 14                            | 31    | 18  | 18                          | 36    |  |
|     |                                   | Walking       | 37%     | 34  | 179                  | 214   | 104 | 59                      | 163   | 116 | 92                            | 208   | 122 | 117                         | 239   |  |
|     |                                   | Auto Driver   | 31%     | 4   | 4                    | 8     | 5   | 5                       | 10    | 6   | 6                             | 12    | 6   | 6                           | 12    |  |
|     | 0                                 | Passenger     | 3%      | 0   | 0                    | 1     | 0   | 0                       | 1     | 1   | 1                             | 1     | 1   | 1                           | 1     |  |
| 820 | Shopping Center                   | Transit       | 14%     | 2   | 2                    | 4     | 2   | 2                       | 4     | 3   | 3                             | 6     | 3   | 3                           | 6     |  |
|     | J J J                             | Cycling       | 4%      | 1   | 0                    | 1     | 1   | 1                       | 1     | 1   | 1                             | 1     | 1   | 1                           | 1     |  |
|     |                                   | Walking       | 49%     | 7   | 6                    | 13    | 8   | 8                       | 15    | 10  | 9                             | 20    | 10  | 10                          | 20    |  |
|     |                                   | Auto Driver   | 45%     | 7   | 1                    | 8     | 2   | 6                       | 8     | 1   | 1                             | 2     | 0   | 1                           | 1     |  |
|     |                                   | Passenger     | 7%      | 1   | 0                    | 1     | 0   | 1                       | 1     | 0   | 0                             | 0     | 0   | 0                           | 0     |  |
| 710 | Office                            | Transit       | 29%     | 4   | 1                    | 5     | 1   | 4                       | 5     | 1   | 1                             | 1     | 0   | 0                           | 1     |  |
|     |                                   | Cycling       | 8%      | 1   | 0                    | 1     | 0   | 1                       | 1     | 0   | 0                             | 0     | 0   | 0                           | 0     |  |
|     |                                   | Walking       | 11%     | 2   | 0                    | 2     | 0   | 2                       | 2     | 0   | 0                             | 0     | 0   | 0                           | 0     |  |
|     |                                   | Auto          | Driver  | 35  | 130                  | 165   | 79  | 52                      | 132   | 89  | 71                            | 159   | 92  | 89                          | 180   |  |
|     |                                   | Pas           | senger  | 9   | 40                   | 49    | 24  | 14                      | 38    | 26  | 21                            | 47    | 27  | 26                          | 54    |  |
| La  | nsdowne 2.0                       |               | Transit | 29  | 123                  | 152   | 73  | 46                      | 119   | 82  | 65                            | 146   | 85  | 82                          | 167   |  |
|     | Additional                        | Cycling       |         | 7   | 28                   | 35    | 17  | 11                      | 27    | 18  | 15                            | 33    | 19  | 18                          | 38    |  |
|     | Person Trips                      | ١             | Valking | 43  | 186                  | 229   | 112 | 68                      | 180   | 127 | 101                           | 228   | 132 | 127                         | 259   |  |
|     | Total Person Trips<br>(Peak Hour) |               | 123     | 506 | 629                  | 305   | 191 | 496                     | 342   | 272 | 614                           | 354   | 343 | 698                         |       |  |

The total additional number of trips generated by the Lansdowne 2.0 development are outlined above by mode, with a total of 505, 466, and 628 person trips forecasted for the Weekday AM, Weekday PM, and Weekend Saturday peak hours, respectively.

Out of the total trips forecasted, the additional auto trips forecasted as part of the Lansdowne 2.0 development are estimated to be 165, 132, and 159, and 189 vehicle trips in the Weekday AM, Weekday PM, Saturday, and Sunday peak hours

# TRIP DISTRIBUTION

Cardinal trip distribution to and from Lansdowne was developed based on the 2011 TRANS Origin-Destination Survey for the Ottawa Inner Area region.

Based on the origin-destination data, trip distributions were estimated based on directions to the north, east, south and west. The data indicates that up to 32% of trips surveyed within the Ottawa Inner Area started and ended within the same district, and upwards of 10% of trips have an origin/destination to the Ottawa Centre region north of the district towards downtown Ottawa. The remaining trips were found to be distributed to other regions throughout Ottawa-Gatineau.

Table 3.6 outlines the trip distribution assumptions to/from Lansdowne based on the 2011 TRANS Origin-Destination Survey.

| Direction | Trip Distribution |
|-----------|-------------------|
| North     | 35%               |
| East      | 21%               |
| South     | 32%               |
| West      | 13%               |
| Total     | 100%              |

As Lansdowne is bound by two north-south corridors, namely Bank Street to the west, and Queen Elizabeth Driveway to the east, site trip distribution assumptions were refined in the north-south direction, representing localized trip distribution on Bank Street and Queen Elizabeth Driveway.

Table 3.7 outlines the assumed directional trip distributions based on access to nearby regional corridors including the Queensway (Highway 417) to the north, Bronson Avenue to the west, and Riverside Drive and Heron Road to the south.

Table 3.7: Refined Directional Trip Distribution Assumptions

| Direction | Study Area<br>Trip Distribution |
|-----------|---------------------------------|
| North     | 50%                             |
| South     | 50%                             |

# TRIP ASSIGNMENT

Additional Lansdowne 2.0 site generated trips were assigned to the study area road network based on the assumed trip distribution assumptions. In addition, a review of existing traffic data was performed to estimate the traffic volume split between Bank Street, Holmwood Avenue, and Queen Elizabeth Driveway.

Currently, 65% of Lansdowne specific public traffic utilizes Bank Street for access to/from Lansdowne, with the remaining 35% utilizing QED.

Based on parking gate data provided by OSEG for the private residential Holmwood garage ramp, it is estimated that there are approximately 90 residential vehicles utilizing the Holmwood residential garage access per day.

It is assumed that the new residential tenants will also have access to the Holmwood garage ramp. As a result, a proportion of new residential based trips were assumed to utilize the private, restricted-use Holmwood garage ramp for access.

The following site access assumptions were adopted:

• 55% of new site trips are assumed to access Lansdowne via Bank Street.

30% of new site trips are assumed to access Lansdowne via Queen Elizabeth Driveway.

• **15**% of new site trips, specifically a proportion of additional residential trips, are assumed to access the underground private garage access via Holmwood Avenue.

Table 3.8 summarizes new Lansdowne 2.0 site generated vehicle trips and their respective assignment to Bank Street, Queen Elizabeth Driveway, and the private underground parking garage access ramp.

Table 3.8: Trip Assignment for Newly Generated Trips

| Access                   | Weekday AM<br>Peak Hour |           | Weekday PM<br>Peak Hour |          | Saturday<br>Peak Hour |         | Sunday<br>Peak Hour |          |
|--------------------------|-------------------------|-----------|-------------------------|----------|-----------------------|---------|---------------------|----------|
|                          | In                      | Out       | In                      | Out      | In                    | Out     | In                  | Out      |
| Bank Street              | 19                      | 72        | 44                      | 29       | 49                    | 39      | 50                  | 49       |
| Queen Elizabeth Driveway | 11                      | 39        | 24                      | 16       | 27                    | 21      | 27                  | 27       |
| Holmwood Access*         | 5                       | 20        | 12                      | 8        | 13                    | 11      | 14                  | 13       |
| Total New Vehicle Trips  | 35<br>10                | 130<br>65 | 79<br>13                | 52<br>32 | 89<br>15              | 71<br>9 | 92<br>18            | 89<br>30 |

 $<sup>^* \</sup> Holmwood \ Access: \ Lans downer esidents \ access \ to \ private, \ restricted-use \ garage \ access.$ 

Figure 3.1 illustrates the assumed site trip assignment assumptions for Lansdowne 2.0 additional vehicle trips.

Lansdowne 2.0 additional site generated vehicle trips are illustrated in Figure 3.2 through Figure 3.4.

Figure 3.1: Lansdowne 2.0 Site Traffic Assignment Assumptions

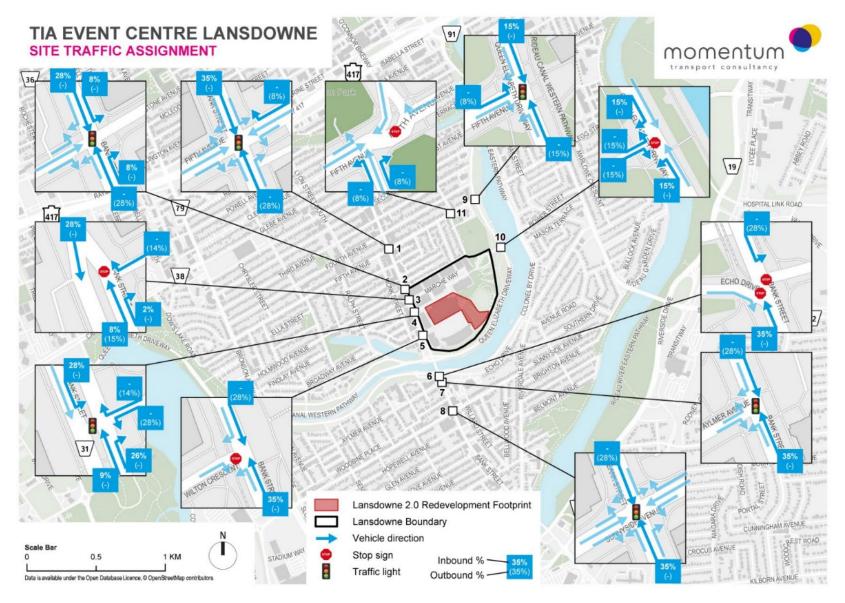



Figure 3.2: Lansdowne 2.0 Site Volumes (Weekday AM/PM Peak)

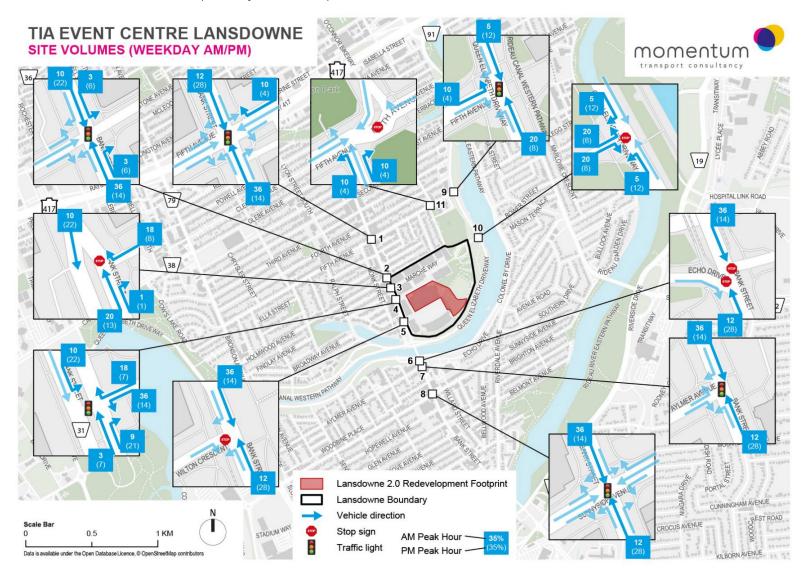



Figure 3.3: Lansdowne 2.0 Site Volumes (Saturday Peak)

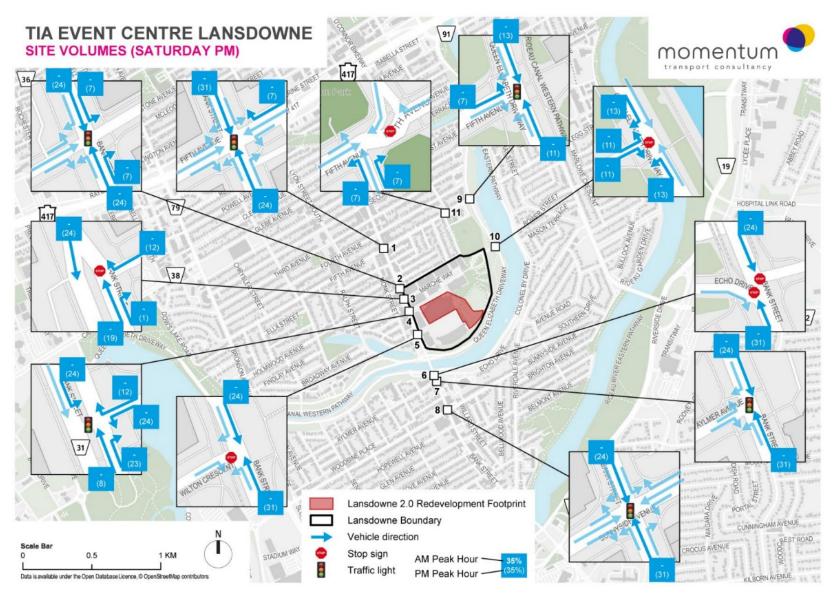
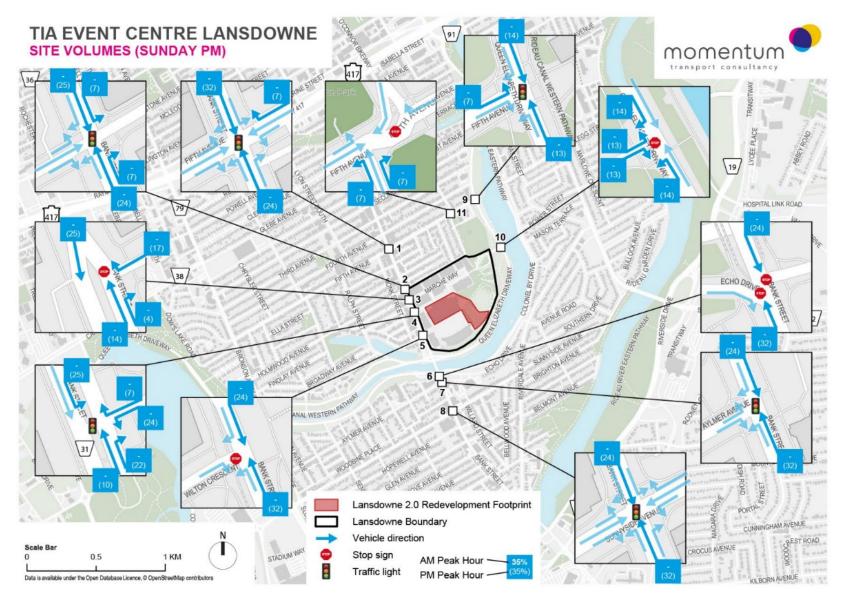




Figure 3.4: Lansdowne 2.0 Site Volumes (Sunday Peak)



# 3.2 Background Network Travel Demand

# TRANSPORTATION NETWORK PLANS

The only road infrastructure project that is identified in the City of Ottawa Transportation Master Plan within the vicinity of Lansdowne is the proposed Transit Priority Corridor improvements on Bank Street.

In May 2022, City of Ottawa Transportation Committee directed staff to undertake an Active Transportation and Transit Operations Feasibility Study project of Bank Street between the Rideau Canal to Highway 417. The study is currently underway with recommendations to City Council expected to be provided in Spring 2025.

# **BACKGROUND GROWTH**

Based on data readily available for the City of Ottawa, the average annual growth rate for traffic volumes in the vicinity of Lansdowne ranges between -2% to +0.2%, indicating a general reduction or limited growth in vehicular traffic volume on Bank Street and the surrounding roadway network. As a result, a 0.5% annual background growth rate was applied to forecast future background growth in traffic volumes.

# OTHER DEVELOPMENTS

As outlined in Section 2.1.8, a number of nearby developments near Lansdowne are currently under construction or scheduled to be constructed within the horizons of the study. The traffic volumes from these developments were obtained from their respective traffic studies, where available, and added to the transportation network as part of background traffic growth.

# 3.3 Demand Rationalization

The current peak hour traffic volumes along Bank Street are in the range of 500 – 800 vehicles per hour per direction. Similar volumes are exhibited on Queen Elizabeth Driveway with peak hour volumes in the range of 300 – 600 vehicles per hour per direction.

The traffic volumes forecasted under the 2033 future build-out year are projected to be in the range of 600 – 900 vehicles per hour per direction for Bank Street, and 350 – 700 vehicles per hour per direction for Queen Elizabeth Driveway.

As the projected volumes fall within a similar range to existing conditions and are likely to be supported by the transportation network, no demand rationalization was undertaken.

# 2028 TOTAL FUTURE TRAFFIC VOLUMES

The 2028 Total Future horizon year represents the completion of Phase 1 of the Lansdowne 2.0 redevelopment program with the opening of the new multi-purpose Event Centre.

As the new multi-purpose Event Centre will not generate new additional transportation demands to Lansdowne, no new site generated trips have been added. A 0.5% annual growth rate was applied to existing traffic demands to account for background development growth.

It is anticipated that the new Event Centre will operate in an interim condition during construction of subsequent phases of Lansdowne 2.0: namely construction of the new North Stadium Stands (Phase 2), and the new podium retail and two residential towers (Phase 3).

During Phase 2 and Phase 3 construction of Lansdowne 2.0, site access is expected to be generally unaffected with access provided at both Bank Street and Queen Elizabeth Driveway. Site circulation within Lansdowne will need to be verified during Phase 2 and Phase 3 based on construability requirements and the construction footprint within Lansdowne, these details are expected to be addressed as part of the permitting and approvals of the subsequent Phase 2 and Phase 3.

While construction phasing details for Phase 2 and Phase 3 are still under development and will be addressed as part of subsequent approval phases, it is anticipated that during construction of Phase 2 and Phase 3, the underground parking garage ramp at Bank Street will be temporarily closed for public use to accommodate construction of the expanded underground parking garage for Lansdowne. The time and duration of impacts is still unknown.

To assess traffic operations during the operation of the new Event Centre, the 2028 horizon year was assumed to include the temporary closure of the Bank Street underground garage ramp. It is anticipated that access to Lansdowne from both Bank Street and Queen Elizabeth Driveway will be unaffected, with the temporary closure of the Bank Street garage ramp, public access to the underground parking garage will occur at the Princess Patricia Way underground garage ramp near Queen Elizabeth Driveway.

It is assumed that most of the traffic (assumption of **70%**) currently accessing the underground parking facilitates at the Exhibition Way underground garage ramp will continue to access Lansdowne on Bank Street and will travel through the site towards the Princess Patricia Way garage access.

The remaining portion of traffic (assumption of **30%**) currently accessing the underground parking facility at the Exhibition Way ramp near Bank Street are assumed to alter their travel patterns by shifting to Queen Elizabeth Driveway as the route to travel to Lansdowne. This includes **15%** diverting from Bank Street to Queen Elizbeth Driveway via Fifth Avenue, and **15%** choosing to travel on Queen Elizbeth Driveway further upstream as part of their journey to Lansdowne.

Figure 3.5 through Figure 3.12 summarize projected 2028 traffic volumes inclusive of background development growth and assumed internal circulation adjustments during the temporary closure of the Exhibition Way underground parking garage access during Phase 2 and Phase 3 construction.

Figure 3.5: 2028 Total Future Traffic Volumes (Weekday AM / PM)

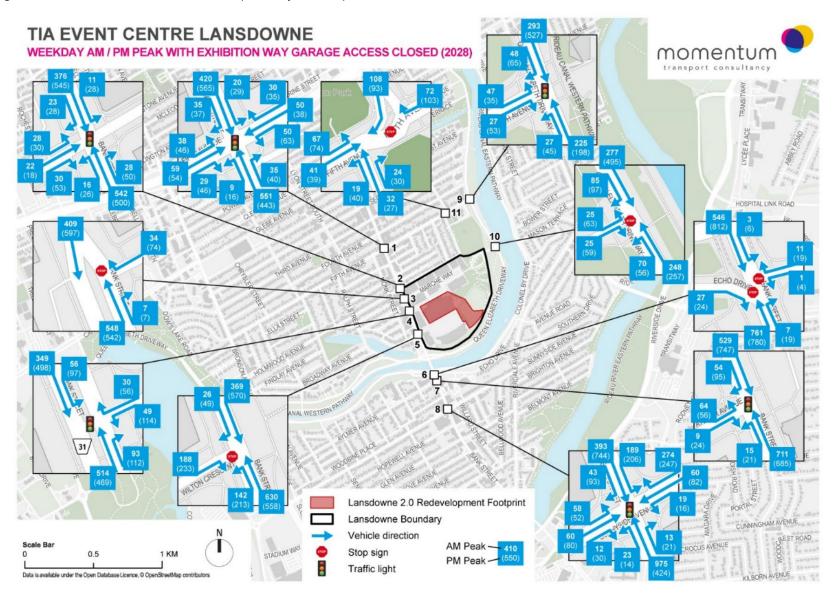



Figure 3.6: 2028 Total Future Traffic Volumes On-site (Weekday AM / PM)

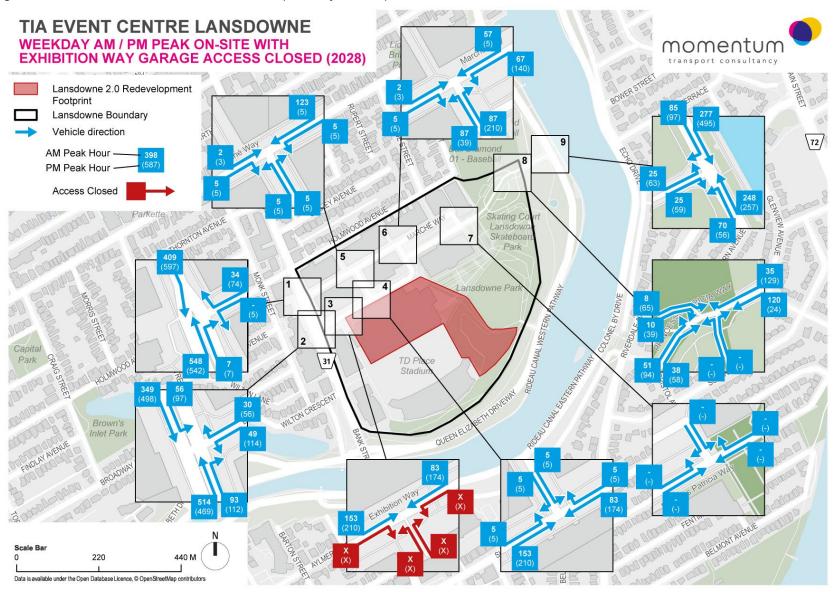



Figure 3.7: 2028 Total Future Traffic Volumes (Saturday PM)

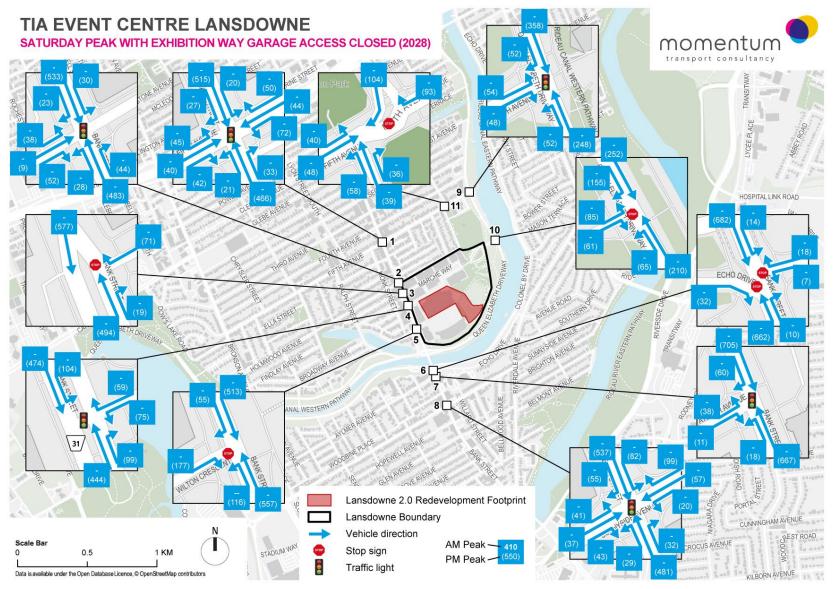



Figure 3.8: 2028 Total Future Traffic Volumes on-site (Saturday PM)

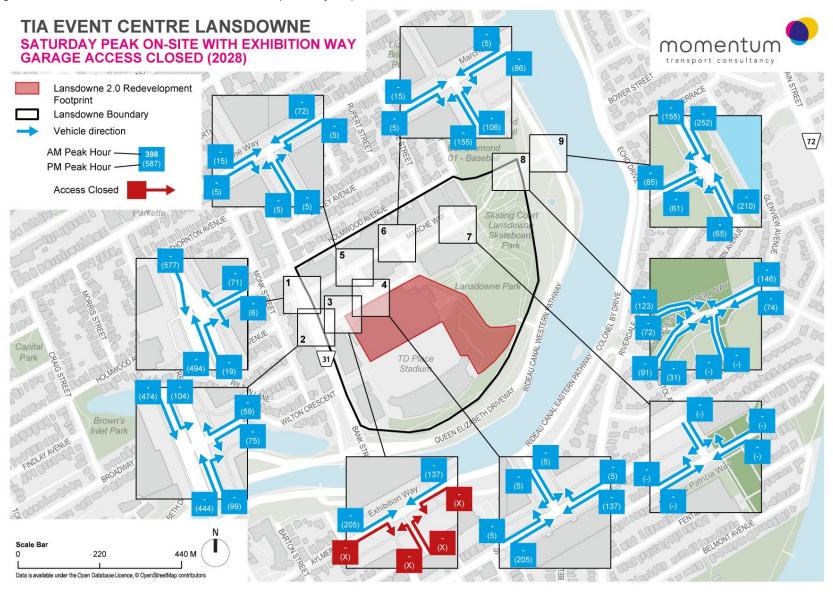



Figure 3.9: 2028 Total Future Traffic Volumes (Sunday PM)

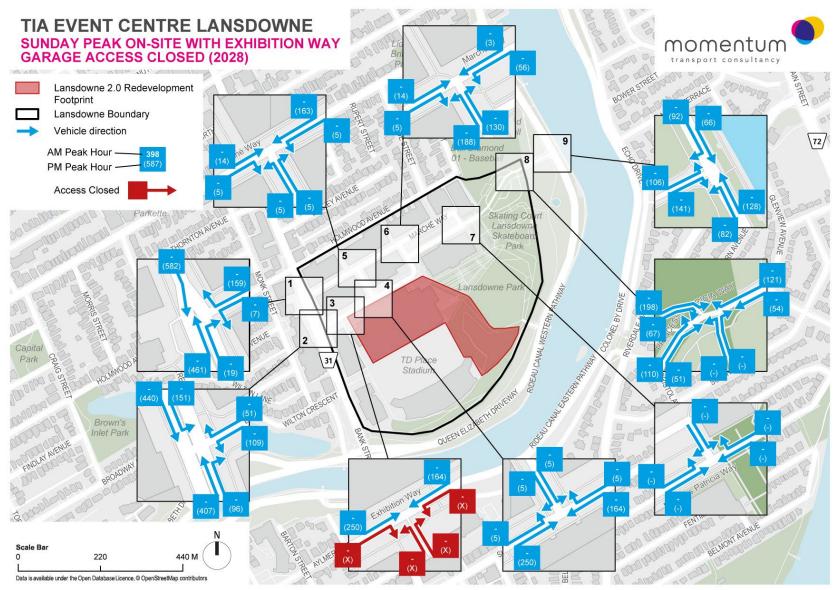



Figure 3.10: 2028 Total Future Traffic Volumes on-site (Sunday PM)

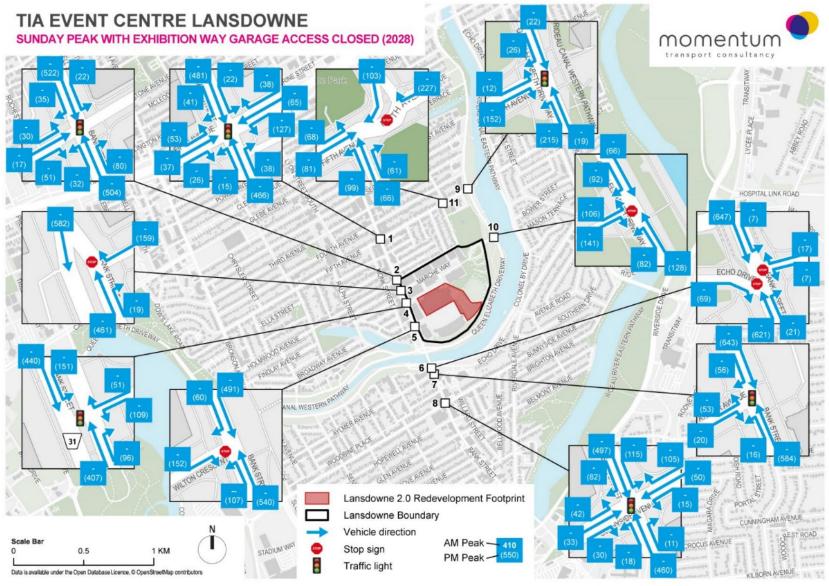



Figure 3.11: 2028 Total Future Traffic Volumes Minor Event

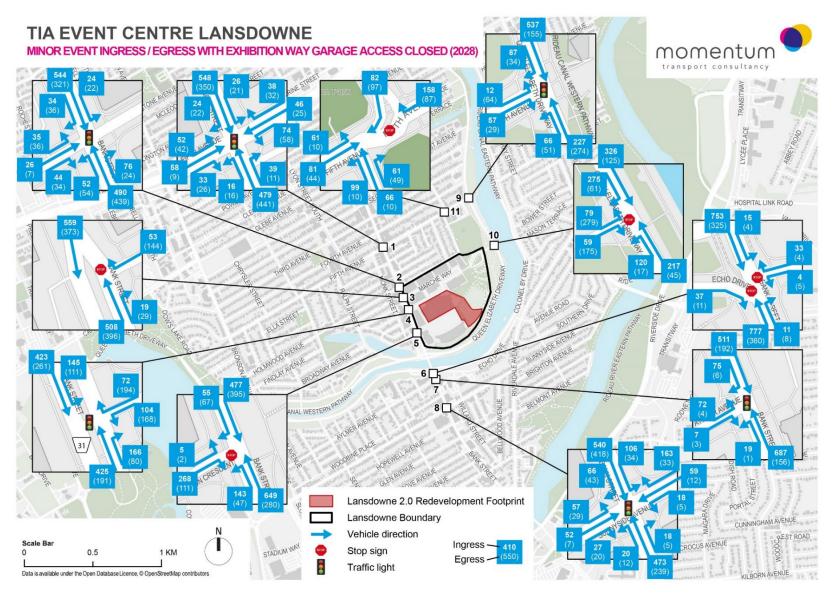
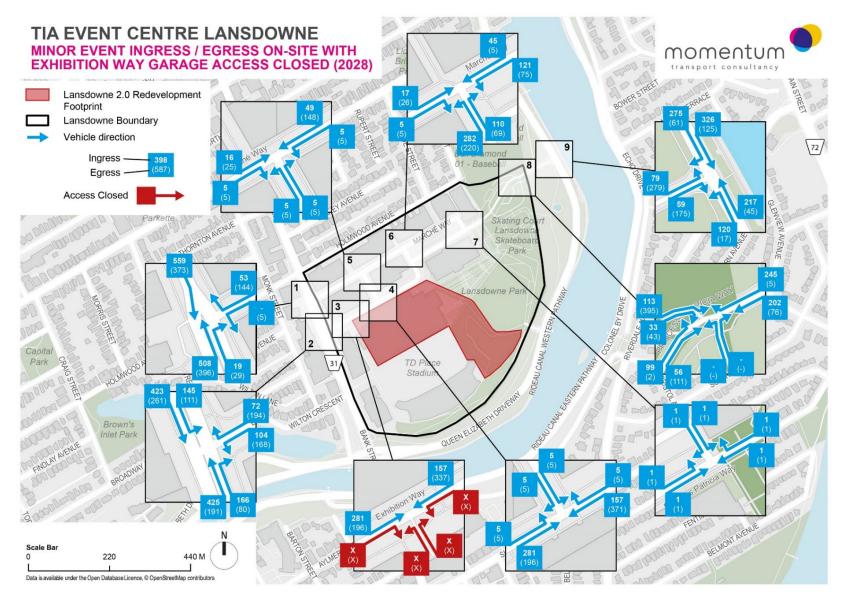




Figure 3.12:2028 Total Future Traffic Volumes on-site Minor Event



# **2033 TOTAL FUTURE TRAFFIC VOLUMES**

The 2033 Total Future horizon year represents the full build-out of the Lansdowne 2.0 redevelopment project inclusive of the new Event Centre (Phase 1), North Stadium Stands (Phase 2), and additional retail podium and two residential towers (Phase 3).

2033 Total Future traffic volumes were developed by applying a 0.5% background growth rate, explicit background development volumes from nearby developments, as well as new additional site generated trips as outlined in Table 3.8 and Figure 3.1 through Figure 3.4.

Similar to 2028 conditions, 2033 Total Future traffic volumes were derived by applying an assumed background growth rate of 0.5% per year to existing traffic volumes. Additionally, explicit background development traffic, as well as the Lansdowne 2.0 site generated traffic volumes were added.

Figure 3.13 through Figure 3.17 summarize projected 2033 traffic volumes inclusive of background development growth and full-build out site generated traffic volumes for Lansdowne 2.0.

Figure 3.13: 2033 Total Future Traffic Volumes (Weekday AM / PM)

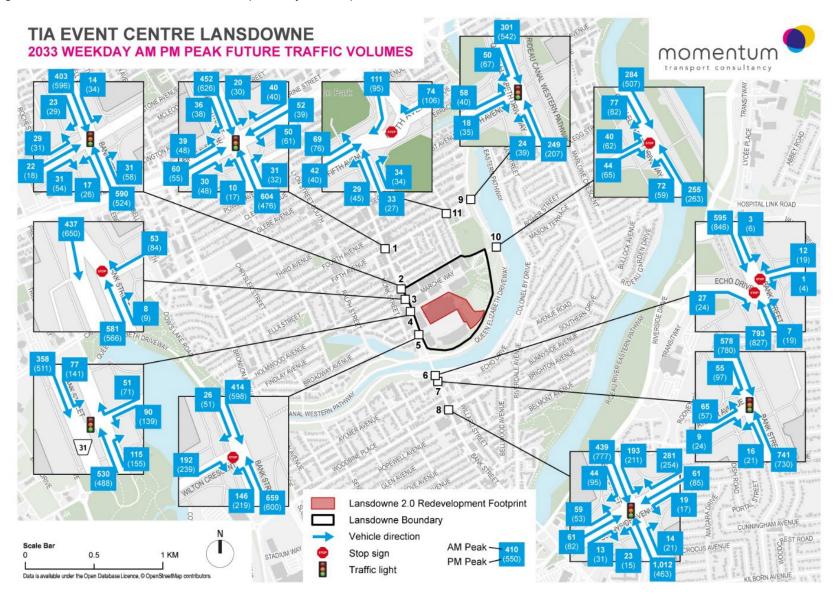



Figure 3.14: 2033 Total Future Traffic Volumes (Saturday PM)

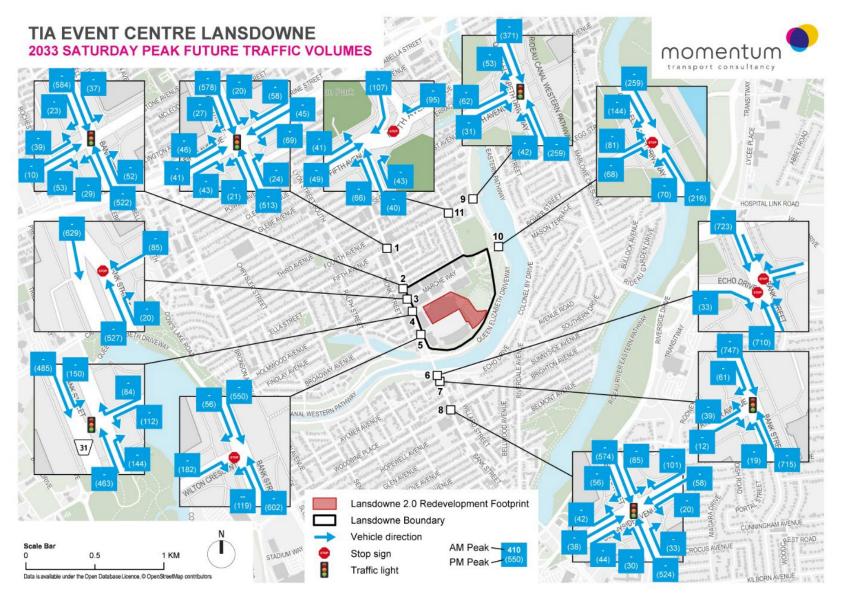



Figure 3.15: 2033 Total Future Traffic Volumes (Sunday PM)




Figure 3.16: 2033 Total Future Traffic Volumes Minor Event (Ingress and Egress)

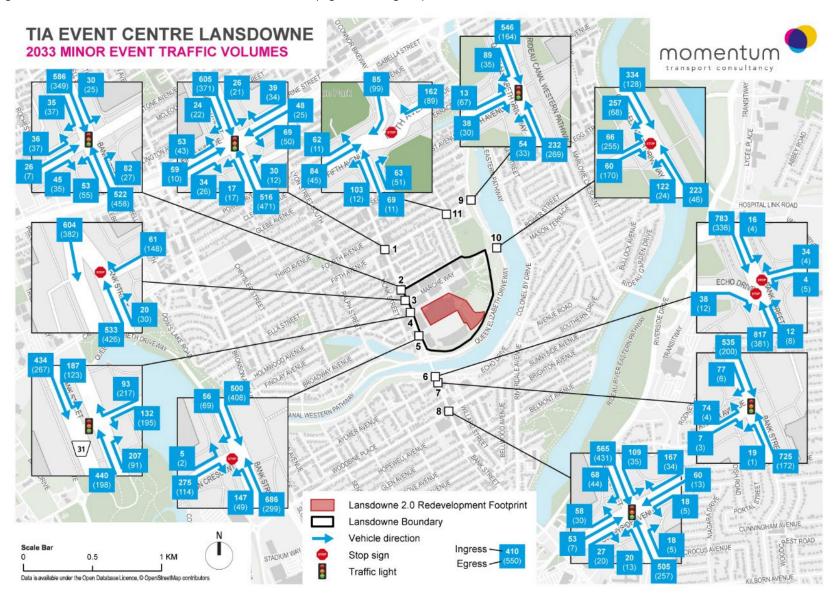
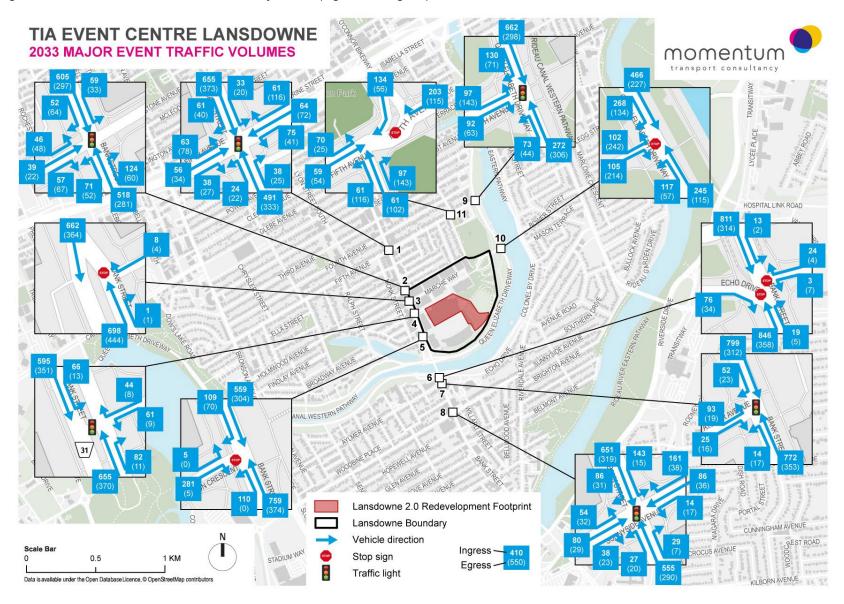




Figure 3.17: 2033 Total Future Traffic Volumes Major Event (Ingress and Egress)



# 4. STRATEGY REPORT

# 4.1 Development Design

### **DESIGN FOR SUSTAINABLE MODES**

Bicycle facilities: Lansdowne is designed to accommodate cycling connectivity throughout the site. Many of the internal pathways, particularly Exhibition Way, Marche Way, and Princess Patricia Way, are designed as Pedestrian Priority Zones. Cycling access points to Lansdowne are provided at Bank Street at Exhibition Way and Marche Way, as well as three cycling connections to internal pathways on Holmwood Avenue. On the east and south side of Lansdowne, connections to the multi-use pathways on Queen Elizabeth Driveway are provided at numerous locations. Improved cycling crossing facilities are currently contemplated at the Queen Elizabeth Driveway and Princess Patricia Way site access intersection to Lansdowne. Surface bicycle parking is provided throughout the public realm at Lansdowne. In addition, for major events held on site, free valet bike parking storage is provided.

Pedestrian facilities: Lansdowne is designed to accommodate pedestrian movements throughout the site. Many of the internal pathways, particularly Exhibition Way, Marche Way, and Princess Patricia Way, are designed as Pedestrian Priority Zones. In recent years, the section of Princess Patricia Way between Exhibition Way and Marche Way (along the north side of the Aberdeen Pavilion) has been fully closed to vehicular traffic to better accommodate pedestrian flow. Pedestrian access points are currently to Lansdowne with pedestrian connections to Bank Street at Exhibition Way and Marche Way, as well as three pedestrian connections to sidewalks on Holmwood Avenue. On the east and south side of Lansdowne, pedestrian connections to the multi-use pathways on Queen Elizabeth Driveway are provided at numerous locations. Improved sidewalk and crossing facilities are currently contemplated at the Queen Elizabeth Driveway and Princess Patricia Way site access intersection to Lansdowne.

**Parking areas**: Lansdowne currently features an underground parking garage with a total of 1,380 spaces for public and residential use. As part of the Lansdowne 2.0 project, the underground parking garage is proposed to be expanded to include an additional 386 underground parking spaces dedicated to support the residential units and additional retail space, for a total of 1,766 parking spaces. Similar to today, access to the underground parking garage will be provided through two garage ramp entrances: one on Exhibition Way east of Bank Street, the other on Princess Patricia Way west of Queen Elizabeth Driveway. A residents-only private access to the underground garage is also available on Holmwood Avenue.

**Transit facilities:** Transit stops for OC Transpo routes 6 and 7 are currently serviced by stops located at the intersection of Bank Street and Exhibition Way. In addition, these bus stops accommodate 450-series enhanced transit service during Major Events held at Lansdowne. There are sidewalks along both sides of Bank Street as well as adequate pedestrian crosswalks to access the transit stops. The new multi-purpose event centre will be located within the 400 meter transit catchment area.

### **CIRCULATION AND ACCESS**

Site access and circulation at Lansdowne is expected to continue to be provided at the existing site access intersections on Bank Street and Queen Elizabeth Driveway for general public access, as well as Holmwood Avenue at the restricted, residents-only underground garage access.

Site circulation is expected to be managed with similar traffic management measures deployed at Lansdowne today. This includes providing general public traffic access and circulation at designated roadways including Exhibition Way, Marche Way, and Princess Patricia Way.

Paved pathways located at the south of the site in and around the Great Lawn are expected to operate as a restricted / limit-use pathway for emergency vehicle access, deliveries, and designated shuttle services including accessible ParaTranspo service.

Traffic management measures during major events (i.e. stadium events with attendance levels of 15,000 or more) will continue to restrict vehicular access through Lansdowne with temporary vehicle restrictions placed at Bank Street access intersections. Vehicular access will continue to be restricted to the Queen Elizabeth Driveway intersection to provide access to the underground parking garage ramp at Princess Patricia Way, as well as for the shuttle loop for pick-up and drop-off activity. Vehicular circulation through the site will continue to be restricted during major events.

For minor events, particularly at the new event centre, traffic management measures will be required to restrict vehicular access to the new event centre main entrance area. This will require the deployment of traffic control devices at the intersection of Exhibition Way and the internal service road in order to divert inbound traffic from Bank Street to Marche Way. Permitted vehicles, including accessible ParaTranspo buses, will be permitted to travel on Exhibition Way to the designated accessible passenger pick-up and drop-off area.

Proposed site access and internal circulation schemes for regular operations, minor events, and major events after the completion of the Lansdowne 2.0 redevelopment program are illustrated in Figure 4.1 through Figure 4.3.

## **NEW STREET NETWORKS**

Not applicable; exempted during screening and scoping.

Figure 4.1: Lansdowne 2.0 Internal Site Circulation Plan (Regular Operations)

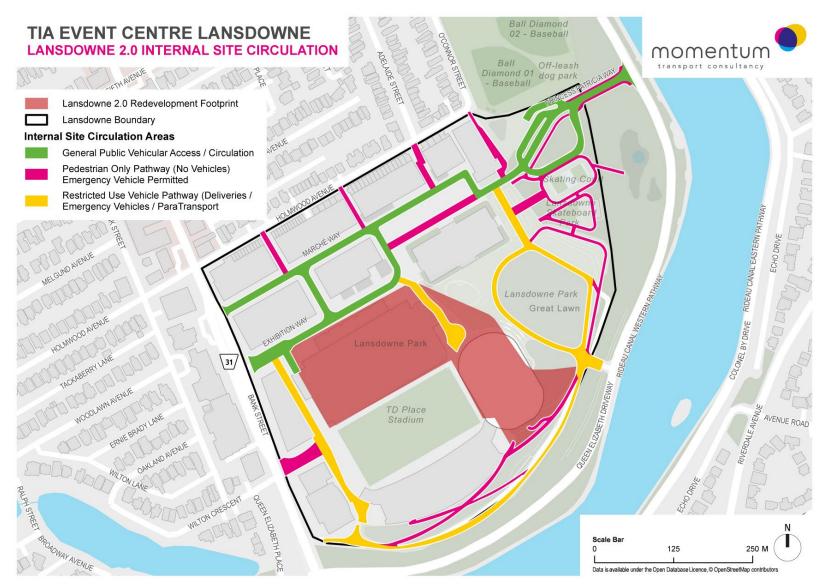



Figure 4.2: Lansdowne 2.0 Internal Site Circulation Plan (Minor Events)

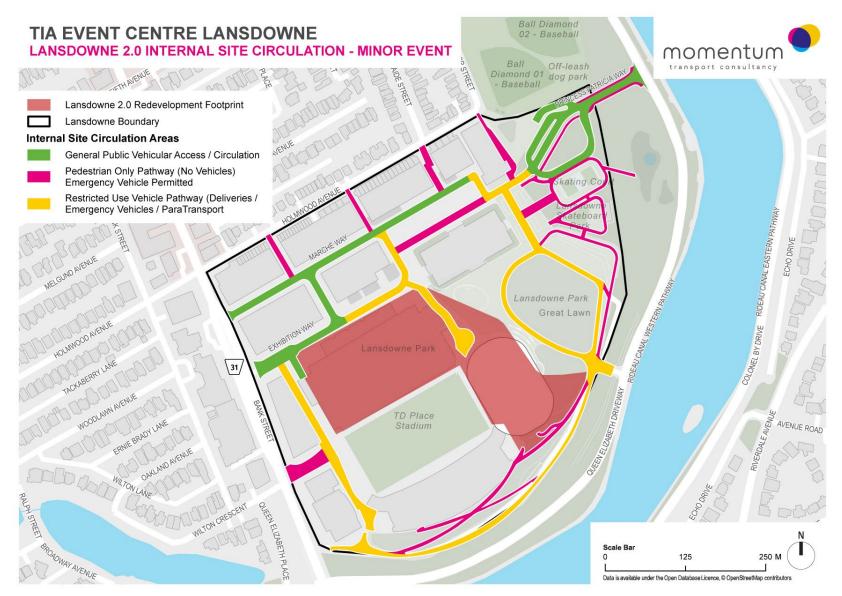
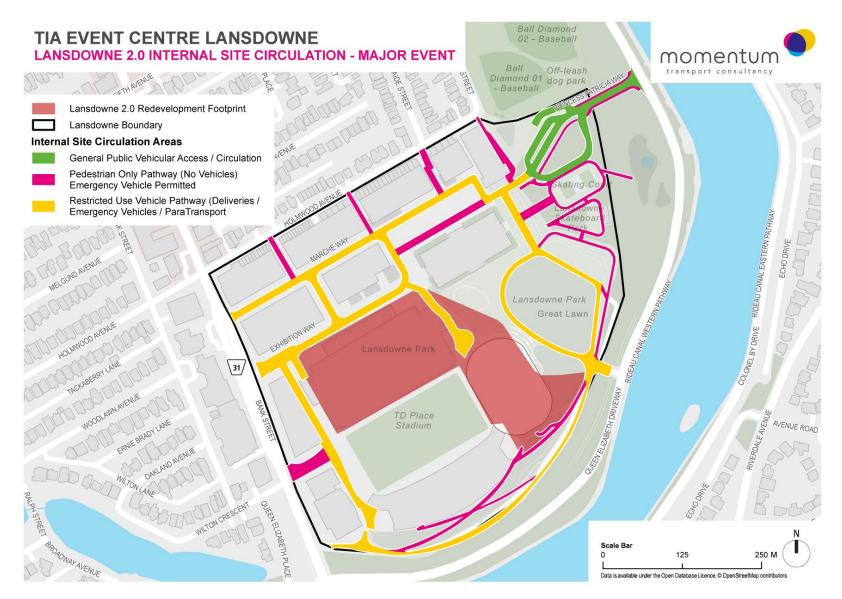




Figure 4.3: Lansdowne 2.0 Internal Site Circulation Plan (Major Events)



# 4.2 Parking

## **PARKING SUPPLY**

**Auto Parking** - Lansdowne currently features an underground parking garage with a total of 1,380 spaces for public and residential use. No additional parking spaces are proposed as part of the proposed site plan application for the new event centre (Phase 1).

As part of the overall Lansdowne 2.0 project, the underground parking garage is proposed to be expanded to include an additional 386 underground parking spaces dedicated to support the additional retail space and residential units, for a total of 1,766 parking spaces. These additional spaces are contemplated as part of subsequent phases of development.

**Bicycle Parking** - Lansdowne benefits from existing surface bicycle parking that supports current day to day activity as well as special events at Lansdowne. No additional parking spaces are proposed as part of the proposed site plan application for the new event centre (Phase 1).

As part of the overall Lansdowne 2.0 project, additional bicycle parking spaces are required to subsequent phases of development at Lansdowne, namely Phase 3 for the new retail podium and two residential towers. Based on the City of Ottawa Zoning By-Laws, the minimum bicycle parking requirement for the subject property is 0.5 spaces per dwelling unit. To offset the reduced parking requirements and to encourage alternative modes of transportation, the residential bicycle parking rate is proposed to be increased to 1 space per dwelling unit, for a total of 770 bicycle parking spaces. All other bicycle parking requirements for non-residential uses are not proposed to be changed and will comply with the applicable requirements of Section 111 of the Zoning By-law.

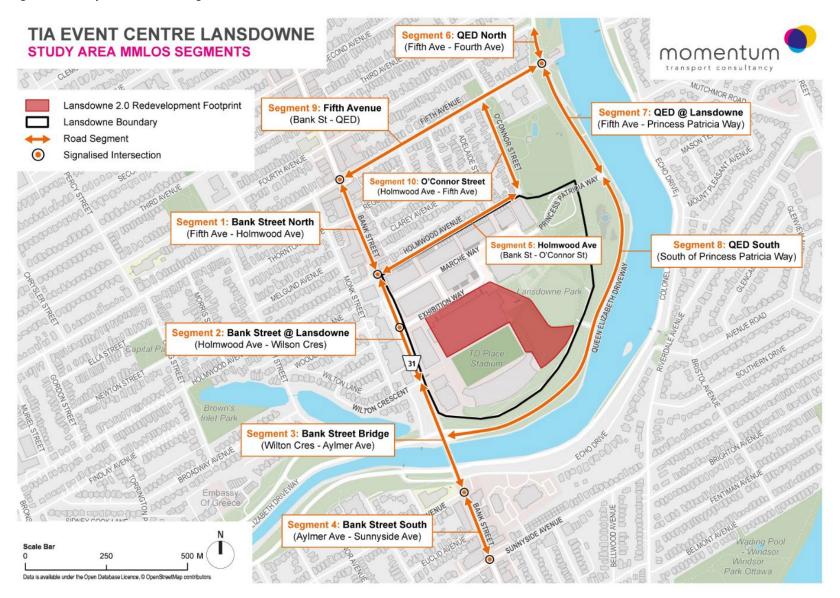
The total number and allocation of bicycle parking spaces will be finalized in subsequent phases of design development for Lansdowne 2.0.

### SPILLOVER PARKING

Not applicable.

# 4.3 Boundary Street Design

## **DESIGN CONCEPT**


Lansdowne is located in a unique geographic location within the City of Ottawa as it interfaces with Bank Street - a traditional Mainstreet to the west, Holmwood Avenue – a local residential street to the north, and the Queen Elizabeth Driveway – a scenic parkway with regional multiuse pathways.

A Multimodal Level of Service (MMLOS) analysis was conducted for the following key roadway segments interfacing with Lansdowne:

- Segment 1 Bank Street North (Fifth Avenue to Holmwood Avenue)
- Segment 2 Bank Street at Lansdowne (Holmwood Avenue to Wilton Crescent)
- Segment 3 Bank Street Bridge (Wilton Crescent to Aylmer Avenue)
- Segment 4 Bank Street South (Aylmer Avenue to Sunnyside Avenue)
- Segment 5 Holmwood Avenue (Bank Street to O'Connor Street)
- Segment 6 QED North (Fifth Avenue to Fourth Avenue)
- Segment 7 QED at Lansdowne (Fifth Avenue to Princess Patricia Way)
- Segment 8 QED South (South of Princess Patricia Way)
- Segment 9 Fifth Avenue (Bank Street to QED)
- Segment 10 O'Connor Street (Holmwood Avenue to Fifth Avenue)

Figure 4.4 illustrates location of the MMLOS segments assessed.

Figure 4.4: Study Area MMLOS Segments



## 4.3.1 Multi-Modal Level of Service (MMLOS)

As per the City of Ottawa Official Plan (Schedule A), Lansdowne falls within the Inner Urban Transect Policy Area, with Bank Street identified as a Mainstreet Corridor. For the purposes of the MMLOS analysis, the following designations were adopted from the Multi-Modal Level of Service (MMLOS) Guidelines:

Bank Street is classified as an Arterial road with a Traditional Main Street designation.

The following MMLOS targets were assumed for Bank Street:

Pedestrian Level of Service (PLOS) target of B.

Bicycle Level of Service (BLOS) target of C based on a Local Route designation.

Transit Level of Service (TLOS) target of D.

Truck Level of Service (TkLOS) target of D.

Auto Level of Service (LOS) of D.

**Holmwood Avenue** is classified as a Local road with a General Urban Area designation.

The following MMLOS targets were assumed for Holmwood Avenue:

Pedestrian Level of Service (PLOS) target of C.

Bicycle Level of Service (BLOS) target of B based on a Local Route designation .

No Transit Level of Service (TLOS) target is defined.

No Truck Level of Service (TkLOS) target is defined.

Auto Level of Service (LOS) of D.

**Queen Elizabeth Driveway** is classified as an Arterial with a General Urban Area designation.

The following MMLOS targets were assumed for Queen Elizabeth Driveway:

Pedestrian Level of Service (PLOS) target of A

Bicycle Level of Service (BLOS) target of B based on a Local Route designation

No Transit Level of Service (TLOS) target is defined

No Truck Level of Service (TkLOS) was adopted as QED is not a truck route.

Auto Level of Service (LOS) of D

**Fifth Avenue** is classified as a Collector road with a General Urban Area designation.

The following MMLOS targets were assumed for Fifth Avenue:

Pedestrian Level of Service (PLOS) target of C

Bicycle Level of Service (BLOS) target of B based on a Local Route designation

No Transit Level of Service (TLOS) target is defined

No Truck Level of Service (TkLOS) target is defined

Auto Level of Service (LOS) of D

O'Connor Street is classified as a Local Road with a General Urban Area designation.

The following MMLOS targets were assumed for O'Connor Street:

Pedestrian Level of Service (PLOS) target of C

Bicycle Level of Service (BLOS) target of B based on a Local Route designation

No Transit Level of Service (TLOS) target is defined

No Truck Level of Service (TkLOS) target is defined

Auto Level of Service (LOS) of D

**Table 4.1** summarizes the MMLOS targets and performance for roadway segments.

Table 4.1: MMLOS Targets and Results (Segments)

|    |                                                       | PL     | os     | BL     | os     | TL     | os     | Tkl    | .os    |
|----|-------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
|    | Segment                                               | Target | Actual | Target | Actual | Target | Actual | Target | Actual |
| 1  | Bank Street North<br>(Fifth - Holmwood)               | В      | В      | С      | Е      | D      | F      | D      | D      |
| 2  | Bank Street @<br>Lansdowne<br>(Holmwood - Wilton)     | В      | С      | С      | Е      | D      | F      | D      | D      |
| 3  | Bank Street Bridge<br>(Wilton - Aylmer)               | В      | С      | С      | А      | D      | D      | D      | D      |
| 4  | Bank Street South<br>(Aylmer - Sunnyside)             | В      | С      | С      | E      | D      | F      | D      | А      |
| 5  | Holmwood Ave<br>(Bank - O'Connor)                     | С      | Α      | В      | В      | N/A    | N/A    | N/A    | N/A    |
| 6  | QED North<br>(Fifth - Fourth)                         | А      | F      | В      | А      | N/A    | N/A    | N/A    | N/A    |
| 7  | QED @ Lansdowne<br>(Fifth - Princess<br>Patricia Way) | А      | В      | В      | А      | N/A    | N/A    | N/A    | N/A    |
| 8  | QED South<br>(South of Princess<br>Patricia Way)      | А      | В      | В      | А      | N/A    | N/A    | N/A    | N/A    |
| 9  | Fifth Ave<br>(Bank - QED)                             | С      | E      | В      | С      | N/A    | N/A    | N/A    | N/A    |
| 10 | O'Connor St<br>(Bank - QED)                           | С      | E      | В      | А      | N/A    | N/A    | N/A    | N/A    |

#### **Bank Street:**

The PLOS target of B along Bank Street, across the frontage of Lansdowne, is currently being met on the east side of the road segment. On the west side of Bank Street, however, the target is not met due to the boulevard widths. As a whole segment, Bank Street, across the frontage of Lansdowne, does not meet the PLOS target.

The BLOS target of C along Bank Street, across the frontage of Lansdowne, is currently met in the northbound travel direction as there is a curbside bike lane. However, in the southbound travel direction there is no dedicated bicycling facility. As a whole segment, Bank Street, across the frontage of Lansdown, does not meet the BLOS target.

This BLOS target of C is not currently being met north of Wilton Crescent and south of Aylmer Avenue due to the number of vehicle lanes and lack of bicycling facilities. The BLOS target of C is, however, met over the Bank Street Bridge, between Wilton Crescent and Aylmer Avenue, due to the recently installed bicycle facilities. In order to improve the BLOS on Bank Street, improved bicycling facilities would be required.

The TLOS target of D along Bank Street, across the frontage of Lansdowne, is currently not being met due to the mixed operating condition of transit along the corridor and resulting congestion related delays. To improve the TLOS along Bank Street, improved transit priority measures can be implemented to limit delays to transit along the corridor.

### **Holmwood Avenue:**

The BLOS target of B along Holmwood Avenue is currently being met on the southside of the road segment. However, the north side has a BLOS C due to the narrow bicycle lane width. Therefore, as a whole segment, Holmwood Avenue does not meet the BLOS target of B.

### Queen Elizabeth Driveway:

The PLOS target of A along Queen Elizabeth Driveway is met for the sections south of Fifth Avenue which utilizes the multi-use pathway. North of Fifth Avenue, however, the PLOS is F because of the lack of a proper sidewalk on the west side of the corridor. It was noted, however, that there is an alternative sidewalk that is adjacent to the recent development at the Northwest corner of the intersection.

The BLOS target of B along Queen Elizabeth Driveway is currently being met due to the provision of a multi-use pathways along the Rideau Canal. It is notable however that this facility is shared with other AT users which can impact the quality of the service in practice and may put some of the higher speed cyclists into the traffic lane, especially during busy times.

#### Fifth Avenue:

The PLOS target of C along Fifth Avenue is currently not being met due to the sidewalk width, lack of buffer from traffic, and vehicle operating speeds.

The BLOS target of B is currently met on Fifth Avenue between Bank Street and O'Connor Street. However, this target is not met between O'Connor Street and Queen Elizabeth Driveway due to the narrow bike lane widths. As a whole, Fifth Avenue does not currently meet the BLOS target of B.

#### O'Connor Street:

The PLOS target of C along O'Connor Street is currently not being met due to the sidewalk widths and lack of buffer from traffic. In order to meet the PLOS target, wider sidewalks and/or boulevard buffers are needed on both sides of O'Connor Street.

The BLOS target of B along O'Connor Street is currently being met as the segment scores an LOS A in both directions of travel. It is to be noted, however, that while the southbound bike lane is separated from vehicle traffic, it traverses several residential driveways. This presents potential conflicting movements that are not reflected in the segment's BLOS.

# 4.4 Access Intersection Design

### **ACCESS LOCATION**

Access to Lansdowne will continue to be facilitated at three key locations: a primary all-movements access at the intersection of Bank Street / Exhibition Way, a secondary all-movements access at Queen Elizabeth Driveway and Princess Patricia Way, and a minor right-in/right-out only access on Bank Street and Marche Way.

## INTERSECTION CONTROL

The primary Bank Street / Exhibition Way intersection access is signalized and accommodates all-movements. The secondary Queen Elizabeth Driveway / Princess Patricia Way intersection access is Stop-Controlled on the minor approach. The minor Bank Street / Marche Way intersection is a right-in/right-out only intersection with a Stop-Control on the minor approach.

# 4.5 Transportation Demand Management

The initial Lansdowne Redevelopment project featured a comprehensive Transportation Demand Management (TDM) strategy to address day-to-day and special event transportation requirements. The Transportation Demand Management Plan (October 2011) for Lansdowne outlined strategies for encouraging residents, employees, and visitors to Lansdowne to utilize transit and active transportation modes to reduce reliance on single occupant vehicles (SOV) and automobile use. The plan included recommendations for both day-to-day operations (residents, employees and retail patrons), as well as for special events with attendance levels of 10,000 patrons (arena events), 25,000 patrons (stadium events), and 40,000 plus patrons (unique, expanded stadium events).

A hallmark of the TDM plan for Lansdowne is the provision of free transit service to all ticketholders attending ticketed events at Lansdowne. This innovative TDM strategy, which is the first of its kind in North America for a large mixed-use entertainment district, provides free transit to all ticketed events starting 2 hours prior to the start of events and 2 hours after the end of events held at Lansdowne. The cost of any enhanced transit service provided for events with attendance levels of 5,000 or more are bourn by OSEG.

The comprehensive TDM program implemented in 2014 as part of the original revitalization of Lansdowne Park will continue to play a critical role in supporting the transportation program for Lansdowne 2.0. This includes the provision of free transit for all ticketed events at Lansdowne.

### **TDM PROGRAM**

The City of Ottawa's TDM-supportive design and infrastructure elements checklist was consulted to identify and incorporate TDM supportive measures into the design stage. An updated Transportation Demand Management Strategy for Lansdowne 2.0 was developed as part of the Lansdowne 2.0 Transportation Impact Assessment Study (Stantec – July 2023).

The TDM Checklist in support of the event centre (Phase 1) is included in Appendix C.

# 4.6 Neighbourhood Traffic Management

Not applicable; exempted during screening and scoping.

# 4.7 Transit

### **ROUTE CAPACITY**

Service on Bank Street currently operates with headways of 12-minutes or less on both Routes 6 and 7.

As part of the TDM program for special events at Lansdowne. Ticketed events with attendance levels of 5,000 or less are accommodated with regularly scheduled bus service on Bank Street with no service enhancements.

For ticketed events with attendance levels between 5,000 and 10,000 attendees, service enhancements on bus Route 6 and 7 are provided to support additional transit ridership demands for events. enhanced service can range from 2 additional bus trips to 8 extra trips depending on depending on attendance levels. The cost of additional trips added to support events is bourn by OSEG.

It is anticipated that the current transit service enhancements provided for minor events (attendance levels of 10,000 or less) for Phase 1 (multi-purpose event centre) will be supported adequately through the current TDM program and transit service enhancements.

For the full-build out of Lansdowne 2.0 (i.e. Phase 3), transit modal shares of 25%, 14%, and 29% were assumed for the proposed multi-family residential, shopping center, and general office land-uses.

This is expected to result in a peak hour net increase in transit trips of 152 trips during the Weekday AM peak hour, 119 transit trips in the Weekday PM Peak hour, 146 transit trips in the Weekend Saturday peak hour, and 167 transit trips in the Weekend Sunday peak hour

Currently, OC Transpo Route 6 and Route 7 provide service along Bank Street with connections to key destinations in Ottawa. Service is provided on weekdays and weekends with an average headway of 12 minutes for each route in both directions. This translates to a total of 20 two-way transit trips on Bank Street at Lansdowne (5 trips per bus route, per direction).

The OC Transpo fleet is comprised of various bus types including 40' standard buses, higher capacity 60' articulated buses, and double-decker buses.

Depending on the fleet vehicle used, the passenger capacity across the fleet varies between 57 to 110 passengers per bus, depending on the bus type.

On average, the following capacities are provided:

**Standard 40' buses**: the total carrying capacity per bus ranges between 57 to 85 passengers (standing and seated). An assumed carrying capacity of 70 passengers is assumed for Standard 40' buses.

**Articulated 60' buses**: the total carrying capacity per bus is 110 passengers (standing and seated).

**Double Decker buses**: the total carrying capacity per bus ranges between 96 to 105 passengers (standing and seated). An assumed carrying capacity of 100 passengers per bus is assumed for Double Decker buses.

Based on the current 20 two-way transit trips along Bank Street, current transit passenger carrying capacity ranges between 1,400 passengers / hr to 2200 passengers per hour, depending on the fleet mix used.

For planning purposes, an average two-way transit carrying capacity of 1,870 passengers per hour is assumed.

OC Transpo currently utilizes all bus types on Routes 6 and 7 along Bank Street. OC Transpo plans vehicle fleet mix for each trip booking to match observed and projected ridership. Based on information provided by OC Transpo, the following passenger demands are to be assumed for current ridership by bus type:

#### Standard 40' Buses:

- 40 passengers per vehicle, averaged over an hour during off-peaks.
- 45 passengers per vehicle, averaged over an hour during peak periods.

## Articulated 60' Buses:

- 60 passengers per vehicle, averaged over an hour during off-peaks.
- 70 passengers per vehicle, averaged over an hour during peak periods.

#### Double Decker Buses:

- 85 passengers per vehicle, averaged over an hour during off-peaks.
- 90 passengers per vehicle, averaged over an hour during peak periods.

Based on the transit ridership, current two-way transit demands along Bank Street range between 900 passengers / hr to 1,800 passengers per hour depending on the fleet mix used.

For planning purposes, an average two-way transit demand of 1,400 passengers / hr is assumed for current service along Bank Street on Routes 6 and 7.

It is anticipated that the current two-way transit demands generated by Lansdowne 2.0, which ranges between 119 to 167 passengers / hr, can be accommodated within the current scheduled services on Bank Street.

The provision for transit service requirements for the full-build out of Lansdowne 2.0 should be confirmed as part of subsequent studies in support of Phase 2 and Phase 3 of development.

# 4.8 Intersection Design

## INTERSECTION CONTROL

The existing intersection control for Lansdowne will be maintained as part of the Lansdowne 2.0 redevelopment.

### INTERSECTION DESIGN

An assessment of the study area intersections was undertaken to determine the operational characteristics under the various horizons identified in the Screening and Scoping report. Intersection operational analysis was performed with Synchro 12 software package and the MMLOS analysis was completed for all modes and compared against the City of Ottawa's MMLOS targets.

# 4.8.1 Existing Conditions

## **Intersection Capacity Analysis**

Intersection operational analysis under Existing Conditions is summarized in this section.

Detailed Synchro level of service analysis results can be found in Appendix D.

Table 4.2: Existing Weekday AM and PM Peak Hour Conditions (Study Area Intersections)

| Intersection                 | Intersection |                      | proach /                     | LC | os | V    | C    | Total<br>Delay (s) |      | Queue<br>95th (m) |      |
|------------------------------|--------------|----------------------|------------------------------|----|----|------|------|--------------------|------|-------------------|------|
|                              | Control      | Мо                   | vement                       | AM | РМ | AM   | РМ   | AM                 | PM   | AM                | PM   |
|                              |              | EB                   | Left /<br>Through<br>/ Right | С  | D  | 0.36 | 0.65 | 21.9               | 35.1 | 27.2              | 31.7 |
|                              |              |                      | Left                         | С  | С  | 0.18 | 0.39 | 22.9               | 33.1 | 14.0              | 17.3 |
| Bank St &<br>Fifth Ave       | Signalized   | WB                   | Through / Right              | В  | В  | 0.21 | 0.29 | 15.9               | 17.7 | 16.0              | 14.4 |
|                              |              | NB                   | Left /<br>Through<br>/ Right | Α  | Α  | 0.38 | 0.27 | 3.8                | 9.7  | 8.2               | 43.6 |
|                              |              | SB                   | Left /<br>Through<br>/ Right | Α  | Α  | 0.32 | 0.36 | 8.5                | 6.1  | 25.6              | 34.0 |
|                              |              | _                    | overall<br>ersection         | Α  | В  | 0.38 | 0.65 | 8.6                | 12.1 | -                 |      |
|                              |              | EB                   | Left /<br>Through<br>/ Right | D  | D  | 0.47 | 0.53 | 37.6               | 38.3 | 22.6              | 26.7 |
| Bank St &<br>Holmwood<br>Ave | Signalized   | NB                   | Left /<br>Through<br>/ Right | Α  | Α  | 0.29 | 0.30 | 2.6                | 1.9  | 10.8              | 9.0  |
|                              | orginalizou  | SB                   | Left /<br>Through<br>/ Right | Α  | Α  | 0.21 | 0.31 | 3.1                | 4.7  | 13.2              | 21.1 |
|                              |              | Overall Intersection |                              | Α  | Α  | 0.47 | 0.53 | 5.4                | 6.1  |                   |      |

| Intersection            | Intersection |     | proach /                     | LC | os | V    | /C   |      | tal<br>y (s) |      | ieue<br>h (m) |
|-------------------------|--------------|-----|------------------------------|----|----|------|------|------|--------------|------|---------------|
|                         | Control      | Mo  | vement                       | AM | PM | AM   | PM   | AM   | РМ           | AM   | РМ            |
|                         |              | WB  | Left                         | С  | D  | 0.27 | 0.50 | 32.5 | 35.1         | 17.2 | 30.8          |
|                         |              | VVD | Right                        | В  | D  | 0.20 | 0.28 | 13.3 | 10.5         | 7.5  | 9.4           |
| Bank St &<br>Exhibition | Signalized   | NB  | Left /<br>Through<br>/ Right | В  | А  | 0.37 | 0.31 | 10.1 | 5.2          | 40.0 | 27.6          |
| Way                     |              | SB  | Left                         | Α  | Α  | 0.14 | 0.28 | 8.5  | 4.8          | 11.6 | 6.5           |
|                         |              |     | Through                      | Α  | Α  | 0.16 | 0.23 | 6.7  | 3.1          | 22.7 | 9.6           |
|                         |              |     | verall<br>rsection           | В  | A  | 0.37 | 0.50 | 10.1 | 7.3          |      |               |
|                         |              | EB  | Right                        | С  | F  | 0.49 | 0.82 | 22.0 | 53.2         | 15.6 | 40.8          |
| Bank St &               |              | NB  | Left                         | В  | В  | 0.20 | 0.36 | 10.7 | 13.6         | 5.7  | 13.7          |
| Wilton Cr               | Minor Stop   |     | Through                      | Α  | Α  |      |      | 1.8  | 3.3          | 5.7  | 13.7          |
|                         |              |     | overall<br>ersection         | Α  | В  | 0.49 | 0.82 | 4.8  | 10.2         |      |               |
| Bank St &               |              | EB  | Right                        | В  | С  | 0.06 | 0.07 | 12.5 | 16.1         | 1.2  | 1.2           |
| Echo Dr                 | Minor Stop   |     | Overall<br>Intersection      |    | Α  | 0.06 | 0.07 | 0.3  | 0.2          |      |               |
|                         | Signalized   | EB  | Left /<br>Right              | С  | С  | 0.26 | 0.34 | 29.5 | 31.1         | 19.9 | 22.8          |
| Bank St &               |              | NB  | Left /<br>Through            | А  | Α  | 0.42 | 0.38 | 3.8  | 4.9          | 16.8 | 19.6          |
| Aylmer Ave              |              | SB  | Through / Right              | А  | А  | 0.33 | 0.45 | 7.2  | 7.6          | 28.1 | 43.7          |
|                         |              |     | overall<br>ersection         | Α  | Α  | 0.42 | 0.45 | 6.5  | 7.5          |      |               |
|                         |              |     | Left /                       |    | _  | 0.40 | 0.05 | 00.0 | 40.0         | 20.0 | 50.0          |
|                         |              | EB  | Through / Right              | С  | D  | 0.43 | 0.65 | 26.8 | 42.2         | 32.6 | 53.6          |
| Bank St &               |              | WB  | Left /<br>Through<br>/ Right | С  | D  | 0.76 | 0.93 | 22.5 | 53.1         | 67.9 | 98.3          |
| Sunnyside<br>Ave        | Signalized   | NB  | Left /<br>Through<br>/ Right | В  | А  | 0.69 | 0.29 | 16.4 | 9.2          | 80.8 | 28.0          |
|                         |              | SB  | Left /<br>Through<br>/ Right | В  | С  | 0.78 | 0.88 | 19.2 | 20.2         | 30.7 | 130.2         |
|                         |              |     | verall<br>ersection          | Α  | В  | 0.10 | 0.32 | 1.6  | 2.6          |      |               |
| QED &                   |              | NB  | Left /<br>Through            | Α  | Α  | 0.06 | 0.05 | 8.2  | 8.9          | 1.2  | 1.2           |
| Princess Patricia Way   | Minor Stop   | EB  | Left /<br>Right              | В  | С  | 0.10 | 0.32 | 13.1 | 19.5         | 1.8  | 8.4           |
| i atriola vvay          |              |     | verall<br>rsection           | Α  | В  | 0.10 | 0.32 | 1.6  | 2.6          |      |               |

| Intersection               | Intersection    | -                       | proach /                     | LC | os | V    | /C   |      | tal<br>y (s) |      | eue<br>n (m) |
|----------------------------|-----------------|-------------------------|------------------------------|----|----|------|------|------|--------------|------|--------------|
|                            | Control         | Mc                      | vement                       | AM | PM | AM   | PM   | AM   | PM           | AM   | PM           |
|                            |                 | EB                      | Left /<br>Right              | В  | D  | 0.21 | 0.37 | 17.6 | 36.6         | 12.9 | 22.0         |
| Queen<br>Elizabeth Dr      | Signalized      | NB                      | Left /<br>Through            | Α  | Α  | 0.32 | 0.24 | 7.7  | 5.0          | 21.9 | 21.5         |
| &<br>Fifth Ave             |                 | SB                      | Through / Right              | Α  | Α  | 0.42 | 0.53 | 8.6  | 7.7          | 30.5 | 66.0         |
|                            |                 |                         | Overall<br>Intersection      |    | Α  | 0.42 | 0.53 | 9.2  | 9.2          |      |              |
| Bank St &                  | Minor Stop      | WB                      | Left /<br>Right              | С  | В  | 0.57 | 0.15 | 21.1 | 12.9         | 21.0 | 3.0          |
| Marche Way                 | Millor Stop     | Overall<br>Intersection |                              | Α  | A  | 0.57 | 0.15 | 4.6  | 0.8          |      |              |
|                            |                 | EB                      | Left /<br>Through            | Α  | Α  | 0.14 | 0.15 | 7.9  | 8.0          |      |              |
|                            |                 | WB                      | Right                        | Α  | Α  | 0.07 | 0.10 | 6.4  | 6.5          |      |              |
| Fifth Ave &<br>O'Connor St | All-Way<br>Stop | NB                      | Left /<br>Through<br>/ Right | Α  | А  | 0.09 | 0.12 | 7.5  | 7.7          |      |              |
|                            |                 | SB                      | Right                        | Α  | Α  | 0.10 | 0.09 | 6.6  | 6.5          |      |              |
|                            |                 | _                       | Overall<br>Intersection      |    | Α  | 0.14 | 0.15 | 7.1  | 7.2          |      |              |

Table 4.3: Existing Weekday AM and PM Peak Hour Conditions (Internal Lansdowne Intersections)

| Intersection             | Intersection    | Appro                |                   | LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | os | V    | /C   |      |      |     | eue<br>n (m) |
|--------------------------|-----------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|------|------|-----|--------------|
|                          | Control         | Move                 | ment              | A       A       0.0       0.01       0.0       0.0         A       A        0.01       0.7       0.0         B       C       0.05       0.14       12.9       15         A       A       0.11       0.16       1.3       1         A       A       0.13       0.16       7.7       7         A       A       0.08       0.18       7.4       7         A       A       0.01       0.01       7.2       7         A       A       0.14       0.18       7.6       7         A       A       0.00       0.01       6.7       6 | PM | AM   | PM   |      |      |     |              |
|                          |                 | WB                   | Left              | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.0  | 0.01 | 0.0  | 0.1  | 0.0 | 0.1          |
| Garage                   |                 | VVD                  | Through           | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  |      | 0.01 | 0.7  | 0.4  |     | 0.1          |
| Access at Exhibition Way | Two-Way<br>Stop | NB                   | Left /<br>Right   | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С  | 0.05 | 0.14 | 12.9 | 15.6 | 0.2 | 3.6          |
|                          |                 | Overall Intersection |                   | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.11 | 0.16 | 1.3  | 1.9  |     |              |
| Exhibition Way           |                 | EB                   | Left /<br>Through | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | А  | 0.13 | 0.16 | 7.7  | 7.9  |     |              |
| and<br>Service           | All-Way         | WB                   | Through / Right   | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | А  | 0.08 | 0.18 | 7.4  | 7.9  |     |              |
| Roadway                  | Stop            | SB                   | Left /<br>Right   | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.01 | 0.01 | 7.2  | 7.4  |     |              |
|                          |                 | Overall Int          | ersection         | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.14 | 0.18 | 7.6  | 7.9  |     |              |
|                          |                 | EB                   | Left /<br>Through | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.00 | 0.01 | 6.7  | 6.6  |     |              |
| Marché Way<br>and        | All-Way         | WB                   | Left /<br>Through | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.15 | 0.01 | 7.7  | 7.1  |     |              |
| Service<br>Roadway       | Stop            | NB                   | Left /<br>Right   | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.01 | 0.01 | 7.1  | 6.8  |     |              |
|                          |                 | Overall Int          | ersection         | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α  | 0.15 | 0.01 | 7.6  | 6.9  |     |              |

| Marché Way         |         | EB          | Through / Right   | А | А | 0.00 | 0.01 | 6.9  | 7.0  |     |     |
|--------------------|---------|-------------|-------------------|---|---|------|------|------|------|-----|-----|
| and Exhibition Way | All-Way | WB          | Left /<br>Through | Α | Α | 0.15 | 0.19 | 8.1  | 8.5  |     |     |
| vvay               | Stop    | NB          | Left /<br>Right   | А | Α | 0.14 | 0.14 | 7.8  | 7.4  |     |     |
|                    |         | Overall Int | ersection         | Α | Α | 0.16 | 0.19 | 8.0  | 7.9  |     |     |
| Garage             |         | EB          | Left              | Α | Α | 0.00 | 0.00 | 0.00 | 0.00 | 0.1 | 0.1 |
| Access at Princess | Two-Way |             | Through           | Α | Α | 0.00 | 0.00 | 1.0  | 0.7  | 0.1 | 0.1 |
| Patricia Way       | Stop    | SB          | Left /<br>Right   | Α | Α | 0.01 | 0.07 | 9.3  | 9.5  | 0.3 | 1.7 |
|                    |         | Overall Int | ersection         | Α | Α | 0.09 | 0.07 | 0.7  | 2.5  |     |     |

All study area intersections are currently operating with overall acceptable levels of service under the Weekday AM and PM peak hour conditions.

The intersection of Bank Street and Sunnyside Avenue is currently operating with specific movements at or close to theoretical capacity in the southbound approach (AM Peak) and westbound approach (PM Peak). The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS F during the PM peak hour. The delays are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

No mitigation measures are recommended to improve intersection operations.

Table 4.4: Existing Weekend Saturday Peak Hour Conditions (Study Area Intersections)

| Intersection            | Intersection<br>Control |            | oach /<br>ement                | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|-------------------------|-------------------------|------------|--------------------------------|-----|------|-----------------------|----------------------------------|
|                         |                         | EB         | Left /<br>Through /<br>Right   | С   | 0.63 | 34.2                  | 28.1                             |
|                         |                         |            | Left                           | D   | 0.46 | 36.6                  | 19.4                             |
| Bank St &               |                         | WB         | Through /<br>Right             | В   | 0.39 | 18.5                  | 17.0                             |
| Fifth Ave               | Signalized              | NB         | Left /<br>Through /<br>Right   | А   | 0.27 | 3.7                   | 14.5                             |
|                         |                         | SB         | Left /<br>Through /<br>Right   | A   | 0.29 | 5.1                   | 28.2                             |
|                         |                         | Overall In | tersection                     | Α   | 0.63 | 9.7                   |                                  |
|                         |                         | EB         | Left /<br>Through /<br>Right   | D   | 0.54 | 38.5                  | 26.7                             |
| Bank St &<br>Holmwood   | Signalized              | NB         | Left /<br>Through /<br>Right   | А   | 0.29 | 2.2                   | 9.2                              |
| Ave                     |                         | SB         | Left /<br>Through /<br>Right   | А   | 0.30 | 3.6                   | 16.1                             |
|                         |                         | Overall In | tersection                     | Α   | 0.54 | 5.7                   |                                  |
|                         |                         | WB         | Left                           | С   | 0.39 | 33.9                  | 23.9                             |
|                         |                         |            | Right                          | В   | 0.33 | 11.8                  | 10.4                             |
| Bank St & Exhibition    | Signalized              | NB         | Left /<br>Through /<br>Right   | А   | 0.28 | 4.5                   | 22.7                             |
| Way                     |                         | SB         | Left                           | Α   | 0.28 | 6.9                   | 16.5                             |
|                         |                         | 35         | Through                        | Α   | 0.21 | 4.5                   | 22.2                             |
|                         |                         | Overall In | tersection                     | Α   | 0.39 | 7.0                   |                                  |
|                         |                         | NB         | Left                           | В   | 0.19 | 11.6                  | 4.2                              |
| Bank St &               | Minor Stop              | 110        | Through                        | Α   |      | 1.8                   | 4.2                              |
| Wilton Cr               | Willion Gtop            | EB         | Right                          | D   | 0.58 | 29.9                  | 20.4                             |
|                         |                         | Overall In | tersection                     | В   | 0.58 | 5.1                   |                                  |
| Bank St &               | Minor Stop              | EB         | Right                          | В   | 0.08 | 14.3                  | 1.8                              |
| Echo Dr                 | '                       |            | tersection                     | Α   | 0.08 | 0.3                   |                                  |
|                         |                         | EB         | Left / Right                   | С   | 0.20 | 30.2                  | 15.8                             |
| Bank St &<br>Aylmer Ave | Signalized              | NB         | Left /<br>Through<br>Through / | Α   | 0.37 | 5.5                   | 22.4                             |
| , tylliol Ave           |                         | SB         | Right                          | Α   | 0.40 | 7.2                   | 38.4                             |
|                         |                         | Overall In | tersection                     | Α   | 0.40 | 7.1                   |                                  |

| Intersection               | Intersection<br>Control |            | oach /<br>ement              | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|----------------------------|-------------------------|------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                            |                         | EB         | Left /<br>Through /<br>Right | E   | 0.75 | 59.8                  | 37.5                             |
| Bank St &                  |                         | WB         | Left /<br>Through /<br>Right | D   | 0.71 | 35.9                  | 38.6                             |
| Sunnyside<br>Ave           | Signalized              | NB         | Left /<br>Through /<br>Right | А   | 0.31 | 6.6                   | 32.6                             |
|                            |                         | SB         | Left /<br>Through /<br>Right | А   | 0.44 | 4.1                   | 11.2                             |
|                            |                         | Overall In | tersection                   | В   | 0.75 | 13.2                  |                                  |
| QED &                      |                         | NB         | Left /<br>Through            | Α   | 0.05 | 8.3                   | 1.2                              |
| Princess<br>Patricia Way   | Minor Stop              | EB         | Left / Right                 | С   | 0.28 | 15.2                  | 6.6                              |
| Fatticia vvay              |                         | Overall In | tersection                   | Α   | 0.28 | 3.0                   |                                  |
|                            |                         | EB         | Left / Right                 | D   | 0.42 | 37.3                  | 25.2                             |
| QED &                      | Signalized              | NB         | Left /<br>Through            | Α   | 0.29 | 5.4                   | 27.5                             |
| Fifth Ave                  | Signalized              | SB         | Through /<br>Right           | Α   | 0.37 | 6.1                   | 40.5                             |
|                            |                         | Overall In | tersection                   | Α   | 0.42 | 9.2                   |                                  |
| Bank St &                  | Minor Stop              | WB         | Left / Right                 | В   | 0.14 | 12.4                  | 3.0                              |
| Marche Way                 | Willion Gtop            | Overall In | tersection                   | Α   | 0.14 | 0.8                   |                                  |
|                            |                         | EB         | Left /<br>Through            | Α   | 0.11 | 7.9                   |                                  |
|                            |                         | WB         | Right                        | Α   | 0.09 | 6.5                   |                                  |
| Fifth Ave &<br>O'Connor St | All-Way Stop            | NB         | Left /<br>Through /<br>Right | А   | 0.16 | 7.9                   |                                  |
|                            |                         | SB         | Right                        | Α   | 0.10 | 6.6                   |                                  |
|                            |                         | Overall In | tersection                   | Α   | 0.16 | 7.2                   |                                  |

Table 4.5: Existing Weekend Saturday Peak Hour Conditions (Internal Lansdowne Intersections)

| Intersection       | Intersection<br>Control | -      | proach /<br>ovement | LOS | V/C  | Total<br>Delay (s) | Queue<br>95th<br>(m) |
|--------------------|-------------------------|--------|---------------------|-----|------|--------------------|----------------------|
| Garage             |                         | WB     | Left                | Α   | 0.00 | 8.4                | 0                    |
| Access at          | Two-Way                 | WD     | Through             | Α   |      | 0                  |                      |
| Exhibition         | Stop                    | NB     | Left / Right        | С   | 0.18 | 15.3               | 0.7                  |
| Way                |                         | Overal | Intersection        | Α   | 0.19 | 2.9                |                      |
| Exhibition         |                         | EB     | Left /<br>Through   | Α   | 0.15 | 7.8                |                      |
| Way<br>and         | All-Way<br>Stop         | WB     | Through /<br>Right  | Α   | 0.11 | 7.5                |                      |
| Service<br>Roadway | Сюр                     | SB     | Left / Right        | Α   | 0.01 | 7.3                |                      |
| Noadway            |                         | Overal | Intersection        | Α   | 0.15 | 7.7                |                      |
| Marché Way         |                         | EB     | Left /<br>Through   | Α   | 0.02 | 7                  |                      |
| and<br>Service     | All-Way<br>Stop         | WB     | Left /<br>Through   | Α   | 0.09 | 7.4                |                      |
| Roadway            | 3.56                    | NB     | Left / Right        | Α   | 0.01 | 7                  |                      |
|                    |                         | Overal | I Intersection      | Α   | 0.09 | 7.3                |                      |
| Marché Way         |                         | EB     | Through /<br>Right  | Α   | 0.02 | 7.3                |                      |
| and<br>Exhibition  | All-Way<br>Stop         | WB     | Left /<br>Through   | Α   | 0.12 | 8.1                |                      |
| Way                | 3.56                    | NB     | Left / Right        | Α   | 0.15 | 8.1                |                      |
|                    |                         | Overal | Intersection        | Α   | 0.16 | 8.0                |                      |
| Garage             |                         | EB     | Left                | Α   | 0.00 | 7.6                | 0.1                  |
| Access at Princess | Two-Way<br>Stop         |        | Through             | Α   |      | 0                  | 0.1                  |
| Patricia Way       | '                       | SB     | Left / Right        | В   | 0.13 | 10.1               | 3.5                  |
|                    |                         | Overal | Intersection        | Α   | 0.13 | 3.3                |                      |

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service under Weekend Saturday peak hour conditions.

Table 4.6: Existing Weekend Sunday Peak Hour Conditions (Study Area Intersections)

| Intersection            | Intersection<br>Control |            | oach /<br>ement              | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|-------------------------|-------------------------|------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                         |                         | EB         | Left /<br>Through /<br>Right | С   | 0.53 | 30.2                  | 26.4                             |
|                         |                         |            | Left                         | D   | 0.65 | 41.7                  | 30.7                             |
| Bank St &               |                         | WB         | Through /<br>Right           | С   | 0.36 | 20.1                  | 20.0                             |
| Fifth Ave               | Signalized              | NB         | Left /<br>Through /<br>Right | Α   | 0.30 | 7.9                   | 51.3                             |
|                         |                         | SB         | Left /<br>Through /<br>Right | А   | 0.33 | 6.5                   | 30.8                             |
|                         |                         | Overall In | tersection                   | В   | 0.65 | 12.9                  |                                  |
|                         |                         | EB         | Left /<br>Through /<br>Right | D   | 0.53 | 38.2                  | 26.7                             |
| Bank St &<br>Holmwood   | Signalized              | NB         | Left /<br>Through /<br>Right | А   | 0.34 | 7.2                   | 49.5                             |
| Ave                     |                         | SB         | Left /<br>Through /<br>Right | А   | 0.30 | 8.2                   | 44.3                             |
|                         |                         | Overall In | tersection                   | Α   | 0.53 | 10.0                  |                                  |
|                         |                         | WB         | Left                         | D   | 0.53 | 35.8                  | 31.2                             |
|                         |                         |            | Right                        | В   | 0.29 | 10.2                  | 9.4                              |
| Bank St & Exhibition    | Signalized              | NB         | Left /<br>Through /<br>Right | В   | 0.36 | 11.3                  | 37.9                             |
| Way                     |                         | SB         | Left                         | В   | 0.41 | 12.4                  | 26.0                             |
|                         |                         | 36         | Through                      | Α   | 0.21 | 5.1                   | 23.4                             |
|                         |                         | Overall In | tersection                   | В   | 0.53 | 11.6                  |                                  |
|                         |                         | NB         | Left                         | В   | 0.18 | 11.4                  | 5.1                              |
| Bank St &               | Minor Stop              |            | Through                      | Α   |      | 1.7                   | 5.1                              |
| Wilton Cr               | ,                       | EB         | Right                        | E   | 0.62 | 25.5                  | 28.8                             |
|                         |                         |            | tersection                   | Α   | 0.62 | 4.6                   |                                  |
| Bank St &               | Minor Stop              | EB         | Right                        | С   | 0.21 | 17.8                  | 0.8                              |
| Echo Dr                 |                         |            | tersection                   | A   | 0.41 | 1.1                   |                                  |
|                         |                         | EB         | Left / Right<br>Left /       | D   | 0.40 | 35.7                  | 21.9                             |
| Bank St &<br>Aylmer Ave | Signalized              | NB         | Through /                    | A   | 0.27 | 2.4                   | 14.3                             |
|                         |                         | SB         | Right                        | Α   | 0.31 | 3.4                   | 26.2                             |
|                         |                         | Overall In | tersection                   | Α   | 0.40 | 4.6                   |                                  |

| Intersection               | Intersection<br>Control |            | oach /<br>ement              | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|----------------------------|-------------------------|------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                            |                         | EB         | Left /<br>Through /<br>Right | E   | 0.78 | 67.8                  | 34.5                             |
| Bank St &                  |                         | WB         | Left /<br>Through /<br>Right | С   | 0.70 | 32.8                  | 35.5                             |
| Sunnyside<br>Ave           | Signalized              | NB         | Left /<br>Through /<br>Right | В   | 0.37 | 16.5                  | 47.5                             |
|                            |                         | SB         | Left /<br>Through /<br>Right | А   | 0.49 | 4.7                   | 11.3                             |
|                            |                         | Overall In | tersection                   | В   | 0.78 | 16.5                  |                                  |
| QED &                      |                         | NB         | Left /<br>Through            | Α   | 0.05 | 7.6                   | 0.2                              |
| Princess<br>Patricia Way   | Minor Stop              | EB         | Left / Right                 | В   | 0.31 | 11.9                  | 1.4                              |
| Fatticia vvay              |                         | Overall In | tersection                   | Α   | 0.23 | 5.3                   |                                  |
|                            |                         | EB         | Left / Right                 | D   | 0.61 | 40.6                  | 37.4                             |
| QED &                      | Signalized              | NB         | Left /<br>Through            | Α   | 0.29 | 7.3                   | 27.9                             |
| Fifth Ave                  | Signalized              | SB         | Through /<br>Right           | Α   | 0.04 | 5.6                   | 5.7                              |
|                            |                         | Overall In | tersection                   | В   | 0.61 | 19.1                  |                                  |
| Bank St &                  | Minor Stop              | WB         | Left / Right                 | В   | 0.30 | 14                    | 1.3                              |
| Marche Way                 | Willion Gtop            | Overall In | tersection                   | Α   | 0.27 | 1.9                   |                                  |
|                            |                         | EB         | Left /<br>Through            | Α   | 0.23 | 9.9                   | 0.9                              |
|                            |                         | WB         | Right                        | Α   | 0.30 | 9.4                   | 1.3                              |
| Fifth Ave &<br>O'Connor St | All-Way Stop            | NB         | Left /<br>Through /<br>Right | В   | 0.34 | 10.6                  | 1.5                              |
|                            |                         | SB         | Right                        | Α   | 0.14 | 8.5                   | 0.5                              |
|                            |                         | Overall In | tersection                   | Α   | 0.34 | 9.8                   |                                  |

Table 4.7: Existing Weekend Saturday Peak Hour Conditions (Internal Lansdowne Intersections)

| Intersection          | Intersection<br>Control | _      | proach /<br>ovement | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95th (m) |
|-----------------------|-------------------------|--------|---------------------|-----|------|-----------------------|-------------------|
| Garage                |                         | WB     | Left                | Α   | 0.00 | 8.5                   | 0                 |
| Access at             | Two-Way                 | VVD    | Through             | Α   |      | 0                     |                   |
| Exhibition            | Stop                    | NB     | Left / Right        | С   | 0.24 | 17.1                  | 1                 |
| Way                   |                         | Overal | Intersection        | Α   | 0.25 | 3.2                   |                   |
| Exhibition            |                         | EB     | Left /<br>Through   | Α   | 0.18 | 8                     | 0.7               |
| Way<br>and            | All-Way<br>Stop         | WB     | Through /<br>Right  | Α   | 0.13 | 7.7                   | 0.5               |
| Service<br>Roadway    | Сюр                     | SB     | Left / Right        | Α   | 0.01 | 7.4                   | 0                 |
| Noadway               |                         | Overal | Intersection        | Α   | 0.18 | 7.9                   |                   |
| Marché Way            |                         | EB     | Left /<br>Through   | Α   | 0.02 | 7.1                   | 0.1               |
| and<br>Service        | All-Way<br>Stop         | WB     | Left /<br>Through   | Α   | 0.2  | 8                     | 0.7               |
| Roadway               | Ctop                    | NB     | Left / Right        | Α   | 0.01 | 7.2                   | 0                 |
|                       |                         | Overal | I Intersection      | Α   | 0.20 | 7.9                   |                   |
| Marché Way            |                         | EB     | Through /<br>Right  | Α   | 0.02 | 7.3                   | 0.1               |
| and Exhibition        | All-Way<br>Stop         | WB     | Left /<br>Through   | Α   | 0.07 | 7.9                   | 0.3               |
| Way                   | Ctop                    | NB     | Left / Right        | Α   | 0.18 | 8.2                   | 0.7               |
|                       |                         | Overal | I Intersection      | Α   | 0.19 | 8.0                   |                   |
| Garage                |                         | EB     | Left                | Α   | 0.00 | 7.5                   | 0                 |
| Access at<br>Princess | Two-Way<br>Stop         |        | Through             | А   |      | 0                     |                   |
| Patricia Way          | '                       | SB     | Left / Right        | В   | 0.23 | 10.7                  | 0.9               |
|                       |                         | Overal | Intersection        | Α   | 0.23 | 5.3                   |                   |

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service under Weekend Saturday peak hour conditions.

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service on Weekend Sunday peak periods with concurrent events at Lansdowne.

The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS E. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

No mitigation measure is recommended to improve intersection operations.

Table 4.8: Existing Minor Event (Arena at TD Place) Peak Hour Conditions

| Intersection            | Intersection |                      | proach /                     | LC      | os     | V/      | С      | To<br>Dela |        | Que<br>95th |        |
|-------------------------|--------------|----------------------|------------------------------|---------|--------|---------|--------|------------|--------|-------------|--------|
|                         | Control      | Мо                   | vement                       | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress |
|                         |              | EB                   | Left /<br>Through<br>/ Right | D       | С      | 0.65    | 0.51   | 36.9       | 31.9   | 32.3        | 18.8   |
|                         |              |                      | Left                         | С       | С      | 0.42    | 0.34   | 33.3       | 34.4   | 18.8        | 15.5   |
| Rank St &               |              | WB                   | Through / Right              | В       | В      | 0.30    | 0.30   | 19.0       | 19.5   | 15.6        | 12.6   |
| Bank St &<br>Fifth Ave  | Signalized   | NB                   | Left /<br>Through<br>/ Right | В       | А      | 0.30    | 0.24   | 10.0       | 6.0    | 49.8        | 34.2   |
|                         |              | SB                   | Left /<br>Through<br>/ Right | А       | А      | 0.35    | 0.20   | 6.3        | 3.6    | 33.6        | 15.6   |
|                         |              |                      | verall<br>rsection           | В       | Α      | 0.65    | 0.51   | 12.6       | 9.0    |             |        |
|                         | Signalized   | EB                   | Left /<br>Through<br>/ Right | D       | D      | 0.54    | 0.47   | 38.1       | 37.7   | 27.8        | 22.3   |
| Bank St &<br>Holmwood   |              | NB                   | Left /<br>Through<br>/ Right | А       | А      | 0.37    | 0.29   | 2.9        | 3.7    | 13.9        | 22.1   |
| Ave                     |              | SB                   | Left /<br>Through<br>/ Right | А       | А      | 0.32    | 0.20   | 4.8        | 4.4    | 20.2        | 24.4   |
|                         |              | Overall Intersection |                              | A       | A      | 0.54    | 0.47   | 6.5        | 6.6    |             |        |
|                         | Signalized   | MA                   | Left                         | D       | D      | 0.50    | 0.64   | 35.1       | 36.4   | 30.8        | 43.5   |
|                         |              | WB                   | Right                        | В       | D      | 0.37    | 0.57   | 10.5       | 9.6    | 11.2        | 16.2   |
| Bank St &<br>Exhibition |              | NB                   | Left /<br>Through<br>/ Right | А       | А      | 0.33    | 0.17   | 4.9        | 4.9    | 26.6        | 12.4   |
| Way                     |              | SB                   | Left                         | Α       | Α      | 0.41    | 0.25   | 7.4        | 5.8    | 10.5        | 8.8    |
|                         |              | 36                   | Through                      | Α       | А      | 0.20    | 0.14   | 3.1        | 4.4    | 8.8         | 7.6    |
|                         |              |                      | verall<br>rsection           | Α       | В      | 0.50    | 0.64   | 7.6        | 11.6   |             |        |
|                         |              | EB                   | Right                        | F       | С      | 0.85    | 0.32   | 52.8       | 18.8   | 45.6        | 7.8    |
| Bank St &               |              | ND                   | Left                         | В       | В      | 0.19    | 0.07   | 12.1       | 10.3   | 5.3         | 1.8    |
| Wilton Cr               | Minor Stop   | NB                   | Through                      | А       | Α      |         |        | 2.2        | 0.6    | 5.3         | 1.8    |
|                         |              |                      | verall<br>rsection           | В       | A      | 0.85    | 0.32   | 10.5       | 2.9    |             |        |
| Bank St &               |              | EB                   | Right                        | С       | В      | 0.11    | 0.02   | 15.8       | 10.4   | 2.4         | 0.6    |
| Echo Dr                 | Minor Stop   |                      | verall<br>rsection           | A       | Α      | 0.11    | 0.02   | 0.4        | 0.2    |             |        |

| Intersection                  | Intersection    | Approach /              |                              | LC      | os     | V/      | ′C     | To<br>Dela |        | Que<br>95th |        |
|-------------------------------|-----------------|-------------------------|------------------------------|---------|--------|---------|--------|------------|--------|-------------|--------|
|                               | Control         | Мо                      | vement                       | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress |
|                               |                 | EB                      | Left /<br>Right              | D       | С      | 0.35    | 0.03   | 36.4       | 27.2   | 26.1        | 4.4    |
| Bank St &<br>Aylmer Ave       | Signalized      | NB                      | Left /<br>Through            | А       | А      | 0.39    | 0.08   | 5.4        | 5.3    | 23.6        | 8.1    |
| Ayimei Ave                    | 3               | SB                      | Through<br>/ Right           | Α       | Α      | 0.32    | 0.10   | 6.4        | 5.2    | 28.0        | 9.6    |
|                               |                 |                         | verall<br>rsection           | Α       | A      | 0.39    | 0.10   | 7.6        | 5.7    |             |        |
|                               |                 | EB                      | Left /<br>Through<br>/ Right | D       | D      | 0.73    | 0.48   | 52.2       | 44.4   | #42.6       | 19.1   |
| Bank St &<br>Sunnyside<br>Ave |                 | WB                      | Left /<br>Through<br>/ Right | С       | С      | 0.76    | 0.33   | 32.6       | 20.8   | 49.7        | 11.9   |
|                               | Signalized      | NB                      | Left /<br>Through<br>/ Right | А       | А      | 0.30    | 0.12   | 8.1        | 3.2    | 32.2        | 11.0   |
|                               |                 | SB                      | Left /<br>Through<br>/ Right | А       | А      | 0.53    | 0.24   | 7.5        | 3.5    | 23.4        | 21.2   |
|                               |                 | Overall<br>Intersection |                              | В       | Α      | 0.76    | 0.48   | 15.2       | 7.0    |             |        |
| QED &                         | Minor Stop      | NB                      | Left /<br>Through            | А       | А      | 0.13    | 0.01   | 9.3        | 7.6    | 2.4         | 0.0    |
| Princess Patricia Way         |                 | EB                      | Left /<br>Right              | С       | С      | 0.36    | 0.59   | 21.6       | 16.1   | 9.6         | 24.0   |
| T atricia vvay                |                 | Overall<br>Intersection |                              | С       | Α      | 0.36    | 0.59   | 3.4        | 10.4   | -           |        |
|                               | Signalized      | EB                      | Left /<br>Right              | С       | С      | 0.38    | 0.39   | 28.6       | 28.7   | 22.4        | 23.4   |
| Queen<br>Elizabeth Dr         |                 | NB                      | Left /<br>Through            | А       | А      | 0.34    | 0.32   | 6.8        | 6.5    | 27.9        | 29.4   |
| &<br>Fifth Ave                |                 | SB                      | Through<br>/ Right           | В       | А      | 0.63    | 0.20   | 10.7       | 5.6    | 78.2        | 18.0   |
|                               |                 |                         | verall<br>rsection           | В       | Α      | 0.63    | 0.39   | 11.2       | 9.8    |             |        |
| Bank St &                     | Minor Stop      | WB                      | Left /<br>Right              | В       | В      | 0.11    | 0.27   | 12.3       | 13.4   | 2.4         | 6.6    |
| Marche Way                    |                 |                         | verall<br>rsection           | A       | A      | 0.11    | 0.27   | 0.6        | 2.1    |             |        |
|                               |                 | ЕВ                      | Left /<br>Through            | А       | А      | 0.15    | 0.07   | 8.1        | 7.4    |             |        |
|                               |                 | WB                      | Right                        | Α       | Α      | 0.13    | 0.06   | 6.7        | 6.4    |             |        |
| Fifth Ave &<br>O'Connor St    | All-Way<br>Stop | NB                      | Left /<br>Through<br>/ Right | Α       | А      | 0.18    | 0.08   | 8.0        | 7.0    |             |        |
|                               |                 | SB                      | Right                        | Α       | Α      | 0.08    | 0.09   | 6.5        | 6.5    |             |        |
|                               |                 |                         | verall<br>rsection           | A       | A      | 0.18    | 0.09   | 7.4        | 6.8    |             |        |

Table 4.9: Existing Minor Event (Arena at TD Place) Internal Lansdowne Intersections

| Intersection             | Intersection    |                         | Approach /          |         | os     | V       | C      | To<br>Dela |        | Que<br>95th |        |
|--------------------------|-----------------|-------------------------|---------------------|---------|--------|---------|--------|------------|--------|-------------|--------|
|                          | Control         | Mo                      | vement              | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress |
|                          |                 | WB                      | Left                | А       | А      | 0.00    |        | 8.8        | 0      | 0           | 0      |
| Garage<br>Access at      |                 | VVD                     | Through             | Α       | Α      |         | 0      | 0          | 0      |             | 0      |
| Exhibition Way           | Two-Way<br>Stop | NB                      | Left /<br>Right     | С       | С      | 0.29    | 0.43   | 19.8       | 24.7   | 1.2         | 2.1    |
| vvay                     |                 |                         | verall<br>rsection  | A       | A      | 0.30    | 0.44   | 3.3        | 5.2    |             |        |
| Exhibition               |                 | EB                      | Left /<br>Through   | А       | Α      | 0.28    | 0.25   | 8.7        | 8.7    | 1.2         | 1      |
| Way                      | All-Way         | WB                      | Through / Right     | А       | Α      | 0.15    | 0.35   | 7.9        | 9.4    | 0.5         | 1.6    |
| Service<br>Roadway       | Stop            | SB                      | Left /<br>Right     | А       | Α      | 0.01    | 0.01   | 7.6        | 7.9    | 0           | 0      |
| riodamay                 |                 | Overall<br>Intersection |                     | A       | A      | 0.29    | 0.36   | 8.4        | 9.1    |             |        |
|                          | All-Way<br>Stop | EB                      | Left /<br>Through   | А       | А      | 0.02    | 0.03   | 7          | 7.2    | 0.1         | 0.1    |
| Marché Way<br>and        |                 | WB                      | Left /<br>Through   | А       | А      | 0.06    | 0.18   | 7.3        | 7.9    | 0.2         | 0.7    |
| Service<br>Roadway       |                 | NB                      | Left /<br>Right     | Α       | Α      | 0.01    | 0.01   | 7          | 7.2    | 0           | 0      |
|                          |                 | Overall<br>Intersection |                     | Α       | Α      | 0.07    | 0.18   | 7.2        | 7.8    |             |        |
|                          |                 | EB                      | Through / Right     | Α       | Α      | 0.03    | 0.03   | 7.8        | 7.6    | 0.1         | 0.1    |
| Marché Way<br>and        | All-Way         | WB                      | Left /<br>Through   | А       | Α      | 0.23    | 0.11   | 9.2        | 8.2    | 0.9         | 0.4    |
| Exhibition<br>Way        | Stop            | NB                      | Left /<br>Right     | Α       | Α      | 0.31    | 0.25   | 9.7        | 8.5    | 1.4         | 1      |
|                          |                 | _                       | verall<br>rsection  | Α       | Α      | 0.32    | 0.25   | 9.4        | 8.3    |             |        |
|                          |                 | EB                      | Left                | А       | Α      | 0.00    | 0.00   | 8.1        | 7.4    | 0           | 0.00   |
| Garage<br>Access at      | Two-Way         |                         | Through             | Α       | Α      |         | 0.00   | 0          | 0.00   |             | 0.00   |
| Princess<br>Patricia Way | Stop            | SB                      | Left /<br>Right     | В       | В      | 0.14    | 0.47   | 11.3       | 13.2   | 0.5         | 19.6   |
|                          |                 |                         | overall<br>rsection | Α       | Α      | 0.14    | 0.47   | 2.2        | 9.3    |             |        |

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service during Minor Events held at the Arena at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS F. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street. No mitigation measures are recommended to improve intersection operations.

Table 4.10: Existing Major Event (Stadium at TD Place) Peak Hour Conditions

| Intersection            | Intersection | Approach /              |                              | LC                                                   | os     | V/        | С          | To<br>Dela  |            | Que<br>95th |        |  |
|-------------------------|--------------|-------------------------|------------------------------|------------------------------------------------------|--------|-----------|------------|-------------|------------|-------------|--------|--|
| intersection            | Control      | Мо                      | vement                       | Ingress                                              | Egress | Ingress   | Egress     | Ingress     | Egress     | Ingress     | Egress |  |
|                         |              | EB                      | Left /<br>Through<br>/ Right | D                                                    | D      | 0.67      | 0.65       | 35.8        | 36.0       | 34.5        | 31.8   |  |
|                         |              |                         | Left                         | С                                                    | С      | 0.42      | 0.21       | 30.3        | 24.7       | 19.8        | 12.1   |  |
| Bank St &               |              | WB                      | Through / Right              | В                                                    | В      | 0.40      | 0.45       | 17.4        | 19.3       | 20.3        | 23.1   |  |
| Fifth Ave               | Signalized   | NB                      | Left /<br>Through<br>/ Right | А                                                    | А      | 0.32      | 0.20       | 6.5         | 5.6        | 28.7        | 18.9   |  |
|                         |              | SB                      | Left /<br>Through<br>/ Right | А                                                    | А      | 0.42      | 0.23       | 7.4         | 5.6        | 41.4        | 21.1   |  |
|                         |              |                         | verall<br>rsection           | В                                                    | В      | 0.67      | 0.65       | 11.6        | 11.8       |             |        |  |
|                         | Signalized   | EB                      | Left /<br>Through<br>/ Right | D                                                    | D      | 0.61      | 0.61       | 38.5        | 38.7       | 34.1        | 32.8   |  |
| Bank St &<br>Holmwood   |              | NB                      | Left /<br>Through<br>/ Right | А                                                    | А      | 0.48      | 0.25       | 7.1         | 5.0        | 38.8        | 17.4   |  |
| Ave                     |              | SB                      | Left /<br>Through<br>/ Right | А                                                    | А      | 0.42      | 0.23       | 6.7         | 4.8        | 37.4        | 16.6   |  |
|                         |              | Overall<br>Intersection |                              | Α                                                    | В      | 0.61      | 0.61       | 9.8         | 10.0       |             |        |  |
|                         |              | WB                      | Left<br>Right                | Movements Temporarily Restricted During Major Events |        |           |            |             |            |             |        |  |
| Bank St &<br>Exhibition | Signalized   | NB                      | Left /<br>Through<br>/ Right | А                                                    | А      | 0.24      | 0.12       | 0.2         | 0.1        | 0.0         | 0.0    |  |
| Way                     |              | SB                      | Left                         |                                                      | Moven  | ents Temp | orarily Re | stricted Du | ring Major | Events      |        |  |
|                         |              | 36                      | Through                      | Α                                                    | Α      | 0.21      | 0.12       | 0.1         | 0.1        | 0.0         | 0.0    |  |
|                         |              |                         | verall<br>rsection           | Α                                                    | A      | 0.24      | 0.12       | 0.2         | 0.1        |             |        |  |
|                         |              | EB                      | Right                        | F                                                    | В      | 0.97      | 0.01       | 81.9        | 13.2       | 60.0        | 0.0    |  |
| Bank St &               |              | NB                      | Left                         | В                                                    | Α      | 0.19      |            | 12.1        | 0.0        | 5.3         | 0.0    |  |
| Wilton Cr               | Minor Stop   | NR                      | Through                      | Α                                                    |        |           |            | 2.2         |            | 5.3         | 0.0    |  |
|                         |              |                         | verall<br>rsection           | С                                                    | Α      | 0.97      | 0.01       | 14.2        | 0.1        |             |        |  |
| Bank St &               | N. 6.        | EB                      | Right                        | С                                                    | В      | 0.22      | 0.05       | 17.7        | 10.3       | 4.8         | 1.2    |  |
| Echo Dr                 | Minor Stop   |                         | verall<br>rsection           | A                                                    | Α      | 0.22      | 0.05       | 0.8         | 0.5        |             |        |  |

| Intersection                  | Intersection    | Approach /              |                                       | LC      | os     | V                                                 | C      | To<br>Dela |        | Que<br>95th |        |  |
|-------------------------------|-----------------|-------------------------|---------------------------------------|---------|--------|---------------------------------------------------|--------|------------|--------|-------------|--------|--|
|                               | Control         | Мо                      | vement                                | Ingress | Egress | Ingress                                           | Egress | Ingress    | Egress | Ingress     | Egress |  |
|                               |                 | EB                      | Left /<br>Right                       | D       | С      | 0.50                                              | 0.17   | 38.1       | 23.5   | 33.9        | 11.4   |  |
| Bank St &<br>Aylmer Ave       | Signalized      | NB                      | Left /<br>Through                     | А       | А      | 0.41                                              | 0.19   | 7.8        | 5.9    | 43.3        | 16.6   |  |
| / tyllilei / tvo              | -               | SB                      | Through / Right                       | А       | A      | 0.43                                              | 0.17   | 7.9        | 5.5    | 47.0        | 14.4   |  |
|                               |                 |                         | rsection                              | Α       | Α      | 0.50                                              | 0.19   | 9.9        | 6.6    | -           |        |  |
| Bank St &<br>Sunnyside<br>Ave |                 | EB                      | Left /<br>Through<br>/ Right          | E       | D      | 0.84                                              | 0.53   | 64.5       | 42.8   | 62.2        | 24.9   |  |
|                               |                 | WB                      | Left /<br>Through<br>/ Right          | D       | С      | 0.82                                              | 0.48   | 43.7       | 28.2   | 69.7        | 21.2   |  |
|                               | Signalized      | NB                      | Left /<br>Through<br>/ Right          | А       | А      | 0.36                                              | 0.15   | 7.8        | 4.1    | 31.4        | 13.6   |  |
|                               |                 | SB                      | Left /<br>Through<br>/ Right          | В       | А      | 0.68                                              | 0.18   | 12.8       | 4.1    | 64.8        | 15.4   |  |
|                               |                 | Overall<br>Intersection |                                       | С       | В      | 0.84                                              | 0.53   | 20.2       | 10.6   |             |        |  |
| QED &                         | Minor Stop      | NB                      | Left /<br>Through                     | А       | А      | 0.14                                              | 0.05   | 9.9        | 8.2    | 3.0         | 0.6    |  |
| Princess                      |                 | EB                      | Left /<br>Right                       | F       | E      | 0.77                                              | 0.87   | 50.5       | 39.7   | 34.2        | 58.8   |  |
| Patricia Way                  |                 | Overall<br>Intersection |                                       | D       | С      | 0.77                                              | 0.87   | 8.7        | 19.2   |             |        |  |
|                               | Signalized      | EB                      | Left /<br>Right                       | С       | D      | 0.58                                              | 0.68   | 33.3       | 36.7   | 35.6        | 45.8   |  |
| Queen<br>Elizabeth Dr         |                 | NB                      | Left /<br>Through                     | В       | А      | 0.56                                              | 0.40   | 11.9       | 8.6    | 49.3        | 39.1   |  |
| &<br>Fifth Ave                | Olginalizou     | SB                      | Through / Right                       | В       | Α      | 0.81                                              | 0.39   | 18.9       | 8.4    | 156.5       | 39.1   |  |
|                               |                 |                         | verall<br>rsection                    | В       | В      | 0.81                                              | 0.68   | 18.8       | 14.6   |             |        |  |
| Bank St &<br>Marche Way       | Minor Stop      | 1                       | Left /<br>Right<br>verall<br>rsection |         | Moven  | ements Temporarily Restricted During Major Events |        |            |        |             |        |  |
|                               |                 | EB                      | Left /<br>Through                     | А       | А      | 0.17                                              | 0.11   | 8.5        | 8.5    |             |        |  |
|                               |                 | WB                      | Right                                 | Α       | Α      | 0.19                                              | 0.11   | 6.9        | 6.6    |             |        |  |
| Fifth Ave &<br>O'Connor St    | All-Way<br>Stop | NB                      | Left /<br>Through<br>/ Right          | А       | В      | 0.26                                              | 0.43   | 8.4        | 10     |             |        |  |
|                               |                 | SB                      | Right                                 | Α       | Α      | 0.13                                              | 0.05   | 6.7        | 6.4    |             |        |  |
|                               |                 |                         | verall<br>rsection                    | Α       | В      | 0.26                                              | 0.43   | 7.7        | 8.8    |             |        |  |

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service during Major Events held at the Stadium at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS F. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street. No mitigation measures are recommended to improve intersection operations.

In addition, the eastbound approach at the Queen Elizabeth Drive and Princess Patricia Way intersection is shown to operate with an LOS rating of F and E for the Ingress and Egress periods, respectively. Although the analysis indicates that the movements are operating with delays, the performance of these intersections are adequately managed through the deployment of Ottawa Police Point duty as part of the traffic management measures for Major Events at Lansdowne.

No mitigation measures are recommended to improve intersection operations.

#### 4.8.2 2028 Future Conditions

### **Intersection Capacity Analysis**

Intersection operational analysis under Future 2028 Conditions are summarized in this section.

Detailed Synchro level of service analysis results can be found in Appendix D.

Table 4.11: 2028 Future Weekday AM and PM Peak Hour

| Intersection | Intersection | Approach / |                              | LC | os | V/   | С    |      | otal<br>ay (s) | Que<br>95th | eue<br>ı (m) |
|--------------|--------------|------------|------------------------------|----|----|------|------|------|----------------|-------------|--------------|
|              | Control      | IVI        | ovement                      | AM | PM | AM   | PM   | AM   | PM             | AM          | PM           |
|              |              | EB         | Left /<br>Through /<br>Right | С  | С  | 0.37 | 0.44 | 22.2 | 22.5           | 28.4        | 31.7         |
|              | Signalized   | WB         | Left                         | С  | С  | 0.20 | 0.26 | 23.1 | 24.4           | 14.8        | 17.9         |
| Bank St &    |              |            | Through /<br>Right           | В  | В  | 0.21 | 0.20 | 15.9 | 14.1           | 16.4        | 14.3         |
| Fifth Ave    |              | NB         | Left /<br>Through /<br>Right | А  | В  | 0.40 | 0.35 | 3.5  | 13.9           | 5.3         | 50.1         |
|              |              | SB         | Left /<br>Through /<br>Right | А  | А  | 0.33 | 0.44 | 8.6  | 9.8            | 26.4        | 37.5         |
|              |              | Overa      | II Intersection              | Α  | В  | 0.40 | 0.44 | 8.6  | 13.4           |             |              |

| Intersection                   | Intersection |       | oproach /                    | LC | os   | V/O    | C    |      | otal<br>ay (s) | 1      | eue<br>ı (m) |
|--------------------------------|--------------|-------|------------------------------|----|------|--------|------|------|----------------|--------|--------------|
|                                | Control      | IVI   | ovement                      | AM | PM   | AM     | PM   | AM   | PM             | AM     | PM           |
|                                |              | EB    | Left /<br>Through /<br>Right | D  | D    | 0.48   | 0.55 | 37.8 | 38.8           | 23.3   | 27.6         |
| Bank St &<br>Holmwood          | Signalized   | NB    | Left /<br>Through /<br>Right | А  | А    | 0.30   | 0.33 | 2.2  | 1.9            | 4.4    | 9.1          |
| Ave                            |              | SB    | Left /<br>Through /<br>Right | Α  | А    | 0.21   | 0.33 | 3.1  | 3.4            | 13.6   | 14.3         |
|                                |              | Overa | II Intersection              | Α  | Α    | 0.48   | 0.55 | 5.2  | 5.5            |        |              |
|                                |              | WB    | Left                         | С  | D    | 0.26   | 0.51 | 32.4 | 35.4           | 16.5   | 30.2         |
|                                |              | VVD   | Right                        | В  | В    | 0.19   | 0.27 | 13.5 | 10.6           | 7.1    | 9.0          |
| Bank St &<br>Exhibition<br>Way | Signalized   | NB    | Left /<br>Through /<br>Right | А  | А    | 0.36   | 0.32 | 9.1  | 5.5            | 40.8   | 29.0         |
|                                |              | SB    | Left                         | Α  | Α    | 0.13   | 0.25 | 8.1  | 4.7            | 10.5   | 5.8          |
|                                |              | SD    | Through                      | Α  | Α    | 0.16   | 0.24 | 6.6  | 3.1            | 23.7   | 10.2         |
|                                |              | Overa | II Intersection              | Α  | Α    | 0.36   | 0.51 | 9.4  | 7.3            |        |              |
|                                |              | EB    | Right                        | С  | F    | 0.52   | 0.89 | 23.5 | 66.9           | 27.4   | 88.7         |
| Bank St &                      |              |       | Left                         | В  | В    | 0.21   | 0.38 | 10.9 | 14.4           | 6.1    | 15.2         |
| Wilton Cr                      | Minor Stop   | NB    | Through                      | Α  | Α    |        |      | 1.9  | 3.8            |        |              |
|                                |              | Overa | II Intersection              | Α  | С    | 0.52   | 0.89 | 5.3  | 12.9           |        |              |
| Bank St &                      |              | EB    | Right                        | В  | С    | 0.06   | 0.1  | 12.8 | 20.0           | 2.2    | 3.2          |
| Echo Dr                        | Minor Stop   | Overa | Α                            | Α  | 0.36 | 0.53   | 0.3  | 0.3  |                |        |              |
|                                | Signalized   | EB    | Left / Right                 | С  | С    | 0.30   | 0.37 | 29.6 | 31.5           | 21.8   | 24.2         |
| Bank St &                      |              | NB    | Left /<br>Through            | Α  | Α    | 0.44   | 0.41 | 3.5  | 4.3            | m15.2  | m14.2        |
| Aylmer Ave                     | Olgridii2ed  | SB    | Through /<br>Right           | Α  | Α    | 0.35   | 0.48 | 7.4  | 8.0            | 29.5   | 47.8         |
|                                |              | Overa | II Intersection              | Α  | Α    | 0.44   | 0.48 | 6.5  | 7.6            |        |              |
|                                |              | EB    | Left /<br>Through /<br>Right | D  | F    | 0.72   | 1.15 | 49.6 | 154.9          | #47.3  | #76.3        |
| Bank St &                      |              | WB    | Left /<br>Through /<br>Right | D  | F    | 0.89   | 1.10 | 38.8 | 104            | #80.4  | #111.2       |
| Sunnyside<br>Ave               | Signalized   | NB    | Left /<br>Through /<br>Right | D  | С    | 0.96   | 0.45 | 43.1 | 20.4           | #128.8 | 45.7         |
|                                |              | SB    | Left /<br>Through /<br>Right | В  | С    | 1.14dl | 0.91 | 16.2 | 20.6           | 30.9   | #99.6        |
|                                |              | Overa | II Intersection              | С  | D    | 0.96   | 1.15 | 34.9 | 45.7           |        |              |

| Intersection            | Intersection    | -                    | oproach /                    | LC | os | V/C  | C    |      | otal<br>ay (s) |                                                    |       |
|-------------------------|-----------------|----------------------|------------------------------|----|----|------|------|------|----------------|----------------------------------------------------|-------|
|                         | Control         | М                    | ovement                      | AM | PM | AM   | PM   | AM   | PM             | 95th AM 1.6 3.1 19.2 48.5 67.2 1.4 0.5 0.3 0.3 0.4 | PM    |
|                         |                 | ND                   | Left                         | Α  | Α  | 0.06 | 0.06 | 8.3  | 9.1            | 1.6                                                | 1.7   |
| QED &<br>Princess       | Minor Stop      | NB                   | Through                      | Α  |    |      |      | 0    |                |                                                    |       |
| Patricia Way            | Willion Stop    | EB                   | Left / Right                 | В  | С  | 0.12 | 0.42 | 14.1 | 23.7           | 3.1                                                | 15.2  |
|                         |                 | Overall Intersection |                              | Α  | Α  | 0.10 | 0.42 | 1.8  | 2.6            |                                                    |       |
|                         |                 | EB                   | Left / Right                 | С  | С  | 0.23 | 0.34 | 23.8 | 31.8           | 19.2                                               | 26.3  |
| Queen<br>Elizabeth Dr   | Signalized      | NB                   | Left /<br>Through            | С  | В  | 0.50 | 0.44 | 21.3 | 15.0           | 48.5                                               | 42.6  |
| &<br>Fifth Ave          | Signalized      | SB                   | Through /<br>Right           | С  | С  | 0.64 | 0.77 | 24.5 | 23.2           | 67.2                                               | 119.7 |
|                         |                 | Overal               | I Intersection               | С  | С  | 0.64 | 0.77 | 23.2 | 21.9           |                                                    |       |
| Bank St &               | Minor Stop      | WB                   | Right                        | В  | Α  | 0.08 | 0.16 | 12.8 | 9.5            | 1.4                                                | 4.5   |
| Marche Way              | Willion Stop    | Overal               | I Intersection               | Α  | Α  | 0.08 | 0.16 | 0.4  | 0.9            |                                                    |       |
|                         |                 | EB                   | Left /<br>Through            | Α  | Α  | 0.15 | 0.16 | 8.4  | 8.6            | 0.5                                                | 0.6   |
|                         |                 | WB                   | Right                        | Α  | Α  | 0.09 | 0.13 | 7.3  | 7.5            | 0.3                                                | 0.4   |
| Fifth Ave & O'Connor St | All-Way<br>Stop | NB                   | Left /<br>Through /<br>Right | А  | Α  | 0.10 | 0.13 | 7.9  | 8.2            | 0.3                                                | 0.5   |
|                         |                 | SB                   | Right                        | Α  | Α  | 0.13 | 0.12 | 7.5  | 7.5            | 0.4                                                | 0.4   |
|                         |                 | Overall Intersection |                              | Α  | Α  | 0.15 | 0.16 | 7.8  | 8              |                                                    |       |

Table 4.12: 2028 Future Weekday AM and PM Peak (Internal Lansdowne Intersections)

| Intersection                    | Intersection    |           | roach /            | LC | os   | V    | /C   |     | tal<br>y (s) | Queue<br>95th (m) |     |
|---------------------------------|-----------------|-----------|--------------------|----|------|------|------|-----|--------------|-------------------|-----|
|                                 | Control         | Mov       | rement             | AM | PM   | AM   | PM   | AM  | PM           | AM                | PM  |
| Exhibition                      | All-Way<br>Stop | EB        | Left /<br>Through  | А  | А    | 0.19 | 0.28 | 8.1 | 8.7          | 0.7               | 1.1 |
| Way<br>and<br>Service           |                 | WB        | Through /<br>Right | Α  | Α    | 0.11 | 0.23 | 7.6 | 8.4          | 0.4               | 0.9 |
| Service                         | 0.00            | SB        | Left / Right       | Α  | Α    | 0.01 | 0.01 | 7.4 | 7.7          | 0                 |     |
| Roadway                         |                 | Overall I | ntersection        | Α  | Α    | 0.20 | 0.53 | 7.9 | 8.5          |                   |     |
| Marché Way                      | All-Way<br>Stop | EB        | Left /<br>Through  | Α  | Α    | 0.00 | 0.01 | 6.7 | 6.6          |                   |     |
| and<br>Service                  |                 | WB        | Left /<br>Through  | Α  | А    | 0.15 | 0.01 | 7.7 | 7.1          | 0.6               |     |
| Roadway                         | Сюр             | NB        | Left / Right       | Α  | Α    | 0.01 | 0.01 | 7.1 | 6.8          |                   |     |
|                                 |                 | Overall I | ntersection        | Α  | Α    | 0.16 | 0.01 | 7.6 | 6.9          |                   |     |
| Marchá Way                      |                 | EB        | Through /<br>Right | Α  | Α    | 0.00 | 0.01 | 7.1 | 7.4          |                   |     |
| Marché Way<br>and<br>Exhibition | All-Way<br>Stop | WB        | Left /<br>Through  | Α  | Α    | 0.17 | 0.21 | 8.4 | 9            | 0.6               | 0.8 |
| Way                             | 2.00            | NB        | Left / Right       | Α  | Α    | 0.21 | 0.29 | 8.2 | 8.5          | 8.0               | 1.3 |
|                                 |                 | Overall I | Α                  | Α  | 0.21 | 0.30 | 8.3  | 8.7 |              |                   |     |

|                           |         | EB        | Left         | Α | Α | 0.04 | 0.07 | 7.7 | 7.8  | 1.0 | 1.8 |
|---------------------------|---------|-----------|--------------|---|---|------|------|-----|------|-----|-----|
| Garage Access at Princess | Two-Way |           | Through      | Α | Α |      |      | 0   |      |     |     |
| Patricia Way              | Stop    | SB        | Left / Right | Α | В | 0.03 | 0.17 | 9.8 | 11.4 | 0.6 | 4.6 |
|                           |         | Overall I | ntersection  | Α | Α | 0.04 | 0.17 | 2.2 | 4.7  |     |     |

As illustrated in the tables above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2028 Future Weekday AM and PM peak hour conditions.

The intersection of Bank Street and Sunnyside Avenue is projected to continue to operate with specific movements at or close to theoretical capacity in the southbound approach (AM Peak) and westbound approach (PM Peak).

In addition, the eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays during the PM peak hour. The delays are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

Table 4.13: 2028 Future Weekend Saturday Peak Hour (Study Area Intersections)

| Intersection           | Intersection<br>Control |                         | oroach /<br>vement           | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|------------------------|-------------------------|-------------------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                        |                         | EB                      | Left /<br>Through /          | С   | 0.39 | 20.6                  | 27.0                             |
|                        |                         |                         | Right<br>Left                | С   | 0.28 | 24.7                  | 19.9                             |
| Davids Of 8            |                         | WB                      | Through /<br>Right           | В   | 0.25 | 13.2                  | 16.5                             |
| Bank St &<br>Fifth Ave | Signalized              | NB                      | Left /<br>Through /<br>Right | В   | 0.36 | 12.9                  | 51.0                             |
|                        |                         | SB Left / Through Right |                              | А   | 0.38 | 9.2                   | 32.2                             |
|                        |                         | Overall                 | Intersection                 | В   | 0.39 | 12.7                  |                                  |
|                        |                         | EB                      | Left /<br>Through /<br>Right | D   | 0.55 | 38.8                  | 27.2                             |
| Bank St &<br>Holmwood  | Signalized              | NB                      | Left /<br>Through /<br>Right | А   | 0.31 | 2.3                   | 9.0                              |
| Ave                    | Ave                     | SB                      | Left /<br>Through /<br>Right | А   | 0.32 | 3.9                   | 22.0                             |
|                        |                         | Overall                 | Intersection                 | Α   | 0.55 | 6.0                   |                                  |
|                        |                         | WB                      | Left                         | С   | 0.37 | 33.9                  | 22.2                             |
|                        |                         | VVD                     | Right                        | В   | 0.31 | 11.8                  | 9.7                              |
| Bank St & Exhibition   | Signalized              | NB                      | Left /<br>Through /<br>Right | А   | 0.29 | 4.5                   | 23.3                             |
| Way                    |                         | O.D.                    | Left                         | Α   | 0.25 | 6.9                   | 5.5                              |
|                        |                         | SB                      | Through                      | Α   | 0.23 | 4.5                   | 9.5                              |
|                        |                         | Overall                 | Intersection                 | Α   | 0.37 | 5.9                   |                                  |
|                        |                         | NB                      | Left                         | В   | 0.20 | 11.9                  | 6.0                              |
| Bank St &              | Minor Stop              | 140                     | Through                      | Α   |      | 2                     |                                  |
| Wilton Cr              | Willion Gtop            | EB                      | Right                        | D   | 0.62 | 33.5                  | 41.9                             |
|                        |                         | Overall                 | Intersection                 | Α   | 0.62 | 6.0                   |                                  |
| Bank St &              | Minor Stop              | EB                      | Right                        | В   | 0.08 | 14.9                  | 3.6                              |
| Echo Dr                |                         | Overall                 | Intersection                 | Α   | 0.08 | 0.4                   |                                  |
|                        |                         | EB                      | Left / Right                 | С   | 0.23 | 30.2                  | 16.7                             |
| Bank St & Signali      | Signalized              | NB                      | Left /<br>Through            | А   | 0.39 | 5.8                   | 28.1                             |
| Aylmer Ave             | _                       | SB                      | Through /<br>Right           | A   | 0.42 | 7.4                   | 41.0                             |
|                        |                         | Overall                 | Intersection                 | Α   | 0.42 | 7.4                   |                                  |

| Intersection               | Intersection<br>Control |         | oroach /<br>vement           | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|----------------------------|-------------------------|---------|------------------------------|-----|------|-----------------------|----------------------------------|
|                            |                         | EB      | Left /<br>Through /<br>Right | D   | 0.59 | 43.8                  | 40.4                             |
| Bank St &                  |                         | WB      | Left /<br>Through /<br>Right | С   | 0.63 | 31.3                  | 42.9                             |
| Sunnyside<br>Ave           | Signalized              | NB      | Left /<br>Through /<br>Right | С   | 0.55 | 22.1                  | 55.8                             |
|                            |                         | SB      | Left /<br>Through /<br>Right | А   | 0.53 | 4.6                   | 9.7                              |
|                            |                         | Overall | Intersection                 | В   | 0.63 | 17.1                  |                                  |
|                            |                         | NB      | Left                         | Α   | 0.07 | 8.4                   | 1.6                              |
| QED &<br>Princess          | Minor Stop              | IND     | Through                      | Α   |      | 0                     |                                  |
| Patricia Way               | Millor Stop             | EB      | Left / Right                 | С   | 0.36 | 17.6                  | 11.9                             |
|                            |                         | Overall | Intersection                 | Α   | 0.36 | 3.8                   |                                  |
|                            |                         | EB      | Left / Right                 | С   | 0.38 | 32.7                  | 29.7                             |
| QED &                      | Signalized              | NB      | Left /<br>Through            | В   | 0.45 | 14.6                  | 49.9                             |
| Fifth Ave                  | Oignaii20a              | SB      | Through /<br>Right           | В   | 0.53 | 15.9                  | 69.1                             |
|                            |                         | Overall | Intersection                 | В   | 0.53 | 17.5                  |                                  |
| D = = 1 Ot 0               |                         | WB      | Right                        | В   | 0.14 | 12.4                  | 3.0                              |
| Bank St &<br>Marche Way    | Minor Stop              | SB      | Left                         | Α   | 0.00 | 9.3                   | 0                                |
| ·                          |                         | Overall | Intersection                 | Α   | 0.14 | 0.9                   |                                  |
|                            |                         | EB      | Left /<br>Through            | Α   | 0.18 | 8.4                   |                                  |
|                            |                         | WB      | Right                        | Α   | 0.13 | 8.4                   |                                  |
| Fifth Ave &<br>O'Connor St | All-Way Stop            | NB      | Left /<br>Through /<br>Right | Α   | 0.12 | 7.6                   |                                  |
|                            |                         | SB      | Right                        | Α   | 0.13 | 7.5                   |                                  |
|                            |                         | Overall | Intersection                 | Α   | 0.18 | 8                     |                                  |

Table 4.14: 2028 Future Weekend Saturday Peak Hour (Internal Lansdowne Intersections)

| Intersection             | Intersection<br>Control |    | roach /<br>vement  | LOS | V/C        | Total<br>Delay (s) | Queue<br>95th<br>(m) |
|--------------------------|-------------------------|----|--------------------|-----|------------|--------------------|----------------------|
| Exhibition               |                         | EB | Left /<br>Through  | А   | 0.27       | 8.6                |                      |
| Way                      | All-Way                 | WB | Through /<br>Right | А   | A 0.27 8.6 |                    |                      |
| Service<br>Roadway       | Stop                    | SB | Left /<br>Right    | А   | 0.01       | 7.6                |                      |
| Noadway                  |                         |    | verall<br>section  | Α   | 0.27       | 8.4                |                      |
|                          |                         | EB | Left /<br>Through  | Α   | 0.01       | 7                  |                      |
| Marché Way<br>and        | All-Way                 | WB | Left /<br>Through  | Α   | 0.02       | 7                  |                      |
| Service<br>Roadway       | Stop                    | NB | Left /<br>Right    | Α   | 0.1        | 7.4                |                      |
|                          | Todaway                 |    | verall<br>section  | Α   |            | 7.3                |                      |
|                          |                         | EB | Through /<br>Right | Α   | 0.31       | 9.2                |                      |
| Marché Way<br>and        | All-Way                 | WB | Left /<br>Through  | Α   | 0.03       | 7.7                |                      |
| Exhibition<br>Way        | Stop                    | NB | Left /<br>Right    | Α   | 0.14       | 8.6                |                      |
|                          |                         | _  | verall<br>section  | Α   |            | 9                  |                      |
|                          |                         | EB | Left               | Α   | 0.08       | 7.9                | 1.9                  |
| Garage<br>Access at      | Two-Way                 |    | Through            | А   |            | 0                  |                      |
| Princess<br>Patricia Way | Stop                    | SB | Left /<br>Right    | В   | 0.34       | 13.4               | 11.2                 |
|                          |                         |    | verall<br>section  | Α   | 0.34       | 6.2                |                      |

As illustrated in the tables above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2028 Future Weekend Saturday peak hour conditions.

Table 4.15: 2028 Future Weekend Sunday Peak Hour (Study Area Intersections)

| Intersection            | Intersection<br>Control | -      | pproach /<br>ovement      | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|-------------------------|-------------------------|--------|---------------------------|-----|------|-----------------------|----------------------------------|
|                         |                         | EB     | Left / Through<br>/ Right | С   | 0.38 | 22.6                  | 26.8                             |
|                         |                         |        | Left                      | С   | 0.48 | 29.3                  | 33.0                             |
| Bank St &               | Signalized              | WB     | Through /<br>Right        | В   | 027  | 16.6                  | 20.2                             |
| Fifth Ave               | Oignaii200              | NB     | Left / Through<br>/ Right | В   | 0.36 | 10.4                  | 48.2                             |
|                         |                         | SB     | Left / Through<br>/ Right | Α   | 0.38 | 9.0                   | 30.9                             |
|                         |                         | Overal | I Intersection            | В   | 0.48 | 13.0                  |                                  |
|                         |                         | EB     | Left / Through<br>/ Right | D   | 0.55 | 38.5                  | 26.9                             |
| Bank St &<br>Holmwood   | Signalized              | NB     | Left / Through<br>/ Right | Α   | 0.36 | 2.4                   | 11.1                             |
| Ave                     |                         | SB     | Left / Through<br>/ Right | Α   | 0.31 | 9.3                   | 44.5                             |
|                         |                         | Overal | I Intersection            | Α   | 0.55 | 8.2                   |                                  |
|                         |                         | WB     | Left                      | D   | 0.55 | 37.9                  | 28.9                             |
|                         |                         | ***    | Right                     | В   | 0.27 | 11.0                  | 8.5                              |
| Bank St &<br>Exhibition | Signalized              | NB     | Left / Through<br>/ Right | В   | 0.36 | 11.5                  | 38.1                             |
| Way                     |                         | SB     | Left                      | Α   | 0.38 | 8.4                   | 11.1                             |
|                         |                         | 35     | Through                   | Α   | 0.22 | 4.2                   | 12.3                             |
|                         |                         | Overal | l Intersection            | В   | 0.55 | 10.8                  |                                  |
|                         |                         | NB     | Left/Through              | В   | 0.18 | 11.7                  | 5.4                              |
| Bank St &<br>Wilton Cr  | Minor Stop              | EB     | Right                     | D   | 0.52 | 27.5                  | 32.4                             |
|                         |                         | Overal | I Intersection            | Α   | 0.52 | 4.8                   |                                  |
| Bank St &               | Minor Ston              | EB     | Right                     | С   | 0.23 | 18.6                  | 8.3                              |
| Echo Dr                 | Minor Stop              | Overal | I Intersection            | Α   | 0.23 | 1                     |                                  |
|                         |                         | EB     | Left / Right              | D   | 0.43 | 36.0                  | 23.1                             |
| Bank St &               |                         | NB     | Left / Through            | Α   | 0.29 | 2.6                   | 15.0                             |
| Aylmer Ave              | Signalized              | SB     | Through /<br>Right        | Α   | 0.32 | 3.6                   | 28.4                             |
|                         |                         | Overal | I Intersection            | Α   | 0.43 | 4.9                   |                                  |
|                         |                         | EB     | Left / Through<br>/ Right | Е   | 0.77 | 65.0                  | 34.8                             |
| Bank St &               |                         | WB     | Left / Through<br>/ Right | С   | 0.71 | 34.0                  | 36.5                             |
| Sunnyside<br>Ave        | Signalized              | NB     | Left / Through<br>/ Right | В   | 0.39 | 17.0                  | 48.7                             |
|                         |                         | SB     | Left / Through<br>/ Right | Α   | 0.51 | 5.2                   | 11.8                             |
|                         |                         | Overal | I Intersection            | В   | 0.77 | 16.8                  |                                  |

| Intersection               | Intersection<br>Control |                                                | pproach /<br>ovement      | LOS | V/C   | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|----------------------------|-------------------------|------------------------------------------------|---------------------------|-----|-------|-----------------------|----------------------------------|
| QED &                      |                         | NB                                             | Left / Through            | Α   | 0.06  | 7.7                   | 3.3                              |
| Princess                   | Minor Stop              | EB                                             | Left / Right              | В   | 0.39  | 13.3                  | 13.3                             |
| Patricia Way               |                         | Overal                                         | Intersection              | Α   | 0.39  | 6.4                   |                                  |
|                            |                         | EB                                             | Left / Right              | С   | 0.59  | 29.9                  | 35.1                             |
| QED &                      |                         | NB                                             | Left / Through            | Α   | 0.38  | 9.3                   | 30.5                             |
| Fifth Ave                  | Signalized              | SB                                             | Through /<br>Right        | Α   | 0.06  | 6.4                   | 6.8                              |
|                            |                         | Overal                                         | I Intersection            | Α   | 0.59  | 16.6                  |                                  |
| Bank St &                  | Minor Ston              | WB                                             | Left / Right              | С   | 0.33  | 15.1                  | 9.3                              |
| Marche Way                 | Minor Stop              | Overal                                         | Intersection              | Α   | 0.33  | 2                     |                                  |
|                            |                         | EB                                             | Left / Through            | Α   | 0.244 | 10                    |                                  |
|                            |                         | WB                                             | Right                     | Α   | 0.315 | 0.6                   |                                  |
| Fifth Ave &<br>O'Connor St | All-Way Stop            | NB                                             | Left / Through<br>/ Right | В   | 0.351 | 10.7                  |                                  |
|                            |                         | SB                                             | Right                     | Α   | 0.15  | 8.6                   |                                  |
|                            |                         | P EB Overall WB Overall WB Overall WB SB SB SB | Intersection              | Α   |       | 9.9                   |                                  |

Table 4.16: 2028 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections)

| Intersection       | Intersection<br>Control |           | roach /<br>vement  | LOS | V/C  | Total<br>Delay (s)                                                   | Queue<br>95th<br>(m) |
|--------------------|-------------------------|-----------|--------------------|-----|------|----------------------------------------------------------------------|----------------------|
| Exhibition         |                         | EB        | Left /<br>Through  | Α   | 0.32 | 9.1                                                                  |                      |
| Way<br>and         | All-Way<br>Stop         | WB        | Through /<br>Right | А   | 0.22 | 8.4                                                                  |                      |
| Service<br>Roadway | Сюр                     | SB        | Left / Right       | Α   | 0.01 | 7.8                                                                  |                      |
| Noauway            |                         | Overall I | ntersection        | Α   | 0.32 | 8.8                                                                  |                      |
| Marché Way         |                         | EB        | Left /<br>Through  | Α   | 0.01 | 7.2                                                                  |                      |
| and<br>Service     | All-Way<br>Stop         | WB        | Left /<br>Through  | А   | 0.02 | 7.1                                                                  |                      |
| Roadway            | Оюр                     | NB        | Left / Right       | Α   | 0.21 | 8                                                                    |                      |
|                    |                         | Overall I | ntersection        | Α   | 0.21 | 7.9                                                                  |                      |
| Marché Way         |                         | EB        | Through /<br>Right | А   | 0.4  | 9.6                                                                  |                      |
| and Exhibition     | All-Way<br>Stop         | WB        | Left /<br>Through  | Α   | 0.03 | 7.8                                                                  |                      |
| Way                |                         | NB        | Left / Right       | Α   | 0.1  | 8.4                                                                  |                      |
|                    |                         | Overall I | ntersection        | Α   | 0.40 | Delay (s)  2 9.1  2 8.4  7.8  8.8  7.2  7.1  8 8  7.9  9.6  7.8  8.4 |                      |

| Intersection              | Intersection<br>Control |                      | roach /<br>rement | LOS | V/C  | Total<br>Delay (s) | Queue<br>95th<br>(m) |
|---------------------------|-------------------------|----------------------|-------------------|-----|------|--------------------|----------------------|
|                           |                         | EB                   | Left              | Α   | 0.09 | 7.9                | 2.2                  |
| Garage Access at Princess | Two-Way                 |                      | Through           | Α   |      | 0                  | 2.2                  |
| Patricia Way              | Stop                    | SB                   | Left / Right      | С   | 0.5  | 16.9               | 20.7                 |
|                           | '                       | Overall Intersection |                   |     | 0.5  | 8.9                |                      |

As illustrated in the tables above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2028 Future Weekend Sunday peak hour conditions.

Table 4.17: 2028 Future Minor Event Peak Hour (Study Area Intersections)

| Intersection          | Intersection | -      | oproach /                    | LC      | os     | V/      | c      | To<br>Dela |        | Queue<br>95th (m) |        |
|-----------------------|--------------|--------|------------------------------|---------|--------|---------|--------|------------|--------|-------------------|--------|
|                       | Control      | IVI    | ovement                      | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress           | Egress |
|                       |              | EB     | Left /<br>Through /<br>Right | С       | В      | 0.45    | 0.25   | 24.4       | 17.5   | 32.8              | 16.9   |
|                       |              |        | Left                         | С       | С      | 0.30    | 0.22   | 25.1       | 23.6   | 20.5              | 16.6   |
| Bank St &             |              | WB     | Through /<br>Right           | В       | В      | 0.28    | 0.16   | 12.7       | 12.7   | 17.4              | 11.6   |
| Fifth Ave             | Signalized   | NB     | Left /<br>Through /<br>Right | В       | В      | 0.37    | 0.31   | 13.5       | 11.4   | 53.4              | 39.7   |
|                       |              | SB     | Left /<br>Through /<br>Right | А       | А      | 0.41    | 0.27   | 9.5        | 8.2    | 35.1              | 21.5   |
|                       |              | Overal | I Intersection               | В       | В      | 0.45    | 0.31   | 13.5       | 11.4   |                   |        |
|                       |              | EB     | Left /<br>Through /<br>Right | D       | D      | 0.56    | 0.48   | 38.5       | 38.1   | 28.3              | 22.9   |
| Bank St &<br>Holmwood | Signalized   | NB     | Left /<br>Through /<br>Right | А       | А      | 0.38    | 0.29   | 3.0        | 3.8    | 13.0              | 22.0   |
| Ave                   |              | SB     | Left /<br>Through /<br>Right | А       | А      | 0.33    | 0.21   | 3.6        | 2.6    | 9.7               | 7.0    |
|                       |              | Overal | I Intersection               | Α       | Α      | 0.56    | 0.48   | 6.1        | 6.1    |                   |        |

| Intersection          | Intersection |                      | oproach /                    | LC      | os     | V/      | C      | To<br>Dela |        | Que<br>95th |        |
|-----------------------|--------------|----------------------|------------------------------|---------|--------|---------|--------|------------|--------|-------------|--------|
|                       | Control      | М                    | ovement                      | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress |
|                       |              | WB                   | Left                         | D       | D      | 0.48    | 0.63   | 35.1       | 36.7   | 28.2        | 40.2   |
|                       |              | VVB                  | Right                        | В       | Α      | 0.33    | 0.56   | 10.9       | 9.8    | 10.3        | 15.5   |
| Bank St & Exhibition  | Signalized   | NB                   | Left /<br>Through /<br>Right | А       | А      | 0.33    | 0.18   | 5.0        | 4.8    | 27.1        | 12.5   |
| Way                   |              | SB                   | Left                         | А       | А      | 0.38    | 0.26   | 6.5        | 5.8    | 8.1         | 8.7    |
|                       |              | 36                   | Through                      | А       | Α      | 0.21    | 0.15   | 3.0        | 4.1    | 8.7         | 7.7    |
|                       |              | Overal               | I Intersection               | Α       | В      | 0.48    | 0.63   | 7.2        | 11.0   |             |        |
|                       |              | EB                   | Right                        | F       | С      | 0.89    | 0.33   | 62.1       | 19.4   | 93.9        | 13.3   |
| Bank St &             | Minor Stop   | NB                   | Left                         | В       | В      | 0.23    | 0.07   | 12         | 10.4   | 7.4         | 1.8    |
| Wilton Cr             | William Grop | 113                  | Through                      | Α       | А      |         |        | 2.5        | 0.6    | 7.4         | 1.8    |
|                       |              | Overal               | I Intersection               | С       | Α      | 0.89    | 0.33   | 12.7       | 3.2    |             |        |
| Bank St &             | Minan Ctan   | EB                   | Right                        | С       | В      | 0.11    | 0.01   | 16.3       | 10.4   | 5.4         | 0.7    |
| Echo Dr               | Minor Stop   | Overal               | I Intersection               | Α       | Α      | 0.11    | 0.01   | 0.4        | 0.2    |             |        |
|                       |              | EB                   | Left / Right                 | D       | С      | 0.36    | 0.03   | 36.7       | 27.2   | 26.6        | 4.4    |
| Bank St &             | Signalized   | NB                   | Left /<br>Through            | А       | А      | 0.40    | 0.09   | 5.0        | 4.0    | 20.7        | 5.0    |
| Aylmer Ave            | Signalized   | SB                   | Through /<br>Right           | А       | А      | 0.34    | 0.11   | 6.5        | 5.3    | 29.5        | 9.7    |
|                       |              | Overal               | I Intersection               | Α       | Α      | 0.40    | 0.11   | 7.5        | 5.1    |             |        |
|                       |              | EB                   | Left /<br>Through /<br>Right | E       | С      | 0.78    | 0.26   | 62.2       | 32.8   | #58.0       | 20.1   |
| Bank St &             |              | WB                   | Left /<br>Through /<br>Right | D       | В      | 0.81    | 0.20   | 40.2       | 16.3   | #67.2       | 12.4   |
| Sunnyside<br>Ave      | Signalized   | NB                   | Left /<br>Through /<br>Right | С       | В      | 0.49    | 0.24   | 21.2       | 17.8   | 51.4        | 25.1   |
|                       |              | SB                   | Left /<br>Through /<br>Right | А       | А      | 0.59    | 0.33   | 7.5        | 7.1    | 18.1        | 19.4   |
|                       |              | Overal               | I Intersection               | С       | В      | 0.81    | 0.33   | 21.4       | 12.5   |             |        |
| QED &                 |              | NB                   | Left /<br>Through            | А       | А      | 0.14    | 0.01   | 9.5        | 7.7    | 4.6         | 2.2    |
| Princess Patricia Way | Minor Stop   | EB                   | Left / Right                 | D       | С      | 0.51    | 0.65   | 29.3       | 17.9   | 29.8        | 37.1   |
| I diliola vvay        |              | Overall Intersection |                              | Α       | В      | 0.51    | 0.65   | 4.8        | 11.8   |             |        |
|                       |              | EB                   | Left / Right                 | С       | С      | 0.41    | 0.35   | 33.4       | 31.8   | 31.3        | 27.5   |
| Queen<br>Elizabeth Dr | Signalized   | NB                   | Left /<br>Through            | С       | В      | 0.67    | 0.45   | 23.0       | 14.6   | 65.8        | 53.2   |
| &<br>Fifth Ave        | Oignalized   | SB                   | Through /<br>Right           | С       | В      | 0.82    | 0.25   | 26.1       | 11.8   | #148.1      | 28.9   |
|                       |              | Overal               | Overall Intersection         |         | В      | 0.82    | 0.45   | 26.0       | 16.3   |             |        |

| Intersection            | Intersection Control |        | Approach /<br>Movement       |         | os     | V/C     |        | Total<br>Delay (s) |        | Queue<br>95th (m) |        |
|-------------------------|----------------------|--------|------------------------------|---------|--------|---------|--------|--------------------|--------|-------------------|--------|
|                         | Control              | IVI    | ovement                      | Ingress | Egress | Ingress | Egress | Ingress            | Egress | Ingress           | Egress |
|                         |                      | WB     | Left / Right                 | В       | В      | 0.11    | 0.28   | 13                 | 14     | 3.0               | 9.9    |
| Bank St &<br>Marche Way | Minor Stop           | SB     | Through                      | А       |        | 0.00    |        | 9.4                |        |                   |        |
|                         |                      | Overal | I Intersection               | Α       | Α      | 0.11    | 0.28   | 0.6                | 2.2    |                   |        |
|                         |                      | EB     | Left /<br>Through            | А       | А      | 0.16    | 0.07   | 8.7                | 7.7    |                   |        |
|                         |                      | WB     | Right                        | А       | Α      | 0.17    | 0.07   | 7.9                | 7.1    |                   |        |
| Fifth Ave & O'Connor St | All-Way<br>Stop      | NB     | Left /<br>Through /<br>Right | А       | А      | 0.19    | 0.08   | 8.7                | 7.3    |                   |        |
|                         |                      | SB     | Right                        | Α       | Α      | 0.10    | 0.11   | 7.7                | 7.1    |                   |        |
|                         |                      | Overal | I Intersection               | Α       | Α      | 0.19    | 0.11   | 8.3                | 7.3    |                   |        |

Table 4.18: 2028 Future Minor Event Peak Hour (Internal Lansdowne Intersections)

| Intersection              | Intersection<br>Control |     | .pproach/<br>lovement | LC      | os     | V/      | С      | To<br>Dela |        | Que<br>95th | eue<br>(m) |
|---------------------------|-------------------------|-----|-----------------------|---------|--------|---------|--------|------------|--------|-------------|------------|
|                           | Control                 | , N | iovement              | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress     |
| Exhibition                |                         | EB  | Left /<br>Through     | В       | А      | 0.42    | 0.27   | 10.1       | 9      |             |            |
| Way                       | All-Way                 | WB  | Through /<br>Right    | Α       | В      | 0.25    | 0.48   | 8.7        | 10.9   |             |            |
| Service<br>Roadway        | Stop                    | SB  | Left /<br>Right       | Α       | Α      | 0.01    | 0.01   | 8          | 8.2    |             |            |
| Roddway                   |                         |     | Overall<br>ersection  | A       | В      | 0.42    | 0.48   | 9.6        | 10.2   | 1           |            |
|                           |                         | EB  | Left /<br>Through     | А       | А      | 0.02    | 0.03   | 7          | 7.2    |             |            |
| Marché<br>Way and         | All-Way                 | WB  | Left /<br>Through     | Α       | А      | 0.06    | 0.18   | 7.3        | 7.9    | -           |            |
| Service<br>Roadway        | Stop                    | NB  | Left /<br>Right       | А       | А      | 0.01    | 0.01   | 7          | 7.2    |             |            |
|                           |                         |     | Overall<br>ersection  | A       | A      | 0.06    | 0.18   | 7.2        | 7.8    |             |            |
|                           |                         | EB  | Through /<br>Right    | Α       | А      | 0.03    | 0.04   | 8.3        | 7.9    |             |            |
| Marché<br>Way and         | All-Way                 | WB  | Left /<br>Through     | Α       | А      | 0.26    | 0.12   | 10         | 8.6    |             |            |
| Exhibition<br>Way         | Stop                    | NB  | Left /<br>Right       | В       | Α      | 0.53    | 0.37   | 12.6       | 9.8    |             |            |
|                           |                         |     | Overall<br>ersection  | В       | A      | 0.53    | 0.37   | 11.7       | 9.4    |             |            |
| Carago                    |                         | EB  | Left                  | Α       | А      | 0.09    | 0.00   | 8.6        | 7.4    | 2.5         | 0          |
| Garage Access at Princess | Two-Way                 |     | Through               | Α       | Α      |         |        | 0          | 0      | 2.5         |            |
| Patricia<br>Way           | Stop                    | SB  | Left /<br>Right       | С       | С      | 0.33    | 0.58   | 16.3       | 15.3   | 11.3        | 29.5       |
|                           |                         |     | Overall<br>ersection  | Α       | В      | 0.33    | 0.58   | 4.8        | 11.3   |             |            |

As illustrated above, all study area intersections are projected to operate acceptably under Future 2028 operating conditions with overall acceptable levels of service during Minor Events held at the Arena at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is expected to operate with a LOS F. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street. No mitigation measures are recommended to improve intersection operations.

#### 4.8.3 2033 Total Future Conditions

### **Intersection Capacity Analysis**

Intersection operational analysis under Future 2033 Full Build-Out Conditions are summarized in this section.

Detailed Synchro level of service analysis results can be found in Appendix D.

Table 4.19: 2033 Future Weekday AM and PM Peak Hour

| Intersection          | Intersection |     | proach/                      | LC | os | V/   | С    |      | otal<br>ay (s) |      | eue<br>ı (m) |
|-----------------------|--------------|-----|------------------------------|----|----|------|------|------|----------------|------|--------------|
|                       | Control      | Mc  | vement                       | AM | РМ | AM   | PM   | AM   | PM             | AM   | РМ           |
|                       |              | EB  | Left /<br>Through /<br>Right | D  | С  | 0.63 | 0.45 | 36.4 | 22.8           | 30.4 | 32.7         |
|                       |              |     | Left                         | С  | С  | 0.35 | 0.25 | 31.8 | 24.3           | 15.6 | 17.5         |
| Bank St &             |              | WB  | Through /<br>Right           | С  | В  | 0.38 | 0.21 | 20.1 | 13.7           | 18.1 | 14.7         |
| Fifth Ave             | Signalized   | NB  | Left /<br>Through /<br>Right | А  | В  | 0.36 | 0.37 | 1.6  | 15.1           | 5.1  | 53.9         |
|                       |              | SB  | Left /<br>Through /<br>Right | А  | В  | 0.30 | 0.48 | 5.6  | 10.3           | 26.0 | 42.4         |
|                       |              |     | Overall<br>ersection         | A  | В  | 0.63 | 0.48 | 8.4  | 14.0           | -    |              |
|                       |              | EB  | Left /<br>Through /<br>Right | D  | D  | 0.48 | 0.56 | 37.7 | 38.8           | 23.5 | 27.8         |
| Bank St &<br>Holmwood | Signalized   | NB  | Left /<br>Through /<br>Right | Α  | Α  | 0.33 | 0.35 | 1.9  | 2.1            | 6.6  | 10.4         |
| Ave                   |              | SB  | Left /<br>Through /<br>Right | А  | А  | 0.23 | 0.37 | 3.2  | 3.4            | 15.1 | 16.1         |
|                       |              |     | Overall<br>ersection         | Α  | Α  | 0.48 | 0.56 | 4.9  | 5.5            |      |              |
|                       |              | WB  | Left                         | С  | D  | 0.43 | 0.57 | 34.6 | 36.1           | 25.4 | 34.7         |
|                       |              | VVD | Right                        | В  | Α  | 0.27 | 0.31 | 11.5 | 9.7            | 8.9  | 9.7          |
| Bank St & Exhibition  | Signalized   | NB  | Left /<br>Through /<br>Right | В  | А  | 0.42 | 0.40 | 11.3 | 6.8            | 48.8 | 34.8         |
| Way                   | -            | 0.0 | Left                         | В  | Α  | 0.19 | 0.43 | 10.5 | 8.0            | 14.2 | 9.5          |
|                       |              | SB  | Through                      | Α  | Α  | 0.17 | 0.28 | 7.5  | 3.9            | 24.5 | 11.4         |
|                       |              |     | Overall<br>ersection         | В  | A  | 0.43 | 0.57 | 11.9 | 8.8            |      |              |
|                       |              | NB  | Left                         | В  | С  | 0.22 | 0.41 | 11.3 | 15.1           | 6.7  | 16.9         |
| Bank St &             |              | IND | Through                      | Α  | Α  |      |      | 2.2  | 4.3            | 6.7  | 16.9         |
| Wilton Cr             | Minor Stop   | EB  | Right                        | D  | F  | 0.58 | 0.95 | 26.7 | 82.1           | 32.7 | 101          |
|                       |              |     | Overall<br>ersection         | D  | D  | 0.58 | 0.95 | 5.7  | 15.1           |      |              |

| Intersection          | Intersection | _  | proach/                      | LC | os | V/     | C    |      | otal<br>ay (s) |                                                                                                      |        |
|-----------------------|--------------|----|------------------------------|----|----|--------|------|------|----------------|------------------------------------------------------------------------------------------------------|--------|
|                       | Control      | Mc | vement                       | AM | PM | AM     | PM   | AM   | РМ             | AM                                                                                                   | PM     |
| Bank St &             |              | EB | Right                        | В  | С  | 0.07   | 0.11 | 13.5 | 20.9           | 2.4                                                                                                  | 3.5    |
| Echo Dr               | Minor Stop   |    | Overall<br>ersection         | Α  | Α  | 0.07   | 0.11 | 0.3  | 0.3            | 2.4 22.1 M17.3 32.6 37.4 #76.1 #87.9 1.7 5.7 21.1 26.1                                               |        |
|                       |              | EB | Left /<br>Right              | С  | С  | 0.30   | 0.38 | 29.7 | 31.6           | 95th AM 2.4 3 22.1 M17.3 32.6 2 37.4 2 #76.1 0 91.0 0 #87.9 1 1.7 3 5.7 7 21.1 7 26.1 5 34.5 4 1 2.1 | 24.5   |
| Bank St &             | Signalized   | NB | Left /<br>Through            | Α  | Α  | 0.46   | 0.44 | 4.1  | 4.7            | M17.3                                                                                                | m17.4  |
| Aylmer Ave            | Signalized   | SB | Through /<br>Right           | А  | А  | 0.37   | 0.50 | 7.6  | 8.2            | 32.6                                                                                                 | 51.0   |
|                       |              |    | Overall<br>ersection         | A  | A  | 0.46   | 0.50 | 6.9  | 7.8            |                                                                                                      |        |
|                       |              | EB | Left /<br>Through /<br>Right | D  | F  | 0.65   | 1.23 | 38.3 | 184.2          | 37.4                                                                                                 | #79.2  |
| Bank St &             |              | WB | Left /<br>Through /<br>Right | С  | F  | 0.88   | 1.14 | 33.7 | 116.2          | #76.1                                                                                                | #116.6 |
| Sunnyside<br>Ave      | Signalized   | NB | Left /<br>Through /<br>Right | В  | С  | 0.69   | 0.48 | 15.4 | 21.0           | 91.0                                                                                                 | 50.2   |
|                       |              | SB | Left /<br>Through /<br>Right | С  | С  | 1.20dl | 0.95 | 21.4 | 27.0           | #87.9                                                                                                | #117.3 |
|                       |              |    | Overall<br>ersection         | С  | D  | 0.88   | 1.23 | 21.6 | 53.0           |                                                                                                      |        |
| QED &                 |              | NB | Left /<br>Through            | Α  | Α  | 0.07   | 0.07 | 8.3  | 9.1            | 1.7                                                                                                  | 1.8    |
| Princess Patricia Way | Minor Stop   | EB | Left /<br>Right              | С  | С  | 0.21   | 0.43 | 15   | 24.3           | 5.7                                                                                                  | 16.2   |
|                       |              |    | Overall<br>ersection         | A  | A  | 0.21   | 0.43 | 2.4  | 3.5            |                                                                                                      |        |
|                       |              | EB | Left /<br>Right              | С  | С  | 0.35   | 0.28 | 30.8 | 30.7           | 21.1                                                                                                 | 23.1   |
| Queen<br>Elizabeth Dr | Signalized   | NB | Left /<br>Through            | Α  | В  | 0.26   | 0.43 | 5.2  | 14.7           | 26.1                                                                                                 | 42.4   |
| &<br>Fifth Ave        | Olgridii2ed  | SB | Through /<br>Right           | Α  | С  | 0.32   | 0.79 | 5.7  | 24.5           | 34.5                                                                                                 | #129.4 |
|                       |              |    | Overall<br>ersection         | A  | A  | 0.32   | 0.79 | 2.4  | 22.4           |                                                                                                      |        |
| Bank St &             | Minor Stop   | WB | Left /<br>Right              | В  | В  | 0.12   | 0.19 | 13.5 | 14.1           | 2.1                                                                                                  | 5.4    |
| Marche Way            |              |    | Overall<br>ersection         | Α  | Α  | 0.12   | 0.19 | 0.7  | 1              |                                                                                                      |        |
|                       |              | EB | Left /<br>Through            | А  | Α  | 0.16   | 0.17 | 8.5  | 8.6            |                                                                                                      |        |
| Fifth Ave &           | All-Way      | WB | Right                        | Α  | Α  | 0.09   | 0.13 | 7.4  | 7.6            |                                                                                                      |        |
| O'Connor St           | Stop         | NB | Left /<br>Through /<br>Right | А  | А  | 0.13   | 0.15 | 8    | 8.3            |                                                                                                      |        |
|                       |              | SB | Right                        | Α  | Α  | 0.13   | 0.12 | 7.5  | 7.6            |                                                                                                      |        |

| Intersection | Intersection | Approach/<br>Movement   | LOS |    | V/C  |      | Total<br>Delay (s) |    | Queue<br>95th (m) |    |
|--------------|--------------|-------------------------|-----|----|------|------|--------------------|----|-------------------|----|
|              | Control      |                         | AM  | PM | AM   | PM   | AM                 | PM | AM                | PM |
|              |              | Overall<br>Intersection | Α   | Α  | 0.16 | 0.17 | 7.9                | 8  |                   |    |

As illustrated above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2033 Future Weekday AM and PM peak hour conditions.

The intersection of Bank Street and Sunnyside Avenue is projected to continue to operate with specific movements at or close to theoretical capacity in the southbound approach (AM Peak) and westbound approach (PM Peak).

In addition, the eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays during the PM peak hour. The delays are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

No mitigation measure are recommended to improve intersection operations.

Table 4.20: 2033 Future Weekend Saturday Peak Hour (Study Area Intersections)

| Intersection          | Intersection<br>Control | Appro<br>Move | oach /<br>ment               | Los | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|-----------------------|-------------------------|---------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                       |                         | EB            | Left /<br>Through /<br>Right | С   | 0.40 | 20.9                  | 28.0                             |
|                       |                         |               | Left                         | С   | 0.27 | 24.6                  | 19.2                             |
| Bank St &             |                         | WB            | Through /<br>Right           | В   | 0.27 | 12.8                  | 17.0                             |
| Fifth Ave             | Signalized              | NB            | Left /<br>Through /<br>Right | В   | 0.39 | 14.3                  | 56.9                             |
|                       |                         | SB            | Left /<br>Through /<br>Right | А   | 0.43 | 9.6                   | 36.6                             |
|                       |                         | Overall In    | tersection                   | В   | 0.43 | 13.3                  |                                  |
|                       |                         | EB            | Left /<br>Through /<br>Right | D   | 0.56 | 38.9                  | 27.7                             |
| Bank St &<br>Holmwood | Signalized              | NB            | Left /<br>Through /<br>Right | А   | 0.34 | 2.3                   | 11.2                             |
| Ave                   |                         | SB            | Left /<br>Through /<br>Right | А   | 0.36 | 3.9                   | 28.4                             |
|                       |                         | Overall In    | tersection                   | Α   | 0.56 | 5.8                   |                                  |

| Intersection             | Intersection<br>Control |            | oach /<br>ment               | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|--------------------------|-------------------------|------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                          |                         | MD         | Left                         | D   | 0.50 | 35.3                  | 29.7                             |
|                          |                         | WB         | Right                        | В   | 0.36 | 10.6                  | 11.0                             |
| Bank St & Exhibition     | Signalized              | NB         | Left /<br>Through /<br>Right | А   | 0.34 | 5.4                   | 29.8                             |
| Way                      |                         | SB         | Left                         | Α   | 0.40 | 7.0                   | 9.9                              |
|                          |                         | 35         | Through                      | Α   | 0.24 | 3.1                   | 9.9                              |
|                          |                         | Overall In | tersection                   | Α   | 0.50 | 7.4                   |                                  |
|                          |                         | NB         | Left                         | В   | 0.19 | 12.3                  | 6.5                              |
| Bank St &                | Minor Stop              | IND        | Through                      | Α   |      | 2.3                   | 6.5                              |
| Wilton Cr                | Millor Stop             | EB         | Right                        | Е   | 0.68 | 39                    | 64.1                             |
|                          |                         | Overall In | tersection                   | Α   | 0.68 | 6.7                   |                                  |
| Bank St &                | Minor Ston              | EB         | Right                        | С   | 0.10 | 15.6                  | 4.0                              |
| Echo Dr                  | Minor Stop              | Overall In | tersection                   | Α   | 0.10 | 0.4                   |                                  |
|                          |                         | EB         | Left /<br>Right              | С   | 0.24 | 30.0                  | 17.3                             |
| Bank St &                | Signalized              | NB         | Left /<br>Through            | Α   | 0.42 | 6.6                   | 35.6                             |
| Aylmer Ave               | -                       | SB         | Through /<br>Right           | А   | 0.45 | 7.7                   | 44.2                             |
|                          |                         | Overall In | tersection                   | Α   | 0.45 | 7.9                   |                                  |
|                          |                         | EB         | Left /<br>Through /<br>Right | D   | 0.61 | 45.0                  | #43.8                            |
| Bank St &                |                         | WB         | Left /<br>Through /<br>Right | С   | 0.64 | 32.0                  | #44.2                            |
| Sunnyside<br>Ave         | Signalized              | NB         | Left /<br>Through /<br>Right | С   | 0.59 | 23.1                  | 61.7                             |
|                          |                         | SB         | Left /<br>Through /<br>Right | А   | 0.57 | 4.9                   | 10.3                             |
|                          |                         | Overall In | tersection                   | В   | 0.64 | 17.7                  |                                  |
| QED &                    |                         | NB         | Left /<br>Through            | А   | 0.07 | 8.4                   | 1.7                              |
| Princess<br>Patricia Way | Minor Stop              | EB         | Left /<br>Right              | С   | 0.37 | 17.8                  | 12.3                             |
|                          |                         | Overall In | tersection                   | Α   | 0.38 | 3.9                   |                                  |
|                          |                         | EB         | Left /<br>Right              | С   | 0.35 | 31.9                  | 27.5                             |
| QED &<br>Fifth Ave       | Signalized              | NB         | Left /<br>Through            | В   | 0.43 | 14.4                  | 49.4                             |
| I IIII AVE               |                         | SB         | Through /<br>Right           | В   | 0.55 | 16.3                  | 72.1                             |
|                          |                         | Overall In | tersection                   | В   | 0.55 | 17.3                  |                                  |

| Intersection               | Intersection<br>Control | Appro<br>Move |                              | LOS | V/C   | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|----------------------------|-------------------------|---------------|------------------------------|-----|-------|-----------------------|----------------------------------|
| Bank St &                  | Minor Stop              | WB            | Left /<br>Right              | В   | 0.188 | 13.8                  | 5.9                              |
| Marche Way                 |                         | Overall In    | tersection                   |     |       | 1                     |                                  |
|                            |                         | EB            | Left /<br>Through            | Α   | 0.133 | 8.5                   |                                  |
|                            |                         | WB            | Right                        | Α   | 0.12  | 7.7                   |                                  |
| Fifth Ave &<br>O'Connor St | All-Way Stop            | NB            | Left /<br>Through /<br>Right | А   | 0.21  | 8.6                   |                                  |
|                            |                         | SB            | Right                        | Α   | 0.13  | 7.6                   |                                  |
|                            |                         | Overall In    | tersection                   | Α   | 0.21  | 8.1                   |                                  |

As illustrated above, all study area intersections are projected to continue to operate with acceptable levels of service under 2033 Future Weekend Saturday conditions.

Table 4.21: 2033 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections)

| Intersection          | Intersection<br>Control |            | oach /<br>ment               | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|-----------------------|-------------------------|------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                       |                         | EB         | Left /<br>Through /<br>Right | С   | 0.39 | 22.9                  | 27.3                             |
|                       |                         |            | Left                         | С   | 0.47 | 29.0                  | 32.2                             |
| Bank St &             |                         | WB         | Through /<br>Right           | В   | 0.29 | 16.4                  | 21.3                             |
| Fifth Ave             | Signalized              | NB         | Left /<br>Through /<br>Right | А   | 0.38 | 10.0                  | 46.7                             |
|                       |                         | SB         | Left /<br>Through /<br>Right | А   | 0.43 | 9.6                   | 36.0                             |
|                       |                         | Overall In | tersection                   | В   | 0.47 | 12.8                  |                                  |
|                       |                         | EB         | Left /<br>Through /<br>Right | D   | 0.55 | 38.6                  | 27.3                             |
| Bank St &<br>Holmwood | Signalized              | NB         | Left /<br>Through /<br>Right | А   | 0.39 | 2.4                   | 13.4                             |
| Ave                   |                         | SB         | Left /<br>Through /<br>Right | В   | 0.35 | 10.2                  | 53.0                             |
|                       |                         | Overall In | tersection                   | Α   | 0.55 | 8.5                   |                                  |
|                       |                         | WB         | Left                         | D   | 0.63 | 38.2                  | 36.7                             |
| Bank St &             | Ciama elie e el         | VVD        | Right                        | Α   | 0.31 | 9.4                   | 9.6                              |
| Exhibition<br>Way     | Signalized              | NB         | Left /<br>Through /<br>Right | В   | 0.48 | 14.3                  | 47.5                             |

| Intersection             | Intersection<br>Control |            | oach /<br>ement              | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|--------------------------|-------------------------|------------|------------------------------|-----|------|-----------------------|----------------------------------|
|                          |                         | 0.0        | Left                         | В   | 0.61 | 17.3                  | #25.1                            |
|                          |                         | SB         | Through                      | Α   | 0.25 | 4.6                   | 12.6                             |
|                          |                         | Overall In | tersection                   | В   | 0.63 | 14.0                  |                                  |
|                          |                         | ND         | Left                         | В   | 0.19 | 12                    | 6.0                              |
| Bank St &                | Min on Oton             | NB         | Through                      | Α   |      | 2.1                   | 6.0                              |
| Wilton Cr                | Minor Stop              | EB         | Right                        | D   | 0.56 | 30.8                  | 38.1                             |
|                          |                         | Overall In | tersection                   | Α   | 0.56 | 5.2                   |                                  |
| Bank St &                | Min on Oton             | EB         | Right                        | С   | 0.25 | 19.8                  | 9.4                              |
| Echo Dr                  | Minor Stop              | Overall In | tersection                   | Α   | 0.25 | 1.0                   |                                  |
|                          |                         | EB         | Left /<br>Right              | D   | 0.43 | 35.9                  | 23.2                             |
| Bank St &                | Signalized              | NB         | Left /<br>Through            | А   | 0.31 | 3.1                   | 20.6                             |
| Aylmer Ave               |                         | SB         | Through /<br>Right           | А   | 0.34 | 3.7                   | 30.8                             |
|                          |                         | Overall In | tersection                   | Α   | 0.43 | 5.1                   |                                  |
|                          |                         | EB         | Left /<br>Through /<br>Right | E   | 0.78 | 65.8                  | 34.9                             |
| Bank St &                |                         | WB         | Left /<br>Through /<br>Right | С   | 0.73 | 34.9                  | 37.5                             |
| Sunnyside<br>Ave         | Signalized              | NB         | Left /<br>Through /<br>Right | В   | 0.43 | 17.7                  | 54.1                             |
|                          |                         | SB         | Left /<br>Through /<br>Right | А   | 0.55 | 5.8                   | 12.4                             |
|                          |                         | Overall In | tersection                   | В   | 0.78 | 17.3                  |                                  |
| QED &                    |                         | NB         | Left /<br>Through            | А   | 0.07 | 7.7                   | 1.6                              |
| Princess<br>Patricia Way | Minor Stop              | EB         | Left /<br>Right              | В   | 0.39 | 13.2                  | 14.1                             |
|                          |                         | Overall In | tersection                   | Α   | 0.39 | 6.5                   |                                  |
|                          |                         | EB         | Left /<br>Right              | С   | 0.56 | 28.9                  | 32.6                             |
| QED &<br>Fifth Ave       | Signalized              | NB         | Left /<br>Through            | Α   | 0.37 | 9.1                   | 30.3                             |
| , nar/wc                 |                         | SB         | Through /<br>Right           | Α   | 0.06 | 6.3                   | 7.1                              |
|                          |                         | Overall In | tersection                   | В   | 0.56 | 15.7                  |                                  |
| Bank St &<br>Marche Way  | Minor Stop              | WB         | Left /<br>Right              | С   | 0.39 | 16.3                  | 12.3                             |
| -                        |                         | Overall In | tersection                   | Α   | 0.39 | 2.3                   |                                  |
| Fifth Ave & O'Connor St  | All-Way Stop            | EB         | Left /<br>Through            | В   | 0.26 | 10.3                  |                                  |

| Intersection | Intersection<br>Control | Appro<br>Move        | oach /<br>ement              | LOS | V/C  | Total<br>Delay<br>(s) | Queue<br>95 <sup>th</sup><br>(m) |
|--------------|-------------------------|----------------------|------------------------------|-----|------|-----------------------|----------------------------------|
|              |                         | WB                   | Right                        | Α   | 0.33 | 9.9                   |                                  |
|              |                         | NB                   | Left /<br>Through /<br>Right | В   | 0.39 | 11.3                  |                                  |
|              |                         | SB                   | Right                        | Α   | 0.16 | 8.8                   |                                  |
|              |                         | Overall Intersection |                              | В   | 0.39 | 10.3                  |                                  |

As illustrated above, all study area intersections are projected to continue to operate with acceptable levels of service under 2033 Future Weekend Sunday conditions.

Table 4.22: 2033 Future Minor Event Peak Hour (Study Area Intersections)

| Intersection                   | Intersection |     | proach /                     | LC      | os     | V/      | C      | To<br>Dela |        | Que<br>95th |        |
|--------------------------------|--------------|-----|------------------------------|---------|--------|---------|--------|------------|--------|-------------|--------|
|                                | Control      | Mo  | vement                       | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress |
|                                |              | EB  | Left /<br>Through<br>/ Right | D       | С      | 0.67    | 0.52   | 37.5       | 32.2   | 33.9        | 19.6   |
|                                |              |     | Left                         | С       | С      | 0.44    | 0.36   | 33.2       | 35.0   | 19.6        | 16.3   |
| Bank St &                      |              | WB  | Through / Right              | В       | В      | 0.40    | 0.32   | 15.9       | 19.2   | 18.1        | 13.1   |
| Fifth Ave                      | Signalized   | NB  | Left /<br>Through<br>/ Right | В       | А      | 0.33    | 0.25   | 11.1       | 6.4    | 56.1        | 37.3   |
|                                |              | SB  | Left /<br>Through<br>/ Right | Α       | А      | 0.38    | 0.21   | 6.9        | 3.7    | 38.3        | 17.2   |
|                                |              |     | verall<br>rsection           | В       | Α      | 0.67    | 0.52   | 13.1       | 9.2    |             |        |
|                                |              | EB  | Left /<br>Through<br>/ Right | D       | D      | 0.55    | 0.48   | 38.2       | 37.9   | 28.8        | 23.3   |
| Bank St &<br>Holmwood          | Signalized   | NB  | Left /<br>Through<br>/ Right | А       | А      | 0.40    | 0.30   | 3.0        | 3.8    | 15.2        | 23.1   |
| Ave                            |              | SB  | Left /<br>Through<br>/ Right | А       | А      | 0.35    | 0.22   | 4.9        | 4.6    | 9.3         | 26.8   |
|                                |              |     | verall<br>rsection           | A       | A      | 0.55    | 0.48   | 6.5        | 6.8    |             |        |
|                                |              | WB  | Left                         | D       | D      | 0.54    | 0.66   | 35.5       | 36.6   | 33.6        | 45.0   |
|                                |              | VVB | Right                        | В       | D      | 0.38    | 0.58   | 10.1       | 9.4    | 11.3        | 16.1   |
| Bank St &<br>Exhibition<br>Way | Signalized   | NB  | Left /<br>Through<br>/ Right | А       | А      | 0.39    | 0.18   | 5.8        | 5.0    | 30.4        | 13.3   |
|                                |              | SB  | Left                         | В       | Α      | 0.54    | 0.28   | 12.3       | 6.3    | 19.0        | 10.0   |
|                                |              | SD  | Through                      | А       | А      | 0.23    | 0.15   | 3.6        | 4.4    | 9.4         | 8.1    |

| Intersection                      | Intersection |    | proach /                     | LC      | os     | V/      | C      | To<br>Dela |        | Que<br>95th |        |
|-----------------------------------|--------------|----|------------------------------|---------|--------|---------|--------|------------|--------|-------------|--------|
|                                   | Control      | Mo | vement                       | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress |
|                                   |              |    | verall<br>rsection           | Α       | В      | 0.54    | 0.66   | 8.9        | 11.5   |             |        |
|                                   |              | EB | Right                        | F       | С      | 0.94    | 0.34   | 72.4       | 19.8   | 103.7       | 14.2   |
| Bank St &                         |              | NB | Left                         | В       | В      | 0.25    | 0.08   | 12.2       | 10.4   | 7.8         | 1.9    |
| Wilton Cr                         | Minor Stop   |    | Through                      | Α       | Α      |         |        | 2.7        | 0.7    | 7.8         | 1.9    |
|                                   |              | _  | verall<br>rsection           | D       | Α      | 0.94    | 0.34   | 14.3       | 3.2    |             |        |
| Bank St &                         | N4: 01       | EB | Right                        | С       | В      | 0.121   | 0.02   | 16.8       | 10.5   | 5.7         | 0.7    |
| Echo Dr                           | Minor Stop   |    | verall<br>rsection           | Α       |        | 0.12    | 0.02   | 0.4        | 0.2    |             |        |
|                                   |              | EB | Left /<br>Right              | D       | С      | 0.36    | 0.03   | 36.7       | 27.2   | 27.1        | 4.4    |
| Bank St &                         | Signalized   | NB | Left /<br>Through            | А       | А      | 0.42    | 0.09   | 5.5        | 5.4    | 26.2        | 8.8    |
| Aylmer Ave                        | Signalized   | SB | Through / Right              | А       | А      | 0.34    | 0.11   | 6.6        | 5.3    | 31.0        | 10.0   |
|                                   |              |    | verall<br>rsection           | A       | Α      | 0.42    | 0.11   | 7.8        | 5.7    |             |        |
|                                   |              | EB | Left /<br>Through<br>/ Right | D       | D      | 0.71    | 0.50   | 48.8       | 45.9   | #47.4       | 19.7   |
| D1- 04 9                          |              | WB | Left /<br>Through<br>/ Right | С       | В      | 0.76    | 0.33   | 33.3       | 19.9   | #59.8       | 12.3   |
| Bank St &<br>Sunnyside<br>Ave     | Signalized   | NB | Left /<br>Through<br>/ Right | А       | А      | 0.34    | 0.14   | 8.9        | 3.7    | 35.2        | 12.1   |
|                                   |              | SB | Left /<br>Through<br>/ Right | А       | А      | 0.59    | 0.27   | 8.6        | 4.2    | 24.3        | 23.0   |
|                                   |              |    | verall<br>rsection           | В       | A      | 0.76    | 0.50   | 15.6       | 7.6    |             |        |
| OFD 8                             |              | NB | Left /<br>Through            | Α       | А      | 0.144   | 0.02   | 9.5        | 7.7    | 4.0         | 0.5    |
| QED &<br>Princess<br>Patricia Way | Minor Stop   | EB | Left /<br>Right              | D       | С      | 0.457   | 0.625  | 26.3       | 17.4   | 17.5        | 33.7   |
| Fauloia Way                       |              |    | verall<br>rsection           |         |        |         |        | 4.2        | 10.9   |             |        |
|                                   |              | EB | Left /<br>Right              | С       | С      | 0.40    | 0.41   | 29.0       | 29.0   | 23.7        | 24.3   |
| Queen<br>Elizabeth Dr             | Signalized   | NB | Left /<br>Through            | А       | А      | 0.37    | 0.33   | 7.2        | 6.7    | 31.3        | 30.8   |
| &<br>Fifth Ave                    | Oignanizou   | SB | Through / Right              | В       | А      | 0.67    | 0.21   | 11.7       | 5.7    | 88.0        | 19.4   |
|                                   |              |    | verall<br>rsection           | В       | Α      | 0.67    | 0.41   | 12.0       | 10.0   |             |        |
| Bank St &                         | Minor Stop   | WB | Left /<br>Right              | В       | В      | 0.13    | 0.29   | 12.7       | 13.6   | 3.3         | 1.2    |
| Marche Way                        | Willion Stop |    | verall<br>rsection           | Α       | Α      | 0.13    | 0.29   | 0.7        | 2.1    |             |        |

| Intersection               | Intersection    |    | oroach /                     | LC      | os     | V/      | С      | To<br>Dela |        | Que<br>95th |        |
|----------------------------|-----------------|----|------------------------------|---------|--------|---------|--------|------------|--------|-------------|--------|
|                            | Control         | Мо | vement                       | Ingress | Egress | Ingress | Egress | Ingress    | Egress | Ingress     | Egress |
|                            |                 | EB | Left /<br>Through            | А       | А      | 0.172   | 0.076  | 8.8        | 7.8    |             |        |
|                            |                 | WB | Right                        | Α       | Α      | 0.181   | 0.06   | 8          | 7.1    |             |        |
| Fifth Ave &<br>O'Connor St | All-Way<br>Stop | NB | Left /<br>Through<br>/ Right | А       | А      | 0.213   | 0.008  | 8.9        | 7.3    |             |        |
|                            |                 | SB | Right                        | Α       | Α      | 0.11    | 0.113  | 7.7        | 7.2    |             |        |
|                            |                 |    | verall<br>rsection           | A       | A      |         |        | 8.4        | 7.3    |             |        |

As illustrated above, all study area intersections are projected to continue to operate with overall acceptable levels of service in the 2033 Future horizon year for Minor Events held at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays incurred on the minor approach. This occurs during the Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction as a result of the recently installed 3-lane cross-section of Bank Street.

No mitigation measures are recommended to improve intersection operations.

Table 4.23: 2033 Future Major Event Peak Hour (Study Area Intersections)

| Intersection            | Intersection |      | proach /                     | LC      | os     | V/         | С          | To<br>Dela  |            | Que<br>95th |        |
|-------------------------|--------------|------|------------------------------|---------|--------|------------|------------|-------------|------------|-------------|--------|
|                         | Control      | Mo   | vement                       | Ingress | Egress | Ingress    | Egress     | Ingress     | Egress     | Ingress     | Egress |
|                         |              | EB   | Left /<br>Through<br>/ Right | D       | D      | 0.69       | 0.76       | 36.5        | 46.5       | 36.3        | 35.7   |
|                         |              |      | Left                         | С       | С      | 0.43       | 0.21       | 30.7        | 24.3       | 20.8        | 12.7   |
| Bank St &               |              | WB   | Through / Right              | В       | В      | 0.42       | 0.58       | 17.5        | 18.9       | 21.8        | 29.6   |
| Fifth Ave               | Signalized   | NB   | Left /<br>Through<br>/ Right | А       | А      | 0.35       | 0.24       | 6.9         | 6.4        | 31.6        | 20.5   |
|                         |              | SB   | Left /<br>Through<br>/ Right | А       | А      | 0.47       | 0.27       | 8.0         | 6.5        | 46.8        | 23.3   |
|                         |              |      | verall<br>rsection           | В       | В      | 0.69       | 0.76       | 12.0        | 13.8       |             | -      |
|                         |              | EB   | Left /<br>Through<br>/ Right | D       | D      | 0.62       | 0.62       | 38.5        | 38.9       | 35.3        | 34.2   |
| Bank St &<br>Holmwood   | Signalized   | NB   | Left /<br>Through<br>/ Right | А       | А      | 0.52       | 0.27       | 4.2         | 3.6        | 47.6        | 20.1   |
| Ave                     |              | SB   | Left /<br>Through<br>/ Right | А       | А      | 0.47       | 0.25       | 7.5         | 5.2        | 43.7        | 19.1   |
|                         |              |      | verall<br>rsection           | Α       | Α      | 0.62       | 0.62       | 8.8         | 9.5        |             |        |
|                         |              | WB   | Left<br>Right                |         | Moven  | nents Temp | orarily Re | stricted Du | ring Major | Events      |        |
| Bank St &<br>Exhibition | Signalized   | NB   | Left /<br>Through<br>/ Right | А       | С      | 0.36       | 0.15       | 4.9         | 2.4        | 31.8        | 13.7   |
| Way                     |              | SB   | Left                         |         | Moven  | nents Temp | orarily Re | stricted Du | ring Major | Events      |        |
|                         |              | 35   | Through                      | Α       | Α      | 0.28       | 0.14       | 3.8         | 1.8        | 18.7        | 10.1   |
|                         |              |      | verall<br>rsection           | Α       | A      | 0.36       | 0.15       | 5.8         | 2.6        |             |        |
|                         |              | EB   | Right                        | F       | В      | 1.09       | 0.01       | 119         | 13.5       | 131.7       | 0.4    |
| Bank St &               |              | NB   | Left                         | В       | Α      | 0.21       | 0          | 12.6        | 0          | 6.4         | 0.0    |
| Wilton Cr               | Minor Stop   | LIND | Through                      | Α       |        |            |            | 2.6         | 0          | 6.4         | 0.0    |
|                         |              |      | verall<br>rsection           | E       | Α      | 1.09       | 0.01       | 20.5        | 0.1        |             |        |
| Bank St &               |              | EB   | Right                        | С       | В      | 0.25       | 0.06       | 19.4        | 10.5       | 13.2        | 1.8    |
| Echo Dr                 | Minor Stop   |      | verall<br>rsection           | Α       | Α      | 0.25       | 0.06       | 0.9         | 0.5        |             |        |

| Intersection               | Intersection    |    | oroach /                     | LC      | os     | V/            | С          | To<br>Dela  |              | Que<br>95th |        |
|----------------------------|-----------------|----|------------------------------|---------|--------|---------------|------------|-------------|--------------|-------------|--------|
|                            | Control         | Mo | vement                       | Ingress | Egress | Ingress       | Egress     | Ingress     | Egress       | Ingress     | Egress |
|                            |                 | EB | Left /<br>Right              | D       | С      | 0.52          | 0.17       | 38.8        | 23.5         | 35.4        | 11.9   |
| Bank St &<br>Aylmer Ave    | Signalized      | NB | Left /<br>Through            | Α       | Α      | 0.44          | 0.21       | 8.2         | 6.0          | 48.3        | 18.2   |
| Ayimei Ave                 | 3               | SB | Through<br>/ Right           | Α       | A      | 0.46          | 0.18       | 8.2         | 5.6          | 51.7        | 15.7   |
|                            |                 |    | verall<br>rsection           | В       | A      | 0.52          | 0.21       | 10.3        | 6.6          |             |        |
|                            |                 | EB | Left /<br>Through<br>/ Right | E       | D      | 0.88          | 0.56       | 72.0        | 43.6         | #67.4       | 26.7   |
| Bank St &                  |                 | WB | Left /<br>Through<br>/ Right | D       | С      | 0.86          | 0.48       | 49.0        | 28.4         | #78.0       | 22.2   |
| Sunnyside<br>Ave           | Signalized      | NB | Left /<br>Through<br>/ Right | Α       | Α      | 0.39          | 0.16       | 8.3         | 4.4          | 34.7        | 15.4   |
|                            |                 | SB | Left /<br>Through<br>/ Right | В       | Α      | 0.76          | 0.19       | 15.4        | 4.3          | #67.4       | 17.3   |
|                            |                 |    | verall<br>rsection           | С       | В      | 0.88          | 0.56       | 22.8        | 10.8         |             |        |
| QED &                      |                 | NB | Left /<br>Through            | В       | А      | 0.16          | 0.05       | 10.2        | 8.3          | 4.9         | 1.3    |
| Princess Patricia Way      | Minor Stop      | EB | Left /<br>Right              | F       | E      | 0.93          | 0.93       | 82.4        | 50.0         | 75.2        | 86.8   |
| i atticia vvay             |                 |    | verall<br>rsection           | С       | С      | 0.93          | 0.93       | 14          | 23.5         |             |        |
|                            |                 | EB | Left /<br>Right              | D       | D      | 0.68          | 0.72       | 36.9        | 39           | #45.2       | #53.5  |
| Queen<br>Elizabeth Dr &    | Signalized      | NB | Left /<br>Through            | В       | А      | 0.69          | 0.41       | 17.9        | 8.9          | #70.0       | 40.7   |
| Fifth Ave                  | Olgitalized     | SB | Through / Right              | С       | А      | 0.87          | 0.41       | 23.7        | 8.7          | #169.4      | 42.0   |
|                            |                 |    | verall<br>rsection           | С       | В      | 0.87          | 0.72       | 24.1        | 15.5         |             |        |
| Bank St &                  | Minor Stop      | WB | Left /<br>Right              |         | Movem  | nents Temp    | orarily Pa | stricted Du | rina Major   | Events      |        |
| Marche Way                 | willor stop     | 1  | verall<br>rsection           |         | wovell | ιστιιο τ στημ | оганіу Ке  | รถเดเซน ปนเ | ınıy ivlajül | LVEIIIS     |        |
|                            |                 | EB | Left /<br>Through            | В       | А      | 0.21          | 0.13       | 10.1        | 9            |             |        |
|                            |                 | WB | Right                        | Α       | Α      | 0.28          | 0.16       | 9.7         | 8.4          |             |        |
| Fifth Ave &<br>O'Connor St | All-Way<br>Stop | NB | Left /<br>Through<br>/ Right | Α       | В      | 0.26          | 0.49       | 9.2         | 11.4         |             |        |
|                            |                 | SB | Right                        | Α       | Α      | 0.19          | 0.08       | 8.6         | 7.7          |             |        |
|                            |                 |    | verall<br>rsection           | A       | В      | 0.28          | 0.49       | 9.5         | 8.8          |             |        |

As illustrated above, all study area intersections are projected to continue to operate with overall acceptable levels of service during the 2033 Future horizon year for Major Events held at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays incurred on the minor approach. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction due to the recently installed 3-lane cross-section of Bank Street.

In addition, the eastbound approach at the Queen Elizabeth Drive and Princess Patricia Way intersection is shown to operate with an LOS rating of E for the Ingress periods. Although the analysis indicates that the movements are operating with delays, the performance of these intersections are expected to continue to be adequately managed through the deployment of Ottawa Police Point duty as part of the traffic management measures for Major Events at Lansdowne.

No mitigation measures are recommended to improve intersection operations.

## 5. SUMMARY AND CONCLUSIONS

This Transportation Impact Assessment (TIA) was prepared in support of a Site Plan Application (SPA) for the proposed multi-purpose Event Centre at Lansdowne Park located in the Glebe community of Ottawa, Ontario.

The proposed multi-purpose Event Centre represents Phase 1 of the Lansdowne 2.0 plan which seeks to replace existing city-owned infrastructure while adding additional density to the site. The overall Lansdowne 2.0 proposed plan includes the following phases of development:

**Phase 1** (Anticipated completion of 2028) consists of building a new 5,500 seat (up to 6,500 spectators) multipurpose event centre that will be home to the OHL's Ottawa 67's, the CEBL's Ottawa BlackJacks, the PWHL Ottawa, and other indoor events such as shows and concerts. As this phase of Lansdowne 2.0 replaces the programming provided at the existing 9,800 seat TD Place Arena, it is not expected to generate additional transportation demands to Lansdowne.

**Phase 2** (Anticipated completion between 2030 and 2031) consists of replacing the existing functionally obsolete north stadium stands and arena complex at TD Place Stadium with a new 11,200 seat (12,100 spectator) north stand structure. This new facility replaces the existing north stadium stands, which currently has a capacity of 14,028 spectators, and would result in a reduction of approximately 2,000 spectator capacity at TD Place Stadium. This venue will continue to be the home of the CFL's Ottawa RedBlacks and the CPL's Ottawa Atlético. As this phase of Lansdowne 2.0 replaces existing programming currently provided at TD Place Stadium, it is not expected to generate additional transportation demands to Lansdowne.

**Phase 3** (Anticipated completion between 2032 and 2036) represents the full build-out of Lansdowne 2.0 and consists of replacing the existing 41,000 ft² of commercial retail and box office annex to the Stadium on Exhibition Way with 49,635 ft² of new podium-level commercial retail space. This represents a net increase of 8,635 ft² of commercial retail space from what is currently provided today. In addition, this phase includes the construction of two new residential towers with a total of 770 new dwelling units. Additional underground parking space will be constructed by extending the existing facility to accommodate an additional 386 parking spaces to service the new residential units and additional retail space, resulting in a total of 1,766 underground parking spaces at Lansdowne.

Under Phase 1, no additional trip generation demands are forecasted as the proposed multipurpose event centre replaces the existing programming at the Arena at TD Place. It is anticipated that internal circulation and access within Lansdowne will be altered in an interim operating condition in 2028 during the construction of subsequent phases of Lansdowne 2.0.

The full build-out of Lansdowne 2.0 development is anticipated to generate between 130 and 180 net new auto trips (two-way) during the Weekday AM, Weekday PM, and Weekend Saturday and Sunday peak periods.

An analysis of study area intersections was completed under Existing Conditions, the interim 2028 Future Conditions (i.e. the completion of the new event centre and construction of subsequent phases of Lansdowne 2.0, as well as the 2033 Future Conditions (Full Build-Out of Lansdowne 2.0).

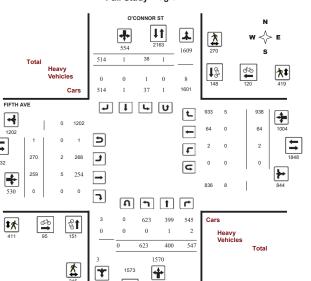
All study area intersections were shown to operate acceptably with similar levels of services currently observed today.

In conclusion, the analysis found that the anticipated Phase 1 of Lansdowne 2.0 will result in minimal impact to the overall traffic operations in the area. From a transportation standpoint, the proposed multi-purpose Event Centre can be accommodated by the future transportation network with the continued adoption of the existing comprehensive Transportation Demand Management strategy.

# APPENDIX A - TURNING MOVEMENT COUNT DATA



#### **Transportation Services - Traffic Services**


#### **Turning Movement Count - Study Results**

#### FIFTH AVE @ O'CONNOR ST

Survey Date: Friday, August 05, 2022 WO No: Start Time: 16:00 Device:

40983 Miovision

#### **Full Study Diagram**



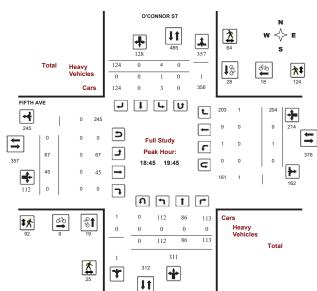
**Ottawa** 

Start Time: 16:00

**Transportation Services - Traffic Services** 

**Turning Movement Count - Study Results** 

FIFTH AVE @ O'CONNOR ST


WO No:

40983

Miovision

Survey Date: Friday, August 05, 2022 Device:

#### Full Study Peak Hour Diagram



June 16, 2023 Page 1 of 8 June 16, 2023 Page 2 of 8

40983

Miovision

## **Ottawa**

Start Time: 16:00

#### **Transportation Services - Traffic Services**

11

#### **Turning Movement Count - Study Results**

| FIFTH AVE @ O'CONNOR S' |
|-------------------------|
|-------------------------|

Survey Date: Friday, August 05, 2022 WO No:

Full Study 15 Minute Increments

| O'CONNOR ST |        |    |        |     |          |    |        |     |          |            |    |        | FII | FIHA     | VE |         |    |          |  |
|-------------|--------|----|--------|-----|----------|----|--------|-----|----------|------------|----|--------|-----|----------|----|---------|----|----------|--|
|             |        | No | orthbo | und |          | Sc | uthbou | ind |          |            | E  | astbou | nd  |          | We | estbour | nd |          |  |
| Time I      | Period | LT | ST     | RT  | N<br>TOT | LT | ST     | RT  | S<br>TOT | STR<br>TOT | LT | ST     | RT  | E<br>TOT | LT | ST      | RT | W<br>TOT |  |
| 16:00       | 16:15  | 8  | 4      | 8   | 20       | 10 | 0      | 35  | 45       | 65         | 13 | 7      | 0   | 20       | 0  | 1       | 23 | 24       |  |
| 16:15       | 16:30  | 12 | 11     | 9   | 32       | 2  | 0      | 26  | 28       | 60         | 7  | 10     | 0   | 17       | 0  | 0       | 30 | 30       |  |
| 16:30       | 16:45  | 18 | 10     | 8   | 36       | 1  | 0      | 21  | 22       | 58         | 18 | 10     | 0   | 28       | 0  | 0       | 28 | 28       |  |
| 16:45       | 17:00  | 15 | 11     | 7   | 33       | 3  | 0      | 27  | 31       | 64         | 10 | 6      | 0   | 16       | 0  | 0       | 35 | 35       |  |
| 17:00       | 17:15  | 9  | 9      | 10  | 28       | 2  | 0      | 13  | 15       | 43         | 11 | 18     | 0   | 29       | 0  | 4       | 28 | 32       |  |
| 17:15       | 17:30  | 19 | 13     | 22  | 54       | 6  | 0      | 17  | 23       | 77         | 6  | 13     | 0   | 19       | 0  | 1       | 27 | 28       |  |
| 17:30       | 17:45  | 30 | 15     | 32  | 77       | 1  | 0      | 24  | 25       | 102        | 8  | 12     | 0   | 20       | 0  | 3       | 39 | 42       |  |
| 17:45       | 18:00  | 24 | 17     | 19  | 60       | 3  | 0      | 27  | 30       | 90         | 10 | 6      | 0   | 16       | 0  | 6       | 52 | 58       |  |
| 18:00       | 18:15  | 36 | 14     | 27  | 77       | 0  | 0      | 28  | 28       | 105        | 18 | 7      | 0   | 25       | 0  | 9       | 51 | 60       |  |

623 400 547 1570 38 1 514 554 2124 270 259 0 530 2 64 938 1004 1534

Note: U-Turns are included in Totals.



#### **Transportation Services - Traffic Services**

#### **Turning Movement Count - Study Results**

#### FIFTH AVE @ O'CONNOR ST

Survey Date: Friday, August 05, 2022 WO No: 40983 Start Time: 16:00 Miovision Full Study Cyclist Volume

|             |            | O'CONNOR ST |              | -         | FIFTH AVE |              |             |
|-------------|------------|-------------|--------------|-----------|-----------|--------------|-------------|
| Time Period | Northbound | Southbound  | Street Total | Eastbound | Westbound | Street Total | Grand Total |
| 16:00 16:15 | 3          | 6           | 9            | 4         | 6         | 10           | 19          |
| 16:15 16:30 | 3          | 2           | 5            | 7         | 3         | 10           | 15          |
| 16:30 16:45 | 4          | 4           | 8            | 5         | 7         | 12           | 20          |
| 16:45 17:00 | 4          | 7           | 11           | 4         | 4         | 8            | 19          |
| 17:00 17:15 | 5          | 4           | 9            | 9         | 7         | 16           | 25          |
| 17:15 17:30 | 9          | 12          | 21           | 6         | 3         | 9            | 30          |
| 17:30 17:45 | 2          | 5           | 7            | 0         | 8         | 8            | 15          |
| 17:45 18:00 | 2          | 13          | 15           | 3         | 4         | 7            | 22          |
| 18:00 18:15 | 4          | 4           | 8            | 2         | 6         | 8            | 16          |
| 18:15 18:30 | 2          | 6           | 8            | 1         | 6         | 7            | 15          |
| 18:30 18:45 | 5          | 9           | 14           | 5         | 5         | 10           | 24          |
| 18:45 19:00 | 4          | 4           | 8            | 0         | 9         | 9            | 17          |
| 19:00 19:15 | 7          | 8           | 15           | 4         | 0         | 4            | 19          |
| 19:15 19:30 | 4          | 8           | 12           | 4         | 5         | 9            | 21          |
| 19:30 19:45 | 4          | 8           | 12           | 1         | 4         | 5            | 17          |
| 19:45 20:00 | 2          | 5           | 7            | 1         | 5         | 6            | 13          |
| 20:00 20:15 | 1          | 2           | 3            | 1         | 1         | 2            | 5           |
| 20:15 20:30 | 5          | 2           | 7            | 1         | 3         | 4            | 11          |
| 20:30 20:45 | 0          | 8           | 8            | 1         | 4         | 5            | 13          |
| 20:45 21:00 | 0          | 0           | 0            | 4         | 5         | 9            | 9           |
| 21:00 21:15 | 0          | 3           | 3            | 2         | 3         | 5            | 8           |
| 21:15 21:30 | 5          | 3           | 8            | 8         | 5         | 13           | 21          |
| 21:30 21:45 | 3          | 5           | 8            | 2         | 4         | 6            | 14          |
| 21:45 22:00 | 10         | 6           | 16           | 4         | 2         | 6            | 22          |
| 22:00 22:15 | 22         | 5           | 27           | 7         | 4         | 11           | 38          |
| 22:15 22:30 | 18         | 2           | 20           | 4         | 1         | 5            | 25          |
| 22:30 22:45 | 5          | 0           | 5            | 3         | 3         | 6            | 11          |
| 22:45 23:00 | 10         | 6           | 16           | 0         | 0         | 0            | 16          |
| 23:00 23:15 | 1          | 0           | 1            | 1         | 2         | 3            | 4           |
| 23:15 23:30 | 3          | 0           | 3            | 0         | 1         | 1            | 4           |
| 23:30 23:45 | 0          | 1           | 1            | 0         | 0         | 0            | 1           |
| 23:45 00:00 | 4          | 0           | 4            | 1         | 0         | 1            | 5           |
| Total       | 151        | 148         | 299          | 95        | 120       | 215          | 514         |



#### **Transportation Services - Traffic Services**

#### **Turning Movement Count - Study Results**

#### FIFTH AVE @ O'CONNOR ST

| Start Time     | Friday, Aug<br>: 16:00        | ,                                |          |                                  | Device:                          |       | Miovision   |
|----------------|-------------------------------|----------------------------------|----------|----------------------------------|----------------------------------|-------|-------------|
|                |                               | F                                | ull Stuc | dy Pedestriai                    | n Volume                         |       |             |
|                |                               | O'CONNOR ST                      |          | .,                               | FIFTH AVE                        |       |             |
| Time Period (E | NB Approach<br>or W Crossing) | SB Approach<br>(E or W Crossing) | Total    | EB Approach<br>(N or S Crossing) | WB Approach<br>(N or S Crossing) | Total | Grand Total |
| 16:00 16:15    | 2                             | 9                                | 11       | 13                               | 8                                | 21    | 32          |
| 16:15 16:30    | 5                             | 7                                | 12       | 10                               | 4                                | 14    | 26          |
| 16:30 16:45    | 6                             | 14                               | 20       | 18                               | 11                               | 29    | 49          |
| 16:45 17:00    | 5                             | 3                                | 8        | 6                                | 7                                | 13    | 21          |
| 17:00 17:15    | 9                             | 18                               | 27       | 10                               | 7                                | 17    | 44          |
| 17:15 17:30    | 6                             | 1                                | 7        | 18                               | 7                                | 25    | 32          |
| 17:30 17:45    | 7                             | 7                                | 14       | 17                               | 7                                | 24    | 38          |
| 17:45 18:00    | 3                             | 8                                | 11       | 10                               | 21                               | 31    | 42          |
| 18:00 18:15    | 9                             | 8                                | 17       | 11                               | 13                               | 24    | 41          |
| 18:15 18:30    | 15                            | 21                               | 36       | 19                               | 35                               | 54    | 90          |
| 18:30 18:45    | 3                             | 14                               | 17       | 21                               | 29                               | 50    | 67          |
| 8:45 19:00     | 5                             | 17                               | 22       | 20                               | 16                               | 36    | 58          |
| 19:00 19:15    | 7                             | 21                               | 28       | 33                               | 39                               | 72    | 100         |
| 19:15 19:30    | 10                            | 17                               | 27       | 25                               | 48                               | 73    | 100         |
| 19:30 19:45    | 3                             | 9                                | 12       | 14                               | 21                               | 35    | 47          |
| 19:45 20:00    | 12                            | 7                                | 19       | 17                               | 17                               | 34    | 53          |
| 20:00 20:15    | 5                             | 10                               | 15       | 3                                | 4                                | 7     | 22          |
| 20:15 20:30    | 10                            | 3                                | 13       | 3                                | 2                                | 5     | 18          |
| 20:30 20:45    | 8                             | 0                                | 8        | 4                                | 1                                | 5     | 13          |
| 20:45 21:00    | 6                             | 6                                | 12       | 0                                | 4                                | 4     | 16          |
| 21:00 21:15    | 11                            | 4                                | 15       | 3                                | 4                                | 7     | 22          |
| 21:15 21:30    | 17                            | 10                               | 27       | 8                                | 11                               | 19    | 46          |
| 21:30 21:45    | 4                             | 5                                | 9        | 6                                | 5                                | 11    | 20          |
| 21:45 22:00    | 13                            | 10                               | 23       | 8                                | 14                               | 22    | 45          |
| 22:00 22:15    | 16                            | 9                                | 25       | 35                               | 28                               | 63    | 88          |
| 2:15 22:30     | 22                            | 6                                | 28       | 49                               | 20                               | 69    | 97          |
| 2:30 22:45     | 26                            | 3                                | 29       | 20                               | 17                               | 37    | 66          |
| 22:45 23:00    | 0                             | 10                               | 10       | 6                                | 7                                | 13    | 23          |
| 23:00 23:15    | 0                             | 3                                | 3        | 1                                | 0                                | 1     | 4           |
| 23:15 23:30    | 0                             | 0                                | 0        | 0                                | 1                                | 1     | 1           |
| 23:30 23:45    | n                             | 7                                | 7        | n                                | 9                                | 9     | 16          |



#### **Transportation Services - Traffic Services**

#### **Turning Movement Count - Study Results** FIFTH AVE @ O'CONNOR ST

Survey Date: Friday, August 05, 2022 WO No: 40983 Start Time: 16:00 Device: Miovision

**Full Study Heavy Vehicles** 

|             |    |        | 0,00 | ONNO     | R ST |        |     |          | ,          | ,, |        | FII | FTH A    | VE |         |    |          |            |                |
|-------------|----|--------|------|----------|------|--------|-----|----------|------------|----|--------|-----|----------|----|---------|----|----------|------------|----------------|
|             | No | orthbo | und  |          | Sc   | uthbou | ind |          |            | Е  | astbou | nd  |          | We | estbour | nd |          |            |                |
| Time Period | LT | ST     | RT   | N<br>TOT | LT   | ST     | RT  | S<br>TOT | STR<br>TOT | LT | ST     | RT  | E<br>TOT | LT | ST      | RT | W<br>TOT | STR<br>TOT | Grand<br>Total |
| 16:00 16:15 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 16:15 16:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 16:30 16:45 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 16:45 17:00 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 1      | 0   | 1        | 0  | 0       | 0  | 1        | 2          | 1              |
| 17:00 17:15 | 0  | 0      | 1    | 1        | 0    | 0      | 0   | 0        | 1          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 1        | 1          | 1              |
| 17:15 17:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 17:30 17:45 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 1      | 0   | 1        | 0  | 0       | 0  | 1        | 2          | 1              |
| 17:45 18:00 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 18:00 18:15 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 1        | 1          | 1  | 0      | 0   | 1        | 0  | 0       | 0  | 0        | 1          | 1              |
| 18:15 18:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 1        | 1          | 1  | 0      | 0   | 1        | 0  | 0       | 0  | 0        | 1          | 1              |
| 18:30 18:45 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 1        | 1          | 0  | 1      | 0   | 1        | 0  | 0       | 1  | 2        | 3          | 2              |
| 18:45 19:00 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 19:00 19:15 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 19:15 19:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 1        | 1          | 0  | 0      | 0   | 0        | 0  | 0       | 1  | 1        | 1          | 1              |
| 19:30 19:45 | 0  | 0      | 0    | 0        | 1    | 0      | 0   | 1        | 1          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 1        | 1          | 1              |
| 19:45 20:00 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:00 20:15 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:15 20:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:30 20:45 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:45 21:00 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 21:00 21:15 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 1      | 0   | 1        | 0  | 0       | 0  | 1        | 2          | 1              |
| 21:15 21:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 21:30 21:45 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 21:45 22:00 | 0  | 0      | 1    | 1        | 0    | 0      | 0   | 0        | 1          | 0  | 1      | 0   | 1        | 0  | 0       | 0  | 2        | 3          | 2              |
| 22:00 22:15 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 22:15 22:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 22:30 22:45 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 22:45 23:00 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 3        | 3          | 0  | 0      | 0   | 0        | 0  | 0       | 3  | 3        | 3          | 3              |
| 23:00 23:15 | 0  | 1      | 0    | 1        | 0    | 0      | 0   | 1        | 2          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 1              |
| 23:15 23:30 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 23:30 23:45 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 23:45 00:00 | 0  | 0      | 0    | 0        | 0    | 0      | 0   | 0        | 0          | 0  | 0      | 0   | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| Total: None | 0  | 1      | 2    | 3        | 1    | 0      | 0   | 9        | 12         | 2  | 5      | 0   | 7        | 0  | 0       | 5  | 13       | 20         | 16             |

June 16, 2023 June 16, 2023 Page 6 of 8 Page 7 of 8



#### **Transportation Services - Traffic Services**

## Turning Movement Count - Study Results FIFTH AVE @ O'CONNOR ST

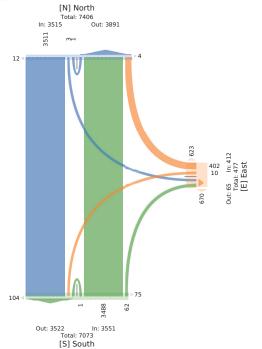
| Survey Date: | Friday, August 05, 2022 |                   | WO No:           | 40983     |
|--------------|-------------------------|-------------------|------------------|-----------|
| Start Time:  | 16:00                   |                   | Device:          | Miovision |
|              |                         | Full Study 15 Min | ute U-Turn Total |           |
|              |                         | O'CONNOR ST       | FIFTH AVE        |           |

|   |        |        | O'CONNO                    | R ST                       | FI                        | FTH AVE                   |       |
|---|--------|--------|----------------------------|----------------------------|---------------------------|---------------------------|-------|
|   | Time I | Period | Northbound<br>U-Turn Total | Southbound<br>U-Turn Total | Eastbound<br>U-Turn Total | Westbound<br>U-Turn Total | Total |
|   | 16:00  | 16:15  | 0                          | 0                          | 0                         | 0                         | 0     |
| _ | 16:15  | 16:30  | 0                          | 0                          | 0                         | 0                         | 0     |
| - | 16:30  | 16:45  | 0                          | 0                          | 0                         | 0                         | 0     |
| _ | 16:45  | 17:00  | 0                          | 1                          | 0                         | 0                         | 1     |
| _ | 17:00  | 17:15  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 17:15  | 17:30  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 17:30  | 17:45  | 0                          | 0                          | 0                         | 0                         | 0     |
| _ | 17:45  | 18:00  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 18:00  | 18:15  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 18:15  | 18:30  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 18:30  | 18:45  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 18:45  | 19:00  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 19:00  | 19:15  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 19:15  | 19:30  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 19:30  | 19:45  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 19:45  | 20:00  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 20:00  | 20:15  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 20:15  | 20:30  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 20:30  | 20:45  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 20:45  | 21:00  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 21:00  | 21:15  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 21:15  | 21:30  | 0                          | 0                          | 1                         | 0                         | 1     |
| Ξ | 21:30  | 21:45  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 21:45  | 22:00  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 22:00  | 22:15  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 22:15  | 22:30  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 22:30  | 22:45  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 22:45  | 23:00  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 23:00  | 23:15  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 23:15  | 23:30  | 0                          | 0                          | 0                         | 0                         | 0     |
| Ξ | 23:30  | 23:45  | 0                          | 0                          | 0                         | 0                         | 0     |
|   | 23:45  | 00:00  | 0                          | 0                          | 0                         | 0                         | 0     |

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947989, Location: 45.399403, -75.68617



| Leg                      | North    |      |      |       |       | East     |      |    |       |       | South    |       |      |       |      |     |
|--------------------------|----------|------|------|-------|-------|----------|------|----|-------|-------|----------|-------|------|-------|------|-----|
| Direction                | Southbou | nd   |      |       |       | Westbour | nd   |    |       |       | Northbou | nd    |      |       |      |     |
| Time                     | T        | L    | U    | App   | Ped*  | R        | L    | U  | App   | Ped*  | R        | T     | U    | App   | Ped* |     |
| 2022-05-03 6:00AM        | 115      | 0    | 0    | 115   | 0     | 5        | 0    | 0  | 5     | 15    | 2        | 105   | 0    | 107   | 16   | 2   |
| 7:00AM                   | 296      | 1    | 0    | 297   | 2     | 13       | 0    | 0  | 13    | 47    | 1        | 302   | 0    | 303   | 34   | 6   |
| 8:00AM                   | 359      | 0    | 0    | 359   | 3     | 30       | 0    | 0  | 30    | 77    | 5        | 507   | 0    | 512   | 24   | 9   |
| 9:00AM                   | 181      | 0    | 0    | 181   | 2     | 14       | 0    | 0  | 14    | 40    | 2        | 230   | 0    | 232   | 3    | 4   |
| 11:00AM                  | 244      | 0    | 0    | 244   | 4     | 32       | 0    | 0  | 32    | 96    | 6        | 229   | 0    | 235   | 6    |     |
| 12:00PM                  | 452      | 0    | 0    | 452   | 1     | 58       | 1    | 0  | 59    | 205   | 10       | 435   | 0    | 445   | 13   | 9   |
| 1:00PM                   | 455      | 0    | 0    | 455   | 1     | 56       | 2    | 0  | 58    | 155   | 9        | 455   | 0    | 464   | 22   | 9   |
| 3:00PM                   | 279      | 0    | 0    | 279   | 0     | 37       | 1    | 0  | 38    | 118   | 6        | 234   | 0    | 240   | 7    |     |
| 4:00PM                   | 571      | 1    | 0    | 572   | 1     | 68       | 2    | 0  | 70    | 296   | 7        | 509   | 0    | 516   | 29   | 11  |
| 5:00PM                   | 559      | 1    | 1    | 561   | 2     | 89       | 4    | 0  | 93    | 244   | 14       | 482   | 1    | 497   | 25   | 1   |
| Total                    | 3511     | 3    | 1    | 3515  | 16    | 402      | 10   | 0  | 412   | 1293  | 62       | 3488  | 1    | 3551  | 179  | 74  |
| % Approach               | 99.9%    | 0.1% | 0%   | -     | -     | 97.6%    | 2.4% | 0% | -     | -     | 1.7%     | 98.2% | 0%   | -     | -    |     |
| % Total                  | 47.0%    | 0%   | 0%   | 47.0% | -     | 5.4%     | 0.1% | 0% | 5.5%  | -     | 0.8%     | 46.6% | 0%   | 47.5% | -    |     |
| Lights and Motorcycles   | 3258     | 0    | 1    | 3259  | -     | 369      | 10   | 0  | 379   | -     | 58       | 3237  | 1    | 3296  | -    | 65  |
| % Lights and Motorcycles | 92.8%    | 0%   | 100% | 92.7% | -     | 91.8%    | 100% | 0% | 92.0% | -     | 93.5%    | 92.8% | 100% | 92.8% | -    | 92. |
| Heavy                    | 173      | 0    | 0    | 173   | -     | 23       | 0    | 0  | 23    | -     | 0        | 152   | 0    | 152   | -    | 3   |
| % Heavy                  | 4.9%     | 0%   | 0%   | 4.9%  | -     | 5.7%     | 0%   | 0% | 5.6%  | -     | 0%       | 4.4%  | 0%   | 4.3%  | -    | 4.  |
| Bicycles on Road         | 80       | 3    | 0    | 83    | -     | 10       | 0    | 0  | 10    | -     | 4        | 99    | 0    | 103   | -    | 1   |
| % Bicycles on Road       | 2.3%     | 100% | 0%   | 2.4%  | -     | 2.5%     | 0%   | 0% | 2.4%  | -     | 6.5%     | 2.8%  | 0%   | 2.9%  | -    | 2.0 |
| Pedestrians              | -        | -    | -    | -     | 15    | -        | -    | -  | -     | 1271  | -        | -     | -    | -     | 179  |     |
| % Pedestrians            | -        | -    | -    | -     | 93.8% | -        | -    | -  | -     | 98.3% | -        | -     | -    | -     | 100% |     |
| Bicycles on Crosswalk    | -        | -    | -    | -     | 1     | -        | -    | -  | -     | 22    | -        | -     | -    | -     | 0    |     |
| Dicycles on Crosswalk    |          |      |      |       |       |          |      |    |       |       |          |       |      |       |      |     |


<sup>\*</sup>Pedestrians and Bicycles on Crosswalk, L: Left, R: Right, T: Thru, U: U-Turn

Page 8 of 8 1 of 8

#### 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Deboto 14 - CUVID - DAING 31 & WINKLEH WIT - INKL.
THE MAY 3, 2022 — 9-30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947989, Location: 45.399403, -75.68617





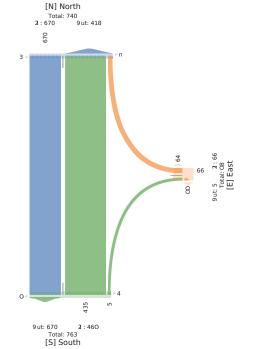
5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5360614-CUVID - DAINS ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022
F M leaf.ngt30 F M h(130 F M6
F:: Aaa--e-19 P)C asi Md/daryr:e-, c eaHy, l ei e-@las-, v kyr:e- ds Bdai , v kyr:e- ds
Adr-Ra£l6
F:: MdHwesG
Intt (110 g), 9dra@lst 1478(1103, H048g85D



|                        | _         |    |    |       |        | _        | _  |    |       |        |              |       |    |       |        | _     |
|------------------------|-----------|----|----|-------|--------|----------|----|----|-------|--------|--------------|-------|----|-------|--------|-------|
| 9eP                    | OdoG      |    |    |       |        | Ja-C     |    |    |       |        | Edu <b>G</b> |       |    |       |        |       |
| mitter Cirls           | EduG. dus | si |    |       |        | S e-Cdus | i  |    |       |        | OdoG. dusi   |       |    |       |        |       |
| Tlwe                   | T         | 9  | W  | FNN   | l ei U | В        | 9  | W  | FNN   | l ei U | В            | T     | W  | FNN   | l ei U | ls C  |
| 2022h04h03 gt30F M     | (3        | 0  | 0  | (3    | 5      | 50       | 0  | 0  | 50    | 5I     | 3            | 5I 0  | 0  | 5I 3  | 2      | 21    |
| gtI 4F M               | 52I       | 0  | 0  | 52I   | 0      | (        | 0  | 0  | (     | 24     | 2            | 54D   | 0  | 54(   | I      | 2(    |
| (t00F M                | (I        | 0  | 0  | (I    | 0      | D        | 0  | 0  | D     | 25     | 0            | 52(   | 0  | 52(   | 2      | 23    |
| (t54F M                | gD        | 0  | 0  | gD    | 2      | D        | 0  | 0  | D     | 5(     | 2            | 505   | 0  | 503   | 5      | 5(    |
| Td@:                   | 3(g       | 0  | 0  | 3(g   | 3      | 33       | 0  | 0  | 33    | D(     | D            | 42D   | 0  | 43I   | (      | (8    |
| * FNvidar)             | 500*      | 0* | 0* | h     | h      | 500*     | 0* | 0* | h     | h      | 573*         | (g7D* | 0* | h     | h      |       |
| * TdG:                 | I52*      | 0* | 0* | I572* | h      | 371*     | 0* | 0* | 37 *  | h      | 07D*         | 4I78* | 0* | 4473* | h      |       |
| 1 c %                  | 07g00     | h  | h  | 07g00 | h      | 07g00    | h  | h  | 07g00 | h      | 07824        | 07g3D | h  | 07g3I | h      | 07g2  |
| 91P)Gasi Md@doryr:e-   | 3DD       | 0  | 0  | 3DD   | h      | 2D       | 0  | 0  | 2D    | h      | 4            | ID(   | 0  | I gI  | h      | gg    |
| * 91P)Gasi Md@loryr:e- | (17D*     | 0* | 0* | (17D* | h      | g57g*    | 0* | 0* | g57g* | h      | D57I*        | (07(* | 0* | (078* | h      | (270* |
| c eaHy                 | 20        | 0  | 0  | 20    | h      | 4        | 0  | 0  | 4     | h      | 0            | 30    | 0  | 30    | h      | 4     |
| * c eaHy               | 470*      | 0* | 0* | 470*  | h      | 5472*    | 0* | 0* | 5472* | h      | 0*           | 47D*  | 0* | 478*  | h      | 47D*  |
| v Iryr:e- ds Bdai      | 5         | 0  | 0  | 5     | h      | 5        | 0  | 0  | 5     | h      | 2            | 5g    | 0  | 20    | h      | 2:    |
| * v lryr:e- ds Bdai    | 073*      | 0* | 0* | 073*  | h      | 370*     | 0* | 0* | 370*  | h      | 2g78*        | 37/*  | 0* | 37D*  | h      | 273*  |
| l ei e-Glas-           | h         | h  | h  | h     | 3      | h        | h  | h  | h     | D4     | h            | h     | h  | h     | (      |       |
| * 1 ei e-Glas-         | h         | h  | h  | h     | 500*   | h        | h  | h  | h     | (I7(*  | h            | h     | h  | h     | 500*   |       |
| v Iryr:e- ds AodRa:L   | h         | h  | h  | h     | 0      | h        | h  | h  | h     | I      | h            | h     | h  | h     | 0      |       |
| * v lryr:e- ds AodRa:L | h         | h  | h  | h     | 0*     | h        | ŀ  | h  | h     | 475*   | h            | h     | h  | h     | 0*     |       |
|                        |           |    |    |       |        |          |    |    |       |        |              |       |    |       |        |       |

<sup>U</sup>l ei e-@las- asi v lryr:e- ds Aod--Ra:L79t 9ebÇBt B1P) ÇTt T) ou, Wt WhTuos


2 of 8 3 of 8

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022

AM Peak (8:30 AM -9:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947989, Location: 45.399403, -75.68617



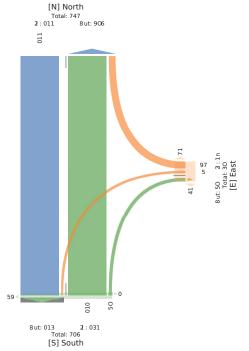


5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022
Mfl lay Lean g ZiB0 LM (tiB0 LM6
: Ak- A9599 giP (90 as I Mi G dryo As I reacy, Lel e9 (Jas S, Hiōyo As 9 is vial, Hiōyo As 9 is - d 995a As 6
: A Whice Res 9
k hml Dram 1 i oa (fish 1786 mml 03, (DF 8545 t D

| Ldi cff el. yh- IVŷ i bf (GaB)<br>t 00 - i s9@Abd ff s kc<br>OeNeas, f O, p 2K 76m - : |
|----------------------------------------------------------------------------------------|
| ,, p =, .                                                                              |
|                                                                                        |

| 1eP                      | Oi dCi      |    |    |        |       | Ja9C      |       |    |       |       | Ei uŒ     |       |    |        |       |             |
|--------------------------|-------------|----|----|--------|-------|-----------|-------|----|-------|-------|-----------|-------|----|--------|-------|-------------|
| k RieoŒis                | Ei uG. i us | sl |    |        |       | S e9Ciusl |       |    |       |       | Oid).iusl |       |    |        |       |             |
| TIRe                     | Т           | 1  | W  | : NN   | Lel U | v         | 1     | W  | : NN  | Lel U | v         | T     | W  | : NN   | Lel U | <b>v</b> εC |
| 2022(07(03 t 2lB0LM      | t 0D        | 0  | 0  | t 0D   | 0     | t3        | t     | 0  | tΙ    | 73    | 7         | t 0m  | 0  | ttI    | 5     | 237         |
| t 2H 7LM                 | t 25        | 0  | 0  | t 25   | 0     | t D       | 0     | 0  | t D   | Im    | 3         | t t m | 0  | t 22   | 0     | 257         |
| t l00LM                  | ttm         | 0  | 0  | ttm    | 0     | t5        | 0     | 0  | t5    | 3t    | 3         | t 2D  | 0  | t 30   | I     | 257         |
| t lt 7LM                 | ttI         | 0  | 0  | ttI    | 0     | t3        | 0     | 0  | t3    | Im    | t         | t 0m  | 0  | tt0    | m     | 230         |
| Ti QA                    | I 55        | 0  | 0  | I 55   | 0     | 7m        | t     | 0  | 50    | t 42  | t 2       | I5I   | 0  | I DS   | t m   | t 002       |
| * : NNi ao)              | t 00*       | 0* | 0* | (      | (     | m#88*     | t 8D* | 0* | (     | (     | 287*      | nD87* | 0* | (      | (     | (           |
| * Ti G/                  | I 587*      | 0* | 0* | I 587* | (     | 78n#      | * 80  | 0* | 580*  | (     | t 82*     | I588* | 0* | I D87* | (     | (           |
| Lr %                     | 08n82       | (  | (  | 0an82  | (     | 08454     | 02270 | (  | 08142 | (     | 08770     | 08n82 | (  | 08x8t  | (     | 08mi3       |
| 1 PP) © asl Mi€doyoAe9   | 121         | 0  | 0  | I2I    | (     | 72        | t     | 0  | 73    | (     | t t       | I3t   | 0  | II2    | (     | nt n        |
| * 1PP) Oasl Mi@doyo&e9   | nt 80*      | 0* | 0* | nt 80* | (     | 448 *     | t 00* | 0* | 448*  | (     | nt 8D*    | n28n# | 0* | n28ı#  | (     | mt 8D*      |
| r eacy                   | 3t          | 0  | 0  | 3t     | (     | D         | 0     | 0  | D     | (     | 0         | 20    | 0  | 20     | (     | 74          |
| * r eacy                 | 58D*        | 0* | 0* | 58D*   | (     | tt8m*     | 0*    | 0* | tt8D* | (     | 0*        | 188*  | 0* | 182*   | (     | 781*        |
| HRoyo.Ae9is vial         | t t         | 0  | 0  | tt     | (     | 0         | 0     | 0  | 0     | (     | t         | t 3   | 0  | tΙ     | (     | 27          |
| * HRoyo Az9is vial       | 28 *        | 0* | 0* | 28*    | (     | 0*        | 0*    | 0* | 0*    | (     | 48*       | 284*  | 0* | 28n#   | (     | 287*        |
| Lel e9@fas9              | (           | (  | (  | (      | 0     | (         | (     | (  | (     | t 4t  | (         | (     | (  | (      | t m   |             |
| * Lel e9@las9            | (           | (  | (  | (      | (     | (         | (     | (  | (     | m87*  | (         | (     | (  | (      | t 00* | (           |
| HlōyoAz9 i s - di 99BaAu | (           | (  | (  | (      | 0     | (         | (     | (  | (     | ī     | (         | (     | (  | (      | 0     |             |
| * HRyoAr9is - di99BaAn   | (           | (  | (  | (      | (     | (         | (     | (  | (     | 087*  | (         | (     | (  | (      | 0*    | (           |

ULel e9@las9asl HlöyoAs9is - di 99BaAs81h1ebÇvhvlP)ÇThT)du, WhW(Tuds


4 of 8

#### 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5300014 - CUVID - DAING SI @ MURICHE WAY - MAY... - INC.
Tue May 3, 2002 - MAPPay kea( 8 2-30 kM 9: -30 kM)
1 Gs Gillel & Aghti an P Middoryr@L, c eatly, kePelto\nnl, v Ayr@Ldn BdaP, v Ayr@Ldn sdilRac()
1 (CMdfewent.
nb - D47D5D) i drat\nln-4. GDD003, 97. G51: 7





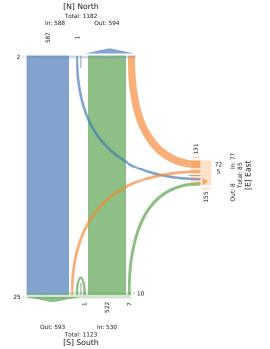


#### 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Tue May 3, 2022 FM Feal Ing h FM (hg h FM6(: Ae-a9Feal 1 Pu-) 9 CClasses II dur o aH/ MPdP-B/Bhs, 1 ea/sy, Fevese-daHs, RdbyBhs PHwPav, RdbyBhs PH C-Pssk ad 6

) 9MPAemeHs IDg4n7484, i PBacPHgnh5344n03, (7h5 8. t 7

| i eo                      | OP-a      |       |    |       |       | J asc    |        |    |       |       | EPua     |       |       |       |       |     |
|---------------------------|-----------|-------|----|-------|-------|----------|--------|----|-------|-------|----------|-------|-------|-------|-------|-----|
| Dd-eBrdPH                 | EPua bPul | Hv    |    |       |       | S esdPuF | Š/     |    |       |       | OP-α bPu | ΗV    |       |       |       |     |
| Tdne                      | T         | i     | W  | ) NN  | FevU  | W        | i      | W  | ) NN  | FevU  | W        | T     | W     | ) NN  | FevU  | IHc |
| 2022(0h(03 ng hFM         | t3t       | 0     | 0  | t3t   | 0     | t 4      | t      | 0  | 20    | . 4   | 0        | t n3  | 0     | t n3  | n     | 2   |
| ng80FM                    | t.t       | 0     | 0  | t.t   | t     | t3       | 0      | 0  | t3    | . 7   | t        | tt7   | 0     | 118   | h     | 2   |
| ngnhFM                    | t nh      | 0     | 0  | t nh  | 0     | t 8      | t      | 0  | t 4   | 84    | t        | t 3n  | 0     | t 3h  | t n   | - 2 |
| hg0FM                     | t h0      | t     | 0  | t ht  | t     | 22       | 3      | 0  | 2h    | 1.    | h        | t 28  | t     | t 3n  | t 2   |     |
| TPas                      | h87       | t     | 0  | h88   | 2     | 72       | h      | 0  | 77    | 28.   | 7        | h22   | t     | h30   | 3h    | t   |
| * ) NN-PaBr               | 4438*     | 052*  | 0* | (     | (     | 435h*    | . 5h*  | 0* | (     | (     | t 53*    | 485h* | 052*  | (     | (     |     |
| * TPas                    | n43:*     | 05 *  | 0* | n452* | (     | . 50*    | 05n*   | 0* | . 5n* | (     | 05*      | n357* | 03 *  | nn5n* | (     |     |
| F1 %                      | 03848     | (     | (  | 05848 | (     | 057. t   | 05nt 7 | (  | 05720 | (     | 053h0    | 0988. | 052h0 | 05400 | (     | 05  |
| i dor os aHv MPdP-ByBBes  | hn4       | 0     | 0  | hn4   | (     | . h      | h      | 0  | 70    | (     | 7        | n4t   | t     | n44   | (     | t   |
| * i dores aHv MPdP-ByBBes | 435h*     | 0*    | 0* | 435n* | (     | 4053*    | t 00*  | 0* | 4054* | (     | t 00*    | 4n3 * | t 00* | 4n52* | (     | 43  |
| 1 eaAy                    | t h       | 0     | 0  | t h   | (     | 2        | 0      | 0  | 2     | (     | 0        | t 2   | 0     | t2    | (     |     |
| * 1 eaAy                  | 25 *      | 0*    | 0* | 25 *  | (     | 25B*     | 0*     | 0* | 25 *  | (     | 0*       | 253*  | 0*    | 253*  | (     | 2   |
| RdByBBes PHwPav           | 23        | t     | 0  | 2n    | (     | h        | 0      | 0  | h     | (     | 0        | t 4   | 0     | t 4   | (     |     |
| * RdByBBes PHwPav         | 354*      | t 00* | 0* | n3 *  | (     | . 54*    | 0*     | 0* | . 5h* | (     | 0*       | 35 *  | 0*    | 35 *  | (     | n   |
| Feveso-diHs               | (         | (     | (  | (     | 2     | (        | (      | (  | (     | 283   | (        | (     | (     | (     | 3h    |     |
| * Feveso-daHs             | (         | (     | (  | (     | t 00* | (        | (      | (  | (     | 4450* | (        | (     | (     | (     | t 00* |     |
| RdByBles PHC-Pssk a9      | (         | (     | (  | (     | 0     | (        | (      | (  | (     | 3     | (        | (     | (     | (     | 0     |     |
| * RdByB9es PHC-Pssk a9    | (         | (     | (  | (     | 0*    | (        | (      | (  | (     | t 50* | (        | (     | (     | (     | 0*    |     |


UFevesc-daHs aHv RdByBBes PHC-Pssk ag 5i gi efc, wgwdorc, TgTr-u, WgW(Tu-H

6 of 8

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2021 9 - 8 - AM) 91 Cesall.AeaPi gus
AM AeaPi (8 - AM 9-8 - AM) 91 Cesall.AeaPi gus
Hit Lamend loct dia vB Mgigls/Ren, i eaCy, AeBenbloavn, wdkyRlen gv mgaB, wdkyRlen gv
t sgml aIP)
Hit MgcDevth
47 85(, 565, dgRalfqv8(- B55(03, 9 - b6b: .





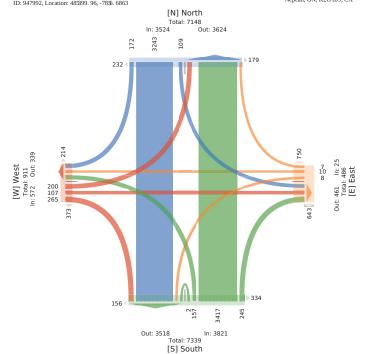
5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANKS 1 (@ HULMWOULD AVE - mi... - mi...
The May 3, 202 Fall Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947992, Location: 48599. 96, -785s. 6863



7 of 8

| Leg                     | North  |       |      |    |       |       | East     |       |          |      |       |       | South  |        |      |        |       |        | West    |       |         |          |          | 1   |
|-------------------------|--------|-------|------|----|-------|-------|----------|-------|----------|------|-------|-------|--------|--------|------|--------|-------|--------|---------|-------|---------|----------|----------|-----|
| Direction               | Southb | ound  |      |    |       |       | Westbo   | und   |          |      |       |       | Northb | ound   |      |        |       |        | Eastbox | ind   |         |          |          |     |
| Time                    | R      | T     | L    | U  | App   | Ped*  | R        | T     | L        | U    | App   | Ped*  | R      | T      | L    | U      | App   | Ped*   | R       | T     | L       | U Ap     | p Ped⁴   | Int |
| 2022-08-03 6:00AM       | 9      | 108   | 3    | 0  | 117   | 8     | 0        | 0     | 0        | 0    | 0     | 1.    | 2      | 99     | 7    | 0      | 10.   | 6      | 11      | 0     | 7       | 0 1      | . 12     | 2   |
| 7:00AM                  | 10     | 260   | 3    | 0  | 273   | 11    | 0        | 1     | 1        | 0    | 2     | 46    | 6      | 299    | -    | 0      | 313   | 21     | 32      | 2     | 20      | 0 8      | 4 23     | 6   |
| .:00AM                  | 20     | 331   | 11   | 0  | 362   | 30    | 2        | 3     | 0        | 0    | 8     | . 2   | 23     | 496    | 10   | 0      | 829   | 42     | 26      | 19    | 22      | 0 6      | 7 81     | 9   |
| 9:00AM                  | 10     | 169   | 2    | 0  | 1.1   | 18    | 0        | 2     | 0        | 0    | 2     | 41    | 10     | 227    | 11   | 1      | 249   | 1.     | 14      |       | 12      | 0 3      | 4 28     | 4   |
| 11:00AM                 | 10     | 219   | -    | 0  | 237   | 28    | 1        | 0     | 1        | 0    | 2     | 106   | 12     | 227    | 9    | 0      | 24.   | 24     | 16      | 4     | 9       | 0 2      | 9 27     | 8   |
| 12:00PM                 | 19     | 436   | 1.   | 0  | 473   | 73    | 2        | 2     | 0        | 0    | 4     | 223   | 32     | 437    | 18   | 0      | 4.4   | 79     | 27      | 13    | 3.      | 0 7      | . 106    | 10  |
| 1:00PM                  | 26     | 416   | 13   | 0  | 488   | 4.    | 1        | 0     | 1        | 0    | 2     | 206   | 30     | 484    | 29   | 0      | 813   | 80     | 3.      | 18    | 21      | 0 7      | 4 .6     | 10  |
| 3:00PM                  | 12     | 266   | 10   | 0  | 2     | 29    | 0        | 0     | 1        | 0    | 1     | 132   | 21     | 242    | 12   | 0      | 278   | 40     | 17      | 10    | 18      | 0 4      | 2 8.     | 6   |
| 4:00PM                  | 28     | 821   | 24   | 0  | 870   | 77    | 0        | 1     | 3        | 0    | 4     | 266   | 81     | 468    | 30   | 0      | 846   | 112    | 47      | 19    | 32      | 0 9      | . 97     | 12  |
| 8:00PM                  | 31     | 820   | 17   | 0  | 86.   | 9.    | 1        | 1     | 1        | 0    | 3     | 273   | 8.     | 471    | 26   | 1      | 886   | 9.     | 37      | 17    | 24      | 0 7      | . 102    | 12  |
| Total                   | 172    | 3243  | 109  | 0  | 3824  | 411   | 7        | 10    | -        | 0    | 28    | 1393  | 248    | 3417   | 187  | 2      | 3. 21 | 490    | 268     | 107   | 200     | 0 87     | 2 8.7    | 79  |
| % Approach              | 459%   | 9250% | 351% | 0% | -     | -     | 2. 50% 4 | 1050% | 3250% (  | 196  |       | -     | 654%   | . 954% | 451% | 051%   |       | -      | 4653%   | 1.57% | 3850% ( | 196      |          | П   |
| % Total                 | 252%   | 405 % | 154% | 0% | 1451% |       | 051%     | 051%  | 051% (   | 196  | 053%  | -     | 351%   | 4350%  | 250% | 0%     | 1.51% | -      | 35%     | 153%  | 258% (  | 1% 7529  | 6        |     |
| Lights and Motorcycles  | 164    | 3027  | 108  | 0  | 3296  |       | 2        | 0     | 0        | 0    | 2     | -     | 227    | 3164   | 144  | 2      | 3837  | -      | 244     |       | 191     | 0 82     | 3        | 73  |
| % Lights and            |        |       |      |    |       |       |          |       |          |      |       |       |        |        |      |        |       |        |         |       |         |          |          |     |
| Motorcycles             |        |       |      |    |       |       | 2.56%    | 0%    | 0% 0     |      | . 50% | -     | 9257%  |        | 915% | 100% 5 |       |        |         |       | 9898% ( | 1% 91549 |          | 923 |
| Heavy                   | 3      | 147   |      | 0  | 182   |       | 0        | 0     | 1        | 0    | 1     | -     | 1      | 176    | 4    | 0      | 1.1   |        | 12      | 3     |         | 0 2      | _        | - 3 |
| % Heavy                 | 157%   |       | 15 % |    | 43%   |       | 0%       |       | 1258% (  | 196  | 450%  | -     | 054%   |        | 298% |        | 457%  |        |         |       | 450% (  | 1% 4509  |          | 49  |
| Bicycles on Road        | 8      | 69    |      | 0  | 76    |       | 8        | 10    | 7        | 0    | 22    | -     | 17     | 77     | 9    | 0      | 103   |        | 9       | 16    | 1       | 0 2      | _        | - 2 |
| % Bicycles on Road      | 259%   | 23%   | 15 % | 0% | 252%  |       | 7154%    | 100%  | . 798% ( | 196. | . 50% | -     | 639%   | 253%   | 857% | 0%     | 257%  |        | 354%    | 1850% | 058% (  | 1% 4989  |          | 25  |
| Pedestrians             | -      |       |      | -  | -     | 3. 6  | -        |       | -        | -    | -     | 1364  | -      | -      | -    | -      | -     | 4.0    |         | -     | -       |          | - 877    |     |
| % Pedestrians           | -      |       |      | -  | -     | 9359% | -        |       | -        | -    | - 5   | 9759% | -      | -      | -    | -      | - 5   | 9. 50% |         | -     | -       |          | - 9. 58% |     |
| Bicycles on Crosswalk   | -      |       |      | -  | -     | 28    | -        |       | -        | -    | -     | 29    | -      | -      | -    | -      | -     | 10     |         | -     | -       |          | - 10     |     |
| % Bicycles on Crosswalk | -      |       |      | -  |       | 651%  |          |       |          |      |       | 251%  | -      |        |      |        |       | 250%   |         |       |         | -        | - 157%   |     |


\*Pedestrians and Bicycles on Crosswalk5L; Left, R; Right, T; Thru, U; U-Turn

8 of 8 1 of 8

#### 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5360614 - CUVID - DAINN 31 & HOLLWWOOD AVE - M... - INNC Tue May 3, 2022 — 9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 947992, Location: 485399. 96, -7856. 6863

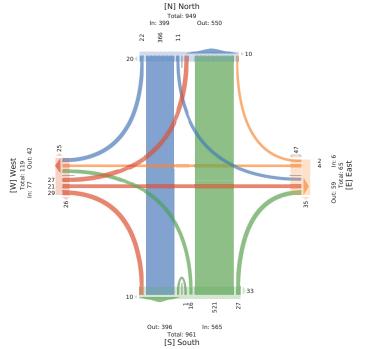




#### 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC



| 9eP                         | CobO   |       |       |     |        |        | Ja-C  |       |     |    |      |         | EduG  |       |        |       |        |        | S e-C |       |       |      |       |        |      |
|-----------------------------|--------|-------|-------|-----|--------|--------|-------|-------|-----|----|------|---------|-------|-------|--------|-------|--------|--------|-------|-------|-------|------|-------|--------|------|
| mker Ods                    | EduG 5 | dusi  |       |     |        |        | S e-G | lus i |     |    |      |         | OdoG5 | dusi  |        |       |        |        | Ja-Gd | lus i |       |      |       |        |      |
| The                         | В      | Т     | 9     | W   | FNN    | l ei U | В     | Т     | 9   | W  | FNN  | l ei U  | В     | T     | 9      | W     | FNN    | l ei U | В     | T     | 9     | W    | FNN   | l ei U | ls C |
| 2022h04h03 gt30F M          | I      | gf    | I     | 0 0 | (2     | I      | 2     | 0     | 0   | 0  | 2    | f8      | 8     | f3(   | 2      | 0     | fID    | (      | I     | (     | 8     | 0    | f(    | f8     | 28   |
| gtI 4F M                    | g      | ff8   | 2     | 0   | f 28   | ff     | 0     | 2     | 0   | 0  | 2    | 24      | ff    | f 44  | 3      | 0     | f8(    | f8     | ff    | I     | (     | 0    | 21    | f0     | 32   |
| (t00F M                     | D      | (2    | . 0   | 0   | ((     | f0     | 0     | f     | 0   | 0  | f    | 2f      | 4     | ff(   | g      | f     | f33    | 4      | f0    | 8     | D     | 0    | 23    | f2     | 2    |
| (tf 4F M                    | 3      | DE    | ) 2   | 0   | g2     | 4      | 0     | f     | 0   | 0  | f    | 20      | 4     | f0g   | 3      | 0     | ff8    | f3     | I     | 2     | 4     | 0    | ff    | f 3    | 2f   |
| TdG:                        | 22     | 388   | ff    | 0   | 3((    | 30     | 2     | I     | 0   | 0  | 8    | g2      | 2D    | 42f   | f8     | f     | 484    | 13     | 2(    | 2f    | 2D    | 0    | DD    | 4f     | fO   |
| * FNNdar)                   | 474*   | (f7D* | 2%+   | 0+  | h      | h      | 3373* | 887D° | 0+  | 0+ | h    | h       | 17g+  | (272* | 27g+   | 072*  | h      | h      | 3DID+ | 2D3+  | 347 * | 0+   | h     | h      |      |
| * TdG:                      | 27 *   | 3470* | f 7 * | 0*  | 3g7f * | h      | 072*  | 07.*  | 0+  | 0+ | 078* | h       | 278*  | I(7g* | f 74*  | 07F+  | 41 70° | h      | 27g*  | 270*  | 27B*  | 0*   | DR+   | h      |      |
| 1 c %                       | 07Bgg  | 070(3 | 073(3 | h   | 070(8  | h      | h     | ŀ     | ı l | h  | h    | h       | 0788D | 07g2f | 07 3g  | 07240 | 07428  | h      | 0784( | 07448 | 07040 | h (  | 07g28 | h      | 078  |
| 9 IP) G asi MdGdcryr:e-     | 2f     | 311   | ff    | 0   | 3DB    | h      | 0     | 0     | 0   | 0  | 0    | h       | 2I    | IDE   | f3     | f     | 4f 0   | h      | 2g    | 20    | 21    | 0    | ID2   | h      | (4   |
| * 9 IP) G asi<br>MdQdryr:e- | (474*  | (I70+ | f 00* | 0+  | (172*  | h      | 0*    | 0*    | 0+  | 0+ | 0+   | h       | gg (* | (078* | gf 73* | f 00* | (073*  | h      | (878* | (472* | gg7*  | 0+ ( | 374*  | h      | (f74 |
| c eaHy                      | f      | 2f    | 0     | 0   | 22     | h      | 0     | 0     | 0   | 0  | 0    | h       | 0     | 31    | f      | 0     | 34     | h      | f     | 0     | 3     | 0    | I     | h      |      |
| * c eaHy                    | 174*   | 47D*  | 0+    | 0+  | 474*   | h      | 0+    | 0+    | 0+  | 0+ | 0+   | h       | 0*    | 874*  | 873*   | 0+    | 872*   | h      | 37.*  | 0+    | ff7e  | 0+   | 472*  | h      | 4%   |
| v Iryr:e- ds Bdai           | 0      | f     | 0     | 0   | f      | h      | 2     | I     | 0   | 0  | 8    | h       | 3     | f4    | 2      | 0     | 20     | h      | 0     | f     | 0     | 0    | f     | h      |      |
| * v Iryr:e- ds Bdai         | 0+     | 073*  | 0+    | 0*  | 073*   | h      | f00*  | f00*  | 0+  | 0+ | f00* | h       | ff7+  | 27(*  | f 274* | 0+    | 374*   | h      | 0+    | 17g*  | 0+    | 0*   | f 73* | h      | 270  |
| l ei e-Glas-                | h      |       | 1 1   | ı h | h      | 24     | h     | ŀ     | ı l | h  | ı h  | IB      | h     | h     | 1      | ı h   | h      | Ιf     | h     | ı h   | ı h   | h    | h     | 40     |      |
| * l ei e-Ghs-               | h      | - 1   | 1 1   | n h | h      | g373*  | h     | ŀ     | ı l | h  | h h  | g(70*   | h     | h     | ŀ      | h h   | h      | (473*  | h     | h h   | h     | h    | h     | (g70*  |      |
| v Iryr:e- ds AndRa:L        | h      | - 1   | 1 1   | n h | h      | 4      | h     | ŀ     | ı l | h  | h h  | (       | h     | h     | ŀ      | h h   | h      | 2      | h     | h h   | h     | h    | h     | f      |      |
| * v lryr:e- ds AddRa:L      | h      | - 1   | 1 l   | ı h | h      | f 87D* | h     | ŀ     | 1   | h  | h hi | f f 70* | h     | h     | 1      | n h   | h      | 17D°   | h     | n h   | ı h   | h    | h     | 270+   |      |


<sup>U</sup>l ei e-@las- asi v Iryr:e- ds Aod--Ra:L79t 9e.ÇBt BIP)ÇTt T) ou, Wt WhTuos

2 of 8

#### 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
Tue May 3, 2022
AM Peak (8:30 AM - 9:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on
Crosswalk)
All Movements
ID: 947992, Location: 45.399896, -75.686563





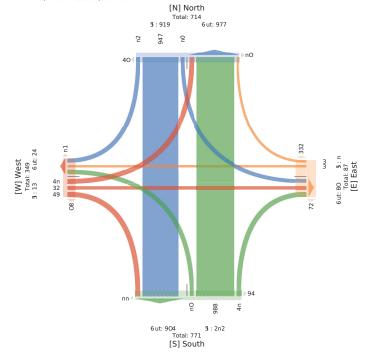
#### 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC Tue May 3, 2020 LM (t180 LM6 : A - A999-0 g 1970 osl Mi G dvyo-k-9, reacy, Lele9Glas9, HByo-k-9 is vial, HByo-k-9 is - d-989-a-M6 : AMMI ceRe G vk hrd Dm2, 11 caGl sh1478mm8n5, (DK7885453

| <b>Ottawa</b>             |
|---------------------------|
| Lolc Flel.yh-Rÿibf CGaBa  |
| t00 -is9@AACEskd,         |
| OeNeas, f O, p 2K 4Gm - : |

3 of 8

| we min Dinz, 11 ond           |       |        | , (   |     |        |       |       |       |     |      |      |       |       |        |                     |      |         |     |        |        |       |      |        |       |        |
|-------------------------------|-------|--------|-------|-----|--------|-------|-------|-------|-----|------|------|-------|-------|--------|---------------------|------|---------|-----|--------|--------|-------|------|--------|-------|--------|
| 1 eP                          | Oi dG |        |       |     |        |       | J a9C |       |     |      |      |       | Ei uG |        |                     |      |         | П   | S e9C  |        |       |      |        |       |        |
| k RiboŒi s                    | Ei uG | i usl  |       |     |        |       | S e9C | usl   |     |      |      |       | Oidŋ. | iusl   |                     |      |         |     | Ja9Cit | asl    |       |      |        |       |        |
| TIRe                          | v     | T      | 1     | W   | : NN   | Lel U | v     | 7     | 1   | W    | : NN | Lel U | v     | T      | 1                   | W    | : NN Le | lU  | v      | T      | 1     | W    | : NN   | Lel U | иC     |
| 2022(04(03 t 2lB0LM           | 8     | n8     | 3     | 0   | t 0m   | t 8   | 0     |       | 0   | 0    | 0    | I 4   | D     | tt5    | 4                   | 0    | t 28    | 28  | m      | 3      | m     | 0    | 2t     | 30    | 24     |
| t 2H 4LM                      | t     | t 23   | t t   | 0   | t 34   | 21    | t     | t     | 0   | 0    | 2    | 58    | D     | tt2    | 4                   | 0    | t 2I    | t 5 | 5      | 4      | t 2   | 0    | 23     | 23    | 28     |
| t h00LM                       | n     | t OE   | 2     | 0   | tt8    | t t   | 0     |       | 0   | 0    | 0    | 10    | t O   | t 25   | D                   | 0    | tI3     | t 4 | t 2    | 3      | 4     | 0    | 20     | 30    | 28     |
| t lt 4LM                      | Е     | ttt    | I     | 0   | t 22   | t t   | 0     |       | 0   | 0    | 0    | 4D    | 8     | tt2    | t 0                 | 0    | t 30    | 5   | D      | I      | 5     | 0    | t D    | 2t    | 250    |
| Ti QA                         | . 24  | I 3m   | 20    | 0   | 181    | 5I    | t     | t     | 0   | 0    | 2    | 2t 0  | 32    | 155    | 2D                  | 0    | 424     | 54  | 3I     | t 4    | 32    | 0    | 8t     | t OI  | t Omi  |
| * : NNi ao)                   | 472*  | m07D*  | 17*   | 0*  | (      | (     | 4070* | 4070* | 0*  | 0*   | (    | (     | 57.*  | 8878*  | 47.*                | 0*   | (       | (   | I 270* | t 874* | 3m4*  | 0*   | (      | (     |        |
| * Ti GA                       | 273*  | I 072* | t 76* | 0*  | 1178*  | (     | 07.*  | 07.*  | 0*  | 0*   | 072* | (     | 27m²  | 127D°  | 274*                | 0* : | 187 *   | (   | 37.*   | t 7 *  | 27m²  | 0*   | DI +   | (     |        |
| Lr %                          | 0.5mi | 07h0t  | 07/44 | (   | 07n94  | (     | (     |       | (   | (    | (    | (     | 0785t | 07h25  | 0.75mi              | (    | 07h2m   | (   | 07800  | 07000  | 0755D | (    | 8 1870 | (     | 0.754  |
| 1 IP) (9 as l Mi Cidoyo Ar9   | 24    | 3n8    | t m   | 0   | 112    | (     | 0     | (     | 0   | 0    | 0    | (     | 30    | I 24   | 21                  | 0    | I Dm    | (   | 32     | t2     | 32    | 0    | IΒ     | (     | mni    |
| * 1 EP) © asl<br>Mi Cobyo Ar9 | t 00* | m07D*  | n#70* | 0*  | mt 73* | (     | 0+    | 0*    | 0*  | 0*   | 0*   | (     | n878* | mt 72* | 887 <del>11</del> * | 0* : | nt 72*  | (   | mi7 *  | 8070*  | t 00* | 0* r | 1878*  | (     | mt 73* |
| r eacy                        | 0     | 3t     | t     | 0   | 32     | (     | 0     |       | 0   | 0    | 0    | (     | t     | 32     | t                   | 0    | 31      | (   | 0      | 2      | 0     | 0    | 2      | (     | 5      |
| * r eacy                      | 0*    | DR *   | 470*  | 0*  | 575*   | (     | 0*    | 0*    | 0*  | 0*   | 0*   | (     | 37.*  | 57hf*  | 37D*                | 0*   | 574*    | (   | 0*     | t 373* | 0*    | 0*   | 274*   | (     | 572*   |
| HRyoA9is vial                 | 0     | t 0    | 0     | 0   | t O    | (     | t     | t     | 0   | 0    | 2    | (     | t     | m      | 1 2                 | 0    | t2      | (   | 2      | t      | 0     | 0    | 3      | (     | 21     |
| * HRoyoAr9is vial             | 0*    | 273*   | 0*    | 0*  | 27.*   | (     | t 00* | t 00* | 0*  | 0* 1 | *00  | (     | 37.*  | t 7hf  | DH +                | 0*   | 278*    | (   | 47hf   | 57D*   | 0*    | 0*   | 37D*   | (     | 274*   |
| Lel e9@las9                   | (     | (      | (     | (   | (      | 52    | (     |       | (   | (    | (    | 208   | (     | (      | (                   | (    | (       | 54  | (      | (      | (     | (    | (      | t 02  |        |
| * Lel e9dlis 9                | (     | (      | (     | (   | (      | пБ7пт | (     |       | (   | (    | (r   | *Orm  | (     | (      | (                   | (    | (t0     | )+  | (      | (      | (     | (    | (n     | 67 °  |        |
| HRiyoAe9 i s - di 99BaAa      | (     | (      | (     | (   | (      | 2     | (     |       | (   | (    | (    | 2     | (     | (      | (                   | (    | (       | 0   | (      | (      | (     | (    | (      | 2     |        |
| * HRyoAr9 is - di99BaAs       | (     | - (    | (     | - ( | (      | 37.*  | (     |       | - ( | (    | - (  | t 70* | (     | (      | (                   | (    | ( )     | )+  | (      | (      | (     | - (  | (      | t 7hf |        |


ULel e9@Bas9asl HRoyoAe9is - di 99BaAh71h1ebÇvhv IP) ÇThT) du, WhW(Tuds

4 of 8 5 of 8

#### 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

- 5360614 COVID DAING ST & HOLLWWOOD AVE M... TWIC The May 3, 2022 MSP3 1 & HOLLWWOOD AVE M... TWIC The May 3, 2022 MSP3 1 & HOLLWWOOD AVE M... TWIC MSP 1 & Gallel & Both and P. Michael & M. A. Salvelland & M. Salvell

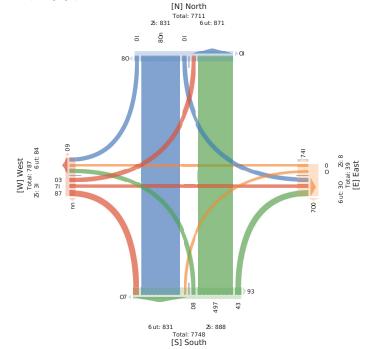




5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

3508014 - COVID - SANN ST & FILLIAWOOD AVE - M... - TIME.
THE MBy 3, 2022
FM Feal Ing h FM ( hg h FM6( : Ae-#9Feal 1 Pu9 9CSasses it dors alb/ MP4-ByBts, 1 ea/y, Fevesc-di-H, RdbyBts PHwPav, RdbyBts PH
C-Psk at 6 6
9 9MP/PemeHs
IDg4n7442, i PBadPHgnhB4454, , (7h8 5. h. 3

| Ottawa                      |
|-----------------------------|
| F-PAdvev bygCdry Pf: ccak a |
| t 00 CPHsœ9acdPHD-,         |
| OeNeaH,: O, p 2K hGl, C)    |
|                             |
|                             |


| i eo                                | OP-œ    |       |       |      |       |       | J as | ic      |        |      |      |       | EPua   |       |        |      |       |       | S esc   |        |       |      |        |        |      |
|-------------------------------------|---------|-------|-------|------|-------|-------|------|---------|--------|------|------|-------|--------|-------|--------|------|-------|-------|---------|--------|-------|------|--------|--------|------|
| DdeBdPH                             | EPua b  | PuHv  |       |      |       |       | S e  | scbPuHv |        |      |      |       | OP-arb | PuH/  |        |      |       |       | J asd P | υHν    |       |      |        |        |      |
| Tdne                                | W       | T     | i     | W    | ) NN  | FevU  | w    | T       | i      | W    | ) NN | FevU  | w      | T     | i      | W    | ) NN  | FevU  | w       | T      | i     | W    | ) NN   | FevU   | IHt  |
| 2022(0h(03 ng hFM                   | h       | ttn   | 5     | 0    | t 27  | 22    | 0    | 0       | t      | 0    | t    | 7h    | t 2    | t 25  | -      | 0    | t n.  | 30    | t n     | 7      | 5     | 0    | 24     | 23     | 300  |
| ng80FM                              | 5       | t n7  | 4     | 0    | t.n   | 20    | 0    | t       | 0      | 0    | t    | . n   | tt     | tt4   | n      | 0    | t 3n  | t 5   | t n     | 3      | n     | 0    | 2t     | t7     | 32   |
| ngnhFM                              | 7       | t 33  |       | 0    | t n.  | t.    | 0    | 0       | 2      | 0    | 2    | . 5   | t3     | ttn   | 5      | 0    | t 3h  | 3h    | t t     | n      | t t   | 0    | 2.     | 27     | 30   |
| hg00FM                              | 7       | t n2  | n     | 0    | th3   | 32    | 0    | t       | 0      | 0    | t    | 72    | t 3    | t 20  | 7      | 0    | t n0  | 37    | t 2     | 3      |       | 0    | 2t     | 27     | 3t   |
| TPa9                                | 27      | h3.   | 27    | 0    | h40   | 40    | 0    | 2       | 3      | 0    | h    | 274   | n4     | n5t   | 2h     | 0    | hhh   | t 20  | ht      | t 7    | 24    | - 0  | 47     | 4n     | t 2n |
| * ) NN-PaBr                         | n8 *    | 4085* | n8 *  | 0*   | (     | (     | 0*   | *080n   | . 080+ | 0*   | (    | (     | 585*   | 5.87* | n8h*   | 0*   | (     | (     | h28 *   | t 78h+ | 2484* | 0*   | (      | (      |      |
| * TPa9                              | 282*    | n380* | 282*  | 0* 1 | 1788* | (     | 0*   | *280    | 082*   | 0*   | 08h* | (     | 384*   | 358 * | 280*   | 0* : | nn8h* | (     | n@ *    | t äh+  | 288*  | 0*   | 785*   | (      |      |
| F1 %                                | 085h7   | 0840. | 08722 | (    | 05543 | (     | (    | (       | (      | (    | (    | (     | 08#t 7 | 0842h | 085h7  | (    | 08425 | (     | 0&7h    | 08h7t  | 08 h4 | (    | 0854 0 | (      | 084. |
| i dores aHv MPdP-ByBBes             | 2n      | h0h   | 2h    | 0    | hhn   | (     | 0    | 0       | 0      | 0    | 0    | (     | nn     | nh.   | 2n     | 0    | h2n   | (     | n5      | t.     | 24    | 0    | 43     | (      | tt7  |
| * idbresaHv<br>MPdP-ByBBes          |         | 4n82* | 428 * | 0+ 4 | 1384* | (     | 0*   | 0*      | 0+     | 0*   | 0+   | (     | 5485*  | 4n&*  | 4. 80* | 0* . | 4n8n* | (     | 4n8 *   | 4n8 +  | t 00* | 0+ 4 | 4h81*  | (      | 4384 |
| 1 eaAy                              | 0       | t 3   | t     | 0    | t n   | (     | 0    | 0       | 0      | 0    | 0    | (     | 0      | t n   | 0      | 0    | t n   | (     | t       | 0      | 0     | 0    | t      | (      | - 2  |
| * 1 eaAy                            | 0*      | 28n*  | 387*  | 0*   | 28n*  | (     | 0*   | 0*      | 0+     | 0*   | 0+   | (     | 0+     | 284*  | 0+     | 0*   | 28h*  | (     | 280*    | 0+     | 0*    | 0*   | t 80+  | (      | 2884 |
| RdByBBes PHwPav                     | 3       | t 5   | t     | 0    | 22    | (     | 0    | 2       | 3      | 0    | h    | (     | h      | t t   | t      | 0    | t7    | (     | 2       | t      | 0     | 0    | 3      | (      | n    |
| <ul> <li>RdByBBes PHwPav</li> </ul> | t t 8 * | 38n*  | 387*  | 0*   | 387*  | (     | 0*   | t 00*   | t 00*  | 0* 1 | 100* | (     | t 082* | 28*   | n80*   | 0*   | 38 *  | (     | 384*    | h84*   | 0*    | 0*   | 38 *   | (      | 385* |
| FevesodiH                           | (       | (     | (     | (    | (     | 5t    | (    | (       | (      | (    | (    | 273   | (      | (     | (      | (    | (     | t 20  | (       | (      | (     | (    | (      | 4t     |      |
| * FevesodiHs                        | (       | (     | (     | (    | ( -   | 4080° | (    | (       | (      | (    | (-   | 4785* | (      | (     | (      | (    | (     | t 00* | (       | (      | (     | (    | (-     | 4. 85* |      |
| RdByBles PHC-Pssk a9                | (       | (     | (     | (    | (     | 4     | (    | (       | (      | (    | (    |       | (      | (     | (      | (    | (     | 0     | (       | (      | (     | (    | (      | 3      |      |
| * RdByBles PHC-Pssk a9              | (       | (     | (     | (    | (1    | 080°  | (    | (       | (      | (    | (    | 282*  | (      | (     | (      | (    | (     | 0+    | (       | (      | (     | (    | (      | 382*   |      |

<sup>&</sup>lt;sup>U</sup>Fevesc-daHs aHv RdByBBes PHC-Pssk a9 8i gi efç wgwdorç TgTr-u, WgW(Tu-H

6 of 8

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANK ST @ HOLLMWOOD AVE - M... - TMC
Tue May 3, 2021 9 - 8 - AM) 91 CesalLAeaPi gus
AM AeaPi (8 - AM 9 - 8 - AM) 91 CesalLAeaPi gus
Hit Lamend Icerdia vB Mgigls/Ren, i eaCy, AeBenbloavn, wdkyRlen gv mgaB, wdkyRlen gv
t sgml aIP)
Hit MgcDevth
47 85(, 552, dgRifkgv8(-685515b, 9 - 6b1b-b3



5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947024, Location: 48:59... 2, -. 85:78408

| All Classes (Lights and Mo<br>Crosswalk)<br>All Movements<br>ID: 947024, Location: 4839 |          |       |    | edestria | ns, Bic | ycles or | n Road, | Bic | ycles oi | 1    |           |      |    | led by: 0<br>100 Co | City of<br>onstella | Ottawa<br>tion Dr,<br>8J9, CA |
|-----------------------------------------------------------------------------------------|----------|-------|----|----------|---------|----------|---------|-----|----------|------|-----------|------|----|---------------------|---------------------|-------------------------------|
| Leg                                                                                     | North    |       |    |          |         | Eouth    |         |     |          |      | S est     |      |    |                     |                     |                               |
| Direction                                                                               | Eouthbou | nd    |    |          |         | Northbou | nd      |     |          |      | Wistbound |      |    |                     |                     |                               |
| Time                                                                                    | R        | T     | U  | App      | Ped*    | T        | L       | U   | App      | Ped* | R         | L    | U  | App                 | Ped*                | Int                           |
| 2022-08-03 6:00AM                                                                       | 2        | . 7   | 0  | 70       | 1       | 114      | 26      | 0   | 140      | 0    | 3.        | 1    | 0  | 37                  | 13                  | 287                           |
| .:00AM                                                                                  | 1.       | 237   | 0  | 288      | 3       | 30.      | 101     | 0   | 407      | 0    | 112       | 1    | 0  | 113                 | 20                  | 6                             |
| 7:00AM                                                                                  | 26       | 314   | 0  | 340      | 2       | 8. 1     | 12.     | 0   | 697      | 0    | 176       | 1    | 0  | 17.                 | 42                  | 1228                          |
| 9:00AM                                                                                  | 8        | 1     | 0  | 172      | 2       | 284      | 89      | 0   | 313      | 4    | 66        | 3    | 0  | 69                  | 17                  | 864                           |
| 11:00AM                                                                                 | 20       | 207   | 0  | 227      | 2       | 236      | 48      | 0   | 271      | 0    | 6.        | 1    | 0  | 67                  | 28                  | 8                             |
| 12:00PM                                                                                 | 36       | 410   | 0  | 446      | 6       | 467      | 104     | 0   | 8. 2     | 2    | 181       | 2    | 0  | 183                 | 60                  | 11.1                          |
| 1:00PM                                                                                  | 36       | 430   | 0  | 466      | 4       | 496      | 92      | 0   | 877      | 1    | 14.       | 3    | 0  | 180                 | 69                  | 1204                          |
| 3:00PM                                                                                  | 31       | 272   | 0  | 313      | 3       | 267      | . 9     | 0   | 34.      | 1    | 77        | 0    | 0  | 77                  | 39                  | . 47                          |
| 4:00PM                                                                                  | 43       | 83.   | 0  | 870      | 1       | 889      | 209     | 0   | . 67     | 0    | 231       | 3    | 0  | 234                 | 66                  | 1872                          |
| 8:00PM                                                                                  | 47       | 814   | 0  | 862      | 2       | 846      | 146     | 0   | 692      | 2    | 17.       | 3    | 0  | 190                 | 78                  | 1444                          |
| Total                                                                                   | 264      | 3177  | 0  | 3482     | 26      | 3719     | 977     | 0   | 470.     | 10   | 12.2      | 17   | 0  | 1290                | 43.                 | 9849                          |
| % Approach                                                                              | . 56%    | 9254% | 0% | -        | -       | . 954%   | 2056%   | 0%  | -        | -    | 9756%     | 154% | 0% | -                   | -                   | -                             |
| % Total                                                                                 | 257%     | 3354% | 0% | 3652%    | -       | 4050%    | 1053%   | 0%  | 8053%    | -    | 1353%     | 052% | 0% | 1398%               | -                   | -                             |
| Lights and Motorcycles                                                                  | 282      | 2929  | 0  | 3171     | -       | 3813     | 988     | 0   | 4467     | -    | 1226      | 17   | 0  | 1244                | -                   | 7793                          |
| % Lights and Motorcycles                                                                | 9898%    | 9159% | 0% | 9251%    | -       | 9250%    | 965 %   | 0%  | 9259%    | -    | 9654%     | 100% | 0% | 9654%               | -                   | 9351%                         |
| Heavy                                                                                   | 8        | 18.   | 0  | 162      | -       | 166      | 11      | 0   | 1        | -    | 4         | 0    | 0  | 4                   | -                   | 343                           |
| % Heavy                                                                                 | 159%     | 459%  | 0% | 45 %     | -       | 453%     | 151%    | 0%  | 35 %     | -    | 053%      | 0%   | 0% | 053%                | -                   | 356%                          |
| Bicycles on Road                                                                        |          | 102   | 0  | 109      | -       | 140      | 22      | 0   | 162      | -    | 42        | 0    | 0  | 42                  | -                   | 313                           |
| % Bicycles on Road                                                                      | 25 %     | 352%  | 0% | 352%     | -       | 35 %     | 252%    | 0%  | 354%     | -    | 358%      | 0%   | 0% | 353%                | -                   | 352%                          |
| Pedestrians                                                                             | -        | -     | -  | -        | 21      | -        | -       | -   | -        | 10   | -         | -    | -  | -                   | 420                 |                               |
| % Pedestrians                                                                           | -        | -     | -  | -        | 7057%   | -        | -       | -   | -        | 100% | -         | -    | -  | -                   | 963.%               | -                             |
|                                                                                         |          |       |    |          |         |          |         |     |          |      |           |      |    |                     |                     |                               |

<sup>\*</sup>Pedestrians and Bicycles on Crosswalk5L: Left, R: Right, T: Thru, U: U-Turn

8 of 8 1 of 8

#### 5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

Deboto 14 - CUVID - DAINN 51 & WILLTON CRES - MA... - INC Tue May 3, 2022 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ... - 1202 ...



[N] North Total: 7289 In: 3452 Out: 3837 3188 264 12 [W] West Total: 2542 In: 1290 Out: 1252 1272 226 988

> Out: 4460 In: 4807 Total: 9267 [S] South

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

53000 14 - COVID - BANK 51 @ WILLION CRES - MA... - IMC
Tue May 3, 2022
F M | eal.ngth; F M 6: th; F MA
F - 9 allel F/9, Sil ado Mrir drlyHel, v eaBy, l eoelic/adl, R)HyHel r d wrao, R)HyHel r d
9 cr Ilk a-LA
F - Mr Bemedil
IDt: 4g024, PrHi)r dt 4(3:8882, 68(3:5g(40))

| PeC                      | Ords     |        |    |        |       | Jruis   |       |    |       |       | E eli      |       |     |        |        |        |
|--------------------------|----------|--------|----|--------|-------|---------|-------|----|-------|-------|------------|-------|-----|--------|--------|--------|
| D)œH)r d                 | Jruis.ru | do     |    |        |       | Ords.ru | do    |    |       |       | Sali. rudo |       |     |        |        |        |
| T)me                     | W        | T      | W  | FNN    | l eoU | T       | P     | W  | FNN   | l eoU | W          | P     | W   | FNN    | l eoU  | Idi    |
| 202260( 603 gth( F M     | 8        | 5(     | 0  | 82     | 0     | h23     | 2:    | 0  | h(2   | 0     | 4h         | 0     | 0   | 4h     | h3     | 25(    |
| gt30F M                  | h0       | 8(     | 0  | g(     | 2     | h( (    | 34    | 0  | hg:   | 0     | (h         | 0     | 0   | (h     | hg     | 32(    |
| gt4(FM                   | (        | hh0    | 0  | hh(    | 0     | hg(     | 38    | 0  | 222   | 0     | (4         | 0     | 0   | (4     | 8      | 3: h   |
| : t00F M                 | 3        | h0h    | 0  | h04    | 2     | h4(     | 3g    | 0  | hg3   | 0     | 35         | h     | 0   | 38     | h0     | 324    |
| Tria-                    | 2(       | 3(h    | 0  | 385    | 4     | 50g     | h3g   | 0  | 845   | 0     | hg2        | h     | 0   | hg3    | 4g     | h30(   |
| * FNNraHs                | 575*     | :374*  | 0* | 6      | 6     | gh7(*   | hg7(* | 0* | 6     | 6     | ::7*       | 07(*  | 0*  | 6      | 6      | 6      |
| * Tria-                  | h7 *     | 257.*  | 0* | 2g7g*  | 6     | 4575*   | h075* | 0* | (872* | 6     | h37 *      | 07h*  | 0*  | h470*  | 6      | 6      |
| 1 v %                    | 0752(    | 078: 5 | 6  | 07gh5  | 6     | 07gh8   | 07552 | 6  | 07g2: | 6     | 07g24      | 072(0 | 6   | 07g2:  | 6      | 07g2(  |
| P)Csi1 ado Mr ir cHyHe1  | 24       | 330    | 0  | 3(4    | 6     | (3h     | h2:   | 0  | 550   | 6     | h88        | h     | 0   | h8g    | 6      | hh: 2  |
| * P)Csi1 ado MrircHyHe1  | : 570*   | : 470* | 0* | : 47h* | 6     | g873*   | :37(* | 0* | gg7(* | 6     | :873*      | h00*  | 0*  | : 873* | 6      | : h73* |
| v eaBy                   | h        | h8     | 0  | hg     | 6     | 4h      | 2     | 0  | 43    | 6     | h          | 0     | 0   | h      | 6      | 52     |
| * v eaBy                 | 470*     | 47g*   | 0* | 47g*   | 6     | 578*    | h74*  | 0* | (7g*  | 6     | 07(*       | 0*    | 0*  | 07(*   | 6      | 4%*    |
| R)HyHe1rd wrao           | 0        | 4      | 0  | 4      | 6     | 35      | 8     | 0  | 43    | 6     | 4          | 0     | 0   | 4      | 6      | (h     |
| * R)HyHe1rd wrao         | 0*       | h7h*   | 0* | h7h*   | 6     | (7*     | (7h*  | 0* | (7g*  | 6     | 272*       | 0*    | 0*  | 272*   | 6      | 37 *   |
| l eoe1ic)ad1             | 6        | 6      | 6  | 6      | 2     | 6       | 6     | 6  | 6     | 0     | 6          | 6     | - 6 | 6      | 48     |        |
| * l eoe1ic)ad1           | 6        | 6      | 6  | 6      | (070* | 6       | 6     | 6  | 6     | 6     | 6          | 6     | 6   | 6      | : 87 * | 6      |
| R)HyHe1 r d 9 cr 11k a-L | 6        | 6      | 6  | 6      | 2     | 6       | 6     | 6  | 6     | 0     | 6          | 6     | - 6 | 6      | h      |        |
| * R)H/He1rd9 cr11k a-L   | 6        | 6      | 6  | 6      | (070* | 6       | 6     | 6  | 6     | 6     | 6          | 6     | 6   | 6      | 27h*   | 6      |

Ul eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L7Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

2 of 8 3 of 8

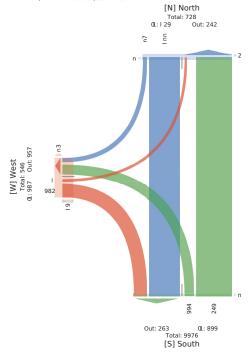
5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2022
AM Peak (8:-9 AM ) 1:-9 AMC
Ass.Lsairei (glt nd aor McctHyvsei, BeaRy, Pereidhaoi, whyvsei co mcar, whyvsei co LtHi II akC
Ass.McReDeod
47:158025, gcvadro: 59.316662, )69.189509



5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2022
Mfl lay Lean g 2180 LM ( t 180 LM6
: Ak- M9599 1970 gas I Mi G dryo Ak-9; r eacy, Lel e 90dlas 9, Hilloyo Ak-9 is v i al , Hilloyo Ak-9 is - d 3958 al

| <b>Ottawa</b>               |
|-----------------------------|
| Loic Fiel. yh- FGyibf CGaBa |
| t00 -is9@iAAdEskd,          |
| OeNeas, f O, p 2K 40m - :   |

| Oi dt)   |                                                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | JiuG                                   |        |                                                       |        |       | E e9C     |                                                        |                                                       |        |       |        |
|----------|---------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|--------|-------------------------------------------------------|--------|-------|-----------|--------------------------------------------------------|-------------------------------------------------------|--------|-------|--------|
| JiuG.ius | 1                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | OidG.ius                               | sl     |                                                       |        |       | Sa9Ci usl |                                                        |                                                       |        |       |        |
| v        | T                                                 | W                                               | : NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lel U                   | T                                      | 1      | W                                                     | : NN   | Lel U | v         | 1                                                      | W                                                     | : NN   | Lel U | vs C   |
| D        | n2                                                | 0                                               | t 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                       | t 22                                   | 34     | 0                                                     | t 48   | 2     | 34        | 2                                                      | 0                                                     | 38     | t 8   | 2mi    |
| D        | tt2                                               | 0                                               | t 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                       | t 23                                   | 28     | 0                                                     | t 40   | 0     | 15        | 0                                                      | 0                                                     | 15     | t 5   | 3t 5   |
| 4        | tt4                                               | 0                                               | t 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ţ                       | t 35                                   | 23     | 0                                                     | t 4m   | 0     | 40        | t                                                      | 0                                                     | 4t     | t 4   | 330    |
| D        | t 03                                              | 0                                               | ttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                       | t 20                                   | 24     | 0                                                     | tI4    | 0     | 3I        | t                                                      | 0                                                     | 34     | 20    | 2mt    |
| . 2m     | I 22                                              | 0                                               | I4t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                       | 40t                                    | t t 0  | 0                                                     | 5t t   | 2     | t 54      | I                                                      | 0                                                     | t 5m   | 5D    | t 23t  |
| 571*     | n875*                                             | 0*                                              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                       | D270*                                  | t DØ*  | 0*                                                    | (      | (     | n875*     | 27/*                                                   | 0*                                                    | (      | (     | (      |
| 27/*     | 3I 73*                                            | 0*                                              | 3575*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (                       | 1078*                                  | Dhf    | 0*                                                    | I m/5* | (     | t 37I *   | 073*                                                   | 0*                                                    | t 378* | (     | (      |
| 07h05    | 07h08                                             | (                                               | 07h80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (                       | 07h2I                                  | 078125 | (                                                     | 07h54  | (     | OTEN I    | 07400                                                  | (                                                     | 07218  | (     | 07hBI  |
| 2D       | 3D4                                               | 0                                               | It3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (                       | I 5I                                   | 0.11   | 0                                                     | 48I    | (     | t St      | I                                                      | 0                                                     | t 54   | (     | t t 42 |
| n575*    | m 2*                                              | 0*                                              | mt 75*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (                       | n275*                                  | t 00*  | 0*                                                    | n87h#  | (     | n875*     | t 00*                                                  | 0*                                                    | n875*  | (     | n875*  |
| t        | 24                                                | 0                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                       | 2I                                     | 0      | 0                                                     | 2I     | (     | t         | 0                                                      | 0                                                     | t      | (     | 4t     |
| 371*     | 47h₹                                              | 0*                                              | 47D*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                       | I 7D*                                  | 0*     | 0*                                                    | 37h#   | (     | 075*      | 0*                                                     | 0*                                                    | 075*   | (     | 17*    |
| 0        | t 2                                               | 0                                               | t 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (                       | t 3                                    | 0      | 0                                                     | t3     | (     | 3         | 0                                                      | 0                                                     | 3      | (     | 2E     |
| 0*       | 27D*                                              | 0*                                              | 278*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                       | 275*                                   | 0*     | 0*                                                    | 27 *   | (     | t 7D*     | 0*                                                     | 0*                                                    | t 7D*  | (     | 273*   |
| (        | (                                                 | (                                               | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                       | (                                      | (      | (                                                     | (      | 2     | (         | (                                                      | (                                                     | (      | 58    |        |
| (        | (                                                 | (                                               | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D478*                   | (                                      | (      | (                                                     | (      | t 00* | (         | (                                                      | (                                                     | (      | mD21* | (      |
| (        | (                                                 | (                                               | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t                       | (                                      | (      | (                                                     | (      | 0     | (         | (                                                      | (                                                     | (      | t     |        |
|          |                                                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t173*                   |                                        |        |                                                       |        | 0*    |           |                                                        |                                                       |        | t 74* |        |
|          | Jiug.ius  v D D 4 D 2m 57* 27* 0705 2D m65* t 37* | Jiufj. ius    V   T   T   T   T   T   T   T   T | Video   Vide | Judy, us   T   W   : NN | Ji i j j i i j i j i j i j i j i j i j |        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |        |       |           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |        |       |        |


| 4/ :158025, g cvadīco: 59.3l 6662, )69.189509                                                 | [N] North Total: 728 In: 453                  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                               | 68 489                                        |
| [W] West Total: 403 In: 924 out: 934    936   99   96   97   97   97   97   98   99   99   99 | 4                                             |
|                                                                                               | 942                                           |
|                                                                                               | 0 ut: 844 In: 503<br>Total: 9657<br>[S] South |

4 of 8 5 of 8

#### 5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5300014 - CUVID - DAINN ST & WILLTON CRES - MA... - INVC TUE May 3, 2020 kM 9: -30 kM) 1 Gs Gillel & Aghtl an P Midror yr @L, c early, kePelto\u00e4nl, v Ayr @Ldn BdaP, v Ayr @Ldn s dill Rac() 1 (CMdfewent. nb - D47024, i drat\u00e4ln-45.310662, 955.175405





5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

| 5566814 - COVID - BANK<br>Tue May 3, 2022<br>FM Feal 13rgt FM hgrgt F.<br>P – ) -aCCCIs idorCacHM1r<br>) ACCva-l ( | M(h6:      | eAa Fe    | al 9   | 1uA        |           |           | R1aH,   | Biv    | yv-eC1c     |           |           | F      | AL: il | O<br>HeH. yn        | tta<br>iry 11 | <b>W</b> |
|--------------------------------------------------------------------------------------------------------------------|------------|-----------|--------|------------|-----------|-----------|---------|--------|-------------|-----------|-----------|--------|--------|---------------------|---------------|----------|
| P – M1: ek ecrC                                                                                                    |            |           |        |            |           |           |         |        |             |           |           |        | ∩oNi   | f 00 ) 1<br>ac, 6 O |               |          |
| nh nDg402g, s 1vari1cngt 731                                                                                       |            | 8t 754t g | 0t     |            |           |           |         |        |             |           |           |        | OCI    | ac, o o             | , p 210       | i di     |
| s ed                                                                                                               | O1Ao       | **        |        |            |           | J 1uro    | **      |        |             |           | E eG      |        |        |                     |               |          |
| I iAevri1c                                                                                                         | J 1uro. 1u | cH<br>T   | Y-7    |            |           | O1Ao. 1uc |         | Y-1    | 2000        |           | SaG: 1ucF |        | Y-7    | 2007                | V) 181        | -        |
| Tik e<br>2022h0t h03 3nat FM                                                                                       | R<br>f5    | f g2      | W<br>0 | PNN<br>fr4 | FeHU<br>0 |           | s<br>35 | W<br>0 | P NN<br>f85 | FeHU<br>0 | R<br>13   | s<br>0 | W<br>0 | PNN<br>t3           | FeHU<br>f3    | nor      |
| 2022IDLIDS SIRLEM<br>gr00FM                                                                                        | 15<br>f4   | f 3f      | 0      | fgD        | 0         |           | 18      | 0      | f85         | 0         | g8        | 2      | 0      | gD                  | 13<br>f5      |          |
| gift FM                                                                                                            | ff         | f 33      | 0      | fgg        | 0         |           | 82      | 0      | 2f2         | 0         | 80        | f f    | 0      | gD<br>8f            | ft            |          |
| giB0FM                                                                                                             | 3          | f 3D      | 0      | f g2       | 0         | . D       | g2      | 0      | f43         | 0         | 15        | 0      | 0      | 15                  | f5            |          |
| Tira-                                                                                                              | g4         | t gt      | 0      | t DB       | 0         | - B-      | 208     | 0      | 8g8         | 0         | 225       | 3      | 0      | 22D                 | 50            |          |
| * PNNtavo                                                                                                          | 475*       | Di 7De    | 0*     | h h        | h         | . D       | 2878*   | 0*     | ogo<br>h    | h         | D178*     | f78*   | 0*     | 22D                 | JU<br>h       |          |
| * Tira-                                                                                                            | 37 *       | 3g78*     | 0*     | 3874*      | h         | 3g%*      | f372*   | 0*     | g875*       | h         | fg%*      | 072*   | 0*     | fg75*               | h             |          |
| F99                                                                                                                |            | 07DeD     | h      | 07028      | h         | 070:3     | 07832   | h      | 0748D       | h         | 074f3     | 0738t  | h      | 074f2               | h             |          |
| s idorCacHM1r1Avv-eC                                                                                               |            | 100       | 0      | 111        | h         | T0D       | 203     | 0      | 8f2         | h         | 22f       | 3      | 0      | 22g                 | h             |          |
| * s idorCacHM1r1Ayv-eC                                                                                             |            | DB7g*     | 0*     | D875*      | h         | Dg73*     | D47f *  | 0*     | D: 73*      | h         | D874*     | f00*   | 0*     | D874*               | h             | I        |
| 9 ea: y                                                                                                            | f          | ft        | 0      | f5         | h         | f8        | 2       | 0      | fD          | h         | 0         | 0      | 0      | 0                   | h             |          |
| * 9 ea: y                                                                                                          | 27/*       | 274*      | 0*     | 278*       | h         | 37f*      | f 70*   | 0*     | 27.*        | h         | 0*        | 0*     | 0*     | 0*                  | h             |          |
| Bivyv-eC1c R1aF                                                                                                    | f          | 2f        | 0      | 22         | h         | fg        | 2       | 0      | f5          | h         | t         | 0      | 0      | t                   | h             |          |
| * Bivyv-eC1c R1aH                                                                                                  | 27/*       | 37D*      | 0*     | 378*       | h         | 275*      | f 70*   | 0*     | 27/*        | h         | 272*      | 0*     | 0*     | 272*                | h             |          |
| FeHeGAac0                                                                                                          | h          | h         | h      | h          | 0         | h         | h       | h      | h           | 0         | h         | h      | h      | h                   | t 8           |          |
| * FeHeGAacC                                                                                                        | h          | h         | h      | h          | h         | h         | h       | h      | h           | h         | h         | h      | h      | h                   | Dt 70*        |          |
| Bivyv-eC1c ) ACGwa-l                                                                                               | h          | h         | h      | h          | 0         | h         | h       | h      | h           | 0         | h         | h      | h      | h                   | 3             |          |
| * Bivvv-eC1c ) AlGwa-l                                                                                             | h          | h         | h      | h          | h         | h         | h       | h      | h           | - 1       | h         | h      | h      | h                   | +(7)+         |          |

UFeHeGAacCacHBivyv-eC1c ) AlGsva-l 7s ns ebr, RnRidor, TnToAu, WhWhTuAc

6 of 8

#### 5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2021 - (8): AMP -) 1 eGas Aeap Li uC
g sh sattet landro a H/ Mi d Gl/Bet, Leal y, AevetddaH, RdlyBet i Hwi av, RdlyBet i H
h G ttmsaP9
g ssMil el eHt
II (785028, ni Badl H 8: .376662, -6: .15: 80:

[N] North Total: 7728 01: 9I 2 4ut: 952 959 26

3n0

[W] West Total: 565 I: 331 4 ut: 399

338 22



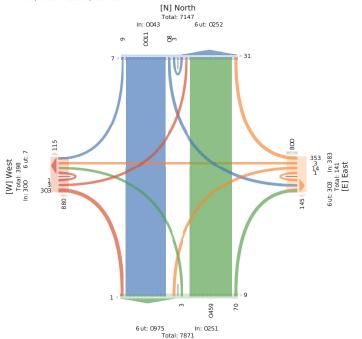
5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5566814 - COVID - BANKS I @ ECHO DR - MAY 05... - I MC The May 3, 202 Fill Length (630 AM-930 AM, 11:30 AM-2 PM, 3:30 PM-6 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswall) All Movements ID: 947081, Location: 4839987. 9, -. 8%74334



7 of 8

| ID: 94/081, Locatio         | n: 485 | 6987. | 9, 8    | 30/4 | 334   |       |        |      |         |        |       |       |          |       |        |      |       |       |         |      |        |      |       |       |      |
|-----------------------------|--------|-------|---------|------|-------|-------|--------|------|---------|--------|-------|-------|----------|-------|--------|------|-------|-------|---------|------|--------|------|-------|-------|------|
| Leg                         | North  |       |         |      |       |       | East   |      |         |        |       |       | South    |       |        |      |       |       | West    |      |        |      |       |       |      |
| Direction                   | Southb | ound  |         |      |       |       | Westbo | und  |         |        |       |       | Northbo  | ound  |        |      |       |       | Eastbox | ind  |        |      |       |       |      |
| Time                        | R      | T     | L       | U    | App   | Ped*  | R      | T    | L       | U      | App   | Ped*  | R        | T     | L      | U    | App   | Ped*  | R       | T    | L      | U    | App   | Ped*  | Int  |
| 2022-08-03 6:00AM           | 0      | 118   | 0       | 0    | 118   | 0     | 1      | 0    | 0       | 0      | 1     | 12    | 0        | 140   | 0      | 0    | 140   | 0     | 1       | 0    | 0      | 0    | 1     | 17    | 21   |
| .:00AM                      | 0      | 340   | 1       | 0    | 341   | 2     | 7      | 0    | 1       | 0      | 9     | 16    | 7        | 403   | 0      | 0    | 411   | 2     | 14      | 0    | 0      | 0    | 14    | 2.    |      |
| 7:00AM                      | 0      | 494   | 2       | 0    | 496   | 4     | 9      | 0    | 0       | 0      | 9     | 43    | 6        | 694   | 0      | 0    | . 00  | 0     | 17      | 0    | 0      | 0    | 17    | . 0   | 123  |
| 9:00AM                      | 0      | 242   | 4       | 0    | 246   | 0     | 4      | 0    | 1       | 0      | 8     | 14    | 4        | 30.   | 0      | 0    | 311   | 1     | 4       | 0    | 0      | 0    | 4     | 24    | 8    |
| 11:00AM                     | 0      | 267   | 4       | 0    | 2. 2  | 2     | 8      | 0    | 0       | 0      | 8     | 20    | 3        | 277   | 0      | 0    | 291   | 0     | 7       | 0    | 0      | 0    | 7     | 36    | 8.   |
| 12:00PM                     | 0      | 880   | 7       | 0    | 887   | 1     | 9      | 1    | 9       | 1      | 20    | . 2   | 13       | 862   | 1      | 0    | 8.6   | 0     | 16      | 0    | 1      | 0    | 1.    | 69    | 11.  |
| 1:00PM                      | 0      | 8. 2  | 10      | 0    | 872   | 0     | 28     | 0    | -       | - 1    | 33    | 97    | 26       | 84.   | 0      | 0    | 8.3   | 3     | 14      | 0    | 0      | 0    | 14    | 63    | 120  |
| 3:00PM                      | 1      | 3.1   | 2       | 0    | 3.4   | 1     | 9      | 0    | 1       | 0      | 10    | 71    | -        | 326   | 0      | 0    | 333   | 0     | - 11    | 0    | 0      | 0    | 11    | 81    |      |
| 4:00PM                      | 2      | . 70  | 6       | 0    | . 77  | 1     | 17     | 0    | 4       | 0      | 22    | 127   | 17       | . 88  | 0      | 0    | 3     | 0     | 23      | 0    | 0      | 0    | 23    | 112   | 16   |
| 8:00PM                      | 2      | 690   | 6       | 1    | 699   | 10    | 13     | 0    | 4       | 0      | 1.    | 130   | 11       | 673   | 0      | 0    | 694   | 1     | 32      | 0    | 0      | 2    | 34    | 76    | 144  |
| Total                       | 8      | 4422  | 43      | 1    | 44.1  | 21    | 101    | 1    | 2.      | 2      | 131   | 614   | 96       | 4.08  | 1      | 0    | 4702  | -     | 141     | 0    | 1      | 2    | 144   | 886   | 98-  |
| % Approach                  | 051%   | 9759% | 150%    | 0%   |       |       | 51%    | 057% | 2056%   | 158%   | -     | -     | 250% 9   | 9750% | 0% 0   | 96   |       | -     | 9. 59%  | 0% ( | 05 %   | 154% | -     | -     |      |
| % Total                     | 051%   | 4653% | 058%    | 0%   | 4657% |       | 151%   | 0%   | 053%    | 0%     | 154%  | -     | 150% 4   | 4953% | 0% 0   | 96 8 | 1053% | -     | 158%    | 0%   | 0%     | 0%   | 158%  | -     |      |
| Lights and Motorcycles      | 1      | 4137  | 40      | 1    | 4170  |       | . 0    | 0    | 26      | 2      | 97    | -     | 67       | 43.9  | 0      | 0    | 444.  | -     | 138     | 0    | 1      | 2    | 137   | -     | 77   |
| % Lights and<br>Motorcycles |        | 9356% | 9350% : | 100% | 9358% |       | 6953%  | 0%   | 9653% 1 | 100% . | 457%  |       | . 057% 9 | 9351% | 0% 0   | 965  | 1256% |       | 985 %   | 0% 1 | 100% 1 | 00%  | 9857% | -     | 9257 |
| Heavy                       | 0      | 162   | 0       | 0    | 162   |       | 1      | 0    | 0       | 0      | 1     | -     | 1        | 170   | 1      | 0    | 172   | -     | 1       | 0    | 0      | 0    | 1     | -     | 3    |
| % Heavy                     | 0%     | 35 %  | 0%      | 0%   | 356%  |       | 150%   | 0%   | 0%      | 0%     | 057%  |       | 150%     | 357%  | 100% 0 | 96   | 357%  | -     | 05 %    | 0%   | 0%     | 0%   | 05 %  | -     | 356  |
| Bicycles on Road            | 4      | 122   | 3       | 0    | 129   |       | 30     | 1    | 1       | 0      | 32    |       | 2.       | 146   | 0      | 0    | 1.3   | -     | 8       | 0    | 0      | 0    | 8     | -     | 3.   |
| % Bicycles on Road          | 7050%  | 257%  | . 50%   | 0%   | 259%  |       | 295 %  | 100% | 35 %    | 0%2    | 2454% |       | 2751%    | 351%  | 0% 0   | 96   | 356%  | -     | 338%    | 0%   | 0%     | 0%   | 338%  | -     | 35   |
| Pedestrians                 |        | -     |         |      |       | 19    | -      |      |         | -      | -     | 604   |          | -     |        | -    |       | 6     |         |      |        |      | -     | 471   |      |
| % Pedestrians               |        | -     |         |      |       | 9058% | -      |      |         | -      | -     | 9754% |          | -     |        | -    | - 7   | 785 % |         |      |        |      | - 7   | 763B% |      |
|                             |        |       |         |      |       |       |        |      |         |        |       |       |          |       |        |      |       |       |         |      |        |      |       |       |      |
| Bicycles on Crosswalk       | -      | -     | -       | -    | -     | 2     |        |      |         | -      |       | 10    | -        |       | -      | -    |       | - 1   | -       | -    | -      | -    |       | . 8   |      |


\*Pedestrians and Bicycles on Crosswalk5L: Left, R: Right, T: Thru, U: U-Turn

8 of 8 1 of 8

#### 5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5300014 - CUVID - DAINN 31 @ CEUTO DR - MAT US... - 1 MC TUE May 3, 2022 — 9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 947081, Location: 485987. 9, -. 8574334





[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

\$556814 - CUVID - BARN ST @ ECHO DR - MAT 135... - TIME
The May 3, 2022

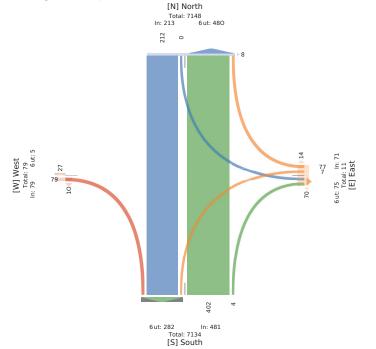
F M I eaL right (F M 6: tht (F MA
F - 9 a Hle 14P)Csil ado Mrir dlyHel, v eaBy, I eoelicjadl, R)HyHel rd wrao, R)HyHel rd
F - Mr Bemedil
IDt: 4g0(h, Pr Hi)r dt 4(78: (g8: , 68(75g4334



| PeC                     | Or  | ds      |       |    |       |       | J a1i  |      |       |      |        |       | Er uis |        |    |      |        |       | S e1i |      |     |     |      |        |       |
|-------------------------|-----|---------|-------|----|-------|-------|--------|------|-------|------|--------|-------|--------|--------|----|------|--------|-------|-------|------|-----|-----|------|--------|-------|
| D)ceH)r d               | Erι | is. rud | lo    |    |       |       | S eli. | rudo |       |      |        |       | Ords.  | r udo  |    |      |        |       | Jali. | r ud | Ю   |     |      |        |       |
| T)me                    | W   | T       | . P   | W  | FNN   | l eoU | W      | T    | P     | W    | FNN    | l eoU | W      | T      | P  | W    | FNN    | l eoU | W     | 1    | ΓР  | W   | FNN  | l eoU  | Idi   |
| 202260(603 gth(FM       | 0   | h04     | 0     | 0  | h04   | h     | 4      | 0    | 0     | 0    | 4      | h2    | 2      | h(4    | 0  | 0    | h(5    | 0     | 4     | 1 (  | 0   | 0   | 4    | 2(     | 25    |
| gt30F M                 | 0   | h20     | ) h   | 0  | h2h   | 3     | 4      | 0    | 0     | 0    | 4      | h0    | 3      | hg4    | 0  | 0    | hg8    | 0     | (     | (    | 0   | 0   | (    | 23     | 3h    |
| gt4(FM                  | 0   | h(:     | 0     | 0  | h(:   | 0     | 0      | 0    | 0     | 0    | 0      | h0    | h      | 2h(    | 0  | 0    | 2h5    | 0     | 8     | , (  | 0   | 0   | g    | hg     | 36    |
| : t00F M                | 0   | h42     | . 2   | 0  | h44   | 0     | 3      | 0    | h     | 0    | 4      | g     | h      | hg2    | 0  | 0    | hg3    | 0     | 2     | . (  | 0   | 0   | 2    | hh     | 33    |
| Tria-                   | 0   | (2(     | 3     | 0  | (2g   | 4     | hh     | 0    | h     | 0    | h2     | 40    | 8      | 83(    | 0  | 0    | 842    | 0     | h:    | (    | 0   | 0   | h:   | 88     | h30   |
| * FNNtraHs              | 0*  | ::74*   | 0万*   | 0* | 6     | 6     | :h78*  | 0*   | g73*  | 0*   | 6      | 6     | 07.*   | ::7h*  | 0* | 0*   | 6      | 6     | h00*  | 0*   | 0*  | 0*  | 6    | 6      |       |
| * Tria-                 | 0*  | 4074*   | 072*  | 0* | 4075* | 6     | 0%*    | 0*   | 07h*  | 0*   | 07.*   | 6     | * )70  | (57(*  | 0* | 0* ( | (870*  | 6     | h7(*  | 0*   | 0*  | 0*  | h7(* | 6      |       |
| l v %                   | 6   | 07gh4   | 0738( | 6  | 07gh: | 6     | 072(0  | 6    | 072(0 | 6    | 072(0  | 6     | 072(0  | 07g(0  | 6  | 6    | 07g(h  | 6     | 07(:4 |      | 6 ( | 6   | 07:4 | 6      | 0波:   |
| P)Gsi1ado MrirdHyHe1    | 0   | (00     | 3     | 0  | (03   | 6     | 2      | 0    | h     | 0    | 3      | 6     | h      | 55h    | 0  | 0    | 552    | 6     | h:    | (    | 0   | 0   | h:   | 6      | hhạ   |
| * P)Csi1 ado MrircHyHe1 | 0*  | :(2*    | h00*  | 0* | :(28* | 6     | hg72*  | 0*   | h00*  | 0* : | 2(70*  | 6     | h473*  | g: 7.* | 0* | 0* 8 | g: 72* | 6     | h00*  | 0*   | 0*  | 0*  | h00* | 6      | : h72 |
| v eaBy                  | 0   | hg      | , 0   | 0  | hg    | 6     | 0      | 0    | 0     | 0    | 0      | 6     | 0      | 43     | 0  | 0    | 43     | 6     | 0     | ) (  | 0   | 0   | 0    | 6      |       |
| * v eaBy                | 0*  | 374*    | 0*    | 0* | 374*  | 6     | 0*     | 0*   | 0*    | 0*   | 0*     | 6     | 0*     | (7.*   | 0* | 0*   | (Ze*   | 6     | 0*    | 0*   | 0*  | 0*  | 0*   | 6      | 478   |
| R)HyHe1rd wrao          | 0   | 8       | 0     | 0  | 8     | 6     |        | 0    | 0     | 0    | :      | 6     | 5      | 3h     | 0  | 0    | 38     | 6     | 0     | ) (  | 0   | 0   | 0    | 6      | (     |
| * R)HyHe1rd wrao        | 0*  | h73*    | 0*    | 0* | h23*  | 6     | gh%*   | 0*   | 0*    | 0*   | B( 70* | 6     | g(78*  | 472*   | 0* | 0*   | (70*   | 6     | 0*    | 0*   | 0*  | 0*  | 0*   | 6      | 47h   |
| l eoe1ic)ad1            | 6   | 5 6     | s 6   | 6  | 6     | 3     | 6      | 6    | - 6   | 6    | 6      | 38    | 6      | 5 6    | 6  | 6    | 6      | 0     | - 1   | 6 1  | 6 ( | 6   | 6    | 5(     |       |
| * l eoe1ic)ad1          | 6   | 6 6     | s 6   | 6  | 68    | 8(70* | 6      | 6    | - 6   | 6    | 6:     | 27(*  | 6      | 6 6    | 6  | 6    | 6      | 6     | -     | ŝ    | 6 ( | ŝ 6 | 6    | g474*  |       |
| R)HyHe1 rd 9 α 11k a-L  | 6   | 5 6     | s 6   | 6  | 6     | h     | 6      | 6    | - 6   | 6    | 6      | 3     | 6      | 5 6    | 6  | 6    | 6      | 0     | - 1   | 6 1  | 6 ( | 6   | 6    | h2     |       |
| * R)HyHe1rd9 cr11k a-L  | 6   | 6 6     | 6 6   | 6  | 63    | 2(70* | 6      | 6    | - 6   | 6    | 6      | 87(*  | 6      | 6 6    | 6  | 6    | 6      | 6     |       | ŝ 1  | 6 ( | 6   | 6    | h( 75* |       |

U eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L7Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

2 of 8 3 of 8


5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

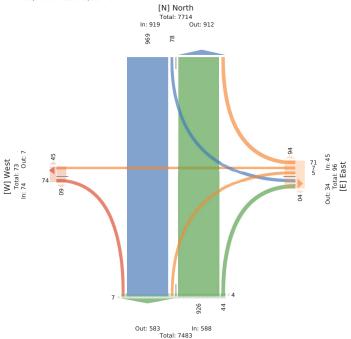
5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC
Tue May 3, 2022

AM Peak (8:-9 AM )1:-9 AMC
AssLsatiei (glind aor MccHyysei, BeaRy, PereidHaoi, whyysei co mcar, whyysei co
Lititi asC
Ass McReDeod

1 1809-, gcvadro: 59,3l 986l, )69.185335






| 1eP                      | Oi  | 10      |       |     |       |      | Ja9C   |       |       |    |         |       | Ei uG |       |     |      |        |       | S e90 |     |      |      |        |      |       |
|--------------------------|-----|---------|-------|-----|-------|------|--------|-------|-------|----|---------|-------|-------|-------|-----|------|--------|-------|-------|-----|------|------|--------|------|-------|
| k RiboCli s              | Εiτ | G. i us | 1     |     |       |      | S e9Ci | usl   |       |    |         |       | OidG. | iusl  |     |      |        |       | J a9C | usl |      |      |        |      |       |
| TIRe                     | v   | T       | 1     | W   | : NNI | el U | v      | T     | 1     | W  | : NN    | Lel U | v     | T     | 1   | W    | : NN   | Lel U | v     | T   | 1    | W    | : NN L | el U | wC    |
| 2022(04(03 t 2l80LM      | 0   | t 24    | 2     | 0   | t 28  | 0    | 3      | 0     | 0     | 0  | 3       | t 4   | I     | tI4   | 0   | 0    | t I m  | 0     | I     | 0   | 0    | 0    | I      | 20   | 2Γ    |
| t 2H 4LM                 | 0   | t 4I    | t     | 0   | t 44  | 0    | 2      | t     | t     | 0  | I       | 24    | 2     | t 45  | 0   | 0    | t 4D   | 0     | 3     | 0   | 0    | 0    | 3      | t 4  | 32    |
| t h00LM                  | 0   | t 5D    | 4     | 0   | t 83  | 0    | 4      | 0     | I     | 0  | m       | 25    | D     | t I 8 | 0   | 0    | t 44   | 0     | 2     | 0   | 0    | 0    | 2      | tΙ   | 33    |
| t ht 4LM                 | 0   | t 3D    | 2     | 0   | t I O | 0    | m      | 0     | t     | 0  | t O     | 2D    | D     | t 30  | 0   | 0    | t 3D   | 3     | 3     | 0   | 0    | 0    | 3      | 22   | 2n    |
| Ti G                     | 0   | 4D4     | t O   | 0   | 4m4   | 0    | t m    | t     | 5     | 0  | 25      | nĭ    | 22    | 48E   | 0   | 0    | 500    | 3     | t 2   | 0   | 0    | 0    | t2     | 8t   | t 23  |
| * : NNi ao)              | 0*  | mD3*    | t 78* | 0*  | (     | (    | 837 *  | 37D*  | 237 * | 0* | (       | (     | 378*  | n573* | 0*  | 0*   | (      | (     | *00 t | 0*  | 0* ( | )*   | (      | (    |       |
| * Ti G/                  | 0*  | 187*    | 07D*  | 0*  | 1 D3* | (    | t 74*  | 07/*  | 074*  | 0* | 27 *    | (     | t 7D* | I57hf | 0*  | 0* 1 | DB*    | (     | t 70* | 0*  | 0* ( | )* t | 70*    | (    |       |
| Lr %                     | (   | 07D85   | 07400 | (   | 07D54 | (    | 0743t  | (     | 07384 | (  | 0753m   | (     | 07508 | 07h2I | (   | (    | 07hi 0 | (     | 07840 | (   | (    | (0)  | 7840   | (    | 07h0  |
| 1P) Oasl Mi Cobyo A-9    | 0   | 4I I    | t 0   | 0   | 44I   | (    | t 8    | 0     | 5     | 0  | 23      | (     | t 8   | 43n   | 0   | 0    | 445    | (     | t 2   | 0   | 0    | 0    | t2     | (    | ttI   |
| * 1P)@asl                |     |         |       |     |       |      |        |       |       |    |         |       |       |       |     |      |        |       |       |     |      |      |        |      |       |
| Mi Cdbyo&9               | 0*  | nB70*   |       | 0*  |       | (    | Dn94*  | 0*    | t 00* | 0* | DDR1*   | (     | 8873* | n873* |     | 0* 1 | n278*  | (     | *00 t | 0*  | 0* ( | )* t | 00*    | (    | n27hf |
| r eacy                   | 0   | 28      | 0     | 0   | 28    | (    | 0      | 0     | 0     | 0  | 0       | (     | 0     | 23    | 0   | 0    | 23     | (     | 0     | 0   | 0    | 0    | 0      | (    | 4     |
| * r eacy                 | 0*  | 175*    | 0*    | 0*  | I 74* | (    | 0*     | 0*    | 0*    | 0* | 0*      | (     | 0*    | I 70* | 0*  | 0*   | 37D*   | (     | 0*    | 0*  | 0* ( | )*   | 0*     | (    | 17    |
| Hi∂yoAe9is vial          | 0   |         | 0     | 0   | tΙ    | (    | 2      | t     | 0     | 0  | 3       | (     | 4     | t 5   | 0   | 0    | 2t     | (     | 0     | 0   | 0    | 0    | 0      | (    | 3     |
| * HRoyoAr9is vial        | 0*  | 27/*    | 0*    | 0*  | 27 *  | (    | t 074* | *00 t | 0*    | 0* | t t 74* | (     | 2278* | 27D*  | 0*  | 0*   | 374*   | (     | 0*    | 0*  | 0* ( | )*   | 0*     | (    | 37 *  |
| Lel e9@läs9              | (   | (       | (     | (   | (     | 0    | (      | (     | (     | (  | (       | mi    | (     | (     | (   | (    | (      | 3     | (     | (   | (    | (    | (      | 8t   |       |
| * Lel e9@las9            | (   | (       | (     | (   | (     | (    | (      | (     | (     | (  | ( t     | *00   | (     | (     | (   | (    | (1     | *00 t | (     | (   | (    | (    | (10    | *00  |       |
| HPoyoAe9is - di99BaAu    | (   | (       | (     | (   | (     | 0    | (      | (     | (     | (  | (       | 0     | (     | (     | (   | (    | (      | 0     | (     | (   | (    | (    | (      | 0    |       |
| * HlovoAe9 is - di99BaAu | (   | (       | (     | . ( | (     | (    | (      | (     | (     | (  | (       | 0*    | (     | (     | - ( | (    | (      | 0*    | (     | - ( | (    | (    | (      | 0*   |       |

ULele9@Tas9asl HToyoAs9is - di99BaAs71h1ebCvhvEP)C,ThT)du,WhW(Tuds

4 of 8 5 of 8 5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5-3000 14 - COVID - DAING ST. & CUID DR - MAT US... - TIME THE MAY 3, 2022 MAPPay kea( & 2-30 kM) 9: -30 kM) I GS GILLE & Aghtt an P Mitdoryr @L, c early, kePelto lan L, v Ayr @Ldn Bda P, v Ayr @Ldn s dill Rac () I (CMd Ewent. nb. - D4705: , i d rat Alin - 45.3 (E761) 955.174334





[S] South

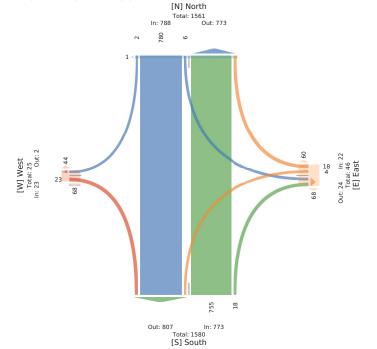
5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

53668 (4 - CUVID - BAIN S I (@ ECHO DR - MAY U3... - I MIC Tue May 3, 2022 FM Feal In FM gt FMhg( 6e:aAMFeal - 9u: 1 APA Ja)) Els dig Jar c M9:9:HyHk), - ea6y, Fece) osar), vsHyHk) 9r B9ac, vsHyHk) 9r P:9))RaAh 1 AMM56ewer) ImI Di-l0t 7, C9Ha09r Int 8ID 45D g5t 8 4n33n



| Cei                        | O9:α | 1       |        |     |       |      | Ja)o    |       |       |    |       |      | E9ual   |       |     |      |       |      | S e)o  |      |       |        |       |       |
|----------------------------|------|---------|--------|-----|-------|------|---------|-------|-------|----|-------|------|---------|-------|-----|------|-------|------|--------|------|-------|--------|-------|-------|
| ms: eHs9r                  | E9ua | db9ur c |        |     |       |      | S e)dos | 9ur c |       |    |       |      | O9: adb | 9ur c |     |      |       |      | Ja)ob9 | ur c |       |        |       |       |
| Tswe                       | В    | 3 T     | C      | W   | 1 NN  | FecU | В       | T     | С     | W  | 1 NN  | FecU | В       | T     | C   | W    | 1 NN  | FecU | В      | T    | С     | W 1NN  | FecU  | kro   |
| 2022g0t g03 nI00FM         | (    | 755     | t      | 0   | 742   | 0    | n       | 0     | 7     | 0  | t     | 34   | 2       | 74n   | 0   | 0    | 74.   | 0    | D      | 0    | 0     | 0 D    | 3n    | 342   |
| nI7t FM                    | (    | 0 7D    | 0      | 0   | 7D    | 7    | 5       | 0     | 7     | 0  | 4     | 32   | 3       | 202   | 0   | 0    | 20t   | 0    | 3      | 0    | 0     | 0 3    | 3n    | n7.   |
| nI30FM                     | 7    | 7 204   | 0      | 0   | 20D   | 0    | 2       | 0     | 0     | 0  | 2     | 3t   |         | 755   | 0   | 0    | 743   | 0    | -      | 0    | 0     | 0 .    | 27    | n00   |
| nInt FM                    | - 7  | 7 7DD   | 7      | 0   | 207   | 0    | t       | 0     | 2     | 0  | 5     | 23   | 5       | 7D2   | 0   | 0    | 7DD   | 0    | t      | 0    | 0     | 0 t    | 23    | n7.   |
| T9aA                       | 2    | 2 540   | -      | 0   | 544   | 7    | 74      | 0     | n     | 0  | 22    | 724  | 74      | St t  | 0   | 0    | 553   | 0    | 23     | 0    | 0     | 0 23   | 772   | 7. 0. |
| * 1 NN 9aHl                | 088* | DD80*   | 081*   | 0*  | g     | g    | 4781*   | 0*    | 7482* | 0* | g     | g    | 288*    | D585* | 0*  | 0*   | g     | g    | 700*   | 0* ( | )* 0  | * g    | g     |       |
| * T9aaA                    | 087* | n48 *   | 08n*   | 0*  | nD87* | g    | 787*    | 0*    | 022*  | 0* | 78h*  | g    | 787*    | n580* | 0*  | 0* : | n487* | g    | 78n*   | 0* ( | )* 0  | * 78h* | g     |       |
| F- %                       |      | g 08Dn2 | 082t 0 | g   | 08Dn4 | g    | 01 80   | g     | 08 00 | g  | 05504 | g    | 0350    | 08027 | g   | g    | .9380 | g    | 08 3D  | g    | g     | g08 3D | g     | 080   |
| Csi do) ar c M9o9:HyHh)    | (    | 530     | t      | 0   | 53t   | g    | 73      | 0     | n     | 0  | 75    | g    | 7t      | 57.   | 0   | 0    | 537   | g    | 23     | 0    | 0     | 0 23   | g     | 7t 0. |
| * Csido) arc<br>M9o9:HyHh) |      | D88 *   | 4388*  | 0*  | D88*  | g    | 5282*   | 0*    | 700*  | 0* | 5588* | g    | 4388*   | Dn84* | 0*  | 0*   | Dn8 * | g    | 700*   | 0* ( | )* 0  | * 700* | g     | D881* |
| - ea6y                     | (    | 0 7.    | 0      | 0   | 7.    | g    | 0       | 0     | 0     | 0  | 0     | g    | 0       | 75    | 0   | 0    | 75    | g    | 0      | 0    | 0     | 0 0    | g     | 3     |
| * - ea6y                   | 0*   | 287*    | 0*     | 0*  | 280*  | g    | 0*      | 0*    | 0*    | 0* | 0*    | g    | 0*      | 288*  | 0*  | 0*   | 282*  | g    | 0*     | 0* ( | )* 0  | * 0*   | g     | 287*  |
| vsHyHh) 9r B9ac            | - 2  | 2 3n    | 7      | 0   | 35    | g    | t       | 0     | 0     | 0  | t     | g    | 3       | 22    | 0   | 0    | 2t    | g    | 0      | 0    | 0     | 0 0    | g     | !     |
| * vsHyHk) 9r B9ac          | 700* | n8h*    | 7.85*  | 0*  | n85*  | g    | 2584*   | 0*    | 0*    | 0* | 2285* | g    | 7.85*   | 28D*  | 0*  | 0*   | 382*  | g    | 0*     | 0* ( | )* 0: | * 0*   | g     | n82*  |
| Fece)asar)                 |      | g g     |        | g g | g     | - 7  | g       | g     | g     | g  | g     | 72t  | 8       |       | g g | g    | g     | 0    | g      | g    | g     | g g    | IP.   |       |
| * Fece)asar)               |      | g g     |        |     | g7    | *00  | g       | g     | g     | g  | gl    | *88  | 8       |       | g g | g    | g     | g    | g      | g    | g     | g g    | 4287* |       |
| vsHyHh) 9r P:9))RaA        |      | g g     |        | g g | g     | 0    | g       | g     | g     | g  | g     | 3    | 8       |       | g g | g    | g     | 0    | g      | g    | g     | g g    |       |       |
| * vsHvHh) 9r P:9))RaA      |      | g g     |        | 3 g | g     | 0*   | 8       | g     | g     | g  |       | 288* | 8       |       | 3 g | g    | g     |      | g      | g    | g     | g g    | 758D* |       |

UFece)αsar) arc v sHyH&) 9r P:9))RaAl8Cl Cefq Bl Bsi dq Tl Td:u, Wl WgTu:r


6 of 8 7 of 8

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC
Tue May 3, 2022

MA éa9 k, AM 8: AM 8: AM-89 ) ela©AeaP s Lul
i © @ Glibeh ki norba cHMLrll vyv@h, s ea) y, AeFebrinich, Bruyv@h Lc RLaH, Bruyv@h Lc
i ILihwa@i CML) emech
ID47(50:.., t LvanLc4(: 67: 517, 81: 665(33)





5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947085, Location: 48.3986, -58.674156

| Provided by: City of Ottaw<br>Provided by: City of Ottaw<br>Nepean, ON, K2G 819, CA |
|-------------------------------------------------------------------------------------|
|                                                                                     |

| Leg                      | North    |       |      |       |       | Eouth    |       |    |       |       | S est     |       |    |       |       |     |
|--------------------------|----------|-------|------|-------|-------|----------|-------|----|-------|-------|-----------|-------|----|-------|-------|-----|
| Direction                | Eouthbou | nd    |      |       |       | Northbou | nd    |    |       |       | Wistbound | ı     |    |       |       |     |
| Time                     | R        | T     | U    | App   | Ped*  | T        | L     | U  | App   | Ped*  | R         | L     | U  | App   | Ped*  |     |
| 2022-08-03 6:00AM        | 15       | 211   | 1    | 229   | 16    | 238      | 2     | 0  | 235   | 8     | 0         | 10    | 0  | 10    | 17    | 4   |
| 5:00AM                   | 42       | 476   | 0    | 827   | 24    | 689      | 18    | 0  | 654   | 21    | 5         | 89    | 0  | 66    | 57    | 12  |
| 7:00AM                   | 84       | 409   | 0    | 463   | 18    | 815      | 5     | 0  | 824   | 9     | 4         | 35    | 0  | 41    | 39    | 10  |
| 9:00AM                   | 21       | 218   | 0    | 236   | 6     | 242      | 5     | 0  | 249   | 5     | 8         | 10    | 0  | 18    | 20    | 8   |
| 11:00AM                  | 38       | 262   | 0    | 295   | 13    | 277      | 7     | 0  | 296   | 6     | 1         | 12    | 0  | 13    | 39    | 6   |
| 12:00PM                  | 80       | 830   | 0    | 870   | 29    | 827      | 15    | 0  | 848   | 22    | 10        | 44    | 0  | 84    | 73    | 11  |
| 1:00PM                   | 49       | 882   | 0    | 601   | 30    | 811      | 9     | 0  | 820   | 35    | 13        | 32    | 0  | 48    | 65    | 11  |
| 3:00PM                   | 80       | 367   | 0    | 417   | 21    | 384      | 10    | 0  | 364   | 10    | 13        | 23    | 0  | 36    | 84    | - : |
| 4:00PM                   | 65       | 662   | 0    | 529   | 48    | 626      | 18    | 0  | 641   | 27    | 12        | 83    | 0  | 68    | 100   | 14  |
| 8:00PM                   | 66       | 827   | 0    | 894   | 83    | 842      | 21    | 0  | 863   | 48    | 14        | 43    | 0  | 85    | 103   | 12  |
| Total                    | 481      | 4223  | 1    | 4658  | 282   | 4802     | 111   | 0  | 4613  | 190   | 59        | 323   | 0  | 402   | 601   | 96  |
| % Approach               | 9.6%     | 90.3% | 0%   | -     | -     | 95.6%    | 2.4%  | 0% | -     | -     | 19.5%     | 70.3% | 0% | -     | -     |     |
| % Total                  | 4.5%     | 43.6% | 0%   | 47.2% | -     | 46.8%    | 1.1%  | 0% | 45.6% | -     | 0.7%      | 3.3%  | 0% | 4.1%  | -     |     |
| Lights and Motorcycles   | 343      | 4046  | 0    | 4379  | -     | 4226     | 105   | 0  | 4333  | -     | 52        | 274   | 0  | 386   | -     | 91  |
| % Lights and Motorcycles | 56.1%    | 98.7% | 0%   | 93.9% | -     | 93.9%    | 96.4% | 0% | 93.9% | -     | 91.1%     | 75.9% | 0% | 77.6% | -     | 93. |
| Heavy                    | 15       | 139   | 1    | 185   | -     | 149      | 4     | 0  | 183   | -     | 8         | 15    | 0  | 22    | -     | 3   |
| % Heavy                  | 3.7%     | 3.3%  | 100% | 3.4%  | -     | 3.3%     | 3.6%  | 0% | 3.3%  | -     | 6.3%      | 8.3%  | 0% | 8.8%  | -     | 3.4 |
| Bicycles on Road         | 91       | 37    | 0    | 129   | -     | 125      | 0     | 0  | 125   | -     | 2         | 22    | 0  | 24    | -     | - 2 |
| % Bicycles on Road       | 20.2%    | 0.9%  | 0%   | 2.7%  | -     | 2.7%     | 0%    | 0% | 2.7%  | -     | 2.8%      | 6.7%  | 0% | 6.0%  | -     | 2.5 |
| Pedestrians              | -        | -     | -    | -     | 230   | -        | -     | -  | -     | 169   | -         | -     | -  | -     | 473   |     |
| % Pedestrians            | -        | -     | -    | -     | 91.3% | -        | -     | -  | -     | 77.9% | -         | -     | -  | -     | 70.4% |     |
|                          |          |       |      |       |       |          |       | -  | -     | 21    |           | -     |    |       | 117   |     |
| Bicycles on Crosswalk    | -        | -     | -    | -     | 22    | -        | -     |    |       |       |           |       |    | -     | 117   |     |

\*Pedestrians and Bicycles on Crosswalk, L: Left, R: Right, T: Thru, U: U-Turn

8 of 8 1 of 8

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

Deboto 14 - CUVID - DAINN 51 & ATLINER AVE - MAT... - IMC The May 3, 2022 — 9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 947085, Location: 48.3986, -58.674156



[N] North Total: 7289 1: 45n2 Out: 4635 4330 429 923 [W] West Total: 754 1:483 Out: 253 900 ▶77 666 4283

> Out: 4083 1 : 4590 Total: 6792 [S] South

[N] North Total: 7289 In: 005 Out: 934

085 08

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

53000 14 - CUVID - DANK 51 @ AYLMER AVE - MAY... - TMC
Tue May 3, 2022
F M | eal.rgth; F M 6: th; F MA
F - 9 allel r]% Sil ado Mrir dtyHel, v eaBy, l eoelic]adl, R)HyHel r d wrao, R)HyHel r d
9 cr Ilk a-LA
F - Mr Bemedil
IDt 47: 0(g, PrHi)r dt 7(84(5, fg(8: 7hg5)

| PeC                      | Ords     |       |    |       |       | Jruis   |       |    |       |       | E eli     |        |    |        |       |       |
|--------------------------|----------|-------|----|-------|-------|---------|-------|----|-------|-------|-----------|--------|----|--------|-------|-------|
| D)œH)r d                 | Jruis.ru | do    |    |       |       | Ords.ru | do    |    |       |       | Sali. rud | 0      |    |        |       |       |
| T)me                     | W        | T     | W  | FNN   | l eoU | T       | P     | W  | FNN   | l eoU | W         | P      | W  | FNN    | l eoU | Idi   |
| 202260( 603 gth( F M     | 4        | h0(   | 0  | hh7   | h3    | h74     | 2     | 0  | h(h   | 5     | 7         | hg     | 0  | 2h     | 37    | 2:5   |
| gt30F M                  | h0       | h33   | 0  | h73   | 3     | h40     | (     | 0  | h4(   | h     | 2         | hg     | 0  | h4     | hg    | 3(g   |
| gt7(FM                   | h7       | h(2   | 0  | h55   | 3     | h40     | g     | 0  | h4g   | hh    | 0         | h3     | 0  | h3     | h(    | 3g5   |
| : t00F M                 | hg       | hh4   | 0  | h35   | 2     | h5h     | 0     | 0  | h5h   | 2     | 0         | hh     | 0  | hh     | h0    | 30:   |
| Tr ia-                   | (0       | (04   | 0  | ((4   | 2h    | 540     | h7    | 0  | g07   | 20    | 5         | (:     | 0  | 57     | g5    | h32g  |
| * FNNraHs                | : 84*    | 4h8h* | 0* | 6     | 6     | 4: 80*  | 280*  | 0* | 6     | 6     | 487*      | 4085*  | 0* | 6      | 6     | 6     |
| * Tria-                  | 38 *     | 3:87* | 0* | 728h* | 6     | (280*   | h8h*  | 0* | (38h* | 6     | * 380     | 787*   | 0* | 78 *   | 6     | 6     |
| 1 v %                    | 085g2    | 08 3: | 6  | 08 7g | 6     | 08 43   | 08(00 | 6  | 08 g4 | 6     | 08bg(     | 08:3   | 6  | 08gg5  | 6     | 08 g5 |
| P)Csi1 ado MrirdHyHe1    | 7h       | 743   | 0  | (37   | 6     | 52(     | h3    | 0  | 53:   | 6     | 5         | 7:     | 0  | (7     | 6     | h225  |
| * P)Csi1 ado MrircHyHe1  | : 280*   | 4581* | 0* | 4(8*  | 6     | 4085*   | 4281* | 0* | 4085* | 6     | h00*      | : 28 * | 0* | : 787* | 6     | 4287* |
| v eaBy                   | 2        | h3    | 0  | h(    | 6     | 35      | h     | 0  | 3g    | 6     | 0         | (      | 0  | (      | 6     | (g    |
| * v eaBy                 | 780*     | 285*  | 0* | 28/8  | 6     | (22*    | g8h*  | 0* | (8*   | 6     | 0*        | : 85*  | 0* | g8 *   | 6     | 788*  |
| R)HyHe1rd wrao           | g        | 3     | 0  | h0    | 6     | 24      | 0     | 0  | 24    | 6     | 0         | (      | 0  | (      | 6     | 77    |
| * R)HyHe1rd wrao         | h789*    | *380  | 0* | h8 *  | 6     | 782*    | 0*    | 0* | 78h*  | 6     | 0*        | : 85*  | 0* | g8 *   | 6     | 388*  |
| l eoe1ic)ad1             | 6        | 6     | 6  | 6     | h4    | 6       | 6     | 6  | 6     | 20    | 6         | 6      | 6  | 6      | (4    |       |
| * l eoe1ic)ad1           | 6        | 6     | 6  | 6     | 408(* | 6       | 6     | 6  | 6     | h00*  | 6         | 6      | 6  | 6      | gg&*  | 6     |
| R)HyHe1 r d 9 cr 11k a-L | 6        | 6     | 6  | 6     | 2     | 6       | 6     | 6  | 6     | 0     | 6         | 6      | 6  | 6      | hg    |       |
| * R)H/He1rd9 cr11k a-L   | 6        | 6     | 6  | 6     | 48 *  | 6       | 6     | 6  | 6     | 0*    | 6         | 6      | 6  | 6      | 2287* | 6     |

U eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L8Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

2 of 8

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST ⊚ AYLMER AVE - MAY... - TMC
Tue May 3, 2022

AM Peak (8:-9 AM )1:-9 AMC
AssLsatiei (glind aor MccHbyvsei, BeaRy, PereidHaoi, whyvsei co mcar, whyvsei co
Lititi asC
Ass McReDeod

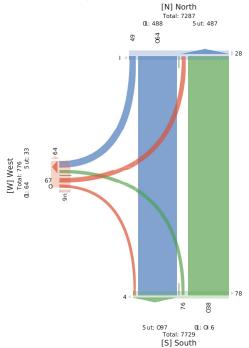
#:5.1098, gcvadco:.963591, )89611.-81

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 2022
Mfl lay Lean gt 180 ( M 6t 2180 LM:
( Ak. A959-9g 11P) Oas I Mi G dryo Akg r eacy, Lel e9Glas 9, Hibyo Akg is vial, Hibyo Akg is
- d 995a Ak:
( ASMic CRES O
k Mrl DD47, 1 i oadi sh I 488m45, 67485 Dt 75

| <b>Ottawa</b>               |
|-----------------------------|
| Loic Fiel. yh- FGyibf CGaBa |
| t00 -is9@eAAaŒiskd,         |
| OeNeas, f O, p 2K 4Gn - (   |

3 of 8

| 1eP                         | Oi dt)   |       |    |        |       | JiuG       |       |    |        |       | E e9C     |       |    |      |        |       |
|-----------------------------|----------|-------|----|--------|-------|------------|-------|----|--------|-------|-----------|-------|----|------|--------|-------|
| k RieoClis                  | JiuG.ius | ıl    |    |        |       | OidG. i us | sl    |    |        |       | Sa9Ci usl |       |    |      |        |       |
| TIRe                        | v        | T     | W  | ( NN   | Lel U | T          | 1     | W  | (NN    | Lel U | v         | 1     | W  | (NN  | Lel U  | vs C  |
| 2022604603 t t l80( M       | t 4      | tt4   | 0  | t 30   | m     | tIt        | 3     | 0  | tII    | 3     | 0         | 7     | 0  | 7    | 2t     | 20    |
| ttH4( M                     | 20       | t I 7 | 0  | t 57   | I     | t I 7      | 4     | 0  | t 42   | 3     | t         | 4     | 0  | 5    | t D    | 324   |
| t 2100LM                    | t 4      | tI2   | 0  | t 47   | 3     | t I m      | 2     | 0  | t 4t   | 5     | 2         | m     | 0  | tt   | t m    | 3t    |
| t 2lt 4LM                   | t I      | t 32  | 0  | tI5    | t 2   | t 33       | 3     | 0  | t 35   | I     | 2         | t 0   | 0  | t 2  | 27     | 2m    |
| Tì GA                       | . 5I     | 435   | 0  | 500    | 2D    | 470        | t 3   | 0  | 4D8    | t 5   | 4         | 3t    | 0  | 35   | D4     | t 2t  |
| * ( NNi ao)                 | t 087*   | DnB*  | 0* | 6      | 6     | n780*      | 282*  | 0* | 6      | 6     | t 38n#    | D58 * | 0* | 6    | 6      |       |
| * Ti GA                     | 48*      | 1180* | 0* | I n82* | 6     | I58D*      | t 8 * | 0* | I78D*  | 6     | * 80      | 284*  | 0* | 380* | 6      |       |
| Lr %                        | 08000    | 08n03 | 6  | InCB0  | 6     | 08m44      | 08540 | 6  | 08ntD  | 6     | 08524     | 08700 | 6  | 0@DD | 6      | 08n8  |
| 1 IP) Olas I Mi Cidoyo Ar9  | 13       | 40m   | 0  | 442    | 6     | 435        | t3    | 0  | 4I m   | 6     | 4         | 24    | 0  | 30   | 6      | 113   |
| * 1 EP) © asl MiCidoyo.4e9  | 5782*    | m480* | 0* | m280*  | 6     | mi 80*     | t 00* | 0* | mi 82* | 6     | t 00*     | D085* | 0* | D88* | 6      | m28D* |
| r eacy                      | 4        | 22    | 0  | 27     | 6     | 22         | 0     | 0  | 22     | 6     | 0         | 3     | 0  | 3    | 6      | 4     |
| * r eacy                    | 78D*     | 18*   | 0* | I 81*  | 6     | 381#       | 0*    | 0* | 38D*   | 6     | 0*        | n87*  | 0* | DB*  | 6      | 188*  |
| HRyoAr9is vial              | t 5      | 4     | 0  | 2t     | 6     | t 2        | 0     | 0  | t2     | 6     | 0         | 3     | 0  | 3    | 6      | 3.    |
| * HRyoAe9is vial            | 2480*    | 08n#  | 0* | 381*   | 6     | 28 *       | 0*    | 0* | 28 *   | 6     | 0*        | n87*  | 0* | DB*  | 6      | 380*  |
| Lel e9@fis9                 | 6        | 6     | 6  | 6      | 27    | 6          | 6     | 6  | 6      | t 5   | 6         | 6     | 6  | 6    | 72     |       |
| * Lel e9@fis9               | 6        | 6     | 6  | 6      | * B3n | 6          | 6     | 6  | 6      | t 00* | 6         | 6     | 6  | 6    | DI 87* |       |
| HlōyoAr9 is - di 99BaAr     | 6        | 6     | 6  | 6      | t     | 6          | 6     | 6  | 6      | 0     | 6         | 6     | 6  | 6    | t 3    |       |
| * HRovo 4:9 i s - d 99Ba Au | 6        | 6     | 6  | 6      | 385*  | 6          | 6     | 6  | 6      | 0*    | 6         | 6     | 6  | 6    | t 488* |       |


| [W] West<br>Total: 764<br>In: 13 Out: 13 | 76                                           |
|------------------------------------------|----------------------------------------------|
|                                          | Out: 070 In: 983<br>Total: 7675<br>[S] South |

4 of 8 5 of 8

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5300014 - CUVID - DAINN ST. @ ATLINER AVE - MAY... - TIME
The May 3, 2021 9 M.): 2-30 kMJ
90 GS GILLE & Aghtta an Pidridoryr@L, c eatly, kePelto\nnl, v\Ayr@Ldn BdaP, v\Ayr@Ldn
s dillRa@L
9 (CMdfewent).
nb - D4705., i drat\nln-45\text{BISI}, ). 5\text{G174}: 1





5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC




| Cei                      | O9:ad      |        |    |       |        | J 9uad   |       |    |        |        | E e)o     |       |    |        |        |       |
|--------------------------|------------|--------|----|-------|--------|----------|-------|----|--------|--------|-----------|-------|----|--------|--------|-------|
| ms:eHs9r                 | J 9uadb9ur | c      |    |       |        | O9:adb9u | rc    |    |        |        | Sa)do9uro |       |    |        |        |       |
| Tswe                     | В          | T      | W  | 1 NN  | FecU   | T        | C     | W  | 1 NN   | FecU   | В         | C     | W  | 1 NN   | FecU   | kro   |
| 2022g04g03 3r80FM        | 32         | .15    | 0  | 22D   | . 2    | . 7.     | t     | 0  | . 74   | 3      | 2         | I     | 0  |        | 30     | t.    |
| 3rt 4FM                  | . D        | . 72   | 0  | .10   | I      | . DB     | 5     | 0  | . 🛚    | 7      |           | . t   | 0  | 24     | 2t     | t (   |
| t r00FM                  | . 4        | . 5t   | 0  | . 71  | . I    | . 7.     | 5     | 0  | . 77   | 3      | 7         | . 7   | 0  | 2t     | 24     | 31    |
| t n 4FM                  | 22         | .10    | 0  | 2. 2  | E      | . t 0    |       | 0  | .t.    | . 0    |           | . 2   | 0  | . 3    | 24     | 35    |
| T9osA                    | D7         | 722    | 0  | D0I   | t E    | 554      | . 7   | 0  | 5D2    | 23     | 2.        | 42    | 0  | 73     | . Ot   | . 45  |
| * 1 NN9aHI               | . 08D*     | DI 82* | 0* | g     | 8      | I 784*   | 284*  | 0* | g      | g      | 2D8D*     | 7.82* | 0* | g      | g      |       |
| * T90aA                  | 485*       | t 582* | 0* | 4.87* | 8      | t 284*   | .8*   | 0* | t 385* | 8      | . 88*     | 388*  | 0* | t 87*  | g      |       |
| F- %                     | 08524      | I.B0   | g  | 08005 | 8      | 08 2D    | 0870D | g  | 0E 20  | 8      | 0842D     | 08740 | g  | 0872D  | g      | 083   |
| Csido) arc M9o9:HyHke)   | 4I         | 5I 5   | 0  | 744   | 8      | 532      | . 7   | 0  | 5t I   | 8      | . I       | t 7   | 0  | 55     | g      | . t   |
| * Csido) arc M9o9:HyHNe) | 578D*      | I58 *  | 0* | 1388* | 8      | I 480*   | . 00* | 0* | I 482* | 8      | I 084*    | 108*  | 0* | I 08 * | g      | It 80 |
| - ea6y                   |            | . 7    | 0  | . D   | 8      | . 0      | 0     | 0  | . 0    | g      | 0         | -     | 0  |        | g      | - 2   |
| * - ea6y                 | .8*        | 28 *   | 0* | 282*  | 8      | . 81*    | 0*    | 0* | . 81*  | 8      | 0*        | . a*  | 0* | .8*    | g      | . а   |
| v sHyHh) 9r B9ac         | 27         | I      | 0  | 35    | 8      | 23       | 0     | 0  | 23     | g      | 2         | t     | 0  | 5      | g      |       |
| * vsHyHb) 9r B9ac        | 3.80*      | . 82*  | 0* | t 8 * | 8      | 384*     | 0*    | 0* | 38 *   | 8      | I 84*     | 787*  | 0* | D82*   | g      | t 82  |
| Fece)asar)               | g          | g      | g  | g     | t 2    | g        | g     | g  | g      | . 5    | g         | g     | g  | g      | 77     |       |
| * Fece)asar)             | g          | g      | g  | g     | D781*  | g        | g     | g  | g      | 5I 85* | g         | g     | g  | g      | 7t 80* |       |
| vsHyHe) 9r P:9))RaA      | g          | g      | g  | g     | 5      | g        | g     | g  | g      | 7      | g         | g     | g  | g      | 27     |       |
| * vsHyHe) 9r P:9))RaA    | g          | g      | g  | g     | . 281* | g        | g     | g  | g      | 308 *  | g         | g     | g  | g      | 2580*  |       |

UFece) gsar) arc v sHyHa) 9r P:9))RaAl 8CnCefq BnBsi dq TnTd:u, WnWgTu:r

6 of 8 7 of 8

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 2020 8: (30 AM-89 ) ela@CAeaP s Lul
i @ Galthelk indohacHMLrLlvyv@h, s ea) y, AeFebrlinch, Bruyv@h Lc RLaH, Bruyv@h Lc
Il Lihwa@i @ML-| emecch
ID(4: 705., t LvanLc(: 569451, 8 567: b. 1



5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947066, Location: 485403921, -. 835719. 4

| Leg                            | North    |       |    |       |        | Eouth     |       |    |        |             | S est     |       |    |       |       |      |
|--------------------------------|----------|-------|----|-------|--------|-----------|-------|----|--------|-------------|-----------|-------|----|-------|-------|------|
| Direction                      | Eouthbou | nd    |    |       |        | Northbour | nd    |    |        |             | Wistbound |       |    |       |       |      |
| Time                           | R        | T     | U  | App   | Ped*   | T         | L     | U  | App    | Ped*        | R         | L     | U  | App   | Ped*  | Int  |
| 2022-08-03 6:00AM              | 8        | 42    | 0  | 4.    | 13     | 32        | 1     | 0  | 33     | 11          | 3         | 4     | 0  |       |       |      |
| .:00AM                         | 23       | 1.4   | 0  | 19.   | 22     | 141       |       | 0  | 147    | 2.          | 8         | 1.    | 0  | 22    | 13    | 3    |
| 7:00AM                         | 44       | 2. 1  | 0  | 318   | 4.     | 212       | 21    | 0  | 233    | 2.          | 18        | 46    | 0  | 61    | 20    | 6    |
| 9:00AM                         | 24       | 107   | 0  | 132   | 18     | 73        | 13    | 0  | 96     | 11          | 11        | 20    | 0  | 31    | 7     | 2    |
| 11:00AM                        | 30       | 131   | 0  | 161   | 19     | 61        | 8     | 0  | 66     | 23          | 9         | 17    | 0  | 2.    | 16    | 2    |
| 12:00PM                        | 86       | 286   | 0  | 312   | 83     | 132       | 2.    | 0  | 189    | . 2         | 16        | 38    | 0  | 81    | 26    | 8    |
| 1:00PM                         | 83       | 240   | 0  | 293   | 46     | 13.       | 26    | 0  | 163    | 88          | 12        | 23    | 0  | 38    | 24    | 4    |
| 3:00PM                         | 26       | 233   | 0  | 289   | 48     | 9.        | 23    | 0  | 120    | 3.          | 17        | 18    | 0  | 33    | 16    | 4    |
| 4:00PM                         | 68       | 808   | 0  | 8.0   | 8.     | 16.       | 36    | 0  | 203    | 66          | 32        | 39    | 0  | . 1   | 22    | 7    |
| 8:00PM                         | 69       | 408   | 0  | 4.4   | 71     | 191       | 34    | 0  | 228    | 100         | 22        | 4.    | 0  | 69    | 39    | -    |
| Total                          | 398      | 2368  | 0  | 2.60  | 397    | 1283      | 193   | 0  | 1446   | 429         | 143       | 264   | 0  | 40.   | 191   | 46   |
| % Approach                     | 1453%    | 785 % | 0% | -     | -      | 765 %     | 1353% | 0% | -      | -           | 3851%     | 6459% | 0% | -     | -     |      |
| % Total                        | 756%     | 8153% | 0% | 8957% | -      | 2.52%     | 452%  | 0% | 3153%  | -           | 351%      | 85 %  | 0% | 757%  | -     |      |
| Lights and Motorcycles         | 36.      | 2329  | 0  | 2696  | -      | 1222      | 193   | 0  | 1418   | -           | 137       | 284   | 0  | 392   | -     | 48   |
| % Lights and Motorcycles       | 9259%    | 9758% | 0% | 9.5%  | -      | 9.58%     | 100%  | 0% | 9. 59% | -           | 9638%     | 9652% | 0% | 9653% | -     | 9. 5 |
| Heavy                          | 9        | 18    | 0  | 24    | -      | 10        | 0     | 0  | 10     | -           | 2         | 4     | 0  | 6     | -     |      |
| % Heavy                        | 253%     | 056%  | 0% | 059%  | -      | 057%      | 0%    | 0% | 05 %   | -           | 154%      | 158%  | 0% | 158%  | -     | 03   |
| Bicycles on Road               | 19       | 21    | 0  | 40    | -      | 21        | 0     | 0  | 21     | -           | 3         | 6     | 0  | 9     | -     |      |
|                                | 457%     | 059%  | 0% | 154%  | -      | 15 %      | 0%    | 0% | 158%   | -           | 251%      | 253%  | 0% | 252%  | -     | 15   |
| % Bicycles on Road             |          |       |    | -     | 290    | -         | -     | -  | -      | 369         | -         | -     | -  | -     | 174   |      |
| % Bicycles on Road Pedestrians | -        | -     | -  | _     |        |           |       |    |        |             |           |       |    |       |       |      |
|                                |          | -     | -  | -     | . 259% | -         | -     | -  | -      | 7630%       | -         | -     | -  | -     | 963%  |      |
| Pedestrians                    | -        |       |    |       |        | -         | -     | -  | -      | 7630%<br>60 | -         | -     | -  | -     | 9658% |      |

\*Pedestrians and Bicycles on Crosswalk5L: Left, R: Right, T: Thru, U: U-Turn

8 of 8 1 of 8

# 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5300014 - COVID - QUEEN ELIZABETH DIWNT & PIR... - I MIC.
Tue May 3, 2022
Full Length (6:30 AM-9230 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947066, Location: 485403921, - . 835719, 4

290

[N] North Total: 7288 1: 28n3 4ut: 0508 29n5 965

On3

23n

690 4 ut: 2530 1 : 077n Total: 9657 [S] South

[W] West Total: 665 1:738 4ut: 500

02n

n5



5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

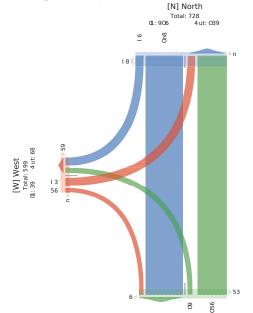
5360814-CVUIP-QUEEN ELIZABE H DRWY @ FIF... - IMC Tue May 3, 2022 F M l eal.ngth, F M 6: th (F MA F - 9 allel P/jScil ado Mrir drlyHel, v eaBy, l eoelicjadl, R)HyHel r d wrao, R)HyHel r d 9 cr Ilk a-LA F - Mr Bemedil ID: : 48077, Pr Hi)r dt 4(803: 2h, 66 (87gh: 54



| PeC                      | Ords       |       |    |        |       | Jruis   |       |    |       |       | E eli      |       |     |        |       |        |
|--------------------------|------------|-------|----|--------|-------|---------|-------|----|-------|-------|------------|-------|-----|--------|-------|--------|
| D)œH)r d                 | Jruis. rud | lo    |    |        |       | Ords.ru | do    |    |       |       | Sali. rudo |       |     |        |       |        |
| T)me                     | W          | T     | W  | FNN    | l eoU | T       | P     | W  | FNN   | l eoU | W          | P     | W   | FNN    | l eoU | Idi    |
| 202260( 603 gth( F M     | hg         | 74    | 0  | g2     | h4    | (h      | 7     | 0  | (5    | 7     | 2          | 5     | 0   |        | g     | h4g    |
| gt30F M                  | h0         | gh    | 0  | : h    | g     | 7g      | 3     | 0  | 5h    | (     | 4          | h2    | 0   | h7     | 4     | h5g    |
| gt4(FM                   | g          | g3    | 0  | : h    | h7    | (5      | (     | 0  | 72    | 5     | g          | h(    | 0   | 23     | 4     | h57    |
| : t00F M                 | hh         | (2    | 0  | 73     | h0    | 4h      | - 1   | 0  | (0    | (     | 3          | h2    | 0   | h(     | (     | h2g    |
| Tria-                    | 45         | 2g0   | 0  | 325    | 4g    | 2h5     | 23    | 0  | 240   | 23    | h5         | 47    | 0   | 73     | 2h    | 73     |
| * FNNraHs                | h484*      | g(87* | 0* | 6      | 6     | : 084*  | :87*  | 0* | 6     | 6     | 2580*      | 5380* | 0*  | 6      | 6     |        |
| * Tria-                  | 58(*       | 4481* | 0* | (h8*   | 6     | 3484*   | 385*  | 0* | 3g8h* | 6     | 285*       | 588*  | 0*  | h030*  | 6     |        |
| l v %                    | 08g0g      | 08g4g | 6  | 08g:   | 6     | 085: g  | 0873: | 6  | 08;4( | 6     | 08(3h      | 085(0 | 6   | 08754  | 6     | 08gg   |
| P)Csi1 ado Mr ir cHyHe1  | 40         | 25g   | 0  | 3hg    | 6     | 2h(     | 23    | 0  | 23g   | 6     | h5         | 4(    | 0   | 72     | 6     | 7h     |
| * P)Gsi1 ado MrircHyHe1  | g(8h*      | ::8*  | 0* | : 582* | 6     | ::8h*   | h00*  | 0* | ::82* | 6     | h00*       | :58g* | 0*  | : g8t* | 6     | : g8h* |
| v eaBy                   | 2          | 0     | 0  | 2      | 6     | 2       | 0     | 0  | 2     | 6     | 0          | 0     | 0   | 0      | 6     |        |
| * veaBy                  | 48*        | 0*    | 0* | 087*   | 6     | * 80    | 0*    | 0* | 08g*  | 6     | 0*         | 0*    | 0*  | 0*     | 6     | 087*   |
| R)HyHe1rd wrao           | (          | 2     | 0  | 5      | 6     | 0       | 0     | 0  | 0     | 6     | 0          | h     | 0   | h      | 6     |        |
| * R)HyHe1rd wrao         | h087*      | 085*  | 0* | 28h*   | 6     | 0*      | 0*    | 0* | 0*    | 6     | 0*         | 282*  | 0*  | h87*   | 6     | h88*   |
| l eoe1ic)ad1             | 6          | 6     | 6  | 6      | 33    | 6       | 6     | 6  | 6     | hg    | 6          | 6     | - 6 | 6      | 20    |        |
| * l eoe1ic)ad1           | 6          | 6     | 6  | 6      | 7g8g* | 6       | 6     | 6  | 6     | 5g88* | 6          | 6     | 6   | 6      | :(82* |        |
| R)HyHe1 rd 9 cr11k a-L   | 6          | 6     | 6  | 6      | h(    | 6       | 6     | 6  | 6     | (     | 6          | 6     | - 6 | 6      | h     |        |
| * R)H/He1rd 9 cr 11k a-L | 6          | 6     | 6  | 6      | 3h88* | 6       | 6     | 6  | 6     | 2h85* | 6          | 6     | 6   | 6      | 48g*  |        |

U eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L8Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

2 of 8 3 of 8


# 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022

AM Peak (8:-9 AM )1:-9 AMC
AssLsatiei (glind nor MccHyysei, BeaRy, PereidHaoi, whyysei co mcar, whyysei co
LHiII asC
Ass McReDeod

☐ 1580..., gcvadro: 5960312-, )1968-115

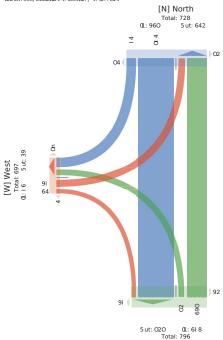
229



5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022
Mfl lay Lean g 2 LM ht LM(
6: Aa-re-e \$\frac{1}{2}\text{BHP}\text{ aC MS}\sidyde-, o eary, Lel e-\hat{hBC}\, c \text{Elyde- sCHsal}\, c \text{Elyde- sC}
Ais--v an(
6: Msr eBeC)
Rekmt Db44, 9sda)B Ckt 78 03m2r\, 16784D m51

|   | Lisr II el . ykABy sb<br>t 00 As G.)e::a<br>OeNeaC, f O, p 2K | of))ava<br>)EsCwi, |
|---|---------------------------------------------------------------|--------------------|
| a |                                                               |                    |

| 9e1                       | Osi)P       |        |    |       |       | Jsu)P      |        |    |         |       | E e-)      |          |    |       |       |       |
|---------------------------|-------------|--------|----|-------|-------|------------|--------|----|---------|-------|------------|----------|----|-------|-------|-------|
| wffed)fsC                 | J su)P. su( | 1      |    |       |       | Osi)P. suC | 1      |    |         |       | Sa-). suCl |          |    |       |       |       |
| TiBe                      | H           | T      | W  | 6 NN  | Lel U | T          | 9      | W  | 6 NN    | Lel U | Н          | 9        | W  | 6 NN  | Lel U | RC)   |
| 2022h07h03 t 2l00LM       | t m         | 40     | 0  | 5m    | 1.1   | 27         | 5      | 0  | 32      | 2t    | 7          | t 2      | 0  | t 5   | 3     | t 2   |
| t 2kt 7LM                 | t 3         | 47     | 0  | 5D    | D     | 2m         | 7      | 0  | 3I      | 2t    | 4          | 7        | 0  | tt    | t t   | t 2   |
| t 2l80LM                  | t I         | 47     | 0  | 5m    | t m   | 37         | 4      | 0  | It      | t 7   | t          | D        | 0  | m     | 7     | t2    |
| t 2N 7LM                  | t 0         | 44     | 0  | 54    | t 7   | 13         | m      | 0  | 72      | t 7   | I          | t 0      | 0  | tΙ    | 5     | t I   |
| Ts)a:                     | 74          | 274    | 0  | 3t 2  | 73    | t 32       | 25     | 0  | t 7m    | 52    | t 4        | 37       | 0  | 7t    | 24    | 72    |
| * 6 NNsadP                | t 58hff     | 1288 * | 0* | h     | h     | D880*      | t 580* | 0* | h       | h     | 3t 8I *    | 4D81*    | 0* | h     | h     |       |
| * Ts)a:                   | * d80 t     | I n80* | 0* | 7n8D* | h     | 2788*      | 782*   | 0* | 3087*   | h     | 38:*       | 485*     | 0* | nBD*  | h     |       |
| Lo %                      | 08535       | 08:D   | h  | 08nDI | h     | 085D0      | 08570  | h  | 08557   | h     | 08445      | 084DD    | h  | 0&2t  | h     | 08n2  |
| 9RP)- aCl Ms)sidyd:e-     | 74          | 272    | 0  | 30D   | h     | t 2D       | 25     | 0  | t 77    | h     | t 4        | 32       | 0  | ID    | h     | 7t    |
| * 9HP)- aCl Ms)sidyd:e-   | t 00*       | * BOin | 0* | mD85* | h     | n580*      | t 00*  | 0* | n587*   | h     | t 00*      | mt 81 ** | 0* | mi8:* | h     | n58nt |
| o ear y                   | 0           | 3      | 0  | 3     | h     | 3          | 0      | 0  | 3       | h     | 0          | t        | 0  | t     | h     |       |
| * o ear y                 | 0*          | t 82*  | 0* | t 80* | h     | 288*       | 0*     | 0* | t Shiff | h     | 0*         | 28h#     | 0* | 280*  | h     | t 88* |
| c Rlycke- sCHsal          | 0           | t      | 0  | t     | h     | t          | 0      | 0  | t       | h     | 0          | 2        | 0  | 2     | h     |       |
| * c Rlycke- sCHsal        | 0*          | *B0    | 0* | 088*  | h     | 08D*       | 0*     | 0* | 081*    | h     | 0*         | 785*     | 0* | 38h#  | h     | 080   |
| Lel e-)illiC-             | h           | h      | h  | h     | 12    | h          | h      | h  | h       | 45    | h          | h        | h  | h     | 24    |       |
| * Lel e-)ilàG-            | h           | h      | h  | h     | 5n82* | h          | h      | h  | h       | n88 * | h          | h        | h  | h     | t 00* |       |
| c Rdyd:e- sCAisv a:n      | h           | h      | h  | h     | tt    | h          | h      | h  | h       | 7     | h          | h        | h  | h     | 0     |       |
| * c Edyd:e- s C Ais v a:n | h           | h      | h  | h     | 208D* | h          | h      | h  | h       | 48n#  | h          | h        | h  | h     | 0*    |       |


ULel e-)iTaG- aCl c Edyd:e- s C Ais--v a:n89 k9 eb), HkHFl P), TkTPiu, WkWhTuiC

4 of 8 5 of 8

# 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

Deboth 14 - COVID - QUEEN ELIZABETH DRAWT @ FIF... - TIMC Tue May 3, 20 224 ... : kM9 JI Classes ELAghs at P Mnhrdryoles, r eacy, kePesltilats, Habyoles nt v naP, Habyoles nt CdnssBal(9 JI MnceRet Is will Di7055, Lnoablat I 4. 6403 D2: , -1. 657: DI4

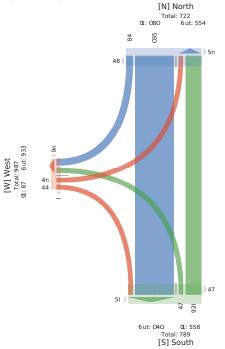




5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC



| s ed                    | O1An      |        |    |        |        | J 1uro  |       |    |       |        | E eG     |        |    |        |      |       |
|-------------------------|-----------|--------|----|--------|--------|---------|-------|----|-------|--------|----------|--------|----|--------|------|-------|
| I iAevri1c              | J 1urob1u | :H     |    |        |        | O1Aob1u | H     |    |       |        | SaGb1ucF | I      |    |        |      |       |
| Tik e                   | R         | T      | W  | PNN    | FeHL   | T       | s     | W  | PNN   | FeHL   | R        | S      | W  | PNN    | FeHU | ner   |
| 2022h0t h03 3rgt FM     | 52        | 523    | 0  | 53t    | 5.     | t g     | 4     | 0  | 72    | 5t     | 4        | D      | 0  | 5.     | 55   | 25    |
| gr00FM                  | 5g        | 532    | 0  | 5g7    | 54     | gt      | D     | 0  | tg    | 22     | 7        | 4      | 0  | 5g     | g    | 25    |
| gr6t FM                 | 20        | 533    | 0  | 5t 3   | 54     | g5      | 7     | 0  | g.    | 54     | D        | 50     | 0  | 5D     | 2    | 25    |
| grB0FM                  | 5.        | 55g    | 0  | 535    |        | gD      | 5g    | 0  | 73    | 55     | 50       |        | 0  | 5.     | 7    | 25    |
| T1ra-                   | 73        | t 02   | 0  | t7t    | 70     | 54D     | 3.    | 0  | 227   | 77     | 33       | 3g     | 0  | 7.     | 23   | 4t    |
| * PNN4avo               | 5582*     | 4481*  | 0* | h      | ŀ      | 4387*   | 578g* | 0* | h     | h      | gDB*     | * 80 t | 0* | h      | h    |       |
| * T1ra-                 | . 88*     | t 48 * | 0* | 7t 8D* | h      | 2280*   | g88*  | 0* | 278*  | h      | 384*     | g80*   | 0* | . 81*  | h    |       |
| F9 %                    | 08 44     | 08Dg3  | h  | 08D2D  | h      | 084. t  | 08775 | h  | 081D  | h      | 08475    | 084t 0 | h  | 1 1480 | h    | 0804  |
| s idorCacHM1r1Ayv-eC    | 72        | gD7    | 0  | tt4    | h      | 547     | 3.    | 0  | 223   | h      | 35       | 33     | 0  | 7g     | h    | 4g    |
| * s idorCacHM1r1Aryv-eC | D48g*     | D484*  | 0* | D481*  | ŀ      | D48g*   | 500*  | 0* | D48 * | h      | D88D*    | D 85*  | 0* | D:8*   | h    | D48 * |
| 9 ea: y                 | 5         | 2      | 0  | 3      | h      | 3       | 0     | 0  | 3     | h      | 0        | 5      | 0  | 5      | h    |       |
| * 9 ea: y               | 587*      | 08g*   | 0* | * 80   | h      | 587*    | 0*    | 0* | 588*  | h      | 0*       | 28D*   | 0* | 58 *   | h    | 084   |
| Bivyv-eC1c R1aH         | 0         | g      | 0  | g      | h      | 0       | 0     | 0  | 0     | h      | 2        | 0      | 0  | 2      | h    |       |
| * Bivyv-eC1c R1aH       | 0*        | 084*   | 0* | * 80   | ŀ      | 0*      | 0*    | 0* | 0*    | h      | 785*     | 0*     | 0* | 380*   | h    | 08 *  |
| FeHeQ:Aac C             | h         | h      | h  | h      | 3E     | h       | h     | h  | h     | t 2    | h        | h      | h  | h      | 23   |       |
| * FeHeQAacC             | h         | h      | h  | h      | 7t 80* | h       | h     | h  | h     | . 481* | h        | h      | h  | h      | 500* |       |
| Bivyv-eC1c ) Al@va-l    | h         | h      | h  | h      | 25     | h       | h     | h  | h     | 5g     | h        | h      | h  | h      | 0    |       |
| * Bivyv-eC1c ) ACGwa-l  | h         | h      | h  | h      | 3t 80* | h       | h     | h  | h     | 2582*  | h        | h      | h  | h      | 0*   |       |


UFeHeGAacCacHBivyv-eC1c ) AlGwa-l 8s ns efr, RnRidor, TnToAı, WhWhTuAc

6 of 8 7 of 8

# 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022 - (86: AMP -) 1 e Gas Aeap Li uC
g sh sattet landro a H/r Mi d Gl/Bet, Leal y, Aevetd@H, RdlyBet i Hwi av, RdlyBet i H
h G ttmsaP9
g ssMil el eltt
Dl (7850..., ni Badd H 8: 8803721, -b: 6 517b8

[S] South

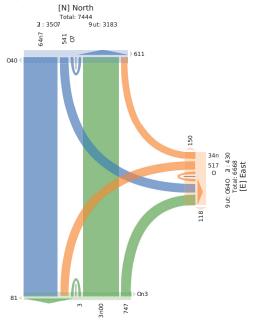


AG l dvev f y( h dy i O) cama 100 h i H cessacd H4 C, NepeaH, ) N, K2G: J7, h g

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

\$566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 2022
Full Length (6 :
Il Ala--e- (Light- anl MPtP)G/Ge-, s eai y, dele-t)9an-, o 9G/Ge- Pn r Pal, o 9G/Ge- Pa
AJP--c all E
: Il MPi ev entR wkm01 2m LPGrPmvDn8k71 8D 9 m87n7k3

| Leg                      | NP)th     |       |      |       |        | Ea-t     |       |      |       |        | SPuth     |       |      |       |       |      |
|--------------------------|-----------|-------|------|-------|--------|----------|-------|------|-------|--------|-----------|-------|------|-------|-------|------|
| R9eG9n                   | SPuth. Pu | n1    |      |       |        | We-t. Pu | n1    |      |       |        | NP)th. Pu | n1    |      |       |       |      |
| T9v e                    | T         | L     | U    | : pp  | de1*   | r        | L     | U    | : pp  | de1*   | r         | T     | U    | : pp  | de1*  | Bet  |
| 202250nf03 8v00: M       | Ik        | 30    | 2    | œ     | I      | k        | m     | 0    | Œ     | (3)    | a         | kD    | 0    | 000   | 0     | 23   |
| I w00: M                 | 23m       | n₹    | 0    | 2kD   | 2m     | 3D       | 30    | 0    | 8m    | 22     | DO        | 288   | 0    | 30I   | D     | 88   |
| 7w0: M                   | 2k0       | I m   | 0    | 38m   | 21     | 172      | nk    | 0    | 000   | 88     | kD        | DBO   | 0    | mm    | 22    | 002  |
| kw00: M                  | OnD       | 2D    | 2    | C70   | 00     | 7        | 20    | 0    | 27    | CI7    | 33        | 2CI   | 0    | 2n0   | m     | D    |
| CO.00: M                 | OFk       | DO    | 2    | 232   | 2m     | 2I       | 38    | 0    | 8D    | 83     | Dm        | Ck0   | 0    | 238   | I     | mi   |
| CP:W0dM                  | 37k       | 10    | 0    | D8O   | Dr     | mD       | n2    | 0    | 008   | OnD    | 73        | 373   | 0    | D88   | 38    | 003  |
| O@0dM                    | 3kI       | 80    | 2    | D80   | 10     | nB       | 10    | 0    | 023   | CBC    | 78        | D02   | 0    | DF7   | 30    | (30) |
| 3w0dM                    | 2nB       | 33    | 0    | 278   | D8     | 28       | mO    | 0    | H     | 000    | mm        | 20k   | 0    | 28m   | 20    | 82   |
| D@0dM                    | DBI       | kD    | 3    | n8D   | kI     | 88       | 007   | 0    | OPD   | αc     | 000       | IIB   | 0    | mnD   | 37    | CBO  |
| m <b>0</b> 0dM           | Dn8       | COOL  | 3    | n83   | 77     | IO       | ODD.  | 0    | αm    | C80    | CB2       | DO2   | 0    | mDD   | 2m    | 023  |
| TPtal                    | 2k08      | nkD   | CB   | 3mOB  | IDO    | 3k0      | niD8  | 0    | k3I   | k0m    | 8k8       | 30I I | 3    | 3118  | C7I   | 722  |
| %: pp)PaCh               | 724 %     | OB4k% | 04%  | 5     | 5      | DO8%     | n⊽48% | 040% | 5     | 5      | CF4D%     | 704n% | 040% | 5     | 5     |      |
| % TPtal                  | 3m8%      | 142%  | 042% | D24 % | 5      | D4 %     | 848%  | 0%   | 0040% | 5      | 741%      | 3140% | 0%   | Dmk%  | 5     |      |
| L9ght- an1 MPtP)CyCle-   | 287m      | ni 0  | CB   | 32I O | 5      | 38I      | mOO   | 0    | 71 k  | 5      | 82m       | 27n0  | 3    | 3DI 7 | 5     | 182  |
| % L9ght- an1 MPtP)CyCle- | k240%     | k840% | 000% | k340% | 5      | kD40%    | k348% | 000% | k347% | 5      | 7k47%     | k248% | 000% | k240% | 5     | k24  |
| s eai y                  | CDF       | 20    | 0    | CBk   | 5      | (3)      | 00    | 0    | 20    | 5      | 23        | œ     | 0    | OBD   | 5     | 31   |
| % s eai y                | m4O%      | 341%  | 0%   | D#%   | 5      | 248%     | O\$7% | 0%   | 240%  | 5      | 348%      | D8%   | 0%   | DB%   | 5     | D8   |
| o 9GyCle- Pn r Pa1       | 13        | 3     | 0    | 18    | 5      | CB       | 2m    | 0    | 37    | 5      | D7        | 78    | 0    | CBD   | 5     | 21   |
| % o 9GyCle- Pn r Pa1     | 24196     | 041%  | 0%   | 242%  | 5      | 348%     | D8%   | 0%   | D40%  | 5      | 84k%      | 247%  | 0%   | 341%  | 5     | 340  |
| de1e-t)9in-              | 5         | 5     | 5    | 5     | E80    | 5        | 5     | 5    | 5     | 770    | 5         | 5     | 5    | 5     | Ωk    |      |
| % de1e-t)9an-            | 5         | 5     | 5    | 5     | kI 4n% | 5        | 5     | 5    | 5     | kI 42% | 5         | 5     | 5    | 5     | km4 % |      |
|                          |           |       |      |       |        | 5        | 5     | 5    | 5     | 2m     | 5         | 5     | 5    | 5     | 7     |      |
| o 9CyCle- Pn A)Pc alH    | 5         | 5     | 5    | 5     | 00     | 5        |       | - 5  |       |        |           |       | - 5  |       | 7     |      |


\*de1e-t)9an- an1 o 93yCle- Pn A)P--c alH4LwLebt, r wr 9ght, TwTh)u, UwU5Tu)n

8 of 8 1 of 8

# 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5300014 - CUVID - DAINS 31 @ EAFIIGHTON WAY -... - 1 INIC. Tue May 3, 2022 Full Length (6 : Il Ala--e- (Lgbh- an1 MPtP)Q:Qe-, s eai y, de1e-t)9an-, o 9Q:Qe- Pn r Pa1, o 9Q:Qe- Pn A)P-c all E : Il MPi ev ent-R: wkn01 2m L PQ:QPmvDn8k71 8D 9 m87n7k3





9 ut: 3155 2 : 3007 Total: 0630 [S] South

# 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

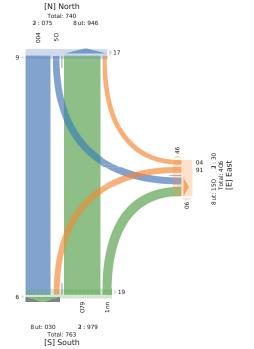
\$556814 - CUVID - BARN ST @ EARIDITION WATER - ... - TIME.
THE MAY 3, 2022

F M I eaL right (F M 6: th (F MA)
F - 9 - 31le 1 P)Csi1 ado Mrir dy'He1, v eaBy, I eoclicjad1, R)Hy'He1rd wrao, R)Hy'He1rd
F - Mr Bemedi1
IDt: (042(, Pr Hai)rd t 7(8: g457, 64(85g(g: 3)

h00 9 r d1ie-ai)r d Dc, OeNead, f O, p 2K (G, 9 F

| PeC                      | Ords       |       |    |        |       | J a1i      |        |    |        |       | Eruis     |        |     |       |       |      |
|--------------------------|------------|-------|----|--------|-------|------------|--------|----|--------|-------|-----------|--------|-----|-------|-------|------|
| D)œH)r d                 | Eruis. rud | lo    |    |        |       | S eli. rud | 0      |    |        |       | Ords. ruc | do     |     |       |       |      |
| T)me                     | T          | P     | W  | FNN    | l eoU | W          | P      | W  | FNN    | l eoU | W         | T      | W   | FNN   | l eoU | Idi  |
| 202260(603 gth(FM        | 52         | 20    | 0  | g2     | - :   | h0         | h0     | 0  | 20     | 2h    | 3h        | : h    | 0   | h22   | 4     | 2    |
| gt30F M                  | 45         | h7    | 0  | :0     | (     | h7         | hg     | 0  | 32     | h5    | 25        | h2g    | 0   | h(7   | :     | 2    |
| gt7(FM                   | h04        | 22    | 0  | h2:    | 7     | 5          | h3     | 0  | h:     | h(    | 22        | h(3    | 0   | h4(   | 2     | 32   |
| : t00F M                 | g4         | g     | 0  | :(     | 5     | 2          | h0     | 0  | h2     | h2    | 2h        | h23    | 0   | h77   | 7     | 2    |
| Tria-                    | 332        | 57    | 0  | 3:5    | 27    | 32         | (h     | 0  | g3     | 57    | h00       | 7: (   | 0   | (:(   | 22    | h0-  |
| * FNNraHs                | g38g*      | h582* | 0* | 6      | 6     | 3g85*      | 5h87*  | 0* | 6      | 6     | h58g*     | g382*  | 0*  | 6     | 6     |      |
| * Tria-                  | 308 *      | 580*  | 0* | 358 *  | 6     | 380*       | 784*   | 0* | 481*   | 6     | :88*      | 758h*  | 0*  | ((87* | 6     |      |
| 1 v %                    | 0844h      | 08424 | 6  | 08457  | 6     | 08(4h      | 085: 7 | 6  | 0857h  | 6     | 08g30     | 08g0h  | 6   | 08g77 | 6     | 08g  |
| P)Cs i1 ado Mr ir cHyHe1 | 3h5        | 50    | 0  | 345    | 6     | 3h         | 74     | 0  | 4g     | 6     | g4        | 77h    | 0   | (2g   | 6     |      |
| * P)Csi1 ado MrircHyHe1  | :(82*      | :38g* | 0* | : 78 * | 6     | :58 *      | : 282* | 0* | : 780* | 6     | g480*     | g: 8h* | 0*  | gg81* | 6     | : h8 |
| v eaBy                   | h7         | 7     | 0  | hg     | 6     | h          | 3      | 0  | 7      | 6     | 5         | 33     | 0   | 3:    | 6     |      |
| * v eaBy                 | 782*       | 588*  | 0* | 78(*   | 6     | 38h*       | (8*    | 0* | 78g*   | 6     | 580*      | 584*   | 0*  | 585*  | 6     | (84  |
| R)HyHe1rd wrao           | 2          | 0     | 0  | 2      | 6     | 0          | h      | 0  | h      | 6     | 4         | 2h     | 0   | 2g    | 6     |      |
| * R)HyHe1rd wrao         | 085*       | 0*    | 0* | * 380  | 6     | 0*         | 280*   | 0* | h82*   | 6     | 480*      | 782*   | 0*  | 781*  | 6     | 28   |
| l eoe1ic)ad1             | 6          | 6     | 6  | 6      | 27    | 6          | 6      | 6  | 6      | 50    | 6         | 6      | - 6 | 6     | 2h    |      |
| * l eoe1ic)ad1           | 6          | 6     | 6  | 6      | h00*  | 6          | 6      | 6  | 6      | :38g* | 6         | 6      | 6   | 6     | :(8(* |      |
| R)HyHe1 r d 9 cr 11k a-L | 6          | 6     | 6  | 6      | 0     | 6          | 6      | 6  | 6      | 7     | 6         | 6      | - 6 | 6     | h     |      |
| * R)HyHe1rd9 cr11k a-L   | 6          | 6     | 6  | 6      | 0*    | 6          | 6      | 6  | 6      | 588*  | 6         | 6      | - 6 | 6     | 78 *  |      |

U eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L8Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd


2 of 8

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST ⊚ EXHIBITION WAY -... - TMC
Tue May 3, 2022

AM Peak (8:-9 AM )1:-9 AMC
AssLsatiei (glind aor MccHyvsei, BeaRy, PereidHaoi, whyvsei co mcar, whyvsei co
Lititi asC
Ass McReDeod

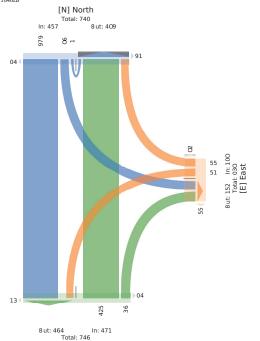
# : 190529, gcvadco: . 968 851., )596 89813



5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 2022
Mfl lay Lean g ZiB0 LM (tiB0 LM6
: A& A999-g BP / O sal Mi G dryo As r eacy, Lel e9 (Das S, Hiōyo As 9 is vial, Hiōyo As 9 is - d 995a As 6
: A SMiceRes O
k hm 10121, 1 i o a G is h 41 / 25 m 8 L5 4, (LT 25 8 18 m 8

3 of 8

| 1eP                         | Oi dij     |        |       |        |       | J a9C     |       |    |         |       | Ei uG    |       |    |        |       |       |
|-----------------------------|------------|--------|-------|--------|-------|-----------|-------|----|---------|-------|----------|-------|----|--------|-------|-------|
| k RiboŒis                   | Ei uG. i u | sl     |       |        |       | S e9Ci us | 1     |    |         |       | Oid).ius | il    |    |        |       |       |
| TIRe                        | T          | 1      | W     | : NN   | Lel U | v         | 1     | W  | : NN    | Lel U | v        | T     | W  | : NN   | Lel U | νεC   |
| 2022(0I (03 t 2lB0LM        | 8I         | t m    | 0     | t 04   | n     | t2        | t I   | 0  | 2D      | 2m    | 23       | t 02  | 0  | t 2I   | D     | 2I    |
| t 2hH LM                    | t 0m       | 18     | t     | t 28   | I I   | 2t        | t 0   | 0  | 3t      | 3D    | 23       | nD    | 0  | t 20   | t 4   | 20    |
| t h00LM                     | t 05       | t I    | 0     | t 2t   | 1.8   | t D       | t3    | 0  | 30      | 34    | 2t       | 110   | 0  | t3t    | t 3   | 28    |
| t h I L M                   | mB         | 23     | 0     | tt5    | t E   | t 5       | 23    | 0  | 3m      | 35    | t 8      | nD    | 0  | ttI    | 8     | 20    |
| Ti QA                       | 3n8        | п      | t     | 45m    | H     | 55        | 5t    | 0  | t 2D    | t 35  | 81       | 405   | 0  | 4m     | 42    | t 08  |
| *: NNi ao)                  | 8378*      | t 570* | 072*  | (      | (     | 1270*     | 4870* | 0* | (       | (     | t DB*    | 827D* | 0* | (      | (     |       |
| * Ti GA                     | 3572*      | 57h#   | 07.*  | 437 *  | (     | 57:*      | 175*  | 0* | tt7D*   | (     | DB*      | 3D##  | 0* | 4I 72* | (     |       |
| Lr %                        | 07h05      | 078t I | 07210 | 07h20  | (     | 07063     | 075m0 | (  | 0.181.0 | (     | 07h20    | 07h4I | (  | 07h48  | (     | 07h5  |
| 1 PP) Olasl Mi€doyo Ar9     | 318        | D0     | t     | 42m    | (     | 50        | ID    | 0  | ttD     | (     | DD       | 3D8   | 0  | 4I I   | (     | t 00  |
| * 1 IP) Olas I Mi Cobyo As9 | nt 7 *     | nB73*  | t 00* | nt 71* | (     | n07hf     | n874* | 0* | n27t*   | (     | n075*    | n87t* | 0* | n27D*  | (     | n27.* |
| r eacy                      | 25         | I      | 0     | 3t     | (     | t         | t     | 0  | 2       | (     | 4        | t m   | 0  | 23     | (     | I     |
| * r eacy                    | 575*       | 57D*   | 0*    | 575*   | (     | t 7I *    | t 75* | 0* | t 75*   | (     | 47D*     | 47D*  | 0* | 47D*   | (     | I 72* |
| HRyoAe9is vial              | m          | 0      | 0     | m      | (     | I         | 3     | 0  | 8       | (     | 4        | m     | 0  | t3     | (     | 3     |
| * HRyoAe9is vial            | 273*       | 0*     | 0*    | t 7hf  | (     | D5*       | 47hf  | 0* | 573*    | (     | 47D*     | 272*  | 0* | 275*   | (     | 278*  |
| Lel e9@fas 9                | (          | (      | (     | (      | 13    | (         | (     | (  | (       | t 34  | (        | (     | (  | (      | 4t    |       |
| * Lel e9@fas9               | (          | (      | (     | (      | n574* | (         | (     | (  | (       | n871* | (        | (     | (  | (      | mD5*  |       |
| HRyoAe9is - di99BaAa        | (          | (      | (     | (      | 2     | (         | (     | (  | (       | 2     | (        | (     | (  | (      | t     |       |
| * HlöyoAz9 is - di 99BaAn   | (          | (      | (     | (      | 375*  | (         | (     | (  | (       | t7I*  | (        | (     | (  | (      | 274*  |       |


ULel e9@das9as1 HFoyoAs9is - di 99BaAn71h1ebCvhvFP)C,ThT)du, WhW(Tuds

4 of 8 5 of 8

# 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5300014 - COVID - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 3, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 3, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 3, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 1, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 1, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 1, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. & CATHOTHON WAY - ... - TIME.
The May 2, 2022





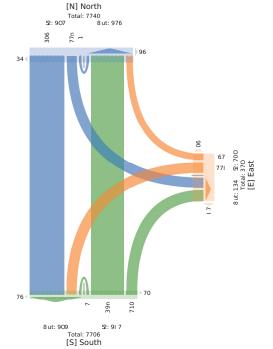
[S] South

# 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Tue May 3, 2022 FM Feal Ing h FM (hg h FM6(: Ae-a9Feal 1 Pu-) 9 CChasses II dur o aH/ MPdP-B/Bhs, 1 ea/sy, Fevese-daHs, RdbyBhs PHwPav, RdbyBhs PH C-Pssk ad 6

) 9MPAemeHs IDg4h072h, i PBaαPHgnh88457. n, (7h8 5h543




| i eo                    | OP-a     |        |       |       |       | J asc    |        |     |        |       | EPua     |        |       |       |       |     |
|-------------------------|----------|--------|-------|-------|-------|----------|--------|-----|--------|-------|----------|--------|-------|-------|-------|-----|
| DdeBxPH                 | EPua bPu | Hv     |       |       |       | S esdPul | ł/     |     |        |       | OP-œ bPu | Hv     |       |       |       |     |
| Tdne                    | T        | i      | W     | ) NN  | FevU  | W        | i      | W   | ) NN   | FevU  | W        | T      | W     | ) NN  | FevU  | IH: |
| 2022(0h(03 ng hFM       | 113      | t 4    | t     | t 33  | 2n    | 2n       | 3t     | 0   | hh     | n.    | 24       | tt2    | t     | t n2  | 4     | 3   |
| ng80FM                  | t 2n     | 25     | t     | t h3  | 20    | t 0      | 24     | 0   | 34     | 3n    | 2h       | t 07   | 0     | t 32  | 7     | 3   |
| ngnhFM                  | tt2      | 30     | 0     | t n2  | 30    | t n      | 27     | 0   | nt     | 3n    | 37       | tt4    | 0     | t h.  | 7     | 3   |
| hg00FM                  | t 27     | 3.     | 0     | t.3   | 22    | t3       | 3t     | 0   | nn     | n3    | 3.       | tth    | 0     | t ht  | t 0   | 3   |
| TPa9                    | n7.      | tt3    | 2     | h4t   | 4.    | . t      | tt5    | 0   | t 74   | t h7  | t 27     | nh3    | t     | h5t   | 33    | t3  |
| * ) NN-PaBr             | 508h*    | t 48 * | 088*  | (     | (     | 3n8t *   | . h84* | 0*  | (      | (     | 2t 84*   | 7580*  | 082*  | (     | (     |     |
| * TPa9                  | 3h82*    | 58h*   | 08:*  | n387* | (     | n8h*     | 587*   | 0*  | t 382* | (     | 48n*     | 338h*  | 08 *  | n380* | (     |     |
| F1 %                    | 084t 0   | 08500  | 08h00 | 08554 | (     | 08 2h    | 08542  | (   | 08773  | (     | 08574    | 084. h | 082h0 | 084n7 | (     | 084 |
| i dores aHv MPdP-ByBBes | nn0      | tt2    | 2     | hhn   | (     | . 0      | t 07   | 0   | t.7    | (     | tth      | n22    | t     | h35   | (     | t 2 |
| * idorosaHvMPdP-ByBBes  | 428h*    | 448 *  | t 00* | 4387* | (     | 458n*    | 4087*  | 0*  | 4388*  | (     | 408 *    | 4382*  | t 00* | 428 * | (     | 438 |
| 1 eaAy                  | t h      | 0      | 0     | t h   | (     | 0        | 0      | 0   | 0      | (     | t        | t n    | 0     | t h   | (     |     |
| * 1 eaAy                | 382*     | 0*     | 0*    | 28h*  | (     | 0*       | 0*     | 0*  | 0*     | (     | 085*     | 38:*   | 0*    | 28 *  | (     | 28  |
| RdByBBs PHwPav          | 2t       | t      | 0     | 22    | (     | t        | tt     | 0   | t 2    | (     | t t      | t 7    | 0     | 25    | (     |     |
| * RdByBles PHwPav       | n8h*     | 084*   | 0*    | 387*  | (     | * 81     | 48*    | 0*  | .87*   | (     | 587*     | 385*   | 0*    | n85*  | (     | n8  |
| Feveso-daHs             | (        | (      | (     | (     | 4t    | (        | (      | (   | (      | t ht  | (        | (      | (     | (     | 30    |     |
| * FevesodaHs            | (        | (      | (     | (     | 4n85* | (        | (      | (   | (      | 4.82* | (        | (      | (     | (     | 4084* |     |
| RdByBBes PHC-Pssk a9    | (        | (      | (     | (     | h     | (        | (      | (   | (      |       | (        | (      | (     | (     | 3     |     |
| * RdByBles PHC-Pssk ag  | - (      | - (    | - (   | - (   | h82*  | (        | - (    | - ( | - (    | 385*  | - (      | - (    | - (   | - (   | 48 *  |     |

<sup>U</sup>Feveso-daHs aHv RdByBBes PHC-Pssk a9 8i gi efc, wgwdorc, TgTr-u, WgW(Tu-H

6 of 8

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 2021 9-8 - AM) 91 CesaILAeaPi gus
AM AeaPi (8 - AM 9-8 - AM) 91 CesaILAeaPi gus
Bit Li amend loct dia vB Mgigls Ry Ren, i eaCy, AeBenbion, wdbyRlen gv mgaB, wdbyRlen gv
t sgm1 aiP)
Bit MgcDevils
47 85-0. 2-, dgRaifigv8(-6551. b(, 9 - 6b1-153



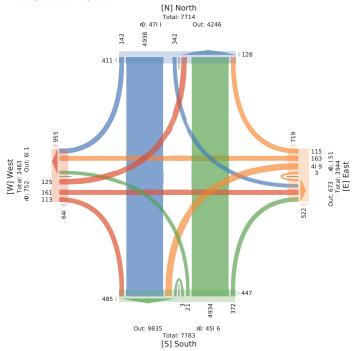
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Tue May 33, 200 JIPAO 9 M 33AO 9 M 2 ) M, - AO ) ME ) MC FI llangt (f & AO 9 M PAO 9 M, 33AO 9 M 2 ) M, - AO ) ME ) MC 9 III laint (f in age Molnerychai, Huavy, ) used hdag), Bdyychi og Roae, Bdyychi og s roi iwalkC 9 III.Movanughi
1DAW3-78, nocahbgA64.503: 8, B4: 7847

) ro 300 s ogi hıllahıbg Dr, N

|                             | -       |        |       |      |        |        |         |        |         |      |       |       |        |        |         |        |      |       |          |       |           |      |      |       |      |
|-----------------------------|---------|--------|-------|------|--------|--------|---------|--------|---------|------|-------|-------|--------|--------|---------|--------|------|-------|----------|-------|-----------|------|------|-------|------|
| nut                         | Norh(   |        |       |      |        |        | Eaih    |        |         |      |       |       | Sol h( |        |         |        |      |       | Tuih     |       |           |      |      |       |      |
| Deluchubg                   | Sol h(b | ol ge  |       |      |        |        | T uilbo | ol ge  |         |      |       |       | Norh(b | ol ge  |         |        |      |       | Eai Ibol | ge    |           |      |      |       |      |
| Winu                        | R       | W      |       | U    | 9 pp   | ) ur + | R       | W      | п       | U    | 9 pp  | ) ue+ | R      | W      | n       | U      | 9 pp | ) ue+ | R        | W     | n         | U    | 9 pp | )ue+  |      |
| 2022104133 : Al09 M         | 4       | 33:    | 7     | 0    | 32P    |        | 8       | 5      | 32      | 0    | 2-    | 37    | 2      | 335    | 3       | 0      | 338  | 8     |          | 3     | 8         | 0    | 33   | P     | 2    |
| 8A009 M                     | 3:      | 2:4    | :     | 0    | 278    | 2P     | 2-      | 32     | 22      | 3    | 47    | :0    | 37     | - 3P   | 4       | 0      | -52  | 2P    | 35       | 38    | -0        | 0    | :3   | -8    | 8    |
| 7A009 M                     | 25      | -:7    | 20    | 0    | 532    | 302    |         | 42     | 52      | 0    | 328   | 33:   | 2:     | 440    | 3-      | 0      | 47P  | :7    | 3P       | 5-    | -5        | 0    | P:   | :4    | 32   |
| PA009 M                     | 38      | 203    | 5     | 0    | 222    | - P    | 5       | 7      | 2-      | 0    | -4    | : P   | P      | 228    |         | 0      | 2- P | - 0   | 37       | 25    | 23        | 0    | 11   | 2:    | 4    |
| 33.4009 M                   | 37      | 2-0    | 33    | 0    | 24P    | 5:     | 3:      | 34     | - 0     | 0    | :3    | 30P   | 32     | 22-    | :       | 0      | 253  | 58    | 23       | P     | 25        | 0    | 45   | 70    | ::   |
| 32.000) M                   | - 2     | 558    | 23    | 0    | 400    | P7     | - 2     | -1     | 42      | 0    | 320   | 2-4   | 27     | 5:4    | 38      | 0      | 430  | P7    | 27       | 2:    | - P       | 0    | P-   | 37P   | 32   |
| 3.400) M                    |         | 550    | 37    | 0    | 5P3    | 4-     | -7      | 25     | :3      | 0    | 32-   | 3P5   | 20     | 525    | 3-      | 3      | 547  | 78    | -2       | 3P    | -4        | 0    | 7:   | 34-   | 334  |
| - A00) M                    | 32      | 282    | 7     | 0    | 2P2    | 84     | 34      | 22     | 2P      | 0    | - ::  | 338   | P      | 3P2    | 4       | 0      | 20:  | :3    | 30       | 28    | 3:        | 0    | 4-   | 73    | ::   |
| 5.400) M                    | 5:      | 432    | 34    | 0    | 48-    | 8P     | 25      | 53     | 44      | 0    | 320   | 25:   | 24     | 5:5    | 3-      | 0      | 402  | P7    | -3       | - 5   | 54        | 0    | 330  | 3P2   | 3-1  |
| 4.00) M                     | -:      | 44P    | 27    | 0    | : 2-   | 77     | - 5     | -8     | 47      | 0    | 32P   | 24P   | -0     | 5-4    | 3:      | 0      | 573  | 337   | 54       | 42    | 54        | 0    | 352  | 382   | 3-8  |
| Vélal                       | 2- P    | -530   | 3-P   | 0    | -877   | : 32   | 22:     | 243    | - 75    | 3    | 7:2   | 352-  | 38P    | - 53-  | P2      | 3      | -:74 | :5-   | 223      | 242   | 2P:       | 0    | 8: P | 3005  | P30  |
| % 9 pproac(                 |         |        | 8%    |      | 1      | 1      | 2:.2%   | 2P.3%  | 55.4%   |      | 1     | 1     | 5.P%   | P2.: % | 2.4%    | 0%     | 1    | 1     | 27.8%    | 2.7%  | -7.4% (   | 3%   | 1    | 1     |      |
| % Wolai                     | 2.: %   | - 8.4% | 3.4%  | 0% 5 | 53.: % | 1      | 2.4%    | 2.7%   | 5.2%    | 0%   | P.4%  | 1     | 2.0%   | - 8.4% | 3.0%    | 0% 5   | 0.4% | 1     | 2.5%     | 2.7%  | % (       | 1% 7 | 7.5% | 1     |      |
| nd (li age Molorcyclui      | 22:     | -32-   | 3     | 0    | - 572  | 1      | 3P-     | 384    | -:4     | 3    | 8-5   | 1     | 342    | - 30:  | 77      | 3      | 58   | 1     | 20P      | 3PP   | 27:       | 0    | : P5 | 1     | 72   |
| % nd (li age<br>Molorcyclui | P5.: %  | P3.: % | P4.8% | 0% 1 | 93.P%  | 1      | 74.5%   | : P.8% | P4.3% 3 | 300% | 74.2% | 1     | 75.P%  | P3.0%  | P4.8% 3 | 300% 1 | 0.7% | 1     | P5.: % I | 3P.0% | P: .: % ( | 3% P | 0.2% | 1     | P0.8 |
| Huavy                       | P       | 383    |       | 0    | 37-    | 1      | 33      | P      | 32      | 0    | -2    | 1     | - :    | 374    |         | 0      | 3P5  | 1     |          |       | 4         | 0    | 33   | 1     | 5.   |
| % Huavy                     | 7%      | 4.0%   | 2.2%  | 0%   | 5.7%   | 1      | 5.P%    | :%     | 3%      | 0%   | 8%    | 1     | 5%     | 4.5%   | %       | 0%     | 4%   | 1     | 3.5%     | 3.2%  | 3.8% (    | 3% 2 | 3.5% | 1     | 5.:  |
| Bdryclui og Roae            | 5       | 33:    |       | 0    | 32-    | - 1    | 22      | :8     | 8       | 0    | P:    | 1     | 23     | 322    | 3       | 0      | 355  | 1     | P        | 40    | 4         | 0    | :5   | 1     | 52   |
| % Bdryclui og Roae          | 3.8%    | 5%     | 2.2%  | 0%   | 2%     | - 1    | P.8%    | 2: .8% | 3.7%    | 0%   | 33.3% | 1     | 33.8%  | :%     | 3.3%    | 0%     | P%   | 1     | 5.3%     | 3P.7% | 3.8% (    | 3% 1 | 7%   | 1     | 5.8  |
| ) ueui hrdagi               | 1       | - 1    | 1     | . 1  | 1      | 48P    | 1       | 1      | 1       | 1    | 1     | 350-  | 1      | 1      | 1       | 1      | 1    | :2-   | - 1      | 1     | 1         | 1    | - 1  | PP2   |      |
| % ) ueui hdagi              | 1       | - 1    | 1     | - 1  | 1      | P5.: % | - 1     | 1      | 1       | 1    | 1     | P7.:% | 1      | 1      | 1       | - 1    | 11   | PP%   | 1        | 1     | 1         | 1    | 11   | P7.7% |      |
| Bdryclui og s roi i walk    | - 1     | - 1    | - 1   | - 1  | - 1    |        | - 1     | - 1    | - 1     | - 1  | - 1   | 20    | - 1    | - 1    | - 1     | - 1    | - 1  | 20    | - 1      | - 1   | - 1       | - 1  | - 1  | 32    |      |
|                             |         |        |       |      |        |        |         |        |         |      |       |       |        |        |         |        |      |       |          |       |           |      |      |       |      |

\*) ueui lrdagi age Bd:yclui og s roi i walk. n Anufh, RARd: ( h, WAW( rl , UAU IW rg


8 of 8 1 of 8 5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Wed May 11, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Concentral PM

All Movements
ID: 951387, Location: 45.40167, -75.68758



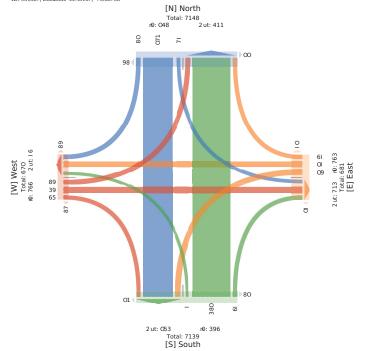




5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

T ue May 33, 2022

F M1 tul. rgdh F M1 (6:0h F M:
F M. A:394 m1 f) G 30 ai e Mdxdar yr A49, c ually, I ueu9xilai 9, v Pyr A9 di Bdae, v Pyr A9 di - cd9Rs.a.:
F AMxdH


| 1 u)                       | f daC |        |       |     |       |       | Ga9s   |       |       |     |       |       | J dEsC |        |       |      |       |        | T u9s  |       |       |        |             | T     |
|----------------------------|-------|--------|-------|-----|-------|-------|--------|-------|-------|-----|-------|-------|--------|--------|-------|------|-------|--------|--------|-------|-------|--------|-------------|-------|
| mRur sRli                  | JdEsC | dEi e  |       |     |       |       | T u95  | dEi e |       |     |       |       | f daC  | dEie   |       |      |       |        | Ga9:5d | Eie   |       |        |             |       |
| SRvu                       | В     | S      | 1     | W   | F00   | l ueU | В      | S     | 1     | W   | FOO   | lueU  | В      | S      | 1     | W    | FCO   | l ue U | В      | S     | 1     | W F    | 00 lue      | Ulás  |
| 2022(0h(33 gt3hF M         | 8     | 6g     | I     | 0   | 30D   | 3E    | Е      | ) 3I  | 32    | 0   | 12    | 14    | D      | 312    | 2     | 0    | 343   | 3D     | I      | 8     | g     | 0      | 3D 2        | 1 20  |
| gtI 0F M                   | h     | gD     | h     | 0   | 6D    | Ig    | 32     | 31    | 31    | 0   | Ig    | 14    | 4      | 34h    | 4     | 0    | 3hI   | 38     | I      | 33    | 32    | 0      | 28 3        | 4 I   |
| gt4hF M                    | 33    | 330    | 8     | 0   | 326   | H     | Е      | 20    | 30    | 0   | ID    | 14    | 31     | 340    | 3     | 0    | 3h4   | 24     | 32     | 23    | g     | 0      | <b>43</b> 3 | 6 I   |
| 6t00F M                    | 32    | 33h    | I     | 0   | 310   | 26    | I      | I     | 32    | 0   | 3g    | 43    | h      | 33E    | 2     | 0    | 324   | 3D     | 30     | 36    | 6     | 0      | Ig 3        | 2 I   |
| Sdsa/                      | 14    | 430    | 36    | 0   | 48I   | 33E   | 26     | 46    | 4E    | 0   | 32h   | 34I   | 26     | hI 4   | 6     | 0    | hD2   | D4     | 2g     | hD    | ID    | 0 3    | 322 8       | g 32  |
| * FOOdarC                  | DI+   | gg78*  | 473°  | 0+  | (     | (     | 2I 72* | 1672* | I DB+ | 0*  | (     | (     | hB*    | 6I 74* | 37B+  | 0+   | (     | (      | 2I 70° | 487D° | 107+  | 0+     | (           | (     |
| * SdsaA                    | 27D*  | I 270+ | 37h*  | 0+  | 1839* | (     | 27/+   | 176*  | 170°  | 0+  | 67g+  | (     | 27 *   | 437D°  | 07D°  | 0+ 4 | 147B* | (      | 272*   | 474*  | 275+  | 0* 67  | h*          | (     |
| 1 c %                      | 0700g | 07gHD  | 07h64 | . ( | 07gDg | (     | 07804  | 07h63 | 07504 | (   | 07D6D | (     | 07h8I  | 07632  | 07h8I | (    | 07621 | (      | 07h8I  | 07008 | 07Lh0 | ( 07   | lh0         | ( 076 |
| 1 P) Cs9 ai e Mdsdoryr As9 | 13    | IDB    | 36    | 0   | 423   | (     | 28     | 2h    | 4h    | 0   | 68    | (     | 2h     | 46I    | 6     | 0    | h2D   | (      | 2D     | 4D    | Ih    | 0 3    | 306         | ( 33  |
| * 119 G9aie                |       |        |       |     |       |       |        |       |       |     |       |       |        |        |       |      |       |        |        |       |       |        |             | 1     |
| Mdsdcryr A9                | 6372* | 607h*  | 300+  | 0+  | 60%+  | (     | g67D*  | h370* | 6h7D° | 0+  | D87g* | (     | g872*  | 627 *  | 300*  | 0+ € | 273*  | (      | 6874*  | g27h* | 647B* | 0° g67 | 1+          | ( g6% |
| c uaHy                     | I     | 26     | 0     | 0   | 12    | (     | I      | 3     | - 2   | 0   | 8     | (     | 2      | 2h     | 0     | 0    | 2D    | (      | 0      | 3     | 3     | 0      | 2           | (     |
| * cuaHy                    | 876*  | DB+    | 0+    | 0+  | 876*  | (     | 307 +  | 270+  | 47.0  | 0+  | 47g+  | (     | 875*   | 47D*   | 0+    | 0+   | 47D*  | (      | 0+     | 37g*  | 27D*  | 0+ 37  | B*          | ( h72 |
| v Pryr Ar9 di Bdae         | 0     | 30     | 0     | 0   | 30    | (     | 0      | 21    | 0     | 0   | 2I    | (     | 2      | 38     | 0     | 0    | 3g    | (      | 3      | 6     | 3     | 0      | 33          | (     |
| * v Pryr Al-9 di Bdae      | 0+    | 274*   | 0+    | 0+  | 272*  | (     | 0+     | 4876* | 0+    | 0+  | 3g74+ | (     | 875*   | I 70+  | 0+    | 0+   | 173*  | (      | I 78+  | 3h7g* | 27D*  | 0+ 67  | D+          | ( 4%  |
| l ueu9xilhi 9              | (     | (      | - (   | (   | (     | 332   | (      | . (   | . (   | (   | (     | 343   | (      | (      | (     | (    | (     | IB     | (      | (     | (     | (      | ( 8         | D     |
| * l ueu9xalhi 9            | (     | (      | - (   | (   | (     | 6h7D° | (      | . (   | . (   | (   | (     | 6g78* | (      | (      | (     | (    | (     | 5h75*  | (      | (     | (     | (      | (6g7h       | Т     |
| v Prvr As9 di - od99R aAL  |       |        |       |     |       |       |        |       |       |     |       |       |        |        |       |      |       |        |        |       |       |        |             |       |
| V IF YEARS OF - OUSSINAAL  | (     | (      | - (   | (   | (     | h     | (      | . (   | . (   | . ( | (     | 2     | (      | (      | (     | (    | (     | 1      | (      | (     | (     | (      | (           | 3     |

<sup>U</sup>l ueu9soBai 9 ai e v Pryr Au9 di - od99R a AL71 t 1 u.s, Bt BB) Cs, St SCoE, Wt W(SEoi

2 of 8

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Wed May 11, 2022
AM Peak (8:15 AM - 9:15 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 951387, Location: 45.40167, -75.68758





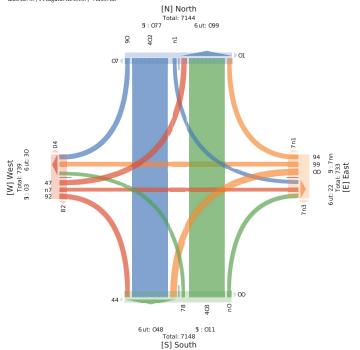
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
T ue May 33, 202 pd M ( 32g 0 1 M6
h: Xa--u- 19B) - Qc Ms (sidydtu-, o uary, l ueu-)liaG-, c Rlydtu- s CHsae, c Rlydtu- s C
Als--v a L16
h: Msr uBU-QRegknitt I J 9 s da)8 Cg4n R038 IQ (bn81 Dnl

| CHava                           |
|---------------------------------|
| <b>Uttawa</b>                   |
| l isr Feue 5yg AFJy s. b ))av a |
| 300 As G-)u::a)Es Cwi,          |
| f uQuaC, bf, N2p mHk, Ah        |

3 of 8

| 9u1                    | fsi)P  |       |       |      |        |       | Ga-)    |       |        |      |        |        | JsE)P  |       |         |      |       |        | T u-)  |       |       |      |        |       |       |
|------------------------|--------|-------|-------|------|--------|-------|---------|-------|--------|------|--------|--------|--------|-------|---------|------|-------|--------|--------|-------|-------|------|--------|-------|-------|
| wFud)BC                | JsE)P5 | sEGr  |       |      |        |       | T u-)5s | BGr.  |        |      |        |        | fsi)P5 | s BCe |         |      |       |        | Ga-)5s | BGr   |       |      |        |       |       |
| SBu                    | H      | S     | 9     | W    | h 00   | LueU  | Н       | S     | 9      | W    | h 00   | LueU   | Н      | S     | 9       | W    | h 000 | l ueU  | Н      | S     | 9     | W    | h 00   | I ueU | RC)   |
| 2022(0n(33 33g 0h M    | 8      | 333   | D     | 0    | 324    | Зп    | k       | 8     | 20     | 0    | t m    | 4π     | I      | 334   | 2       | 0    | 324   | 22     | k      | 4     | 3m    | 0    | 21     | tΙ    | t 33  |
| 33g4nh M               | 32     | 33k   | 4     | 0    | 3t m   | t3    | D       | k     | 30     | 0    | 28     | 84     | 4      | 30k   | 4       | 0    | 33D   | 2m     | 32     | m     | k     | 0    | 28     | 42    | t 04  |
| 32g00l M               | 8      | 30I   | m     | 0    | 33k    | t 0   | D       | - 1   | 33     | 0    | 28     | Ιt     | m      | 324   | 8       | 0    | 3t m  | t2     | D      | m     | 33    | 0    | 2t     | 44    | t Ot  |
| 32g3mi M               | 33     | 33I   | 4     | 0    | 3t t   | 2π    | 33      | 30    | 34     | 0    | t m    | n8     | I      | 333   | m       | 0    | 324   | 20     | I      | D     | 8     | 0    | 23     | 48    | t 3t  |
| Ss)a:                  | t m    | 4mB   | 20    | 0    | m23    | 303   | t 4     | t t   | nm     | 0    | 322    | 24I    | 2m     | 4mi   | 3D      | 0    | mĐ0   | kk     | t 8    | 23    | 43    | 0    | kI     | 3D0   | 32t 3 |
| * h OGsadP             | 87.*   | IkZ*  | t 7k* | 0+   | (      | (     | 2Dk+    | 2D70+ | 4m3*   | 0+   | (      | (      | mD+    | k378* | t 74°   | 9*   | (     | (      | t 87D° | 2374* | 437 * | 0+   | (      | (     | (     |
| * Ss)a:                | 27*    | t DØ+ | 37B+  | 0+ 4 | 137m²  | (     | 27.*    | 27D°  | 47hf   | 0+   | k7k+   | (      | 270+   | t DE* | 374*    | 0+ 4 | 078*  | (      | 27k*   | 37D°  | t 7 * | 0+   | I 70+  | (     | (     |
| 10%                    | 07Dk   | 07k4k | 07Dk2 | (    | 07kt8  | (     | 07Dm0   | 07Dn0 | 07BI 4 | (    | 07123  | (      | 07Dm0  | 07k33 | 07001   | (    | 07k32 | (      | 0700   | 078Dk | 07084 | (    | 07lk4  | (     | 07k84 |
| 9HP)- aCe Ms)sidyd:u-  | t 4    | 424   | 31    | 0    | 4DB    | (     | t 3     | 2D    | n0     | 0    | 30I    | (      | 2t     | 43D   | 38      | 0    | 4n8   | (      | t 4    | 31    | 40    | 0    | k2     | (     | 33t 2 |
| * 9HP)- aCe            |        |       |       |      |        |       |         |       |        |      |        |        |        |       |         |      |       |        |        |       |       |      |        |       |       |
| Ms)sidyd:u-            | kDB*   |       | k070* | 0+ 1 | ct 72* | (     | k372*   | 137 * | k07k*  | 0+ 1 | II 7m² | (      | k270*  |       | k473* I | 0+ k | 372*  | (      | k474*  | I mD° | kDB*  | 0+ I | ct 7k* | (     | k270* |
| o uar y                | 3      | 20    | 3     | 0    | 22     | (     | 2       | t     | 2      | 0    | D      | (      | 3      | t 3   | 3       | 0    | tt    | (      | 0      | 3     | 0     | 0    | 3      | (     | 8t    |
| * ouary                | 27k*   | 474*  | mD+   | 0+   | 47.+   | (     | mk*     | kB*   | t 78*  | 0+   | miD*   | (      | 470+   | 87.*  | mk+     | 0+   | 878*  | (      | 0+     | 47.0  | 0+    | 0+   | 370+   | (     | m3*   |
| c Rhydru- sCHsae       | 0      | 32    | 3     | 0    | 3t     | (     | 3       | t     | t      | 0    | D      | (      | 3      | 30    | 0       | 0    | 33    | (      | 2      | 2     | 3     | 0    | m      | (     | t 8   |
| * c Rhyd:u- sCHsae     | 0+     | 278*  | mD+   | 0+   | 27m²   | (     | 27k+    | kB*   | mint   | 0+   | miD*   | (      | 470+   | 272*  | 0+ (    | 9*   | 272+  | (      | mB+    | k7nf  | 274+  | 0*   | m3+    | (     | 27k+  |
| l ueu-)i liiG-         | (      | (     | (     | (    | (      | kE    | (       | (     | (      | (    | (      | 24t    | (      | (     | (       | (    | (     | kD     | (      | (     | (     | (    | (      | 38k   |       |
| * l ueu-)iliiG-        | (      | (     | (     | (    | - (    | k870+ | (       | (     | (      | (    | ()     | +07. I | (      | (     | (       | (    | (1    | kI 70+ | (      | (     | (     | (    | ( k    | ck74* | (     |
| c Rhyd:u- s C Aisv a:L | (      | (     | (     | (    | (      | 4     | (       | (     | (      | (    | (      | п      | (      | (     | (       | (    | (     | 2      | (      | (     | (     | (    | (      | 3     |       |
| * c Hyd:u-sCAisva:L    | (      | (     | (     | (    | (      | 470+  | (       | (     | (      | (    | (      | 270+   | (      | (     | (       | (    | (     | 270+   | (      | (     | (     | (    | (      | 07B+  | (     |
| T .                    |        |       |       |      |        |       |         |       |        |      |        |        |        |       |         |      |       |        |        |       |       |      |        |       |       |


Ч ueu-)iAG- aGe c Rhyd:u- sCAis--v a:L79g9u.), HgHRP), SgSPiE, WgW(SEiC

5 of 8 4 of 8

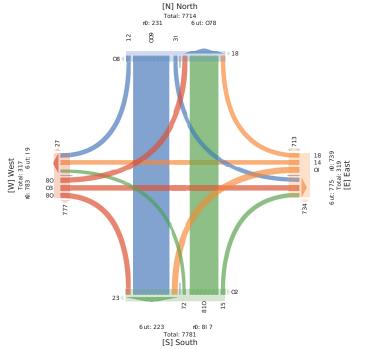
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

53000.14 - COVID - DANK 31 (@ FIFT AVE - MAT ... - TMC Wed May 11, 2022 Målday Peak (118 0 5 M - 128 0 PM9 5)] | MCCCA, Jul gånla Mt g myojeC r eacy, Pede Gpåla G HavjojeCt h v t ad, HavjojeCt h 1 nr (CBa)lo 5) | Mt ceRehgC vm81 Dt: 37, st oagå h84 D40167, -7D637D8





5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
T ue May 33, 2022
FM Fuil In FM gt FMhg( 6u:caMFuil - 91:
PN) AGGGG1607ace M96:FH/HMCJ - us6y, FueuG:iacC, v iH/HMC9c B9ae, v iH/HMC9c) - 9:GRaAh
PAM956uvurC
kml Di3478, s 9Hri9c1 5n.503 t8, g8n.t 78n7




| s ud                       | O9:ro  |       |       |      |       |       | J aGr  |        |       |    |       |       | E91ro  |        |       |      |       |      | TuG    |         |       |      |       |       |       |
|----------------------------|--------|-------|-------|------|-------|-------|--------|--------|-------|----|-------|-------|--------|--------|-------|------|-------|------|--------|---------|-------|------|-------|-------|-------|
| mi:uHi9c                   | E91rob | 91ce  |       |      |       |       | T uGb! | 91ce   |       |    |       |       | O9:rob | 91ce   |       |      |       |      | J aGb9 | 1ce     |       |      |       |       |       |
| Siwu                       | В      | S     | s     | W    | PNN   | FueU  | В      | S      | s     | W  | PNN   | FueU  | В      | S      | s     | W    | PNN   | FueU | В      | S       | s     | W    | PNN   | FueU  | ker   |
| 2022g0ng33 nI00FM          | 32     | 35n   | n     | 0    | 3t 2  | 3n    | t      | 8      | 20    | 0  | 44    | t 0   | 33     | 335    | n     | 0    | 340   | 44   | 33     | 38      | 32    | 0    | 50    | 54    | 4t n  |
| nI3nFM                     | t      | 352   | 8     | 0    | 3nn   | 25    | D      | 35     | 33    | 0  | 45    | nn    | Е      | 334    | n     | 0    | 328   | 42   | 34     | 7       | 3t    | 0    | 48    | 57    | 4n4   |
| nI40FM                     | n      | 32t   | t     | 0    | 348   | 24    | 7      | 7      | 3n    | 0  | 43    | 72    | n      | DB     | 4     | 0    | 30n   | 2n   | 30     | 38      | D     | 0    | 4t    | 53    | 40I   |
| nI5nFM                     | 34     | 35t   | 30    | - 0  | 3t D  | 2t    | 33     | 7      | 32    | 0  | 43    | t 2   | n      | 333    | 4     | 0    | 33D   | 27   | 33     | 30      | 7     | 0    | 2D    | 50    | 457   |
| S9raA                      |        | nnD   | 27    | 0    | t 24  | 77    | 45     | 48     | n7    | 0  | 32D   | 2nD   | 40     | 54n    | 3t    | 0    | 573   | 337  | 5n     | n2      | 5n    | 0    | 352   | 382   | 348s  |
| * PNN9aHb                  | n.7*   | 7D8*  | 5.n*  | 0+   | g     | 8     | 2t .5* | 27.8*  | 5n.0* | 0+ | g     | g     | t.2*   | D0.5*  | 4.4*  | 0+   | g     | 8    | 43.8*  | 4t .t * | 43.8* | 0+   | g     | 8     |       |
| * S9raA                    | 2.t *  | 50.8* | 2.0*  | 0+ : | 5n.4* | 8     | 2.n*   | 2.8*   | 5.2*  | 0+ | D5*   | g     | 2.2*   | 43.t * | 3.2*  | 0+ 4 | 4n.0* | g    | 4.4*   | 4.7*    | 4.4*  | 0+ 3 | 0.4*  | g     |       |
| F- %                       | 0.t 84 | 0.Dn2 | 0.800 | g    | 0.085 | 8     | 0.70t  | 0.8n0  | 0.8n0 | g  | 0.778 | g     | 0.t n0 | 0.D4t  | 0.8n0 | g    | 0.D84 | g    | 0.D88  | 0.8n0   | 0.804 | g    | 0.D45 | g     | 0.057 |
| s idorCace M9r9:HyHMC      | 4n     | n38   | 27    | 0    | n70   | 8     | 27     | 24     | n8    | 0  | 307   | g     | 2t     | 500    | 3n    | 0    | 553   | g    | 52     | 4D      | 5n    | 0    | 32t   | g     | 32nr  |
| * s idorCace<br>M9r9:H/HhC | D8.2*  | D2.n+ | 300+  | 0+1  | D4.3* | 8     | 72.5*  | t 2.2* | D7.4* | 0+ | 74.8* | g     | 7t .8* | D2.0*  | D4.7* | 0+ I | DB.8+ | 10   | D4.4*  | 8n.0*   | 300*  | 0+ 2 | 7.8*  | g     | D8.4* |
| - ua6y                     | 0      | 3t    | 0     | 0    | 3t    | 8     | 3      | 3      | 0     | 0  | 2     | g     | 0      | 32     | . 0   | 0    | 32    | 8    | 3      | 0       | 0     | 0    | 3     | 8     | 43    |
| * - ua6y                   | 0+     | 2.D*  | 0+    | 0*   | 2.t * | 8     | 2.D*   | 2.8*   | 0+    | 0+ | 3.t * | g     | 0+     | 2.7*   | 0+    | 0+   | 2.n*  | 8    | 2.2*   | 0*      | 0+    | 0+   | 0.8*  | g     | 2.4*  |
| v iHyHMC9c B9ae            | 3      | 2t    | 0     | - 0  | 28    | 8     | n      | 34     | 3     | 0  | 3D    | g     | 5      | 24     | 3     | 0    | 27    | 8    | 2      | 34      | 0     | 0    | 3n    | g     | 7I    |
| * viHyHhC9c B9ae           | 2.7*   | 5.8*  | 0+    | 0+   | 5.4*  | 8     | 35.8*  | 4n.3*  | 3.8*  | 0+ | 35.8* | g     | 34.4*  | n.4*   | t.4*  | 0+   | n.7*  | 8    | 5.5*   | 2n.0+   | 0+    | 0+ 3 | 0.t + | g     | t.n+  |
| Fueu@iacC                  | 8      |       |       | 5 8  | g     | 73    | 8      |        | . 8   | g  | 8     | 2nt   | 8      |        | 3 8   | g    | g     | 338  | 8      | . 8     | g     | g    | g     | 383   |       |
| * FueuGriacC               | 8      |       |       | 5 g  | g     | D2.0* | 8      | 8      | 8     | g  | 8     | DF.7* | 8      |        | 3 8   | g    | g     | DD2* | 8      | 8       | g     | g    | gl    | DD5*  |       |
| viHyHbC9c):90TRaA          | 8      |       |       | 5 g  | g     | 8     | 8      | 8      | 8     | g  | 8     | . 4   | 8      |        | 3 8   | g    | g     | 3    | 8      | 8       | g     | g    | g     | 3     |       |
| * viH/HhC9c):9CRaA         | g      |       |       | 5 8  | g     | 7.0*  | 8      | . 8    | 8     | g  | 8     | 3.2*  | 8      |        | 3 8   | g    | g     | 0.7* | 8      | . 8     | g     | g    | 8     | 0.t * |       |

UFueuG:iacCace viHyHuC9c):9CRaA.sIsufr, BIBidor, SISo:1, WIWgS1:c

6 of 8

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Wed May 11, 2022
PM Peak (5 PM - 6 PM) - Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 951387, Location: 45.40167, -75.68758



5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

or dik alons

9 ILMr Bull ughd

DI APC3733, nr Hahr gA7QF0357, 15QB . 0-5.

| ) cr Bœue by Ai dy r f Olfluk<br>300 i r gdrullafur g 4 (<br>Nupuag, ON, K2G CIP, i S |
|---------------------------------------------------------------------------------------|
|                                                                                       |

7 of 8

| rut                           | Nrd(   |         |        |      |       |       | Each |        |       |      |      |        | Srlh( |        |        |      |        |       | T udh   |       |       |      |       |       |     |
|-------------------------------|--------|---------|--------|------|-------|-------|------|--------|-------|------|------|--------|-------|--------|--------|------|--------|-------|---------|-------|-------|------|-------|-------|-----|
| 4 onuHorg                     | Srll(b | rl ge   |        |      |       |       | T ud | brl ge |       |      |      |        | Nrd(b | rlge   |        |      |        |       | Eadibrl | ge    |       |      |       |       |     |
| Mi u                          | W      | W       | n      | U    | 9 pp  | ) ue* | w    | W      | n     | U    | 9 pp | ) ue * | w     | W      | n      | U    | 9 pp   | ) ue* | W       | W     | n     | U    | 9 pp  | ) ue* | Igh |
| 202210CI33 : A009 M           | 32     | ٠.      | 0      | 0    | Œ     | 0     | 0    | 2      | 0     | 0    | 2    | 72     | 0     | 2.     | -      | 0    | -3     | -     | 0       | 0     | 3     | 0    | 3     | 33    |     |
| 5A009 M                       | -7     | 373     | 0      | 0    | 35C   | -     | 0    | 3      | 0     | 0    | 3    | 377    | 0     | 3- C   | 22     | 3    | 3C.    | 3     | 7       | 2     | 3P    | 0    | 2C    | 2P    |     |
| . A009 M                      | - :-   | 2: P    | 0      | 0    | 5     | 0     | 0    | 7      | 0     | 0    | 7    | 3C2    | 0     | 273    | 2.5    | 0    | -07    | 33    | 2-      |       | 3P    | 0    | 7.    | 22    | Г   |
| PA009 M                       | 23     | :       | 0      | 0    | 305   | 0     | 0    | 3      | 0     | 0    | 3    | : P    | 0     | 300    | 35     | 0    | 335    | 7     | C       | 3     | -     | 0    | 37    | 3.    | Г   |
| 33A009 M                      |        | 3       | 0      | 0    | 35:   | 0     | 0    | -      | 0     | 0    | -    | 330    | 0     | P:     | 3C     | 0    | 333    | 30    | 30      | 3     | 33    | 0    | 22    | 22    | Γ   |
| 32A00) M                      | 53     | -3C     | 0      | 0    | *.:   | 3     | 0    | С      | 0     | 0    | С    | 232    | 0     | 3. 0   | 3C     | 0    | 3PC    | 3~    | -0      | 33    | 2.    | 0    | : P   | -5    | Г   |
| 3A00) M                       | 7.     | 2: P    | 0      | 0    | -35   | 3     | 0    | 32     | 0     | 0    | 32   | 3P2    | 0     | 3. 3   | 20     | 0    | 203    | P     | -0      | 3P    | 70    | 0    | . P   | - 5   | Г   |
| 2A00) M                       | 2      | 30      | 0      | 0    | 32    | 0     | 0    | 0      | 0     | 0    | 0    | -      | 0     | P      | 2      | 0    | 33     | 0     | 2       | 0     | 2     | 0    | 7     | 0     | Г   |
| - Al0) M                      | -3     | 22P     | 0      | 0    | 2:0   | 2     | 0    | -      | 0     | 0    | -    | . 0    | 0     | 30.    | 2P     | 0    | 3-5    | 3     | 22      | 2     | 2.    | 0    | (2    | 3C    |     |
| 7A00) M                       | 5C     | 7:0     | 0      | 0    | GC    | 3     | 0    | :      | 0     | 0    | - :  | 220    | 0     | 2-7    | 7-     | 0    | 255    | 2     | CD      | 33    | 75    | 0    | 30.   | C3    | Г   |
| C400) M                       | 33:    | 73-     | 3      | 0    | G-0   | 2     | 0    | -      | 0     | 0    | -    | - 3.   | 3     | 23.    | :3     | 0    | 2.0    | 3:    | 7C      | 30    | Œ     | 0    | 330   | 52    |     |
| Wilal                         | C3:    | 2-:.    | 3      | 0    | 2 C   | 30    | 0    | 70     | 0     | 0    | 70   | 3C72   | 3     | 3G-0   | 2P0    | 3    | 3. 22  | 50    | 223     | 2 -   | 2C    | 0    | C72   | - 37  | C   |
| % 9 ppcr aH(                  | 358P%  | . 288%  | 0% (   | 0%   | 1     | 1     | 0% 3 | 00%    | 0%6 0 | 0%   | 1    | - 1    | 08%.  | 780%   | 3CBP%  | 08%  | 1      | 1     | 708 % 3 | 338 % | 758 % | 0%   | 1     | 1     |     |
| % What                        | P8 %   | 778 %   | 0% (   | 0% ( | 780%  | 1     | 0% ( | 08 % ( | 0%6 ( | 9% ( | 08 % | - 1    | 0%    | 2. 8P% | CIC%   | 0%   | - 787% | 1     | 782%    | 382%  | 78P%  | 0%3  | 8082% | 1     | Г   |
| na (ldage MrlrcHyHud          | CD:    | 2-0P    | 3      | 0    | 2.3:  | 1     | 0    | 0      | 0     | 0    | 0    | - 1    | 0     | 3755   | 2.:    | 3    | 35: 7  | 1     | 232     | 0     | 2C3   | 0    | 7: -  | 1     |     |
| % not (lidage<br>Mr lr cHyHud | P. 88% | P580% 3 | 300% ( | 0% 1 | 258 % | 1     | 0%   | 0% (   | 096 0 | 0%   | 0%   | 1      | 0%1   | P: 80% | P. 8 % | 300% | P: 8 % | 1     | PCBP%   | 0%    | P58 % | 0%.  | C87%  | 1     | PC  |
| v uaBy                        | P      | 3C      | 0      | 0    | 27    | 1     | 0    | 0      | 0     | 0    | 0    | - 1    | 0     | 5      | 2      | 0    | P      | 1     |         | 0     | -     | 0    | :     | 1     |     |
| % v uaBy                      | 385%   | 08 %    | 0% (   | 0%   | 08 %  | 1     | 0%   | 0% (   | 0%6 0 | 0%   | 0%   | - 1    | 0%    | 080%   | 085%   | 0%   | 080%   | 1     | 387%    | 0%    | 382%  | 0%   | 388%  | 1     |     |
| RdHyHudrg wrae                | 3      | 77      | 0      | 0    | 7C    | 1     | 0    | 70     | 0     | 0    | 70   | - 1    | 3     | 7:     | 2      | 0    | 7P     | 1     |         | 2.4   | 7     | 0    | 5-    | 1     | Г   |
| % RoHyHudrg wrae              | 082%   | 38P%    | 0% (   | 0%   | 38 %  | 1     | 0% 3 | 00%    | 0%6 0 | 0% 3 | 800% | - 1    | 300%  | - 80%  | 085%   | 0%   | 285%   | 1     | 285%    | 300%  | 38 %  | 0% 3 | 8-80% | 1     |     |
| ) ueudkragd                   | 1      | 1       | 1      | 1    | 1     | 30    | 1    | 1      | 1     | 1    | 1    | CP-    | 1     | 1      | 1      | 1    | 1      | :7    | 1       | 1     | 1     | 1    | 1     | 2: P  |     |
| % ) ueudroagd                 | 1      | 1       | 1      | 1    | 13    | 900%  | 1    | 1      | 1     | 1    | 1    | 80%    | 1     | 1      | 1      | 1    | 11     | P387% | 1       | 1     | 1     | 1    | 1.    | CE5%  | T   |
|                               |        |         |        | -    | - 1   | 0     | - 1  | - 1    | 1     | - 1  | - 1  | P7P    | - 1   | - 1    | - 1    | - 1  | - 1    | -     | - 1     | - 1   | - 1   | 1    | - 1   | 7C    | 1   |
| RoHHudrgi crock alm           | 1      | 1       | 1      | 1    | 1     | 0     | 1    | 1      |       | 1    | 1    | P/P    | 1     |        |        |      |        |       |         |       | 1     | 1    | 1     | / (   |     |

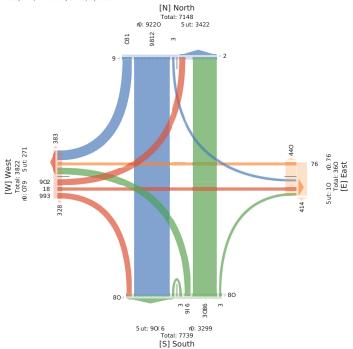
<sup>\*)</sup> ueudhoagd age RoHyHudrg i crddk aIm8n An ufh, wAwd (h, WAW(d, UAU IW) cg

8 of 8 1 of 8 5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

Need May 11, 2022

Full Length (6:30 AM-9:30 AM, 3:30 PM-6 PM, 11:30 AM-1:1) PM, 1:1) PM-2 PMC

All slaiie (Loghti and Mrtr chlyflei, v eaBy, Pedeitcani, Rchyflei rn wrad, Rchyflei rn


scriik almC

All Mr Bel enti

B: 9) 1811, Lr Hsten: 8) 780148, -4) 75, 034.



Pcr Baled by: s aty rf Ottak a 100 s rni tellatarn 5 c, Nepean, ON, K2G ) J9, s A

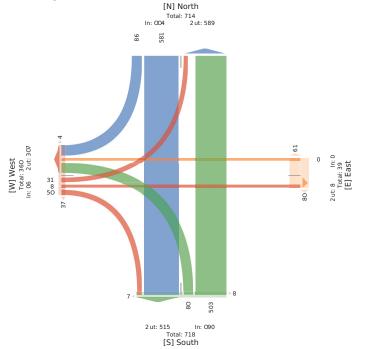


5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

55668 (4 - COVID - QUEEN ELIZABETH DRWT @ PRI... - TMC
T ue May 33, 2022
F M 1 ual. ng FM t h FM(
F6: 68AMAP BPJACE MS )sidydâu'A o uary, 1 ueu/kj9rCA c 9lydâu'As CHsae, c 9lydâu'As C
: is Av af (
F6Msr uBu C/A
Rvkhnižl 33, - s da)'S (At mid)0341, t4m/Dg084g



| - u1                                         | f si)P      |        |      |      |          | Ga | 9       |    |      |      |               | JsE | )P             |       |      |                |       | T uAj    |              |       |      |                |       |                |
|----------------------------------------------|-------------|--------|------|------|----------|----|---------|----|------|------|---------------|-----|----------------|-------|------|----------------|-------|----------|--------------|-------|------|----------------|-------|----------------|
| w9ud)9sC                                     | JsE)P       | is ECe |      |      |          | Τı | AJSs EC | è  |      |      |               | fsi | )P5s EGe       |       |      |                |       | GaAj5s I | BCe          |       |      |                |       |                |
| S9Bu                                         | H           | S      | -    | W    | F001 uel | H  | S       | -  | W    | FΦ   | l ue U        | Н   | S              | -     | W    | Fω             | l ueU | Н        | S            | -     | W    | Fω             | l ueU | RC)            |
| 2022t0nt33 gl00F M                           | 30          | 70     | 0    | 0    | 40       | (  | 3       | 0  | 0    | 3    | H             | 0   | n7             | 32    | 0    | 7g             | 8     | 8        | 3            | I     | 0    | g              | 3     | 3I             |
| gl8nF M                                      | 3g          | m      | n 0  | 0    | 48 (     | (  | 3       | 0  | 0    | 3    | 18            | 0   | n7             | 37    | 0    | 42             | I     | I        | 8            | I     | 0    | 33             | 8     | 3n             |
| gl80FM                                       | 28          | 78     | 0    | 0    | g7 (     | (  | 2       | 0  | 0    | 2    | In            | 0   | 4h             | 20    | 0    | hh             | 2     | 38       | 3            | 7     | 0    | 20             | g     | 20             |
| glinFM                                       | 34          | h3     | 0    | 0    | 30g (    | (  | 0       | 0  | 0    | 0    | 20            | 0   | nθ             | 3m    | 0    | 7m             | 2     | 8        | 3            | m     | 0    | h              | 30    | 3g             |
| Ss)a6                                        | 7g          | 27h    | 0    | 0    | 884      | (  | I       | 0  | 0    | I    | 3n2           | 0   | 213            | 78    | 0    | 80I            | 33    | 28       | 7            | 3h    | 0    | Ig             | 22    | 7h             |
| * FOOsadP                                    | 20ID*       | 4hPg*  | 0* ( | 0*   | t        | 0* | 300*    | 0* | 0*   | t    | t             | 0*  | 4hl3* :        | *400  | 0*   | t              | t     | I 4lh*   | 32 <b>Dr</b> | 8hD*  | 0*   | t              | I     |                |
| * Ss)a6                                      | hlg*        | 8g1g*  | 0* ( | 0* 1 | gD*      | 0* | 0D*     | 0* | 0*   | 0D*  | t             | 0*  | 8I IB*         | hB*   | 0* 1 | *dl8           | t     | 813*     | 0Ib*         | 2ID*  | 0*   | 7 <b>D</b> *   | I     |                |
| 10%                                          | 0138h       | 01381  | t    | t    | 0134m    | 1  | t       | t  | t    | t    | t             | t   | 01 <b>3</b> 78 | 0₽agg | t    | 0147g          | t     | 01028    | t            | 013h2 | Ţ    | 01h8h          | t     | 0 <u>19</u> 8  |
| - 9LP)AaGe Ms)sidyd6aA                       | 74          | 277    | 0    | 0    | 888      | (  | 0       | 0  | 0    | 0    | t             | 0   | 28m            | 78    | 0    | 2hg            | t     | 22       | 0            | 3h    | 0    | 13             | I     | 74             |
| * - 9LP)AaGe                                 |             |        |      |      |          |    |         |    |      |      |               |     |                |       |      |                |       |          |              |       |      |                |       |                |
| Ms)sidyd6aA                                  |             |        | 0* ( | 0* I | סיסי     | 0* | 0*      | 0* | 0*   | 0*   | t             | 0*  | h4llat         | 300*  | 0* I | hg <b>ID</b> * | t     | hnf3*    | 0*           | 300*  | 0* 1 | gn <b>iD</b> * | t     | h4 <b>ID</b> * |
| o uar y                                      | 3           | 3      | 0    | 0    | 2        | (  | 0       | 0  | 0    | 0    | t             | 0   | 0              | 0     | 0    | 0              | t     | 0        | 0            | 0     | 0    | 0              | t     |                |
| * ouary                                      | 3 <b>Dr</b> | 0D*    | 0* ( | 0*   | 0D*      | 0* | 0*      | 0* | 0*   | 0*   | t             | 0*  | 0*             | 0*    | 0*   | 0*             | ī     | 0*       | 0*           | 0*    | 0*   | 0*             | t     | 018*           |
| c 9dyd6aAs CHs ae                            | 0           | 2      | 0    | 0    | 2        | (  | I       | 0  | 0    | I    | t             | 0   | 7              | 0     | 0    | 7              | I     | 3        | 7            | 0     | 0    | 4              | Ţ     | 3              |
| * c9dyd6uAsCHsae                             | 0*          | 013*   | 0* ( | 0*   | 0D*      | 0* | 300*    | 0* | 0* : | 300* | t             | 0*  | 21 <b>b</b> #  | 0*    | 0*   | 210*           | I     | 113*     | 300*         | 0*    | 0* 3 | 3I <b>D</b> *  | I     | 210*           |
| l ueuAji9icA                                 | ī           |        | t    | t    | t (      | 1  | t       | t  | I    | Ţ    | 7I            | Ε   | t              | t     | t    | t              | 33    | I        | I            | t     | I    | Ţ              | 22    |                |
| * l ueuAji9aCA                               | ī           | t      | t    | t    | t        | 1  | ī       | t  | I    | Į.   | 12 <b>B</b> * | τ   | t              | t     | t    | t 3            | *00   | Ţ        | t            | t     | I    | t 3            | *00   |                |
| c9dyd6aAsC: isAAva6L                         | t           | t      | t    | t    | t (      | 1  | t       | t  | I    | ī    | gg            | I   | ī              | Ţ     | t    | ī              | 0     | ī        | t            | t     | I    | I              | 0     |                |
| <ul> <li>c 9dvd6iAs C: is AAv a6L</li> </ul> |             |        |      | t    | t        | 1  |         | t  | I    | 1    | n#lb+         | T   | 1              | I     | t    | 1              | 0*    | I        | I            | T.    | I    | I              | 0*    |                |


U ueu/Ji9aCAaCe c 9tyd6uAs C: is AAv a6LD-k-u.), HkH9lP), SkSPiE, WkWtSEiC

2 of 8 3 of 8

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

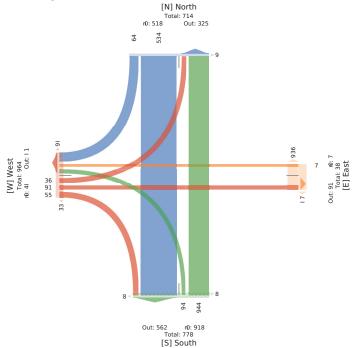
5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Wed May 11, 2022
AM Peak (8 AM : 5 AMA9) 91lel (CSuij ahd Mrg moydel, r eacy, Pedel grahl, Hsoydel th v tad, Hsoydel th
) rt IlBa9A9Mt ceRehj
wnl 5Dt311, Ct oagr hl 3D30143, : 4DZ 80648





5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
T ue May 33, 2022
Mileeay I ual. n82git 1 M h3git 1 M(
6: :A:a--u- 18PB) - aC Ms k idyd:u-, o uar y, l ueu-)iliiG-, c lidyd:u- sCHsae, c lidyd:u- sC
Ais--v a:L(
6: :Ms ru Bi uG)Rvgkt 3n83, 9sda)B Cgm In03Dn hD 14708D7

| Ottawa<br>l isr Reue 5ygAfly s. b ))av a<br>300 As G )u:a)BC wi |
|-----------------------------------------------------------------|
| f uOuaC, bf, N2p t Kk, A6                                       |
|                                                                 |


| 9u1                     | 6 - DD |       |     |     |        |       | Ga- |         |    |     |      |       | JsE | n.      |       |      |       |       | T )    |       |          |    |        |        |       |
|-------------------------|--------|-------|-----|-----|--------|-------|-----|---------|----|-----|------|-------|-----|---------|-------|------|-------|-------|--------|-------|----------|----|--------|--------|-------|
|                         | fsi)P  |       |     |     |        |       |     |         |    |     |      |       |     |         |       |      |       |       | T u-)  |       |          |    |        |        |       |
| wlfud)lSC               | JsE)P  |       |     |     |        |       |     | -)5s B( |    |     |      |       |     | )P5s EG |       |      |       |       | Ga-)5s |       |          |    |        |        |       |
| SIBu                    | H      | S     | 9   | W   | 600    | l ueU | Н   | S       | 9  | W   | 600  | l ueU | Н   | S       | 9     | W    | 600   | l ueU | H      | S     | 9        | W  | 600    | l ue U | RC)   |
| 2022h0t h33 32g8t 1 M   | 20     | D     | . 0 | 0   | k7     | 0     | 0   | 3       | 0  | 0   | 3    | t 0   | 0   | 8D      | 8     | 0    | mθ    | m     | 38     | 3     | t        | 0  | 3k     | 3D     | 3t    |
| 32g80l M                | 3t     | k4    | . 0 | 0   | 333    | 0     | 0   | 3       | 0  | 0   | 3    | 44    | 0   | t 3     | t     | 0    | t4    | 8     | D      | - 8   | 4        | 0  | 34     | 3      | 37    |
| 32gnt l M               | 3E     | 77    | . 0 | 0   | 30t    | 3     | 0   | 2       | 0  | 0   | 2    | nm    | 0   | t 8     | 8     | 0    | t4    | 0     | 4      | 8     | D        | 0  | 34     | 33     | 30    |
| 3g00l M                 | 3t     | 4t    | 0   | 0   | 70     | 0     | 0   | 3       | 0  | 0   | 3    | t 3   | 0   | 84      | 4     | 0    | n2    | 3     | D      | 32    | 7        | 0  | 2D     | 33     | 3t    |
| Ss)a:                   | 4E     | 82E   | 0 0 | 0   | 8km    | 3     | 0   | t       | 0  | 0   | t    | 233   | 0   | 3DD     | 3E    | 0    | 3km   | 7     | 88     | 3k    | 24       | 0  | DF     | m0     | 4Γ    |
| * 6 OOlsadP             | 3DI0*  | 7810* | 0*  | 0*  | h      | h     | 0*  | 300*    | 0* | 0*  | h    | h     | 0*  | k3I2*   | 717*  | 0*   | h     | h     | n218*  | 2min# | *8188    | 0* | h      | h      |       |
| * Ss)a:                 | 3010*  | n7ID* | 0*  | 0*  | t 7ID* | h     | 0*  | 0ID*    | 0* | 0*  | 0ID* | h     | 0*  | 24Inf   | 2lt * | 0* 2 | 27lk* | h     | mik*   | 217*  | 8lk*     | 0* | 3314*  | h      |       |
| 10%                     | 01787  | 017D0 | ŀ   | n h | 0lk0m  | h     | h   | ı l     | h  | h   | h    | h     | h   | 01733   | 0ID07 | h    | 0I7mm | h     | 0I48t  | ŀ     | 017t D   | h  | OIEk2  | h      | 0lk0  |
| 9 FtP)- aCe Ms)sidyd:u- | 4t     | 837   | 0   | 0   | 878    | h     | 0   | 0       | 0  | 0   | 0    | h     | 0   | 3D0     | 3E    | 0    | 37D   | h     | 83     | 0     | 2m       | 0  | tt     | h      | 42    |
| * 9RP)- aGe             |        |       |     |     |        |       |     |         |    |     |      |       |     |         |       |      |       |       |        |       |          |    |        |        |       |
| Ms)sidyd:u-             | kD10*  | kD12* | 0*  | 0*  | kD12*  | h     | 0*  | 0*      | 0* | 0*  | 0*   | h     | 0*  | k4I0*   | 300*  | 0* 1 | k4Inf | h     | k8lk*  | 0*    | k218*    | 0* | D0lt * | h      | k8I3* |
| o uar y                 | 2      | 2     | . 0 | 0   | m      | h     | 0   | 0       | 0  | 0   | 0    | h     | 0   | 2       | 0     | 0    | 2     | h     | 2      | 0     | 0        | 0  | 2      | h      |       |
| * ouary                 | 810*   | 014*  | 0*  | 0*  | 310*   | h     | 0*  | 0*      | 0* | 0*  | 0*   | h     | 0*  | 313*    | 0*    | 0*   | 310*  | h     | 413*   | 0*    | 0*       | 0* | 214*   | h      | 312*  |
| c Rlyd:u- sCHsae        | 0      | Γ     | 0 0 | 0   | D      | h     | 0   | t       | 0  | 0   | t    | h     | 0   | t       | 0     | 0    | t     | h     | 0      | 3k    | . 2      | 0  | 23     | h      | 8     |
| * c Rlyd:u- sCHsae      | 0*     | 2B*   | 0*  | 0*  | 317*   | h     | 0*  | 300*    | 0* | 0*  | 300* | h     | 0*  | 217*    | 0*    | 0*   | 214*  | h     | 0*     | 300*  | $DD_{e}$ | 0* | 24lk*  | h      | t ID  |
| l ueu-)i lii-C-         | l      | n l   | n l | n h | h      | 3     | h   | ı       | h  | h   | h    | 7m    | h   | h       | ŀ     | h    | h     | 7     | h      | l l   | ı h      | h  | h      | 88     |       |
| * lueu-)illàG-          | l      | 1 1   | n l | n h | h:     | 300*  | h   | ı       | h  | h   | h    | 8kI7* | h   | h       | ŀ     | h    | h3    | *00   | h      | - l   | h h      | h  | h'     | 72lt * | _     |
| c Rlyd:u- sCAisv a:L    | ì      | 1 l   | n h | n h | h      | 0     | h   | ı l     | h  | ı h | h    | 32D   | h   | h       | ŀ     | ı h  | h     | 0     | h      | - l   | ı h      | h  | h      | D      |       |
| * c Elvd:u-sCAisva:L    | 1      | . 1   | n h | n h | h      | 0*    | h   | 1       | h  | h   | - L  | 4012* | h   | h       | h     | h    | h     | 0*    | h      | l l   | . 1.     | h  | h'     | BDit * |       |

Ч ueu-)i laG- aGe c ldyd:u- s CAis--v a:LI 9g9u.), HgHRP), SgSPiE, WgWlSEiC

4 of 8 5 of 8 5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5-3000-14 - CUVID-2 Wed May 11, 2022 Måday Þeak (1281: PM-9))) | MCCC(5, Ali Çahlo M tg myo)eCt P-eacy, PedeGp\(\text{ahlo}\) H\(\text{Abyo}\))eCt h v t ad, H\(\text{Abyo}\))eCt h 1 rt (TBa)k-9)) Mt ceRehgC wn\(\text{81}: 1D11, s t oagh h\(\text{8D}\) 3D017D, 57: 31. 067.

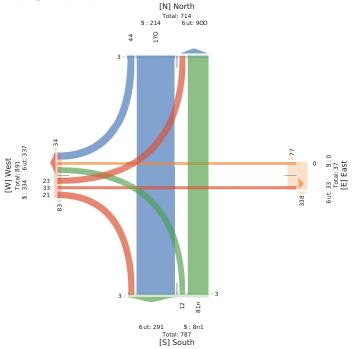




5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

Tue May 33, 2022
FM Fual ligh FM (1gh FM6(: Ab-99Fual 1 P)C9S Shitiu Idor Gi Have MPIP-ByBhi, 1 ua/ly, Fueui Havi, RdbyBhi Pv wPae, RdbyBhi Pv
s-Pit R 36
C9MPPammvH

| IDg4h3t 33, dPBaHdF      | vgt h  | ₹ 038  | t , (ł | 3h75 | . 0n8.   |     |           |    |    |      |        |    |         |       |      |       |       |         | Ou   | Nuav,  | : U | ), p 2r | . 116#, | SC     |
|--------------------------|--------|--------|--------|------|----------|-----|-----------|----|----|------|--------|----|---------|-------|------|-------|-------|---------|------|--------|-----|---------|---------|--------|
| dur                      | OP-H   |        |        |      |          | Ja  | iН        |    |    |      |        | EP | H       |       |      |       |       | T ui H  |      |        | _   |         |         |        |
| DouBldPv                 | EP) Ht | P) ve  |        |      |          | Т   | ui HbP) v | e  |    |      |        | OP | -HbP) v | e     |      |       |       | Jai HoF | ) ve |        |     |         |         | 1      |
| Samu                     | W      | S      | d      | W    | CNN Fuel | V   | w S       | d  | W  | CNN  | FueU   | W  | S       | d     | W    | CNN   | Fue U | W       | S    | d      | W   | CNN     | Fue U   | IvH    |
| 2022(0h(33 ng hFM        | 34     | 32h    | 0      | 0    | 3tt (    | ) ( | 0 3       | 0  | 0  | 3    | t h    | 0  | h4      | 38    | 0    | 85    | 3     | 3h      | 3    | 34     | 0   | nh      | 1       | 2h5    |
| t g00FM                  | 4      | 32t    | 0      | 0    | 3nn      | 3 ( | 0 τ       | 0  | 0  | t    | hh     | 0  | 50      |       | 0    | 5.    | 0     | 32      | h    | 32     | 0   | 24      | 5       | 2nt    |
| t g8hFM                  | 20     | 322    | 0      | 0    | 3t 2     | ) ( | 0 2       | 0  | 0  | 2    | h0     | 0  | 58      | 30    | 0    | 88    | 0     | 33      | 2    | 4      | 0   | 22      | 32      | 2t n   |
| t gn0FM                  | 3.     | 304    | 0      | 0    | 328      | ) ( | 0 0       | 0  | 0  | 0    | h0     | 0  | 5n      | 30    | 0    | 8n    | 3     | 35      | n    | 33     | 0   | n0      | 3h      | 2n0    |
| SPHS                     | 55     | t.0    | 0      | 0    | ht 5     | 3 ( | 0 8       | 0  | 0  | 8    | 200    | 0  | 2t 4    | t h   | 0    | 24t   | 2     | ht      | 33   | h3     | 0   | 335     | n8      | 45n    |
| * CNN-PaB:               | 3273*  | . 874* | 0*     | 0*   | (        | (0* | 300*      | 0* | 0* | (    | (      | 0* | . t 78* | 3h7h* | 0*   | (     | (     | t 575*  | 47h* | *07.11 | 0*  | (       | (       | -      |
| * SPH9                   | 574*   | t 47 * | 0*     | 0* I | 1578*    | (0* | 078*      | 0* | 0* | 078* | (      | 0* | 2h74*   | t 78* | 0* : | n07h* | (     | h75*    | 373* | h7h*   | 0*  | 3270*   | (       | -      |
| F1 %                     | 07.2h  | 0745h  | (      | (    | 074h2    | (   | ( (       | (  | (  | (    | (      | (  | 0743t   | 05    | (    | 074n. | (     | 07.2.   | (    | 075h.  | (   | 078h8   | (       | 074t 3 |
| dorcH ave MPHP-ByB9ui    | 5h     | t 8n   | 0      | 0    | hn.      | ( 1 | 0 0       | 0  | 0  | 0    | (      | 0  | 2t n    | t 2   | 0    | 2. h  | (     | h2      | 0    | h0     | 0   | 302     | (       | 42h    |
| * dorcH ave<br>MPH-ByBhi | 4 7h*  | 4 7h*  | 0*     | 0* 4 | 1 75*    | 0*  | 0*        | 0* | 0* | 0*   | -      | 0* | 4875*   | 4n7h* | 0*   | 4574* | - (   | 457h*   | 0*   | 4. 70* | 0*  | 871*    | - (     | 4578*  |
| 1 uaAy                   | 3      |        | _      | 0    | n        | 1   | 0 0       |    |    | 0    | - (    | 0  |         | 2     |      | t     | - (   | 3       |      |        |     | 3       | - (     |        |
| * 1 uaAy                 | 37h*   |        |        | 0*   | 07h*     | (0* | 0*        |    | 0* | 0*   | (      | 0* | 07 *    |       | 0*   | 37.*  | (     | 374*    | 0*   | 0*     | 0*  | 074*    | (       | 07.*   |
| RdByBhi Pv wPae          | 0      | h      | 0      | 0    | h        | ( 1 | 0 8       | 0  | 0  | 8    | (      | 0  | t       | 3     | 0    | h     | (     | 3       | 33   | 3      | 0   | 3n      | (       | n0     |
| * RoByBlui Pv wPae       | 0*     | 370*   | 0*     | 0*   | 074*     | (0* | 300*      | 0* | 0* | 300* | (      | 0* | 375*    | 272*  | 0*   | 378*  | (     | 374*    | 300* | 270*   | 0*  | 3372*   | (       | n73*   |
| Fueui Hoavi              | (      | . (    | (      | (    | ( :      | š   | ( (       | (  | (  | (    | t 4    | (  | . (     | (     | (    | (     | 2     | (       | (    | (      | (   | (       | nt      |        |
| * Fueui Hoavi            | (      | . (    | (      | (    | (300*    | Т   | ( (       | (  | (  | (    | 2t 7h* | (  | (       | (     | (    | (     | 300*  | (       | (    | (      | (   | (-      | 4374*   | (      |
| RoByBhi Pv s -Piik a9    | (      | - (    | (      | (    | ( (      | )   | ( (       | (  | (  | (    | 3h3    | (  | (       | (     | (    | (     | 0     | (       | (    | (      | (   | (       | n       |        |


<sup>U</sup>FueuiHoavi ave RoByB0ui Pvs-Piika9I7dgdufḤwgworcḤSgSc-), WgW(S)-v

6 of 8

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC Wed May 11, 2022 PM Peak (5-6) PM OS-6) PM OS 1 eHao Peak u ACH so Laitiei (glit nd alb MAcN4RyRei, u eal y, Pedeidhaß, wHsyRei AB Mahad, wHsyRei AB LiHii adv so MA eDebi :9 - 3) 1611, gARadnB-6) 850176, 07) 81, 057.





5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

The Mta 34, 2.7, OFIL Lag Mtg. 24 PM)

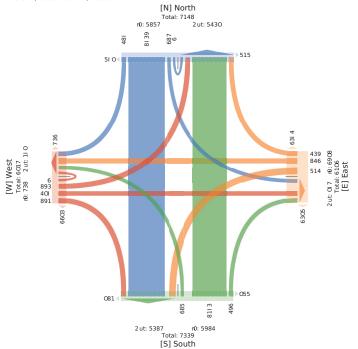
1 I Llussri, Glish ugd Monorcacins3Hnava3Pndnsriugs3Bicacins og Roud3Bicacins og Crosswulk)

1 I Movrnings

10. 47468, 3 Locusiog: 7857261y39;6SL y8.

Pro 622 Cogsenllueiog Dr3Ni

7 of 8


|                              |         |        | -        |        |       |       |         |       |          |      |       |        |        |         |          |      |       |       |         |          |         |       |        |        |       |
|------------------------------|---------|--------|----------|--------|-------|-------|---------|-------|----------|------|-------|--------|--------|---------|----------|------|-------|-------|---------|----------|---------|-------|--------|--------|-------|
| Lnt                          | North   |        |          |        |       |       | Euse    |       |          |      |       |        | ToFeh  |         |          |      |       |       | S rise  |          |         |       |        |        |       |
| Direction                    | ToFehbo | Fgd    |          |        |       |       | S nsebo | Fgd   |          |      |       |        | Norehb | oFgd    |          |      |       |       | Eusebol | Fgd      |         |       |        |        |       |
| Wimn                         | R       | W      | L        | U      | - pp  | Pnd+  | R       | W     | L        | U    | - pp  | Pnd+   | R      | W       | L        | U    | - pp  | Pnd+  | R       | W        | L       | U     | - pp   | Pnd+   | Ige   |
| , 2, , 92892y 62:22- M       | 68      | , 7A   | 6,       | 2      | , y2  | 87    | 6.      | 67    | AA       | 2    | 18    | . 1    | 62     | , 68    |          | 2    | , AA  | Ay    | ,,      | 6A       | , A     | 2     | 8.     | . 1    | 1,    |
| 66:22- M                     | AB      | 7      | , 2      | 2      | 87A   | 6A2   | 71      | 78    | 8.       | 2    | 674   | , y6   | , у    | 782     | .,,      | 2    | 744   | 6, 7  | A       | 72       | 8,      | 2     | 6A2    | , yA   | 6A,   |
| 6, :22PM                     | 7,      | 74y    | , 6      | 2      | 812   | 67,   | 7,      | AB    | 16       | 2    | 6A    | 7, 1   | -,,    | 78.     | 6.       | 2    | 74.   | 6AA   | A1      | 7y       | 72      | 2     | 6, A   | , 7y   | 6A6   |
| 6:22PM                       | A,      | 7.,    | 61       | 2      | 8A2   | 68A   | ,7      | 7A    | 1A       | 2    | 6A2   | 74.    | ,7     | 711     | 6,       | 2    | 82,   | 67y   | , у     | A7       | A       | 2     | 44     | 64.    | 6, 1  |
| , :22PM                      | , 8     | 86,    | 6A       | 6      | 886   | 6, .  | A6      | , 4   | 1y       | 2    | 6, y  | 7.2    | , 2    | 7y7     | 6A       | 2    | 82y   | 661   | A7      | , 2      | Ay      | 6     | 4,     | , 8,   | 6, y  |
| A:22PM                       | , A     | 8, 1   | 64       | 2      | 81.   | 61.   | A7      | 7,    | 1,       | 2    | 6A    | 12,    | - ,,   | 718     | 61       | 2    | 82A   | 61.   | 78      | A7       | A,      | 2     | 666    | A2,    | 6A,   |
| 7:22PM                       | , у     | 827    | 67       | 2      | 878   | 48    | , у     | 8A    | 74       | 2    | 6, 4  | 82.    | ,.     | 7.8     | 6,       | 2    | 8,8   | 61A   | A4      | 77       | A,      | 2     | 668    | A6A    | 6A6   |
| 8:22PM                       | A2      | 74.    | 6y       | 2      | 878   | 8.    | , 4     | 76    | 7у       | 2    | 66y   | 748    | A6     | 712     | .,,      | 2    | 86A   | 6A4   | 74      | 64       | A,      | 2     | 622    | , 88   | 6, y  |
| 1:22PM                       | 62      | ,,2    | 1        | 2      | , A1  | A6    | 64      | 64    |          | 2    | 12    | 6.2    | 6y     | ,,7     | 66       | 2    | , 8,  | 8A    | 61      | -        | , 6     | 2     | 78     | 62,    | 84.   |
| Vócul                        | , A4    | Aty2   | 6A       | 6      | 7A7.  | 484   | , y2    | A, 6  | 71,      | 2    | 628A  | A871   | , 26   | Al4y    | 6A7      | 2    | 72A,  | 62.2  | A21     | , 84     | A2y     | 6     | . yA   | , 2, . | 62A2  |
| % - pprouch                  | 838% 4  | 65496  | A5 %     | 2%     | 9     | 9     | . 89.8  | A238% | 7.A54% : | 2%   | 9     | 9      | 852%   | 465y%   | A5466 2  | 2%   | 9     | 9     | A656%   | , 45/% . | ABS % : | 256%  | 9      | 9      |       |
| % Womi                       | , 54% J | A 38%  | 654%     | 2% 7   | 7,5%  | 9     | ,9%     | A56%  | 798%     | 2% € | 25 %  | 9      | , 52%  | A854%   | 654%     | 2% A | 436%  | 9     | A2%     | , 58%    | AD%     | 2%    | . 38%  | 9      |       |
| Lit hes ugd Moeorcaclns      | , AA    | Ay7,   | 6Ay      | 6      | 766A  | 9     | ,74     | , 88  | 71,      | 2    | 411   | 9      | 6.1    | A74,    | 6AA      | 2 .  | A 66  | 9     | , 41    | 6y,      | A22     | 6     | y14    | 9      | 418   |
| % Lit hes ugd<br>Moeorcachts | 4y58% 4 | 175406 | 445/06 6 | 522% 4 | 4751% | 9     | 4,5%    | y457% | 622%     | 2% 4 | 165/% | 9      | 4, 38% | 4798% - | 445/06 2 | 2% 4 | 798%  | 9     | 415/%   | 1157%    | 4y5y% 6 | 522%. | . 56%  | 9      | 4A5/9 |
| Hnuva                        | 6       | 62.    | 2        | 2      | 624   | 9     | 6       | A     | 2        | 2    | 7     | 9      | ,      | 62y     | 2        | 2    | 624   | 9     | ,       | ,        | 6       | 2     | 8      | 9      |       |
| % Hnuva                      | 257%    | ,5/%   | 2%       | 2%     | , 3B% | 9     | 257%    | 254%  | 2%       | 2%   | 257%  | 9      | 652%   | , 54%   | 2% 2     | 2%,  | , 5y% | 9     | 25/%    | 25 %     | 254%    | 2%    | 251%   | 9      | ,59   |
| Bicaclus og Roud             | 8       | 6, 2   | 6        | 2      | 6, 1  | 9     | , 2     | 1A    | 2        | 2    | . A   | 9      | 6A     | 4.      | 6        | 2    | 66,   | 9     | -       | . 8      | 1       | 2     | 44     | 9      | 7,    |
| % Bicaclus og Roud           | , 56%   | A2%    | 25y%     | 2%     | , 54% | 9     | y57% I  | 6451% | 2%       | 2%   | y54%  | 9      | 138%   | , 5y%   | 25/% 2   | 2%,  | ,5%   | 9     | , 9%.   | A 5 %    | , 52%   | 2% €  | 665496 | 9      | 7369  |
| Pndnseriugs                  | 9       | 9      | 9        | 9      | 9     | 4AA   | 9       | 9     | 9        | 9    | 9     | A621   | 9      | 9       | 9        | 9    | 9     | 621,  | 9       | 9        | 9       | 9     | 9      | , 224  |       |
| % Pndnstriugs                | 9       | 9      | 9        | 9      | 9     | 4y54% | 9       | 9     | 9        | 9    | 9.    | 4. 54% | 9      | 9       | 9        | 9    | 94    | . 54% | 9       | 9        | 9       | 9     | 94     | 1455%  |       |
|                              |         |        |          |        |       |       |         |       |          |      |       |        |        |         |          |      |       |       |         |          |         |       |        |        |       |
| Bicaclns og Crosswulk        | 9       | 9      | 9        | 9      | 9     | , 1   | 9       | 9     | 9        | 9    | 9     | 72     | 9      | 9       | 9        | 9    | 9     | 6.    | 9       | 9        | 9       | 9     | 9      | 64     |       |

\*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

8 of 8 1 of 6 5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 949152, Location: 45.40167, -75.68758

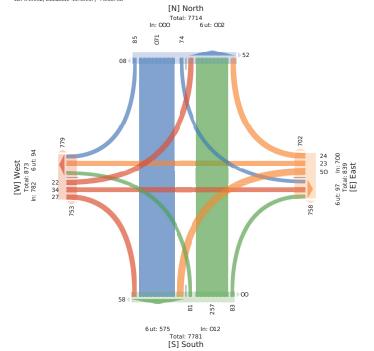




\$566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
TueMus y3, 2, ,
MFFus I Lin g h (6: g4A92 1 M PA -92 1 M:
I) () Cinsla g bloos ur F Mcce-Hav)[1.33] LiFLsefter s3w(vav)[1.5 cr k cuF3w(vav)[1.5 cr KcuF3w(vav)[1.5]]
I) () MCRI I res
IB - 474A8, 3i cvadêr - 78572A y3lly85 by8b



| Ld                       | (cHo  |       |       |      |       |       | J use  |        |       |      |        |       | TcEeo |        |        |      |        |       | t Ise    |        |       |      |       |       |    |
|--------------------------|-------|-------|-------|------|-------|-------|--------|--------|-------|------|--------|-------|-------|--------|--------|------|--------|-------|----------|--------|-------|------|-------|-------|----|
| OH.veOcr                 | TcEmf | cEr F |       |      |       |       | t Isef | :ErF   |       |      |        |       | (cHof | cErF   |        |      |        |       | J usef c | Er F   |       |      |       |       |    |
| SOI L                    | k     | S     | i     | W    | 1 pp  | 1 IFU | k      | S      | i     | W    | 1 pp   | 1 LFU | k     | S      | i      | W    | 1 pp   | 1 LFU | k        | S      | i     | W    | 1 pp  | 1 LFU | De |
| , 2, , P28P2y AA921 M    | у     | A, y  |       | 2    | A72   | 9.    | A9     | A2     | A     | 2    | 7,     | . 9   |       | A46    | 8      | 2    | Α,.    | 9A    | A9       | 4      | A,    | 2    | 97    | y.    | П  |
| A4781 M                  | b     | A, 2  | 8     | - 2  | A99   | , b   | Ay     | A7     | Ay    | 2    | 7b     | y4    | 8     | A46    | 9      | 2    | A, 9   | 92    | Ą        | A2     | A9    | 2    | 98    |       | Т  |
| A, -221 M                |       | A, y  | ,     | 2    | A98   | 72    | AA     | . у    | A     | 2    | 97     | 4y    | 9     | A, 2   | 4      | 2    | A9,    | 92    | b        | у      | AA    | . 2  | ,.    | y4    |    |
| A, -ABI M                | 8     | A9.   |       | 2    | А⊽у   | 9,    | b      | A,     | Æ     | 2    | 99     | 4y    | 4     | AAA    | . 9    | 2    | A, 9   | ,.    | b        | A9     | b     | 2    | , 4   | . 7   |    |
| Sceu)                    | ,.    | 8.A2  | A4    | - 2  | 888   | A9.   | 74     | 79     | . 8   | 2    | Аву    | 99.   | , 9   | 7. A   | , 2    | 2    | 827    | AAy   | 7.A      | . 94   | 77    | 2    | A, 7  | , bA  | I  |
| * 1 pplituvo             | 75y+  | 4A54+ | 957*  | 2*   | P     | F     | 9A5 *  | , y57* | 7A57* | 2*   | P      | P     | 75 *  | 4AB+   | 752*   | 2*   | P      | P     | 995A*    | 9AB*   | 9838* | 2*   | P     | P     | 1  |
| * Sceu)                  | A54+  | 9b54* | A57+  | 2* 7 | 7A57+ | F     | 95/*   | 95 *   | 754+  | 2* . | A46y+  | P     | Aby*  | 9757*  | AB*    | 2* 5 | 9y5 +  | P     | 95A*     | , 54+  | 959*  | 2*   | 459*  | P     | 1  |
| 1 B%                     | 25b49 | 25494 | 25/82 | P    | 2547, | F     | 25y. 4 | 25022  | 25688 | P    | 25b8.  | P     | 25 AA | 254. 8 | 25B, b | P    | 254. , | P     | 25ybb    | 25y82  | 25b4. | P    | 25b7A | P     | 2  |
| i Otloes ur F McecHav)Ls | , 8   | 7yy   | Ab    | 2    | 8, 2  | F     | 72     | 9.A    | 8     | 2    | A9.    | P     | .,,   | 7, b   | - A4   | 2    | 7.4    | P     | 72       | , у    | 79    | 2    | AA2   | P     | 1  |
| * i Odoes ur F           |       |       |       |      |       |       |        |        |       |      |        |       |       |        |        |      |        |       |          |        |       |      |       |       | Г  |
| McecHav)Ls               | 4.5 * | 493B* | 475y+ | 2* 4 | 195y* | F     | bA5 *  | y, 54° | A22*  | 2* 1 | b. 5 * | P     | 485y+ | 4, 3b+ | 4852*  | 2* 4 | 195A*  | P     | 4y5 *    | . 45 * | 4y5y* | 2* b | bb5y* | P     | 4, |
| BLuRa                    | 2     | AB    | 2     | 2    | AB    | F     | 2      | A      | . 2   | 2    | A      | P     | 2     | A      | 2      | 2    | A      | P     | A        | . 2    | 2     | 2    | A     | P     | Т  |
| * BluRa                  | 2*    | , 54+ | 2*    | 2*   | , 5y+ | F     | 2*     | , 59+  | 2*    | 2*   | 25 *   | P     | 2*    | 93B+   | 2*     | 2*   | 95,+   | P     | ,57*     | 2*     | 2*    | 2*   | 25b+  | P     | ١, |
| w@rav)Ls cr k cuF        | A     | Ab    | A     | . 2  | ,2    | F     | 4      | AA     | . 2   | 2    | ,2     | P     | A     | . Ay   | · A    | . 2  | A4     | P     | 2        | A,     | A     | . 2  | A9    | P     | T  |
| * w0vav)Ls cr k cuF      | 95o+  | 938*  | 859+  | 2*   | 95 +  | F     | Ab57*  | , 85 + | 2*    | 2* . | A, 5y+ | P     | 759+  | 95y+   | 82*    | 2*   | 95b+   | P     | 2*       | 925b*  | , 59* | 2+ A | A238+ | P     | 8  |
| l LFLsel@urs             | P     | F     |       | P    | P     | A9,   | P      | · I    | )     | P P  | P      | 997   | P     | - I    | P F    | P    | P      | AA7   | P        | P      | ·     | P    | P     | , b2  | T  |
| * 1 LFLsd@rrs            | P     | F     |       | P    | P.    | 4y5A° | P      | ·      | )     | P P  | P.     | 445*  | P     | - I    | P F    | P    | P.     | 4y57* | P        | P      | F     | P    | P/    | 445 * |    |
| w0xav)Ls cr CHrssmu)n    | P     | F     |       | P    | P     | 7     | P      | ·      | )     | P P  | P      | ,     | P     | - I    | P F    | P    | P      | 9     | P        | P      | F     | P    | P     | A     | 4  |
| w@rav)Ls cr Clifssmu)n   | P     | P     |       | P    |       | . 54+ | Р      |        |       | P P  |        | 25 *  | P     | - 1    |        | P    |        | ,5+   | Р        | ) p    |       | P    |       | 257*  |    |


4 LFLselflurs ur F w0/av)Ls cr Clftssmu)n5i - i LQBk - k 0doeBS- SolE3W- WPSEH

2 of 6

3 of 6

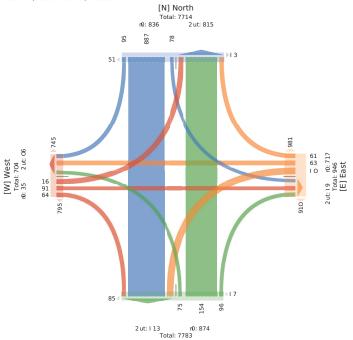
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movemens
ID: 949152, Location: 45.40167, -75.68758



# 5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
TWeMusy 3.2, ...
0M OR4 langth (E.A. 20 M - , :A2 OM (- 9 1Fb)) OR4 CsiP
d) 0 jurte la Fibre ukw Mses Bakily F3 CRuta 30 Fwfrethil R3militak jFrs R I suw8militak jFrs R
0 BrrDu) (
d) Ms ISA Ret
7a: 8586., 3c slaudd R 5. lb.26 y 3-y. lf Oy. O


| : Fv                        | t sRB  |        |        |      |               |       | Eure    |        |       |      |                |       | TsieB |        |       |      |       |        | n Fre  |        |                |      |                |       |     |
|-----------------------------|--------|--------|--------|------|---------------|-------|---------|--------|-------|------|----------------|-------|-------|--------|-------|------|-------|--------|--------|--------|----------------|------|----------------|-------|-----|
| h HFkeHR                    | TsieBl | Nsi Rw |        |      |               |       | n FreN  | i Rw   |       |      |                |       | tsREN | ki Rw  |       |      |       |        | EureNs | . Rw   |                |      |                |       |     |
| SM F                        | I      | S      | c      | W    | d KK          | 0FwU  | I       | S      | с     | W    | d KK           | 0FwL  | I     | S      | c     | W    | d KK  | 0FwU   | I      | S      | с              | W    | d KK           | 0FwU  | 7Re |
| , 2, , -22y 6:A20M          | у      | 6, 2   | 5      | 2    | 6A6           | 5,    | у       | 6,     | 6y    | 2    | Æ              | 6,5   | 5     | 660    | . (   | 2    | 6, y  | 52     | у      | f      | 62             | 2    | , A            | . 2   |     |
| 6:5. 0M                     | 0      | 6A5    |        | 2    | 65y           | . A   | у       | 66     | 66    | 2    | ,8             | 6AC   | f     | 662    | A     | 2    | 668   | A2     | 0      | 5      | 8              | 2    | , 6            | 58    |     |
| ,:220M                      | f      | 658    | 5      | 2    | 6.8           | 6y    | 66      | y      | 65    | 2    | A,             | 6, y  |       | 66.A   | ١.    | 2    | 6, A  | , f    | f      | A      | 6A             | 2    | ,,             | OA.   |     |
| , :6. 0M                    | f      | 65O    | ,      | 2    | 6. f          | A6    | 8       | 8      | , f   | 2    | 55             | 66A   | 0     | 6, 8   | 5     | 2    | 656   | - , ,  | 8      | 66     | 66             | 2    | A6             | ٠,    |     |
| Sseu)                       | , у    | 6      | 6.     | 2    | . 8A          | . 65A | A5      | AB     | fO    | 2    | 656            | . 2,  | , A   | 5y2    | - 6y  | 2    | . 62  | 660    | A2     | , 5    | 5A             | 2    | 8y             | , A5  | 6   |
| * d KABukB                  | 5lf *  | 8, l6* | , b *  | 2*   | -             | -     | , 5li6* | , yly* | 50h;* | 2*   |                |       | 5b *  | 8, h * | AbA*  | 2*   | -     | -      | A218*  | , 5by* | 55 <b>bA</b> * | 2*   |                | -     | Г   |
| * Sseu)                     | , l2+  | 56b6*  | 6l6*   | 2*   | 55 <b>b</b> * | -     | , b *   | , 18*  | . l6* | 2* ( | 62b *          | -     | 6by+  | A 12*  | 6bA*  | 2* . | ACI2+ | -      | , h *  | 6bO°   | Aq +           | 2*   | yh *           | -     | Г   |
| 0C%                         | 2bC55  | 21868  | 2by. 2 | -    | 21852         | -     | 2byy.   | 2byO6  | 2bf.5 | -    | 21606f         | -     | 2lf,. | 2186f  | 2bO 2 | -    | 2182A | -      | 2bOAA  | 2b . f | 26020          | - 2  | 2by8A          | -     | 2   |
| c HiBer uRwMs es Black)Fr   | , у    | .,,    | 6.     | 2    | . f5          | -     | A6      | ,.     | fO    | 2    | 6, 5           |       | , 2   | 55.    | 6y    | 2    | 5Q    | -      | A2     | , 2    | 5,             | 2    | 8,             | -     | 6   |
| * c HiBr uRw<br>Mses Bak)Fr |        | 85by*  | 622*   | 2* : | 8. li6+       |       | 86b *   | f 516* | 622*  | 2* 1 | Dyla*          | -     | Oyl2* | 85by+  | 622*  | 2* : | 85b + | -      | 622*   | OAbA*  | 8yby*          | 2* 8 | 15 <b>kO</b> * |       | 85  |
| CFula                       | 2      | 66     | 2      | 2    | 66            | -     | 2       | 2      | 2     | 2    | 2              |       | 2     | 6.A    | . 2   | 2    | 6A    | -      | 2      | 2      | 2              | 2    | 2              | -     | Т   |
| * CFula                     | 2*     | , l2+  | 2*     | 2*   | 6l8*          | -     | 2*      | 2*     | 2*    | 2*   | 2*             | -     | 2*    | , bO°  | 2*    | 2*   | , b * | -      | 2*     | 2*     | 2*             | 2*   | 2*             | -     | 6   |
| militak)FrsRIsuw            | 2      | 60     | 2      | 2    | 60            | -     | A       | 65     | 2     | 2    | 6y             |       | A     | 6,     | 2     | 2    | 6.    | -      | 2      | 5      | 6              | 2    |                | -     |     |
| * miliak)FrsRIsuw           | 2*     | AbA*   | 2*     | 2*   | Al2+          | -     | CHO*    | A 18*  | 2*    | 2* ( | 6, <b>b</b> 6* | -     | 6Al2* | , lf * | 2*    | 2*   | , lg+ | -      | 2*     | 6f by* | , b\*          | 2*   | . h *          | -     | 5   |
| 0 PwFreHtiRr                | -      | -      | -      |      | -             | 65A   | -       | -      | -     | -    | -              | . 22  |       | -      | -     | -    | -     | 66y    | -      | -      | -              | -    | -              | , AA  |     |
| * 0PwFreHtiRe               | -      | -      | -      |      | -             | 622*  | -       | -      | -     | -    | -              | * ¥88 | -     | -      | -     | -    | - 1   | 38b, * | -      | -      | -              |      | - 8            | 8lf + |     |
| mHak)FrsRoBrrDu)l           | -      | -      | -      |      | -             | 2     | -       | -      | -     | -    | -              | ,     |       | -      | -     | -    | -     | 6      | -      | -      | -              | -    | -              | 6     | Г   |
| * mBakiFrsRoBrrDuil         | -      | -      | -      |      | -             | 7+    | -       |        |       | -    |                | 215*  |       | -      |       | -    | -     | 2hO*   |        |        | -              |      |                | 215+  | Т   |

UDFwFreHiller uRwmHilak)FrsRoBrrDu)lbc:cFp8I:I NiDe8S:SBH3W:W-SiFR

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Sat May 7, 2021) (1:30 PM - 2:30 PM) - Overall Peak Hour All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949152, Location: 45.40167, -75.68758

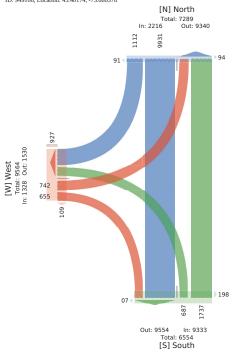




[S] South

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC




| 5566814 - COVID - QUE<br>Tue Mua y3, 2, ,<br>0Fll Lngt eh (62:A2 - M91:A<br>- Il Clussns (Lit hes ugd Mo | 12 PM)   |        |    |         |       |           | g Roud | ЗВіс | aclns o | g     |           | Pr    | ((   |        | ta     | W<br>Om |
|----------------------------------------------------------------------------------------------------------|----------|--------|----|---------|-------|-----------|--------|------|---------|-------|-----------|-------|------|--------|--------|---------|
| Crosswulk)                                                                                               |          |        |    |         |       |           |        |      |         |       |           | • • • |      | 622 Co |        |         |
| <ul> <li>Il Movnmnges</li> <li>ID: 4746113Locueiog: 7857</li> </ul>                                      | 26v739v  | 85L 2A | W. |         |       |           |        |      |         |       |           | N     | Vnpn | ug3ON3 | SK, G  | 8J4:    |
| Lnt                                                                                                      | North    |        | J. |         |       | ToFeh     |        |      |         |       | E nse     |       |      |        |        |         |
| Dirncelog                                                                                                | ToFehboF | gd     |    |         |       | NorehboFr | zd     |      |         |       | SuseboFgo | 1     |      |        |        |         |
| Wimn                                                                                                     | R        | W      | U  | - pp    | Pnd*  | W         | L      | U    | - pp    | Pnd*  | R         | L     | U    | - pp   | Pnd*   | Ige     |
| , 2, , 92892y 62:22- M                                                                                   | A7       | 62A    | 2  | 6Ay     | 2     | y.        | 6A     | 2    | 46      | 62    | ,,        | 67    | 2    | A1     | 68     |         |
| 66:22- M                                                                                                 | 47       | ,,4    | 2  | A, A    | ,     | 68A       | 81     | 2    | , 24    | 4     | 82        | A2    | 2    | . 2    | 7y     |         |
| 6, :22PM                                                                                                 | 6, 1     | , 17   | 2  | A42     | 7     | 6y1       | 17     | 2    | , 72    | 6,    | 77        | 88    | 2    | 44     | AB     |         |
| 6:22PM                                                                                                   | 4,       | , 16   | 2  | ABA     | 8     | , 64      | A4     | 2    | , 8.    | , 1   | 71        | 14    | 2    | 668    | 72     |         |
| ,:22PM                                                                                                   | 668      | A62    | 2  | 7, 8    | ,     | 648       | 11     | 2    | , 16    | , 7   | 81        | 12    | 2    | 661    | 88     |         |
| A22PM                                                                                                    | 676      | A, A   | 2  | 717     |       | , 6,      | 17     | 2    | , y1    | 86    | . 1       | 62,   | 2    | 6      | . 7    |         |
| 7:22PM                                                                                                   | 674      | A22    | 2  | 774     | , 2   | 646       | 84     | 2    | , 82    | Α,    | . 8       | 4.    | 2    | 6. A   | y1     |         |
| 8:22PM                                                                                                   | ,7A      | , 1y   | 2  | 862     | 1     | 6.4       | 41     | 2    | ,.8     | , 7   | 7.        | . 1   | 2    | 6A7    | 71     |         |
| 1:22PM                                                                                                   | 664      | 677    | 2  | , 1A    | 6     | 4,        | A      | 2    | 6A2     | , 1   | , 4       | 84    | 2    |        | 64     |         |
| Weul                                                                                                     | 666A     | ,,26   | 2  | AA67    | 7.    | 6828      | 748    | 2    | , 222   | , 67  | 711       | 8yA   | 2    | 62A4   | 76y    | П       |
| % - pprouch                                                                                              | AAEI%    | 1157%  | 2% | 9       | 9     | y854%     | , 75 % | 2%   | 9       | 9     | 7754%     | 8856% | 2%   | 9      | 9      |         |
| % Woed                                                                                                   | 6y38%    | A751%  | 2% | 8, 5, % | 9     | , A5y%    | y5 %   | 2%   | A638%   | 9     | y5466     | 452%  | 2%   | 6157%  | 9      |         |
| Lit hes ugd Moeorcaclns                                                                                  | 6244     | , 67y  | 2  | A, 71   | 9     | 6771      | 747    | 2    | 6472    | 9     | 788       | 817   | 2    | 6264   | 9      |         |
| % Lit hes ugd Moeorcaclns                                                                                | 4. 5y%   | 4y38%  | 2% | 4y54%   | 9     | 4156%     | 445 %  | 2%   | 4y52%   | 9     | 4y51%     | 4.57% | 2%   | 4.56%  | 9      | 4       |
| Hnuva                                                                                                    | y        | A      | 2  | 62      | 9     |           | 6      | 2    | 4       | 9     |           | ,     | 2    | 62     | 9      |         |
| % Hnuva                                                                                                  |          | 256%   |    | 254%    | 9     | m.co c    | 25, %  | 2%   | 298%    | 9     | 65y%      | 254%  | 2%   | 652%   | 9      |         |
| Bicaclns og Roud                                                                                         | -        | 86     | 2  | 8.      | 9     |           | 2      | 2    | 86      | 9     | A         | y     | 2    | 62     | 9      |         |
| % Bicaclns og Roud                                                                                       |          |        | 2% | 65 %    | 9     | A57%      | 2%     | 2%   | , 51%   | 9     | 251%      |       | 2%   | 652%   | 9      |         |
| Pndnseriugs                                                                                              |          | 9      | 9  | 9       | 7y    | 9         | 9      |      | 9       | , 28  | 9         | 9     | _    | 9      | A, y   |         |
| % Pndnseriugs                                                                                            |          | 9      | 9  | 9       | 4y54% | 9         | 9      |      | 9       | 485 % | 9         | 9     |      |        | y. 57% |         |
| Bicaclns og Crosswulk                                                                                    |          | 9      | 9  | 9       | 6     | 9         | 9      |      | 9       | 4     | 9         | 9     |      | 9      | 42     |         |
| % Bicaclns og Crosswulk                                                                                  | 9        | 9      | 9  | 9       | , 56% | 9         | 9      | 9    | 9       | 75,96 | 9         | 9     | 9    | 9      | , 651% | L       |

\*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

6 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Sat May 7, 2022
Full Length (10:30 Ah-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949166, Location: 45.40174, -75.680378



5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

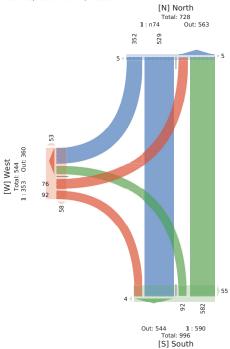
5566814 - COVID - QUEEN ELIZABETH DIRWIT @ FR.... - TING.
THEMIA 3/3, 2, 6,
MOFFIA I Lim g. In (6, 29, -92 I M 1 A-92 I M:
P) C). Clasts g. ditoes ur F. Mccc'Hav/JLs3B LirRa3l LFLsetfür s3w0rav/JLs cr. k.cuF3w0rav/JLs cr.
Citissmun:
P) McRU Lires
B - 474/4883i cvudtr - 75.72/ky73 ly5.8b29yb

| i Id                      | (cHo         |        |     |       |       | TcJeo    |        |     |       |            | t Lse      |       |    |        |       |      |
|---------------------------|--------------|--------|-----|-------|-------|----------|--------|-----|-------|------------|------------|-------|----|--------|-------|------|
| 6 OH.veOcr                | TcJ eof cJ i | F      |     |       |       | (cHofcJr | F      |     |       |            | Eusef cJrF |       |    |        |       |      |
| SŒ L                      | k            | S      | W   | P pp  | 1 LFU | S        | i      | W   | P pp  | 1 LFU      | k          | i     | W  | P pp   | 1 IFU | De   |
| , 2, , 12512y A, -921 M   | 94           | 55     | 2   | 47    | ,     | 78       | , 2    | 2   | 88    | 7          | A,         | A2    | 2  | ,,     | A2    | A    |
| A, -751 M                 | 92           | b2     | 2   | AA2   | 2     | 5,       | A5     | 2   | 8y    | b          | Ay         | A6    | 2  | 99     | b     | ,    |
| A-221 M                   | , 5          | 5A     | 2   | y8    | ,     | 7y       | AA     | 2   | 5b    | A8         | A7         | ,,    | 2  | 98     | A9    | - A  |
| A-A51 M                   | 92           | 54     | 2   | b4    | 2     | 54       | b      | 2   | 8y    | 9          | AA         | A4    | 2  | 92     | A2    | ı    |
| Sceu)                     | A, 7         | , 75   | 2   | 984   | 7     | , 27     | 57     | 2   | , 5b  | 9 <i>A</i> | 57         | 8y    | 2  | A, A   | 7A    | у    |
| * PppHeuvo                | 99.8*        | 88.7*  | 2*  | 1     | 1     | y4.A*    | , 2.4* | 2*  | 1     | 1          | 77.8*      | 55.7* | 2* | 1      | 1     |      |
| * Sceu)                   | A8.8*        | 9, .b* | 2*  | 74.9* | 1     | , y.9*   | y.,*   | 2*  | 97.5* | 1          | y., *      | 4.2*  | 2* | AB., * | 1     |      |
| 1 B9                      | 2.ybb        | 2.y84  | 1   | 2.b7A | 1     | 2.b5,    | 2.8y5  | 1   | 2.45A | 1          | 2.y47      | 2.y8, | 1  | 2.b79  | 1     | 2.b  |
| i Odoes ur F McecHrav)Ls  | Α,           | , 9y   | 2   | 954   | 1     | , 22     | 57     | 2   | , 57  | 1          | 59         | 87    | 2  | AAy    | 1     | У    |
| * i Odoes ur F McecHav)Ls | 4b.7*        | 48.y*  | 2*  | 4y.9* | 1     | 4b.2*    | A22*   | 2*  | 4b.7* | - 1        | 4b.A*      | 45.5* | 2* | 48.y*  | 1     | 4y.  |
| BLuRa                     | A            | 2      | 2   | A     | 1     | A        | 2      | 2   | A     | 1          | A          | 2     | 2  | A      | 1     |      |
| * BLuRa                   | 2.b*         | 2*     | 2*  | 2.9*  | 1     | 2.5*     | 2*     | 2*  | 2.7*  | 1          | A4*        | 2*    | 2* | 2.b*   | 1     | 2.5  |
| w0vav)Ls cr k cuF         | A            | b      | 2   | 4     | 1     | 9        | 2      | 2   | 9     | 1          | 2          | 9     | 2  | 9      | 1     |      |
| * w0vav)Ls cr k cuF       | 2.b*         | 9.9*   | 2*  | , .7* | 1     | A5*      | 2*     | 2*  | A, *  | 1          | 2*         | 7.5*  | 2* | , .5*  | 1     | , .2 |
| l LFLseHur s              | 1            | 1      | 1   | 1     | 7     | 1        | 1      | 1   | 1     | , 4        | 1          | 1     | 1  | 1      | 98    |      |
| * 1 LFLseHurs             | 1            | 1      | 1   | 1     | A22*  | 1        | 1      | 1   | 1     | 49.5*      | 1          | 1     | 1  | 1      | by.b* |      |
| w0vav)Ls cr CHrssmu)n     | 1            | 1      | 1   | 1     | 2     | 1        | 1      | 1   | 1     | ,          | 1          | 1     | 1  | 1      | 5     |      |
| * w0vav)Ls cr CH(ssmu)n   | 1            | 1      | - 1 | 1     | 2*    | 1        | 1      | - 1 | 1     | 8.5*       | 1          | 1     | 1  | 1      | A.,*  |      |

U LFLseHiturs ur F wOvav)Ls cr CHtssmu)n. i - i LOBk - k Otloe3S - SoH 3W- WISJH

2 of 6 3 of 6

# 5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC


Sat May 7, 2022ND (12:30 PM AI:30 PM)

Il Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Il Movements

ID: 949155, Location: 4. 6/0174, #. 6/80378

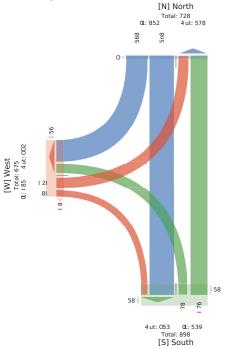




5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

\$568814 - COVID - QUEEN ELIZAGE IN DIVINE PROCESSES - INVECTIVE MIA 93, 2,

OM ORAL In grt h (16:A2 OM - 9:A2 OM( - 1 PF)uCO Rul sid) 
o CC GocRe LHARRec unk Mid ImandRe3s FuPa30 PsR/redjunv31 vrandRei w Di uk31 vrandRei w r) iced uC(
o CCMi PF7 Fuce
8: 5.56993Hi musi w . 66 2by. 3-y6B9C2/yO




| HFB                        | ti)eR      |         |    |        |       | Ti deR    |       |    |        |        | n Fce     |        |    |        |        |      |
|----------------------------|------------|---------|----|--------|-------|-----------|-------|----|--------|--------|-----------|--------|----|--------|--------|------|
| h s)Fn <b>esi</b> w        | Ti deRN dv | νk      |    |        |       | ti)eRNido | nk    |    |        |        | EuceN dwk |        |    |        |        |      |
| S∜ F                       | D          | S       | W  | o KK   | 0FkU  | S         | Н     | W  | o KK   | 0FkU   | D         | Н      | W  | o KK   | 0FkU   | 8ve  |
| , 2, , -26-2y 6:A20M       | 9,         | 96      | 2  | b, y   | 2     | . 9       | , 6   | 2  | yb     | bb     | 5         | , 2    | 2  | , 5    | b.     | ,,   |
| 6:. 60M                    | 9.         | 99      | 2  | bA2    |       | . 9       | ,,    | 2  | 90     | bA     | bA        | ,,     | 2  | A6     | 9      | ,,   |
| 9:220M                     | 66         | 60      | 2  | bbA    | b     | . y       | b6    | 2  | 9,     | bO     | b6        | , A    | 2  | AO     | bb     | ,1   |
| 9:b60M                     | 9.         | C9      | 2  | b62    | 2     | . 6       | , A   | 2  | 90     | 0      | b.        | A9     | 2  | 62     | 0      | , 9  |
| Si eu                      | ,.6        | , y6    | 2  | 6, 2   | A     | bQ        | Cl6   | 2  | , 95   | 62     | 6b        | b2b    | 2  | b6,    | A5     | 5.   |
| * o KK)i umR               | . yfb*     | 6, f5*  | 2* | -      | -     | 90f. *    | Abf9* | 2* | -      | -      | AAØ*      | 99f. * | 2* | -      | -      |      |
| * Sieu                     | ,9f2*      | , 5f, * | 2* | 66fA*  | -     | b5f9*     | 5f2*  | 2* | , CØ9* | -      | 6f. *     | b2fy*  | 2* | b9f, * | -      |      |
| 0s %                       | 2f56y      | 2fy5b   | -  | 2fO9,  | -     | 2f59O     | 2f062 | -  | 2f56.  | -      | 2f062     | 2fy, O | -  | 2fyCb  | -      | 2fO  |
| HABREC uwk Mi ei )mantFc   | ,.6        | , y,    | 2  | 6by    | -     | bQ        | 06    | 2  | , 9y   | -      | 6b        | 55     | 2  | b62    | -      | 5.   |
| * HNBRecuwk Miei)mantFc    | b22*       | 50/5*   | 2* | 55f. * | -     | 50f5*     | b22*  | 2* | 55fA*  | -      | b22*      | 502*   | 2* | 5Ofy*  | -      | 55fA |
| s FuPa                     | 2          | 2       | 2  | 2      | -     | 2         | 2     | 2  | 2      | -      | 2         | 2      | 2  | 2      | -      |      |
| * s FuPa                   | 2*         | 2*      | 2* | 2*     | -     | 2*        | 2*    | 2* | 2*     | -      | 2*        | 2*     | 2* | 2*     | -      | 2    |
| I vnantFc i wDi uk         | 2          | A       | 2  | A      | -     | ,         | 2     | 2  | ,      | -      | 2         | ,      | 2  | ,      | -      |      |
| * IvnantEciwDiuk           | 2*         | bfb*    | 2* | 2f9*   | -     | bfb*      | 2*    | 2* | 2fy*   | -      | 2*        | , f2*  | 2* | bfA*   | -      | 2fy  |
| 0FkFce)vuwc                | -          | -       | -  | -      | ,     | -         | -     | -  | -      | . 9    | -         | -      | -  | -      | Ab     |      |
| * 0FkFoe)sussc             | -          | -       | -  | -      | 99fy* | -         | -     | -  | -      | 5, f2* | -         | -      | -  | -      | y5f6*  |      |
| I vnam@ciwr)icc4u@         | -          | -       | -  | -      | b     | -         | -     | -  | -      |        | -         | -      | -  | -      | 0      |      |
| * I wantEc i wr )i cc4 utC | -          | -       | -  | -      | AAEA* | -         | -     | -  | -      | 02*    | -         | -      | -  | -      | , 2f6* |      |

U) FkFce) vuwc uwk I vnam@c i wr ) i cc4 u@fH: HFpe3D: DvBRe3S: SR)d3W: W-Sd)w

4 of 6

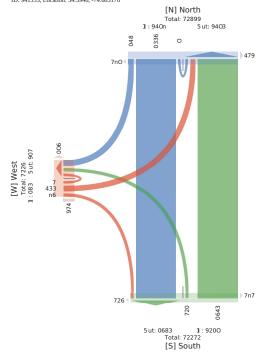
5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Sat May 7, 2022
PM Peak (WKND) (1:30 PM - Q30 PM) - v rela#Peak o uAl
CHB illIch (i gint.adc Mutul B/Hél, o eary, Peceltigidi, RgByHél.ud wuac, RgByHél.ud s lulImalik)
CHMurel edtl.
9D: 454. QQ i uBatgid: 5160. 75, -716080378



5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue Mua y3, 2.,
0FIL Lurg dr (62:A2 - M91:A2 PM)
1 Il Clussra (Lit hes ugd Moorcaclns3Hnuva3Pndnseriugs3Bicaclns og Roud3Bicaclns og
Crossvulk)
1 Il Movnmngs
ID: 476/8831.ocuslog: 87547139y73. 86y1

| Provided ba: Clie of Octave<br>Provided ba: Clie of Octave<br>Octave<br>Provided ba: Clie of Octave<br>Nnpnug3ON3K, G 7J43C- |
|------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                              |

5 of 6


| Lnt                       | North    |       |      |       |       | ToFeh    |       |    |        |       | E nse     |        |      |       |        |       |
|---------------------------|----------|-------|------|-------|-------|----------|-------|----|--------|-------|-----------|--------|------|-------|--------|-------|
| Dirncelog                 | ToFehboF | gd    |      |       |       | NorehboF | gd    |    |        |       | SuseboFge | i      |      |       |        |       |
| <b>V</b> imn              | R        | W     | U    | - pp  | Pnd*  | W        | L     | U  | - pp   | Pnd*  | R         | L      | U    | - pp  | Pnd*   | Ige   |
| , 2, , Ф7Фу 62:22- M      | ,7       | , 4A  | 2    | A6.   | 62    | A21      | у     | 2  | A6A    | 62    | ,         | , 1    | 2    | ,.    | 84     | 17    |
| 66:22- M                  | 8y       | 162   | 2    | 17y   | 8y    | 7.8      | 6.    | 2  | 12,    | , 7   | 6A        | 81     | 2    | 74    | 6, 6   | 6A6   |
| 6, :22PM                  | 7y       | 1AA   | 2    | 142   | 11    | 746      |       | 2  | 744    | A     |           | 82     | 2    | 8.    | 667    | 6A    |
| 6:22PM                    | 78       | 1.4   | 2    | y8A   | уу    | 1, A     | 67    | 2  | 1A     | 8,    | 4         | A1     | 2    | 87    | 672    | 68,   |
| , :22PM                   | 11       | 14,   | ,    | y12   | .7    | 18y      | 68    | 2  | 116    | 12    | 4         | 7.     | 2    | 1y    | 688    | 68.   |
| A:22PM                    | 14       | 177   | 2    | y, 8  | 74    | 11.      | 6y    | 2  | 1.7    | A8    | 62        | 16     | 6    | y,    | 6, 2   | 68.   |
| 8:22PM                    | 76       | 7y2   | 2    | 1, 6  | 4A    | 114      | 6y    | 2  | 1.1    | 82    | 6,        | 12     | 2    | y,    | 62.    | 6As   |
| 7:22PM                    | 76       | 761   | 2    | 71y   | A7    | 7.1      | 8     | 2  | 742    | , 8   | 6A        | 8y     | 2    | 12    | 4,     | 6, 6  |
| 1:22PM                    | 61       | , A6  | 2    | , 8y  | 67    | , 18     | 8     | 2  | , 1.   | у     | A         | 68     | 2    | 6y    | 8A     | 7.    |
| Weal                      | 8A1      | 84    | ,    | 7A, y | 8. y  | 84A      | 628   | 2  | 728,   | ,.2   | y4        | Α.     | 6    | 81.   | 48,    | 62    |
| % - pprouch               | . 5,%    | 465 % | 2%   | 9     | 9     | 4y54%    | , 56% | 2% | 9      | 9     | 6154%     | ., 54% | 25 % | 9     | 9      |       |
| % Woed                    | 852%     | 8756% | 2%   | 845 % | 9     | 8751%    | 652%  | 2% | 8157%  | 9     | 25y%      | ASI%   | 2%   | 85466 | 9      |       |
| Lit hes ugd Moeorcaclns   | A42      | 812A  | 2    | 844A  | 9     | 81A6     | 622   | 2  | 8yA8   | 9     | y8        | A86    | 6    | 861   | 9      | 626   |
| % Lit hes ugd Moeorcaclns | . 458%   | 485 % | 2%   | 4A5y% | 9     | 4A5 %    | 415 % | 2% | 4.A54% | 9     | 4.45y%    | . y54% | 622% | 54%   | 9      | 4.A5I |
| Hnuva                     | ,        | 4y    | 2    | 44    | 9     | 4.       | 6     | 2  | 44     | 9     | ,         | 6      | 2    | A     | 9      | ,:    |
| % Hnuva                   | 257%     | , 52% | 2%   | 654%  | 9     | , 52%    | 652%  | 2% | , 52%  | 9     | , 57%     | 25466  | 2%   | 251%  | 9      | 654   |
| Bicaclns og Roud          | 88       | 6. 4  | ,    | , A7  | 9     | , 21     | A     | 2  | , 24   | 9     | A         | 81     | 2    | 84    | 9      | 84    |
| % Bicaclns og Roud        | 6256%    | A54%  | 622% | 898%  | 9     | 85,%     | , 54% | 2% | 856%   | 9     | A5 %      | 6654%  | 2%   | 6257% | 9      | 857   |
| Pndnseriugs               | 9        | 9     | 9    | 9     | 886   | 9        | 9     | 9  | 9      | , 8.  | 9         | 9      | 9    | 9     | . 1.   |       |
| % Pndnseriugs             | 9        | 9     | 9    | 9     | 4251% | 9        | 9     | 9  | 9      | 51%   | 9         | 9      | 9    | 9     | 4, 56% |       |
| Bicaclns og Crosswulk     | 9        | 9     | 9    | 9     | 81    | 9        | 9     | 9  | 9      | A,    | 9         | 9      | 9    | 9     | y8     |       |
| % Bicaclns og Crosswulk   | 9        | 9     | 9    | 9     | 438%  | 9        | 9     | 9  | 9      | 663B% | 9         | 9      | 9    | 9     | v54%   |       |

6 of 6 1 of 6

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941355, Location: 54.3946, -74.685176



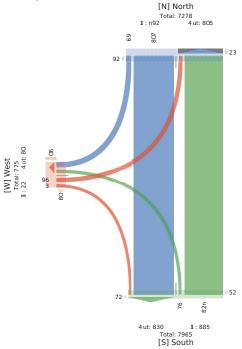


5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

53608.14-CUVID-DANK 51 @ ATLIMER AVE - MAY... - IMC
TUEMIU 3/3, 2,
MOFPia I Lun g h (6: gA\_91 I M PA91 I M:
) GS\_Gilli gilgöre i urF MHHABBÜ 3R Luva31 LFLi «Auci 3k ØBBÜ H: mHuF3k ØBBÜ H:
still viü:
) GCMHALDLei
45-71/6993d HBufH-91871. 3Ry15 b9/y.



| dLo                       | (Her      |        |    |        |       | THIer    |       |    |       |        | t Lie        |        |    |       |        |      |
|---------------------------|-----------|--------|----|--------|-------|----------|-------|----|-------|--------|--------------|--------|----|-------|--------|------|
| 6 OLEMEN:                 | THJerfHJc | F      |    |        |       | (HverfHJ | :F    |    |       |        | Eui ef HJ cF |        |    |       |        |      |
| SØDL                      | m         | S      | W  | ) pp   | l LFU | S        | d     | W  | ) pp  | 1 LFU  | m            | d      | W  | ) pp  | 1 IFU  | 4ce  |
| , 2, , P21P2y A, -91l M   | A,        | Ay,    | 2  | Ab9    | , 8   | A 8      | ,     | 2  | A 1   | AA     | 8            | y      | 2  | A2    | 8.     | 8    |
| A-221 M                   | A         | Ay.    | 2  | A7,    |       | Α.       | 9     | 2  | Ay2   | A2     | ,            | 9      | 2  |       | 81     | 8.   |
| A-A11 M                   | A,        | A 9    | 2  | Ay.    | , 8   | Al A     | 8     | 2  | A19   | b      | A            | b      | 2  | 7     | 81     | 88   |
| A821 M                    | A8        | A 7    | 2  | Ab,    | A1    | A y      |       | 2  | Ay8   | 7      | 8            | A      | 2  | A7    | 9y     | 89   |
| SHuC                      | 18        | . bA   | 2  | y89    | b8    | . 9y     | A1    | 2  | ,     | 8b     | 7            | 81     | 2  | 99    | A18    | A9:  |
| * ) ppvHuBr               | y5 *      | 7, 3b* | 2* | P      | P     | 7y5y*    | , 3B* | 2* | P     | P      | , 251*       | y751*  | 2* | P     | P      |      |
| * SHuC                    | 85y*      | 9y38*  | 2* | 1.A52* | P     | 9957*    | A52*  | 2* | 9.52* | P      | 25 *         | , 59*  | 2* | 85A*  | P      |      |
| 1 R%                      | 2571b     | 257y.  | P  | 257b2  | P     | 257y.    | 25,1  | P  | 257.7 | P      | 25.y         | 25LAb  | P  | 25Lyb | P      | 257. |
| d0oreiucFMHHHBaB1ti       | 9.        | . 8,   | 2  | . yb   | P     | . 28     | A1    | 2  | . Ab  | P      | b            | ,7     | 2  | 8y    | P      | AB   |
| * d0oreiucFMHHABaB0Li     | b. 5b*    | 7, 5b* | 2* | 7, 59* | P     | 785 *    | A22*  | 2* | 7859* | P      | bb57*        | b, 57* | 2* | b95A* | P      | 7, 5 |
| Rluwa                     | 2         | A,     | 2  | A,     | P     | A9       | 2     | 2  | A9    | P      | 2            | 2      | 2  | 2     | P      |      |
| * Rluwa                   | 2*        | A5b*   | 2* | A5 *   | P     | ,5*      | 2*    | 2* | , 5A* | P      | 2*           | 2*     | 2* | 2*    | P      | A3b  |
| k OBaBCLi Hc mHuF         | у         | 8y     | 2  | 99     | P     | 82       | 2     | 2  | 82    | P      | A            |        | 2  | у     | P      |      |
| * k OBaBCLi H: mHuF       | A85 *     | 159*   | 2* | . 52*  | P     | 95 *     | 2*    | 2* | 931*  | P      | AA5A*        | Ay5A*  | 2* | A157* | P      | 15   |
| l LFLi educi              | P         | P      | P  | P      | y1    | P        | P     | P  | P     | 88     | P            | P      | P  | P     | A9,    |      |
| * 1 LFLi exûsci           | P         | P      | P  | P      | 7259* | P        | P     | P  | P     | b. 5b* | P            | P      | P  | P     | 7, 5b* |      |
| k (BaBCLi Hr s vHill uCa  | P         | P      | P  | P      | b     | P        | P     | P  | P     | 1      | P            | P      | P  | P     | AA     |      |
| * k 0BaB0Li Hc s vHiI u0a | p         | р      | P  | P      | 75 *  | P        | р     | P  | P     | A85 *  | p            | p      | p  | P     | v5 *   |      |


U LFLi eXuci ucF k (BaBCi Hc s vHi I uQi5d - dLQ8m-m0ore3S - Sr vJ 3W-WPSJ vc

2 of 6

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Sat May 7, 2022 Midday Peak (WKND) (12:3A PM) 1
G SG III-E (gihntl. and Mrtr dlyHeI., v eaby, Pedeltrian, RiHyHeI.ro wrad, RiHyHeI.ro or tImaß)
CMr Pel ent.

40: 4A1533, gr Hstiro: 3A5446, -7A683176

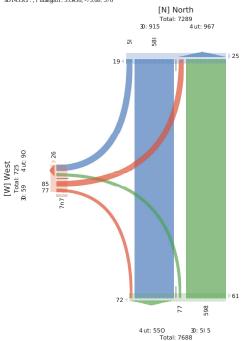


5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
TIVE Mus y3, 2, 1, 6 A 0M - 96 A 0M( - 1 PF)vCDFul s i d)

OC Cocfee Harber usk Mi ei )mamfEc3s FuPa30FkFe9uvv3l vnamfEc i wDi uk3l vnamfEc i w
r )i ced ufL(

oCMi PF7 Pvcc
8h 65A 9: 3H musi v6: A95Al 3-yAf O. yf


3 of 6

| HFB                        | ti)eR     |        |    |        |        | Ti deR    |        |    |        |       | n Fce     |        |    |        |         | 1      |
|----------------------------|-----------|--------|----|--------|--------|-----------|--------|----|--------|-------|-----------|--------|----|--------|---------|--------|
| h s)Fnæi w                 | Ti deRN d | wk     |    |        |        | ti)eRN dv | sk     |    |        |       | EuceN dwl |        |    |        |         | i      |
| S∜ F                       | D         | S      | W  | o KK   | 0FkU   | S         | Н      | W  | o KK   | 0FkU  | D         | Н      | W  | o KK   | 0 FkU   | 8ve    |
| , 2, , -2A-2y , 6 A0M      | . y       | .fy    | 2  | . Q    | , 0    | . y:      | 2      | 2  | . y:   | . y   | 9         | .,     | 2  | . A    | : 9     | 9y     |
| 96220M                     | .0        | . yO   | 2  | . 5f   | 5      | . A6      | :      | 2  | . f9   | у     | ,         | . 2    | 2  | ٠,     | 9A      | 9y     |
| 96 A0M                     |           | . A,   | 2  | . f9   | , 2    | . f2      | A      | 2  | .fA    |       | :         | , 9    | 2  | , у    | :2      | 9/     |
| 96920M                     | ,,        | . f.   | 2  | .09    | . f    | . Q       | ,      | 2  | .Ω     |       | ,         |        | 2  | . 9    | , f     | 90     |
| Sieut                      | fO        | f AO   | 2  | y, f   | y9     | f yA      |        | 2  | fŒ     | : f   |           | Af     | 2  | fy     | . : : : | .:3    |
| * o KK)i umR               | 5b *      | 52lf*  | 2* | -      | -      | 5Ob *     | . lf * | 2* | -      | -     | .fb*      | O9lf * | 2* | -      | -       |        |
| * Sieut                    | : bf *    | ::bA*  | 2* | : 5b * | -      | : Atf *   | 2by*   | 2* | :fb*   | -     | 2by*      | 9h0*   | 2* | : bA*  | -       |        |
| 0s %                       | 215.,     | 2l5, f | -  | 215,:  | -      | 2l52y     | 2bAA2  | -  | 215.,  | -     | 21f CO    | 2b4Oy  | -  | 2lf 2, | -       | 2150   |
| HABREC uwk Mi ei )man@c    | f.        | f 99   | 2  | f 5:   | -      | f,,       | . 2    | 2  | f9,    | -     |           | A      | 2  | f A    | -       | . 95   |
| * HvBRecuvk Miei)mantFc    | C5by*     | 5f b * | 2* | 5Abf*  | -      | 5, b *    | 52b5*  | 2* | 5, b * | -     | . 22*     | 5f b * | 2* | 5yb2*  | -       | 5: b ' |
| s FuPa                     |           | . A    | 2  | . f    | -      | . 9       |        | 2  | - :    | -     | 2         | 2      | 2  | 2      | -       | 9      |
| * s FuPa                   | . bA*     | , l9*  | 2* | , b, * | -      | . lb*     | 5b *   | 2* | ,12∗   | -     | 2*        | 2*     | 2* | 2*     | -       | , 12   |
| IvnantEciwDiuk             | f         | . 2    | 2  | . f    | -      | :2        | 2      | 2  | :2     | -     | 2         | ,      | 2  | ,      | -       | F      |
| *Ivnan@ciwDiuk             | OIO*      | . bA*  | 2* | , b, * | -      | At5*      | 2*     | 2* | AlO*   | -     | 2*        | 9lf*   | 2* | 912*   | -       | 915*   |
| 0FkFce)vuwc                | -         | -      | -  | -      | f A    | -         | -      | -  | -      | 11    | -         | -      | -  | -      | .,2     |        |
| * 0FkFce)sussc             | -         | -      | -  | -      | CP15.* | -         | -      | -  | -      | 5Aby* | -         | -      | -  | -      | C919*   |        |
| I vnantFc i wr )i cc4 uC   | -         | -      | -  | -      | 0      | -         | -      | -  | -      | ,     | -         | -      | -  | -      | ,:      |        |
| * I wantEc i wr )i cc4 utC | -         | -      | -  | -      | 12*    | -         | -      | -  | -      | : 19* | -         | -      | -  | -      | . f by* |        |

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

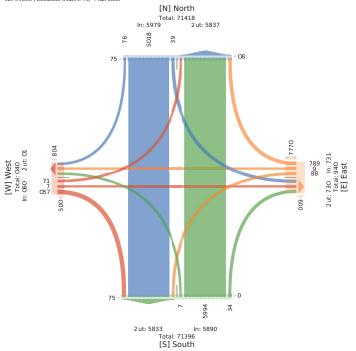
Sat May 7, 2021) (21: 3 PM - OR 3 PM) - v relattPeak o uAl
CHB tilled, ightLade MutulByfiel, o eary, Peceltlgodl, Rgbyfiellud wuac, Rgbyfiellud slullmatk)
CHMurel edtl.
9D1435Q:, i uBstgud1: 3.0436, -73.68: 576





5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC




| Lnt                          | North  |          |       |      |        |       | Euse    |      |      |     |       |       | ToFeh   |         |        |      |        |           | S nse    |       |       |      |        |       |        |
|------------------------------|--------|----------|-------|------|--------|-------|---------|------|------|-----|-------|-------|---------|---------|--------|------|--------|-----------|----------|-------|-------|------|--------|-------|--------|
| Direction                    | ToFehl | oFgd     |       |      |        |       | S nsebo | Fgd  |      |     |       |       | Norehbo | oFgd    |        |      |        |           | EuseboFg | şd    |       |      |        |       |        |
| Wimn                         | R      | W        | L     | U    | - pp   | Pnd*  | R       | W    | L    | U   | - pp  | Pnd*  | R       | W       | L      | U    | - pp   | Pnd*      | R        | W     | L     | U    | - pp   | Pnd*  | Ige    |
| , 2, , 92792y 62:22- M       | 2      | , 58     | 7     | 2    | , 54   | 6     | 4       | 2    | 8    | 2   | 6A    | 82    | у       | A2A     | 6      | 2    | A66    | 2         | 68       | 2     | 6     | 2    | 67     | A4    | 1,5    |
| 66:22- M                     | 2      | 1,6      | 62    | 2    | 1A6    | 5     | 68      | 2    | 1    | 2   | , 2   | 688   | 66      | 176     | 2      | 2    | 11,    | 6         | A2       | 2     | 2     | 2    | A2     | 622   | 6AB    |
| 6, :22PM                     | 6      | 1AA      | 6A    | 2    | 18y    | 8     | , 2     | 2    | 8    | 2   | ,8    | 6y1   | 5       | 182     | 2      | 2    | 185    | 2         | A6       | 2     | ,     | 2    | AA     | 6, 2  | 6A7,   |
| 6:22PM                       | 6      | 18y      | 67    | 2    | 11A    | A     | 65      | 6    | 1    | 2   | , 7   | 656   | 66      | 1, ,    | 2      | 2    | 1AA    | 8         | AA       | 2     | 6     | 2    | AB     | 6AB   | 6A77   |
| ,:22PM                       | ,      | у6,      | 67    | 2    | y, 4   | y     | 65      | ,    | 1    | 2   | , 1   | , 81  | 68      | 177     | 2      | 2    | 114    | 7         | A5       | 2     | 6     | 2    | A4     | 6y6   | 681    |
| A22PM                        | 2      | y, 2     | 1     | 2    | y, 1   | 8     | , 2     | 2    | 7    | 2   | ,7    | A27   | 6y      | 154     | 2      | 2    | y21    | 2         | Al       | 6     | 6     | 2    | A5     | 677   | 6847   |
| 8:22PM                       | 1      | 154      | 68    | 2    | y24    | 8     | , 7     | 2    | 1    | 2   | A6    | , y6  | 6,      | y, 8    | 2      | 2    | yAl    | 4         | AA       | 2     | ,     | 2    | A7     | 6, y  | 6766   |
| 7:22PM                       | 1      | 744      | 6,    | 2    | 16y    | 5     | 6A      | 2    | 8    | 2   | 6y    | 821   | 6,      | y65     | 2      | 2    | yA2    | A         | , у      | 2     | 6     | 2    | , 5    | 6, 4  | 6A4,   |
| 1:22PM                       | 2      | , 44     | A     | 2    | A2,    | 2     | 1       | 2    | A    | 2   | 4     | 661   | 1       | AAI     | 2      | 2    | АВ,    | 2         | 4        | 2     | 6     | 2    | 62     | y7    | 11/    |
| Weet                         | 61     | 7, 28    | 4A    | 2    | 7A6A   | A4    | 68A     | А    | 88   | 2   | 642   | 6557  | 45      | 7A45    | 6      | 2    | 78Ay   | .,        | , 76     | 6     | 62    | 2    | , 1,   | 6272  | 66, 2, |
| % - pprouch                  | 2.A%   | 4y.4%    | 6.5%  | 2%   | 9      | ć     | y7.A%   | 6.1% | A, % | 2%  | 9     | 9     | 6.5% 4  | 45., %  | 2% 2   | :%   | 9      | 9         | 47.5% 2  | .8%   | A5% 2 | 2%   | 9      | 9     |        |
| % Woed                       | 2.6%   | B1.7%    | 2.5%  | 2% 1 | By.8%  | ć     | 6.A%    | 2%   | 2.8% | 2%  | 6.y%  | 9     | 2.4% 8  | Ву.у%   | 2% 2   | % 8  | 35.7%  | 9         | , ., %   | 2%    | 2.6%  | 2%   | , .A%  | 9     |        |
| Lit hes ugd Moeorcaclns      | 2      | 85A2     | y5    | 2    | 8425   | ć     | 626     | 2    | 88   | 2   | 687   | 9     | y7      | 8477    | 2      | 2    | 72A2   | 9         | , A7     | 6     | A     | 2    | , A4   | 9     | 62A,   |
| % Lit hes ugd<br>Moeorcaclns | 2%     | 4, .5% : | 5A4%  | 2%   | 4, .8% | 9     | y2.1%   | 2%   | 622% | 2%  | y1.A% | S     | y1.7% 4 | 4, .5%  | 2% 2   | 96.4 | 1, .7% | 9         | 4A1% 6   | 22% A | 2.2%  | 2% 4 | 16., % | 9     | 4, .6% |
| Hnuva                        | 2      | 626      |       | 2    | 626    | ć     | 2       | 2    | 2    | 2   | 2     | 9     | 2       | 627     | 2      | 2    | 627    | 9         | 2        | 2     | 2     | 2    | 2      | 9     | , 2    |
| % Hnuva                      | 2%     | 6.4%     | 2%    | 2%   | 6.4%   | ć     | 296     | 2%   | 2%   | 2%  | 2%    | 9     | 2%      | , .2%   | 2% 2   | :%   | 6.4%   | 9         | 2%       | 2%    | 2% 2  | 2%   | 2%     | 9     | 6.5%   |
| Bicaclns og Roud             | 61     | , yA     | 67    | 2    | A28    | ć     | 8,      | A    | 2    | 2   | 87    | 9     | , A     | , y5    | 6      | 2    | A2,    | 9         | 61       | 2     | y     | 2    | , A    | 9     | 1ye    |
| % Bicaclns og Roud           | 622%   | 7., %    | 51.6% | 2%   | 7.y%   | ć     | , 4.8%  | 522% | 2%   | 2%, | , Ay% | 9     | , A7%   | 7., % 6 | 522% 2 | :%   | 7.1%   | 9         | 1.8%     | 2% y  | 2.2%  | 2%   | 5.5%   | 9     | 1.2%   |
|                              |        |          |       |      |        | A6    | 9       | 9    | 9    | 9   | 9     | 657A  | 9       | 9       | 9      | 9    | 9      |           | 9        | 9     | 9     | 9    | 9      | 6261  |        |
| Pndnseriugs                  | 9      |          | -     | 9    | 9      |       | -       |      |      |     |       |       |         |         |        |      |        |           |          |       |       |      |        |       |        |
| % Pndnseriugs                | 9      | 9        | 9     | 9    | 9      | y4.7% | 9       | 9    | 9    | 9   |       | 45.A% | 9       | 9       |        | 9    |        | 522%      | 9        | 9     | -     | 9    | 94     | 41.5% |        |
|                              |        | 9        | 9     |      |        | y4.7% | -       |      | 9    |     |       | 45.A% | 9       | 9       |        | 9    | 9      | 622%<br>2 | 9        | 9     | -     | 9    |        | 41.5% |        |

\*Pndnseriugs ugd Bicaclns og Crosswulk. L: Lnf@R: Rit h@W WhrF3U: U9WFrg

6 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC 5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC
Sat May 7, 2022
Full Length (10:30 Ahr-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 94135., Location: 548894. 79, -7486. 5335





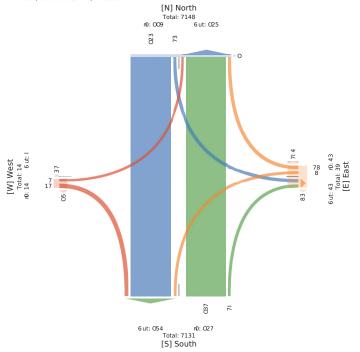
[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC
TueMun y3, 2, (6 : gA92 1 M PA, 92 1 M:
1) C)Lasts g glosu ur F Mca:Hav)Ls3BLuRa31 LFLsettur s3w0av)Ls cr k cuF3w0av)Ls cr
LFLsentur:
1) McRL Lrs
1) McRL Lrs
16 - 4788633 cvuttr - 87.9475y43By7.b58998

| <b>Ottawa</b>                                          |
|--------------------------------------------------------|
| l HcROFLF f a - COm cONeeumu<br>A22 Ccr seL))ue0cr 6 H |
| ( LpLur 3N( 3h , K 7G43C1                              |
|                                                        |

1 of 6


| Id.                     | (cF | ilo di   |        |     |        |       | Juse   |     |         |             |        |       | TcEeo |       |     |      |        |     | t Lse   |      |        |        |        |       |
|-------------------------|-----|----------|--------|-----|--------|-------|--------|-----|---------|-------------|--------|-------|-------|-------|-----|------|--------|-----|---------|------|--------|--------|--------|-------|
| 6 OH.veOcr              | TcE | eof c Er | F      |     |        |       | t Lsef | ErF |         |             |        |       | (cHof | cErF  |     |      |        |     | JusefcE | rF   |        |        |        |       |
| SOI L                   | k   | S        | i      | W   | / 1 pp | 1 LFU | k      | S   | i       | W           | 1 pp   | 1 LFU | k     | S     | i   | W    | 1 pp l | LFU | k       | S    | i      | W 1    | pp llF | Dе    |
| , 2, , P27P2y AA921 M   | 2   | Ay9      | - 1    | 7 2 | Ay5    | 8     | 9      | 2   | A       | 2           | 8      | 95    | 9     | Ab5   | - 2 | 2    | AyA    | 2   | 4       | 2    | 2      | 2      | 4 ,8   | 9     |
| A4871 M                 | 2   | A85      | -      | 2   | A72    | A     | 9      | 2   | 9       | 2           | b      | 88    | 9     | Ab9   | 2   | 2    | Abb    | 2   | b       | 2    | 2      | 2      | b ,4   | 9     |
| A, -221 M               | 2   | A74      |        | 9 2 | Ab,    | A     | b      | 2   | ,       | 2           | 5      | 7.A   | 9     | Ay A  | . 2 | 2    | Ay8    | 2   | 5       | 2    | A      | 2      | 4 ,5   | 9     |
| A, -A71 M               | 2   | Ay8      |        | 3 2 | Ay5    | 2     | 7      | 2   | A       | 2           | b      | 89    | А     | . A94 | - 2 | 2    | A82    | 2   | 5       | 2    | 2      | 2      | 5 ,4   |       |
| Sceu)                   | 2   | b78      | А      | 3 2 | bb5    | b     | Ay     | 2   | у       | 2           | , 8    | Ayb   | A2    | b8A   | . 2 | 2    | b7A    | 2   | 9A      | 2    | A      | 2 5    | ), AA  | A     |
| * 1 ppHruvo             | 2*  | 4y.4*    | , .A*  | 2*  | P      | I     | y2.5*  | 2*  | , 4., * | 2*          | P      | F     | A7*   | 45.7* | 2*  | 2*   | P      | P   | 4b.4* 2 | 18 g | ).A* 2 | k      | P      | Р     |
| * Sceu)                 | 2*  | 8y.b*    | A2*    | 2*  | 85.b*  | I     | A, *   | 2*  | 2.7*    | 2*          | Ay*    | F     | 2.y*  | 8b.b* | 2*  | 2* 8 | By.9*  | P   | , .9* 2 | * 2  | 2.A* 2 | ۰, .9  | *      | P     |
| 1 B%                    | P   | 2.4A,    | 2.b72  | 2 1 | 2.427  | I     | 2.5y7  | P   | 2.759   | P           | 2.5y7  | F     | 2.759 | 2.495 | I   | P :  | 2.48,  | P   | 2.42b   | P2   | ., 72  | P 2.59 | 99     | P 2.  |
| i Odoes ur F McecHav)Ls | 2   | b2y      | A      | 9 2 | b, 2   | I     | A8     | 2   | у       | 2           | , A    | F     | у     | 74y   | - 2 | 2    | b28    | P   | , 4     | 2    | A      | 2 5    | 92     | P A   |
| * i Odoes ur F          |     |          |        |     |        |       |        |     |         |             |        |       |       |       |     |      |        |     |         |      |        |        |        | Т     |
| McecHav)Ls              | 2*  | 4, .5*   | 4, .4* | 2*  | 4, .5* | I     | 5, .8* | 2*  | A22*    | 2* 5        | 5y.7*  | F     | y2.2* | 49.A* | 2*  | 2* 4 | 1, .5* | P   | 49.7* 2 | * A  | 22* 2  | 49.5   | *      | P4, . |
| BLuRa                   | 2   | Ay       |        | 2 2 | Ay     | I     | 2      | 2   | 2       | 2           | 2      | F     | 2     | A5    | - 2 | 2    | A5     | P   | 2       | 2    | 2      | 2      | 2      | P     |
| * BluRa                 | 2*  | , .b*    | 2*     | 2*  | , .7*  | I     | 2*     | 2*  | 2*      | 2*          | 2*     | F     | 2*    | , .5* | 2*  | 2*   | , .5*  | P   | 2* 2    | 18   | 2* 2   | · 2    | *      | Ρ,.   |
| w0vav)Ls cr k cuF       | 2   | 92       |        | A 2 | 9A     | I     | 9      | 2   | 2       | 2           | 9      | F     | 9     | , b   | - 2 | 2    | , 4    | P   | ,       | 2    | 2      | 2      | ,      | P     |
| * w0vav)Ls cr k cuF     | 2*  | 8.b*     | y.A*   | 2*  | 8.b*   | I     | Ay.b*  | 2*  | 2*      | 2* <i>I</i> | A, .7* | F     | 92.2* | 8.A*  | 2*  | 2*   | 8.7*   | P   | b.7* 2  |      | 2* 2   | b.9    | *      | P 8.  |
| l LFLseHurs             | P   | I        | )      | P I | . P    | b     | F      | P   | P       | P           | P      | Ay8   | I     | 1     | ) I | P    | P      | 2   | P       | P    | P      | P      | P A24  | ı     |
| * l LFLseH0urs          | P   | I        | )      | P I | P.     | A22*  | P      | P   | P       | P           | P.     | 45.4* | I     | - 1   | > I | P    | P      | P   | P       | P    | P      | P      | P44.A* | Т     |
| w0vav)Ls cr CHrssmu)n   | P   | I        | ,      | P I | P      | 2     | P      | P   | P       | P           | P      | ,     | I     | - 1   | ) I | P    | P      | 2   | P       | P    | P      | P      | Р .    | A.    |
| * w0vav)Ls cr CHtssmu)n | р   | T.       | )      | P 1 | P P    | 2*    | T      | P   | р       | P           | D      | AA*   | T     | . 1   | ) I | P    | р      | D   | P       | P    | P      | P      | P 2.4* | Т     |

Ul LFLseMurs urF w0vav)Ls cr CHrssmu)n. i - i L08k - k 0doe3S- SoHE3W-WFSEHI

2 of 6 3 of 6 5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 94135., Location: 54694. 79, -7468. 5335





5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

Tue Mua y 3, 2, ,

0M 0Ful In g t h (16 0M : A0M(: - 9FluP0Ful ) 0s1

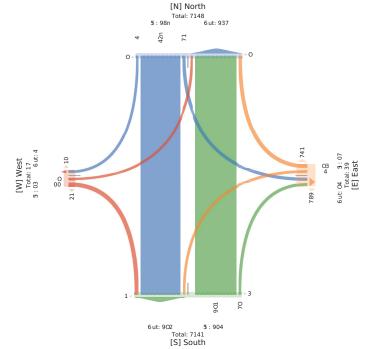
i Pd RooFo Ir d-lveo uBR MGChva wFr3 ) Fu9a30FRFoelub33k ova wFr0 CB mCuF3k ova wFr0 CB

d 1Gool uff ( i FPMC9FD FBeo 4h 78A5. 6b3r CknecCB76Af. 8Aby83:yAfCb6. . 6



| r FH                       | t Cle | ,      |        |     |       |      | Euce   |     |       |      |        |       | TGsev   |        |     |       |         |       | n Foe         |       |      |       |        |       |       |
|----------------------------|-------|--------|--------|-----|-------|------|--------|-----|-------|------|--------|-------|---------|--------|-----|-------|---------|-------|---------------|-------|------|-------|--------|-------|-------|
| h clFvetCB                 | TCse  | NG BR  |        |     |       |      | n Foel | GB  | R     |      |        |       | t Clevi | NG BR  |     |       |         |       | Euoe <b>N</b> | 's BR |      |       |        |       |       |
| SdDF                       | n     | ı S    | r      | W   | i KK  | OFRL | n      | ı S | r     | W    | i KK   | 0FRL  | m       | S      | r   | W     | i KK    | 0 FRU | m             | S     | r    | W     | i KK   | 0 FRU | 4Be   |
| , 2, , :2A:2y 67220M       |       | 5b.    | ,      | 2   | 5bO   | 2    | (      | ) 2 | 5     | 2    | у      | Oy    | 6       | 5y2    | 2   | 2     | 5y6     | 0     | b             | 2     | 2    | 2     | b      | , у   | . y/  |
| 675A0M                     |       | 5CE    | : 6    | 2   | 5OA   | 5    |        | 2   | 5     | 2    | 6      | 82    |         | 5y8    | 2   | 2     | 5b,     | ,     | 6             | 2     | 2    | 2     | 6      | 6b    | . A   |
| 67. 20 M                   | 6     | 5y6    | 6      | 2   | 5b,   | 5    | 5,     | 2   | -     | 2    | 5A     | 6A    |         | 5yb    | 2   | 2     | 5b5     | 5     | 8             | 2     | ,    | 2     | 55     |       | . b8  |
| 676A0M                     | - 2   | 5y,    | 6      | 2   | 5yO   | ,    | 6      | 2   | 5     | 2    | A      | CB    | ,       | 58y    | 2   | 2     | 588     | 2     | 5,            | 2     | 2    | 2     | 5,     | 58    | . 8,  |
| SCaul                      |       | Ob8    | 56     | 2   | y28   | 6    | , 1    | 1 2 | 0     | 2    | . 5    | , y5  | 5,      | y, 6   | 2   | 2     | y. O    | - 8   |               | 2     | ,    | 2     | . A    | 5, y  | 5A55  |
| * i KKKOww                 | 2fb*  | 8yf, * | , f2*  | 2*  | :     | - :  | b2fO*  | 2*  | 58f6* | 2*   | :      |       | 5fO*    | 8bf6*  | 2*  | 2*    | :       |       | 86f. *        | 2*    | Afy* | 2*    | - :    | :     |       |
| * SCaul                    | 2f6*  | 6AfO*  | 2f8*   | 2*  | 6OB*  | :    | 5fy*   | 2*  | 2f6*  | 2*   | , f5*  |       | 2fb*    | 6yf8*  | 2*  | 2* €  | bfy*    | - :   | , f, *        | 2*    | 2f5* | 2*    | , f. * | - :   |       |
| 0) %                       | 6 :   | 2f8. C | 2f85y  |     | 2f865 | - :  | 2fA, A | ١:  | 2fA22 | :    | 2fA58  |       | 2fyA2   | 2f828  | :   | - : : | 2f85A   | . :   | 2fy,,         | :     | - :  | - : : | 2fy, , |       | 2f8O  |
| r dHveouBR MGcDvev#Fo      | 2     | Q y    | 55     | 2   | Cl6p  | - :  | , 5    | 2   | 0     | 2    | , у    |       | 5,      | Oy6    | 2   | 2     | СbО     |       | , С           | 2     | 2    | 2     | ,0     |       | 5. b  |
| * r dNeouBR<br>MGchev#o    |       | 8, fA* | ybfO*  | 2*  | 85f6* |      | b6f2*  | 2*  | 522*  | 2* 1 | yf5*   |       | 522*    | 8. f5* | 2*  | 2* 8  | 3. f, * |       | ybfb*         | 2*    | 2*   | 2* y  | /6£.*  |       | 85fb* |
| ) Fu9a                     | - 2   | 55     | 2      | . 2 | 55    | - :  | 2      | . 2 | 2     | 2    | 2      |       | 2       | 5.     | 2   | 2     | 5.      | - :   | 2             | 2     | 2    | 2     | 2      |       | , (   |
| * ) Fu9a                   | 2*    | 5fO*   | 2*     | 2*  | 5fO*  | - :  | 2*     | 2*  | 2*    | 2*   | 2*     |       | 2*      | 5fb*   | 2*  | 2*    | 5fb*    | - :   | 2*            | 2*    | 2*   | 2*    | 2*     |       | 5fO*  |
| k ova v#Fo CB mCuR         | . (   | ) 65   |        | 2   | A2    | - :  | 6      | 2   | 2     | 2    | 6      |       | 2       | . у    | 2   | 2     | . у     | - :   | у             | 2     | -,   | 2     | 8      |       | 522   |
| * kowawFoCBmCuR            | 522*  | CI2*   | , 5f6* | 2*  | yf5*  | :    | 502*   | 2*  | 2*    | 2* 5 | 5, f8* |       | 2*      | Af5*   | 2*  | 2*    | Af2*    |       | , 5f, *       | 2*    | 522* | 2* ,  | Afy*   | - :   | CIO*  |
| 0FRFoelaiBo                |       |        |        |     | - 1   | 6    |        |     |       | :    | :      | , CA  |         | - 1    | - : | :     | - 1     | 8     | :             | - :   | - :  | :     | :      | 5, 2  |       |
| * 0 FRFoela Bo             |       |        |        |     |       | 522* |        |     |       |      |        | Byfb* |         |        |     |       |         | 522*  |               |       |      |       | . 0    | 86fA* |       |
|                            | 1     |        |        |     |       | 322  |        |     |       |      |        | oyio. |         |        |     |       |         |       |               |       |      |       |        |       |       |
| k overviPro CB d 1Cool uiP |       |        |        |     | :     | 2    | _      |     | - :   | -    | - :    | C     | :       |        | -   | ÷     | -       | 2     | :             | _     |      | ÷     | -:     | у     |       |

UDFRFoelauBo uBR k ave wFFo CB d 1Cool util fr 7r Fpe8m7mdHve8S7Sv1s3W7W:Ss1B


4 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY O7... - TMC
Sat May 7, 20202

PM Peak (WKND) (1 PM : 3 PM) : - Oream Peak 1 Hov
ur AnaCCG(5 iii giCahn MHHdydreCJ I eaQV, PeneCMahC c IdydreCHh BHn, c IdydreCHh
AHTCRark)
ur MHCNewhC
nDI 93451., s HlatIHnl 13693. 79, :7368. 1551

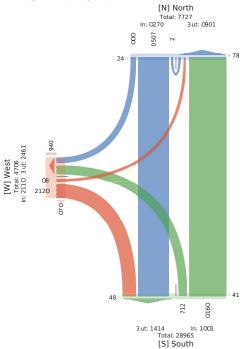
PvHQnen byI Alty H - ttaRa 400 AHrGenatIH Dv, Nepeah, - N, K2G 3J9, Au



5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue Mua y3, 2, 9181 Lngt sh (62:20 - M91:A2 PM)
- Il Clusns (Lin bs ugd Moercaclns3Hnuva3Pndrseriugs3Bicaclns og Roud3Bicaclns og Crossvulk)
- Il Movnmags
- Il Movnmags
- Il Movnmags
- Il Movnmags
- Movernage - Mover

5 of 6


| Lnt                                                                                                              | Noreh                                          |                                                |                                           |                                             |                                           | ToFeh                                           |                                           |                                    |                                             |                                         | E nse                                 |                                       |                                     |                                   |                                        |                                               |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------------|
| Direction                                                                                                        | ToFehboF                                       | gd                                             |                                           |                                             |                                           | NorehboF                                        | gd                                        |                                    |                                             |                                         | SuseboFgd                             |                                       |                                     |                                   |                                        |                                               |
| Wmn                                                                                                              | R                                              | W                                              | U                                         | - pp                                        | Pnd*                                      | W                                               | L                                         | U                                  | - pp                                        | Pnd*                                    | R                                     | L                                     | U                                   | - pp                              | Pnd*                                   | Ige                                           |
| , 2, , 92792y 62:22- M                                                                                           | , 6                                            | ,,6                                            | 2                                         | , 8,                                        | ,                                         | , y7                                            | 82                                        | 2                                  | A67                                         | 2                                       | 14                                    | 2                                     | 2                                   | 14                                | 81                                     | 1, 1                                          |
| 66:22- M                                                                                                         | 7,                                             | 871                                            | 2                                         | 72.                                         | 1                                         | 777                                             | 628                                       | 2                                  | 174                                         | 8                                       | 6y8                                   | ,                                     | 2                                   | 6y1                               | 4A                                     | 6A8/                                          |
| 6, :22PM                                                                                                         | 87                                             | 87y                                            | 2                                         | 72,                                         | 6A                                        | 78A                                             | 62y                                       | 2                                  | 172                                         | 66                                      | 6.7                                   | 1                                     | 2                                   | 646                               | 688                                    | 6A8.                                          |
| 6:22PM                                                                                                           | 74                                             | 884                                            | 2                                         | 72.                                         | 66                                        | 7A2                                             | 668                                       | 2                                  | 188                                         | 6                                       | , 27                                  |                                       | 2                                   | , 6A                              | 676                                    | 6A1                                           |
| , :22PM                                                                                                          | 78                                             | 841                                            | 2                                         | 772                                         | A                                         | 718                                             | 62.                                       | 2                                  | 1y,                                         | A                                       | ,,2                                   | 1                                     | 2                                   | ,,1                               | 6. 1                                   | 688.                                          |
| A:22PM                                                                                                           | 77                                             | 766                                            | 2                                         | 711                                         | ,                                         | 7. A                                            | 66A                                       | . 2                                | 141                                         | у                                       | , 68                                  | A                                     | 2                                   | , 6y                              | 617                                    | 68y                                           |
| 8:22PM                                                                                                           | 11                                             | 764                                            | 2                                         | 7.7                                         | 6,                                        | 1,8                                             | 661                                       | 2                                  | y82                                         | у                                       | 6. A                                  | y                                     | 2                                   | 642                               | 67y                                    | 676                                           |
| 7:22PM                                                                                                           | 74                                             | 867                                            | 2                                         | 8y8                                         | , 4                                       | 1, y                                            | 621                                       | 2                                  | yAA                                         | 62                                      | 6.8                                   | 7                                     | 2                                   | 6.4                               | 6, 2                                   | 6A4                                           |
| 1:22PM                                                                                                           | AA                                             | , 68                                           | 6                                         | , 8.                                        | 68                                        | , 4A                                            | 8A                                        | . 2                                | AA1                                         | ,                                       | . 2                                   | A                                     | 2                                   | . A                               | 87                                     | 11                                            |
| Woed                                                                                                             | 888                                            | AyA                                            | 6                                         | 86. A                                       | 4,                                        | 8748                                            | . 76                                      | 2                                  | 7887                                        | 87                                      | 6768                                  | 82                                    | 2                                   | 6778                              | 662y                                   | 666. ,                                        |
| % - pprouch                                                                                                      | 6251%                                          | . 498%                                         | 2%                                        | 9                                           | 9                                         | . 858%                                          | 6751%                                     | 2%                                 | 9                                           | 9                                       | 4y98%                                 | , 51%                                 | 2%                                  | 9                                 | 9                                      |                                               |
|                                                                                                                  | 852%                                           |                                                | 2%                                        | Ay38%                                       | 0                                         | 8656%                                           | v51%                                      | 2%                                 | 8.5/%                                       | 9                                       | 6A57%                                 | 258%                                  | 2%                                  | 6A51%                             | 9                                      |                                               |
| % Woesl                                                                                                          | 852%                                           | AAB%                                           | 270                                       |                                             |                                           | 003070                                          |                                           |                                    |                                             |                                         |                                       |                                       |                                     |                                   |                                        |                                               |
| % Woeal Lit hes ugd Moeorcaclns                                                                                  | 862                                            | AA68%<br>A8. 1                                 | 6                                         | A 4y                                        | 9                                         | 8, A,                                           | .,2                                       | 2                                  | 727,                                        | 9                                       | 68A                                   | A8                                    | 2                                   | 68y,                              | 9                                      | 628,                                          |
|                                                                                                                  |                                                |                                                |                                           |                                             | 9                                         |                                                 |                                           |                                    |                                             | 9                                       | 68A<br>4752%                          | A6                                    | 2                                   | 68y,<br>485y%                     | 9                                      |                                               |
| Lit hes ugd Moeorcaclns                                                                                          | 862                                            | A6. 1                                          | 6                                         | A 4y                                        | 9                                         | 8, A,                                           | .,2                                       | 2%                                 | 727,                                        | 9                                       |                                       | A6                                    |                                     |                                   | 9                                      | 4A5,9                                         |
| Lit hes ugd Moeorcaclns<br>% Lit hes ugd Moeorcaclns                                                             | 862<br>4, 54%                                  | A8. 1<br>4.45466                               | 622%                                      | A 4y<br>4A5 %                               | 9 9                                       | 8, A,<br>4, 56%                                 | .,2<br>4198%                              | 2%                                 | 727,<br>4, 5 %                              | 9 9                                     |                                       | A8<br>. 752%<br>2                     | 2%                                  |                                   | 9 9                                    | 4A5,9                                         |
| Lit hes ugd Moeorcaclns<br>% Lit hes ugd Moeorcaclns<br>Hnuva                                                    | 862<br>4, 54%<br>6                             | A8. 1<br>4A5A%<br>47                           | 6<br>622%<br>2                            | A 4y<br>4A5 %<br>41                         | 9 9 9                                     | 8, A,<br>4, 56%<br>62,                          | .,2<br>4138%<br>7                         | 2%<br>2                            | 727,<br>4, 5 %<br>62y                       | 9<br>9<br>9<br>9                        | 4752%                                 | A8<br>. 752%<br>2                     | 2%                                  | 485y%<br>,                        | 9<br>9<br>9<br>9                       | 4A5 9<br>, 2'<br>65 9                         |
| Lit hes ugd Moeorcaclus<br>% Lit hes ugd Moeorcaclus<br>Huuva<br>% Huuva                                         | 862<br>4, 54%<br>6<br>25, %                    | A6. 1<br>4A6A66<br>47<br>, 57%                 | 6<br>622%<br>2<br>2%                      | A 4y<br>4A5 %<br>41<br>, 54%                | 9 9 9 9                                   | 8, A,<br>4, 56%<br>62,<br>, 5, %                | .,2<br>4158%<br>7<br>251%                 | 2%<br>2<br>2%                      | 727,<br>4, 5 %<br>62y<br>, 52%              | 9<br>9<br>9<br>9<br>9                   | 4752%<br>,<br>256%                    | A8<br>. 752%<br>2<br>2%<br>1          | 2%<br>2<br>2%                       | 485y%<br>,<br>256%                | 9<br>9<br>9<br>9                       | 4A5 9<br>, 2'<br>65 9                         |
| Lit hes ugd Moeorcaches % Lit hes ugd Moeorcaches Hnuwa % Hnuwa Bicaches og Roud % Bicaches og Roud Pndreserings | 862<br>4, 54%<br>6<br>25, %<br>AA              | A8. 1<br>4A6A%<br>47<br>, 57%<br>67y           | 6<br>622%<br>2<br>2%<br>2                 | A 4y<br>4A5 %<br>41<br>, 54%<br>642<br>857% | 9<br>9<br>9<br>9<br>9                     | 8, A,<br>4, 56%<br>62,<br>, 5, %<br>, 12        | .,2<br>4138%<br>7<br>251%<br>,1           | 2%<br>2<br>2%<br>2<br>2%           | 727,<br>4, 5 %<br>62y<br>, 52%<br>, 1       | 9<br>9<br>9<br>9<br>9                   | 4752%<br>,<br>256%<br>y8              | A8<br>. 752%<br>2<br>2%<br>1          | 2%<br>2<br>2%<br>2<br>2             | 485y%<br>,<br>256%<br>.2          | 9<br>9<br>9<br>9<br>9                  | 4A5 9<br>, 2'<br>65 9                         |
| Lit hes ugd Moeorcaclus % Lit hes ugd Moeorcaclus Hunva % Hunva Bicaclus og Roud % Bicaclus og Roud              | 862<br>4,54%<br>6<br>25,%<br>AA<br>y98%        | A8. 1<br>4A6A66<br>47<br>, 57%<br>67y<br>85, % | 6<br>622%<br>2<br>2%<br>2<br>2<br>2%      | A 4y<br>4A5 %<br>41<br>, 54%<br>642<br>857% | 9<br>9<br>9<br>9<br>9<br>9<br>42<br>4y5 % | 8, A,<br>4, 56%<br>62,<br>, 5 %<br>, 12<br>75y% | ., 2<br>4158%<br>7<br>251%<br>, 1<br>A56% | 2%<br>2<br>2%<br>2<br>2%<br>9      | 727,<br>4,5 %<br>62y<br>,52%<br>,.1<br>754% | 9<br>9<br>9<br>9<br>9<br>9<br>82<br>54% | 4752%<br>,<br>256%<br>y8<br>854%      | A6<br>. 752%<br>2<br>2%<br>1<br>6752% | 2%<br>2<br>2%<br>2<br>2<br>2%       | 485/%<br>,<br>256%<br>. 2<br>756% | 9<br>9<br>9<br>9<br>9<br>6272<br>4854% | 4A5 9<br>, 2'<br>65 9                         |
| Lit hes ugd Moeorcaches % Lit hes ugd Moeorcaches Hnuwa % Hnuwa Bicaches og Roud % Bicaches og Roud Pndreserings | 862<br>4, 58%<br>6<br>25, %<br>AA<br>y38%<br>9 | A8. 1<br>4A5A%<br>47<br>, 57%<br>67y<br>85 %   | 6<br>622%<br>2<br>2%<br>2<br>2<br>2%<br>9 | A 4y<br>4A5 %<br>41<br>, 54%<br>642<br>857% |                                           | 8, A<br>4, 56%<br>62,<br>, 5 %<br>, 12<br>75/%  | .,2<br>4158%<br>7<br>251%<br>,1<br>A56%   | 2%<br>2<br>2%<br>2<br>2%<br>9<br>9 | 727,<br>4,5%<br>62y<br>,52%<br>,.1<br>75%6  |                                         | 4752%<br>,<br>256%<br>y8<br>854%<br>9 | A6<br>. 752%<br>2<br>2%<br>1<br>6752% | 2%<br>2<br>2%<br>2<br>2%<br>2<br>2% | 485/%<br>,<br>256%<br>.2<br>756%  |                                        | 628, 0<br>4A5 9<br>, 2'<br>65 9<br>77<br>7529 |

6 of 6

# 5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941346, Location: 54.397772, -74.684504





5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

\$556814 - COVID - BANN 51 & WILTON CALS - 1000...

TIEM May 32, 2,

MGFU al Lung 1h (6: gA492 1 M PA -92 1 M:

1) C) Dyssts gi those of F McceHav]LS3BLiRa3l LFLsetter S3w(vav)Ls cr kcuF3w(vav)Ls cr Cktssmu):

1) McRU Lres

16 - 47.69783i cvuder - 57.94yyy, 3By7.8b7527



| i Id                       | (cHo         |        |    |        |        | TcJeo    |        |    |       |       | t Lse      |       |    |        |       |      |
|----------------------------|--------------|--------|----|--------|--------|----------|--------|----|-------|-------|------------|-------|----|--------|-------|------|
| 6 OH.veOcr                 | TcJ eof cJ r | F      |    |        |        | (cHofcJi | F      |    |       |       | Eusef cJrF |       |    |        |       |      |
| SŒ L                       | k            | S      | W  | 1 pp   | 1 LFU  | S        | i      | W  | 1 pp  | 1 LFU | k          | i     | W  | 1 pp   | l IFU | De   |
| , 2, , P27P2y AA-921 M     | AA           | A9A    | 2  | A5,    | 5      | A9A      | 95     | 2  | A87   | 2     | 72         | A     | 2  | 7A     | , A   | 9    |
| AA-571 M                   | Ay           | A24    | 2  | A, 8   | 2      | A9b      | , b    | 2  | A88   | A     | 52         | 2     | 2  | 52     | 99    | 9    |
| A, -221 M                  | A5           | A, 9   | 2  | A9y    | ,      | A7A      | 92     | 2  | AbA   | 9     | 94         | ,     | 2  | 5A     | 9y    | 9    |
| A, -A71 M                  | AA           | А, у   | 2  | A9b    | у      | AA4      | , A    | 2  | A52   | 2     | 59         | 2     | 2  | 59     | , 5   | 9    |
| Sceu)                      | 79           | 542    | 2  | 759    | A9     | 794      | A49    | 2  | 87,   | 5     | Ay,        | 9     | 2  | Ay7    | AA7   | A9   |
| * 1 ppHtuvo                | 4.b*         | 42., * | 2* | P      | P      | b, .y*   | Ay.9*  | 2* | P     | F     | 4b.9*      | Ay*   | 2* | P      | P     |      |
| * Scei)                    | 9.4*         | 97.b*  | 2* | 94.8*  | P      | 94.9*    | b., *  | 2* | 5y.8* | F     | A, .8*     | 2., * | 2* | A, .b* | P     |      |
| 1 B%                       | 2.yA4        | 2.4A,  | P  | 2.4, 4 | P      | 2.422    | 2.b9A  | P  | 2.42b | F     | 2.b, 2     | 2.9y7 | P  | 2.bA4  | P     | 2.4  |
| i Odoes ur F McecHrav)Ls   | 58           | 57y    | 2  | 729    | P      | 54b      | AAA    | 2  | 824   | F     | A85        | 9     | 2  | A8y    | P     | A,   |
| * i Odoes ur F McecHrav)Ls | b8.b*        | 49.9*  | 2* | 4, .8* | P      | 4, .5*   | 4b., * | 2* | 49.5* | F     | 47.9*      | A22*  | 2* | 47.5*  | P     | 49.5 |
| BLuRa                      | 2            | Ay     | 2  | Ay     | P      | Ay       | ,      | 2  | A4    | F     | 2          | 2     | 2  | 2      | P     |      |
| * BLuRa                    | 2*           | 9.7*   | 2* | 9.A*   | P      | 9., *    | Ab*    | 2* | , .4* | F     | 2*         | 2*    | 2* | 2*     | P     | , .8 |
| w0vav)Ls cr k cuF          | y            | AB     | 2  | , 9    | P      | , 5      | 2      | 2  | , 5   | F     | b          | 2     | 2  | b      | P     |      |
| * w0vav)Ls cr k cuF        | A9.,*        | 9.9*   | 2* | 5.,*   | P      | 5.7*     | 2*     | 2* | 9.y*  | F     | 5.y*       | 2*    | 2* | 5.8*   | P     | 5.2  |
| l LFLseHurs                | P            | P      | P  | P      | A,     | P        | P      | P  | P     | 5     | P          | P     | P  | P      | A24   |      |
| * 1 LFLseHurs              | P            | P      | P  | P      | 4, .9* | P        | P      | P  | P     | A22*  | P          | P     | P  | P      | 45.b* |      |
| w0/av)Ls cr CH:ssmu)n      | P            | P      | P  | P      | A      | P        | P      | P  | P     | 2     | P          | P     | P  | P      | 8     |      |
| * w0vav)Ls cr CHrssmu)n    | P            | P      | P  | P      | y.y*   | P        | P      | P  | P     | 2*    | P          | P     | P  | P      | 7., * |      |

<sup>U</sup>l LFLset•furs ur F w0vav)Ls cr CHssmu)n. i - i L08k - k 0doe3S- SoH3W- WPSJH

2 of 6

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Sat May 7, 2022
Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941345, Location: . 46997772, -746584. 04



[W] West Total: 657 L: 719 4 ut: 733 86

776 96n

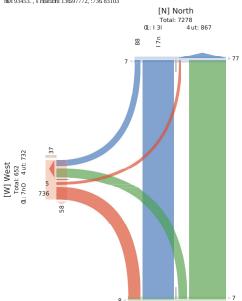
[N] North Total: 7289 01: 956 4ut: 950

5n2 96

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue Mua y3, 2, ,
0M ORL In g th (16 OM : AOM (: - 9FbuPPORI) ) Cs 1
1 Pd Boode In CHO BURK MCCChowRe3) Filea 30FRFoelaiBi3k oorwPro CB mCLR3k oorwPro CB
d ICool uil (
1 PMCGPFDFBo
41 78.65. Ab3r CoorcE76.46 Syyy, 3:yABON62A

| <b>Ottawa</b>                 |
|-------------------------------|
| 01C9dRFR Na7d can Cp - eauI u |
| 522 d CBoeFPRiecCB h 1        |
| t FKFuB3- t 3g, G AJ83di      |
|                               |

3 of 6


| r FH                      | t Clev      |         |     |         |       | TCsev       |        |     |        |       | n Foe      |        |     |        |       |       |
|---------------------------|-------------|---------|-----|---------|-------|-------------|--------|-----|--------|-------|------------|--------|-----|--------|-------|-------|
| h dFweCB                  | TGs evNGs I | 3R      |     |         |       | t ClevNGs I | R.     |     |        |       | EuceNGs BR |        |     |        |       |       |
| SdF                       | m           | S       | W   | i KK    | 0 FRL | S           | r      | W   | i KK   | 0 FRL | m          | r      | W   | i KK   | 0 FRU | 4Be   |
| , 2, , :2A:2y 67220M      | , 2         | 56y     | 2   | 5by     | 2     | 5. y        | . 5    | 2   | 5bO    | 5     | 66         | 2      | 2   | 66     | , у   | - !   |
| 675A0M                    | ,           | 5.,     | 2   | 5AA     | 5     | 5Ab         | , 0    | 2   | 506    | 2     | .0         |        | 2   | 65     | A2    | .1    |
| 67. 20M                   | 52          | 5, 5    | 2   | 5. 5    | 8     | 5A5         | . 5    | 2   | 5Q     |       | A6         | 6      | 2   | AO     | . у   | - 2   |
| 676A0M                    | 5.          | 558     | 2   | 5.,     | ,     | 502         | , b    | 2   | , 2b   |       | 6y         | 2      | 2   | 6y     | 6.    |       |
| SCauP                     | bb          | A58     | 2   | AOA     | 5,    | b, 6        | 55b    | 2   | y62    | у     | 5Q         | у      | 2   | 582    | 5Ay   | 5A    |
| * i KKOnw                 | 55f. *      | COIy*   | 2*  |         |       | O6f. *      | 5Afy*  | 2*  |        |       | 8bf. *     | . fy*  | 2*  | :      | - 1   |       |
| * SCarP                   | 6f6*        | . 6f. * | 2*  | . Ofb*  |       | 65f, *      | yfy*   | 2*  | 60tO*  |       | 5, f5*     | 2fA*   | 2*  | 5, fA* | - :   |       |
| 0) %                      | 2fbA,       | 2f086   | - : | 2f00y   |       | 2fCb,       | 2f8, y | :   | 2f086  |       | 2f825      | 2f6. O | - : | 2fCbA  |       | 2f8   |
| r dHveouBR MGcClvavlFo    | b2          | 6OA     | 2   | A6A     |       | Ay A        | 556    | 2   | bO8    |       | 5y,        | у      | 2   | 5y8    | - :   | 56    |
| * rdHveouBRMGcIwawBFo     | 82f8*       | 8. f6*  | 2*  | 8. f, * |       | 8, f5*      | 8O£ *  | 2*  | 8. f5* |       | 86f2*      | 522*   | 2*  | 86f, * | - 1   | 8. f. |
| ) Fu9a                    | 2           | 5,      | 2   | 5,      |       | 55          | 5      | 2   | 5,     | :     | 5          | 2      | 2   | 5      |       |       |
| * ) Fu9a                  | 2*          | , f. *  | 2*  | , f5*   |       | 5fO*        | 2f8*   | 2*  | 5fb*   |       | 2fA*       | 2*     | 2*  | 2fA*   | - 1   | 5fy   |
| k overv#FoCBmCuR          | b           | ,,      | 2   | ,0      |       | .0          | 5      | 2   | . 8    | :     | 52         | 2      | 2   | 52     |       |       |
| * kowawEoCBmCuR           | 8f5*        | 6f, *   | 2*  | 6fO*    |       | bf5*        | 2f8*   | 2*  | Af. *  |       | AtA*       | 2*     | 2*  | Af. *  |       | Af5   |
| 0 FRFoekuBo               |             |         |     |         | 55    |             |        |     |        | у     | :          |        |     |        | 56.   |       |
| * 0FRFoelcuBo             | - :         |         | - : | - 1     | 85fy* | - :         |        | - : | - 1    | 522*  | - :        | - 1    | - : | - 1    | 85f5* |       |
| k ova v#Fo CB d 1Gool u#P | - :         | - 1     | - : | - 1     | 5     | - :         | - 1    | - : | - 1    | 2     | - :        |        | - : | - 1    | 56    |       |
| * k cva věFo CBd 1Cool uŘ |             | - 1     | - 1 | - 1     | Of. * |             | - 1    | - 1 | - 1    | 2*    |            | - 1    | - 1 | - 1    | 08*   |       |

<sup>L</sup>O FRFoelauBo uBR k ova wBFo CB d 1Cool uB fr 7r Fpe3m7mdHve3S7Sv1s3W7W:Ss1B

# 5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

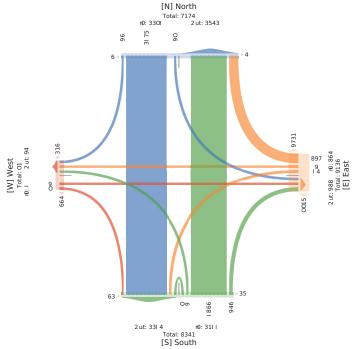
5300014 - COVID - DAINN ST & WILLOW CRES - MA... - INVE SAI May 7, 2021 PM Peak (WKND) (1 PM : 3 PM) : - Orann Peak I Hov ur AndEC(6; iii) gitCahn MHHdydreC I ea(), PeneCVIahC c IdydreCHh BHin, c IdydreCHh AHTIKARI) ur MHDwehlC nDI 93453., s HatIHhI 136597772, :736 83103





5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Sobool 4: CUTIL FORMUS J. Q., TIERMIN J. Q. TIERMIN


| Lnt                          | North  |       |       |      |        |      | Euse     |      |        |      |       |      | ToFeh               |          |        |     |         |      | S rise  |         |       |      |       |        |        |
|------------------------------|--------|-------|-------|------|--------|------|----------|------|--------|------|-------|------|---------------------|----------|--------|-----|---------|------|---------|---------|-------|------|-------|--------|--------|
| Dirncelog                    | ToFehb | oFgd  |       |      |        |      | S risebo | Fgd  |        |      |       |      | Nor <del>ch</del> b | Fgd      |        |     |         |      | Eusebol | gd      |       |      |       |        |        |
| Wimn                         | R      | W     |       | U    | - pp   | Pnd* | R        | W    | L      | U    | - pp  | Pnd* | R                   | W        | L      | U   | - pp    | Pnd* | R       | W       | L     | U    | - pp  | Pnd*   |        |
| , 2, , 92792y 62:22- M       | 6      | , 71  | 2     | 2    | , 7y   | 6    | AA       | 2    | 6      | 2    | AB    | 47   |                     | , A,     | 2      | 2   | , 82    | 1    | 2       | 2       | 2     | 2    | 2     | 81     | 7A6    |
| 66:22- M                     | ,      | 7, 6  | ,     | 2    | 7, 7   | A    | 1,       | 2    | ,      | 2    | 18    | , y7 | 68                  | 72y      | 2      | 2   | 7,6     | 62   | 2       | 2       | 2     | 2    | 2     | . A    | 6662   |
| 6, :22PM                     | ,      | 7Ay   |       | 2    | 782    | 2    | 46       | 2    |        | 2    | 4.    | 87A  | ,,,                 | 812      | 2      | 2   | 8.,     | 67   | 2       |         | 2     |      | 2     | 627    | 66, 2  |
| 6:22PM                       | ,      | 76.   | 2     | 2    | 7, 2   | 6    | 48       | 2    |        | 2    | 4.    | 847  | 6A                  | 8, y     | 2      | 2   | 882     | 68   | 2       | 6       | 2     | 2    | 6     | 41     | 6274   |
| ,:22PM                       | 6      | 74,   | 6     | 2    | 748    | 2    | 47       | 2    | 8      | 2    | 44    | 76A  | 6,                  | 728      | 2      | 2   | 761     | 6y   | 2       | 2       | 2     | 2    | 2     | 6AA    | 6, 24  |
| A22PM                        | 8      | 741   | 6     | 2    | 126    | 2    | 667      | 2    | 8      | 2    | 664   | 1, . | A,                  | 8. y     | 2      | ,   | 7, 6    |      | 6       | 2       | 2     | 2    | 6     | 68y    | 6, 8,  |
| 8:22PM                       | ,      | 7y8   | 2     | 2    | 7y1    | A    | 6A6      | 6    | 6,     | 2    | 688   | 18,  | AA                  | 761      | 6      | 2   | 772     | 61   | 2       | 2       | 2     | 2    | 2     | 68,    | 6, y2  |
| 7:22PM                       | 6      | 7Ay   | 6     | 2    | 7.A4   | A    | 6, 2     | 2    | ,      | 2    | 6,,   | у8.  | , A                 | 847      | 2      | 2   | 76.     |      | 2       | 2       | 2     | 2    | 2     | 67y    | 66y4   |
| 1:22PM                       | 2      | , 17  | 1     | 2    | , y6   | 6    | y.       | 2    | 6      | 2    | y4    | , 4y | 6.                  | , , y    | 2      | 2   | , 87    | - 1  | 6       | 2       | 2     | 2    | 6     | 7A     | 741    |
| Woed                         | 67     | 8A41  | 6,    | 2    | 88, A  | 6,   | . 64     | 6    | Ay     | 2    | . 7y  | 8681 | 6y7                 | A 77     | 6      | ,   | 82.AA   | 622  | ,       | 6       | 2     | 2    | A     | 41,    | 4A61   |
| % - pprouch                  | 254%   | 449B% | 254%  | 2%   | 9      | 9    | 4751%    | 256% | 85466  | 2%   | 9     | 9    | 854%                | 4751%    | 2%     | 2%  | 9       | 9    | 115/% . | A454% : | 2% 2  | 2%   | 9     | 9      | 9      |
| % Woed                       | 25 %   | 8y5,% | 256%  | 2% 8 | 3y57%  | 9    | .5%      | 2%   | 258%   | 2%   | 45,%  | 9    | 654%                | B63B%    | 2%     | 2%  | BASA66  | 9    | 2%      | 2%      | 2% 2  | 2%   | 2%    | 9      | 9      |
| Lit hes ugd Moeorcaclns      | 62     | 867.  | 7     | 2    | 86yA   | 9    | yy2      | 2    | Al     | 2    | . 21  | 9    | 616                 | Al22     | 6      | ,   | Ay18    | 9    | ,       | 2       | 2     | 2    | ,     | 9      | . y87  |
| % Lit hes ugd<br>Moeorcaclus |        | 4851% | 865y% | 2% 4 | 185496 | 9    | 4852%    | 2%   | 4y5406 | 2% 4 | 1852% | 9    | 4, 52%              | 4.AGB% 6 | 522% 6 | 22% | 1.A5A96 | 9    | 622%    | 2%      | 2% 2  | 2% 1 | 15/%  | 9      | 4.A54% |
| Hnuva                        | 2      | 621   | ,     | 2    | 62.    | 9    | 1        | 2    | 2      | 2    | 1     | 9    | 6                   | 622      | 2      | 2   | 626     | 9    | 2       | 2       | 2     | 2    | 2     | 9      | , 67   |
| % Hnuva                      | 2%     | , 38% | 615y% | 2%   | , 38%  | 9    | 25/%     | 2%   | 2%     | 2%   | 25/%  | 9    | 251%                | , 51%    | 2%     | 2%  | , 57%   | 9    | 2%      | 2%      | 296 2 | 2%   | 2%    | 9      | , 5496 |
| Bicaclns og Roud             | 7      | 6A,   | 7     | 2    | 68,    | 9    | 8A       | 6    | 6      | 2    | 87    | 9    | 6A                  | 677      | 2      | 2   | 61.     | 9    | 2       | 6       | 2     | 2    | 6     | 9      | A71    |
| % Bicaclns og Roud           | AA5466 | A52%  | 865y% | 2%   | A5,%   | 9    | 75/06    | 622% | , 5/%  | 2%   | 75466 | 9    | y3B%                | 852%     | 2%     | 2%  | 85,%    | 9    | 2%      | 622%    | 296 2 | 2% A | A6A06 | 9      | A5 %   |
| Pndnseriugs                  | 9      | 9     | 9     | 9    | 9      | 66   | 9        | 9    | 9      | 9    | 9     | 8627 | 9                   | 9        | 9      | 9   | 9       | 622  | 9       | 9       | 9     | 9    | 9     | 4A     |        |
|                              |        |       | - 0   | 9    | 9.     | 65/% | 9        | 9    | 9      | 9    | 9     | 445% | 9                   | 9        | 9      | 9   | 91      | 522% | 9       | 9       | 9     | 9    | 94    | \$y57% | 9      |
| % Pndnseriugs                | 9      | 9     | 9     | 9    |        |      |          |      |        |      |       |      |                     |          |        |     |         |      |         |         |       |      |       |        |        |
|                              | 9      | -     | -     | 9    | 9      | 6    | 9        | 9    | 9      | 9    | 9     | 86   | 9                   | 9        | 9      | 9   | 9       | 2    | 9       | 9       | 9     | 9    | 9     | , 8    |        |

\*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnf@R: Rit h@W WhrF3U: U9WFrg

6 of 6

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC Sat May 7, 2022 Full Length (10:30 Ah-6:30 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941349, Location: 54.399503, -74.68617





778 829

4 ut: 502 01: 590 Total: 7992 [S] South

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TIMC
TUEMID 3/3, 2, 6,

MGFUA I LIM g. h. (6, 29A-92 1 M PA - 92 1 M:

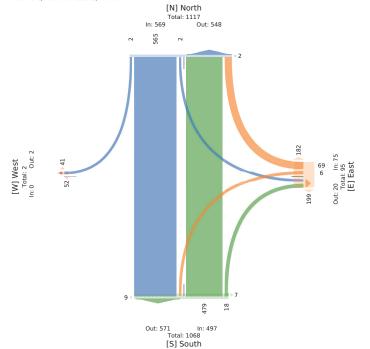
1) C)LOSLS g i flotes ur F Mcce-Hav)Ls3B LIRB3I LFLsetflur s3w0avyLs cr. k cuF3w0avyLs cr.

CH-Smuly:

1) McRU L tr.

13 - 47.40743i cvudtr - 87:9448293By75 b. Ay

|   |      |       |              |   | A2: | fa-<br>2 Co | C0a | a cON<br>L))ue6 | VQ<br>Veeumu<br>Er 6 H3<br>343C1 |
|---|------|-------|--------------|---|-----|-------------|-----|-----------------|----------------------------------|
|   |      |       | t Ls<br>Juse |   | .r  |             |     |                 |                                  |
|   |      |       | _            |   | гг  |             |     |                 |                                  |
| ٧ | 1 pp | 1 LFU | k            | S | i   | W1          | pp  | l LFU           | De                               |
| 2 | A9.  | ,     | 2            | 2 | 2   | 2           | 2   | 92              | 92,                              |
| 2 | A, y | 7     | 2            | 2 | 2   | 2           | 2   | Ab              | , y2                             |
| 2 | A, 7 | 9     | 2            | 2 | 2   | 2           | 2   | 9A              | , 4,                             |
| 2 | A24  |       | 2            | 2 | 2   | 2           | 2   | A8              | , yy                             |
| 2 | 84y  | A     | 2            | 2 | 2   | 2           | 2   | 49              | AA8A                             |


| i Id                       | (cHo   |         |       |      |        |       | J use  |       |       |    |       |       | TcEeo |       |     |    |               |       | t I | se     | _    | _   |       | $\neg$ |      |
|----------------------------|--------|---------|-------|------|--------|-------|--------|-------|-------|----|-------|-------|-------|-------|-----|----|---------------|-------|-----|--------|------|-----|-------|--------|------|
| 6 OH.veOcr                 | Tc Eeo | f cEr F |       |      |        |       | t Lsef | cEr F |       |    |       |       | (cHo  | fcErF |     |    |               |       | Jus | sef cl | Er F |     |       |        | 1    |
| SŒ L                       | k      | S       | i     | W    | 1 pp   | l IFU | k      | S     | i     | W  | 1 pp  | l LFU | k     | S     | i   | W  | 1 pp          | 1 LFU | k   | S      | i    | W   | √1 pp | 1 LFU  | Dе   |
| , 2, , P27P2y AA-921 M     | A      | A84     | ,     | 2    | A7,    | ,     | AB     | 2     | 2     | 2  | AB    | yb    | 9     | A99   | 2   | 2  | A9.           | ,     | 2   | . 2    | 2    | 2   | 2     | 92     | 92   |
| A4871 M                    | 2      | A, b    | 2     | 2    | A, b   | 2     | A8     | 2     | A     | 2  | A7    | y4    | 9     | A, 8  | 2   | 2  | A, y          | 7     | 2   | . 2    | 2    | 2   | 2     | Ab     | , у  |
| A, -221 M                  | 2      | A82     | 2     | 2    | A62    | 2     | , 7    | 2     | ,     | 2  | , у   | 47    | A2    | AA7   | 2   | 2  | A, 7          | 9     | 2   | 2      | 2    | 2   | 2     | 9A     | ,4   |
| A, -A71 M                  | A      | ABb     | 2     | 2    | A64    | 2     | A      | 2     | 9     | 2  | A4    | A, 4  | ,     | A2y   | 2   | 2  | A24           |       | 2   | . 2    | 2    | 2   | 2     | A8     | , ,  |
| Sceu)                      | ,      | 7.7     | ,     | 2    | 7.4    | ,     | . 4    | 2     | -     | 2  | y7    | 9bA   | Ab    | 8y4   | - 2 | 2  | 84y           | A     | 2   | 2      | 2    | 2   | 2     | 49     | AAE  |
| * 1 ppHruvo                | 25B*   | 4459*   | 25B*  | 2*   | P      | P     | 4, 52* | 2*    | b52*  | 2* | P     | F     | 95 *  | 4.5B* | 2*  | 2* | P             | P     | 2*  | 2*     | 2*   | 2*  | P     | p      |      |
| * Scei)                    | 25 *   | 8457*   | 25*   | 2* 1 | 8454*  | P     | . 52*  | 2*    | 257*  | 2* | .5*   | F     | A5 *  | 8,52* | 2*  | 2* | 895 *         | P     | 2*  | 2*     | 2*   | 2*  | 2*    | p      |      |
| 1 B9                       | 25722  | 2549b   | 25,72 | P    | 251, . | P     | 25y2b  | P     | 25722 | P  | 25yA, | F     | 29372 | 25497 | F   | P  | 25484         | P     | 1   | PI     | P I  | P F | P P   | P      | 2547 |
| i Otlors ur F McecHav)Ls   | ,      | 79,     | 2     | 2    | 798    | P     | . b    | 2     |       | 2  | y8    | F     | Ab    | 88y   | 2   | 2  | 8.7           | P     | 2   | . 2    | 2    | 2   | 2     | p      | A2y  |
| * i Odoes ur F McecHrav)Ls | A22*   | 485 *   | 2*    | 2*   | 495b*  | P     | 4b5 *  | 2*    | A22*  | 2* | 4b5y* | F     | A22*  | 4959* | 2*  | 2* | 495 *         | P     | 2*  | 2*     | 2*   | 2*  | P     | P      | 4852 |
| BLuRa                      | 2      | A       | ,     | 2    | Ab     | P     | 2      | 2     | 2     | 2  | 2     | F     | 2     | Ay    | 2   | 2  | Ay            | P     | 2   | 2      | 2    | 2   | 2     | P      | 9    |
| * BLuRa                    | 2*     | , 5b*   | A22*  | 2*   | 95 *   | P     | 2*     | 2*    | 2*    | 2* | 2*    | F     | 2*    | 957*  | 2*  | 2* | 9 <b>3</b> 8* | P     | 2*  | 2*     | 2*   | 2*  | P     | P      | 954  |
| w0vav)Ls cr k cuF          | 2      | Ay      | 2     | 2    | Ay     | P     | A      | . 2   | 2     | 2  | A     | F     | 2     | A7    | 2   | 2  | A7            | P     | 2   | 2      | 2    | 2   | 2     | P      | 9    |
| * w0vav)Ls cr k cuF        | 2*     | 952*    | 2*    | 2*   | 952*   | P     | AB*    | 2*    | 2*    | 2* | A59*  | F     | 2*    | 95A*  | 2*  | 2* | 952*          | P     | 2*  | 2*     | 2*   | 2*  | P     | P      | , 54 |
| l LFLseHurs                | I      | P       | P     | P    | P      | ,     | F      | P     | P     | P  | P     | 9y2   | F     | P 1   | ) I | P  | P             | A     | I   | PI     | P I  | P F | P P   | 4A     |      |
| * l LFLseHurs              | I      | P       | P     | P    | Р.     | A22*  | F      | P     | P     | P  | P.    | 1y5A* | F     | P 1   | ) I | P  | P             | A22*  | I   | PI     | P I  | P F | . P.  | 4y5b*  |      |
| w0vav)Ls cr CH:ssmu)n      | I      | P       | P     | Р    | P      | 2     | F      | P     | P     | P  | P     | AA    | F     | - 1   | ) I | P  | F             | 2     | I   | P I    | P I  | P F | Р Р   | ٠,     |      |
| * w0vav)Ls cr CHrssmu)n    | I      | P       | P     | P    | P      | 2*    | F      | P     | P     | P  | P     | , 54* | F     | P I   | ) I | P  | P             | 2*    | I   | P I    | P I  | P F | P P   | ,5*    |      |

U LFLseHiturs ur F wOvav)Ls cr CHtssmu)n5i - i LOBk - k Otloe3S-SoHE3W-WPSEHI

2 of 6 3 of 6 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941349, Location: 54.399503, -74.68617



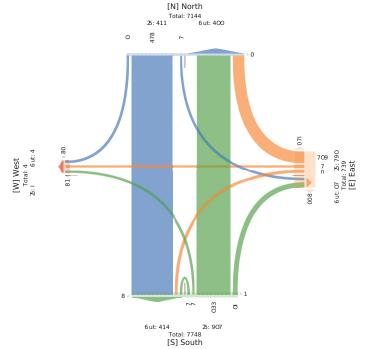


5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5-35060 4 = COVID - DAWN ST BE WARELE WAT - WAT ... TIME TUREMIN 93, 2, 9 0 M ORU Ing th (16:62 OM A-:52 OM (A9 1FRI)) ORUL CSIP (d) 0) Jurff Er Hister War-Mase Back)Fr3 CRuta 30 Fr4Fethil Pamilia k)Frs R I suw&milia k)Frs R 0 B r DU) ( d) M ST R RP 7a: 85. 6583c s kurl R - 51688-263 A/5 bf CT. y



| c Pv                          | tsRaB  |        |         |     |         | Eure       |       |         |     |        |       | TsieB  |         |       |         |         |            | n Fi | re    |      |            |            |         |
|-------------------------------|--------|--------|---------|-----|---------|------------|-------|---------|-----|--------|-------|--------|---------|-------|---------|---------|------------|------|-------|------|------------|------------|---------|
| h HEReH R                     | TsieBN | ki Rw  |         |     |         | n FreN     | i Rw  |         |     |        |       | t sRBN | ki Rw   |       |         |         |            | Eur  | eNsi! | Rw   |            |            |         |
| SH F                          | I      | S      | С       | W   | d KK OF | U I        | S     | С       | W   | d KK   | 0PwU  | I      | S       | С     | W       | d KK    | 0 FwU      | I    | S     | с    | Wd KK      | 0PwL       | 7Re     |
| , 2, , A25A2y 6:620M          | ,      | y      | 2       | 2   | 8       | 2 65       | 2     |         | 2   | 6f     | . 5f  | f      | . 6,    | 2     | 2       | . 60    | ,          | 2    | 2     | 2    | 2 2        | 5-         | 6, 6    |
| 6:-50M                        |        | . 5y   |         | 2   | . 58    | 2 6C       | 2     |         | 2   | 68     | . y-  | . y    | .,,     | 2     |         | 2       | 2          | 2    | 2     | 2    | 2 2        | , -        | 660     |
| -:220M                        |        | .fO    | 2       | 2   | .f8     | . 6f       | 2     | 6       | 2   | 68     | . y.  | -      |         |       | 2       | f       | 6          | 2    | 2     | 2    | 2 2        | 62         | 6, -    |
| -:. 50M                       | 2      | 5      | 2       | 2   | 5       | , 6f       |       | 6       | 2   | -2     | f     | . 6    | . 6-    | 2     | 2       | y       | -          | 2    | 2     | 2    | 2 <b>2</b> | 6y         | 66,     |
| Sseu)                         | -      | f.y    | -       | 2   | f,,     | 65         | -     | 0       | 2   | . 5-   | f-y   | -2     | - 88    | -     | -       | 5       | 8          | 2    | 2     | 2    | 2 2        | 5          | . 6. y  |
| * d KKABukB                   | 2lf*   | 88bj * | 2b * 2  | *   | A       | A8-b *     | 2lf * | 5b; * 2 |     | A      | F     | yb*    | 8, b, * | 2bj * | 2bj *   | A       | <b>A</b> A | 2*   | 2*    | 2* 2 | * 1        | A /        | . A     |
| * Sseu)                       | 216*   | -fb0*  | 2b * 2  | * - | yh *    | A 12*      | 2b *  | 2bf* 2  | . * | . by*  | F     | 612*   | 6yl8*   | 2b *  | 2b* -   | b *     | A          | 2*   | 2*    | 2* 2 | * 2*       | . I        | . A     |
| 0C%                           | 21522  | 218. f | A       | A.  | 2lB. 6  | A. 2186-   | A     | 2bffy   | A.  | 218f - | F     | 21558  | 2lB     | 2b 52 | 2h 52   | 218, O  | ) A        | A    | . A   | . A  | A A        | <b>A</b> / | 218f.   |
| c HiBer uRwMses Hak)Fr        | ,      | 50-    | 2       | 2   | 5Of     | A .,5      | 2     | 0       | 2   | . 66   | F     | 60     | - 58    |       | -       | -88     | P          | 2    | 2     | 2    | 2 2        | . I        | .,.0    |
| * c H/Ber uRw<br>Mses Bkak)Fr |        | 8-by*  | 2* 2    | * 8 | i-b*    | ACFb *     | 2*    | . 22* 2 | * C | fb*    | Ā     | 8512*  | 8, 12*  | . 22* | . 22* 1 | B, b, * | A          | 2*   | 2* :  | 2* 2 | * /        |            | 18, 15* |
| CFula                         | 2      | . 6    | 2       | 2   | . 6     | Α,         | 2     | 2       | 2   | ,      | F     | . 2    | . 6     | 2     | 2       | . 6     | . A        | 2    | 2     | 2    | 2 2        | . I        | , 0     |
| * CFula                       | 2*     | , b*   | 2* 2    | *   | , b *   | A.b*       | 2*    | 2* 2    | 18  | . l6*  | F     | . 2*   | , lf *  | 2*    | 2*      | , b*    | A          | 2*   | 2* :  | 2* 2 | * 1        | <b>A</b> / | , b*    |
| mHtak)FrsRIsuw                | ,      | , 2    |         | 2   | ,6      | A . C      |       | 2       | 2   | . 8    | F     | ,      | , у     | 2     | 2       | , 8     | A          | 2    | 2     | 2    | 2 2        | 1          | у.      |
| * mHlak)FrsRIsuw              | 5212*  | 6b; *  | . 22* 2 | *   | 6by*    | A., b*     | . 22* | 2* 2    | . * | , l6*  | F     | 512*   | 5b*     | 2*    | 2*      | 5b*     | P          | 2*   | 2* :  | 2* 2 | * 1        | <b>A</b> / | 5b*     |
| 0 PwFreHttiRr                 | A      | . A    | . A     | Α   | A       | 6 A        | ı A   | . A     | Α   | A      | f-6   | A      | . A     | L A   | . A     |         | A 8        | A    | L A   | . A  | A /        | A . 60     |         |
| * 0PwFrdHttRr                 | A      | . A    | . A     | Α   | A. 22   | * <i>I</i> | ı A   | . A     | Α   | A8     | 8b*   | A      | L A     | . A   | . A     |         | 1. 22*     | A    | . A   | . A  | A /        | 185b *     | P       |
| mHak)FrsRoBrrDu)l             | A      | L A    | . A     | Α   | A       | 2 F        | I A   | . A     | Α   | A      | -     | A      | . A     | . A   | . A     |         | A 2        | A    | L A   | . A  | Α /        | A y        |         |
| * mHtak)FrsRoBrrDu)l          | A      | L A    | . A     | Α   | A 2     | * <i>F</i> | I A   | . A     | Α   | A      | 2lif* | A      | ı A     | L A   | . A     | . A     | A 2*       | A    | L A   | . A  | Α /        | 4 - JO*    | P       |


Un FwFreHniBr uRwmHitak)FrsRoBrrDu)lbc:cFpe3I:IN/Be3S:SBFI3W:W/16iBR

4 of 6

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST @ MARCHE WAY - MAY ... - TMC
Sat May 7, 2021
PM Peak (WKNID) (1:10 PM 3-:10 PM) 3Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on
Crosswalk)
All Movements
ID: 945149, Location: -4.199-01, 374.68657

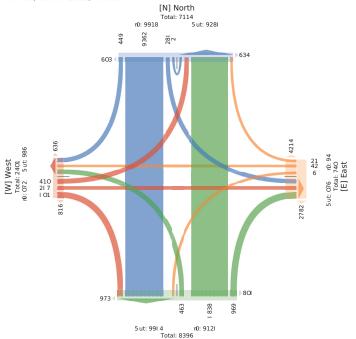




5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5-556814 - CUVILI - DANKA 3: e-TO-SEARCH 3: E-TO-SE




| Lnt                                                     | North                      |                            |                |                    |                       |                      | Euse              |                    |                          |                 |                         |                          | ToFeh                   |                               |                           |                         |                             |                          | S rise                 |                        |                            |                         |                         |                               |                           |
|---------------------------------------------------------|----------------------------|----------------------------|----------------|--------------------|-----------------------|----------------------|-------------------|--------------------|--------------------------|-----------------|-------------------------|--------------------------|-------------------------|-------------------------------|---------------------------|-------------------------|-----------------------------|--------------------------|------------------------|------------------------|----------------------------|-------------------------|-------------------------|-------------------------------|---------------------------|
| Dimoiog                                                 | ToFehbo                    | oFgd                       |                |                    |                       |                      | S risebo          | Fgd                |                          |                 |                         |                          | Norehbo                 | Fgd                           |                           |                         |                             |                          | EuseboF                | gd                     |                            |                         |                         |                               |                           |
| Wimn                                                    | R                          | W                          | L              | U                  | - pp                  | Pnd*                 | R                 | W                  | L                        | U               | - pp                    | Pnd+                     | R                       | W                             | L                         | U                       | - pp                        | Pnd+                     | R                      | W                      | L                          | U                       | - pp                    | Pnd*                          | Ige                       |
| , 2, , 92792y 62:22- M                                  | 61                         | , A6                       | 66             | 2                  | , 7.                  | A4                   | 2                 | 2                  | ,                        | 2               | ,                       | 62A                      | , 2                     | , 87                          | 6,                        | 2                       | , yy                        | A                        | , A                    | 4                      | 67                         | 2                       | 8y                      | 16                            | 7.8                       |
| 66:22- M                                                | , 1                        | 8. y                       | A7             | 6                  | 784                   | 662                  | A                 | ,                  | 2                        | 2               | 7                       | A6.                      | 8A                      | 8y4                           | ,                         | 2                       | 772                         | 66A                      | 86                     | 68                     | A                          | 2                       | 4A                      | 681                           | 664                       |
| 6, :22PM                                                | 87                         | 84,                        | , A            | 2                  | 712                   | 616                  | 7                 | ,                  | 2                        | 2               | у                       | 8yA                      | 87                      | 8yA                           | , 4                       | 2                       | 78y                         | 68.                      | 88                     | 4                      | A,                         | 2                       | .7                      | 611                           | 664                       |
| 6:22PM                                                  | , 2                        | 8. 2                       | , 6            | 2                  | 7,6                   | 627                  | 6                 | 6                  | 2                        | 2               | ,                       | 78y                      | 86                      | 8y6                           | , у                       | 2                       | 7A4                         | 67y                      | A7                     | 6.                     | A2                         | 2                       | . A                     | 672                           | 6683                      |
| ,:22PM                                                  | , 6                        | 772                        | A2             | 2                  | 126                   | 682                  | ,                 | ,                  | 2                        | 2               | 8                       | 7, 4                     | 71                      | 84,                           | A                         | 2                       | 7.1                         | 646                      | 71                     | 6y                     | Ay                         | 2                       | 662                     | , 6.                          | 6A20                      |
| A22PM                                                   | , у                        | 776                        | , 6            | 2                  | 744                   | 68A                  | A                 | A                  | 6                        | 2               | у                       | 748                      | 74                      | 8.7                           | 82                        | 2                       | 7.8                         | , 26                     | 84                     | , 6                    | A2                         | 2                       | 622                     | 64,                           | 6, 42                     |
| 8:22PM                                                  | , A                        | 7,,                        |                | 2                  | 71y                   | 6yA                  | 2                 | -                  | 6                        | 2               | 4                       | 717                      | . 2                     | 7, y                          | , 7                       | 2                       | 1A,                         | , 88                     | 76                     | 61                     | A                          | 2                       | 627                     | ,,A                           | 6A6                       |
| 7:22PM                                                  | A6                         | 726                        | , 6            | 2                  | 77A                   | 6A2                  | ,                 | A                  | 2                        | 2               | 7                       | 18.                      | y2                      | 84,                           | AA                        | 2                       | 747                         | , 8.                     | 76                     | ,,                     | A1                         | 2                       | 624                     | ,,.                           | 6, 1,                     |
| 1:22PM                                                  | 67                         | , Ay                       | 4              | 2                  | , 16                  | у6                   | 2                 | 2                  | 6                        | 2               | 6                       | , y1                     | 82                      | , 87                          | 6.                        | 2                       | A2A                         | 66A                      | , 1                    | 6,                     | 66                         | 2                       | 84                      | . 1                           | 168                       |
| Word                                                    | ,,8                        | 8276                       | 64A            | 6                  | 8814                  | 62y,                 | 61                | , 6                | 7                        | 2               | 8,                      | 827A                     | 878                     | A424                          | , 72                      | 2                       | 816A                        | 687A                     | Ay1                    | 6A                     | , 1y                       | 2                       | y. 6                    | 68y2                          | 442                       |
| % - pprouch                                             | 752%                       | 4251%                      | 85466          | 2%                 | 9                     | 9                    | A 56%             | 7252% (            | 5654%                    | 2%              | 9                       | 9                        | 45 % .                  | 85y%                          | 738%                      | 2%                      | 9                           | 9                        | 8.56% 6                | iy5y% <i>i</i>         | <b>1</b> 85, % .           | 2%                      | 9                       | 9                             |                           |
| % Woed                                                  | , 54% (                    | 8254%                      | 654%           | 2%                 | B756%                 | 9                    | 25,%              | 25,%               | 256%                     | 296             | 258%                    | 9                        | 831%                    | A457%                         | , 57%                     | 2% 8                    | 151%                        | 9                        | A5 %                   | 638%                   | , 5/% 2                    | 2%                      | y54%                    | 9                             |                           |
| Lit hes ugd Moeorcaclns                                 | , 61                       | A A6                       | 6.7            | 6                  | 8, AA                 | 9                    | 6                 | 2                  | 6                        | 2               | ,                       | 9                        | 8A2                     | Aly4                          | , A                       | 2                       | 8.АВу                       | 9                        | AB,                    | 44                     | , 1A                       | 2                       | y28                     | 9                             | 4, . :                    |
| % Lit hes ugd<br>Moeorcaclus                            |                            | 483.%                      | 4754% 6        | 522%               | 485/%                 | 9                    | 154%              | 2%,                | 252%                     | 296             | 85 %                    | 0                        | 405.07                  | 1070                          | 175 % :                   | 20/ 4                   | 9E 0/                       | 0                        | ACTION                 | CE 0/                  |                            | 794 A                   | 1256%                   | 9                             | 4A6 %                     |
| House                                                   |                            |                            |                |                    |                       |                      |                   |                    |                          |                 |                         |                          | 483/%                   | 4830% 4                       |                           |                         |                             |                          |                        | 03/76 4                | 1.57%                      |                         |                         |                               |                           |
| Hnuva                                                   | 2                          | 628                        |                | 2                  | 621                   | 9                    | 2                 | ,                  | 2                        | 2               | ,                       | 9                        | 483y% -<br>7            | 621                           |                           | 2                       | 666                         | 9                        | 40.276 y               | 2                      | 6                          | 2                       | A                       | 9                             |                           |
| Hnuva<br>% Hnuva                                        |                            |                            | 652%           |                    | 621<br>, 38%          | 9                    | 2<br>2%           | 457%               |                          |                 | 85 %                    | 9                        |                         |                               | 2                         | 2                       |                             | 9                        | 40.2% y                | 2                      |                            | 2                       |                         | 9                             | ,59                       |
|                                                         | 2%                         |                            | 652%<br>1      |                    |                       | 9                    |                   | ,<br>457%<br>64    | 2%                       |                 | ,                       | 9                        | 7                       | 621                           | 2                         | 2                       | 666                         | 9                        | -,                     | 2                      | 6                          | 2                       | A                       | 9                             |                           |
| % Hnuva                                                 | 2%                         | , 51%<br>661               | 1              | 2%                 | , 38%                 | 9 9                  | 2%                | 64                 | 2% :<br>8                | 2%              | ,<br>85 %<br>A          | 9 9                      | 7<br>636%<br>64         | 621<br>, 5/%<br>6, 8          | 2%                        | 2 2% 2                  | 666<br>, 98%<br>677         | 9 9                      | 257%<br>A              | 2<br>2%<br>A4          | 6<br>258% 2                | 2<br>2%<br>2            | A<br>298%               | 9 9                           | , 5, 9<br>A4 <sub>2</sub> |
| % Hruva<br>Bicaclus og Roud                             | 2%<br>I .<br>I ASI%        | , 51%<br>661               | 1<br>A6%       | 2%                 | , 58%<br>6A2<br>, 58% | 9<br>9<br>9<br>62, y | 2%<br>67          | 64<br>4257% .      | 2% 2<br>8<br>252% 2      | 2%              | ,<br>85 %<br>A<br>1257% | 9<br>9<br>9<br>9<br>8262 | 7<br>636%<br>64         | 621<br>, 5/%<br>6, 8          | 2<br>2%<br>6,<br>85%      | 2 2% 2                  | 666<br>, 38%<br>677<br>A38% | 9<br>9<br>9<br>9<br>6868 | 257%<br>A              | 2<br>2%<br>A4          | 6<br>258% 2<br>A<br>656% 2 | 2<br>2%<br>2            | A<br>298%<br>y8<br>457% | 9<br>9<br>9<br>9<br>688y      | , 5, 9<br>A4 <sub>2</sub> |
| % Hruva<br>Bicaclus og Roud<br>% Bicaclus og Roud       | 2%<br>1 .<br>1 ASI%<br>1 9 | , 51%<br>661<br>, 54%      | 1<br>A66%<br>9 | 2%<br>2<br>2%      | , 98%<br>6A2<br>, 58% |                      | 2%<br>67<br>4A5 % | 64<br>4257% .<br>9 | 2% :<br>8<br>252% :      | 2%<br>2<br>2% 4 | ,<br>85 %<br>A<br>1257% | 9 9 9                    | 7<br>636%<br>64<br>85,% | 621<br>, 5y%<br>6, 8<br>A5, % | 2<br>2%:<br>6,<br>85%:    | 2<br>2%<br>2<br>2%      | 666<br>, 38%<br>677<br>A38% | 9 9                      | 257%<br>A<br>. 57% ,   | 2<br>2%<br>A4<br>. 54% | 6<br>258% 2<br>A<br>656% 2 | 2<br>2%<br>2<br>2%      | A<br>298%<br>y8<br>457% | 9<br>9<br>9<br>688y<br>1. 58% | , 5, 9<br>A4 <sub>2</sub> |
| % Hnuva Bicaclns og Roud % Bicaclns og Roud Pndnstriugs | 2%<br>I .<br>I ASI%<br>: 9 | , 51%<br>661<br>, 54%<br>9 | 1<br>A66%<br>9 | 2%<br>2<br>2%<br>9 | , 98%<br>6A2<br>, 58% | 62, y<br>475 %       | 2%<br>67<br>4A5 % | 64<br>4257% .<br>9 | 2% 3<br>8<br>252% 3<br>9 | 2%<br>2<br>2% 4 | ,<br>85 %<br>A<br>1257% | 9<br>9<br>9<br>9<br>8262 | 7<br>6%%<br>64<br>85,%  | 621<br>, 5/%<br>6, 8<br>A5, % | 2<br>2% 5<br>6,<br>85 % 5 | 2<br>2%<br>2<br>2%<br>9 | 666<br>, 38%<br>677<br>A38% | 9<br>9<br>9<br>9<br>6868 | ,<br>25%<br>A<br>. 5%, | 2<br>2%<br>A4<br>. 54% | 6 258% 2 A 656% 2 9        | 2<br>2%<br>2<br>2%<br>9 | A<br>298%<br>y8<br>457% |                               | ,59                       |

\*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnf&R: Rit h&W WhrF3U: U9WFrg

6 of 6 1 of 6 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941363, Location: 54.399896, -74.686463

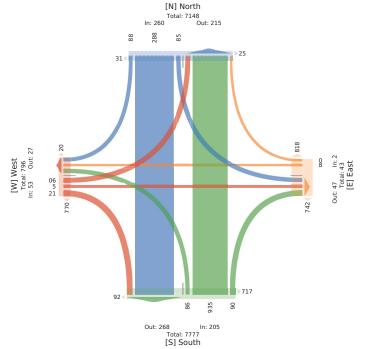




[S] South

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

3-30804 F - COVID - SANK S 1 @ FOLEWING DO AVE - M.... - 1 Mr.
Tue Mus y3, 2,
MGFBa 1 Lun g h ( 6 : gA-92 1 M P.A. - 92 1 M:
1) C)casts g bloos ur F Mccelhaylt.3BLuRa31 LF1settur s3w0av)ts cr k cuF3w0av)ts cr
Cld:smu)t:
1) McRul Lrs
B - 47/8093i cvudCr - 57.944b483B7.8b8789




| i Id                    | ( cléo |       |        |      |        |       | J use    |       |       |        |         | ТсЕю    |        |        |      |       |       | t Lse    |       |       |      |      |       | Π   |
|-------------------------|--------|-------|--------|------|--------|-------|----------|-------|-------|--------|---------|---------|--------|--------|------|-------|-------|----------|-------|-------|------|------|-------|-----|
| 6 OH.veOcr              | TcEm   | cFrF  |        |      |        |       | t Lsef c | Fr F  |       |        |         | (client | cErE   |        |      |       |       | J usef c | Fr F  |       |      |      |       |     |
| SQ L                    | k      | S     | i      | W    | 1 pp   | 1 LFU |          | S .   | i V   | V 1 pc | llFt    |         | S      | i      | W    | 1 pp  | l LFU | k        | S     | i     | W    | 1 pp | 1 LFU | Dе  |
| , 2, , P27P2y AA-921 M  | 5      | A9b   | ь      | 2    | A72    | . 7   | A        | 2     |       |        |         |         | A 2    | ь      | 2    | A52   | . 4   | A5       | . 7   | AA    |      | 92   | 7.A   | 9   |
| AA-571 M                | 5      | Ab    | 4      | 2    | A5A    | . 5   | 2        | 2     | 2     | 2 2    | A29     | v       | AAV    |        | 2    | A92   | 9b    | ь        | 2     | 4     | 2    | Ay   | 97    | ١.  |
| A, -221 M               | 4      | AAb   |        | 2    | A, 4   | 55    | 2        | 2     | 2     | 2 2    | . AA8   | A7      | A, 7   | 8      | 2    | A58   | 95    | Ą        | 5     | 4     | 2    | ,7   | 5y    | 9   |
| A, -A71 M               | 7      | A9b   | A2     | 2    | A79    | , 8   | ,        | ,     | 2     | 2 5    | 44      | 4       | A24    | . 7    | 2    | A, 9  | 57    | AB       | 2     | b     | 2    | , 5  | 99    | 9   |
| Sce)                    | -,,    | 7, ,  | , 4    | 2    | 7y9    | AA4   | 9        | ,     | 2 :   | 2 7    | 9by     | 59      | 584    | , у    | 2    | 794   | A58   | 72       | - 4   | 9y    | 2    | 48   | A88   | A,  |
| * 1 pplituvo            | 9.b*   | 4A.A* | 7.A*   | 2*   | P      | F     | 82.2*    | 52.2* | 2* 2* | - 1    | P 1     | b.2*    | by.2*  | 7.2*   | 2*   | P     | P     | 7, .A*   | 4.5*  | 9b.7* | 2*   | P    | F     |     |
| * Sceu)                 | Ab*    | 59.2* | , .5*  | 2* 5 | iy., * | F     | 2., *    | 2.,*  | 2* 2* | 2.5*   | 1       | 9.7*    | 9b.y*  | , ., * | 2* 5 | 55.5* | P     | 5.A*     | 2.y*  | 9.A*  | 2* ! | y.4* | F     |     |
| 1 B9                    | 2.8AA  | 2.459 | 2.y, 7 | P    | 2.495  | F     | P        | P     | P     | P I    | P 1     | 2.yAy   | 2.492  | 2.b55  | P    | 2.4A8 | P     | 2.b75    | 2.572 | 2.bAb | P 2  | .y8b | F     | 2.4 |
| i Oloes ur F McecHav)Ls | ,,     | 54b   | , b    | 2    | 75b    | F     | 2        | 2     | 2     | 2 2    |         | 5,      | 59y    | , у    | 2    | 728   | P     | 94       | - 4   | 98    | 2    | b5   | F     | A   |
| * i Odoes ur F          |        |       |        |      |        |       |          |       |       |        |         |         |        |        |      |       |       |          |       |       |      |      |       |     |
| McecHav)Ls              | A22*   | 47.5* | 48.8*  | 2* 4 | 17.8*  | F     | 2*       | 2* :  | 2* 2* | 2*     | 3       | 4y.y*   | 49., * | A22*   | 2* 4 | 49.4* | P     | yb.2*    | A22*  | 4y.9* | 2* b | y.7* | F     | 49. |
| BLuRa                   | 2      | A7    | A      | 2    | AB     | F     | 2        | 2     | 2     | 2 2    |         | A       | . Ay   | 2      | 2    | Ab    | P     | ,        | 2     | 2     | 2    | ,    | F     |     |
| * BluRa                 | 2*     | , .4* | 9.5*   | 2*   | , .b*  | F     | 2*       | 2* :  | 2* 2* | 2*     | - 1     | , .9*   | 9.8*   | 2*     | 2*   | 9.9*  | P     | 5.2*     | 2*    | 2*    | 2* , | .A*  | F     | 9.  |
| w@rav)Ls cr k cuF       | 2      | 4     | 2      | 2    | 4      | F     | 9        | ,     | 2     | 2 7    |         | 2       | A7     | 2      | 2    | A7    | P     | 4        | . 2   | A     | . 2  | A2   | F     |     |
| * w@av)Ls cr kcuF       | 2*     | Ay*   | 2*     | 2*   | A8*    | F     | A22*     | A22*  | 2* 2* | A22*   | 1       | 2*      | 9., *  | 2*     | 2*   | , .b* | P     | Ab.2*    | 2*    | , .y* | 2* A | 2.5* | F     | 9.  |
| l LFLsef@urs            | P      | P     | P      | P    | P      | AA5   | P        | P     | P     | P 1    | P 9y4   | F       | ) ]    | P P    | P    | P     | А9у   | F        | . P   | P     | P    | P    | ABA   |     |
| * l LFLsel@crs          | P      | P     | P      | P    | P4     | 47.b* | P        | P     | P     | P 1    | P4y.4*  | I       | )      | P P    | P    | P.    | 49.b* | I        | . P   | P     | P    | P4   | 4y.2* |     |
| w@av)Ls cr Clessmu)n    | P      | P     | P      | P    | P      | 7     | P        | P     | P     | P I    | P b     | I       | 1      | P P    | P    | P     | 4     | I        | . P   | P     | P    | P    | 7     |     |
| * w0vav)Ls cr CHrssmu)n | P      | P     | P      | P    | P      | 5., * | P        | P     | P     | P 1    | P , .A* | F       | ) ]    | P P    | P    | P     | 8., * | F        | . P   | P     | P    | P    | 9.2*  |     |

Ul LFLsel@urs urF w0vav)Ls cr Clessmu)n. i - i LQBk - k Qdoe3S- SoHE3W-WISEH

2 of 6

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941353, Location: . 4699895, -74685453



### 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
TURM us y 3, 2, 16.Ac OM 9 AA- OM(9 1 PP)uCDFul s i d)
OC GOACE HAPRE usk Mid d) mantfe3s FuPa30RFc9unvG3l vnantfe i w Di uk3l vnantfe i w r) i cest uf (
OCM) EPT Pace
8h : 5-. 6b63Hi maoi w A x6550B38y- b/Ob- b6

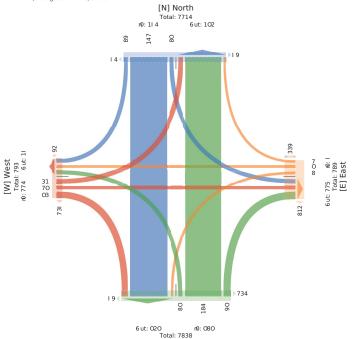
| 0)i PkRk Ni:r va i p1 æu4 u<br>22 r i væRæis wh )3<br>t FRUw31 r 3g, G-JS3r o |
|-------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------|

3 of 6

| HFB                        | ti)eR   |         |        |             |        |        | Euce    |       |          |      |         |       | Ti deR  |       |        |      |        |       | n Fce   |         |       |      |         |       |        |
|----------------------------|---------|---------|--------|-------------|--------|--------|---------|-------|----------|------|---------|-------|---------|-------|--------|------|--------|-------|---------|---------|-------|------|---------|-------|--------|
| h v)Fnexi w                | Ti deR⁰ | é dwk   |        |             |        |        | n FoeNi | dvk   |          |      |         |       | ti)eRN  | i dwk |        |      |        |       | EuceN ( | łwk     |       |      |         |       |        |
| S√F F                      | D       | S       | Н      | W           | o KK   | 0FkU   | D       | S     | Н        | W    | o KK    | 0FkU  | D       | S     | Н      | W    | o KK   | 0FkU  | D       | S       | Н     | W    | o KK    | 0FkU  | 8ve    |
| , 2, , 92-92y 6:A-0M       | у       | . 6-    | . 2    | 2           | ٠٠,    | b6     |         | 2     |          | 2    | ,       | . y6  | , 2     | . 6A  | 0      | 2    | . b,   | ٠.    | . 5     | y       | A     | 2    | 62      | A5    | 6Ab    |
| A:220M                     | -       |         | 6      | 2           | 5      | , 0    | 2       | A     | 2        | 2    | A       | . A   | .0      | .,6   | у      | 2    | . AO   | b.    | . 0     | ,       | 5     | 2    | ,5      | - 6   | 6A2    |
| A 0M                       | b       | . 6A    | b      | 2           | . Ab   | A6     | 2       | ,     | 2        | 2    | ,       | 0     | , 6     | . 6y  | 0      | 2    | . bO   | b-    |         | 6       | . 6   | 2    | 6.      |       | 6Ay    |
| A620M                      | 5       | .,.     | у      | 2           | . 6y   | - y    | 2       | 2     |          | 2    |         |       |         | . 62  | 6      | 2    | . AO   | - A   |         | A       | 5     | 2    | , A     | ٠,    | 6. 2   |
| SieuC                      | , у     | - A     | , b    | 2           | -5A    | . 5.   | -       | b     | ,        | 2    | 5       | - Oy  | yb      | -, A  | , b    | 2    | b, b   | , 6.  | b6      | . b     | 6-    | 2    | A       | , 25  | . 6A6  |
| * o KK)i umR               | A-+     | 5. f. * | ÆA*    | 2*          | 9      | 9      | f.*     | bbfy* | , , f, * | 2+   | 9       | 9     | .,f.*   | Offy* | At, *  | 2*   | 9      | 9     | f6*     | . AE2*  | 62fy* | 2*   | 9       | 9     | 9      |
| * SieuC                    | , f2*   | A2f6*   | . f5*  | 2* <i>I</i> | NAE, + | 9      | 2f. *   | 2fA*  | 2f. * :  | 2+   | 2fy*    | 9     | - fy+   | 65£2* | . f5*  | 2* A | ₩b#    | 9     | Afy*    | . f, *  | , fb+ | 2*   | Œ÷+     | 9     | 9      |
| 0s %                       | 2fy-2   | 2fСБу   | 2fb- 2 | 9           | 2f56b  | 9      | 9       | 9     | 2f, -2   | 9 :  | 2f, - 2 | 9     | 2f526   | 2f5   | 2fO y  | 9    | 2f5A   | 9     | 2fObO   | 2fb, -  | 2fby6 | 9    | 2f065   | 9     | 2f5by  |
| HMRec uwk Mi ei )mantFc    | , у     | -,-     | , b    | 2           | -bO    | 9      | 2       | 2     |          | 2    | -       | 9     | b-      | A52   | , A    | 2    | - y5   | 9     | -5      | . 2     | 6-    | 2    | . 2A    | 9     | .,*,   |
| * HABRecuwk<br>Miei)mannGc |         | 5- f, * | 22*    | 2* 5        | - fb*  | 9      | 2*      | 2*    | -2f2*    | 2* . | . f. *  | 9     | *40     | 56f-+ | 5, f6* | 2* 5 | , s. + | 9     | 56fy*   | b, f. * | . 22* | 2* 5 | i. f, * | 9     | 56f, * |
| s FuPa                     | 2       | . b     | 2      | 2           | . b    | 9      | 2       | 2     | 2        | 2    | 2       | 9     | 2       | ٠,    | 2      | 2    | ٠,     | 9     | 2       | 2       | 2     | 2    | 2       | 9     | , 0    |
| * s FuPa                   | 2*      | 6f2*    | 2*     | 2*          | , fy+  | 9      | 2*      | 2*    | 2*       | 2+   | 2*      | 9     | 2*      | , f6* | 2*     | 2*   | . f5*  | 9     | 2*      | 2*      | 2*    | 2*   | 2*      | 9     | , f. * |
| I wantEciwDiuk             | 2       | . 2     | 2      | 2           | . 2    | 9      |         | b     | -        | 2    | 0       | 9     |         | .,,   | ,      | 2    | 6-     | 9     | A       | b       | 2     | 2    | . 2     | 9     | b6     |
| * I vnamÆciwDiuk           | 2*      | . fO*   | 2*     | 2*          | . fy*  | 9      | . 22*   | . 22* | -2f2*    | 2* C | XX5*    | 9     | . Al- * | Af, * | yfy*   | 2*   | - fb*  | 9     | bf6*    | 6yf-*   | 2*    | 2*   | O(O)    | 9     | Afy*   |
| 0 FkFce)vovc               | 9       | 9       | 9      | 9           | 9      | . C2   | 9       | 9     | 9        | 9    | 9       | - OA  | 9       | 9     | 9      | 9    | 9      | ,,y   | 9       | 9       | 9     | 9    | 9       | , 2b  |        |
| * 0FkFce)vovc              | 9       | 9       | 9      | 9           | 9      | 5Af, * | 9       | 9     | 9        | 9    | 95      | 556-+ | 9       | 9     | 9      | 9    | 95     | 5Of6* | 9       | 9       | 9     | 9    | 95      | Ob*   | 9      |
| I wantEc i wr )i co4 uCl   | 9       | 9       | 9      | 9           | 9      |        | 9       | 9     | 9        | 9    | 9       | 6     | 9       | 9     | 9      | 9    | 9      | A     | 9       | 9       | 9     | 9    | 9       | 6     |        |
| * I wantFc i wr )i cc4 uC  | 9       | 9       | 9      | 9           | 9      | - fO*  | 9       | 9     | 9        | 9    | 9       | 2f-+  | 9       | 9     | 9      | 9    | 9      | . fy+ | 9       | 9       | 9     | 9    | 9       | . fA° | 9      |

UDFkFce)vuwc uwk I vnamtEc i wr )i cc4 uClf H: HFpsD: DxBRsS: SR)d3W: WSd)w

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC


Sat May 7, 2021) (1:3- PM 03:3- PM) Ov relattPeak o uAl

CHB tilled, igntLade MutulByBH, o eary, Peceltlgodl, RgbyBHLud wuac, RgbyBHLud sluLmaß)

CHMurel edtl.

5D: 4-51. 1, i uBstgd: 3-614484., O-68.-.1





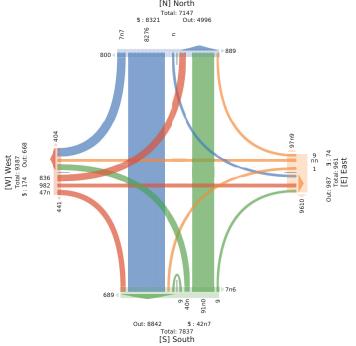
[S] South

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue Mun y3, 2,

OFIL Ingt dn (62-24 - M91:24 PM)

- II Clussre (Lit his ugd Mourcachrs3Hnuva3Pndrsøriugs3Bicachs og Roud3Bicachs og Crosswalk)

- II Movmrugs


ID: 476Aly3Locuriog: 87382A4, 639y75l. 64y8



| Lnt                          | North   |       |          |      |       |       | Euse    |       |         |      |        |       | ToFeh |          |         |        |       |        | S rise  |       |          |       |      |      |       |
|------------------------------|---------|-------|----------|------|-------|-------|---------|-------|---------|------|--------|-------|-------|----------|---------|--------|-------|--------|---------|-------|----------|-------|------|------|-------|
| Directiog                    | ToFehbo | Fgd   |          |      |       |       | S nsebo | Fgd   |         |      |        |       | North | oFgd     |         |        |       |        | Eusebol | gd    |          |       |      |      |       |
| Wimn                         | R       | W     | L        | U    | - pp  | Pnd+  | R       | W     | L       | U    | - pp   | Pnd+  | R     | W        | L       | U      | - pp  | Pnd*   | R       | W     | L        | U ·   | - pp | Pnd+ | Ige   |
| , 2, , 92792y 62:22- M       | , 2     | 6, 1  | 2        | 2    | 681   | A7    | 2       | 2     | 6       | 2    | 6      | 68y   | 2     | у6       | , 2     | 2      | 46    | 82     | 62      | 8     | 6A       | 2     | , у  | 6y   | , 17  |
| 66:22- M                     | 1A      | A28   | 2        | 2    | Aly   | . 7   | 2       | 6     | 6       | 2    | ,      | 888   | 2     | 671      | , 1     | 6      | 6. A  | 66,    | 61      | 62    | 86       | 2     | 1y   | 8A   | 164   |
| 6, :22PM                     | 78      | A11   | 6        | 2    | 8, 6  | y.    | 2       | 67    | 6       | 2    | 61     | 824   | 2     | 648      | A6      | 2      | ,,7   | 6A6    | ,.      | 66    | 77       | 2     | 48   | A,   | y71   |
| 6:22PM                       | 78      | A, 2  | 6        | 2    | Ay7   | . 6   | 2       | 67    | 2       | 2    | 67     | Ay6   | 2     | , 8A     | A       | 2      | ,.6   | 67A    | , 4     | , 6   | 84       | 2     | 44   | 1,   | yy2   |
| ,:22PM                       | y2      | A 4   | 6        | 2    | 812   | 662   | 2       | 2     | 6       | 2    | 6      | 844   | 6     | ,,2      | A6      | 2      | , 7,  | , 2A   | Al      | 66    | A4       | 2     | . 1  | y1   | y44   |
| A22PM                        | 14      | 8A6   | 2        | 2    | 722   | 6, 1  | 2       | 2     | 2       | 2    | 2      | 844   | 2     | , 7,     | 78      | 2      | A21   | , 8.   | Al      | ,7    | 8y       | 2     | 62.  | 624  | 468   |
| 8:22PM                       | . y     | 824   | 6        | 2    | 84y   | 4.    | 6       | ,     | A       | 2    | 1      | 88,   | 2     | , 7.     | AA      | 2      | , 46  | 6y6    | 86      | , 2   | 78       | 2     | 667  | 1.   | 424   |
| 7:22PM                       | . 1     | 816   | 2        | 2    | 78y   | . A   | 2       | 7     | 2       | 2    | 7      | 876   | 2     | ,,1      | 88      | 2      | , y2  | , 8y   | 8.      | ,7    | 8A       | 2     | 661  | уу   | 4A    |
| 1:22PM                       | 8,      | , 7,  | 2        | 2    | , 48  | AB    | 2       | 1     | 2       | 2    | 1      | 67.   | 2     | 6, 4     | 6y      | 2      | 681   | у6     | 62      | A     | , у      | 2     | 82   | A7   | 8. 1  |
| Vócul                        | 787     | A27.  | 8        | 2    | Al2y  | yA2   | 6       | 88    | у       | 2    | 7,     | A6, 2 | 6     | 6y84     | , 48    | 6      | , 287 | 6Ay4   | , 78    | 6A2   | AI.      | 2     | y7,  | 764  | 1871  |
| % - pprouch                  | 6756% . | 85 %  | 256%     | 2%   | 9     | 9     | 654%    | 831%  | 5A57% : | 2%   | 9      | 9     | 2%    | . 757% ( | 6838%   | 2%     | 9     | 9      | AA5 %   | Sy54% | B. 54% : | 296   | 9    | 9    | 9     |
| % Word                       | . 38%   | ВуЖ%  | 256%     | 2% 7 | 7754% | 9     | 2%      | 25/%  | 256%    | 2%   | 25 %   | 9     | 2%    | , y56%   | 831%    | 2% /   | 465/% | 9      | A54%    | , 52% | 75/% :   | 2% 66 | S1%  | 9    | 9     |
| Lit hes ugd Moeorcaclns      | 7A2     | , 44, | 6        | 2    | A7, A | 9     | 2       | 2     | 2       | 2    | 2      | 9     | 2     | 6y27     | , 4A    | 6      | 6444  | 9      | , 8A    | 6     | A78      | 2     | 74.  | 9    | 16, 2 |
| % Lit hes ugd<br>Moeorcaclns | 4y5 %   | 4y5 % | , 752% : | 2% 4 | ly5y% | 9     | 2%      | 2%    | 2%      | 2%   | 2%     | 9     | 2%    | 4y57% -  | 445y% ( | 522% 4 | ly5 % | 9      | 475y%   | 25 %  | 415 % :  | 2% y4 | 57%  | 9    | 485 % |
| Hnuva                        | 8       | 66    | 2        | 2    | 67    | 9     | 2       | 6     | 2       | 2    | 6      | 9     | 2     |          | 6       | 2      | 4     | 9      | ,       | 6     | 8        | 2     | у    | 9    | A,    |
| % Hnava                      | 25y%    | 238%  | 2%       | 2%   | 258%  | 9     | 2%      | , 54% | 2%      | 2%   | 654%   | 9     | 2%    | 257%     | 254%    | 2%     | 258%  | 9      | 25 %    | 25 %  | 636%     | 2% 25 | 54%  | 9    | 257%  |
| Bicaclns og Roud             | 66      | 77    | A        | 2    | 14    | 9     | 6       | 8A    | у       | 2    | 76     | 9     | 6     | Al       | 2       | 2      | Ay    | 9      | 4       | 6, .  | 62       | 2     | 68y  | 9    | A28   |
| % Bicaclns og Roud           | , 52%   | 65 %  | y752%    | 2%   | 654%  | 9     | 622%    | 4y5y% | 622%    | 2% 4 | 1. 56% | 9     | 622%  | , 56%    | 2%      | 2%     | 65 %  | 9      | A57%    | 4.57% | , 5/% :  | 2% 64 | 57%  | 9    | 85y%  |
| Pndnseriugs                  | 9       | 9     | 9        | 9    | 9     | 7y4   | 9       | 9     | 9       | 9    | 9      | 6y8,  | 9     | 9        | 9       | 9      | 9     | 66y2   | 9       | 9     | 9        | 9     | 9    | 8yA  |       |
| % Pndnseriugs                | 9       | 9     | 9        | 9    | 9     | y454% | 9       | 9     | 9       | 9    | 9      | 7254% | 9     | 9        | 9       | 9      | 9.    | . 85 % | 9       | 9     | 9        | 9     | 94   | 656% | 9     |
| Bicaclns og Crosswulk        | 9       | 9     | 9        | 9    | 9     | 676   | 9       | 9     | 9       | 9    | 9      | 61y.  | 9     | 9        | 9       | 9      | 9     | , 24   | 9       | 9     | 9        | 9     | 9    | 81   |       |
|                              |         |       |          |      |       |       |         |       |         |      |        |       |       |          |         |        |       |        |         |       |          |       |      |      |       |

6 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Sat May 7, 2022
Full Length (10:30 Ah-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941367, Location: 54,503921, -74,681975 [N] North Total: 7147 5 : 8321 Out: 4996



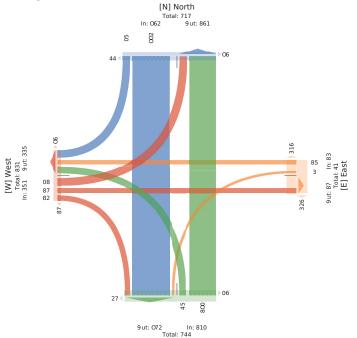
5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ HF... - TMC
TWEMM us 3,2 ...
MUFBus I Lun g h (6: gA.-911 M PA911 M:
) GS Gill ig Borde usef MHHABBIGISR Linea3 LIFLI educi3 k Øb BIG H: mHuF3k Øb BIG H:
s vHi I ud:
) GCMHM DIC d
46 - 71.485y3d HbadH: - 91.9287, ASBy1.5bA7y9

| Ottawa                   |
|--------------------------|
| l√Hw0FLFfa-s0ea HONeeuIu |
| A22 s HcieL000e0Hc 6 v8  |
| ( LpLuc3N( 3h, K 1073s ) |

1 of 6

| dLo                       | ( Her   |        |      |     |       |       | Juie |         |      |      |       |       | THE | er        |       |      |       |       | t Lie   |        |       |      |       |       |         |
|---------------------------|---------|--------|------|-----|-------|-------|------|---------|------|------|-------|-------|-----|-----------|-------|------|-------|-------|---------|--------|-------|------|-------|-------|---------|
| 6 OALEACH:                | THEer f | HECF   |      |     |       |       | t Li | ef HEcF |      |      |       |       | (H  | er f HEcl | 7     |      |       |       | Juief H | EcF    |       |      |       |       |         |
| SŒL                       | m       | S      | d    | W   | ) pp  | l LFU | m    | S       | d    | W    | ) pp  | l LFU | m   | S         | d     | W    | ) pp  | l LFU | m       | S      | d     | W    | ) pp  | l LFU | 4ce     |
| , 2, , 12112y A, -911 M   | b       | A22    | 2    | 2   | A2b   | Ay    | 2    | 7       | A    | 2    | A2    | 78    | 2   | 19        | A2    | 2    | 59    | 8,    | b       | у      | A5    | 2    | 8A    | b     | , A6    |
| A-221 M                   | AB      | y1     | 2    | 2   | bb    | 7     | 2    | 9       | 2    | 2    | 9     | A28   | 2   | 59        | 5     | 2    | y2    | 82    | у       | 5      | Al    | 2    | , b   | 7     | A72     |
| A-All M                   | Al      | y7     | 2    | 2   | 79    | , 8   | 2    | ,       | 2    | 2    | ,     | 72    | 2   | 5A        | A,    | 2    | y8    | , 5   | у       | - ;    | у     | 2    | A5    | Ab    | Ab1     |
| A-821 M                   | A9      | b1     | 2    | 2   | 77    | 88    | 2    | 1       | 2    | 2    | 1     | 72    | 2   | 15        | A,    | 2    | 5b    | 55    | у       | AA     | . A9  | 2    | 8,    | , 7   | , 29    |
| SHuC                      | 12      | 887    | 2    | 2   | 8b7   | b,    | 2    | , 2     | А    | 2    | , A   | 8y5   | 2   | , 81      | 92    | 2    | , y1  | A19   | , 7     | , 5    | 1,    | 2    | A2y   | 59    | у7,     |
| * ) ppvHuBr               | A, .7*  | by.A*  | 2* 2 | *   | P     | P     | 2* : | 71., *  | 9.b* | 2*   | P     | F     | 2*  | b1.1* .   | A9.1* | 2*   | P     | P     | , y.A*  | , 9.8* | 9b.5* | 2*   | P     | P     | P       |
| * SHauC                   | 5.8*    | 9, .b* | 2* 2 | * 9 | 7.A*  | P     | 2*   | , .1*   | 2.A* | 2*   | , .y* | F     | 2*  | , 7.y*    | 1.A*  | 2* 8 | 9.y*  | P     | 8.y*    | 8.8*   | 5.5*  | 2* 1 | 48.1* | P     | P       |
| l R%                      | 2.bAy   | 2.b9,  | P    | P 2 | 2.b79 | P     | P    | P       | P    | P    | P     | F     | P   | 2.7, 1    | 2.b88 | Р.   | 2.79b | P     | 2.725   | 2.122  | 2.bA8 | P    | 2.b82 | P     | 2.79,   |
| d0oreiucFMHeHaBaBCLi      | 9y      | 8, 7   | 2    | 2   | 8y5   | P     | 2    | 2       | 2    | 2    | 2     | F     | 2   | , 8,      | 92    | 2    | , y,  | P     | ,7      | A      | 1,    | 2    | b,    | p     | y82     |
| * d0oreiucF<br>MH#MBaBCii |         | 7y.A*  | 2* 2 | * 7 | 5.y*  | P     | 2*   | 2*      | 2*   | 2*   | 2*    | F     | 2*  | 7b.y*     | A22*  | 2* 7 | b.7*  | Р     | A22*    | 8.b*   | A22*  | 2* 1 | /5.5* | Р     | 7, ., * |
| RLuwa                     | ,       | A      | . 2  | 2   | 8     | P     | 2    | 2       | 2    | 2    | 2     | F     | 2   | A         | 2     | 2    | A     | P     | 2       | A      | . 2   | 2    | A     | P     | 1       |
| * RLive                   | 9.2*    | 2.8*   | 2* 2 | *   | 2.b*  | P     | 2*   | 2*      | 2*   | 2*   | 2*    | F     | 2*  | 2.9*      | 2*    | 2*   | 2.9*  | P     | 2*      | 8.b*   | 2*    | 2*   | 2.7*  | p     | 2.5*    |
| k OBaBCLi Ht mHaF         | A       | . 7    | 2    | 2   | A2    | P     | 2    | , 2     | A    | 2    | , A   | F     | 2   | -,        | 2     | 2    | ,     | P     | 2       | , 9    | 2     | 2    | , 9   | p     | 1y      |
| * k OBaBCLi H: mHuF       | , .2*   | ,.y*   | 2* 2 | *   | , .5* | P     | 2*   | A22*    | A22* | 2* 1 | A22*  | F     | 2*  | 2.7*      | 2*    | 2*   | 2.y*  | P     | 2*      | 7, .8* | 2*    | 2* , | , .9* | p     | y., *   |
| l LFLie@ci                | I       | P F    | P    | P   | P     | yА    | P    | P       | P    | P    | P     | Ab,   | P   | P         | P     | P    | P     | A9A   | P       | P      | P     | P    | P     | 5,    |         |
| * l LFLieduci             | I       | P      | P    | P   | Pb    | 5.5*  | P    | P       | P    | P    | P.    | 9b.9* | P   | P         | P     | P    | P     | 7A5*  | P       | P      | P     | P    | P.    | 75.7* | P       |
| k (BaBCLi Hr s vHiI uGi   | I       | P F    | P    | P   | P     | AA    | P    | P       | P    | P    | P     | A79   | P   | P         | P     | P    | P     | AB    | P       | P      | P     | P    | P     | ,     |         |
| *k 0BaBCLiHcs√Hillu0à     | I       | P F    | P    | P   | P.F   | 8.9*  | P    | P       | P    | P    | P     | 1A5*  | P   | P         | P     | P    | P     | b.9*  | P       | P      | P     | P    | P     | 8.A*  | P       |
| L                         |         |        |      |     | - 1   |       | _    |         |      |      |       |       | _   |           |       |      |       |       |         |        |       |      |       |       |         |


U LFLievOuci ucFk (BaBCLi H:s vHiI uCi. d-d LOBm-mObreBS-SrvEBW-WPSEvc

2 of 6 3 of 6

# 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

Sat May 7, QUEEN ELIZABEH DIWNT & FIF... - IMC Sat May 7, QUEEN (UKND) (12:3APM - 1:3APM) | I GS Gillet ([githmLand MrtrdthHelt, veaBy, Pedeltdaol, RillshHeltro wrad, RillshHeltro srd.Imask) | I CMr Bel ent. 9D: 4A15. 7, gr Hitro: 3A605421, -7A6 81473



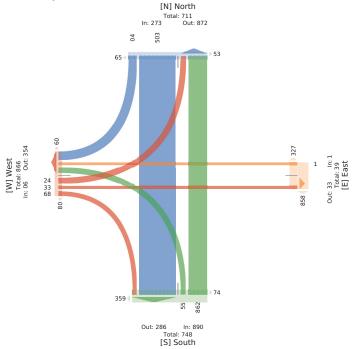


[S] South

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC



| 5566814 - COVID           | OUE     | EEN E   | LIZ  | ΆB   | ETH         | DRV   | ΝÓ  | a FII   | E  | - TI | ИC   |       |      |          |          |    |         |       |         |        | 1       |      |        |        |      |
|---------------------------|---------|---------|------|------|-------------|-------|-----|---------|----|------|------|-------|------|----------|----------|----|---------|-------|---------|--------|---------|------|--------|--------|------|
| TueMua y3, 2, ,           | •       |         |      |      |             |       |     |         |    |      |      |       |      |          |          |    |         |       |         | - (    |         | 1    | 11     |        |      |
| OM OFul In gth(I          | 6-A2 (  | nm - c  | - A  | 2 01 | M( = 1      | PE    | ന്ന | Ful s   | id | n.   |      |       |      |          |          |    |         |       |         |        | (((     | n    | TO     | NA.    | 10   |
| o CCr QueeFe IH\BRee u    |         |         |      |      |             |       |     |         |    |      | Œc i | ωDii  | ık31 | l vna nt | ffic i w | ,  |         |       |         |        | 1       | /(   | ·W     | LVV    | U    |
| r )i cc4 uC(              |         | ,       |      |      | , , , , , , |       |     | HLI THE |    |      | wc.  |       |      |          | wer n    |    |         |       |         | 0)i F  | kFk !   |      |        |        |      |
| o (CMi PF7 Fwe            |         |         |      |      |             |       |     |         |    |      |      |       |      |          |          |    |         |       |         |        |         |      | wceF00 |        |      |
| 8h : 56. A9y3Hi muexi     | w h6f   | h2.A5.  | . 3  | -v6i | f9O 5       | vh    |     |         |    |      |      |       |      |          |          |    |         |       |         | t F    | KFuw8   | lt3  | 3g , G | 6J53   | 3r c |
| HFB                       | t i )eR | ,       |      | ,    |             | -     |     |         |    |      |      |       | an 1 |          |          |    |         |       |         |        |         |      |        |        | _    |
|                           |         |         |      |      |             |       | Euc |         |    |      |      |       | Ti d |          |          |    |         |       | n Fce   |        |         |      |        |        |      |
| h v)Fnesi w               | Ti deR  |         |      | -    |             |       |     | αN dw   |    | -    |      |       |      | eRN dw   |          | _  |         |       | EuceN o |        | -       |      |        |        | _    |
| S∜ F                      | D       | -       |      | W    |             | 0FkU  |     |         |    |      |      | 0FkU  | _    | S        |          | W  |         |       | D       | S      |         | W    | o KK   |        |      |
| , 2, , -26-2y 6:A20M      | , 6     |         |      | 2    | . A6        | , , . | 2   |         | 2  |      | 2    | .,9   | 2    | 6,       | . 6      |    | 9y      | yO    |         | A      |         | 2    | , 9    | , .    | ,    |
| 6:b60M                    | , A     |         |      |      | . bO        | , 2   | 2   |         | 2  |      | 2    | 9     | 2    | 6b       | ٠,       | 2  | 99      | yO    |         |        | . b     | 2    | , у    | ٠,     | ,    |
| 9:220M                    | , b     |         |      | 2    | . A6        | . 6   | 2   |         | 2  |      | 2    | . 22  | 2    | 66       |          | 2  | 9,      | AA    |         |        | ٠,      | 2    | . 9    | . A    |      |
| 9:. 60M                   | .0      | . b.    | 2    | 2    | . 65        | . 5   | 2   | 9       | 2  | 2    | 9    | 60    | 2    | yb       | . 2      | 2  | Cb      | AO    | у       | ,      | . 6     | 2    | , b    | ,,     |      |
| Si euC                    | 52      | b5.     | 2    | 2    | 6Q          | у6    | 2   | 9       | 2  | 2    | 9    | b22   | 2    | , A6     | bb       | 2  | , y5    | , , y | A,      |        | 62      | 2    | 5A     | 90     |      |
| * o KKji unR              | . 6f6*  | Cbf6*   | 2* . | 2*   | -           | -     | 2*  | . 22*   | 2* | 2*   | -    | -     | 2*   | Cbf, *   | . 6fO*   | 2* | -       | -     | Abfb*   | fO*    | 6AfO* : | 2*   | -      | -      |      |
| * SieuC                   | 5fb*    | 6. f, * | 2* . | 2* 9 | 92f9*       | -     | 2*  | 2f9*    | 2* | 2*   | 2f9* | -     | 2*   | , bf6*   | bf9*     | 2* | , 5f. * | -     | AfA*    | . f. * | 6f, *   | 2*   | 5fy*   | -      |      |
| 0s %                      | 2f529   | 2fO9A   | -    | -    | 2f52A       | -     | -   | -       | -  | -    | -    | -     | -    | 2fy5b    | 2fyAA    | -  | 2fO42   | -     | 2f6A9   | -      | 2fOAA   | - :  | 2fOy2  | -      | 26   |
| HNBRec uwk Mi ei )mantEc  | 06      | bOy     | 2    | 2    | 6y,         | -     | 2   | 2       | 2  | 2    | 2    | -     | 2    | , A6     | bb       | 2  | , y5    | -     | A2      | 2      | 62      | 2    | œ      | -      |      |
| * H\BRec unk              |         |         |      |      |             |       |     |         |    |      |      |       |      |          |          |    |         |       |         |        |         |      |        |        |      |
| Miei)mannEc               | 5bfb*   | 55f, *  | 2*   | 2* 5 | 5Cf6*       | -     | 2*  |         | 2* | 2*   | 2*   | -     | 2*   | . 22*    | . 22*    | 2* | . 22*   | -     | 5AfO*   | 2*     | . 22*   | 2* C | 9f2*   | -      | 5yf  |
| s FuPa                    | ,       | 2       | 2    | 2    | ,           | -     | 2   | 2       | 2  | 2    | 2    | -     | 2    | 2        | 2        | 2  | 2       | -     | 2       | 2      | 2       | 2    | 2      | -      |      |
| * s FuPa                  | , f, *  | 2*      | 2*   | 2*   | 2fA*        | -     | 2*  | 2*      | 2* | 2*   | 2*   | -     | 2*   | 2*       | 2*       | 2* | 2*      | -     | 2*      | 2*     | 2*      | 2*   | 2*     | -      | 2f,  |
| I vnantEciwDiuk           | A       | . b     | 2    | 2    | у           | -     | 2   | 9       | 2  | 2    | 9    | -     | 2    | 2        | 2        | 2  | 2       | -     | ,       |        | 2       | 2    | . A    | -      |      |
| * I vnam@ciwDiuk          | ALA*    | 2fO*    | 2*   | 2*   | . f, *      | -     | 2*  | . 22*   | 2* | 2* . | 22*  | -     | 2*   | 2*       | 2*       | 2* | 2*      | -     | 9fA*    | . 22*  | 2*      | 2* . | bf2*   | -      | , f  |
| 0FkFce)wwc                | -       | -       | -    | -    | -           | y2    | -   | -       | -  | -    | -    | , yA  | -    | -        | -        | -  | -       | , 2,  | -       | -      | -       | -    | -      | 9A     |      |
| * OFkFce)vuvc             | -       | -       | -    | -    | -           | 5AfA* | -   | -       | -  | -    | - 5  | 90£A* | -    | -        | -        | -  | - (     | Ж2*   | -       | -      | -       | -    | - 5    | 5, f9* |      |
| I wantFc i wr )i cc4 uC   | -       | -       | -    | -    | -           | 6     | -   | -       | -  | -    | -    | ., у  | -    | -        | -        | -  | -       | , 6   | -       | -      | -       | -    | -      | 6      |      |
| * I wantEc i wr )i cc4 uC | -       |         |      | -    | -           | 9fv*  | _   |         | -  |      |      | A fO* |      | -        |          | -  |         | . 12* |         |        | -       |      |        | yfb*   |      |


UDFkFce)vuwc uwk I vnamtFc i wr )i cc4 uCf H: HFpe3D: DvBRe3S: SR)d3W: W-Sd)w

4 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Sat May 7, 2021 (1:30 PM - 0:30 PM) - v relaHPeak o uAl
CHB HILLel, igmtLadc MutullByHel, o ear y, Peceltlgdl, RgbyHel.ud wuac, RgbyHel.ud sluUmalR)
CHMurel edtl.
9D: 415307, i uBatgud: . 16 03425, -71608547.





5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

 5566814 - COVID - HANN 51 te SUNNTSIDLE AVE - III.

 Tieb Many 32, 2.

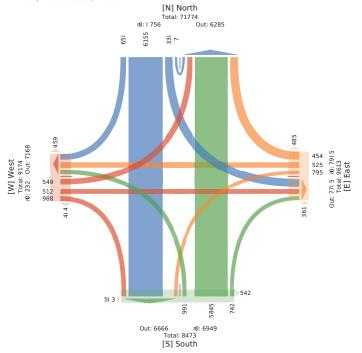
 OFIL Large th (62-72 - M91:72 PM)

 I Classes (tilt he sigd Moorcaches3Hmuva3Pndnsariugs3Bicachs og Roud3Bicachs og Crossvulk)

 I I Movramges

 ID: 476Al43Locusigs; 87548, 4639/73. A824




| Lnt                          | North   |        |          |        |           | Euse     |          |        |       |        |       | ToFeh  |        |       |      |       |        | S rise  |         |        |      |       |       |      |
|------------------------------|---------|--------|----------|--------|-----------|----------|----------|--------|-------|--------|-------|--------|--------|-------|------|-------|--------|---------|---------|--------|------|-------|-------|------|
| Diractiog                    | ToFehbo | oFgd   |          |        |           | S risebo | Fgd      |        |       |        |       | Northb | oFgd   |       |      |       |        | Eusebol | gd      |        |      |       |       |      |
| Wimn                         | R       | W      | L        | U      | - pp Pnd+ | R        | W        | L      | U     | - pp   | Pnd+  | R      | W      | L     | U    | - pp  | Pnd+   | R       | W       | L      | U    | - pp  | Pnd*  | Ige  |
| , 2, , 92792y 62:22- M       | ,7      | , 68   | 8A       | 2      | ,., 9     | A        | 61       | 6A     | 2     | 1y     | 12    | 66     | , A6   | 66    | 2    | ,7A   | 11     | 67      | ,4      | , 1    | 2    | y2    | y7    | 13   |
| 66:22- M                     | 81      | 844    | у6       | 2      | 161 9     | 4A       | 8.       | ,,     | 2     | 61A    | 622   | ,7     | 8.,    | , 4   | 2    | 7A1   | y4     | 8,      | 8.      | AA     | 2    | 6, A  | 616   | 68   |
| 6, :22PM                     | 72      | 84y    | . 7      | 2      | 1A, 9     | 44       | 7A       | , 2    | 2     | 6y,    | 6, A  | A2     | 874    | ,7    | 2    | 768   | . A    | 82      | A6      | 8A     | 2    | 668   | 6     | 68.  |
| 6:22PM                       | y2      | 846    | y1       | 6      | 1A 9      | 62y      | yA       | 6.     | 2     | 64.    | 6y.   | .,,    | 88y    | , 1   | 2    | 847   | 1y     | 88      | A6      | Ay     | 2    | 66,   | 6.7   | 688  |
| ,:22PM                       | 7A      | 777    | 47       | 2      | y2A S     | 4,       | 77       | -      | 2     | 677    | , Al  | 64     | 8y.    | A7    | 2    | 7A,   | 6, 7   | A6      | , 4     | A4     | 2    | 44    | , 6y  | 68.  |
| A22PM                        | 84      | 7y1    | . 4      | 2      | y68 9     | 4.       | 76       | 6,     | 2     | 616    | , A4  | , 8    | 8      | A7    | 2    | 78y   | 6, y   | Ay      | 8.      | 78     | 2    | 6A4   | , A4  | 671  |
| 8:22PM                       | 88      | 7, 1   | 44       | 2      | 114 9     | 4y       | 86       | 6,     | 2     | 672    | 64.   | , 2    | 76,    | ,7    | 2    | 77y   |        | AB      | 72      | 71     | 2    | 682   | 61y   | 676  |
| 7:22PM                       | 11      | 87y    | y,       | 2      | 747 9     | . 2      | A4       | 6A     | 2     | 6A,    | , 62  | 64     | 7A     | 6.    | 2    | 7y7   | y4     | A2      | ,.      | 78     | 2    | 66,   | , 27  | 686  |
| 1:22PM                       | A,      | , 6.   | A7       | 2      | ,.7 9     | AA       | 6y       | 7      | 2     | 77     | y4    | 4      | , A    | 61    | 2    | , 1A  | , 6    | 67      | 67      | A2     | 2    | 12    | 7,    | 11   |
| West                         | 8.A7    | 82.AA  | 117      | 6      | 76A8 9    | yAy.     | A4A      | 6, A   | 2     | 6, 7A  | 68, A | 6y4    | A yA   | 2     | 2    | 8, y, | yA7    |         | A24     | Av.    | 2    | 414   | 68. 4 | 661, |
| % - pprouch                  | . 57%   | y. 51% | 6A52%    | 2%     | 9 9       | 7.5%     | A63B%    | 45 % 2 | 1%    | 9      | 9     | 85 %   | 425/%  | 736%  | 2%   | 9     | 9      | , 45/%. | A654% J | A 38%  | 2%   | 9     | 9     |      |
| % Woed                       | A5y% .  | A85y%  | 75y%     | 2% 8   | 385 % 9   | 154%     | AB%      | 636% 2 | 96€   | 25 %   | 9     | 657%   | AA5406 | 654%  | 2% A | 15/%  | 9      | ,57%    | , 5v%   | A5 %   | 2%   | . 54% | 9     |      |
| Lit hes ugd Moeorcaclns      | A 1     | A 21   | 178      | 6      | 8.8y 9    | у        | Α,       | 6, A   | 2     | 6, , y | 9     | 6y7    | A177   | , 64  | 2    | 8284  | 9      | , . A   | , 4y    | Al 1   | 2    | 481   | 9     | 6621 |
| % Lit hes ugd<br>Moenreaclns |         | 4838%  | 4. 54% 6 | 522% 4 | 1838% 9   | 4.52%    | 4y5, % ( | 522% 2 | 296.4 | ly51%  | 9     | 4y5%   | 4838%  | 4457% | 2% 4 | 85 %  | 9      | 4.58%   | 4156% 4 | 1. 58% | 2% 4 | ly:1% | 9     | 475  |
| Hnuva                        | 8,      | 1,     | ,        | 2      | 621 9     | A        | 8        | 2      | 2     | у      | 9     | 2      | 4y     | 6     | 2    | 4.    | 9      | ,       | A       | 2      | 2    | 7     | 9     | , (  |
| % Hnuva                      | 45y%    | 657%   | 254%     | 2%     | ,56% 9    | 258%     | 652%     | 2% 2   | 2%    | 251%   | 9     | 2%     | , 57%  | 257%  | 2%   | , 54% | 9      | 25/%    | 652%    | 2%     | 2%   | 257%  | 9     | 654  |
| Bicaclns og Roud             | У       | 617    | 4        | 2      | 6.6       | 6,       | у        | 2      | 2     | 64     | 9     | 8      | 6, 6   | 2     | 2    | 6, 7  | 9      | A       | 4       | 1      | 2    | 6.    | 9     | A    |
| % Bicaclns og Roud           | 651%    | 836%   | 638%     | 2%     | A57% 9    | 651%     | 65 %     | 2% 2   | 2%    | 657%   | 9     | ,5%    | A55%   | 2% 2  | 2%   | , 54% | 9      | 652%    | , 54%   | 631%   | 2%   | 654%  | 9     | , 50 |
|                              | 9       | 9      | 9        | 9      | 9 2       | 9        | 9        | 9      | 9     | 9      | 6A .  | 9      | 9      | 9     | 9    | 9     | y67    | 9       | 9       | 9      | 9    | 9     | 68, 1 |      |
| Pndnseriugs                  |         | 9      | 9        | 9      | 9 9       | 9        | 9        | 9      | 9     | 9.     | 4y57% | 9      | 9      | 9     | 9    | 94    | ly5466 | 9       | 9       | 9      | 9    | 9     | 475 % |      |
| Pndnseriugs<br>% Pndnseriugs | 9       | 9      |          |        |           |          |          |        |       |        |       |        |        |       |      |       |        |         |         |        |      |       |       |      |
|                              | -       | -      | -        | 9      | 9 2       | 9        | 9        | 9      | 9     | 9      | A7    | 9      | 9      | 9     | 9    | 9     | , 2    | 9       | 9       | 9      | 9    | 9     | 1A    |      |

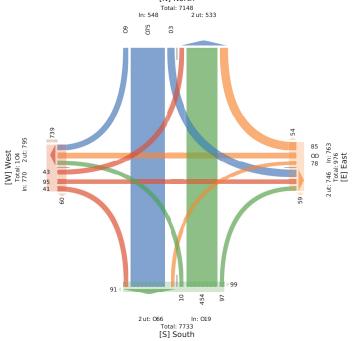
\*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

6 of 6 1 of 6 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

Sat May 7, 2020 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941369, Location: 54.395291, -74.683509






5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
TueMus y3, 2, ,
MFFua I Inn g h ( 6: g4492 1 M PA, 42 1 M:
1) () Cjassla g tilosu rF McceHav)ls3BLuRa3I IFIseftlurs3w0av)ls cr kcuF3w0av)ls cr
CHssmip:
1)) McRU I re
18 - 4748843i cvud0r - 57.945, 443897.889524

| i Id                         | (cHo   |       |        |      |            | J use  |        |       |      |       |       | Tc Eeo |       |       |      |                |        | t Ise    |       |       |      |       |        |      |
|------------------------------|--------|-------|--------|------|------------|--------|--------|-------|------|-------|-------|--------|-------|-------|------|----------------|--------|----------|-------|-------|------|-------|--------|------|
| 6 (Havefer                   | TcEeof | cErF  |        |      |            | t Lsef | Er F   |       |      |       |       | (cHof  | cErF  |       |      |                |        | J usef c | Er F  |       |      |       |        |      |
| SŒ L                         | k      | S     | i      | W    | 1 pp l IFU | k      | S      | i     | W    | 1 pp  | 1 LFU | k      | S     | i     | W    | 1 pp           | l IFU  | k        | S     | i     | W    | 1 pp  | LIFU   | Dе   |
| , 2, , P27P2y AA-921 M       | A7     | A55   | A,     | 2    | AyA I      | ,7     | A7     | 5     | 2    | 55    | , 9   | у      | A, 8  | 4     | 2    | A5,            | Ay     | A2       | 4     | 4     | 2    | , b   | 5A     | 9b   |
| AA571 M                      | A9     | AA,   | , 8    | 2    | A7A I      | , 5    | A2     | 5     | 2    | 9b    | 9A    | 5      | AA7   | b     | 2    | A, y           | A7     | A9       | A,    | 4     | 2    | 95    | 79     | 97   |
| A, -221 M                    | A2     | AA9   | , 9    | 2    | A58 I      | ,7     | A4     | 8     | 2    | 72    | 97    | 4      | AA4   | у     | 2    | A97            | A7     | A,       | 7     | A5    | 2    | 9A    | 58     | 98   |
| A, -A71 M                    | A7     | Абу   | A4     | 2    | AbA I      | -,,    | AA     | . 7   | 2    | 9b    | 9b    | AA     | A25   | 5     | 2    | AA4            | Ab     | у        | A2    | b     | 2    | ,7    | 5A     | 98   |
| Sceu)                        | 79     | 7AB   | b2     | 2    | 854 F      | 48     | 77     | A4    | 2    | Ay2   | А, у  | 9A     | 585   | , b   | 2    | 7, 9           | 87     | 5,       | 98    | 52    | 2    | A4b   | AbA    | A58  |
| * 1 ppHtuvo                  | b., *  | y4.7* | A, .9* | 2*   | P F        | 78.7*  | 9, .5* | AA, * | 2*   | P     | P     | 7.4*   | bb.y* | 7.5*  | 2*   | P              | P      | 97.8*    | 92.7* | 99.4* | 2*   | P     | I      |      |
| * Sceu)                      | 9.8*   | 97.9* | 7.7*   | 2* 5 | 5.7* I     | 8.8*   | 9.b*   | A9*   | 2° i | AA8*  | P     | , .A*  | 9Ab*  | A4*   | 2* 9 | 97.b*          | P      | , .4*    | , .7* | , .y* | 2*   | b.A*  | I      |      |
| 1 B%                         | 2.bb9  | 2.b47 | 2.y84  | P    | 2.4AA I    | 2.482  | 2.y, 5 | 2.y4, | P    | 2.b72 | P     | 2.8b,  | 2.4A4 | 2.yyb | P    | 2.4 <i>A</i> b | P      | 2.b2b    | 2.yy9 | 2.8y4 | Ρ.   | 2.b85 | I      | 2.47 |
| i Otloes ur F McecHav)Ls     | 5y     | 542   | b2     | 2    | 8Ay I      | 47     | 77     | A4    | 2    | A64   | P     | 92     | 55A   | , b   | 2    | 544            | P      | 5,       | 99    | 9b    | 2    | A49   | I      | A94  |
| * i @loes ur F<br>McecHav)Is |        | 47.2* | A22*   | 2* 4 | 17.A* I    | 44.2*  | A22*   | A22*  | 2* 4 | 14.5* | P     | 48.b*  | 47.2* | A22*  | 2* 4 | ¥7.5*          | P      | A22*     | 4Ay*  | 47.2* | 2* 4 | 17.b* | I      | 47.b |
| BLuRa                        | 8      | AA    | 2      | 2    | Ay I       | A      | . 2    | 2     | 2    | A     | P     | 2      | A7    | 2     | 2    | A7             | P      | 2        | A     | . 2   | 2    | A     | I      | 9    |
| * BluRa                      | AA9*   | , .A* | 2*     | 2*   | ,.8* I     | A2*    | 2*     | 2*    | 2*   | 2.8*  | P     | 2*     | 9., * | 2*    | 2*   | , .4*          | P      | 2*       | , .b* | 2*    | 2*   | 2.b*  | I      | , .9 |
| w@rav)Ls cr k cuF            | 2      | A7    | 2      | 2    | A7 I       | 2      | 2      | 2     | 2    | 2     | P     | A      | b     | 2     | 2    | 4              | P      | 2        | ,     | ,     | 2    | 5     | I      | ,    |
| * w@rav)Es cr k cuF          | 2*     | , 4*  | 2*     | 2*   | ,.9* I     | 2*     | 2*     | 2*    | 2*   | 2*    | P     | 9., *  | Ay*   | 2*    | 2*   | Ay*            | P      | 2*       | 7.8*  | 7.2*  | 2*   | 9.5*  | E      | A4*  |
| l IFIsel@urs                 | F      | P     | P      | P    | P 2        | F      | P      | P     | P    | P     | Α,    | P      | P     | P     | P    | P              | 7b     | I        | P P   | P     | P    | P     | ABy    |      |
| * 1 LFLsel@irs               | F      | P     | P      | P    | P F        | F      | P      | P     | P    | P.    | 48.A* | P      | P     | P     | P    | Pl             | 14., ° | I        | P     | P     | P    | P4    | 1, .9* |      |
| w0/av)Ls cr Cl#ssmu)n        | F      | P     | P      | P    | P 2        | F      | P      | P     | P    | P     | 7     | P      | P     | P     | P    | P              | у      | I        | P     | P     | P    | P     | A5     |      |
| * w0xav)Ls cr CHessmu)n      | F      | P     | P      | P    | P F        | F      | P      | P     | P    | P     | 9.4*  | P      | P     | P     | P    | P.             | 42.b*  | I        | P     | P     | P    | P     | y.y*   |      |

<sup>U</sup>l LFLsel•Burs urF w0vav)Ls cr CHessmu)n. i - i LQBk - k Qdoe3S- SoHE3W- WPSEH

2 of 6

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movemens
ID: 941359, Location: . 4699. 291, -746583. 09 [N] North Total: 7148 In: 548 2 ut: 533

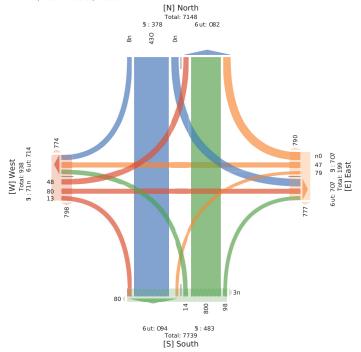


### 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
TueMusy 32, 2, 5
0 M OR4 langt h (16 0M: A0M(: - 9FhiliP0Rul ) Cs1
in Pd thorofor I drow utR MGChewRF3) Refs-30 PREceluBr3k one wife OB mCuR3k one wife OB
d XCot utl (
in PMC9FDR0
4n 785. 6b83r CreaxCEZ A5f68A 8. 3:y5fbC6A28

3 of 6

|                            | _       |        |        |      |         | -      |        |        | _   |        |        | _       |        |          |      |        |        | _      |        |         |      |       |      | _     |
|----------------------------|---------|--------|--------|------|---------|--------|--------|--------|-----|--------|--------|---------|--------|----------|------|--------|--------|--------|--------|---------|------|-------|------|-------|
| r FH                       | t Clev  |        |        |      |         | Euce   |        |        |     |        |        | TCs ev  |        |          |      |        |        | n Foe  |        |         |      |       |      |       |
| h dFvetCB                  | TG: evN | Cs BR  |        |      |         | n FoeN | G:BR   |        |     |        |        | t ClevN | Cs BR  |          |      |        |        | EuceN: | s BR   |         |      |       |      |       |
| SdF                        | m       | S      | 1      | W    | i KKOFR | m      | S      | r      | W   | i KK   | 0FRU   | m       | S      | r        | W    | i KK   | 0FRU   | m      | S      | r       | W    | i KK  | 0FRU | 4Be   |
| , 2, , :25:2y 67220M       |         | . Ay   | , .    | 2    | . y8    | ,.     | . 6    | y      | 2   | A.     | A      | ,       | . 6.   | A        | 2    | . 6y   | 65     | . 2    | .,     | .,      | 2    | 6A    | b,   | 68.   |
| 67. 50M                    |         | . 56   |        | 2    | . Oy    | , 8    | . b    |        | 2   | Ab     | Ω      | у       | A      | ٠.,      | 2    | . 66   | A,     |        | 8      | . 6     | 2    | 66    | b,   | 688   |
| 67620M                     | . A     | ,8     | , ,    | 2    | . bA    | , 5    | 8      |        | 2   | 65     | 5A     | 0       | .,6    | у        | 2    | . 60   | , .    | 0      | . 5    | . A     | 2    | 6y    | bb   | 6y2   |
| 67A50 M                    |         | . Ay   | , :    | 5 2  | . OA    | , 6    | . 6    | 6      | 2   | 68     | b6     | у       | .,2    | ,        | 2    | . 68   | , 8    | 0      | ,      | . 5     | 2    | 65    | AB   | 68)   |
| SGmP                       | A8      | 5yb    | O      | 3 2  | y. A :  | 80     | 5.     | ٠,     | 2   | . b.   | , 68   | , A     | AOC    | 65       | 2    | 5Ay    | . , y  | 6y     | AO     | 5A      | 2    | . 68  | , 68 | . 5b. |
| * i KKKinw                 | bfB*    | Œfy*   | ., f5* | 2*   | : :     | b2f8*  | 6. fy* | yf5*   | 2*  | :      | :      | AfA*    | OBf, * | bfA*     | 2*   | :      | - :    | , bfb* | 6A/5*  | 60lO* 2 | *    | :     | :    |       |
| * SGmP                     | 6f. *   | 6bfB*  | 5fy*   | 2* . | A5fy*   | bf6*   | 6f6*   | 2fO*   | 2*  | . 2f6* | :      | . f5*   | 6. f6* | , f, * : | 2* € | 52+    | - :    | , fA*  | 6f. *  | 665* 2  | * (  | JB*   | :    |       |
| 0) %                       | 2fOy5   | 2fBA6  | 2f00   | :    | 2f85y : | 2fQ 8  | 2fOy5  | 2fA, 8 | :   | 2f00b  | - :    | 2fyCb   | 2f8. y | 2fy, 8   | - :  | 2fByb  | - :    | 2fOy5  | 2fC22  | 2f822   | : 2  | £B, b | - :  | 2fBy5 |
| r dilveouERMGcDvaviFo      | AA      | 5A6    | 0      | A 2  | by.     | 85     | A6     | ٠,     | 2   | . 5b   |        | ,,      | A5.A   | 65       | 2    | 5      |        | 65     | Ay     | 5A      | 2    | . 6b  |      | . Ayı |
| *rd-l/eouBR<br>MGcChen-lFo |         | 8.A/6* | 8AfA*  | 2* 1 | BA/2*   | 8bf8*  | 8bf. * | . 22*  | 2*  | 8bf8*  |        | 8. fy*  | 86f2*  | . 22*    | 2* 8 | 66£A*  |        | 8Ab+   | 8yf8*  | . 22* 2 | * 8y | /fOt  |      | 8ÆA*  |
| ) Fu9a                     | 5       | (      | ١.     | 2    | . A     | 2      | 2      | 2      | 2   | 2      | :      | 2       | .,     | 2        | 2    | ٠,     | - :    | 2      |        | 2       | 2    | -     | - :  | 2     |
| * ) Fu9a                   | . 2f, * | . fA*  | . f. * | 2*   | ,£2*    | 2*     | 2*     | 2*     | 2*  | 2*     | :      | 2*      | , f5*  | 2*       | 2*   | , f, * | - :    | 2*     | , f. * | 2* 2    | * 2  | 2fy*  | - :  | . fy* |
| k coewFoCBmCuR             | 2       | , 5    |        | 1 2  | ,8      | 6      | ,      | 2      | 2   | 5      | - :    | ,       | ,,     | 2        | 2    | , A    | - :    | ,      | 2      | 2       | 2    | ,     | - :  | b     |
| * kowwFoCBmCuR             | 2*      | Af6*   | A5*    | 2*   | AL*     | 6f. *  | 6B*    | 2*     | 2*  | 6f. *  | :      | Of6*    | A5*    | 2*       | 2*   | A£A*   | - :    | 5fA*   | 2*     | 2* 2    | ٠.   | fΑ°   | :    | 6fO*  |
| 0 FRFoelaiBo               | :       |        |        | : :  | : 2     | :      | :      | - :    | :   | :      | , 6A   | :       | :      | - :      | :    | :      | ., b   | :      | :      | :       | :    | :     | , 6. |       |
| * 0FRFoelaiBo              |         |        |        | : :  |         | :      | :      |        | :   |        | Byf8*  |         |        | :        | :    | : 1    | 38f, * |        |        | :       | :    | : 8   | bfy* |       |
| k ova viFo CB d 1Cool uiP  | :       |        |        | : :  | : 2     | :      | :      | - :    | :   | :      | 5      | :       | :      | - :      | :    | :      |        | :      | :      | :       | :    | :     | 0    |       |
| * kowwFoCBd1GotuP          | -       | -      |        |      |         |        | -      |        | - 1 | -      | , f. * | -       |        | -        | - 1  | -      | 2fO*   | -      | -      |         | -    | -     | 666* |       |


UDFRFoetaiBo uBR k ova wFFo CB d 1Cool uR f r 7r FpBm7mdHve3S7Sv1s3W7W:Ss1B

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

Solodia - Cuvil - Davin ST (@ Sunin STIDE AVE - ... - I inic.

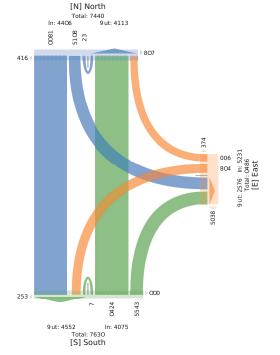
Sat May 7, 2021) (1 PM : 3 PM) : - Oram Peak I Hov
ur AndCe(Cs ii giCahn MHHdydreC I ea(), PeneCvlahC c IdydreCH BHin, c IdydreCH
AHT(Rark)
ur MHCwehlC
nDI 9451. 9, s HatIHril 34G93295, :746 81309





# 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

| <b>Ottawa</b>               |
|-----------------------------|
| Provided ba: Cies of Oeerwu |
| 622 Cogsenllueiog Dr3       |
| Nnpnug3ON3K, G 7J43C-       |


| Lnt                                    | Noreh    |       |       |       |       | Euse      |        |    |        |        | ToFeh    |        |      |        |      |       |
|----------------------------------------|----------|-------|-------|-------|-------|-----------|--------|----|--------|--------|----------|--------|------|--------|------|-------|
| Dirncelog                              | ToFebboF | gd    |       |       |       | S nseboFg | d      |    |        |        | NorehboF | gd     |      |        |      |       |
| Wimn                                   | W        | L     | U     | - pp  | Pnd*  | R         | L      | U  | - pp   | Pnd*   | R        | W      | U    | - pp   | Pnd* | Ige   |
| , 2, , 92792y 62:22- M                 | , 2A     | 72    | 6     | , 78  | 74    | 67        | A1     | 2  | 76     | 88     | 84       | ,,.    | 6    | , y.   | 6A   |       |
| 66:22- M                               | 8, 4     | 46    | 6     | 7, 6  | yA    | 17        | .,     | 2  | 68y    | 6.1    | 44       | 876    | 6    | 776    | 8.   | 6, 6  |
| 6, :22PM                               | 824      | 6A1   | ,     | 78y   | 627   | 1y        |        | 2  | 677    | 646    | 6A6      | 824    | 2    | 782    | 8,   | 6, 8  |
| 6:22PM                                 | 868      | 4y    | ,     | 76A   | 6, .  | 72        | y4     | 2  | 6, 4   | ,,4    | 661      | 82A    | 2    | 764    | 11   | 661   |
| , :22PM                                | 87.      | 68A   | A     | 128   | 616   | 1.        | .,     | 2  | 672    | , 1y   | 6, A     | 8, 8   | 2    | 78y    | . 7  | 6A2   |
| A22PM                                  | 888      | 681   | A     | 74A   | 6.7   | . 2       | 62A    | 2  | 6. A   | A68    | 678      | 8A6    | 2    | 7.7    | . 8  | 6A1   |
| 8:22PM                                 | 8A4      | 672   | 7     | 748   | 67.   | 4A        | 6,8    | 2  | , 6y   | 872    | 6. A     | 888    | ,    | 1, 4   | 62.  | 688   |
| 7:22PM                                 | A 1      | 6A    | у     | 7A6   | , 66  | . 4       | .7     | 2  | 6y8    | 17y    | , 24     | 8A2    | 2    | 1A4    | y1   | 6A8   |
| 1:22PM                                 | 6        | . 1   | 7     | , y4  | 18    | , 4       | 77     | 2  | . 8    | , 8A   | . 7      | , 28   | 8    | , 4A   | A,   | 17    |
| Week                                   | AAy2     | 62Ay  | , 4   | 88A1  | 6688  | 771       | yA8    | 2  | 6, 42  | , 7. 6 | 6684     | A6, 8  |      | 87.6   | 778  | 62A2  |
| % - pprouch                            | y152%    | , AB% | 25y%  | 9     | 9     | 8.A56%    | 7154%  | 2% | 9      | 9      | , 756%   | y85y%  | 25,% | 9      | 9    |       |
| % Wéesl                                | A, 5/%   | 6256% | 254%  | 8A2%  | 9     | 798%      | y36%   | 2% | 6,57%  | 9      | 6636%    | AA5, % | 256% | 8838%  | 9    |       |
| Lit hes ugd Moeorcaclns                | A61y     | 626,  | ,.    | 8, 2y | 9     | 764       | 1.2    | 2  | 6644   | 9      | 62A4     | A6.4   |      | 8, A1  | 9    | 418   |
| % Lit hes ugd Moeorcaclns              | 4852%    | 4y91% | 4151% | 485 % | 9     | 4.A5A%    | 4, 51% | 2% | 4, 54% | 9      | 4298%    | 4.866% | 622% | 4, 57% | 9    | 4A579 |
| Hnuva                                  | 47       | 62    | 2     | 627   | 9     | ,         | 7      | 2  | у      | 9      | ,        | 622    | 2    | 62,    | 9    | , 6   |
| % Hnuva                                | ,5%      | 652%  | 2%    | , 98% | 9     | 23B%      | 25y%   | 2% | 257%   | 9      | 25, %    | , 54%  | 2%   | , 5, % | 9    | , 569 |
| Bicaclns og Roud                       | 62.      | 67    | 6     | 6, 8  | 9     | A7        | 84     | 2  | . 8    | 9      | 62.      | 6A7    | 2    | , 8A   | 9    | 87    |
| % Bicaclns og Roud                     | A5, %    | 698%  | AB9%  | ,5%   | 9     | 154%      | 15y%   | 2% | 157%   | 9      | 498%     | A54%   | 2%   | 75466  | 9    | 8589  |
| Pndnseriugs                            | 9        | 9     | 9     | 9     | 66, y | 9         | 9      | 9  | 9      | , 764  | 9        | 9      | 9    | 9      | 768  |       |
|                                        | 9        | 9     | 9     | 9     | 4.57% | 9         | 9      | 9  | 9      | 4y51%  | 9        | 9      | 9    | 9      | 4,5% |       |
| % Pndnseriugs                          | 9        |       |       |       |       |           |        |    |        |        |          |        |      |        |      |       |
| % Pndnseriugs<br>Bicaclns og Crosswulk | 9        | 9     | 9     | 9     | 6y    | 9         | 9      | 9  | 9      | 1,     | 9        | 9      | 9    | 9      | 82   |       |

\*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

6 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Sat May 7, 2022
Full Length (10:30 Ah-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941515, Location: 54.398765, -74.684893





5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

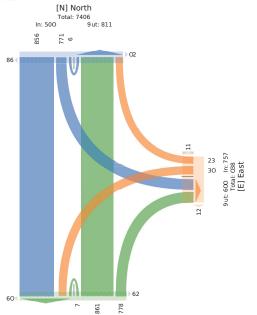
5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
TUPMus y3, 2, 6,
MGFus I Lun g h (6 : gA492 1 M PA -92 1 M:
1) C)Lusts g i floss ur F McceHav)Ls3B LuRa3I LFLsettlur s3w@av)Ls cr k cuF3w@av)Ls cr
Clt4smuh:
1) McRU Lre

B - 47.68.63i cvudtr - 87504, yb83By73b. 7. 49

1 of 6

|                           | c vv      |        |       |       |       | v         |       |    |       |       | on m    |        |       |        |       |      |
|---------------------------|-----------|--------|-------|-------|-------|-----------|-------|----|-------|-------|---------|--------|-------|--------|-------|------|
| i I.d                     | (cHo      |        |       |       |       | J use     |       |    |       |       | Tc Eeo  |        |       |        |       |      |
| 6 (Havelica               | TcEeof cE | rF     |       |       |       | t LsefcEr | F     |    |       |       | (cHofcE |        |       |        |       |      |
| SŒ L                      | S         | i      | W     | 1 pp  | 1 LFU | k         | i     | W  | 1 pp  | 1 LFU | k       | S      | W     | 1 pp   | 1 LFU | Dе   |
| , 2, , P27P2y AA-921 M    | A, 9      | , b    | A     | A72   | , 7   | , A       | Ay    | 2  | 9.    | 8b    | , 9     | AAb    | 2     | A94    | AA    | 9,   |
| AA871 M                   | A27       | , 7    | 2     | A92   | A2    | A7        | , b   | 2  | 8A    | 7b    | ,,      | A2y    | A     | A92    | Ay    | 9    |
| A, -221 M                 | A24       | , у    | A     | A9y   | , A   | A4        | A4    | 2  | 9.    | 8,    | 8,      | AA8    | 2     | A7b    | AA    | 9    |
| A, -A71 M                 | AA7       | 8A     | 2     | A7b   | ,,    | A9        | , A   | 2  | 98    | 7A    | , у     | 4,     | 2     | AA4    | A2    | 9    |
| Sceu)                     | 87,       | AA4    | ,     | 7y9   | y.    | b.        | . 9   | 2  | A7A   | A47   | AAB     | 8, 4   | А     | 788    | 84    | A, I |
| * 1 ppHtuvo               | y. 54*    | , 25 * | 259*  | P     | P     | 8752*     | 7752* | 2* | P     | P     | , A52*  | y. 54* | 25*   | P      | P     |      |
| * Scei)                   | 975b*     | 498*   | 25 *  | 875 * | P     | 798*      | b57*  | 2* | A454* | P     | 452*    | 995 *  | 25A*  | 8, 54* | P     |      |
| 1 B9                      | 25427     | 25y9.  | 25722 | 25492 | P     | 25,4      | 25,b  | P  | 25494 | P     | 25b4b   | 254, 7 | 25,72 | 25 y2  | P     | 254  |
| i Otloes ur F McecHav)Ls  | 8, 9      | AAb    | ,     | 78A   | P     | b9        | y7    | 2  | A9.   | P     | A29     | 82A    | A     | 727    | P     | ΑΔ   |
| * i Odoes ur F McecHav)Ls | 495b*     | 4y57*  | A22*  | 4898* | P     | 4, 5b*    | 42B*  | 2* | 4AB*  | P     | 425B*   | 4957*  | A22*  | 4,5*   | P     | 49%  |
| BLuRa                     | A7        | ,      | 2     | Ay    | P     | 2         | A     | 2  | A     | P     | 2       | Ay     | 2     | Ay     | P     |      |
| * BLuRa                   | 959*      | A5y*   | 2*    | 952*  | P     | 2*        | A5 *  | 2* | 25y*  | P     | 2*      | 852*   | 2*    | 95A*   | P     | , 5  |
| w0rav)Ls cr k cuF         | A6        | A      | 2     | A7    | P     | 7         | у     | 2  | A,    | P     | AA      | AA     | 2     | ,,     | P     |      |
| * w0vav)Ls cr k cuF       | 954*      | 25 *   | 2*    | , 5b* | P     | y98*      | . 3B* | 2* | y54*  | P     | 45b*    | , 5b*  | 2*    | 852*   | P     | 954  |
| l LFLseHtur s             | P         | P      | P     | P     | yb    | P         | P     | P  | P     | A 9   | P       | P      | P     | P      | 87    |      |
| * 1 LFLseHurs             | P         | P      | P     | P     | 4y38* | P         | P     | P  | P     | 495 * | P       | P      | P     | P      | 4A5 * |      |
| w0vav)Ls cr CHrssmu)n     | P         | P      | P     | P     | ,     | P         | P     | P  | P     | A,    | P       | P      | P     | P      | 8     |      |
| * w0vav)Ls cr CHrssmu)n   | P         | P      | P     | P     | , 3b* | P         | P     | P  | P     | b5 *  | P       | P      | P     | P      | .5*   |      |

U LFLset@urs urF w0vav)Ls cr CHtssmu)n5i - i LQ8k - k Qdoe3S- SoHE3W- WPSEHt


2 of 6 3 of 6

# 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Crosswalk)
All Movements
ID: 941515, Location: 54.396785, -74.864693





9 ut: 502 In: 588 Total: 7434 [S] South

# 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

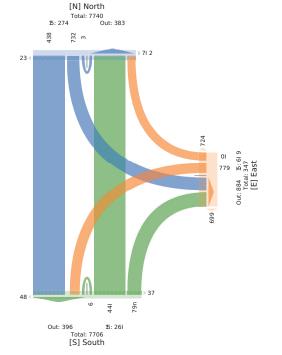
Tue Mua y3, 2, ,
0M 0Ful In gt h (16:A 0M 9AA 0M (91 PF)uCOFul sid)

o CCr Ciccele II-MERec uwk Mi ei ) mantfec3s FuPa30FkFce) uwc31 vmantfec i w Di uk31 vmantfec i w r )i cc4 uC(

o (CMi PF7 Fwec 8h:5-. A A3Hi muesi w. A-b65f yOA39y-bOf-f56



| HFB                       | ti)eR     |         |       |         |       | Euce      |        |    |        |       | Ti deR   |        |       |        |       |         |
|---------------------------|-----------|---------|-------|---------|-------|-----------|--------|----|--------|-------|----------|--------|-------|--------|-------|---------|
| h s)Fn <b>s</b> i w       | Ti deRN d | wk      |       |         |       | n FoeN dv | k      |    |        |       | ti)eRNid | wk     |       |        |       |         |
| S∜ F                      | S         | Н       | W     | o KK    | 0FkU  | D         | Н      | W  | o KK   | 0FkU  | D        | S      | W     | o KK   | 0FkU  | 8we     |
| , 2, , 92-92y 6:A-0M      | 2         | 6-      |       | . AO    | C6    | . f       | , A    | 2  | A,     | . 22  | Ay       | .,2    | 2     | . Oy   | . f   | 6       |
| A220M                     | .,5       | A5      | ,     | . f 2   | 6,    | .0        | 66     | 2  | A5     | . 22  | A        | 50     |       | . 6f   | , у   | 6Oy     |
| A 0M                      | 6         | 6,      | ,     | . Ay    | A     | , у       | 60     | 2  | 06     | .,.   | Ay       |        |       | . 06   | , A   | 6y6     |
| A620M                     | . 2.      | A2      | 2     | . A     | 6.    | , 5       | , A    | 2  | -6     | .,2   | A6       | . 25   | 2     | ,      | ,-    | 6AC     |
| SieuC                     | A-6       | 0       | -     | QA      | . y.  | 52        | y      | 2  | , 2y   | AA    | . yf     | AA2    | ,     | Q2     | 5A    | . AA    |
| * o KK)i unR              | y6lf*     | , - bA* | 2lf*  | 9       | 9     | A6b*      | - Q+ * | 2* | 9      | 9     | , f by*  | y. 12* | 2b6*  | 9      | 9     | 9       |
| * SieuC                   | 6. b4*    | . 2lf*  | 2b6*  | A, 160° | 9     | Oh *      | fb*    | 2* | . AbA* | 9     | ., bA*   | 62b*   | 2b*   | A612*  | 9     | 9       |
| 0s %                      | 2lff-     | 2byf.   | 2bQ - | 2tf-6   | 9     | 2lf 2O    | 2lf 6. | 9  | 2tf 66 | 9     | 215.5    | 21Б, f | 2ъ 22 | 215, f | 9     | 21500   |
| HNBRec uwk Mi ei )mantEc  | A, -      | ,       | -     | -f,     | 9     | fO        | 6      | 2  | . 55   | 9     | f        | A 6    | ,     | -y6    | 9     | . 6- A  |
| * HyBRec uwk Mi ei )man@c | 56lf*     | 5ybA*   | . 22* | 5Abf*   | 9     | 5-160*    | 5010°  | 2* | 5Cb *  | 9     | ffbf*    | 56b5*  | . 22* | 5, bA* | 9     | 5Ab2*   |
| s FuPa                    | . A       |         | 2     |         | 9     |           | 2      | 2  |        | 9     | 2        | . 2    | 2     | . 2    | 9     | , С     |
| * s FuPa                  | 6b *      | 2bO*    | 2*    | , bA*   | 9     | . b *     | 2*     | 2* | 2b*    | 9     | 2*       | , b6*  | 2*    | . liO* | 9     | . laf * |
| I vnantFc i wDi uk        | . A       | 6       | 2     | . у     | 9     | 6         | A      | 2  | у      | 9     | , 2      | . у    | 2     | 6y     | 9     | Ω       |
| * IvnantFciwDiuk          | 6b *      | . l5*   | 2*    | , lf *  | 9     | 6b6*      | 6bA*   | 2* | 6bA*   | 9     | h*       | 6b5*   | 2*    | O12*   | 9     | Ab *    |
| 0 FkFce)vavc              | 9         | 9       | 9     | 9       | . y2  | 9         | 9      | 9  | 9      | A, f  | 9        | 9      | 9     | 9      | 5.    |         |
| * 0FkFoe)sussc            | 9         | 9       | 9     | 9       | 55bA* | 9         | 9      | 9  | 9      | 5yb * | 9        | 9      | 9     | 9      | 5Off* | 9       |
| I vnantEc i wr )i cc4 uC  | 9         | 9       | 9     | 9       |       | 9         | 9      | 9  | 9      | . 6   | 9        | 9      | 9     | 9      | 6     |         |
| * I wantFc i wr )i cc4 uC | 9         | 9       | 9     | 9       | 2hO*  | 9         | 9      | 9  | 9      | , l5* | 9        | 9      | 9     | 9      | 6b; * | 9       |


U) FkFce) vuwc uwk I vnam@c i wr ) i cc4 u@bH: HFpe3D: DvBRe3S: SR)d3W: W9Sd)w

4 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST @ EXHIBITION WAY --- - TMC
Sat May 7, 2021 (1:3- PM 08:3- PM) Ov relatified ou vA
CHB MILLed, ighttack dwtull ByHel, o eary, Peccell gold, RgbyHel.ud wuac, RgbyHel.ud slutimatik)
CHMurel edt.

40: 4-5353, i uBstgud: 3-.146783, 07-.86-641

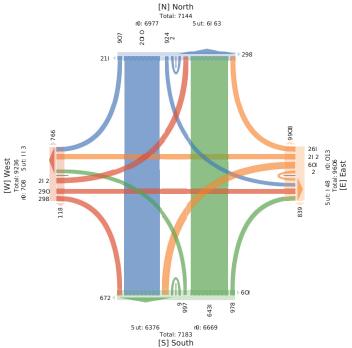


5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

The IT My 3, The IT My 3, The IT MB 1. The IT MY 3, The IT MY 3, The IT MY 3, The IT MY 3, THE M

- ouHdnd . a: Cita ubf ttMRN
 122 CuestnllMiue I o3OnNnM3f O3p , K DG/3CP

DB 1 2 72 0 14% 14% 24% 29% 145% 0 ., BD 5 2 12D 1A2% ,40% 74% 2% A4%


toiMes Med virarlns ue CoussRMiv4L: Lnbt3B: Bight3W WhoF3U: U9WFoe

6 of 6

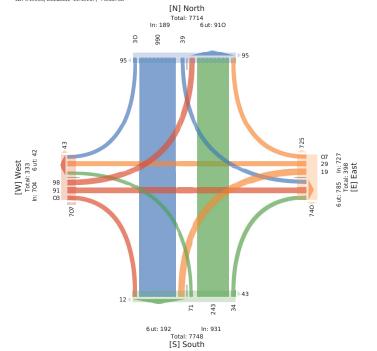
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Mon May 9, 2022 — 112:30 AM)
Mon May 9, 2022 — 112:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949153, Location: 45.40167, -75.68758





5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC


| S50804 - COVID - BANKS | @ FIFTH AVE - MAY ... - IMC | Tue T My 3, 2, 7, nOT gr 0T hg ( 6F.MO)FM - u5: | AP AJJP| 162 dg Mr T uncaca/6,3 - PMa30FP J0:3\( 4 \) 3Hscac\( 4 \) ue vuM3Hscac\( 4 \) ue | P:u)BM.h | 1 Alf u6RFe<sub>0</sub> | sk mJ yDh43Cuc\( 4 \) ue 2D 83\( 6 \) n7 58n5

| CFi                      | f u:ad |        |       |      |       |        | GMo     |        |        |      |       |       | Ju9ad   |         |       |      |       |       | E F)o   |        |        |       |       |       |       |
|--------------------------|--------|--------|-------|------|-------|--------|---------|--------|--------|------|-------|-------|---------|---------|-------|------|-------|-------|---------|--------|--------|-------|-------|-------|-------|
| k s: Fcoue               | Ju9ad. | u9er   |       |      |       |        | E F)a ı | ı9er   |        |      |       |       | f u:ad. | u9er    |       |      |       |       | СМа и   | 9er    |        |       |       |       |       |
| SsRF                     | v      | S      | С     | W    | 100   | 0F-U   | v       | S      | С      | W    | 100   | 0Fr U | v       | S       | C     | W    | 100   | 0Fr U | v       | S      | C      | W     | 100   | 0Fr U | veo   |
| , 2, , g2ng2y nrii20T    | 4      | D,     | 5     | 2    | D44   | 4,     | t       | 5      | Dn     | 2    | , у   | 85    | t       | DDS     | t     | 2    | D42   | nD    | I       | D4     | D4     | 2     | 42    | t D   | 4, ,  |
| T0r@nn                   | I      | DI 2   | n     | 2    | Пу    | 12     | t       | 5      | D      | 2    | 42    | 54    | t       | Дy      | I     | 2    | D4y   | 44    | 8       | D8     | у      | 2     | 44    | n2    | 4ni   |
| nn420T                   | 5      | DnI    | 5     | 2    | D82   | , D    | DD      | D4     | П      | 2    | 45    | t y   | y       | DD4     | ,     | 2    | ŊІ    | 4n    | 5       | D,     | Di     | 2     | 41    | n2    | 4t t  |
| nnlin0T                  | 5      | ΠD     | I     | 2    | Dh4   | , n    | 5       | D      | , 2    | 2    | H     | IΨ,   | 8       | Ŋ,      | I     | 2    | D44   | , 8   | D4      | п      | П      | 2     | ID    | n,    | 48    |
| SudM                     | , 4    | nn8    | , n   | 2    | t 2n  | DDS    | 4D      | In     | t n    | 2    | ПD    | 44,   | , 5     | 15,     | D     | 2    | n, t  | Πt    | 4,      | nt     | n2     | 2     | D45   | , D4  | пп    |
| * 1 OCruMdd              | 475°   | y, 7D° | I 7D° | 2*   | g     | . 8    | , , 72* | 4DB/*  | It 7D* | 2*   | g     | 8     | n74*    | yDR*    | 42*   | 2*   | g     | 8     | , 47, * | 127 *  | 4t 7 * | 2*    | g     | g     |       |
| * SudM                   | DR *   | 4y7h*  | D2+   | 2* I | , 7y* | 8      | ,7,*    | 47,+   | 17+    | 2° 1 | D272* | 8     | , 72*   | 4I 7, * | DID*  | 2* 4 | 874*  | 8     | , 74*   | I72*   | 47h*   | 2* !  | уЂ*   | g     |       |
| 0- %                     | 278Dy  | 27yD4  | 2785D | g.   | 2Ђу8  | 8      | 278n2   | 275126 | 27522  | g    | 27544 | 8     | 275, D  | 27yD4   | 27tt8 | g    | 27yE6 | 8     | 27h88   | 278n2  | 2758n  | g 2   | 27845 | g     | 27/4  |
| Csi do) Mer T uou:cacAE) | , 4    | n4D    | , n   | 2    | n8y   | 8      | , 5     | 4t     | t 4    | 2    | Д8    | 8     | , 4     | In,     | D     | 2    | IyD   | 8     | 42      | ID     | 15     | 2     | DDy   | g     | D4E   |
| * Csi do) Mer            |        |        |       |      |       |        |         |        |        |      |       |       |         |         |       |      |       |       |         |        |        |       |       |       |       |
| T uur:cacÆ)              | D22*   | yn74*  | D22*  | 2* y | m76*  | 8      | y274*   | 5272*  | yt 7y* | 2* 1 | y27D* | 8     | 5, 7D*  | y475*   | D22*  | 2° y | 474*  | 8     | y4'5*   | 847, * | yt 2*  | 2* 50 | ٤7,*  | g     | y474* |
| - FMa                    | 2      | D4     | 2     | 2    | D4    | 8      | ,       | 2      | D      | 2    | 4     | 8     | 2       | D,      | 2     | 2    | D,    | 8     | 2       | D      | D      | 2     | ,     | g     | 4.    |
| * - FM6a                 | 2*     | , 74*  | 2*    | 2*   | , 7D* | 8      | t7h*    | 2*     | Dh+    | 2*   | , 7D* | 8     | 2*      | , 7h*   | 2*    | 2*   | , 74* | 93    | 2*      | D2+    | , Z*   | 2* 1  | DR+   | 8     | , 7D* |
| HscacÆ) ue vuM           | 2      | D4     | 2     | 2    | D4    | 8      | D       | y      | D      | 2    | IID   | 8     | n       | DS      | 2     | 2    | ,4    | 8     | ,       | DI     | D      | 2     | DB    | g     | t i   |
| * HscacÆ) ue v uM        | 2*     | , 74*  | 2*    | 2*   | , 7D* | 8      | 47, *   | , 272* | Dh+    | 2*   | 875*  | 8     | DB7y*   | 478°    | 2*    | 2*   | 171*  | 8     | t 74*   | , n72* | , 2*   | 2* D  | 74*   | g     | I 7h+ |
| OFr F) asMe)             | 8      | g      | 8     | g    | g     | DD)    | g       | 8      | 8      | g    | g     | 4, ,  | g       | 8       | 8 8   | g    | g     | DI 4  | 8       | 8      | 8      | g     | g     | , DD  |       |
| * 0FrF)asMt)             | 8      | g      | 8     | g    | g     | yI 7y* | g       | 8      | g      | g    | g.    | y872* | g       | 8       | 8 8   | g    | g.    | y87y* | 8       | 8      | 8      | g     | 83    | /y7D* |       |
| HscacAF) ue P:u))BML     | 8      | g      | 8     | g    | g     | t      | g       | 8      | 5 g    | g    | g     | ID2   | g       | 8       | 3 8   | g    | g     | 4     | 8       | g      | g      | g     | g     | ,     |       |
| * HscacAF) ue P:u))BMA   | 8      | g      | 2     | g    |       | n7D*   | 8       | 5      | . 8    | g    | 8     | 472*  |         |         |       |      |       | , 7D° |         |        | 8      |       |       | 27/*  |       |

Upr P; asMe) Mer HscacAP) ue P:u))BMa7CnCPb68v mv si d68Sn6d:93WnMg69:e

2 of 6

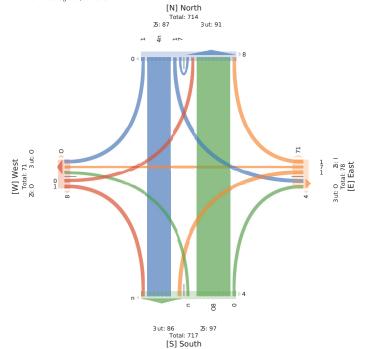
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5PM - 6 PM) - Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949153, Location: 45.40167, -75.68758



5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Tue May 3, 2, 0, 00
FM | eal.nMay 3, 0, 00 30F Mg 3 F Mt
Flh | (h6666 h 49564) MCCisi yi heCid eaoy2| e) e68alPN2r Ayi he6 CP c Ga) 2r Ayi he6 CP
( SCB941aH1
Flh MCsev ePIs
BWkkl3 ID: C da IADPwil 4n 3782g81 47581 5

3 of 6


|                            | _      |        |        |        |        | _    | _       |        |      | _     |       | _    | -      |        |      | _     |         | _  |          |       | _     |       |       | _   |       |
|----------------------------|--------|--------|--------|--------|--------|------|---------|--------|------|-------|-------|------|--------|--------|------|-------|---------|----|----------|-------|-------|-------|-------|-----|-------|
| : e-                       | OCSB   |        |        |        |        |      | J a6l   |        |      |       |       |      | ECn 19 |        |      |       |         |    | S e61    |       |       |       |       |     |       |
| R Alei IACP                | ECu19  | . CuP) |        |        |        |      | S e61 0 | liP)   |      |       |       |      | OGB.   | CuP)   |      |       |         |    | Ja6l Cul | P)    |       |       |       |     |       |
| TAv e                      | c      | T      | :      | W      | FNN    | e) U | с       | T      | :    | W     | FNN I | e) U | с      | T      |      | W     | FNN le) | U  | c        | T     | :     | W F   | NN le | )UI | æ1    |
| 0,00g Ig3, 30w, FM         | 3      | D,     | 0      | ,      | DD     | m    | 0       | 3      | 0    | ,     | I     | 30   | 3      | nk     | 3    | ,     | 13      | 0  | 3        | ,     | 0     | ,     | D     | k   | k     |
| 30 kJ F M                  | E      | 00     | 0      | 3      | 05     | I    | 0       | ,      | 0    | ,     | m     | 8    | 0      | 08     | 3    | ,     | Ŋ       | I  | D        | ,     | 3     | ,     | m     | m   | 7     |
| TClair                     | m      | 1 I O  | m      | 3      | 73     | k    | m       | 3      | m    | ,     | k     | 3k   | D      | 87     | 0    | ,     | 53      | 8  | m        | ,     | D     | ,     | 8     | 3D  | 31    |
| * FNNGai9                  | 747*   | 5140*  | 747*   | 347*   | g      | 8    | m#rf    | 3348*  | mar  | ,*    | g     | 8    | D8*    | kD&*   | 04 * | . *   | g       | 66 | 1848*,   | * m0  | 14°,  | *     | g     | g   |       |
| * TClah                    | 04*    | D04*   | 04*    | , 47°  | D547*  | g    | 04 *    | , 47*  | 04*  | , * I | 48*   | 8    | 34×    | пБ48*  | 34D* | . * 1 | 34D*    | 8  | 04*,     | * 3   | 4e,   | * mi  | rf    | g   |       |
| 1 d %                      | , 4111 | , 4m7  | ,4,,   | 40I,   | , 4x87 | 8    | , 4,,   | , 40I, | ,4,, | g,    | 4ni,  | 8    | , 4DBI | , 41k8 | ,4,, | g     | ,4m,7   | 99 | , 4DD    | g , 4 | 408I  | g, 4h | EDS   | g   | , 4m  |
| : A916aP) MCICsi yi le6    | m      | nB     | m      | 3      | 17     | 8    | m       | 3      | m    | ,     | k     | 8    | D      | 8,     | 0    | ,     | 81      | 99 | m        | ,     | D     | ,     | 8     | g   | 3n    |
| * : A916aP)                |        |        |        |        |        |      |         |        |      |       |       |      |        |        |      |       |         |    |          |       |       |       |       |     |       |
| MCIGsi yi le6              | 3, , * | k, 4rf | 3, , * | 3,,* l | k345*  | 8    | 3, , *  | 3,,*   | 3,,* | , * 3 | ,,*   | 8    | 3,,*   | k048*  | 3,,* | , * l | k047*   | 8  | 3,,*,    | * 3,  | .,* , | * 3,, |       | gl  | kD4 * |
| d eaoy                     |        | D      | ٠,     | ,      | D      | 8    | ,       | ,      | ,    | ,     | ,     | 8    | ,      | D      | ٠,   | ,     | D       | 99 | ,        | ,     | ,     | ,     | ,     | g   |       |
| * d eaoy                   | ,*     | 145*   | ,*     | ,*     | mk*    | 8    | ,*      | ,*     | ,*   | ,*    | ,*    | 8    | , *    | D4*    | ,*   | . *   | DB*     | 99 | ,*,      | *     | ,*,   | * ,   |       | g   | D5*   |
| r Ayi le6 CP c Ca)         | ,      | 0      | ,      | ,      | 0      | 8    | ,       | ,      | ,    | ,     | ,     | 8    | ,      | D      | ٠,   | ,     | D       | 99 | ,        | ,     | ,     | ,     | ,     | g   |       |
| * r Alyihe6 CP c Ca)       | ,*     | D5*    | ,*     | ,*     | DID*   | 8    | ,*      | ,*     | ,*   | ,*    | ,*    | 8    | , *    | D4*    | -,*  | . *   | D8*     | 00 | ,*,      | *     | ,*,   | ٠,    |       | g   | D0*   |
| l e) e6lsAsP6              | g      | . 8    | g      | g      | g      | k    | g       | 8      | g    | g     | g     | 3k   | g      | 8      |      | g     | g       | 8  | g        | g     | g     | g     | g     | 3D  |       |
| * le)e6lsAtP6              | 8      | . 8    | g      | g      | g3,    | ,*   | g       | 8      | g    | g     | g3    | ,,*  | g      | g      |      | g     | g3,,    | ٠  | g        | g     | g     | g     | g3,,  | ě   |       |
| r Alyi he6 CP (sC66HahL    | 8      | . 8    | g      | g      | g      | ,    | g       | 8      | g    | g     | g     | ,    | g      | g      | g    | g     | g       | ,  | g        | g     | g     | g     | g     | ,   |       |
| * r Ayi læ6 CP (sCl66HalfL | 8      | . 8    | g      | g      | g      | ,*   | g       | 8      | g    | g     | g     | . *  | g      | 8      | . 8  | g     | g ,     | ٠  | g        | g     | g     | g     | g,    | *   |       |

U e) e6isAP6 aP) r Alyi le6 CP ( sC66Hali.4: w. ebl2c wc A 9 l2TwT9su2WwWgTusP

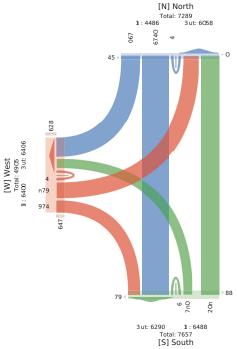
5 of 6 4 of 6

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC





5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC


5506814 - COVID - QUEEN ELIZABETH DIKWY @ PKL... - TMC Tue T M y3, 2, OFIL Lnegth (6:A2 - T 91, -A2 P T ) PIL Classes (Lights Md T uturarlns3c nMh3-ndnstaiMs3v irarlns ue BuM3v irarlns ue CusssRMo) PIL T uthk nets nh : y6y1D23LurMiue: 647621D639D47852AD5



|                                                                                                                                                                                      |                                                         |                                                                         |                                                         |                                                               |                                                 | JuFth                                                                |                                                                        |                                                              |                                                                      |                            |                                                                   |                                                                  |                                                          |                                                                   |                                             |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|
| ing                                                                                                                                                                                  | Ouoth                                                   |                                                                         |                                                         |                                                               |                                                 |                                                                      |                                                                        |                                                              |                                                                      |                            | E nst                                                             |                                                                  |                                                          |                                                                   |                                             |                                                 |
| ionrtiue                                                                                                                                                                             | J uFth. uF                                              | ed                                                                      |                                                         |                                                               |                                                 | Ouoth. uF                                                            | ed                                                                     |                                                              |                                                                      |                            | SMt. uFe                                                          | d                                                                |                                                          |                                                                   |                                             | 1                                               |
| Alk n                                                                                                                                                                                | В                                                       | W                                                                       | U                                                       | PNN                                                           | - nd*                                           | W                                                                    | L                                                                      | U                                                            | PNN                                                                  | - nd*                      | В                                                                 | L                                                                | U                                                        | PNN                                                               | - nd*                                       | net                                             |
| , 2, , 92492y 6:22- T                                                                                                                                                                | 88                                                      | 1y,                                                                     | 2                                                       | , 45                                                          | A                                               | yD                                                                   | A,                                                                     | 2                                                            | 1, y                                                                 | A                          | , 4                                                               | , D                                                              | 2                                                        | 4,                                                                | AD                                          | 6As                                             |
| 4:22- T                                                                                                                                                                              | 1D6                                                     | A4A                                                                     | 2                                                       | 4A1                                                           | у                                               | , , y                                                                | 124                                                                    | 2                                                            | AA6                                                                  | 16                         | 6y                                                                | 44                                                               | 2                                                        | 126                                                               | 8D                                          | y8y                                             |
| 8:22- T                                                                                                                                                                              | A2,                                                     | 1, y                                                                    | 1                                                       | 6A,                                                           | ,                                               | 18A                                                                  | y5                                                                     | 1                                                            | , 8,                                                                 | , у                        | y5                                                                | 5A                                                               | 2                                                        | 151                                                               | DS                                          | 5Dt                                             |
| D22- T                                                                                                                                                                               | 116                                                     | 18y                                                                     | 2                                                       | , 5A                                                          | 4                                               | 165                                                                  | 8D                                                                     | 2                                                            | , 14                                                                 | 15                         | 51                                                                | y4                                                               | ,                                                        | 1D5                                                               | 4,                                          | 8DE                                             |
| 5:22- T                                                                                                                                                                              | 8y                                                      | 18D                                                                     | 1                                                       | , AD                                                          | 6                                               | 121                                                                  | , 2                                                                    | 2                                                            | 1, 1                                                                 | 2                          | , 6                                                               | 8A                                                               | 2                                                        | 5D                                                                | 6y                                          | 664                                             |
| y:22- T                                                                                                                                                                              | 85                                                      | 1, A                                                                    | 2                                                       | 1y1                                                           | A                                               | 44                                                                   | , у                                                                    | 2                                                            | 56                                                                   | D                          | A6                                                                | 8D                                                               | 2                                                        | 121                                                               | 4                                           | ADE                                             |
| 12:22- T                                                                                                                                                                             | DA                                                      | 1, 5                                                                    | 2                                                       | , 21                                                          | 2                                               | 6y                                                                   | 1D                                                                     | 2                                                            | 88                                                                   | 4                          | 142                                                               | , 11                                                             | 2                                                        | A61                                                               | 1y                                          | 8, 5                                            |
| 11:22- T                                                                                                                                                                             | A1                                                      | 4y                                                                      | 2                                                       | y2                                                            | 2                                               | , 1                                                                  | D                                                                      | 2                                                            | , 5                                                                  | 1                          | 8A                                                                | 125                                                              | 2                                                        | 1DI                                                               | 2                                           | , 5y                                            |
|                                                                                                                                                                                      |                                                         |                                                                         |                                                         |                                                               |                                                 |                                                                      |                                                                        | 2                                                            | 4                                                                    |                            | 5                                                                 | . 8                                                              | 2                                                        | A6                                                                | 2                                           | 4I                                              |
| , 2, , 924912 1, :22P T                                                                                                                                                              | 1,                                                      | 8                                                                       | 2                                                       | 15                                                            | 2                                               | 6                                                                    | 1                                                                      |                                                              | -                                                                    | ,                          | 3                                                                 | , 0                                                              |                                                          | - Au                                                              |                                             |                                                 |
| , 2, , 924912 1, :22P T<br>WetM                                                                                                                                                      | 1,<br>y1A                                               | 1A, 8                                                                   | ,                                                       | ,,61                                                          | , 8                                             | 58D                                                                  | AD8                                                                    | 1                                                            | 1, 66                                                                | Dy                         | 4A,                                                               | DA4                                                              | ,                                                        | 1, 8y                                                             | A2D                                         |                                                 |
|                                                                                                                                                                                      |                                                         |                                                                         | 271%                                                    |                                                               | , 8                                             | _                                                                    | AD8<br>A27, %                                                          |                                                              |                                                                      | Dy<br>9                    |                                                                   |                                                                  | , 27 %                                                   |                                                                   | A2D                                         | 6D46                                            |
| With                                                                                                                                                                                 | y1A                                                     | 1A, 8                                                                   | ,                                                       | ,,61                                                          | , 8<br>9                                        | 58D                                                                  |                                                                        | 1                                                            | 1, 66                                                                | Dy<br>9                    | 4A,                                                               | DA4                                                              | ,                                                        | 1, 8y                                                             | A2D<br>9                                    | 6D46                                            |
| WatM<br>% P NYouMh                                                                                                                                                                   | y1A<br>6270%                                            | 1A, 8<br>4y7, %                                                         | ,<br>271%                                               | ,,61<br>9                                                     | , 8<br>9<br>9                                   | 58D<br>8y7D%                                                         | A27, %                                                                 | 1<br>271%                                                    | 1, 66<br>9                                                           | Dy<br>9<br>9               | 4A,<br>617/%                                                      | DA4<br>4Dly%                                                     | ,<br>27,%                                                | 1, 8y<br>9                                                        | A2D<br>9                                    | 6D46                                            |
| WitM<br>% P NNuMh<br>% WitM                                                                                                                                                          | y1A<br>627D%<br>1y7,%                                   | 1A, 8<br>4y7, %<br>, Dly%                                               | ,<br>271%                                               | ,,61<br>9<br>6D¶%                                             | ,8<br>9<br>9                                    | 58D<br>8y7D%<br>157, %                                               | A27, %<br>DB/%                                                         | 1<br>271%<br>2%                                              | 1,66<br>9<br>,87,%                                                   | Dy<br>9<br>9               | 4A,<br>617/%<br>117, %                                            | DA4<br>4Dly%<br>1474%                                            | ,<br>27,%<br>2%                                          | 1, 8y<br>9<br>, 87D%                                              | A2D<br>9<br>9                               | 6D46                                            |
| VátM<br>% P NVaMh<br>% VátM<br>Lights Md T utuorarlns                                                                                                                                | y1A<br>6270%<br>1y7,%<br>y12                            | 1A, 8<br>4y7, %<br>, Dly%<br>1A25                                       | 271%<br>2%                                              | ,,61<br>9<br>6DN%<br>,,,2                                     | , 8<br>9<br>9<br>9                              | 58D<br>8y7D%<br>157, %<br>562                                        | A27, %<br>DBy%<br>AD8                                                  | 1<br>271%<br>2%<br>1                                         | 1, 66<br>9<br>, 87, %<br>1, 1D                                       | Dy 9 9 9 9                 | 4A,<br>613/%<br>117, %<br>4, 1                                    | D44<br>4Dly%<br>1474%<br>D; 5                                    | ,<br>27,%<br>2%<br>,                                     | 1, 8y<br>9<br>, 870%<br>1, 41                                     | A2D<br>9<br>9<br>9                          | 6D46<br>9<br>9<br>6855<br>y578%                 |
| With<br>% P NYouMh<br>% With<br>Lights Med T utnor ar Ins<br>% Lights Med T utnor ar Ins                                                                                             | y1A<br>6270%<br>1y7 %<br>y12<br>yy70%                   | 1A, 8<br>4y7, %<br>, Dly%<br>1A25                                       | ,<br>271%<br>2%<br>,<br>122%                            | ,,61<br>9<br>6DN%<br>,,,2<br>yy71%                            | 2<br>,8<br>9<br>9<br>9<br>9<br>9                | 58D<br>8y7D%<br>157, %<br>562                                        | A27 %<br>Dly%<br>ADB<br>122%                                           | 1<br>271%<br>2%<br>1<br>122%                                 | 1, 66<br>9<br>, 87, %<br>1, 1D                                       | Dy 9 9 9 9 9               | 4A,<br>617/%<br>117, %<br>4, 1<br>yDl/%                           | DA4<br>4Dly%<br>1474%<br>D, 5<br>yy/2%                           | ,<br>27,%<br>2%<br>,<br>122%                             | 1, 8y<br>9<br>, 87D%<br>1, 41<br>y578%                            | A2D<br>9<br>9<br>9<br>9<br>9                | 6D46<br>9<br>6855<br>y578%                      |
| VictN<br>% P NNaMh<br>% VictM<br>Lights Med T utuer ar Ins<br>% Lights Med T utuer ar Ins<br>c nMis                                                                                  | y1A<br>6270%<br>1y7,%<br>y12<br>yy70%                   | 1A, 8<br>4y7, %<br>, Dly%<br>1A25<br>y578%                              | ,<br>271%<br>2%<br>,<br>122%<br>2                       | ,,61<br>9<br>6DN%<br>,,,2<br>yy7l%<br>A                       | 2<br>,8<br>9<br>9<br>9<br>9<br>9<br>9           | 58D<br>8y7D%<br>157, %<br>562<br>y87/%                               | A27, %<br>Dly%<br>AD8<br>122%<br>2                                     | 1<br>271%<br>2%<br>1<br>122%<br>2                            | 1, 66<br>9<br>, 87, %<br>1, 1D<br>yD5%                               | Dy 9 9 9 9 9               | 4A,<br>613/%<br>117, %<br>4, 1<br>yDl/%<br>2                      | DM<br>4Dly%<br>1474%<br>D, 5<br>yy72%<br>1                       | ,<br>27 %<br>2%<br>,<br>122%<br>2                        | 1, 8y<br>9<br>, 870%<br>1, 41<br>y578%                            | A2D<br>9<br>9<br>9<br>9<br>9                | 6D46                                            |
| VictM % P NVinMh % VictM % VictM Lights Med T uttur ar Ins % Lights Med T uttur ar Ins c nMil c nMil % c nMil                                                                        | y1A<br>6270%<br>1y7,%<br>y12<br>yy70%                   | 1A, 8<br>4y7, %<br>, D8/%<br>1A25<br>y578%<br>,                         | ,<br>271%<br>2%<br>,<br>122%<br>2<br>2%                 | ,,61<br>9<br>6DN%<br>,,,2<br>yy71%<br>A<br>271%               | 2<br>,8<br>9<br>9<br>9<br>9<br>9<br>9           | 58D<br>8y7D%<br>157, %<br>562<br>y87y%<br>,                          | A27, %<br>Dly%<br>AD8<br>122%<br>2<br>2%                               | 1<br>271%<br>2%<br>1<br>122%<br>2<br>2%                      | 1, 66<br>9<br>, 87, %<br>1, 1D<br>yD5%<br>,                          | Dy 9 9 9 9 9 9 9           | 4A,<br>613/%<br>117,%<br>4,1<br>yDl/%<br>2                        | DA4<br>4D8/%<br>1474%<br>D, 5<br>yy/2%<br>1<br>271%              | ,<br>27, %<br>2%<br>,<br>122%<br>2<br>2%                 | 1, 8y<br>9<br>, 870%<br>1, 41<br>y578%<br>1<br>271%               | A2D 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9   | 6D46<br>9<br>6855<br>y578%<br>8<br>271%         |
| Virth % P NNahdh % P NNahdh Lights Md T utucr ar Ins % Lights Md T utucr ar Ins c nMi % Lights Md T ottor ar Ins y trans us                      | y1A<br>6270%<br>1y7 %<br>y12<br>yy70%<br>1<br>271%      | 1A, 8<br>4y7, %<br>, Dly%<br>1A25<br>y578%<br>,<br>27, %<br>18          | ,<br>271%<br>2%<br>,<br>122%<br>2<br>2%<br>2            | ,,61<br>9<br>6DR%<br>,,,2<br>yy71%<br>A<br>271%               | 2<br>,8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 58D<br>8y7D%<br>157, %<br>562<br>y83/%<br>,<br>27, %                 | A27 %<br>Dly%<br>AD8<br>122%<br>2<br>2%<br>2                           | 1<br>271%<br>2%<br>1<br>122%<br>2<br>2%                      | 1, 66<br>9<br>, 87, %<br>1, 1D<br>yD5%<br>,<br>27, %<br>, 4          | 9<br>9<br>9<br>9<br>9      | 4A,<br>617/96<br>117/96<br>4, 1<br>yDN/96<br>2<br>296<br>11       | D44<br>4Dly%<br>1474%<br>D, 5<br>yy72%<br>1<br>271%<br>8         | ,<br>27, %<br>2%<br>,<br>122%<br>2<br>2%<br>2            | 1, 8y<br>9<br>, 870%<br>1, 41<br>y578%<br>1<br>271%               | A2D<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 6D46<br>9<br>6855<br>y578%<br>8<br>271%         |
| Veinh % P Nhubdh % Veinh % Veinh Lights Md T tuttor ar Ins C nhhh triarles us Buh Virarles us Buh % virarles us Buh                                                                  | y1A<br>627D%<br>1y7 %<br>y12<br>yy7D%<br>1<br>271%      | 1A, 8<br>4y7 %<br>, DB/%<br>1A25<br>y578%<br>,<br>27 %<br>18<br>17 %    | ,<br>271%<br>2%<br>,<br>122%<br>2<br>2%<br>2<br>2%      | ,,61<br>9<br>6DR%<br>,,,2<br>yy7l%<br>A<br>27l%<br>15<br>275% | 9<br>9<br>9<br>9<br>9<br>9<br>9                 | 58D<br>8y7D%<br>157, %<br>562<br>y87y%<br>,<br>27, %<br>, 4<br>, 7y% | A27, % Dly% AD8 122% 2 2% 2 2% 2 2 3 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1<br>271%<br>2%<br>1<br>122%<br>2<br>2%<br>2<br>2%           | 1, 66<br>9<br>, 87, %<br>1, 1D<br>yD5%<br>,<br>27, %<br>, 4<br>, 72% | 9<br>9<br>9<br>9<br>9      | 4A,<br>617/%<br>117/%<br>4,1<br>yDly%<br>2<br>2%<br>11<br>,71%    | DN4<br>4Dly%<br>1474%<br>D, 5<br>yy/2%<br>1<br>271%<br>8<br>275% | ,<br>27, %<br>2%<br>,<br>122%<br>2<br>2%<br>2<br>2%      | 1, 8y<br>9<br>, 870%<br>1, 41<br>y578%<br>1<br>271%<br>1D         | 9<br>9<br>9<br>9<br>9<br>9                  | 6D46<br>9<br>6855<br>957896<br>8<br>27196<br>82 |
| Weith  % P Nixiadin  % veith  Lights Med T utmorar ins  % Lights Med T utmorar ins  % Lights Med T utmorar ins  c nMis  % c nMis  virar ins ue BuM  % virar ins ue BuM  - ndisstable | y1A<br>6270%<br>1y7 %<br>y12<br>yy70%<br>1<br>271%<br>, | 1A, 8<br>4y7, %<br>, DB/%<br>1A25<br>y5/8%<br>,<br>27, %<br>18<br>17, % | ,<br>271%<br>2%<br>,<br>122%<br>2<br>2%<br>2<br>2%<br>9 | ,,61<br>9<br>6DN%<br>,,,2<br>yy7%<br>A<br>271%<br>15<br>275%  | 9<br>9<br>9<br>9<br>9<br>9<br>9                 | 58D<br>8y7D%<br>157, %<br>562<br>y87y%<br>,<br>27, %<br>, 4<br>, 7y% | A27 %<br>Dly%<br>AD8<br>122%<br>2<br>2%<br>2<br>2%<br>9                | 1<br>271%<br>2%<br>1<br>122%<br>2<br>2%<br>2<br>2%<br>2<br>9 | 1, 66<br>9<br>, 87, %<br>1, 1D<br>yD5%<br>,<br>27, %<br>, 4<br>, 72% | 9<br>9<br>9<br>9<br>9<br>9 | 4A,<br>613/%<br>117, %<br>4, 1<br>yDl/%<br>2<br>2%<br>11<br>, 71% | DA4<br>4Dl/%<br>1474%<br>D,5<br>yyZ%<br>1<br>271%<br>8<br>275%   | ,<br>27, %<br>2%<br>,<br>122%<br>2<br>2%<br>2<br>2%<br>9 | 1, 8y<br>9<br>,870%<br>1, 41<br>y578%<br>1<br>271%<br>1D<br>17/96 | 9<br>9<br>9<br>9<br>9<br>9<br>9             | 6D46<br>9<br>6855<br>y578%<br>8<br>271%         |

<sup>\*-</sup> ndnstoiMs Med virarlns ue CoussRMM/ZL: Lnbt3B: Bight3W WhoF3U: U9WFoe

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949150, Location: 4. 640154, -5. 6780358



6 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
T ue T M y3, 2, ,
0T OPM IT M 29, 2, , ng nOT h (g n OT 6h: AF-M90PM 1 uP) 9C3MSh I dros MHT uu-vayEs31 FMu3OPHSecMeS3BdavEs ue RuMBBdavEs ue
C-ussvM 6
) 9T uARk Fes
th gyDrt 423i uvMdhegDhTLPt 4DBlHnT(82548

| <b>Otta</b>                         | wa      |
|-------------------------------------|---------|
| 0-uAdHFH. agCda ub<br>t 22 CuesdF9N | : ccMvM |
| f FOFM:3: f 3N, p                   |         |
|                                     |         |

1 of 6

| Fo                     | f u-a      |        |    |       |       | GuPar    |         |    |        |       | J Fsc    |        |    |        |        |        |
|------------------------|------------|--------|----|-------|-------|----------|---------|----|--------|-------|----------|--------|----|--------|--------|--------|
| I d-Fvalue             | GuPar. uP  | eH     |    |       |       | fu-α·uPi | H       |    |        |       | EMc uPel | I      |    |        |        |        |
| Sdk F                  | R          | S      | W  | ) 00  | 0FHJ  | S        | i       | W  | ) 00   | 0FHL  | R        | i      | W  | ) 00   | 0 FHU  | mec    |
| , 2, , h2nh2y ng n0°   | Г 5у       | t 2y   | 2  | t DB  | ,     | (n       | , n     | 2  | y2     | (     | t n      | t,     | 2  | ,4     | t 8    | , (n   |
| ng520°                 | Г Д        | 45     | 2  | ttn   | t     | Ŋ        | ,,      | 2  | (D     | E     | 8        | t n    | 2  | ,5     | ,,     | , 2,   |
| ngDn0′                 | Γ ((       | 4D     | 2  | t D2  | n     | ny       | 5t      | 2  | y2     | 2     | t 5      | t 5    | 2  | ,(     | 4      | , n(   |
| (g20°                  | Г у8       | (2     | 2  | t n8  | 2     | Dn       | 5,      | 2  | 44     | n     | t(       | t 8    | 2  | 5D     | , t    | , ()   |
| Suc                    | Mo , Dn    | 5t (   | 2  | n(t   | 8     | , t t    | tt2     | 2  | 5, t   | t n   | n,       | n8     | 2  | tt2    | (8     | yy,    |
| * ) 00·uM              | r D574*    | n(75*  | 2* | h     | h     | (n74*    | 5D/5*   | 2* | h      | h     | D475*    | n, 74* | 2* | h      | h      | 1      |
| * Suc                  | M9 , D74*  | 5t 7y* | 2* | n(7(* | h     | , t 75*  | * 17.11 | 2* | 5, 7D* | ŀ     | n7,*     | n78*   | 2* | tt7:*  | h      | 1      |
| 01                     | % 27(, n   | 274t 5 | h  | 27884 | h     | 27444    | 278ny   | h  | 278(4  | ŀ     | 278t 4   | 278, D | h  | 278, 2 | h      | 23y, ( |
| i dor es M#HT ueu-vav9 | s , Dn     | 52n    | 2  | nn2   | h     | , 2t     | tt2     | 2  | St t   | h     | Dy       | n(     | 2  | t 2n   | h      | y((    |
| * idores MHT uou-vav9  | s t 22*    | y( 7h* | 2* | y872* | h     | yn75*    | t 22*   | 2* | y(7y*  | h     | yDr,*    | y(7(*  | 2* | yn7h*  | h      | y47D*  |
| 1 FM                   | la 2       | 2      | 2  | 2     | h     | t        | 2       | 2  | t      | h     | 2        | 2      | 2  | 2      | h      | t      |
| * 1 FM                 | a 2*       | 2*     | 2* | 2*    | h     | 27h*     | 2*      | 2* | 275*   | h     | 2*       | 2*     | 2* | 2*     | h      | 27.*   |
| Bd/av9Fs ue Rul        | <b>H</b> 2 | t t    | 2  | tt    | h     | y        | 2       | 2  | y      | h     | 5        | ,      | 2  | n      | h      | , г    |
| * Bd/av9Fs ue Ru)      | H 2*       | 57h*   | 2* | , 72* | h     | D/5*     | 2*      | 2* | , 78*  | ŀ     | n78*     | 57D*   | 2* | Dh*    | h      | , 7h*  |
| 0FHsedM                | is h       | h      | h  | h     | 8     | h        | h       | h  | h      | t 5   | h        | h      | h  | h      | n8     |        |
| * 0FHscdM              | is h       | h      | h  | h     | t 22* | h        | h       | h  | h      | 8(74* | h        | h      | h  | h      | 8n75*  | 1      |
| Bdvav9Fs ue C-usswN    | l h        | h      | h  | h     | 2     | h        | h       | h  | h      |       | h        | h      | h  | h      | t 2    |        |
| * Bd/av9Fs ue C-usswN  | l h        | h      | h  | h     | 2*    | h        | h       | h  | h      | t575* | h        | h      | h  | h      | t D21* |        |

UpFHFsc-dMs MtHBdvav9Fs ue C-usswM1 7i gi Fb3RgRdbrc3SgSr-P3WgWh6P-e

2 of 6 3 of 6

# 5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

[W] West Total: 594 0:118 Out: 244

47 43 2n



Mon May 9, 2022 22 5-65PM ) O65 PMy) r l eliumPeak AoCH su Luilei (gli trid ain Bhoodhg/Rei, Aeal y, PeBei dhani, why Rei on moaß, why Rei on Libii I alky su Mol eDenci :4-919630, go Radon-15.10631, )35.070837 [N] North Total: 728 Out: 396 a: 49I 354

 $\frac{8}{2}$   $\frac{1}{8}$ 

Out: 297 01: 231 Total: 976 [S] South

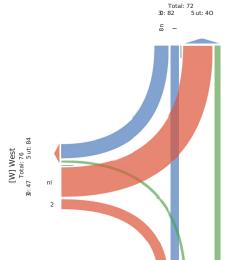
[N] North

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

55668 (4 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TIMC Tue May 3, 20, 00 F M leaLnMay 3, 0, 00 30F M g3 F Mt Filk [h8666 A 9056 P) MCCki yi leG2d eaoy2l e)e6k&PG2r Ayi le6 CP c Ca) 2r Ayi le6 CP (\$CF3HaH1 FilhMCbev ePI6 Brwknk31, 2: Cl a IACPwnDtn; 31 m2g DF8, 518



| e-                          | OCs19         |                    |    |         |        | J Cu19      |        |    |        |      | E e61     |        |    |         |      |        |
|-----------------------------|---------------|--------------------|----|---------|--------|-------------|--------|----|--------|------|-----------|--------|----|---------|------|--------|
| RAei MCP                    | J Cu 19. Cu F | 9                  |    |         |        | OG:19. G:1P | )      |    |        |      | Sa6L CuP) |        |    |         |      |        |
| ΓAν e                       | С             | T                  | W  | FNN     | l e) U | T           | - 1    | W  | FNN    | le)U | С         | - 1    | W  | FNN     | le)U | BP1    |
| 0,00g Dg3, 30w, FM          | 8             | 5                  | ,  | 33      | ,      | 5           | ,      | ,  | 5      | ,    | m         | 31     | ,  | 03      | ,    | 51     |
| 30 kBDF M                   | m             | 5                  | ,  | I       | ,      | 3           | 3      | ,  | 0      | 0    | m         | k      | ,  | 35      | ,    | 0      |
| TClail                      | 30            | 7                  | ,  | 38      | ,      | m           | 3      | ,  | D      | 0    | 8         | 07     | ,  | 5m      | ,    | Е      |
| * FNNcai9                   | 774*          | 5545*              | ,* | g       | 8      | 8, 4 *      | 0,4*   | ,* | g      | g    | 054D*     | 174D*  | ,* | g       | g    |        |
| * TClal                     | 0348*         | 3, 4D <sup>a</sup> | ,* | 5347*   | 8      | 14*         | 348*   | ,* | 848*   | g    | 3m4 *     | mD47*  | ,* | Dk47*   | g    |        |
| 149                         | , 45I D       | , 40, ,            | g  | , 4m, k | 8      | , 4555      | , 40D, | g  | , 4n8I | g    | , 40,     | , 4580 | g  | , 4m, D | g    | , 4m   |
| : A916aP) MCICsi yi he6     | 30            | 7                  | ,  | 38      | 8      | m           | 3      | ,  | D      | g    | 8         | 07     | ,  | 5m      | g    | Ι      |
| * : A916 aP) MCICsi yi he6  | 3, , *        | 3, , *             | ,* | 3,,*    | 8      | 3,,*        | 3,,*   | ,* | 3,,*   | g    | 3, , *    | 3, , * | ,* | 3, , *  | g    | 3, , ' |
| d eaoy                      | ,             | ,                  | ,  | ,       | 8      | ,           | ,      | ,  | ,      | g    | ,         | ,      | ,  | ,       | g    |        |
| * d eaoy                    | ,*            | ,*                 | ,* | ,*      | 8      | ,*          | ,*     | ,* | ,*     | g    | ,*        | , *    | ,* | ,*      | g    | , *    |
| r Alyi he6 CP c Ca)         | ,             | ,                  | ,  | ,       | 8      | ,           | ,      | ,  | ,      | g    | ,         | ,      | ,  | ,       | g    |        |
| * r Alyi he6 CP c Ca)       | ,*            | ,*                 | ,* | ,*      | 8      | ,*          | ,*     | ,* | ,*     | g    | ,*        | ,*     | ,* | ,*      | g    | ,*     |
| l e) e6kAP6                 | g             | g                  | g  | g       | ,      | g           | g      | g  | g      | 0    | g         | g      | g  | g       | ,    |        |
| * 1 e) e6isArP6             | g             | g                  | g  | g       | 8      | g           | g      | g  | g      | 3,,* | g         | g      | g  | g       | g    |        |
| r Alyi he6 CP ( sC66HaliL   | g             | g                  | g  | g       | ,      | g           | g      | g  | g      | ,    | g         | g      | g  | g       | ,    |        |
| * r Alyi he6 CP ( sC66Hahl. | g             | g                  | g  | g       | 8      | g           | g      | g  | g      | ,*   | g         | g      | g  | g       | g    |        |


Ul e) e6isAtP6 aP) r Ayi læ6 CP ( sC66HahL4: w. ebi2c wc A 912TwT9su2WwMgTusP

4 of 6

# 5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Tue May 3, 20, 00

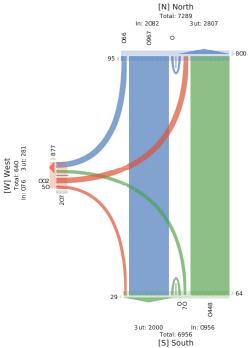
AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it ndyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r.) y-a-k:
A- Mt reBegi)
Rwnt D 34, 21 t dai@gnOF3Q 34D28475 6, 146



5 ut: 87 30: 1 Total: 89 [S] South

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
T ue T M y3, 2, ,
OFIL Lnegth (6:A2 - T 91, :A2 P T )
PIL CIMENS (Lights Md T utuorarlns3c nMth3- ndnstdtMs3v irarlns ue BuM3v irarlns ue
CcussR Ma)
PIL T ufthk nets
nh : yDLA643Lur Mdue: 6D™yD8394D856148

5 of 6


| *                          | Ough      |        |       |       |       | LuFth              |        |      |       |       | E nst              |        |    |       | _      | _     |
|----------------------------|-----------|--------|-------|-------|-------|--------------------|--------|------|-------|-------|--------------------|--------|----|-------|--------|-------|
| ing<br>ionrtiue            | JuFth, uF |        |       |       |       | Jurtn<br>Ouath, uF |        |      |       |       | E nst<br>SMt. uFee |        |    |       |        | 1     |
|                            | _         |        |       |       |       |                    |        |      |       |       |                    |        |    |       |        |       |
| Wk n                       | В         | W      | U     | PNN   | - nd* | W                  |        | U    | PNN   | - nd* | В                  | L      | U  | PNN   | - nd*  |       |
| , 2, , 92D92y 6:22- T      | D8        | AAy    | 2     | AyD   | AD    | AD4                | 11     | 2    | A65   | 1A    | 6                  | 68     | 2  | 122   | y,     | 51/   |
| D22- T                     | 4A        | 6yy    | 2     | D4,   | DD    | 84D                | 15     | 2    | 8yA   | , D   | 4                  | 42     | 2  | 44    | 114    | 1A6,  |
| 8:22- T                    | 65        | D21    | 2     | D6y   | 66    | 64y                | 12     | 1    | 6y2   | , A   | 11                 | 65     | 2  | Dy    | y8     | 12y5  |
| 4:22- T                    | , D       | 6A2    | 1     | 6D8   | 1,    | 625                | 5      | 2    | 618   | 1,    | A                  | 14     | 2  | , 2   | 88     | 5y,   |
| 5:22- T                    | 15        | AAA    | 2     | ADI   | 18    | A44                | 8      | 1    | A56   | 12    | A                  | 12     | 2  | 1A    | A5     | 465   |
| y:22- T                    | , D       | 66,    | 1     | 685   | D     | A12                | 4      | 2    | A14   | 1,    | у                  |        | 2  | A1    | Dy     | 518   |
| 12:22- T                   | 4         | , 8,   | 2     | , 8y  | 2     | 14A                | ,      | 2    | 14D   | ,     | A                  | D      | 2  | 5     | 1D     | 6D)   |
| 11:22- T                   |           | 1, 1   | 2     | 1, A  | 2     | 5A                 | 2      | 2    | 5A    | 2     |                    | 6      | 2  | 8     | 4      | , 1,  |
| , 2, , 92D912 1, :22P T    | 1         | , у    | 2     | A2    | 2     | 1y                 | 2      | 2    | 1y    | 2     | 2                  | 1      | 2  | 1     | ,      | 132   |
| With                       | , DD      | , yD8  |       | A 1A  | , 16  | , 551              | 8,     |      | , y6D | y4    | 6,                 | , , A  | 2  | , 8D  | 6y,    | 86, A |
| % P NNuMi                  | 47/%      | v. 72% | 271%  | 9     | 9     | v475%              | . 71%  | 271% | 9     | 9     | 1D/5%              | 567 %  | 2% | 9     | 9      | 9     |
| % Wath                     | 672%      | 6872%  | 2%    | D272% | 9     | 667/%              | 172%   | 2%   | 6DR/% | 9     | 274%               | ATD%   | 2% | 671%  | 9      | 9     |
| Lights Med T utuorarlns    | 1y6       | , 524  | 1     | A22,  | 9     | , 4, D             | 82     |      | , 454 | 9     | 6,                 | , 24   | 2  | , 6y  | 9      | 82A5  |
| % Lights Med T utuorar Ins | 4871%     | yDf2%  | D272% | yA76% | 9     | y678%              | y875%  | 122% | y678% | 9     | 122%               | y, 75% | 2% | y672% | 9      | y672% |
| c nMB                      | 2         | 84     | 1     | 85    | 9     | 64                 | 1      | 2    | 65    | 9     | 2                  | 1      | 2  | 1     | 9      | 114   |
| % c nMB                    | 2%        | , 78%  | D272% | , 71% | 9     | 178%               | 178%   | 2%   | 178%  | 9     | 2%                 | 276%   | 2% | 276%  | 9      | 175%  |
| virarlıs ue BuM            | 81        | 5.     | 2     | 16A   | 9     | 12v                | 1      | 2    | 112   | 9     | 2                  | 1D     | 2  | 1D    | 9      | , 85  |
| % virarlıs ue BuM          | , A7/%    | , 75%  | 2%    | 670%  | 9     | A5%                | 178%   | 2%   | A74%  | 9     | 2%                 | 874%   | 2% | DF4%  | 9      | 67 %  |
| - ndnstaiMs                | 9         | 9      | 9     | 9     | 1y8   | 9                  | 9      | 9    | 9     | 5y    | 9                  | 9      | 9  | 9     | 6AA    |       |
| % - ndnstaiMs              | 9         | 9      | 9     | 9     | y178% | 9                  | 9      | 9    | 9     | y175% | 9                  | 9      | 9  | 9     | 5572%  |       |
| virarlns ue CoussRMi       | / 9       | 9      | 9     | 9     | 15    | 9                  | 9      | 9    | 9     | 5     | 9                  | 9      | 9  | 9     | Dy     |       |
| % v irarlns ue CoussRMs    | / 9       | 9      | 9     | 9     | 576%  | 9                  | 9      | 9    | 9     | 57,%  | 9                  | 9      | 9  | 9     | 1, 22% |       |
| - ndnstriMs Mrd v irar lns | _         | DAKE   | y y 1 | on n  | 1.01  | TAR TO             | T TION | T.   |       |       |                    |        |    |       |        |       |

6 of 6 1 of 6

# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

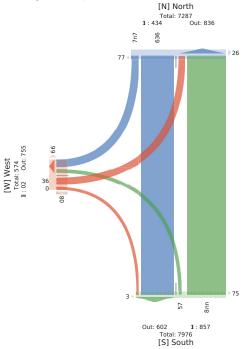
Mon May 9, 2022 — 112:30 AM)
Mon May 9, 2022 — 112:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 95134., Location: 456957, -. 567841. 7





5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5360614-CUVID-DAINS ST @ ATLINER AVE - MAY...- I MC
TUE T M y3, 2,
OT OPM IT M 2y, 2, 9, ng 20T h (g 2 0T 6h: AF-M907M) 1 uP99C9MSFb i b fore S MHT uur-vayFs31 FMu30FHSe-dMs3BdrayFs ue RuMBBdrayFs ue
C-ussvM 6
9T uAFk Fec
rh gy (D n43i uvMdriegn( 7 y (83h4 (28nD48)




| Fo                       | f u-α      |         |    |       |       | GuPar     |       |    |       |        | J Fsc     |        |    |        |       |        |
|--------------------------|------------|---------|----|-------|-------|-----------|-------|----|-------|--------|-----------|--------|----|--------|-------|--------|
| d-Fvothe                 | GuPar. uPe | H       |    |       |       | fu-αr.uPe | H     |    |       |        | EMsc uPel | H      |    |        |       |        |
| idk F                    | R          | S       | W  | ) 00  | 0FHU  | S         | i     | W  | ) 00  | 0FHU   | R         | i      | W  | ) 00   | 0 FHU | mec    |
| , 2, , h2(h2y ng 20T     | , 4        | D4,     | 2  | Dyy   | Dn    | D58       | (     | 2  | DyD   | 4      | D         | , (    | 2  | , 8    | nt    | nDi    |
| ngn(0T                   | , у        | D84     | 2  | Dy8   | , D   | D4D       | 8     | 2  | D44   | 8      | t         | , D    | 2  | , n    | ny    | t ya   |
| (g220T                   | DB         | D: 4    | 2  | D(t   | y     | D85       | D     | 2  | DBy   | D      | 2         | Dy     | 2  | Dy     | , у   | t nl   |
| T0)(g)                   | , у        | I⊉y     | 2  | D:5   | D     | D4(       | у     | 2  | D5n   | 8      | (         | , 2    | 2  | ,(     | t D   | t na   |
| Sud <b>4</b>             | D2D        | (5(     | 2  | 858   | (8    | 422       | , D   | 2  | 4, D  | , 2    | у         | 5(     | 2  | yn     | D(,   | D(21   |
| * ) COuMr                | Dn74*      | 5(7/*   | 2* | h     | h     | y47D*     | , 7y* | 2* | h     | h      | y78*      | y27h*  | 2* | h      | h     |        |
| * SudM                   | 874*       | t y 22* | 2* | n(74* | h     | n878*     | Dh*   | 2* | n572* | h      | 278*      | (74*   | 2* | 87.*   | h     |        |
| 01 %                     | 2744(      | 275(t   | h  | 2Ђ(у  | h     | 27y82     | 27(5t | h  | 27/8t | h      | 27h(2     | 23/n2  | h  | 27552  | h     | 23/, 2 |
| idoros MeHT uou-vav9Fs   | 8,         | ((4     | 2  | 8Dy   | h     | 88(       | , D   | 2  | 858   | h      | y         | 4y     | 2  | 55     | h     | Dt yt  |
| * idores MeHT uou-vav9Fs | 8Dh*       | y(7*    | 2* | y27,* | h     | y( 22*    | D22*  | 2* | y(7D* | h      | D22*      | y, 7y* | 2* | yt 78* | h     | у, Ъ*  |
| 1 FMa                    | 2          | D       | 2  | D     | h     | 4         | 2     | 2  | 4     | h      | 2         | 2      | 2  | 2      | h     | , 2    |
| * 1 FMa                  | 2*         | , 7,*   | 2* | Dly*  | h     | DØ*       | 2*    | 2* | Df2*  | h      | 2*        | 2*     | 2* | 2*     | h     | DX *   |
| Bd/av9Fs ue RuMH         | t y        | D(      | 2  | (n    | h     | , 5       | 2     | 2  | , 5   | h      | 2         | 8      | 2  | 8      | h     | 55     |
| * Bdvav9Fs ue RuMH       | t 578*     | , 78*   | 2* | 47y*  | h     | n72*      | 2*    | 2* | t 7y* | h      | 2*        | 47D*   | 2* | 87h*   | h     | (7y*   |
| 0FHFsedMs                | h          | h       | h  | h     | n5    | h         | h     | h  | h     | Dy     | h         | h      | h  | h      | DDS   |        |
| * 0FHFsc-dMs             | h          | h       | h  | h     | 5(74* | h         | h     | h  | h     | y( 72* | h         | h      | h  | h      | 4478* |        |
| Bd/av9Fs ue C-usswMI     | h          | h       | h  | h     | 5     | h         | h     | h  | h     | D      | h         | h      | h  | h      | t n   |        |
| * Bdvav9Fs ue C-usswMJ   | h          | h       | h  | h     | Dn7 * | h         | h     | h  | h     | (72*   | h         | h      | h  | h      | ,,7h* |        |

UpFHFsedMs MtHBdvav9Fs ue C-usswMl 7i gi Fb3RgRdbrc3SgSr-P3WgWhSP-e

2 of 6 3 of 6

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-60PM ) 060 PMv) r l elidu Peak AoCH
su Luiliei (git dd anB MoodByRei, Aeal y, PeBeidhani, wifsyRei on moaB, wifsyRei on
Libii I alw'
su Mol eDend
:4 - 9Cl653, goRadon-5C69CF, )3C/785137

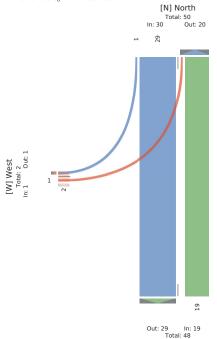


5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 20, 00
F M | eat.n/day 3, 0, 00 30F M g 3 F Mt
Flik | la65667 A 495 aP) MCCki yi | he62d eaoy2l e) e6k&P62r Ayi he6 CP c Ca) 2r Ayi he6 CP
( sCGF4laftir
FlikMGev eP16
Rwkm8l DV2: Cl a JAZPWDnil kn82g4m85D848

| Ottav              |       |
|--------------------|-------|
| lsCoAte).yw(AtyCbf |       |
| 3,, (CP6lelfa1AC   |       |
| OeNeaP2f O2p 0K m0 | k2( F |

| : e-                       | OG:19         |        |    |         |      | J Cu19      |    |    |         |      | E e61  |        |    |        |      |         |
|----------------------------|---------------|--------|----|---------|------|-------------|----|----|---------|------|--------|--------|----|--------|------|---------|
| RAei MOP                   | J Cu 19. Cu I | 2)     |    |         |      | OCs19. CuP) |    |    |         |      | Sa61 C | lıP)   |    |        |      |         |
| TAv e                      | с             | T      | W  | FNN     | le)U | T           |    | W  | FNN     | le)U | С      | - 1    | W  | FNN    | le)U | BP1     |
| 0, 00g, mg8, 30w, FM       | 3             | 38     | ,  | 34      | ,    | k           | ,  | ,  | k       | ,    | ,      | ,      | ,  | ,      | ,    | 0       |
| 30 vikniF M                | ,             | 31     | ,  | 31      | ,    | 3,          | ,  | ,  | 3,      | ,    | ,      | 3      | ,  | 3      | 0    | 0       |
| TClah                      | 3             | 0k     | ,  | I,      | ,    | 3k          | ,  | ,  | 3k      | ,    | ,      | 3      | ,  | 3      | 0    | n       |
| * FNNcai9                  | 171*          | k874*  | ,* | g       | 8    | 3,,*        | ,* | ,* | g       | 8    | ,*     | 3, , * | ,* | g      | g    |         |
| * TClah                    | 07, *         | n57,*  | ,* | 8, 7, * | g    | 157,*       | ,* | ,* | I 57, * | g    | ,*     | 07 *   | ,* | 07 *   | g    |         |
| 1 d %                      | , 70m,        | , TH 5 | g  | , 7D08  | 8    | , 7D4m      | g  | g  | , 7D4m  | 8    | g      | , 70m, | g  | , 70m, | g    | , 7D4   |
| : A916aP) MCKsi yi he6     |               | 08     | ,  | 04      | g    | 34          | ,  | ,  | 34      | g    | ,      | 3      | ,  | 3      | g    | D       |
| * : A916aP) MCICsi yi he6  | 3,,*          | 5k74*  | ,* | k, 7, * | g    | 5k7h#       | ,* | ,* | 5k7h#   | g    | ,*     | 3, , * | ,* | 3,,*   | g    | k, 7, * |
| d eaoy                     | ,             | 0      | ,  | 0       | g    | 0           | ,  | ,  | 0       | g    | ,      | ,      | ,  | ,      | g    |         |
| * d eaoy                   | ,*            | 87k*   | ,* | 874*    | g    | 3, 7h#      | ,* | ,* | 3, 7h#  | g    | ,*     | ,*     | ,* | ,*     | g    | 57,*    |
| r Ayi le6 CP c Ca)         | ,             | 3      | ,  | 3       | g    | ,           | ,  | ,  | ,       | g    | ,      | ,      | ,  | ,      | g    |         |
| * r Ayi le6 CP c Ca)       | ,*            | 17D*   | ,* | 171*    | g    | ,*          | ,* | ,* | ,*      | g    | ,*     | ,*     | ,* | ,*     | g    | 07.*    |
| 1 e) e6isArP6              | g             | g      | g  | g       | ,    | g           | g  | g  | g       | ,    | g      | g      | g  | g      | 0    |         |
| * 1 e) e6kArP6             | g             | g      | g  | g       | g    | g           | g  | g  | g       | 8    | g      | g      | g  | g      | 3,,* |         |
| r Ayi le6 CP ( sC66HaliL   | g             | g      | g  | g       | ,    | g           | g  | g  | g       | ,    | g      | g      | g  | g      | ,    |         |
| * r Alyi he6 CP ( sC66HahL | g             | g      | g  | g       | 8    | g           | g  | g  | g       | 8    | g      | g      | g  | g      | , *  |         |

Ul e) e6isAaP6 aP) r Alyi he6 CP ( sC66HahL7: w. ebi2c wc A 912TwT9su2WwMgTusP


# 5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566614 - CUVID - DANIN 31 G ATTERNATION - THE MAY 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A - 9 a))e (1 GL1) agh Mt it nlyde)20 ear y2Pehe)irtâg)2c dlyde) t g Ht ah2c dlyde) t g 9 rt) ly a\*:
A - Mt r eB egi)

Rwrl DB47521 t daid gn7D41 D6265D617356

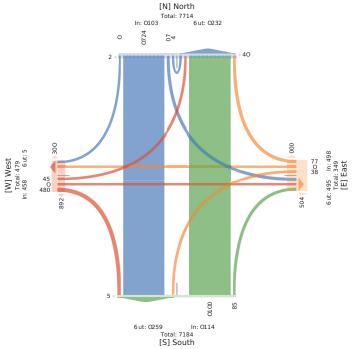




5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

S566814 - C.OVID - BANK'S I @ ECHO DR - MAY U9,... - IMC
Tue T M y3, 2, 7 st, :A2 P T)
PII CIMSm (Lights Md T unorarlns3c nMia3-ndnstdMs3v irarlns ue BuM3v irarlns ue
CussRMs)
PII T uHik nets
ni : yDLA6y3LurMiue: 6D4yD78y393D676AA6




| Lng                                   | Ouath  |       |        |    |       |       | J Mt     |       |          |     |      |       | EuPth  |         |      |     |       |       | S nst    |       |         |      |       |       |                 |
|---------------------------------------|--------|-------|--------|----|-------|-------|----------|-------|----------|-----|------|-------|--------|---------|------|-----|-------|-------|----------|-------|---------|------|-------|-------|-----------------|
| I ionrtiue                            | EuFth. | uFed  |        |    |       |       | S nst. u | Fed   |          |     |      |       | Ouath. | ıFed    |      |     |       |       | J Mt. uF | ed    |         |      |       | - 1   |                 |
| Wik n                                 | В      | W     | L      | U  | PNN   | - nd+ | В        | W     | L        | U   | PNN  | - nd* | В      | W       | L    | U   | PNN   | - nd+ | В        | W     | L       | U    | PNN   | - nd+ | net             |
| , 2, , 92D92y 6:22- T                 | 2      | A7,   | 6      | 2  | A75   | 1     | 7        | 2     | A        | 2   | 11   | 8y    | 5      | Ay8     | 2    | 2   | 62A   | 2     | 18       | 2     | 2       | 2    | 18    | DA    |                 |
| D22- T                                | 2      | 8A6   | 1D     | 2  | 86y   | 2     | A,       | A     | 6        | 2   | Ay   | 152   | 11     | 85,     | 2    | 2   | 88A   | 2     | A5       | 1     | 6       | 2    | 61    | 1A,   | 152             |
| 5:22- T                               | 1      | DAy   | 1A     | 2  | DDA   | 7     | 7        | 2     | ,        | 2   | 12   | , A5  | D      | 856     | 2    | 2   | 85y   | 1     | 6,       | 2     | 1       | 2    | 6A    | 1, 7  | 1.A8            |
| 8:22- T                               | 2      | DAI   | 12     | 2  | D61   | A     | 1,       | 2     | A        | 2   | 1D   |       | 5      | DAy     | 2    | 2   | D6D   | 1     | , 2      | 2     | 8       | 2    | ,8    | 127   | 11,             |
| 7:22- T                               | 2      | 66y   | D      | 1  | 6DD   | D     | A        | 2     | 1        | 2   | 6    | у7    | D      | 617     | 2    | 2   | 6, A  | 1     | 7        | -,    | 1       | 2    | 11    | 5y    | 7 y             |
| y:22- T                               | 1      | AD,   | D      | 2  | ADV   | A     | 5        | 2     | D        | 2   | 11   | 5D    | 5      | A76     | 2    | 2   | Ay2   | 2     | y        | 2     | 1       | 2    | 12    | DB    | 85              |
| 12:22- T                              | 1      | 66A   | 6      | 2  | 667   | ,     | 7        | 2     | 6        | 2   | 1,   | , y8  | 5      | A6D     | 2    | 2   | ADI   | A     | 7        | 2     | 1       | 2    | у     | yА    | 7,              |
| 11:22- T                              | 2      | , y6  | 1      | 2  | , yĐ  | 2     | 2        | 2     | 2        | 2   | 2    | AD    | 2      | 18,     | 2    | 2   | 18,   | 2     | D        | 2     | 1       | 2    | 5     | 1A    | 68              |
| , 2, , 92D912 1, :22PT                | 2      | 58    | 2      | 2  | 58    | 2     | 2        | 2     | ,        | 2   | ,    | 16    | 1      | D6      | 2    | 2   | ID    | 2     | 2        | 2     | 2       | 2    | 2     | y     | 1,              |
| WatN                                  | A      | A6y1  | D6     | 1  | A7D;  | -,,   | 88       | А     | , 6      | 2   | 126  | 1, 25 | 65     | A7AD    | 2    | 2   | A771  | 5     | 16D      | A     | 15      | 2    | 156   | 55,   | 722             |
| % P NNuMh                             | 24%    | y746% | 140%   | 2% | 9     | 9     | 8642%    | , 4/% | , A41% : | 2%  | 9    | 9     | 14 %   | y747%:  | 2% 2 | %   | 9     | 9     | 7746%    | 147%  | y47% :  | 2%   | 9     | 9     |                 |
| % With                                | 2%     | 5846% | 248%   | 2% | 6741% | 9     | 142%     | 2%    | 244%     | 2%  | 149% | 9     | 245%   | 584/% : | 2% 2 | % 6 | 5740% | 9     | 147%     | 2%    | 24 % 2  | 2%   | , 42% | 9     |                 |
| Lights Med T utuorarlns               | 2      | A6y7  | 6,     | 1  | AD61  | 9     | 6y       | 2     | , 6      | 2   | 8A   | 9     | , A    | A51A    | 2    | 2   | A6A6  | 9     | 1AD      | 2     | 8       | 2    | 16,   | 9     | 8A <sub>9</sub> |
| % Lights Med                          |        |       |        |    |       |       |          |       |          |     |      |       |        |         |      |     |       |       |          |       |         |      |       |       |                 |
| T utucrarlns                          |        |       | 8A8%   |    |       | 9     | 5A5%     |       | 122%     |     |      | 9     | D242%  |         |      |     |       |       | yA4.%    |       | AF% :   |      |       | 9     | y, 459          |
| c nMb                                 | 2      | 86    | 1      | 2  | 8D    | 9     | 1        | 2     | 2        |     | 1    | 9     | 2      |         | 2    | _   | DB    | 9     | 2        | 2     |         | 2    | 2     | 9     | 1.6             |
| % c nMb                               | 2%     | , 42% | 147%   | 2% | 14/%  | 9     | 144%     | 2%    | 2%       | 2%  | 142% | 9     | 2%     | 140%    | 2% 2 | :%  | 140%  | 9     | 2%       | 2%    | 2% 2    | 2%   | 2%    | 9     | 1489            |
| v irarlıs ue Bu <b>M</b>              | A      |       | 16     | 2  |       | 9     | , 8      | A     | 2        | 2   | A2   | 9     | , A    | 15D     | 2    | 2   | 177   | 9     | 12       | A     | y       | 2    | ,,    | 9     | 68              |
| % virarlns ue Bu <b>M</b>             | 122%   | D\$7% | , 645% | 2% | 54%   | 9     | AD4%     | 122%  | 2%       | 2%, | 747% | 9     | D242%  | 644%    | 2% 2 | 96  | 647%  | 9     | 54/% 1   | 22% I | Б4466 2 | 2% 1 | A6%   | 9     | D4/             |
| - ndnstaiMs                           | 9      | 9     | 9      | 9  | 9     | , 2   | 9        | 9     | 9        | 9   | 9    | 11y,  | 9      | 9       | 9    | 9   | 9     | 5     | 9        | 9     | 9       | 9    | 9     | 56y   |                 |
|                                       | 9      | 9     | 9      | 9  | 91    | 24/%  | 9        | 9     | 9        | 9   | 9    | v747% | 9      | 9       | 9    | 9   | 91    | 122%  | 9        | 9     | 9       | 9    | 91    | v742% |                 |
| % - ndnstaiMs                         | 9      | 9     |        |    |       |       |          |       |          |     |      |       |        |         |      |     |       |       |          |       |         |      |       |       |                 |
| % - ndnstaMes<br>virarlns ue CoussRMw | 9      |       | -      | 9  |       | ,     | 9        | 9     | 9        | 9   | 9    | 16    | 9      | 9       | 9    | 9   | 9     | 2     | 9        | 9     | 9       | 9    | 9     | 1A    |                 |

<sup>\*-</sup>ndnstolMs Md v irarlns ue CoussRMw4L: Lnb3B: Bight3W WhoF3U: U9wFoe

6 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 951349, Location: 45.395679, -75.864334





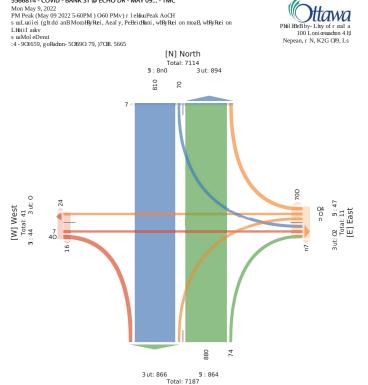
[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC
T ue T M y3, 2, 2, , ng 20T h (g 2 0T 6h: AF-M90FM 1 uP9C-MSFB II for SMHT ua-vav9331 FMa30HF8-cMs3Bdrav9Fs ue RuMBBdrav9Fs ue
C-usswM 6
9T uAFk Fes
nh gy(D ny3i uvMduegn(4 y(78y3lB(457nt t n

| <b>Ottawa</b>             |
|---------------------------|
| 0-uAdHFH. agCda ub: cdMvM |
| D22 CuesdP99Mdue I -3     |
| f FOFMe3: f 3N, p (Ky3C)  |
|                           |

1 of 6


| Fo                       | f u-c | r     |        |     |       |      | GMc     |       |       |      |       |      | JuPa   |        |     |      |        |     | E Fsc |       |      |         |              |        |
|--------------------------|-------|-------|--------|-----|-------|------|---------|-------|-------|------|-------|------|--------|--------|-----|------|--------|-----|-------|-------|------|---------|--------------|--------|
| d-Fvalue                 | JuPo  | r. uP | eН     |     |       |      | E Fsc i | iPe H |       |      |       |      | f u-α. | uPeH   |     |      |        |     | GMc u | PeH   |      |         |              |        |
| Sdk F                    | R     | 5     | i i    | V   | ) α   | 0FHJ | R       | S     | i     | W    | ) @   | 0FHL | R      | 5      | i   | W    | ) 000  | THU | R     | S     | i    | W )     | OFH          | nec    |
| , 2, , l2(l2y ng 20T     | 2     | D8r   | 1 1    | 1 2 | D88   | D    | (       | 2     | I     | 2    | 5     | nn   | E      | Dy8    | 2   | 2    | Dy7    | 2   | y     | 2     | 2    | 2       | у ,,         | ty     |
| ngn(0T                   | 2     | , 27  | 7      | D 2 | , 2y  | - 2  | t       | 2     | ,     | 2    | (     | 1(   | (      | , 22   | 2   | 2    | , 2(   | 2   | 7     | 2     | 2    | 2       | 7 t I        | D n,   |
| (g20T                    | 2     | DV:   | 5 1    | n 2 | Dy2   | 2    | 172     | ,     | I     | 2    | D     | tΕ   | I      | DyI    | ) 2 | 2    | Dyn    | 2   | 5     | 2     | 2    | 2       | 5 , )        | n2     |
| (gD(0T                   | 2     | DΣ,   |        | , 2 | D7n   | . 2  | (       | 2     | ,     | 2    | 8     | (t   | n      | D7,    | 2   | 2    | DF5    | 2   | у     | D     | 2    | 2 1     | <b>D2</b> D3 | t 7    |
| SudM                     | 2     | 8(2   | 2 D    | 2 2 | 852   | D    | , t     | ,     | 5     | 2    | t D   | ĽБt  | D      | 882    | 2   | 2    | 87t    | 2   | t,    | D     | 2    | 2 t     | t IEI        | D52    |
| * ) CO-uMr               | 2* y  | 748*  | Dt *   | 2*  | 1     | h h  | 8n4 *   | 54(*  | Dy4r* | 2*   | h     | 1    | D8*    | y74*   | 2*  | 2*   | h      | h   | y842* | t 42* | 2* 2 | 2*      | h            | h      |
| * SudM                   | 2* ı  | 1548* | 245*   | 2*  | n84 * | h    | D4ı*    | 24D*  | 24ı*  | 2*   | Dly*  | ŀ    | 247*   | n84y*  | 2*  | 2* : | n748*  | h   | , 42* | 24D*  | 2* 2 | 2* ,40  | ,            | h      |
| 01%                      | h     | 24ynt | 24ht ' | 7 1 | 24/(, | h    | 247D    | ŀ     | 248(2 | h    | 248y, | ŀ    | 24hD8  | 24/85  | h   | h    | 24y58  | h   | 2475D | h     | h    | h 2475  | D I          | h 24y5 |
| i dor cs MeHT ucu-vav9Fs | 2     | 58,   |        | B 2 | 58y   | h    | D       | 2     | 5     | 2    | Dy    | ŀ    | (      | 8DE    | 2   | 2    | 8,,    | h   | t D   | 2     | 2    | 2 t     | D            | h Dn(  |
| *idoros MeH              |       |       |        |     |       |      |         |       |       |      |       |      |        |        |     |      |        |     |       |       |      |         |              |        |
| T uai-vav9s              | 2* 7  | 7y45* | 8242*  | 2*  | 7y4 * | h    | (54*    | 2*    | D22*  | 2* 5 | D4 *  | ŀ    | t 74(* | yt 4D* | 2*  | 2*   | y, 4 * | h   | y54y* | 2*    | 2* 2 | 2* yt4y |              | h y24  |
| 1 FMa                    | 2     | П     | 7      | 2 2 | DF    | h    | 2       | 2     | 2     | 2    | 2     | ŀ    | 2      | D      | 2   | 2    | D      | h   | 2     | 2     | 2    | 2       | 2            | h t    |
| * 1 FMa                  | 2*    | , 4n* | 2*     | 2*  | , 4n* | h    | 2*      | 2*    | 2*    | 2*   | 2*    | ŀ    | 2*     | D8*    | 2*  | 2*   | D8*    | h   | 2*    | 2*    | 2* 2 | 2* 2    |              | h Day  |
| Bdvav9Fs ue RuMH         | 2     | 52    | 2 1    | 1 2 | 5t    | h    | 172     | ,     | 2     | 2    | Ŋ     | ŀ    | 7      | n2     | 2   | 2    | n7     | h   | D     | D     | 2    | 2       | ,            | h D    |
| * Bd/av9Fs ue RuMH       | 2*    | 742*  | t 242* | 2*  | 74 *  | h    | nt 4 *  | D22*  | 2*    | 2* t | 748*  | ŀ    | 5D(*   | (4*    | 2*  | 2*   | 54D*   | h   | 14D*  | D22*  | 2* 2 | 2* 54D  | ,            | h 847  |
| 0FHsc-dMs                | h     |       | h      | h l | 1 1   | n D  | h       | · I   | 1 1   | h h  | h     | IБt  | h      |        | h h | h    | h      | 2   | h     | h     | h    | h       | h y          | 7      |
| * 0FHFsodMs              | h     |       | h      | h l | 1 1   | IE2* | h       | · I   | 1 1   | h h  | h     | D22* | h      |        | h h | h    | h      | h   | h     | h     | h    | h       | hy842*       |        |
| Bdvav9Fs ue C-usswM      | h     |       | h      | h l | 1 1   | 1 2  | h       | · I   | 1 1   | n h  | h     | 2    | h      |        | h h | h    | h      | 2   | h     | h     | h    | h       | h t          |        |
| * Bdvav9Fs ue C-usswMI   | h     |       | h      | h l | 1 ]   | 2*   | h       | 1     | . 1   | n h  | h     | 2*   | - h    |        | h h | h    | h      | h   | h     | h     | h    | h       | h t42*       |        |

UOFHFse-dMs MtHBd/av9Fs ue C-usswMl 4i gi Fb3RgRdbrdSgSr-P3WgWl6P-e

3 of 6 2 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC





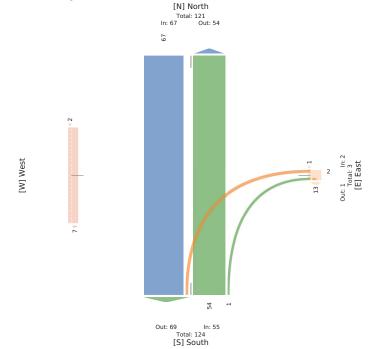
[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

Sobola (4- CUVID - BANK ST @ ECHU DR - MAY 09... - TMC Tue May 3, 20, 00 F M leaLnMay 3, 0, 00 30 F M g3 F Mt Filk [h6666 A 9056 P) MCCki yi h62d eaoy2l e)e6k&P62r Ayi h6 CP c Ca) 2r Ayi h6 CP (\$CF5HaHt FilmChev eP16 BrwkmB [Lk2: Cl a MCPwDml kn78k2ghm67DI I D



| : e-                       | OG  | :19   |     |     |   |        |        | Ja6  | 1    |       |     |      |       | EGr19  |        |     |   |        |      | S e6 | 61    |     |    |     |      |      |
|----------------------------|-----|-------|-----|-----|---|--------|--------|------|------|-------|-----|------|-------|--------|--------|-----|---|--------|------|------|-------|-----|----|-----|------|------|
| RAsei IACP                 | EG  | 19. O | aP) |     |   |        |        | S et | 61 C | ıP)   |     |      |       | OG:19. | CuP)   |     |   |        |      | J a6 | L Cui | P)  |    |     |      |      |
| TAr e                      | С   |       | T   |     | W | FNN    | l e) U | С    | T    | - 1   | W   | FNN  | le)U  | С      | T      | :   | W | FNN    | e) U | С    | T     | - 1 | W  | FNN | le)U | BP1  |
| 0, 00g mg3, 30w, FM        | ,   |       | 07  | ,   | , | 07     | ,      | ,    | ,    | 3     | ,   | 3    | 3     | ,      | Im     | ,   | , | Im     | ,    | ,    | ,     | ,   | ,  | ,   | D    | 5    |
| 30v∂nF M                   | ,   |       | Ιk  | ,   | , | Ik     | ,      | ,    | ,    | 3     | ,   | 3    | 31    | 3      | 3k     | ,   | , | 0,     | ,    | ,    | ,     | ,   | ,  | ,   | m    |      |
| TClah                      | ,   |       | 58  | ,   | , | 58     | ,      | ,    | ,    | 0     | ,   | 0    | 3D    | 3      | mD     | ,   | , | nm     | ٠,   | ,    | ,     | ٠,  | ,  | ٠,  | k    | 30   |
| * FNNcai9                  | , * | 3,,   | * , | . * | * | g      | g      | ,*   | ,*   | 3,,*  | ,*  | g    | 8     | 347*   | k740*  | ,*, | * | g      | g    | ,*   | ,*    | ,*  | ,* | g   | g    |      |
| * TClah                    | , * | nD4   | * , | . * | * | mD4 *  | g      | ,*   | ,*   | 345*  | ,*  | 345* | g     | , 47*  | DI 4n# | ,*, | * | DDD*   | g    | ,*   | ,*    | ,*  | ,* | ,*  | g    |      |
| 1 d %                      | 8   | , 40  | 88  | g   | g | , 4088 | g      | g    | g    | , 4n, | g   | ,4m, | g     | , 40m  | , 475  | g   | g | , 4 kI | g    | g    | g     | g   | g  | g   | g    | , 40 |
| : A916aP) MCICsi yi le6    | ,   |       | 50  | ,   | , | 50     | g      | ,    | ,    | 0     | ,   | 0    | 8     | 3      | n0     | ,   | , | mi     | g    | ,    | ,     | ,   | ,  | ,   | g    | 3    |
| * : A916aP) MCKsi yi he6   | , * | k04   | ŕ,  | *   | * | k04n#  | g      | ,*   | , *  | 3,,*  | ,*  | 3,,* | g     | 3,,*   | k54*   | ۰,  | * | k54D*  | g    | ,*   | ,*    | ,*  | ,* | g   | g    | kD4  |
| d eaoy                     | ,   |       | I   | ,   | , | I      | g      | ,    | ,    | ,     | ,   | ,    | 8     | ,      | 0      | ,   | , | 0      | g    | ,    | ,     | ,   | ,  | ,   | g    |      |
| * d eaoy                   | , * | D4    | ŕ,  | *   | * | Dhr    | g      | ,*   | , *  | , *   | ,*  | ,*   | g     | ,*     | I48*   | ۰,  | * | I45*   | g    | ,*   | ,*    | ,*  | ,* | g   | g    | D4   |
| r Ayi he6 CP c Ca)         | ,   |       | 0   | ,   | , | 0      | g      | ,    | ,    | ,     | ,   | ,    | g     | ,      | ,      | ,   | , | ,      | g    | ,    | ,     | ,   | ,  | ,   | g    |      |
| * r Alyi he6 CP c Ca)      | , * | 14    | ۰,  | *   | * | 14*    | g      | ,*   | , *  | , *   | ,*  | ,*   | g     | ,*     | , *    | ۰,  | * | ,*     | g    | ,*   | ,*    | ,*  | ,* | g   | g    | 34   |
| l e) e61sAaP6              | 8   | 5     | g   | g   | g | g      | ,      | g    | 8    | . 8   | . 8 | g    | 3D    | g      | g      | g   | g | g      | ,    | 8    |       | g   | g  | g   | k    |      |
| * l e) e61s.4a.P6          | 8   |       | g   | g   | g | g      | g      | g    | g    | . 8   | g   | g    | 3, ,* | g      | g      | g   | g | g      | g    | g    | g     | g   | g  | g   | 3,,* |      |
| r Alyi he6 CP ( sC66HaliL  | 8   | 5     | g   | g   | g | g      | ,      | g    | g    | . 8   | g   | g    | ,     | g      | g      | g   | g | g      | ,    | g    | g     | g   | g  | g   | ,    |      |
| * r Alyi he6 CP (sC66HaliL | 8   |       | g   | g   | g | g      | g      | g    | g    |       |     | g    | .*    | g      | g      | g   | g | g      | g    | 8    |       | g   | g  | g   | . *  |      |


U e) e6kAP6 aP) r Avi le6 CP ( sC66Halt4; w. ebl2c wc A912TwT9su2WwWeTusP

4 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC
Tue May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A - 9-a)|e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r, ))v a-k:
A - Mt reBegi)
Rwnt D847121 t dai@gnfD84 D 61 266D8. 7447



5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
T ue T M y3, 2, ,
OFIL Lnegth (6:A2 - T 91, :A2 P T )
PIL CIMENS (Lights Md T utuorarlns3c nMth3- ndnstdMs3v irarlns ue BuM3v irarlns ue
Ccuss (Ms)
PIL T uffik nets
nh : yDIAD/3Lur Miue: 6DINy888, 398D54D62D

5 of 6

| Lng                          | Ouath      |        |      |        |       | JuFth     |       |      |       |       | E nst    |        |      |        |       |             |
|------------------------------|------------|--------|------|--------|-------|-----------|-------|------|-------|-------|----------|--------|------|--------|-------|-------------|
| Lionrtiue                    | J uFth. uF | ed     |      |        |       | Ouath. uF | ed    |      |       |       | SMt. uFe | d      |      |        |       |             |
| Wk n                         | В          | W      | U    | PNN    | - nd* | W         | L     | U    | PNN   | - nd* | В        | L      | U    | P NN   | - nd* | net         |
| , 2, , 92D92y 6:22- T        | , у        | , 6,   | 2    | , 81   | 2     | A28       | y,    | 2    | Ayy   | ,     | 1, D     | A      | 2    | 1, 4   | 61    | 8y          |
| D22- T                       | DA         | 655    | 2    | Diy    | 1     | 5A4       | 1 Ay  | 2    | 888   | ,     | , 52     | D      | 2    | , 5D   | 168   | 1D6         |
| 5:22- T                      | D6         | A6,    | 1    | Ay8    | 16    | 562       | 116   | 2    | 8D6   | 5     | 14y      | 4      | 2    | 1y8    | 15y   | 1A6         |
| 8:22- T                      | D8         | A52    | 2    | 618    | 16    | 688       | y,    | 2    | DБу   | 1,    | 18D      | 8      | 1    | 14A    | 1AA   | 115         |
| 4:22- T                      | A2         | A6,    | 2    | A8,    | A     | A5,       | 5A    | 2    | 6, D  | 6     | 12A      | 6      | 2    | 128    | 8,    | y2          |
| y:22- T                      | ,,         | , 88   | 2    | , yy   | Г     | A6D       | 65    | 2    | Ay1   | 6     | 8y       | 6      | 2    | 4A     | Dt    | 88          |
| 12:22- T                     | Dy         | AD1    | 2    | 612    | A6    | A12       | 6A    | 2    | ADA   | 1,    | y4       | ,      | 2    | 122    | 111   | 45          |
| 11:22- T                     | , 1        | , A4   | 2    | , Dy   | 2     | 1D5       | 1D    | 2    | 181   | A     | D5       | 1      | 2    | D8     | 16    | 64          |
| , 2, , 92D912 1, :22P T      | 5          | 51     | 2    | 58     | 5     | D6        | A     | 1    | D4    | 2     | 5        | A      | 2    | у      | 8     | 1/          |
| WatN                         | AA1        | , 58y  | 1    | A211   | 88    | A, 4y     | 528   | 1    | A4y8  | 6D    | 12y1     | AB     | 1    | 11, y  | 86D   | 42 <i>A</i> |
| % P NNouMh                   | 1172%      | 4y72%  | 2%   | 9      | 9     | 4676%     | 1D5%  | 2%   | 9     | 9     | y575%    | A7466  | 271% | 9      | 9     |             |
| % With                       | 671%       | AA7A%  | 2%   | A87D%  | 9     | 627/%     | 875%  | 2%   | 647D% | 9     | 1A5%     | 270%   | 2%   | 1672%  | 9     |             |
| Lights Med T utucrarlns      | A, 1       | , 646  | 1    | , 425  | 9     | A28y      | Dy8   | 1    | A588  | 9     | 12, D    | , 8    | 1    | 12DA   | 9     | 8D          |
| % Lights Med T utuorarlns    | y872%      | y, 78% | 122% | yA7, % | 9     | yA5%      | y475% | 122% | y676% | 9     | y672%    | 8AZ2%  | 122% | yA7P06 | 9     | yA749       |
| c nMHs                       | 1          | 8D     | 2    | 85     | 9     | DA        | A     | 2    | D6    | 9     | ,        | 1      | 2    | A      | 9     | 1.4         |
| % c nMHa                     | 274%       | , 74%  | 2%   | , 1D%  | 9     | 175%      | 27D%  | 2%   | 176%  | 9     | 27, %    | , 78%  | 2%   | 27/196 | 9     | 1789        |
| virarlıs ue Bu <b>M</b>      | у          | 1, 2   | 2    | 1, y   | 9     | 1D8       | 8     | 2    | 156   | 9     | 56       | у      | 2    | 8A     | 9     | A5          |
| % virarlns ue BuM            | , 78%      | 67D%   | 2%   | 674%   | 9     | 674%      | 17, % | 2%   | 67, % | 9     | Dly%     | , 674% | 2%   | 570%   | 9     | 6759        |
|                              | 9          | 9      | 9    | 9      | 88    | 9         | 9     | 9    | 9     | 61    | 9        | 9      | 9    | 9      | 8, 1  |             |
| - ndnstoiMs                  |            |        |      | 0      | 122%  | 9         | 9     | 9    | 9     | y171% | 9        | 9      | 9    | 9      | y574% |             |
| - ndnstoiMs<br>% - ndnstoiMs | 9          | 9      | 9    | 9      | 12270 |           |       |      |       |       |          |        |      |        |       |             |
|                              | 9          | 9      | 9    | 9      | 12270 | 9         | 9     | 9    | 9     | 6     | 9        | 9      | 9    | 9      | , 6   |             |

6 of 6 1 of 6

# 5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

Mon May 9, 2022 — 112:30 AM)
MI Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 95135., Location: 456997772, -7568. 5405

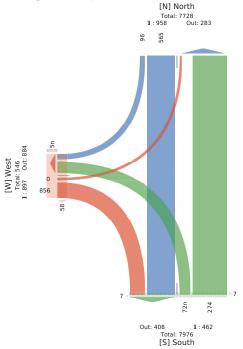


[N] North Total: 6338 In: 3011 Out: 3327 2679 331 39 [W] West Total: 2068 In: 1129 Out: 939 1091 360 ►23 22 1 607 3289 Out: 3771 In: 3897 Total: 7668

[S] South

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5360614-CUVID-BAINS ST (@ WILLION CRES-MA...- IMC
TUE T M y3, 2, , ng 20T h (g 2 0T 6h: AF-M90RM 1 uP) 9C9MSFB i dore MHT uur-vayFs31 FMu30FHSe-dMs3BdavFs ue RuMBBdavFs ue
C-ussvM 6
) 9T uAFk Fec
rh gy (D (43) uvMdiegn (7 y888, 318 (54 (n2)




| i Fo                    | f u-α      |        |    |        |      | GuPar     |        |    |        |       | J Fsc    |       |    |        |        |       |
|-------------------------|------------|--------|----|--------|------|-----------|--------|----|--------|-------|----------|-------|----|--------|--------|-------|
| I d-Fvalue              | GuPar. uPo | H      |    |        |      | fu-αr.uPe | H      |    |        |       | EMc uPeH |       |    |        |        |       |
| Sdx F                   | R          | S      | W  | ) 00   | 0FHU | S         | i      | W  | ) 00   | 0 FHU | R        | i     | W  | ) 00   | OFHU   | nec   |
| , 2, , h2(h2y ng 20T    | D)         | DD     | 2  | D)(    | 2    | D(,       | n4     | 2  | , 22   | 2     | ((       | D     | 2  | (5     | Dy     | t4    |
| ngn( 0T                 | D8         | D, y   | 2  | Dn5    | 2    | D((       | nn     | 2  | Dyy    | ,     | 82       | ,     | 2  | 8,     | ,,     | nl    |
| (g20T                   | D          | Dгу    | 2  | Ι(,    | 2    | D52       | nt     | 2  | , 2t   | 2     | (5       | 2     | 2  | (5     | nD     | n     |
| (gD(0T                  | D5         | D2t    | 2  | IDy    | 2    | D(2       | t n    | 2  | D4n    | 2     | 58       | 2     | 2  | 58     | У      | t     |
| SudM                    | (4         | n4n    | 2  | (n,    | 2    | 5D8       | DБу    | 2  | 845    | ,     | , n4     | t     | 2  | ,(D    | уD     | D(    |
| * ) COuMr               | 15.28*     | 4y7 *  | 2* | h      | h    | 847(*     | , DI(* | 2* | h      | h     | y474*    | DÇ*   | 2* | h      | h      |       |
| * SudM                  | t 78*      | t 278* | 2* | t n7(* | h    | t y7D*    | D238*  | 2* | ny74*  | h     | D(78*    | 27,*  | 2* | D(3/*  | h      |       |
| 019                     | 274, n     | 2748n  | h  | 274y,  | h    | 27/5(     | 27482  | h  | 27y55  | h     | 2748D    | 27.8( | h  | 2744t  | h      | 27y   |
| i doros MeHT uou-vav9Fs | (5         | nn2    | 2  | ny5    | h    | (55       | D55    | 2  | 8t,    | h     | , t 2    | t     | 2  | , tt   | h      | Dn    |
| * idores MHT uou-vav9Fs | y575*      | y27y*  | 2* | yD(*   | h    | yDB*      | y47, * | 2* | yt 7D* | h     | y, 78*   | D22*  | 2* | y, 74* | h      | у, 7( |
| 1 FMa                   | 2          | D4     | 2  | D4     | h    | у         | D      | 2  | 172    | h     | 2        | 2     | 2  | 2      | h      |       |
| * 1 FMa                 | 2*         | t 78*  | 2* | t 7 *  | h    | Df(*      | 275*   | 2* | DR*    | h     | 2*       | 2*    | 2* | 2*     | h      | D74   |
| Bd/av9Fs ue RuMF        | ,          | , 5    | 2  | , 4    | h    | n,        | ,      | 2  | nn     | h     | D4       | 2     | 2  | D4     | h      | 3     |
| * Bdvav9Fs ue RuMH      | t 7h*      | (7h*   | 2* | (7*    | h    | 574*      | Dr. *  | 2* | (75*   | h     | 87.*     | 2*    | 2* | 87, *  | h      | (78   |
| 0FHFsc-dMs              | h          | h      | h  | h      | 2    | h         | h      | h  | h      | D     | h        | h     | h  | h      | 4(     |       |
| * 0FHFsc-dMs            | h          | h      | h  | h      | h    | h         | h      | h  | h      | (272* | h        | h     | h  | h      | yt 7h* |       |
| Bd/av9Fs ue C-usswMI    | h          | h      | h  | h      | 2    | h         | h      | h  | h      | D     | h        | h     | h  | h      | 5      |       |
| * Bd/av9Fs ue C-usswMJ  | h          | h      | h  | h      | h    | h         | h      | h  | h      | (272* | h        | h     | h  | h      | 575*   |       |

UpFHFsedMs MtHBdvav9Fs ue C-usswMl 7i gi Fb3RgRdbrc3SgSr-P3WgWhSP-e

2 of 6

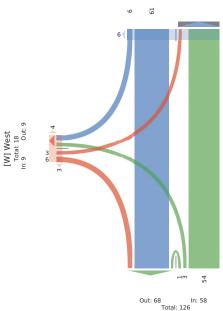
5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-60PM ) 060 PMv) r l elidu Peak AoOH
su Luilei (glt dd anB MoodByRei, Aeal y, PeBeidhani, wifyRei on moaB, wifyRei on
Libii I alw'
s uMol eDend
:4 - 9Ol6OB, goRadon-5O697772, )7O830500



5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 20, 00
F M l eal.nt/day 3, 0, 00 30F M g 3 F Mt
F M l (Beffer A 495 aP) MCCki yi he@d eaoy2l e) e6b\dPQr Ayi he6 CP c Ca) 2r Ayi he6 CP
( SCRFilalli
F hiMCev ePI6
Rwkm8l ntD: CI a MCPw4n5l k88802g8n5Dn#, m

3 of 6

| e-         |                           | OG:19       |         |     |         |        | J Cu 19    |        |        |        |        | E e61     |        |    |         |        |       |
|------------|---------------------------|-------------|---------|-----|---------|--------|------------|--------|--------|--------|--------|-----------|--------|----|---------|--------|-------|
| RAsei IACP |                           | J Cu 19. Cu | iP)     |     |         |        | OG:19. Gil | ?)     |        |        |        | Sa61 CuP) |        |    |         |        |       |
| TAv e      |                           | С           | T       | W   | FNN     | le)U   | T          | :      | W      | FNN    | l e) U | с         | :      | W  | FNN     | l e) U | BP1   |
|            | 0, 00g ng3, 30w, FM       | 4           | 0I      | ,   | 08      | ,      | Im         | I      | 3      | Ik     | ,      | I         | 0      | ,  | m       | m      |       |
|            | 30v≩nF M                  | 0           | ID      | ,   | 4,      | 5      | 3k         | ,      | ,      | 3k     | ,      | I         | 3      | ,  | 4       | 0      |       |
|            | TClah                     | 5           | 53      | ,   | 58      | 5      | m4         | I      | 3      | mD     | ,      | 5         | I      | ,  | k       | 8      | 31    |
|            | * FNNcai9                 | k7,*        | k37, *  | , * | g       | g      | kI 73*     | n90*   | 378*   | g      | 8      | 5578*     | 1171*  | ,* | g       | g      |       |
|            | * TClah                   | 47hf        | 4mhr*   | , * | m, 7, * | g      | 4, 71*     | 070*   | , 78*  | 4171*  | 8      | 47h#      | 0.00*  | ,* | 578*    | g      |       |
|            | 1 d %                     | , 718m      | , 7I DD | g   | , 74, 5 | g      | , 71 k,    | , 70m; | , 70m, | , 718m | 8      | , 7h, ,   | , 70m, | g  | , 74I D | g      | , 741 |
|            | : A916aP) MCICsi yi he6   | 5           | пБ      | ,   | 50      | g      | nB         | I      | 3      | mm     | 8      | 5         | 3      | ,  | 8       | g      | 30    |
| * :        | : A916aP) MCIGsi yi he6   | 3, , *      | k37D*   | , * | k07hf   | g      | k474*      | 3,,*   | 3,,*   | k47D*  | 8      | 3,,*      | 11.11* | ,* | 887D*   | g      | k07m  |
|            | d eaoy                    | ,           | I       | ,   | I       | g      | 0          | ,      | ,      | 0      | 8      | ,         | ,      | ,  | ,       | g      |       |
|            | * d eaoy                  | , *         | 47k*    | , * | 47hf    | g      | I 78*      | ,*     | ,*     | I 74*  | 8      | ,*        | ,*     | ,* | ,*      | g      | 178   |
|            | r Ayi he6 CP c Ca)        | ,           | 0       | ,   | 0       | g      | 3          | ,      | ,      | 3      | 8      | ,         | 0      | ,  | 0       | g      |       |
|            | *rAlyihe6CPcCa)           | , *         | 17/*    | , * | 17*     | g      | 37k*       | ,*     | ,*     | 378*   | 8      | ,*        | 5578*  | ,* | 0070*   | g      | 178*  |
|            | l e) e61s4aP6             | g           | g       | g   | g       | 5      | g          | g      | g      | g      | ,      | g         | g      | g  | g       | m      |       |
|            | * le)e6kAP6               | g           | g       | g   | g       | 3, , * | g          | g      | g      | g      | 8      | g         | g      | g  | g       | 8374*  |       |
|            | r Alyi he6 CP ( sC66HaliL | g           | g       | g   | g       | ,      | g          | g      | g      | g      | ,      | g         | g      | g  | g       | 0      |       |
| *          | r Avi he6 CP ( sC66HaliL  | g           | g       | g   | g       | .*     | g          | g      | g      | g      | 9      | g         | g      | g  | g       | 0D5*   |       |


Ul e) e6isAaP6 aP) r Alyi he6 CP ( sC66HahL7: w. ebi2c wc A 912TwT9su2WwMgTusP

# 5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

3, , 9 t g)ie--ai@g wn2 Nepeag2ON2K0G DJI 29 A

[N] North Total: 124 In: 67 Out: 57

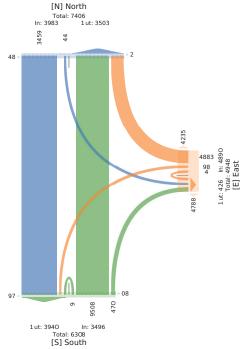
[S] South



# 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

SSB0814 - CUVID - DAINS ST (@ MARCHE WAY - MAY... - TMC Tue T M y3, 2, OFIL Inegith (6:A2 - T91, -32 PT ) PIL CIMENS (Lights Md T uturarlns3c nMh3-ndnstaiMs3v irarlns ue BuM3v irarlns ue CussRiMo) PIL T uthk nets nh : yDLAt13Lur Miue: 6D™yy62A39BD45418




| Lng                        | Ough     |       |    |        |       | I Mr       |       |      |       |       | EuPth    |        |       |        |       |     |
|----------------------------|----------|-------|----|--------|-------|------------|-------|------|-------|-------|----------|--------|-------|--------|-------|-----|
| Ling<br>Limrtine           | EuPth uE |       |    |        |       | S nst. uFe |       |      |       |       | Ough, uF |        |       |        |       |     |
|                            |          |       |    |        |       |            |       | -    |       |       |          |        |       |        |       |     |
| Wk n                       | W        | L     | U  | P NN   | - nd* | В          | L     | U    | PNN   | - nd* | В        | W      | U     | PNN    | - nd* |     |
| , 2, , 92D92y 6:22- T      | A26      | A     | 2  | A28    | ,     | DD         | 1     | 2    | D4    | 186   | 4        | , A5   | 2     | , 66   | y     | 4   |
| D22- T                     | D42      | ,     | 2  | D4,    | A     | 1,6        | 2     | 2    | 1, 6  | 6y8   | 1y       | D21    | 2     | D, 2   | 11    | 1,  |
| 4:22- T                    | 686      | 1     | 2  | 68D    | 2     | 152        | 2     | 2    | 152   | 566   | 62       | D21    | 2     | D61    | 18    | 1   |
| 8:22- T                    | 65,      | D     | 2  | 658    | 1     | , 2y       | A     | 2    | , 1,  | 441   | Ay       | 616    | 2     | 6DA    | 1,    | 1   |
| 5:22- T                    | 6A8      | 2     | 2  | 6AB    | 6     | 54         | A     | 1    | y2    | A26   | 11       | AA5    | 2     | A6y    | 1A    |     |
| y:22- T                    | A15      | 2     | 2  | A15    | 6     | y4         | D     | 2    | 121   | 1DA   | 16       | A24    | 2     | A, 2   | 6     |     |
| 12:22- T                   | A81      | 2     | 2  | AB1    | 2     | 1DD        | D     | 2    | 142   | 515   | , у      | A56    | 1     | 616    | 8     |     |
| 11:22- T                   | 154      | 2     | 2  | 154    | 2     | 8,         | ,     | 2    | 86    | 44    | 12       | , 1A   | 2     | ,,A    | A     |     |
| , 2, , 92D9L2 1, :22P T    | 42       | 2     | 2  | 42     | 6     | , 4        | 1     | 2    | ,8    |       | 4        | ID     | 1     | 4,     | 1     |     |
| WitM                       | Aly,     | 11    | 2  | A, 2A  | 15    | 122A       | , 2   | 1    | 12, 6 | ADAy  | 186      | , yI2  | ,     | A1, 4  | 88    | 8   |
| % P NNouMh                 | yy78%    | 27/96 | 2% | 9      | 9     | y87/%      | , 72% | 271% | 9     | 9     | DF4%     | y676%  | 271%  | 9      | 9     |     |
| % With                     | 6A76%    | 271%  | 2% | 6A74%  | 9     | 1A74%      | 274%  | 2%   | 1A7/% | 9     | , 76%    | 6271%  | 2%    | 6, 7D% | 9     |     |
| Lights Med T utuorarlns    | A2, y    | 4     | 2  | A2AD   | 9     | y5,        | , 2   | 1    | 122A  | 9     | 182      | , 844  | 1     | , yAB  | 9     | - 4 |
| % Lights Med T utuorar Ins | y63/%    | D67D% | 2% | у6Ъ%   | 9     | y83/%      | 122%  | 122% | y87/% | 9     | y878%    | yA5%   | D272% | y672%  | 9     | уб  |
| c nMa                      | 8A       | 2     | 2  | 8A     | 9     | 6          | 2     | 2    | 6     | 9     | 2        | DБ     | 2     | D5     | 9     |     |
| % c nMHa                   | , 7/10%  | 2%    | 2% | , 7466 | 9     | 276%       | 2%    | 2%   | 276%  | 9     | 2%       | , 72%  | 2%    | 17/9%  | 9     | 1   |
| v irarlıs ue Bu <b>M</b>   | y2       | D     | 2  | yD     | 9     | 18         | 2     | 2    | 18    | 9     | 6        | 1, 4   | 1     | 1.A1   | 9     |     |
| % virarlıs ue BuM          | , 75%    | 6DID% | 2% | AZ2%   | 9     | 178%       | 2%    | 2%   | 178%  | 9     | , 7466   | 67/46% | D272% | 67,%   | 9     | F   |
| - ndnstoiMs                | 9        | 9     | 9  | 9      | 14    | 9          | 9     | 9    | 9     | AD, 2 | 9        | 9      | 9     | 9      | 88    |     |
| % - ndnstalMs              | 9        | 9     | 9  | 9      | 557/% | 9          | 9     | 9    | 9     | yy7D% | 9        | 9      | 9     | 9      | 122%  |     |
| virarlns ue CoussRMw       | 9        | 9     | 9  | 9      | ,     | 9          | 9     | 9    | 9     | 1y    | 9        | 9      | 9     | 9      | 2     |     |
|                            |          |       |    |        |       |            |       |      |       |       |          |        |       |        |       |     |

\*- ndnstoiMs Med virarIns ue CoussRMw7L: Lnbt3B: Bight3W WhoF3U: U9WFoe

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 1, Location: 45699403, -756 8. 17



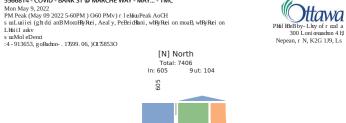
6 of 6



5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
T ue T M y3, 2, ,
0T OPM IT M 29, 2, , ng 20T h (g 2 0T 6h: AF-M90PM I uP) 9C9MShE I dros MHT uu-vayEs31 FMu30PHSecMes3Bdav4Fs ue RuMBBdvayFs ue
C-ussvM 6
) 9T uAFk Fes
th gyDtt n43i uvMdheg7Di yy72t 3h( Dh5n4(

| <b>Ottav</b>                           | va             |
|----------------------------------------|----------------|
| 0-uAdFH. agCda ub: 0<br>422 CuesdF9Mdu | dMvM<br>e I -3 |
| f FOFMe3: f 3N, p DK                   | 3C)            |

1 of 6


| i Fo                    | f u-a        |    |    |       |      | GMc       |    |    |       |       | JuPar      |        |    |        |      |       |
|-------------------------|--------------|----|----|-------|------|-----------|----|----|-------|-------|------------|--------|----|--------|------|-------|
| f d-Pvodue              | J uPar . uP  | eН |    |       |      | E Fsc uPe | H  |    |       |       | f u-α. uPe | H      |    |        |      |       |
| Sdk F                   | S            | i  | W  | ) 00  | OFHL | R         | i  | W  | ) 00  | OFHU  | R          | S      | W  | ) 00   | 0FHJ | nec   |
| , 2, , h2Dh2y ng 20T    | 472          | 2  | 2  | 472   | 2    | D         | 2  | 2  | D     | , 4(  | 4,         | 4, 2   | 2  | 4t,    | ,    | t,    |
| ng/D0T                  | 444          | 2  | 2  | 444   | 2    | Dy        | 2  | 2  | Dy    | , D4  | 4,         | 4t,    | 2  | 477    | ,    | t 4   |
| (@201                   | 447          | 2  | 2  | 447   | 2    | D         | 2  | 2  | D     | , D4  | 4,         | 4, t   | 2  | 4t D   | 5    | t2    |
| (g4D0T                  | 4t 5         | 2  | 2  | 4t 5  | 2    | D5        | 2  | 2  | D5    | 4ny   | 42         | 427    | 2  | 447    | 4    | t 4   |
| Sud                     | <b>9</b> 12t | 2  | 2  | D2t   | 2    | , , t     | 2  | 2  | ,,t   | 555   | 7n         | 7(y    | 2  | ŊD     | 4t   | 4, I  |
| * ) 00-uM               | 422*         | 2* | 2* | h     | ŀ    | 422*      | 2* | 2* | h     | h     | 585*       | y48 *  | 2* | h      | h    |       |
| * Sud                   | 728*         | 2* | 2* | 728 * | ŀ    | 4(85*     | 2* | 2* | 4(85* | h     | *)81       | t 58 * | 2* | 7, 82* | h    |       |
| 01                      | % 285yn      | h  | h  | 28Буп | ŀ    | 28/Dt     | h  | h  | 28yDt | h     | 28yt 5     | 285y2  | h  | 285y7  | h    | 28y(  |
| i dores MeHT uou-vav9F  | 754          | 2  | 2  | 754   | ŀ    | ,,4       | 2  | 2  | ,,4   | h     | 7D         | 7D2    | 2  | 7yD    | h    | 44y   |
| * idores MeHT uou-vav9E | yD8n*        | 2* | 2* | yD@h* | ŀ    | yy84*     | 2* | 2* | yy8t* | h     | y(85*      | yt 8y* | 2* | y78:*  | h    | yD#(  |
| 1 FM                    |              | 2  | 2  | 42    | ŀ    | 2         | 2  | 2  | 2     | h     | 2          | у      | 2  | у      | h    | 4     |
| * 1 FM                  | , 82*        | 2* | 2* | , 82* | ŀ    | 2*        | 2* | 2* | 2*    | h     | 2*         | 48/*   | 2* | 48(*   | h    | 480   |
| Bd/av9Fs ue RuN         | H 4,         | 2  | 2  | 4,    | ŀ    | ,         | 2  | 2  | ,     | h     | 4          | , 2    | 2  | , 4    | h    | t     |
| * Bd/av9Fs ue RuN       | H , 87*      | 2* | 2* | , 87* | ŀ    | 28/*      | 2* | 2* | 28y*  | h     | ,8*        | 78 *   | 2* | 782*   | h    | , 85° |
| 0FHScdM                 | s h          | h  | h  | h     | 2    | h         | h  | h  | h     | 55t   | h          | h      | h  | h      | 4t   |       |
| * 0FHSc-dM              | s h          | h  | h  | h     | ŀ    | h         | h  | h  | h     | yy87* | h          | h      | h  | h      | 422* |       |
| Bd/av9Fs ue C-usswM     | h            | h  | h  | h     | 2    | h         | h  | h  | h     | D     | h          | h      | h  | h      | 2    |       |
| * Bdvav9Fs ue C-usswM   | h            | h  | h  | h     | ŀ    | h         | h  | h  | h     | 28h*  | h          | h      | h  | h      | 2*   |       |

UpFHFso-dMs MtHBdvav9Fs ue C-usswM1 8i gi Fb3RgRdbrc3SgSr-P3WgWh6P-e

3 of 6 2 of 6

# 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC





20 218

9 ut: 605 In: 646 Total: 7043 [S] South



9ut: 20 In: 445 Total: 408 [E] East

031

# 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

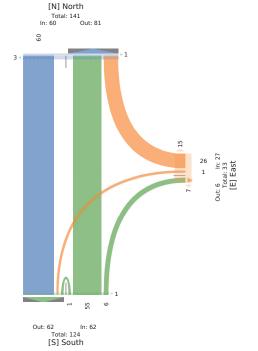
Sobola (4- CUVID - BANK ST @ MARCHE WAY - MAY... - IMC Tue May 3, 20, 00 F M leaLnMay 3, 0, 00 30 F M g3 F Mt Filk [h8666 A 905 a) MCCki yi h82d eaoy2l e)e6k&P2r Ayi h86 CP c Ca) 2r Ayi h86 CP (\$CSCHABLE FilmChev eP16 Brwkm81 IB2: CI a MCPw4m1 kk4, 12gm105B8



| : e-                       | OG:19      |     |    |        |      | J a61     |        |    |        |      | ECu19      |        |       |        |      |      |
|----------------------------|------------|-----|----|--------|------|-----------|--------|----|--------|------|------------|--------|-------|--------|------|------|
| RAei IAD                   | ECu19. Cul | P)  |    |        |      | S e6L CuP | )      |    |        |      | OGs19. Cul | P)     |       |        |      |      |
| TAv e                      | T          |     | W  | FNN    | le)U | С         | - :    | W  | FNN    | le)U | С          | T      | W     | FNN    | le)U | BP1  |
| 0,00g mg3, 30w, FM         | H          | ,   | ,  | H      | 3    | 35        | ,      | ,  | 35     | 31   | 4          | 18     | 3     | 40     | 3    | 1    |
| 30v@mF M                   | 08         | ,   | ,  | 08     | I    | 5         | 3      | ,  | k      | k    | 0          | 35     | ,     | 0,     | ,    | 1    |
| TClah                      | D)         | ,   | ,  | Ŋ      | 4    | 0D        | 3      | ,  | 08     | 00   | D          | mm     | 3     | D0     | 3    | 3    |
| * FNNcai9                  | 3, , *     | ,*  | ,* | g      | g    | kDI*      | I 78*  | ,* | g      | g    | k78*       | 5578*  | 37D*  | g      | g    |      |
| * TClah                    | 4, 7/*     | ,*  | ,* | 4, 71* | g    | 3874*     | , 78*  | ,* | 3573*  | g    | 47, *      | I Dlk* | , 78* | 437D*  | g    |      |
| 1 d %                      | , 74D8     | g   | g  | , 74DB | g    | , 7I DB   | , 70m, | g  | , 718m | g    | , 718m     | , 7I5D | g     | , 715m | g    | , 74 |
| : A916 aP) MCICsi yi le6   | mD         | ,   | ,  | mD     | g    | 0D        | 3      | ,  | 08     | g    | D          | 45     | ,     | mi     | g    | 3.   |
| * : A916aP) MCICsi yi he6  | kI 7 *     | , * | ,* | kI 71* | g    | 3,,*      | 3,,*   | ,* | 3,,*   | g    | 3,,*       | 587 *  | ,*    | 5873*  | g    | k3%  |
| d eaoy                     | I          | ,   | ,  | I      | g    | ,         | ,      | ,  | ,      | g    | ,          | I      | ,     | I      | g    |      |
| * d eaoy                   | nī; *      | ,*  | ,* | nī; *  | g    | ,*        | ,*     | ,* | ,*     | g    | ,*         | nîhŕ   | ,*    | 475*   | g    | 47   |
| r Alyi he6 CP c Ca)        | 3          | ,   | ,  | 3      | g    | ,         | ,      | ,  | ,      | g    | ,          | 4      | 3     | m      | g    |      |
| * r Alyihe6CPc Ca)         | 378*       | ,*  | ,* | 378*   | g    | ,*        | ,*     | ,* | ,*     | g    | ,*         | 871*   | 3,,*  | 578*   | g    | 47   |
| l e) e6kAP6                | g          | g   | g  | g      | 4    | g         | g      | g  | g      | 00   | g          | g      | g     | g      | 3    |      |
| * 1 e) e6kArP6             | g          | g   | g  | g      | 3,,* | g         | g      | g  | g      | 3,,* | g          | g      | g     | g      | 3,,* |      |
| r Alyi he6 CP ( sC66HaliL  | g          | g   | g  | g      | ,    | g         | g      | g  | g      | ,    | g          | g      | g     | g      | ,    |      |
| * r Alyi he6 CP (sC66HaliL | g          | g   | g  | g      | -,*  | g         | g      | g  | g      | ,*   | g          | g      | g     | g      | ,*   |      |

Ul e) e6isAtP6 aP) r Ayi læ6 CP ( sC66HahL7: w. ebi2c wc A 912TwT9su2WwMgTusP

4 of 6


5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST ⊚ MARCHE WAY - MAY... - TMC
Tue May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9π.) y-a-k:
A- Mt reBegi)

Rwnt D847321 t dai@gn6D4115, 4266D71736

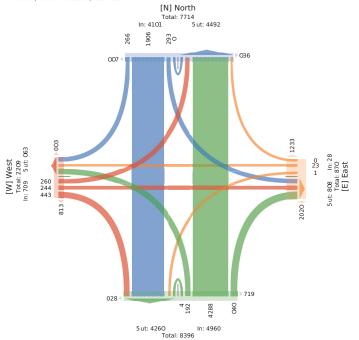




5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

3500011+ COVID-FRANCE (FINESCENCE)
THE IT MS 32, COVID-FRANCE (FINESCENCE)
THE IT MS 3

- cuHidnd . 122 CuestnllMiue I c3OnNnM3?


| Lng                     | Ouath    | _     |       |        |       |       | J Mat     |         |        |     |      |       | EuPth    |       |       |        |       |       | Sirst     |       |         |               |      |       |       |
|-------------------------|----------|-------|-------|--------|-------|-------|-----------|---------|--------|-----|------|-------|----------|-------|-------|--------|-------|-------|-----------|-------|---------|---------------|------|-------|-------|
| I ionrtiue              | EuFth. t | ıFed  |       |        |       |       | S rist. u | Fed     |        |     |      |       | Ouath. u | :Fed  |       |        |       |       | J Mit. uF | ed    |         |               |      |       |       |
| Wik n                   | В        | W     | L     | U      | PNN   | - nd+ | В         | W       | L      | U   | PNN  | - nd+ | В        | W     | L     | U      | PNN   | - nd+ | В         | W     | L       | U             | PNN  | - nd+ | met   |
| , 2, , 92D92y 6:22- T   | 14       | , 52  | 5     | 2      | , yA  | Dy    | 2         | 2       | 2      | 2   | 2    | 18A   | AD       | , Ав  | A1    | 2      | A26   | 82    | A1        | 11    | 11      | 2             | DA   | DD    | 4D2   |
| D22-T                   | AA       | D6A   | , 6   | 2      | 422   | 128   | 1         | ,       | ,      | 2   | Đ    | 6y1   | 54       | 688   | IΣ    | 2      | 416   | 142   | 6A        | , D   | A6      | 2             | 12,  | , 2,  | 1A, 1 |
| 4:22- T                 | , 6      | 61y   | A6    | 2      | 655   | , AA  | ,         | 6       | 2      | 2   | 4    | 5AD   | 128      | Π2y   | 6A    | 1      | 441   | , D2  | 46        | A,    | A2      | 2             | 1, 4 | , 4y  | 1,52  |
| 5:22- T                 | A2       | A4A   | Al    | 2      | 6, 6  | 1Dy   | 1         | 2       | 2      | 2   | 1    | 444   | 111      | 65D   | 6D    | 2      | 4A1   | , 22  | 85        | A,    | A1      | 2             | 102  | , 61  | 1, 24 |
| 8:22- T                 | ,,       | Ayy   | , 1   | A      | 66D   | 42    | 1         | 1       | 2      | 2   | ,    | A62   | AD       | A5,   | 16    | 2      | 6, 1  | 11A   | Al        | у     | 12      | 2             | D2   | 88    | y18   |
| y:22- T                 | , A      | , yA  | ,8    | 2      | A66   | 65    | 2         | 1       | 2      | 2   | 1    | , Al  | AA       | A62   | ,,    | 2      | AyD   | 44    | A1        | 12    | 14      | 2             | DS   | 54    | 5y5   |
| 12:22- T                | AB       | AA8   | , 4   | 2      | 62,   | 1DI   | 2         | ,       | 2      | 2   | ,    | 85D   | , у      | 6, A  | 65    | 2      | 6уу   | , D2  | A1        | у     | AB      | 2             | 58   | , у,  | y81   |
| 11:22- T                | 11       | 15y   | 5     | 1      | 1y8   | , у   | 2         | 2       | 2      | 2   | 2    | 5A    | D        | , Dy  | , 6   | 2      | , 88  | , 6   | у         | D     | ,,      | 2             | A4   | A1    | ц,    |
| , 2, , 92D9121, :22PT   | ,        | DD    | ,     | 2      | Dy    | у     | 2         | 2       | 2      | 2   | 2    | , 2   | ,        | 5A    | D     | ,      | 8,    | ,     | A         | 2     | A       | 2             | 4    | 4     | 165   |
| WitM                    | 1yy      | , 8Dy | 182   | 6      | A, 6, | 8DD   | D         | 12      | -      | 2   | 15   | A416  | 6A6      | A155  | , 81  | A      | ÆyD   | 116D  | AA2       | 1AA   | 1yD     | 2             | 4D8  | 1,42  | 581,  |
| % P NNasMth             | 471% 8   | 387 % | D4% : | 271%   | 9     | 9     | , y76% I  | 087B% 1 | 178% 2 | %   | 9    | 9     | 1171%    | 3174% | 57,%  | 271%   | 9     | 9     | D27, %,   | 27,%, | y 74% 2 | 2%            | 9    | 9     | 9     |
| % With                  | , 7D%    | A474% | , 74% | 271% € | S17D% | 9     | 271%      | 271%    | 2% 2   | %   | 27,% | 9     | D94% (   | 5275% | A74%  | 2% (   | sy7/% | 9     | 67, %     | 175%  | , 7D% 2 | 2% 1          | 876% | 9     | 9     |
| Lights Med T utuorarlns | 1y6      | , 521 | 158   | 6      | A255  | 9     | 2         | 2       | 2      | 2   | 2    | 9     | 612      | A264  | , 55  | A      | A5A4  | 9     | A18       | 11A   | 1y1     | 2             | 4, , | 9     | 56AE  |
| % Lights Med            |          |       |       |        |       |       |           |         |        |     |      |       |          |       |       |        |       |       |           |       |         |               |      |       |       |
| T utuorar lns           |          |       |       |        |       | 9     | 2%        | 2%      | 2% 2   |     | 2%   | 9     | y67D%    |       | y874% | 122% 3 |       | 9     | y475% 8   | BD2%  | 57/% 2  | 2% <b>y</b> 4 | 67D% | 9     | yDĘ % |
| c nMh                   | 2        | 5D    | 2     | 2      | 5D    | 9     | 1         | 2       | 2      |     | 1    | 9     | 2        | DD    | 1     | 2      | D4    | 9     | ,         | 2     | ,       | 2             | 6    | 9     | 1A4   |
| % c nMh                 | 2%       | , 74% | 2%    | 2%     | , 24% | 9     | , 272%    | 2%      | 2% 2   | %   | DB/% | 9     |          |       | 276%  | 2%     | 176%  | 9     | 274%      | 2%    | 172% 2  | 2%            | 274% | 9     | 175%  |
| virarlıs ue Bu <b>M</b> | D        | 8A    | ,     | 2      | y2    | 9     | 6         | 12      | ,      | 2   | 14   | 9     | , 6      | 54    | A     | 2      | 12A   | 9     | 12        | , 2   | ,       | 2             | A,   | 9     | , 61  |
| % virarlns ue BuM       | , 7D%    | , 3/% | 171%  | 2%     | , 78% | 9     | 8272%     | 122%    | 122% 2 | % y | 671% | 9     | DID%     | , 76% | 171%  | 2%     | , 74% | 9     | A72% 1    | D2%   | 172% 2  | 2% (          | 63/% | 9     | A71%  |
| - ndrstoiMs             | 9        | 9     | 9     | 9      | 9     | 86A   | 9         | 9       | 9      | 9   | 9    | AD88  | 9        | 9     | 9     | 9      | 9     | 11A2  | 9         | 9     | 9       | 9             | 9    | 1, 6, |       |
| % - ndnstaiMs           | 9        | 9     | 9     | 9      |       | 874%  | 9         | 9       |        | 9   |      | y 74% | 9        | 9     | 9     | 9      |       | 875%  | 9         | 9     |         | 9             |      | 874%  | 9     |
|                         | 9        | 9     | 9     | 9      | 9     | 1.    | 9         | 9       | 9      | 9   | 9    | - 4   | 9        | 9     | 9     | 9      | 9     | 1D    | 9         | 9     | 9       | 9             | 9    | 18    |       |
| v irarlns ue CoussRMw   | 9        | -     | -     |        |       | ٠,    |           |         |        |     |      |       |          |       |       |        |       |       |           |       |         |               |      |       |       |

6 of 6

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

Mon May 9, 2022 — 112:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 4, Location: 4569979. , -856 7. 5. 3



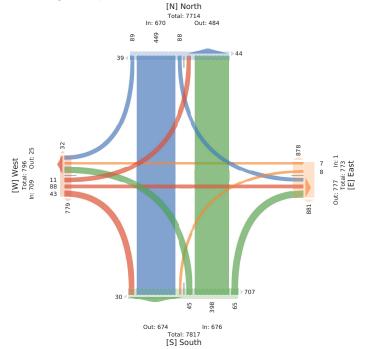


[S] South

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

53000 I F - COVID - DAWN ST & HOLLWOOD AVE - M... - TINL.
TUE T M 3/S, 7, 7, 181 OT THE UT M 7/S - M. - TINL.
TUE T M 3/S, 10 T OPAIL IT M 2y, 2, 7, 181 OT THE UT M 7/S - METCE LIST OF MASORE REAMACS VIBHETCUE BUM3V IBHETCUE
) AVCRM (
P - T TU: FWFEC
longy I Din3s ut Milue gnt 7Dy/8/43161 7884 4D




| s Fd                   | f uAo  |        |       |    |        |       | GME | r       |       |    |       |       | Julro   |       |       |      |        |        | E FG   |         |       |      |        |       |        |
|------------------------|--------|--------|-------|----|--------|-------|-----|---------|-------|----|-------|-------|---------|-------|-------|------|--------|--------|--------|---------|-------|------|--------|-------|--------|
| miÆHiue                | Julro. | ulec   |       |    |        |       | ΕR  | G. uleo |       |    |       |       | f uAro. | ulec  |       |      |        |        | GME. u | lec     |       |      |        |       |        |
| SiwF                   | В      | S      | s     | W  | PCO    | 0FcU  | В   | S       | s     | W  | POD   | 0FcU  | В       | S     | s     | W    | PCO    | 0FcU   | В      | S       | s     | W    | PCO    | 0FcU  | ler    |
| , 2, , h2t h2y ngnt 0T | y      | I nt   | t     | 2  | Ity    | Dh    | 2   | 2       | 2     | 2  | 2     | y5    | 14      | I, n  | , I   | 2    | 141    | , 8    | Iy     | n       | 8     | 2    | п      | , 5   | Dil    |
| t g220T                | n      | I Dy   | ٠,    | 2  | Int    | Ιy    | 2   | 2       | 2     | 2  | 2     | yt    | Ir      | I,t   | Ιt    | 2    | Itn    | Db     | у      | ,       | 8     | 2    | Iy     | n,    | пв     |
| tglt0T                 | ,      | I,5    | t     | 2  | I Dh   | , у   | 2   | 2       | 2     | 2  | 2     | I 28  | 15      | I Dn  | у     | 2    | 142    | t,     | 12     | n       | 8     | 2    | ,,     | t t   | DI 4   |
| t gD20T                | In     | I n8   | 12    | 2  | 15,    |       | 2   | I       | ,     | 2  | D     | ID    | , 2     | I 2y  | Ι,    | 2    | InI    | , n    | 14     | I,      | у     | 2    | IБ     | nD    | DΙ     |
| SurM                   | , у    | tty    | - ,,  | 2  | 412    | I2n   | 2   | I       | ,     | 2  | D     | nΩ    | 45      | ny,   | t 5   | 2    | 414    | InI    | t n    | ,,      | DD    | 2    | I 2y   | 145   | IDD    |
| * POOA:Mib             | n78*   | yI 74* | D74*  | 2* | h      | h     | 2*  | DDD°    | 4475* | 2* | h     | h     | 127y*   | 5y7y* | y7D*  | 2*   | h      | h      | ny7 *  | , 27, * | D27D* | 2*   | h      | h     |        |
| * SurM                 | , 7, * | nI 78* | I 74* | 2* | nt 74* | h     | 2*  | 27 *    | 27/*  | 2* | 27, * | h     | t 72*   | D478* | n7D°  | 2* 1 | 14Z*   | h      | n72*   | 174*    | ,7*   | 2*   | 87.*   | h     |        |
| 09 %                   | 2718   | 27yt,  | 27tt2 | h  | 27By2  | h     | h   | h       | h     | h  | h     | h     | 27ynI   | 27/2, | 27445 | h    | 27ynD  | h      | 25,,   | 27.22   | 27/15 | h    | 275t 5 | h     | 27yt 5 |
| s idorCMc T uruAhHFC   | , у    | tIt    |       | 2  | t 44   | h     | 2   | 2       | 2     | 2  | 2     | h     | 4r      | n45   | t 4   | 2    | t 85   | h      | t 2    | 18      | п     | 2    | уу     | h     | I,t,   |
| * s idorCMc            |        |        |       |    |        |       |     |         |       |    |       |       |         |       |       |      |        |        |        |         |       |      |        |       |        |
| T uruAbHR              |        |        |       | 2* |        | h     | 2*  | 2*      | 2*    |    | 2*    | h     | yt 7 *  | yn7y* | y87,* | 2* ! | yt 7D° | ŀ      | y, 74* | 8I 7B*  | уШу*  | 2* y | y278*  | h     | yD4*   |
| 9 FMa                  | 2      | 18     | 2     | 2  | 18     | h     | 2   | 2       | 2     | 2  | 2     | h     | - 2     | y y   | 2     | 2    | у      | ŀ      | ,      | 2       | ,     | 2    | n      | h     | п      |
| * 9 FMa                | 2*     | D; *   | 2*    | 2* | DE2*   | h     | 2*  | 2*      | 2*    | 2* | 2*    | h     | 2*      | 178*  | 2*    | 2*   | 17*    | ŀ      | D5*    | 2*      | 47 *  | 2*   | D2+    | h     | , 7D*  |
| v iHtHPCue BuM         | 2      | , 4    | - 2   | 2  | , 4    | h     | 2   | I       | ,     | 2  | D     | h     | I       | 14    | I     | 2    | , 2    | ŀ      | ,      | n       | 2     | 2    | 4      | h     | t t    |
| * viHhHPCue BuM        | 2*     | пЂ*    | 2*    | 2* | n7D°   | h     | 2*  | I 22*   | 122*  | 2* | I 22* | h     | n7 *    | DiD,  | 178*  | 2*   | DĘ*    | h      | D2+    | 187 *   | 2*    | 2*   | t 7 *  | h     | n7 *   |
| 0FcFGAMC               | h      | . 1    | ı h   | h  | h      | I2D   | h   | h       | h     | h  | h     | nΠ    | - 1     | h b   | 1 1   | ı h  | h      | I Dn   | h      | . I     | ı h   | h    | h      | I4t   |        |
| * OFCEGAMO             | h      | . 1    | ı h   | h  | h      | yy72* | h   | ŀ       | ı h   | h  | h     | yy7 * | 1       | h b   | 1 1   | ı h  | h      | yt 72* | h      | . I     | ı b   | h    | h      | y878* | 1      |
| viHiHFCue ) AcCRM      | h      | . 1    | ı h   | h  | h      | I     | h   | h       | ı h   | h  | h     | n     | - 1     | h b   | 1 1   | ı h  | h      | 5      | h      | . I     | ı b   | h    | h      | ,     | _      |
| * viHiHPCue ) AuCRM    | h      | . 1    | n h   | h  | h      | 172*  | h   | ŀ       | . h   | h  | h     | 27/*  | - 1     | h h   | 1 1   | h    | h      | t 72*  | h      | . h     | ı h   | h    | h      | 17.*  | ŀ      |

UprcPGAM/CMc viHaHPCue ) AuCR MI 7s gs Pb/3BgBidor3SgSoAl3WgWl61Ae

2 of 6

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-56PM ) 6-56 PMC) v relaHPeak u o.A
CHB BilleL(i ght d.anc ModblByHel, u ear y, Peceldganl, RghyHelLon woac, RghyHelLon slolLmalRO
CHMOrel end.
D - 964135, i oBadgon-56.199793, )86.373631





5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
Tue May 3, 20, 00
F M l eaLinday 3, 0, 00 30F M g 3 F Mt
Filk (la6566 A 305 aP) MCCki yi le62d eaoy2l e) e6k&P62r Ayi le6 CP c Ca) 2r Ayi le6 CP (SCG+Ialli
Filk MCeve P156
Rwkm8l D42: Cl a 142P-v4m1 kk8kDg-śmt/BDn11

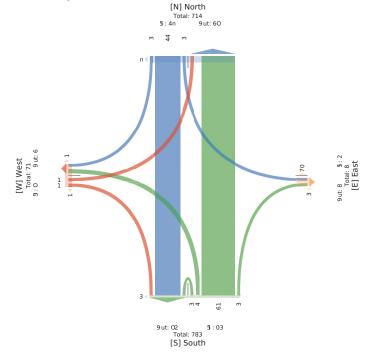
3 of 6

| e-                        | OG:19   |        |       |       |     |       |      | J a6 | il   |     |    |      |      | EQ:19  |        |        |       |         |       | S e61   |     |        |       |        |      |       |
|---------------------------|---------|--------|-------|-------|-----|-------|------|------|------|-----|----|------|------|--------|--------|--------|-------|---------|-------|---------|-----|--------|-------|--------|------|-------|
| RAei IACP                 | EGı 19  | . CuP) |       |       |     |       |      | S e  | 61 C | aP) |    |      |      | OG:19. | CuP)   |        |       |         |       | J a61 C | hP) |        |       |        |      |       |
| TAv e                     | c       |        | T     | :     | W   | FNN   | le)U | С    | T    | :   | WE | NN I | e) U | с      | T      | - 1    | W     | FN      | lle)U | с       | T   | :      | W     | FNN 1  | e) U | BP1   |
| 0, 00g mg3, 30w, FM       | - (     | ) I    | 3     | ,     | ,   | H     | D    | ,    | ,    | ,   | ,  | ,    | 33   | 0      | 44     | m      | 3     | m0      | ,     | 0       | ,   | I      | ,     | m      | m    | k     |
| 30v≩nF M                  | ,       | . 0    | )4    | 0     | ,   | 0D    | I    | ,    | ,    | ,   | ,  | ,    | k    | ,      | 0k     | ,      | 3     | I,      | 0     | 3       | ,   | ,      | ,     | 3      | 3    | n     |
| TClah                     | -       | ) п    | m     | 0     | ,   | nk    | k    | ,    | ,    | ,   | ,  | ,    | 0,   | 0      | 5I     | m      | 0     | 80      | 0     | I       | ,   | I      | ,     | D      | D    | 34    |
| * FNNcai9                 | I 74*   | kI 70° | * I   | 74* , | *   | g     | 8    | ,*   | ,* . | ,*, | *  | g    | g    | 074*   | 8k7, * | D3*    | 074*  | 8       | 8 8   | m, 7, * | ,*  | m,7,*  | , *   | g      | g    |       |
| * TClah                   | 374*    | I 574° | * 3   | 74*,  | * 4 | , 73* | 8    | .*   | ,* . | ,*, | *  | ,*   | g    | 374*   | 4k万*   | I 74*  | 374*  | nm®*    | 8     | 07.*    | ,*  | 07,*   | ,* 4  | 473*   | g    |       |
| 1 d %                     | , 70m   | , 74n  | ŋ , î | 0m    | g,  | 74D;  | 8    | g    | g    | g   | g  | g    | g    | , 70m, | , 7405 | , 70m, | , 7m, | , 74, I | 8     | , 715m  | g   | , 70m, | g,    | 7,,    | g    | , 743 |
| : A916aP) MCICsi yi he6   | 3       | 3 п    | ıΒ    | 0     | ,   | mi    | 8    | ,    | ,    | ,   | ,  | ,    | g    | 0      | DБ     | m      | 0     | 5E      | ) 8   | I       | ,   | I      | ,     | D      | g    | 31    |
| * : A916aP)               |         |        |       |       |     |       |      |      |      |     |    |      |      |        |        |        |       |         |       |         |     |        |       |        |      |       |
| MCIGsi yi he6             | m 7,*   | k075°  | * 3,  | ,*,   | * k | 37h#  | g    | , *  | ,* , | ,*, | *  | g    | g    | 3,,*   | k378*  | 3,,*   | 3,,*  | k05*    | 8     | 3,,*    | ,*  | 3,,*   | , * 3 | t, , * | g    | k07m  |
| d eaoy                    | ,       |        | I     | ,     | ,   | I     | g    | ,    | ,    | ,   | ,  | ,    | g    | ,      | I      | ,      | ,     | I       | 8     | ,       | ,   | ,      | ,     | ,      | g    |       |
| * d eaoy                  | ,*      | niht   | ř     | ,*,   | *   | nß*   | 8    | ,*   | ٠.   | ,*, | *  | g    | g    | ,*     | 473*   | ,*     | ,*    | I 75*   | 8     | ,*      | ,*  | ,*     | , *   | ,*     | g    | 473   |
| r Alyi he6 CP c Ca)       | - 3     | 3      | 3     | ,     | ,   | 0     | 8    | ,    | ,    | ,   | ,  | ,    | g    | ,      | I      | ,      | ,     | I       | 8     | ,       | ,   | ,      | ,     | ,      | g    |       |
| * r Alyi he6 CP c Ca)     | m, 7, * | 378    | *     | ,*,   | *   | I 74* | 8    | .*   | ,* . | ,*, | *  | g    | g    | ,*     | 473*   | ,*     | ,*    | I 75*   | 8     | ,*      | ,*  | ,* .   | ,*    | ,*     | g    | I 74* |
| l e) e6kAP6               |         | g      | g     | g     | g   | g     | k    | g    | g    | g   | g  | g    | 0,   | g      | g      |        |       |         | g 0   | 8       | g   | g      | g     | g      | D    |       |
| * le)e6kAtP6              |         | g      | g     | g     | g   | g     | 3,,* | g    | g    | g   | g  | g3,  | ,*   | g      | g      | g      | g     |         | 3,,*  | g       | g   | g      | g     | g3,    | , *  |       |
| r Alyi he6 CP ( sC66HaliL |         | g      | g     | g     | g   | g     | ,    | g    | g    | g   | g  | g    | ,    | g      | g      |        |       |         | 3 ,   | g       | g   | g      | g     | g      | ,    |       |
| * r Avi le6 CP (sCl6HaliL |         | g      | g     | g     | g   | g     | . *  | g    | g    | g   | g  | g    | . *  | g      | g      |        |       |         | 3 ,*  | 8       | g   | g      | g     | g      | . *  |       |

U e) e6lsAtP6 aP) r Atyi he6 CP ( sC66HahL7: w. ebl2c wc A 912TwT9su2WwMgTusP

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - CUVILD - DAWN 3. G. FLOCKING.


The May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A – 9 a))e) (1 GL1) agh Mt it niyde)20 ear y2Pehe)iriāg)2c diyde) t g Ht ah2c diyde) t g
9 r1) y2 a\*.

A – Mt reBegi)

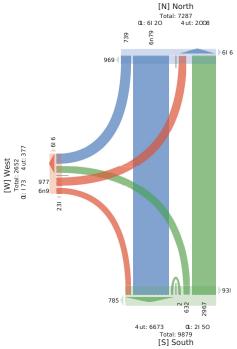
Rwrll D847521 t daid gn5D411617281D767D74





5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

SSOSA 14 - CUVID - QUEEN ELIZABETH DIKWY @ FIF... - TIMC Tue T M y3, 2, OFIL Lnegth (6:A2 - T 91, -A2 P T ) PIL Classes (Lights Md T uturarlns3c nMh3-ndnstaMs3v irarlns ue BuM3v irarlns ue CussRMs) PIL T uthk nets nh : yDLA473Lur Miue: 6D82 Ay, 1355D8471y56




| Lng                       | Ouath      |       |    |        |       | JuFth      |       |      |       |       | E nst     |       |    |       |       | I   |
|---------------------------|------------|-------|----|--------|-------|------------|-------|------|-------|-------|-----------|-------|----|-------|-------|-----|
| I ionrtiue                | JuFth. uFe | ed .  |    |        |       | Ouoth. uFo | ed    |      |       |       | SMt. uFed | 1     |    |       |       | I   |
| Wk n                      | В          | W     | U  | PNN    | - nd* | W          | L     | U    | PNN   | - nd* | В         | L     | U  | P NN  | - nd* | net |
| , 2, , 92D92y 6:22- T     | A2         | , A7  | 2  | , 47   | DA    | y2         | , 4   | 2    | 114   | 55    | 1D        | , 2   | 2  | AD    | , 4   |     |
| D22- T                    | yA         | D24   | 2  | Dyy    | 11D   | , 14       | 41    | 2    | , 55  | 152   | , 5       | 64    | 2  | 5A    | 5D    |     |
| 4:22- T                   | 1, 4       | 6, 5  | 2  | DDA    | 117   | 1yy        | D,    | 2    | , Di  | , 25  | A7        | D4    | 2  | y6    | y4    | П   |
| 5:22- T                   | 117        | , 15  | 2  | AAD    | 11y   | 1y4        | DA    | 2    | , 6y  | 15A   | 64        | 56    | 2  | 1, 2  | 7y    |     |
| 7:22- T                   | A6         | , 1y  | 2  | , DA   | 4y    | 164        | 14    | 2    | 14,   | 5D    | 1y        | A2    | 2  | 6y    | Dt    | 1   |
| y:22- T                   | ,7         | 145   | 2  | 1yD    | A7    | 121        | , 1   | 2    | 1,,   | D6    | , 6       | ,7    | 2  | D,    | ,,    |     |
| 12:22- T                  | AD         | 152   | 2  | , 2D   | D6    | , A2       | , у   | 2    | , Dy  | yD    | , 4       | D4    | 2  | 7,    | 4D    | П   |
| 11:22- T                  | 7          | 71    | 2  | 7y     | у     | 11y        | 12    | 1    | 1A2   | 1A    | . 7       | A,    | 2  | 62    | A     |     |
| , 2, , 92D9121, :22PT     | 1          | 17    | 2  | 1y     | 2     | , 5        | A     | 2    | A2    | 2     | 2         | ,     | 2  | ,     | 2     |     |
| VětN                      | 65A        | , 26A | 2  | , DI4  | DSD   | 1A, 6      | , 51  | 1    | 1Dy4  | 746   | , 2A      | A66   | 2  | D65   | 6, 5  | Г   |
| % P NNouMh                | 1787%      | 718 % | 2% | 9      | 9     | 7.AB2%     | 1582% | 281% | 9     | 9     | A581%     | 4,8/% | 2% | 9     | 9     | Г   |
| % With                    | 128 %      | 6ABy% | 2% | D682%  | 9     | , 786%     | D87%  | 2%   | A684% | 9     | 686%      | 586%  | 2% | 1185% | 9     | П   |
| Lights Med T utuorarlns   | 612        | , 21y | 2  | , 6, y | 9     | 1A2D       | , 45  | 1    | 1D5A  | 9     | 1y7       | AAy   | 2  | DA2   | 9     | Г   |
| % Lights Med T utucrarlns | 7485%      | y787% | 2% | y480%  | 9     | y784%      | y78D% | 122% | y784% | 9     | y58D%     | y78D% | 2% | y78,% | 9     | 3   |
| c nMHs                    | 6          | D     | 2  | у      | 9     | 1          | ,     | 2    | A     | 9     | 1         | 6     | 2  | D     | 9     | Г   |
| % c nMB                   | 287%       | 28 %  | 2% | 286%   | 9     | 281%       | 285%  | 2%   | 28,%  | 9     | 280%      | 18,%  | 2% | 28/%  | 9     |     |
| v irarlıs ue Bu <b>M</b>  | Dy         | 1y    | 2  | 57     | 9     | 17         | ,     | 2    | , 2   | 9     | 6         | 1     | 2  | D     | 9     |     |
| % v irarlns ue BuM        | 1,80%      | 28y%  | 2% | A61%   | 9     | 186%       | 285%  | 2%   | 18496 | 9     | , 82%     | 284%  | 2% | 28/%  | 9     |     |
| - ndnstoiMs               | 9          | 9     | 9  | 9      | 642   | 9          | 9     | 9    | 9     | 564   | 9         | 9     | 9  | 9     | 622   | П   |
| % - ndnstriMs             | 9          | 9     | 9  | 9      | 7282% | 9          | 9     | 9    | 9     | 7484% | 9         | 9     | 9  | 9     | уАБ%  |     |
|                           |            |       |    |        |       |            | 9     | 9    | 9     | 117   | 9         | 9     | 9  | 9     | -     | . – |
| virarlns ue CoussRMi      | 9          | 9     | 9  | 9      | 11D   | 9          | 9     | 9    | 9     | 11/   | 3         | 9     | 9  | 9     | , 5   | l . |

6 of 6

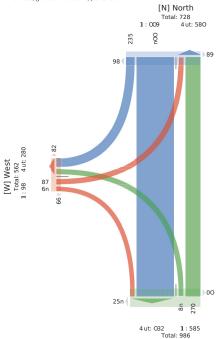
0-uAd-FH. agCda ub: ccMvM D22 Cuesd-99Mdue I -3 f FOFMs3: f 3N, p nKy3C)

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 6, Location: 457403921, -857 61984



5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
T ue T M y3, 2, ,
0T OPM IT M 29, 2, , ng 20T h (g 2 0T 6h: AF-M90PM 1 uP) 9C3MSh I dros MHT uu-vayEs31 FMu30PHSecMes3Bdav4Fs ue RuMBBdav4Fs ue
C-ussvM 6
) 9T uAFk Fes
th gynD (43) uvMdheg7n872ty, DBf6n8(4Dy57

| 0, 1                     | -          |       | -  |       |      |          |       |    |       |      |          |        |    |       |       |       |
|--------------------------|------------|-------|----|-------|------|----------|-------|----|-------|------|----------|--------|----|-------|-------|-------|
| Fo                       | f u-α      |       |    |       |      | GuPer    |       |    |       |      | J Fsc    |        |    |       |       |       |
| d-Fvolue                 | GuPar. uPo | eH    |    |       |      | fu-α.uPe | H     |    |       |      | EMc uPeH | I      |    |       |       |       |
| dk F                     | R          | S     | W  | ) 00  | 0FHJ | S        | i     | W  | ) 00  | 0FHL | R        | i      | W  | ) 00  | 0 FHU | mec   |
| , 2, , h2nh2y ng 20T     | t D        | D24   | 2  | Dгy   | , 7  | 7D       | D)    | 2  | nt    | 74   | у        | n      | 2  | ,,    | D,    | , D7  |
| ng/n0T                   | D5         | Di 2  | 2  | D75   | 7t   | nn       | DF    | 2  | (y    | nt   | 122      | ĽΣ     | 2  | , 2   | ,,    | , t ( |
| (@20T                    | DS         | D7n   | 2  | D(,   | , у  | n7       | у     | 2  | (t    | 72   | DD       | DБ     | 2  | , 4   | , 2   | , nt  |
| (gDn0T                   | t 5        | D4t   | 2  | ,,2   | t(   | 75       | ĽΣ    | 2  | n5    | (2   | n        | y      | 2  | DF    | , 2   | , yD  |
| SudM                     | I2,        | n( (  | 2  | ((4   | D,   | Dy5      | 7n    | 2  | , 7,  | , 2E | tn       | 7y     | 2  | 47    | 57    | yy7   |
| * ) CO-uMr               | Dn8 *      | 4785* | 2* | h     | h    | 4D87*    | D48(* | 2* | h     | h    | 7D6*     | n48 *  | 2* | h     | h     | h     |
| * SudM                   | 128 *      | n(8y* | 2* | (58*  | h    | Dy84*    | 78n*  | 2* | ,78*  | h    | t 8h*    | 78/*   | 2* | 48n*  | h     | h     |
| 01 %                     | 28(4n      | 285(n | h  | 285nn | h    | 28142    | 28427 | h  | 284(7 | h    | 285yn    | 285, D | h  | 285n2 | h     | 28174 |
| idoros MeHT uou-vav9Fs   | 57         | nn5   | 2  | (tD   | h    | Dy2      | 7n    | 2  | , t n | h    | tn       | 74     | 2  | 4t    | h     | y7y   |
| * idores MeHT uou-vav9Fs | 5, 8n*     | y487* | 2* | y78h* | h    | y(87*    | D22*  | 2* | y58D* | h    | D22*     | y482*  | 2* | y481* | h     | yn8n* |
| 1 FMa                    | 2          | t     | 2  | t     | h    | 2        | 2     | 2  | 2     | h    | 2        | D      | 2  | D     | h     | 7     |
| * 1 FMa                  | 2*         | 28n*  | 2* | 287*  | h    | 2*       | 2*    | 2* | 2*    | h    | 2*       | , 82*  | 2* | D8 *  | h     | 287*  |
| Bdvav9Fs ue RuMH         | , 4        | (     | 2  | t7    | h    | 5        | 2     | 2  | 5     | h    | 2        | 2      | 2  | 2     | h     | 7D    |
| * Bd/av9Fs ue RuMH       | , 58n*     | DBD*  | 2* | n8D*  | h    | * 181    | 2*    | 2* | , 8/* | h    | 2*       | 2*     | 2* | 2*    | h     | 78D*  |


U0FHFsc-dMs MtHBdvav9Fs ue C-usswMl 8i gi Fb3RgRdbrc3SgSr-P3WgWh6P-e

2 of 6 3 of 6

#### 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

Mon May 9, 202 202 25-60PM) 0-60 PMy) r l elatureak AoCH su Luitei (gli trid an BMoodByRei, Acad y, PeBei dhani, wRyRei on moaB, wRyRei on Libii I alw su Mol eDendi :4-9516CB, goRadon-. 57.06921, )857B19B.





5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC



| : e-                      | OG:19        |         |    |        |      | J Cu 19     |               |     |         |      | E e61  |        |    |        |      |      |
|---------------------------|--------------|---------|----|--------|------|-------------|---------------|-----|---------|------|--------|--------|----|--------|------|------|
| RAei IACP                 | J Cu 19. CuP | 9       |    |        |      | OG:19. G:P) |               |     |         |      | Sa6L C | iıP)   |    |        |      |      |
| TAv e                     | с            | T       | W  | FNN    | le)U | T           |               | W   | FNN     | le)U | С      | - 1    | W  | FNN    | le)U | BP1  |
| 0,00g,mg3,30w,FM          | ,            | 33      | ,  | 33     | ,    | 35          | 0             | ,   | 3k      | ,    | ,      | ,      | ,  | ,      | ,    | I    |
| 30v≩nF M                  | 3            | 5       | ,  | 4      | ,    | 3,          | 3             | ,   | 33      | ,    | ,      | 0      | ,  | 0      | ,    | (    |
| TClah                     | 3            | 34      | ,  | 3k     | ,    | 05          | I             | ,   | I,      | ,    | ,      | 0      | ,  | 0      | ,    | 1    |
| * FNNcai9                 | n <b>a</b> * | k785*   | ,* | g      | g    | k, 8, *     | 3,8*          | ,*  | g       | 8    | ,*     | 3, , * | ,* | g      | g    |      |
| * TClah                   | 08*          | 1 n8 *  | ,* | 158*   | g    | m98k*       | n <b>8</b> k* | ,*  | m#81*   | g    | ,*     | 18c*   | ,* | 18k*   | g    |      |
| 1 d %                     | , 80m,       | , 87, k | g  | , 8710 | g    | , 81 k5     | , 8 5m        | g   | , 81 km | 8    | g      | , 80m  | g  | , 80m, | g    | , 87 |
| : A916aP) MCICsi yi he6   | 3            | 34      | ,  | 3k     | g    | 05          | I             | ,   | I,      | g    | ,      | 0      | ,  | 0      | g    | 1    |
| * : A916aP) MCIGsi yi he6 | 3,,*         | 3, , *  | ,* | 3,,*   | g    | 3,,*        | 3, , *        | , * | 3,,*    | g    | ,*     | 3,,*   | ,* | 3,,*   | g    | 3,,  |
| d eaoy                    | ,            | ,       | ,  | ,      | g    | ,           | ,             | ,   | ,       | 8    | ,      | ,      | ,  | ,      | g    |      |
| * d eaoy                  | ,*           | ,*      | ,* | ,*     | g    | ,*          | , *           | ,*  | ,*      | g    | ,*     | ,*     | ,* | ,*     | g    | ,    |
| r Ayi he6 CP c Ca)        | ,            | ,       | ,  | ,      | g    | ,           | ,             | ,   | ,       | 8    | ,      | ,      | ,  | ,      | g    |      |
| * r Alyi he6 CP c Ca)     | ,*           | ,*      | ,* | ,*     | g    | ,*          | , *           | ,*  | ,*      | g    | ,*     | ,*     | ,* | ,*     | g    | ,    |
| l e) e6lsArP6             | g            | g       | g  | g      | ,    | g           | g             | g   | g       | ,    | g      | g      | g  | g      | ,    |      |
| * l e) e6isAtP6           | g            | g       | g  | g      | g    | g           | g             | g   | g       | g    | g      | g      | g  | g      | g    |      |
| r Alyi he6 CP ( sC66HahL  | g            | g       | g  | g      | ,    | g           | g             | g   | g       | ,    | g      | g      | g  | g      | ,    |      |
| * r Ayi he6 CP (sC66HaliL | g            | g       | g  | g      | g    | g           | g             | g   | g       | 8    | g      | g      | g  | g      | g    |      |

Ul e) e6isAtP6 aP) r Ayi læ6 CP ( sC66Hahl.8: w. ebi2c wc A 912TwT9su2WwMgTusP

4 of 6

#### 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, Q, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r, ))v a-k:
A- Mt reBegi)
Rwnt D847521 t dai@gm D6, 4l 03281D87531 1.

[S] South

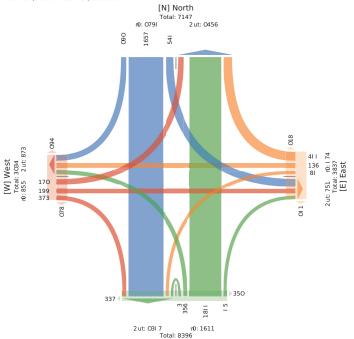
[N] North Total: 48



5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
T ue T M y3, 2,
OFIL Leegh (6:72 - T 91, :72 P T )
PIL CIMSen (Lights Md T utucrarlns3c nMit3 - ndrstdiMs3v irarlns ue BuM3v irarlns ue
CussRiMo)
PIL T UHK nets
ni : yDLAt13LurMue: 6DPy6, y1391085:A62y



| Lng                     | Ouath    |         |        |             |       |     | J Mrt     |         |         |      |       |       | EuFth    |        |         |              |        |       | S rist   |               |          |      |      |       |       |
|-------------------------|----------|---------|--------|-------------|-------|-----|-----------|---------|---------|------|-------|-------|----------|--------|---------|--------------|--------|-------|----------|---------------|----------|------|------|-------|-------|
| I ionrtiue              | EuFth. u | яFed    |        |             |       |     | S nst. ui | Fed     |         |      |       |       | Ouath. t | Fed    |         |              |        |       | J Mt. uF | ed            |          |      |      |       |       |
| Wik n                   | В        | W       | L      | U           | PNN   | nd+ | В         | W       | L       | U    | PNN   | - nd+ | В        | W      | L       | U            | PNN    | - nd+ | В        | W             | L        | U    | PNN  | - nd+ | met   |
| , 2, , 92D92y 6:22- T   | , A      | , 41    | 81     | 2           | ADD   | 9   | 45        | , 6     | A       | 2    | 12D   | AB    | 5        | , D6   | 12      | 2            | , 4,   | A1    | 12       | , A           | , D      | 2    | DБ   | 4A    | 43    |
| D22- T                  | 86       | D 5     | 12A    | 2           | 8yD   | 9   | 105       | D4      | 14      | 2    | , A,  | 1, A  | 14       | 684    | 1y      | 2            | D2A    | у6    | , 8      | IΣ            | DD       | 2    | 1.A1 | 15A   | 1DE   |
| 8:22- T                 | DA       | Ay,     | 54     | 2           | DA,   | 9   | 1.AA      | IΣ      | у       | 2    | 1y,   | 1, 4  | 15       | DΣ,    | , у     | 2            | D6y    | 62    | A,       | A,            | D,       | 2    | 118  | 161   | 1.A5  |
| 4:22- T                 | AB       | 61D     | 42     | 2           | D, 1  | 9   | 45        | AD      | 16      | 2    | 1, 4  | 1.46  | 1,       | A51    | , D     | 2            | 615    | A1    | , у      | ,,            | A6       | 2    | 5D   | y5    | 11E   |
| 5:22- T                 | , 5      | A84     | 66     | 2           | 6Ay   | 9   | 66        | 16      | 12      | 2    | 85    | 51    | 11       | AA4    | , 8     | 2            | A46    | , y   | Al       | AB            | , D      | 2    | y,   | 84    | y4    |
| y:22- T                 | A,       | , 58    | A5     | 2           | ADB   | 9   | 61        | , 2     | D       | 2    | 88    | AD    | у        | A2A    | 14      | 1            | AA2    | 1D    | 1A       | 15            | A4       | 2    | 85   | DB    | 5,    |
| 12:22- T                | A4       | A46     | , 5    | 2           | 6Ay   | 9   | AD        | 1D      | D       | 2    | DD    | 1Ay   | 8        | , Dy   | 16      | 2            | , 4y   | , 2   | , A      | 12            | A1       | 2    | 86   | IΣ    | 5A    |
| 11:22- T                | - ,,     | , D4    | , 1    | 2           | A22   | 9   | 15        | A       | D       | 2    | , 8   | , 6   | A        | 1.A5   | 8       | 2            | 164    | 2     | D        | 5             | 11       | 2    | ,6   | 11    | 6y    |
| , 2, , 92D912 1, :22P T | 5        | D4      | 8      | 2           | 41    | 9   | A         | 1       | 2       | 2    | 6     | 4     | 2        | 64     | A       | 2            | ID2    | 2     | ,        | 1             | A        | 2    | 8    | ,     | 1.4   |
| VétNi                   | A2A      | , y64   | 6DS    | 2           | A425  | 9   | D55       | , 1y    | 85      | 2    | 54D   | 425   | 56       | , 855  | 16y     | 1            | , y, , | , 82  | 141      | , 22          | , 4A     | 2    | 866  | 851   | 516   |
| % P NNuMh               | 57, %    | 4y7D% 1 | 1, 75% | 2%          | 9     | 9   | 847, % ,  | D/2%    | 45%     | 2%   | 9     | 9     | , 7/% )  | 7, 72% | DN%     | 2%           | 9      | 9     | , 878% . | 4171% (       | 5, 76% 2 | 2%   | 9    | 9     |       |
| % WitM                  | A74% .   | A87, %  | DB%    | 2% €        | DDW   | 9   | 47, %     | , 74%   | 25%     | 2% 1 | 1274% | 9     | 172%     | AA2%   | 175%    | 2% A         | EBy%   | 9     | , 71%    | , 70%         | A76% 2   | % 4  | 3/%  | 9     |       |
| Lights Med T utucrarIns | , 84     | , 44,   | 6D6    | 2           | A6yA  | 9   | DSD       | , 18    | 88      | 2    | 584   | 9     | 4y       | , D, 2 | 168     | 1            | , 468  | 9     | 182      | 1yA           | , 8D     | 2    | 815  | 9     | 44,   |
| % Lights Med            |          |         |        |             |       |     |           |         |         |      |       |       |          |        |         |              |        |       |          |               |          |      |      |       |       |
| T utucrarlns            | 5571%    | y671% y | yy71%  | 2% <b>y</b> | 67,%  | 9   | уу70% у   | /578% y | 471%    | 2% 3 | yy71% | 9     | y672% y  | /A5%   | y572% 1 | 22% <b>y</b> | 622%   | 9     | yAB% y   | /87D% <u></u> | 471% 2   | % y8 | 72%  | 9     | y6759 |
| c nMh                   | , D      | ED2     | 1      | 2           | 48    | 9   |           | 2       | 2       | 2    | ,     | 9     | 2        | DS     | ,       | 2            | 82     | 9     | ,        | ,             | 1        | 2    | D    | 9     | 16    |
| % c nMh                 | 574%     | 174%    | 27,%   | 2%          | , 72% | 9   | 274%      | 2%      | 2% 2    | 2%   | 27,%  | 9     | 2%       | , 7, % | 174%    | 2%           | , 71%  | 9     | 17, %    | 172%          | 276% 2   | % 2  | 75%  | 9     | 1759  |
| v irarlns ue BuM        | 11       | 1, D    |        | 2           | 1Ay   | 9   | 1         | A       | ,       | 2    | 8     | 9     | D        | 112    | 1       | 2            | 118    | 9     | у        | D             | 4        | 2    | , 1  | 9     | , 5   |
| % virarlns ue BuM       | AB%      | 67,%    | 274%   | 2%          | A74%  | 9   | 27, %     | 176%    | , 3/% : | 2%   | 274%  | 9     | 872%     | 671%   | 274%    | 2%           | 672%   | 9     | D996     | , 7D%         | , 78% 2  | % A  | 7466 | 9     | ADS   |
| - ndnstaiMes            | 9        | 9       | 9      | 9           | 9     | 2   | 9         | 9       | 9       | 9    | 9     | 8y6   | 9        | 9      | 9       | 9            | 9      | , 6,  | 9        | 9             | 9        | 9    | 9    | 8AA   |       |
| % - ndnstaiMs           | 9        | 9       | 9      | 9           | 9     | 9   | 9         | 9       | 9       | 9    | 93    | 52%   | 9        | 9      | 9       | 9            | 93     | /A71% | 9        | 9             | 9        | 9    | 9 y. | A72%  |       |
|                         | 9        | 9       | 9      | 9           | 9     | - 2 | 9         | 9       | 9       | 9    | 9     | 16    | 9        | 9      | 9       | 9            | 9      | 15    | 9        | 9             | 9        | 9    | 9    | 65    |       |
| virarlns ue CoussRMw    | 9        |         |        |             |       |     |           |         |         |      |       |       |          |        |         |              |        |       |          |               |          |      |      |       |       |


|                                |   | In: 19                         | Out: 29   |
|--------------------------------|---|--------------------------------|-----------|
|                                | н | 18                             |           |
| [W] West Total: 6 In: 2 Out: 4 |   | Dut: 18                        | 17        |
|                                |   | Out: 18<br>Total: 4<br>[S] Sou | 18<br>uth |

6 of 6

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

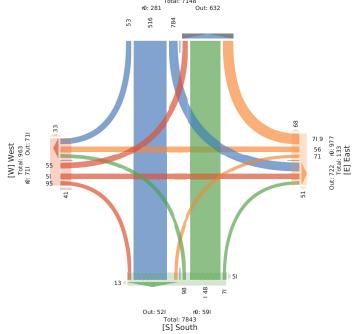
Mon May 9, 2022 — 112:30 AM)
MI Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 1, Location: 45694291, -. 56783409





5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
Tue T M y3, 2, ,
0T ORB IT M 2y, 2, , ngn 0T h tgt 0T (h6: FM4 0FM 9 u1A
P -) -MRTCLS idonCMc T unuAbiHR39 FMa30FRRAMGV ibiHPCue BuM3v ibiHPCue
) AKCRM (
P - T u: FiveFirc'
kngyt IDI 3s uMulegent Zbyn, y13list 785Dzby




| s Fd                       | f uAso   |        |         |             |          | GME:    |         |          |      |        |        | Julro   |         |        |             |        |        | E FGr  |        |        |      |              |       |      |
|----------------------------|----------|--------|---------|-------------|----------|---------|---------|----------|------|--------|--------|---------|---------|--------|-------------|--------|--------|--------|--------|--------|------|--------------|-------|------|
| miÆHiue                    | Julro. u | :lec   |         |             |          | E FG. t | lec.    |          |      |        |        | f uAto. | u1ec    |        |             |        |        | GME: u | 1ec    |        |      |              |       |      |
| SiwF                       | В        | S      | s       | W           | PCO0FeU  | В       | S       | s        | W    | PCO    | 0FcU   | В       | S       | s      | W           | PCO    | 0FcU   | В      | S      | s      | W    | PCO          | 0FcU  | ler  |
| , 2, , h2t h2y ngnt 0T     | ID       | In5    | , у     | 2           | Iy2 h    | DD      | Ι,      | I        | 2    | n8     | Iy     | D       | ID      | t      | 2           | In2    | , I    | t      | Ιt     | Ιt     | 2    | n            | nD    | nI I |
| t g220T                    | у        | ID     | , 5     | 2           | 14, h    | nn      | 18      | t        | 2    | 8t     | nt     | n       | Ht      | D      | 2           | Ι,,    | DD     | у      | 12     | 5      | 2    | , 4          | t,    | DS   |
| tglt0T                     | , 2      | ID     | , 8     | 2           | 145 h    | D,      | In      | D        | 2    | ny     | , t    | I       | HH      | t      | 2           | 114    |        | 12     | It     | 15     | 2    | nD           | D4    | D54  |
| t gD20T                    | 18       | I,I    | , 8     | 2           | IBD h    | DD      | Ιn      | n        | 2    | t I    | , n    | 8       | ID      | 4      | 2           | Int    | 18     | I      | In     | Ιn     | 2    | , у          | ny    | D55  |
| SurM                       | t 5      | t DB   | I 2y    | 2           | 42D h    | In,     | t 8     | ID       | 2    | ,II    | HD     | In      | ny2     | , 2    | 2           | t,n    | y,     | , t    | t n    | t t    | 2    | I Da         | I 5I  | It4, |
| * POOA:Mib                 | 57D° 4   | 487, * | I t 7 * | 2*          | h h      | 847D*   | , 87. * | 87, * 2  | 2*   | h      | h      | , 74*   | yDR *   | D2+    | 2*          | h      | h      | 1574*  | n27D*  | nI 72* | 2*   | h            | h     |      |
| * SurM                     | D24+ I   | Dn7l * | 87y+    | 2* r        | m74+ h   | y 2*    | DB+     | 275* 2   | 2÷ 1 | I Dîn+ | h      | 27y+    | DI 7, * | 17D°   | 2* I        | DID*   | h      | I.28+  | Dh+    | D£+    | 2*   | 57.*         | h     |      |
| 09%                        | 274, t   | 27yI5  | 23/t t  | h           | 27yDy h  | 27524   | 2754t   | 27822    | h    | 27525  | h      | 278t 2  | 27y, n  | 274I n | h.          | 27y2D  | h      | 278Dy  | 275t 2 | 274yn  | h 2  | 27522        | h     | 27yt |
| s idorCMc T uruAhHPC       | t D      | nyD    | I 28    | 2           | 8t, h    | InI     | t 8     | I,       | 2    | , 2y   | h      | ID      | nt,     | Iy     | 2           | n5n    | h      | , D    | t I    | t D    | 2    | 1,4          | h     | In4  |
| * s idorCMc<br>T uruAlbHPC |          | y, 72+ | y47 +   | 2* <b>y</b> | r, 74° h | yy7D°   | 122*    | y, 70° 2 | 2* ; | yy7i + | h      | y, 7y*  | y, 7 *  | yt 72* | 2* <b>y</b> | , 7h+  | h      | y, 72* | yn7h+  | y87h+  | 2* y | п <b>Ђ</b> + | h     | yDB* |
| 9 FMa                      | t        | In     | I       | 2           | ,2 h     | I       | 2       | 2        | 2    | I      | h      | 2       | 12      | I      | 2           | H      | h      | 2      | 2      | I      | 2    | I            | h     | Е    |
| * 9 FMa                    | 578*     | , 7B*  | 27y+    | 2*          | ,75° h   | 274*    | 2*      | 2* 2     | 2*   | 27.*   | h      | 2*      | , 2*    | t 72*  | 2*          | ,7*    | h      | 2*     | 2*     | 122+   | 2* : | 274*         | h     | ,7*  |
| v iHtHPCue BuMt            | 2        | , у    | ,       | 2           | II h     | 2       | 2       | I        | 2    | I      | h      | I       | , 5     | 2      | 2           | , у    | h      | ,      | D      | I      | 2    | 8            | h     | 8    |
| * v iHtHPCue BuMt          | 2*       | t 7h+  | 122+    | 2*          | n7h+ h   | 2*      | 2*      | 474*     | 2*   | 27.*   | h      | 47 *    | t 74°   | 2*     | 2*          | t 7. * | h      | 572*   | t 78*  | 122+   | 2* : | n7 *         | h     | n7D° |
| 0FcFGAMC                   | h        | h      | h       | h           | h 2      | h       | h       | h        | h    | h      | 125    | h       | h       | h      | h           | h      | 5n     | h      | ı h    | h      | h    | h            | 188   |      |
| * 0FcFGAMtC                | h        | h      | h       | h           | h h      | h       | h       | h        | h    | h      | yt 78* | h       | h       | h      | h           | h      | /I 7D* | h      | ı h    | h      | h    | hy           | /1740 |      |
| v iHhHFCue ) ArCR M        | h        | h      | h       | h           | h 2      | h       | h       | h        | h    | h      | t      | h       | h       | h      | h           | h      | 5      | h      | ı h    | h      | h    | h            | Ιt    |      |
| * viHtHFCue ) AuCCRM       | h        | h      | h       | h           | h h      | h       | h       | h        | h    | h      | n7n+   | h       | h       | h      | h           | h      | 574*   | h      | ı h    | h      | h    | h            | 57D°  |      |
|                            |          |        |         |             |          |         |         |          |      |        |        |         |         |        |             |        |        |        |        |        |      |              |       |      |

UprcFGAMcCMcviHaHFCue) AuGRMl7sgsFbr3BgBidor3SgSoAl3WgWl61Ae

2 of 6

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-56PM ) 6-56 PMC) v rela⊞Peak u oA
CHB BilleL(i ght d.anc ModblByHel, u ear y, Peceldganl, RghyHelLon woac, RghyHelLon slollmalRO
CHMOrel end.
D - 964134, i oBadgon-56.195294, )36.781509 [N] North Total: 7148 r0: 281 Out: 632 516 23 784

[S] South



5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

Tue May 3, 20, 00

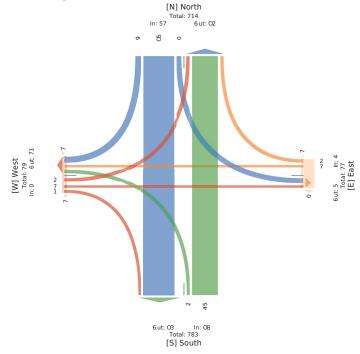
F M | eat.nYday 3, 0, 00 30F M g 3 F Mt
F hly (h6566 n A916 aP) MCCGs yi he62d eaoy2l e) e6kahP62r Ayi he6 CP c Gs) 2r Ayi he6 CP
( sCGF4lalit
F hlmGrev eP16

R wkm81 EB2: Cl a lAP-wim1 k40k32ghr851 4, k

| l scoAe) . yw | tawa<br>Ay Obf DaHa |
|---------------|---------------------|
|               |                     |
| 3, , ( CF     | 61elfa 1ACP Rs      |
| OeNeaP2f O2   | p 0K mCk2( F        |
|               |                     |

3 of 6

|                            |         |         | _     |      |         |      |        |        |     |    |        |      |     |          |        |       |         |     |         |       |         |     |        |        |       |
|----------------------------|---------|---------|-------|------|---------|------|--------|--------|-----|----|--------|------|-----|----------|--------|-------|---------|-----|---------|-------|---------|-----|--------|--------|-------|
| : e-                       | OGB     |         |       |      |         |      | J a61  |        |     |    |        |      | EC  | h19      |        |       |         |     | S e61   |       |         |     |        |        |       |
| RAei MP                    | ECu 19. | CuP)    |       |      |         |      | S e61  | CuP)   |     |    |        |      | 00  | 39. CuP) |        |       |         |     | J a61 C | iiP)  |         |     |        |        |       |
| TAv e                      | С       | T       | :     | W    | FNN     | e) U | С      | Т      | 1 : | W  | FNN    | le)U | С   | T        | :      | W     | FNN     | ) U | С       | T     |         | W   | FNN    | l e) L | BP1   |
| 0,00g mg3, 30w, FM         | 0       | 01      | 3     | ,    | 80      | g    | I      | 3      | ٠,  | ,  | 4      | 3    | ,   | . 10     | 3      | ,     | H       | ,   | 3       | ,     | ,       | ,   | 3      | 3      | 8     |
| 30v∂nF M                   | 8       | I 4     | m     | ١,   | 4m      | g    | ,      | ,      | ,   | ,  | ,      | 8    | ,   | . 3m     | 0      | ,     | 3D      | ,   | 3       | 3     | I       | ,   | m      | 3      | 8     |
| TClah                      | 5       | пD      | 8     | ,    | ĽΒ      | g    | I      | 3      | ,   | ,  | 4      | D    | ,   | 4D       | I      | ,     | m       | ,   | 0       | 3     | I       | ,   | 8      | 0      | 31    |
| * FNNcai9                  | 337 *   | 5, 71*  | 57h#  | ,*   | g       | g    | Dn≅ *  | 0nF, * | ,*, | *  | g      | 8    | , * | k47,*    | 87,*   | .*    | g       | g   | 1171*   | 387D* | m, 7, * | , * | g      | 8      |       |
| * TClah                    | 873*    | 41 7h#  | 478*  | ,* 1 | nd70*   | 8    | 071*   | , Ъ*   | ,*, | *  | 173*   | 8    | , * | I nik*   | * 10   | , * 1 | 570*    | g   | 37hf    | , Ъ*  | 071*    | , * | 478*   | 8      |       |
| 1 d %                      | , 7111  | , 74, 4 | , 7,, | g    | , 7I SI | 8    | , 70m, | , 70m, | g   | g  | , 70m, | 8    |     | g,718D,  | 7 Dm   | g     | , 71 Dk | g   | , 7m,   | , 70m | , 70m   | g   | , 1, , | 8      | , 745 |
| : A916 aP) MCICsi yi le6   | D       | ni      | 8     | ,    | 88      | g    | I      | 3      | ٠,  | ,  | 4      | 8    | ,   | 4m       | I      | ,     | 45      | g   | 0       | 3     | I       | ,   | 8      | 8      | 30    |
| * : A916aP)                |         |         |       |      |         |      |        |        |     |    |        |      |     |          |        |       |         |     |         |       |         |     |        |        |       |
| MCIGi yi le6               |         | kI 7, * | 3,,*  | ,* I | kI 7, * | g    | 3,,*   | 3,,*   | ,*, | *  | 3,,*   | 8    | , * | kn⁄D* 3  | 3, , * | , * 1 |         | g   | 3,,*    | 3,,*  | 3,,*    | , * | 3, , * | 8      | k47D* |
| d eaoy                     | 3       | 0       |       | ,    | I       | g    | ,      | ,      | ,   | ,  | ,      | 8    | ,   | . 0      | ,      | ,     | 0       | g   | ,       | ,     | ,       | ,   | ,      | 8      | -     |
| * d eaoy                   | 307h#   | I 7hf   | ,*    | ,*   | 470*    | g    | ,*     | ,*     | ,*, | .* | ,*     | g    | ,*  | 47 *     | ,*     | .*    | 47 *    | g   | ,*      | ,*    | ,*      | , * | ,*     | 8      | 15*   |
| r Ayi he6 CP c Ca)         | ,       | 0       | ,     | ,    | 0       | g    | ,      | ,      | ,   | ,  | ,      | g    | ,   |          | ,      | ,     | ,       | g   | ,       | ,     | ,       | ,   | ,      | 8      | (     |
| * r Alyihe6CPc Ca)         | , *     | I 7hf   | ,*    | ,*   | 0万*     | g    | , *    | ,*     | ,*, | *  | ,*     | g    | , * | , *      | ,*     | .*    | ,*      | g   | , *     | ,*    | ,*      | , * | ,*     | 8      | 37h#  |
| l e) e6lsAtP6              | g       | g       | g     | g    | g       | ,    | 8      |        | g g | g  | g      | D    |     | g g      | g      | g     | g       | ,   | g       | . 8   | 8 8     | g   | g      | 0      |       |
| * le)e6kAP6                | g       | g       | g     | g    | g       | g    |        |        | g g | g  | g      | 3,,* |     | g g      | g      | g     | g       | g   | g       | . 8   | 8 8     | g   | g3     | ,,*    |       |
| r Ayi le6 CP ( sC66HaliL   | g       |         |       | g    | g       | ,    | 8      |        | g g | g  | g      | ,    |     | g g      | g      | g     | g       | ,   | g       | . 8   | 8 8     | g   | g      | ,      |       |
| * r Alyi le6 CP (sC66HaliL | g       | g       |       | g    | g       | g    |        |        | g g | g  | g      | ,*   |     | g g      | g      | g     | g       | g   | g       | . 8   | 8 8     | g   | g      | ,*     |       |


Ul e) e6is/aP6 aP) r Alyi le6 CP ( sC66HahL7: w. ebI2c wc A 912TwF9su2WwMgTusP

4 of 6 5 of 6 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

5566614 - CUVID - JANNES 1 & JOHNSON ...
THE MBy 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A – 9-a))e (I GLI) agh Mt it nlyde)20 ear y2Pehe)iriāg)2c dlyde) t g Ht ah2c dlyde) t g
9 r1) yb - 4k:
A – Mt r eB egi)
Rwrl DB47321 t daid gn5D415013287D6145, I

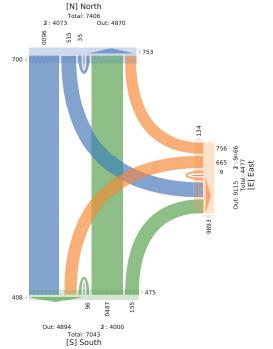




5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

55068 14 - COVID - BANN ST @ EXPIBITION WAY -... - TMC
Tue TM y3, 2-T 91, :A2 PT )
PII Climse; (Lights Md Tutuorarins3c nMh3-ndnstaiMs3v irarins ue BuM3v irarins ue
CaussRMo)
PII Tuthk nets
th: yDi6143Lur Miue: 6DBy8546395DR8DByA




| Lng                       | Ouath     |       |      |       |       | J Mt       |        |      |       |       | EuFth     |        |      |         |       |     |
|---------------------------|-----------|-------|------|-------|-------|------------|--------|------|-------|-------|-----------|--------|------|---------|-------|-----|
| Lionrtiue                 | EuFth. uF | ed    |      |       |       | S nst. uFe | ed.    |      |       |       | Ouoth. uF | ed     |      |         |       |     |
| Wk n                      | W         | L     | U    | PNN   | - nd* | В          | L      | U    | PNN   | - nd* | В         | W      | U    | PNN     | - nd* | net |
| , 2, , 92D92y 6:22- T     | , 25      | 84    | ,    | , yD  | 5,    | Ay         | 41     | 2    | 122   | 1D5   | y2        | , 18   | 1    | A2y     | A4    |     |
| D22- T                    | 611       | 14D   | у    | DBD   | 151   | 84         | 118    | 2    | , 26  | Ay6   | 184       | 61D    | ,    | 42A     | y8    | 1.  |
| 4:22- T                   | Al D      | 1DD   | 1,   | 68,   | , 55  | 81         | 81     | 2    | 14,   | 666   | 186       | 6, 6   | 4    | 416     | 168   | 1,  |
| 5:22- T                   | A, 8      | 1D8   | 12   | 6y4   | , 4,  | 58         | 84     | 2    | 146   | A48   | 1, 1      | A4A    | A    | 685     | 1Ay   | 1   |
| 8:22- T                   | , y4      | 1A5   | A    | 6A4   | 44    | 42         | 5D     | 2    | 1AD   | 142   | 8A        | , 8,   | 2    | A4D     | 68    |     |
| y:22- T                   | ,,D       | y8    | 5    | AA2   | 4,    | 41         | 52     | 2    | 1.A1  | 56    | 84        | , 68   | 1    | AAD     | , 8   |     |
| 12:22- T                  | , 41      | 125   | 11   | Абу   | A5,   | 15A        | 168    | 2    | A, 1  | ,,A   | у6        | , 26   | 6    | A2,     | 14,   | 1   |
| 11:22- T                  | 1AA       | 4D    | ,    | , 22  | Α,    | 12A        | 11D    | 2    | , 18  | AA    | 62        | 116    | 2    | 1D6     | , 5   |     |
| , 2, , 92D912 1, :22P T   | 61        | 18    | A    | 4,    | A     | 14         | , D    | 1    | 6,    | 1D    | 1D        | A8     | 2    | DA      | A     |     |
| WatN                      | ,,15      | y8y   | Dy   | A, 4D | 1A15  | 4y5        | 55y    | 1    | 1655  | 1848  | 8yy       | , A24  | 15   | Α,,,    | 48y   | 5   |
| % P NNouMh                | 457/%     | A274% | 178% | 9     | 9     | 657, %     | D, 75% | 271% | 9     | 9     | ,57/9%    | 5174%  | 270% | 9       | 9     |     |
| % With                    | ,578%     | 1,76% | 275% | 6172% | 9     | 878%       | y78%   | 2%   | 1870% | 9     | 117766    | , y2%  | 27,% | 627D%   | 9     |     |
| Lights Med T utuorarlns   | , 251     | y5D   | Dy   | Al2D  | 9     | 4y2        | 5A4    | 1    | 16, 5 | 9     | 88,       | , 1y6  | 15   | A2yA    | 9     | . 5 |
| % Lights Med T utuorarlns | yA76%     | y874% | 122% | yD/1% | 9     | yy72%      | y67D%  | 122% | y474% | 9     | y871%     | yD/1%  | 122% | y42%    | 9     | yΙ  |
| c nMHs                    | 52        | A     | 2    | 5A.   | 9     | A          | 6      | 2    | 5     | 9     | 4         | ID2    | 2    | D4      | 9     |     |
| % c nMHs                  | A7, %     | 274%  | 2%   | , 7,% | 9     | 276%       | 270%   | 2%   | 270%  | 9     | 275%      | , 7, % | 2%   | 175%    | 9     | 1   |
| virarlıs ue BuM           | 54        | 11    | 2    | 85    | 9     | 6          | Ay     | 2    | 6A    | 9     | 11        | 4,     | 2    | 5A      | 9     |     |
| % virarlns ue Bu <b>M</b> | A76%      | 171%  | 2%   | , 75% | 9     | 274%       | DI2%   | 2%   | , 3/% | 9     | 17,%      | , 75%  | 2%   | , 7/196 | 9     | ,   |
| - ndnstaiMs               | 9         | 9     | 9    | 9     | 1, y8 | 9          | 9      | 9    | 9     | 18A1  | 9         | 9      | 9    | 9       | 454   |     |
| % - ndnstoiMs             | 9         | 9     | 9    | 9     | y874% | 9          | 9      | 9    | 9     | y872% | 9         | 9      | 9    | 9       | y871% |     |
| virarlns ue CoussRMi      | 9         | 9     | 9    | 9     | 1y    | 9          | 9      | 9    | 9     | A5    | 9         | 9      | 9    | 9       | 1A    | Г   |
|                           |           |       |      |       |       | 9          |        |      | 9     | . 72% | 9         | 9      | 9    | 9       | 17/96 |     |

\*- ndnstoiMs Med virarlns ue CoussRMM/ZL: Lnbt3B: Bight3W WhoF3U: U9WFoe

6 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 95141., Location: 456978. 4, -856 75793



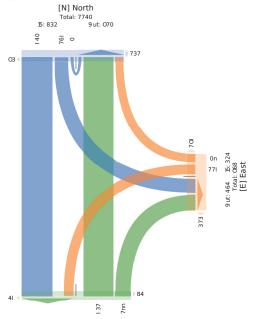


5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue T M y3, 2, ,
0T 0PM IT M 2y, 2, , ngt 0T ht grt 0T (h6: FAM-0PM 9 u1A
P -) - MCRC14 douCMe T unuAbHR39 FMa30FcRGAMG3v ibhHPCue BuM3v ibhHPCue
) AuCRM (
P -T u: PwFerC
lmgyt I n1 DBs ul-Miuegnt 47y85Dh3l6t 428t 8y7

| 0Aı: icFc . ag) ira ub6 mR?<br>122) ueGF-Miue mA |
|--------------------------------------------------|
| f FOFM(36 f 3N, p t Ky3) P                       |
|                                                  |

1 of 6

| s Fd                     | f uAno    |        |       |       |        | GM2       |        |    |       |      | Ju1ro       |        |    |        |       |      |
|--------------------------|-----------|--------|-------|-------|--------|-----------|--------|----|-------|------|-------------|--------|----|--------|-------|------|
| mi.AHiue                 | Julro. ul | ec     |       |       |        | E FG. u1e | +c     |    |       |      | f uAto. u1e | ec.    |    |        |       |      |
| SiwF                     | S         | s      | W     | PCO   | 0FcU   | В         | S      | W  | PCO   | 0FcU | В           | S      | W  | PCO    | 0FcU  | ler  |
| , 2, , h2t h2y ngnt 0T   | 117       | ny     | I     | I DF  | n2     | ,7        | , у    | 2  | t,    | 8y   | t 7         | I 2D   | 2  | Ity    | , D   | 75   |
| t g/20T                  | I,I       | , 8    | 2     | Iny   | 7n     | , n       | 7I     | 2  | tt    | 8D   | ny          | I 2n   | 2  | It7    | , n   | 7t   |
| tgt0T                    | 8t        | nI     | ,     | I,8   | n8     | , 8       | 72     | 2  | t 8   | Hy   | n,          | I 2n   | 2  | InD    | ID    | 77   |
| t g/20T                  | IIy       | t D    | t     | 182   | t I    | In        | , n    | 2  | 78    | 5,   | tt          | I 25   | 2  | ID,    | 7I    | 78   |
| SurM                     | n78       | I 5n   | 8     | D) 2  | I57    | 8y        | Hn     | 2  | , 27  | 7DD  | I yy        | n, I   | 2  | D) 2   | y5    | Inn  |
| * P COAuNHo              | 524D*     | , 84 * | I47*  | h     | h      | n748*     | t D4 * | 2* | h     | h    | 7,4*        | D54y*  | 2* | h      | h     |      |
| * SurM                   | 724a*     | 1,4*   | 24D*  | n742* | h      | D4 *      | 54y*   | 2* | In4*  | h    | I 748*      | , y4 * | 2* | n742*  | h     |      |
| 09%                      | 248y5     | 2455,  | 24h22 | 248D7 | h      | 245yt     | 24y7I  | h  | 248Dn | h    | 248yI       | 24yD;  | h  | 24y78  | h     | 24yn |
| s idorCMc T uruÆhHPC     | 7y2       | I 57   | 8     | t 5I  | h      | 8y        | I 25   | 2  | IyD   | h    | I yD        | 7yn    | 2  | t y2   | h     | I7t  |
| * s idorCMec T uru/HhHPC | 8y42*     | yy4n*  | I 22* | y, 4* | h      | I 22*     | y74y*  | 2* | yD4D* | h    | y84 *       | y74D*  | 2* | yt 4 * | h     | yn42 |
| 9 FMa                    | Iy        | 2      | 2     | Iy    | h      | 2         | I      | 2  | I     | h    | 2           | 12     | 2  | 12     | h     | 7    |
| * 9 FMa                  | n47*      | 2*     | 2*    | 74*   | h      | 2*        | 24y*   | 2* | 24*   | h    | 2*          | , 4n*  | 2* | 14D*   | h     | , 4* |
| v iHiHPCue BuMt          | , у       | I      | 2     | 72    | h      | 2         | D      | 2  | D     | h    | 7           | 15     | 2  | , 2    | h     | t    |
| * v iHiHFCue BuMt        | DD*       | 24D*   | 2*    | n48*  | h      | 2*        | t 47*  | 2* | 742*  | h    | 14*         | n42*   | 2* | 74*    | h     | 74y* |
| 0FcFQAMC                 | h         | h      | h     | h     | ID     | h         | h      | h  | h     | 7t,  | h           | h      | h  | h      | y,    |      |
| * 0FcFGAMC               | h         | h      | h     | h     | yt 4n* | h         | h      | h  | h     | yD4* | h           | h      | h  | h      | yn48* |      |
| v iHaHFCue ) AuCRM       | h         | h      | h     | h     | 8      | h         | h      | h  | h     | In   | h           | h      | h  | h      | t     |      |
| * viHiHFCue ) AcCRM      | h         | h      | h     | h     | n4D*   | h         | h      | h  | h     | 748* | h           | h      | h  | h      | t4*   |      |


UprcFGAMcCMc viHiHFCue ) AuCRMI 4s gs Fbr3BgBidor3SgSoAl3WgWbS1Ae

2 of 6 3 of 6 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Mon May 9, 2022
PM Peak (May 09 2022 5-56PM ) 6-56 PMO) v relaillPeak u o N
CHB Hiller (Ji dt Janc Modoll) Helt, u eary, Peceldginl, RglyHellon woac, RglyHellon s lollmaliCO
CHMorel end.

D - 964541, i oBadgon- 563 97815, )86317679.





[S] South

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

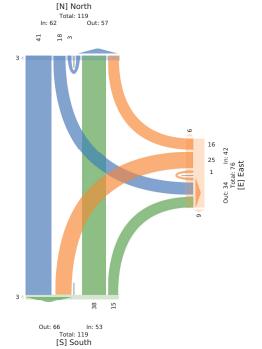
Tue May 3, 20, 00 F M l eaL nMay 3, 0, 00 30F M g 3 F Mt

. m. caulinary 3., ov. oue m. g 5 P ml. Filth (h6666 ft A 916 a P) MCCki yi he62d eaoy2l e) e6bAP62r Ayi he6 CP c Ca) 2r Ayi he6 CP ( ≤650+dl4t FhlmChev eP16 BR wkm8i 3D2: CI a IvTPwl mFk85DI 2g6m4Dm8k7



| : e-                       | UCSB       |         |       |        |        | J apr     |        |       |       |      | ECHB       |        |    |              |      |        |
|----------------------------|------------|---------|-------|--------|--------|-----------|--------|-------|-------|------|------------|--------|----|--------------|------|--------|
| RAei MOP                   | ECu19. Cul | P)      |       |        |        | S e61 CuP | )      |       |       |      | OG:19. Cul | ?)     |    |              |      |        |
| TAv e                      | T          | :       | W     | FNN    | l e) U | c         |        | W     | FNN   | le)U | с          | T      | W  | FNN          | le)U | BP1    |
| 0,00g,mg3,30w,FM           | 3D         | 3m      | 7     | 7I     | 3      | 8         | 30     | 3     | 03    | m    | 5          | 0D     | ,  | 77           | 7    | 88     |
| 30vanFM                    | 0m         | 7       | ,     | 08     | 0      | 8         | 37     | ,     | 03    | 3,   | 8          | 30     | ,  | 0,           | ,    | Ľk     |
| TClah                      | 13         | 38      | 7     | D0     | 7      | 3D        | 0m     | 3     | 10    | 3m   | 3m         | 78     | ,  | n7           | 7    | 3n5    |
| * FNNiCai9                 | DD8*       | 0k4 *   | I48*  | g      | 8      | 7848*     | nk4nf  | 04*   | g     | g    | 0847*      | 5345*  | ,* | g            | g    | 8      |
| * TClah                    | 0D8*       | 334n#   | 34×*  | 7k4n*  | 8      | 3, 40*    | 3mk*   | , 4D* | 0D8*  | g    | k4D*       | 0I 40* | ,* | 7748*        | g    | 8      |
| 1 d %                      | ,4,,       | , 47, , | , 40m | , 4 D0 | 8      | , 4n, ,   | , 4 83 | , 40m | , 4m, | g    | , 4 Dk     | , 47Dm | g  | ,4,0         | g    | ,418   |
| : A916 aP) MCKsi yi le6    | 75         | 38      | 7     | nß     | 8      | 3m        | 0m     | 3     | 13    | g    | 3I         | 7D     | ,  | m,           | g    | 3I k   |
| * : A916aP) MCK3i yi le6   | k, 40*     | 3,,*    | 3,,*  | k74nf  | g      | k748*     | 3, , * | 3,,*  | k54D* | g    | k747*      | kI 45* | ,* | ki 47*       | g    | kI 4k* |
| d eaoy                     | 7          | ,       | ,     | 7      | 8      | 3         | ,      | ,     | 3     | g    | 3          | 0      | ,  | 7            | g    | 5      |
| * d eaoy                   | 547*       | ,*      | ,*    | I 48*  | g      | DØ*       | ,*     | ,*    | 04*   | g    | D5*        | m\$7*  | ,* | m <b>5</b> * | g    | I 4nf  |
| r Ayi le6 (P c Ca)         | 3          | ,       | ,     | 3      | 8      | ,         | ,      | ,     | ,     | g    | ,          | ,      | ,  | ,            | g    | 3      |
| *rAyile6CPcCa)             | 04*        | ,*      | ,*    | 34D*   | g      | ,*        | ,*     | ,*    | ,*    | g    | ,*         | ,*     | ,* | ,*           | g    | , 4D*  |
| l e) e6kAP6                | g          | g       | g     | g      | 7      | g         | g      | g     | g     | 3m   | g          | g      | g  | g            | 7    |        |
| * le)e6kAP6                | g          | g       | g     | g      | 3,,*   | g         | g      | g     | g     | 3,,* | g          | g      | g  | g            | 3,,* | 8      |
| r Alyi le6 CP ( sC66HaliL  | g          | g       | g     | g      | ,      | g         | g      | g     | g     | ,    | g          | g      | g  | g            | ,    |        |
| * r Alyi he6 CP (sC66HaliL | g          | g       | g     | g      | ,*     | g         | g      | g     | g     | ,*   | g          | g      | g  | g            | ,*   | 8      |

Ul e) e6isAtP6 aP) r Alyi læ6 CP ( sC66HaltL4: w. ebi2c wc A 9i2TwT9su2WwMgTusP


4 of 6 5 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iri3g)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r.) y-a-k:
A- Mt reBegi)

Rwnt D843721 t dai(2 gm4D5 16174281D576D51.



**Ottawa Transportation Services - Traffic Services** 

Turning Movement Count - Study Results
FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Miovision **Full Study Diagram** O'CONNOR ST 11 1 ▓ 1835 1164 581 Total Heavy Vehicles 0 89 0 FIFTH AVE 1 4 0 + 4 891 20 5 0 1289 2 £ 113 111 t 1147 0 G **[+**] 131 + 400 J ብ 🕇 🗗 Cars **\$ %**↑ 1 0 0 Heavy Vehicles 180 296 190 198 4 \*

Page 1 of 8 6 of 6



#### **Turning Movement Count - Study Results**

FIFTH AVE @ O'CONNOR ST Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Miovision Device: Full Study Peak Hour Diagram O'CONNOR ST 28 **↓**↑ 1 22 13 Cars 22 FIFTH AVE 1 1 6 t 4 2 F **t** Peak Hour: 16:30 17:30 G ₽ 59  $\Box$ A I L

**%**↑

\*

Cars 32

Total

32 28

94

4

#### **Transportation Services - Traffic Services**

#### **Turning Movement Count - Study Results** FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Miovision Device: Full Study 15 Minute Increments O'CONNOR ST Time Period LT ST RT NOT LT ST RT S STR LT ST RT E LT ST RT 16:00 | 16:15 | 9 | 2 | 6 | 17 | 4 | 0 | 32 | 36 | 53 | 6 | 10 | 0 | 16 | 0 | 0 | 16:15 | 16:30 | 12 | 8 | 7 | 27 | 6 | 0 | 43 | 49 | 76 | 5 | 8 | 0 | 13 | 1 | 0 
 17:45
 18:00
 10
 5
 7
 22
 4
 0
 25
 29
 51
 3
 2
 0
 5
 0
 0
 22

 18:00
 18:15
 7
 10
 9
 26
 9
 0
 20
 29
 55
 3
 9
 0
 12
 0
 2
 31

Note: U-Turns are included in Totals

June 16, 2023 Page 2 of 8 June 16, 2023 Page 4 of 8

### **Ottawa**

#### **Transportation Services - Traffic Services**

#### **Turning Movement Count - Study Results**

|              |                        | FIF I II AVE | @ O CONNOR ST  |           |
|--------------|------------------------|--------------|----------------|-----------|
| Survey Date: | Tuesday, July 26, 2022 |              | WO No:         | 40492     |
| Start Time:  | 16:00                  |              | Device:        | Miovision |
|              |                        | Full Study   | Cyclist Volume |           |
|              | O'CONNOR S             | ST           | FIFTH AVE      |           |

|             |            | O'CONNOR ST |              |           | FIFTH AVE |              |             |
|-------------|------------|-------------|--------------|-----------|-----------|--------------|-------------|
| Time Period | Northbound | Southbound  | Street Total | Eastbound | Westbound | Street Total | Grand Total |
| 16:00 16:15 | 3          | 6           | 9            | 7         | 4         | 11           | 20          |
| 16:15 16:30 | 4          | 5           | 9            | 6         | 8         | 14           | 23          |
| 16:30 16:45 | 4          | 9           | 13           | 3         | 8         | 11           | 24          |
| 16:45 17:00 | 3          | 11          | 14           | 7         | 8         | 15           | 29          |
| 17:00 17:15 | 4          | 8           | 12           | 7         | 7         | 14           | 26          |
| 17:15 17:30 | 1          | 9           | 10           | 5         | 15        | 20           | 30          |
| 17:30 17:45 | 5          | 14          | 19           | 1         | 4         | 5            | 24          |
| 17:45 18:00 | 0          | 8           | 8            | 0         | 5         | 5            | 13          |
| 18:00 18:15 | 9          | 9           | 18           | 5         | 4         | 9            | 27          |
| 18:15 18:30 | 2          | 3           | 5            | 4         | 6         | 10           | 15          |
| 18:30 18:45 | 1          | 5           | 6            | 10        | 5         | 15           | 21          |
| 18:45 19:00 | 4          | 12          | 16           | 4         | 4         | 8            | 24          |
| 19:00 19:15 | 4          | 4           | 8            | 5         | 3         | 8            | 16          |
| 19:15 19:30 | 3          | 5           | 8            | 7         | 0         | 7            | 15          |
| 19:30 19:45 | 4          | 7           | - 11         | 1         | 3         | 4            | 15          |
| 19:45 20:00 | 5          | 3           | 8            | 4         | 7         | 11           | 19          |
| 20:00 20:15 | 5          | 5           | 10           | 4         | 7         | 11           | 21          |
| 20:15 20:30 | 6          | 3           | 9            | 3         | 7         | 10           | 19          |
| 20:30 20:45 | 3          | 4           | 7            | 0         | 4         | 4            | 11          |
| 20:45 21:00 | 4          | 4           | 8            | 1         | 4         | 5            | 13          |
| 21:00 21:15 | 3          | 0           | 3            | 1         | 2         | 3            | 6           |
| 21:15 21:30 | 5          | 2           | 7            | 2         | 0         | 2            | 9           |
| 21:30 21:45 | 1          | 1           | 2            | 3         | 0         | 3            | 5           |
| 21:45 22:00 | 3          | 2           | 5            | 1         | 3         | 4            | 9           |
| 22:00 22:15 | 4          | 7           | 11           | 6         | 4         | 10           | 21          |
| 22:15 22:30 | 1          | 0           | 1            | 0         | 5         | 5            | 6           |
| 22:30 22:45 | 0          | 0           | 0            | 1         | 3         | 4            | 4           |
| 22:45 23:00 | 0          | 1           | 1            | 0         | 0         | 0            | 1           |
| 23:00 23:15 | 1          | 1           | 2            | 1         | 1         | 2            | 4           |
| 23:15 23:30 | 5          | 0           | 5            | 1         | 0         | 1            | 6           |
| 23:30 23:45 | 1          | 1           | 2            | 0         | 0         | 0            | 2           |
| 23:45 00:00 | 0          | 4           | 4            | 2         | 2         | 4            | 8           |
| Total       | 98         | 153         | 251          | 102       | 133       | 235          | 486         |

### **Ottawa**

#### **Transportation Services - Traffic Services**

### Turning Movement Count - Study Results

40492

### FIFTH AVE @ O'CONNOR ST Survey Date: Tuesday, July 26, 2022

Start Time: 16:00 Device: Miovision **Full Study Pedestrian Volume** O'CONNOR ST FIFTH AVE Time Period NB Approach SB Approach (E or W Crossing) (E or W Crossing) Grand Total Total 16:30 16:45 17:30 17:45 17:45 18:00 18:00 18:15 18:15 18:30 18:30 18:45 19:00 19:15 19:15 19:30 21:00 21:1 23:30 23:45 23:45 00:00



### **Turning Movement Count - Study Results**

FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Device: Miovision

Full Study Heavy Vehicles

|        |        |    |        | 0,00 | ONNO     | R ST |        | uii C | tua      | y i ic     | avy | VCI     |    | FTH A    | VE |         |    |          |            |                |
|--------|--------|----|--------|------|----------|------|--------|-------|----------|------------|-----|---------|----|----------|----|---------|----|----------|------------|----------------|
|        |        | N  | orthbo | und  |          | Sc   | uthbou | ind   |          |            | Е   | astboui | nd |          | W  | estbour | nd |          |            |                |
| Time   | Period | LT | ST     | RT   | N<br>TOT | LT   | ST     | RT    | S<br>TOT | STR<br>TOT | LT  | ST      | RT | E<br>TOT | LT | ST      | RT | W<br>TOT | STR<br>TOT | Grand<br>Total |
| 16:00  | 16:15  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 1        | 1          | 0   | 1       | 0  | 1        | 0  | 0       | -1 | 2        | 3          | 2              |
| 16:15  | 16:30  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 16:30  | 16:45  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 16:45  | 17:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 1        | 1          | 1   | 0       | 0  | 1        | 0  | 0       | 0  | 0        | 1          | 1              |
| 17:00  | 17:15  | 0  | 0      | 0    | 0        | 0    | 0      | 1     | 2        | 2          | 0   | 0       | 0  | 1        | 0  | 0       | -1 | 1        | 2          | 2              |
| 17:15  | 17:30  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 17:30  | 17:45  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 17:45  | 18:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 18:00  | 18:15  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 18:15  | 18:30  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 1        | 0  | 1       | 0  | 1        | 2          | 1              |
| 18:30  | 18:45  | 1  | 0      | 0    | 1        | 0    | 0      | 0     | 1        | 2          | 1   | 0       | 0  | 2        | 0  | 0       | 0  | 0        | 2          | 2              |
| 18:45  | 19:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 1       | 0  | 1        | 0  | 0       | 0  | 1        | 2          | 1              |
| 19:00  | 19:15  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 19:15  | 19:30  | 0  | 0      | 0    | 1        | 0    | 0      | 0     | 0        | 1          | 0   | 2       | 0  | 2        | 1  | 0       | 0  | 3        | 5          | 3              |
| 19:30  | 19:45  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 19:45  | 20:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:00  | 20:15  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:15  | 20:30  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:30  | 20:45  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 20:45  | 21:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | -1      | 0  | 3        | 0  | 2       | 0  | 3        | 6          | 3              |
| 21:00  | 21:15  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 21:15  | 21:30  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 21:30  | 21:45  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 21:45  | 22:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 1        | 0  | 1       | 0  | 1        | 2          | 1              |
| 22:00  | 22:15  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 22:15  | 22:30  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 1       | 0  | 1        | 0  | 0       | 0  | 1        | 2          | 1              |
| 22:30  | 22:45  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 22:45  | 23:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 23:00  | 23:15  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 23:15  | 23:30  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 23:30  | 23:45  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| 23:45  | 00:00  | 0  | 0      | 0    | 0        | 0    | 0      | 0     | 0        | 0          | 0   | 0       | 0  | 0        | 0  | 0       | 0  | 0        | 0          | 0              |
| Total: | None   | 1  | 0      | 0    | 2        | 0    | 0      | 1     | 5        | 7          | 2   | 6       | 0  | 14       | 1  | 4       | 2  | 13       | 27         | 17             |



#### **Transportation Services - Traffic Services**

#### **Turning Movement Count - Study Results** FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Device: Miovision

Full Study 15 Minute U-Turn Total O'CONNOR ST FIFTH AVE

|     | Time Pe | eriod | Northbound<br>U-Turn Total | Southbound<br>U-Turn Total | Eastbound<br>U-Turn Total | Westbound<br>U-Turn Total | Total |
|-----|---------|-------|----------------------------|----------------------------|---------------------------|---------------------------|-------|
|     | 16:00   | 16:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 16:15   | 16:30 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 16:30   | 16:45 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 16:45   | 17:00 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 17:00   | 17:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 17:15   | 17:30 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 17:30   | 17:45 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 17:45   | 18:00 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 18:00   | 18:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 18:15   | 18:30 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 18:30   | 18:45 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 18:45   | 19:00 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 19:00   | 19:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 19:15   | 19:30 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 19:30   | 19:45 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 19:45   | 20:00 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 20:00   | 20:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 20:15   | 20:30 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 20:30   | 20:45 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 20:45   | 21:00 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 21:00   | 21:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 21:15   | 21:30 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 21:30   | 21:45 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 21:45   | 22:00 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 22:00   | 22:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 22:15   | 22:30 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 22:30   | 22:45 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 22:45   | 23:00 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 23:00   | 23:15 | 0                          | 0                          | 0                         | 0                         | 0     |
|     | 23:15   | 23:30 | 0                          | 0                          | 0                         | 0                         | 0     |
| - : | 23:30   | 23:45 | 0                          | 0                          | 0                         | 0                         | 0     |
| -   | 23:45   | 00:00 | 0                          | 0                          | 0                         | 0                         | 0     |
| _   | Tota    | ıl    | 0                          | 0                          | 0                         | 0                         | 0     |

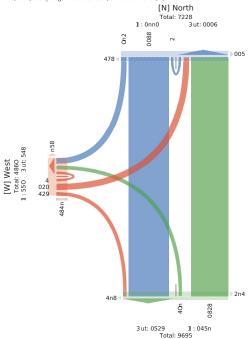
June 16, 2023 June 16, 2023 Page 7 of 8 Page 8 of 8

5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC
The May3, 20F00
Th Lingshy (it AF - 9 133AF - 9 P)
ILCh Sigh (it oftely is st d 9 oyouar algi 2c gsH 2- gdgi yust 12v eur algi ot Bosd2v eur algi ot Cunii Rsh&P)
IL9 oftely gryi
nh A3FF0D842n oasyert A, 78 47521. 785D, 3. 52beg CodgA, F53, 3F:



| gh<br>eugayeot |                                       | Nouy(<br>boly(fol | t d       |      |           |       | boly(<br>Nouy(folt | d      |    |          |          | Egiy<br>Ssiyfolto | 1      |        |          |            |          |
|----------------|---------------------------------------|-------------------|-----------|------|-----------|-------|--------------------|--------|----|----------|----------|-------------------|--------|--------|----------|------------|----------|
| Mek g          |                                       | B                 | W         | U    | ) pp      | - gd* | W                  | u<br>n | U  | ) pp     | - gd*    | B                 | n      | U      | ) pp     | - gd*      | mv       |
| E. B           | 0F0013F13. : AF- 9                    | 35                | 347       | F    | 033       | T.    | 3. F               | 7      | F  | 3.7      | 3:       | :                 | 30     | F      | 37       | , 5        | :.       |
|                | : A7-9                                | 3,                | 3D        | F    | 34D       | 3:    | 3,5                | 0      | F  | 3. D     | 30       | - :               | 0F     | F      | 0:       | ,.         | :4       |
|                | c ol ulr Woys I.                      | : F               | :.4       | F    | , F4      | 03    | : 35               | -      | F  | : 0:     | 07       | 5                 | : 0    | F      | : D      | 4:         |          |
|                | . AFF- 9                              | 3.                | 3D        | F    | 0FF       | 3.    | 357                | - :    | F  | 35D      | 35       | :                 | 3.     | F      | 3.       | 07         | : E      |
|                | , As7-9                               | 34                | 304       | F    | 0FD       | 3E    | 0F3                | 0      | F  | 0F:      | 3,       |                   | 3D     | F      | 03       | :7         | ,:       |
|                | , AF- 9                               | 0,                | 3         | F    | 0F3       | 34    | 3D                 | -      | F  | 3D       | 3F       | F                 | 3,     | F      | 3,       | : F        | , F      |
|                | , A7-9                                | -,                | 3         | F    | 3D        | 00    | 3                  | 3      | F  | 3.7      | 07       | ,                 | 34     | F      | 0:       | : 0        | : E      |
|                | c ol ulr Woys I                       | 5.                | . 05      | F    | . 4:      | . 5   | . 0.               | 4      | F  | .::      | 57       | 3F                | 57     | F      | . 7      | 300        | 35F      |
|                | 7AFF- 9                               | 3D                | 34.       | F    | 030       | 00    | 340                | 0      | F  | 34.      | 34       | D                 | 07     | F      | ::       | :4         | ,:       |
|                | 7 <b>&amp;</b> 7-9                    | 33                | 3D5       | F    | 34.       | 07    | 3.3                | 7      | F  | 3.5      | 3D       |                   | 04     | F      | ::       | 77         | , F      |
|                | 7AF-9                                 | 3:                | 3DD       | F    | 0F3       | П     | 3                  | 7      | F  | 300      | 3.       | D                 | 37     | F      | 0:       | :7         | , F      |
|                | 7A7-9                                 | 30                | 3. F      | F    | 3D0       | 0:    | 3, .               | 5      | F  | 37:      | 3D       |                   | 03     | F      | 0D       | 5.         | :5       |
|                | c ol ulr Woys I                       | 7,                | .:D       | F    | . 40      | . E   | 5D                 | 3D     | F  | . F7     | . 0      | 0.                | 4F     | F      | 33.      | 345        | 353      |
|                | 5AFF- 9                               | 37                | 374       | F    | 3. ,      | :7    | 3, ,               | 3:     | F  | 37.      | 3:       | 3F                | 37     | F      | 07       | , 3        | :7       |
|                | 5A97-9                                | 3.                | 3,:       | F    | 35F       | : 4   |                    | - :    | F  | 357      | 34       | 3                 | 05     | F      | 0.       | 47         | :7       |
|                | 5AF-9                                 | 3.                | 3, 3      | F    | 377       | 50    | 37F                | D      | F  | 37D      | 05       | D                 | 07     | F      | ::       | DF         | :,       |
|                | 5A7-9                                 | 3:                | 373       | F    | 35.       | DS    | 33.                | 7      | F  | 300      | 74       | 3F                | 0:     | F      | - ::     | 3:3        | :3       |
|                | c ol ulr WovsL                        | 74                | 74.       | F    | 57:       | 000   | 7.:                | 04     | F  | 5F0      | 33.      | 04                | D4     | F      | 33D      | :70        | 3:.      |
|                | . AFF- 9                              | 30                | 35F       | F    | 3. 0      | , 3   | 35:                | 4      | F  | 3. 0     | 0.       | 04                | 3,     | F      | 03       | DF         | :5       |
|                | . Ar- 9                               | 37                | 357       | F    | 3DF       | : 4   |                    | 7      | F  | 3: 3     | 35       |                   | 33     | F      | 37       | 5,         | :0       |
|                | . AF- 9                               | 30                | 3, .      | F    | 374       | 0F    | 334                |        | F  | 30:      | 33       | :                 | 3D     | F      | 03       | 0.         | : F      |
|                | . A7-9                                | 37                | 375       | F    | 3.3       | OI-   | 337                | 4      | F  | 30.      | 33       | 3                 | 3:     | F      | 3,       | :3         | : F      |
|                | c ol ulr Woys L                       | 7,                | 50D       | F    | 5D0       | 3F.   | 70:                | 0.     | F  | 77F      | 57       | 37                | 75     | F      | .3       | 0F.        | 3: F     |
|                | DAFF-9                                | 4                 | 330       | F    | 303       | 3F    | 3F.                | 7      | F  | 330      | 37       | 0                 | 33     | F      | 3:       | 34         | 0.       |
|                | D87-9                                 | 37                | 3: 3      | F    | 3, 5      |       | 3F.                |        | F  | 3F.      | -        |                   | 33     | F      | 3D       | 0F         | 0,       |
|                | DAF- 9                                | 30                | 30F       | F    | 3: 0      | 00    | 3F0                | 5      | F  | 3FD      |          | 3                 | 33     | F      | 30       | :,         | 0.       |
|                | DA7-9                                 | 30                | 3F0       | F    | 333       | 00    | 3FF                | 5      | F  | 3FD      | F        | 3                 | 5      | F      | 30       | 03         | 00       |
|                | c ol uir Wöys L                       | 7                 | . 57      | F    | 73F       | :4    | . 3:               | 3D     | F  | ,:3      | 00       | 33                | :4     | F      | 7F       | 4,         | 44       |
|                | 4AF-9                                 | 3F                | 4,        | F    | 3F.       | 3     | DD                 |        | F  | 43       | UU       | 0                 | 5      | F      | D D      | 0:         | 0F       |
|                | 4AF-9<br>4A7-9                        | 3F                | 4,<br>D   | F    | D D       | I     |                    | - :    | F  | 43       | 3        | 7                 | D      | F      | 3:       | 0:         | 34       |
|                | 4AF-9                                 | 5                 | .7        | F    | DR DR     | L     |                    | ,      | F  | . D      | 3        | :                 | D      | F      | 33       | 37         | 34       |
|                | 4AF-9                                 | _                 | . /       | F    | 54        | 3.    |                    | - 3    | F  | 4D       | 30       |                   |        | F      | 33       |            | 3.       |
|                |                                       | : 00              | : 34      | F    |           | 3.    | : 7,               | 30     | F  | :55      | 0,       | 3:                | 07     | F      | : D      | 5,<br>3: 3 | 3.       |
|                | c ol ulr Woys L                       |                   |           |      | :,3       |       |                    |        |    |          |          |                   | 0/     |        |          |            |          |
|                | 3FÆF- 9<br>3FÆ7- 9                    | 7                 | 5F<br>. 3 | F    | 57<br>DF  | 07    | . 0                | 5      | F  | . D      | 3D<br>0F | 7                 | 7      | F<br>F | 5<br>3F  | : 4:<br>D  | 3,<br>31 |
|                | 00.10. 0                              | 7                 | 43        |      |           |       |                    | - 1    |    | 45<br>5. | 7        | 7                 |        | F      | 3F<br>33 | 13<br>05   | 31       |
|                | 3FAF- 9                               |                   |           | 3    | 4.        | ,     | 5,                 | - :    | F  |          | _        |                   | 5      | F      | 33       |            | 03       |
|                | 3FA.7-9                               | 30                | 30.       | F    | 3:4       | 4     | : F0               | 3      | F  | : 37     | - 1      | 0                 | ,      | F      |          | 00         | .0       |
|                | c ol ulr Woys L                       | :3                | :,4       | 3    | : D8      | 77    |                    | 3:     | F  |          | , 5      | 3,                | 34     |        | ::       | 707        |          |
|                | 33ÆF- 9                               | 7                 | 30F       | F    | 307<br>DD | 7     | 5F                 | ,      | F  | 5,<br>5D | 0        | 0                 | 7      | F      |          | 0:         | 34       |
|                | 33.As7-9                              |                   |           | 3    |           | 0     | 5D                 | F      | F  |          | - :      | 3                 |        | 3      | 5        | 0.         | 35       |
|                | c ol ulr Woys I.                      | 3F                | 0F0       | 3    | 03:       |       | 30D                | ,      | F  | 3: 0     | 7        |                   | 4      | 3      | 3:       | 7F         | :7       |
|                | Woys L                                | :.0               | , , FF    | 0    | ,,        | 5: 7  | , FOF              | 3:.    | F  | , 37.    | ,,3      | 30D               | , 0,   | 3      | 77:      | 3.5.       | 4, I     |
|                | %) ppuosa(                            | . 82%             | 4080%     | F%   | 1         | 1     | 458 %              | :8%    | P% | 1        | 1        | 0:88%             | . 58 % | F80%   | 1        | 1          |          |
|                | % Woys L                              | : 84%             | , 58 %    | F%   | 7F8 %     |       | , 08 %             | 38 %   | P% | ,:80%    | 1        | 38 %              | , 87%  | F%     | 780%     | 1          |          |
|                | h(yi std9 oyouaralgi                  | : 7.              | , 3: 3    | 0    | ,,4F      | 1     | :.5D               | 3:7    | F  | : 4F:    | 1        | 30:               | , 37   | 3      | 7:4      | 1          | D4:      |
| % ne           | h(yi std9 oyouaralgi                  | 4589%             | 4: 84%    | 3FF% | 4,88%     | - 1   |                    |        | P% | 4: 84%   | 1        | 4588%             | 4.84%  | 3FF%   | 4.87%    | 1          | 4, 809   |
|                | c gsHr                                | ,                 | 3, .      | F    | 373       | - 1   | 3:7                | 0      | F  | 3: .     | 1        | F                 | 0      | F      | 0        | 1          | 04       |
|                | % c gsHr                              | 38%               | : 8 %     | F%   | : 80%     | 1     | :8,%               |        | P% | :8%      | 1        | P%                | F87%   | F%     | F8 %     | 1          | : 88     |
|                | veralgi ot Bosd                       | 33                | 300       | F    | 3::       | - 1   | 33.                | F      | F  | 33.      | 1        | 7                 |        | F      | 30       | 1          | 05       |
|                | % veralgi ot Bosd                     | : 87%             | 08D%      | F%   | 08D%      | 1     | 084%               |        | P% | 080%     | 1        | : 84%             | 38 %   | F%     | 080%     | 1          | 080      |
|                | - gdgi yust i                         | 1                 | 1         | 1    | 1         | 53:   | 1                  | 1      | 1  | 1        | ,:0      | 1                 | 1      | 1      | 1        | 3., F      |          |
|                |                                       | 1                 | 1         | - 1  | 1         | 4587% | 1                  | 1      | 1  | 1        | 4D#P%    | 1                 | 1      | 1      | 1        | 4D87%      |          |
|                | % - gdgiyusti<br>earalgi ot CupiiRsIw | 1                 | 1         | 1    | 1         | 00    | 1                  | 1      | 1  | 1        | 41.017.0 | 1                 | 1      | 1      | 1        | 41.0/70    |          |

| ngh        | Nous(       |   |   |      |       | bol y(     |   |   |      |       | E giy        |   |   |      |       |     |
|------------|-------------|---|---|------|-------|------------|---|---|------|-------|--------------|---|---|------|-------|-----|
| I eugayeot | bol y(foltd |   |   |      |       | Nous(foltd |   |   |      |       | Ssiyf ol t d |   |   |      |       |     |
| Wek g      | В           | W | U | ) pp | - gd* | W          | n | U | ) pp | - gd* | В            | n | U | ) pp | - gd* | mby |
|            |             |   |   |      |       |            |   |   |      |       |              |   |   |      |       |     |
|            |             |   |   |      |       |            |   |   |      |       |              |   |   |      |       |     |


<sup>\*-</sup>gdgiyusti std venralgi ot CuoiiRslw8n AngQ92BABeh(y2WAW(ul 2UAU1Wiut

#### 5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC

5589/07 - BANN 51 & ALLEMEN AV. COLLING AV. COLLING AV. SERVICE STATES AV. COLLING AV. P. SI LEERBY 1: 3 u. A. P. SI LEERBY 1: 3 u. A. P. SI LEERBY 1: 10 LES bits 1: leet ft/3 sgd - o 75-ayr yfni 0c nsH 0Andni 2tsgi 0v tyr yfni og Bosdôv tyr yfni og Caoli RStave 1. Lee States 1: 10 Leo 4thk ng/3 nt 3, uuFt) 90c oys 70g 3245 94. 06845 12, 8. 0bt/h Codn32u., 2, u:

[N1] Morth





[S] South

5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC

5589/07 - BANN ST WE ATLINER AVE - ULT 14 2022 - TMC
The May 3, 2019 1.0 (36 LL : 6(36 LL A: M-mg/91) ngr. 1 P) u

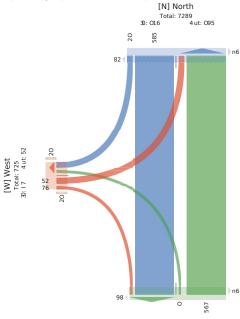
LL lngr h; (36 LL : 6(36 LL A: M-mg/91) ngr. 1 P) u

Cys-Sg hin hidrory ig: FLL PyPuva9ni21 ng-v21 nHni yuggi 2Banva9ni Pc RPgH2Banva9ni Pc
st Pli vig 1 A

Cy9L P-nh n; i

nh (3FP01B42d Pagy4Pc), (6784652: 675L) 3. 52 byn s PHn(, F53, 3F8




| dno                       | NPuyr         |         |     |        |       | bP) yr     |       |     |        |       | Eniy        |       |     |        |        |       |
|---------------------------|---------------|---------|-----|--------|-------|------------|-------|-----|--------|-------|-------------|-------|-----|--------|--------|-------|
| I enayePc                 | bP) yr f P) c | H       |     |        |       | NPuyr f P) | :H    |     |        |       | Sgiyf P) cH | I     |     |        |        |       |
| Wek n                     | R             | W       | U   | Срр    | l nH⁵ | W          | d     | U   | Срр    | l nH* | R           | d     | U   | Срр    | l nH*  | mry   |
| 0F00:3F:3, , (36l L       | 34            | 3D4     | F   | 0FD    | 3E    | 0F3        | 0     | F   | 0F8    | 3,    | 8           | 3D    | F   | 03     | 86     | , ;   |
| , (8FI L                  | 0,            | 3       | F   | 0F3    | 34    | 3D,        | 8     | F   | 3D     | 3F    | F           | 3,    | F   | 3,     | 8F     | , 1   |
| , (, 6l L                 |               | 3       | F   | 3D,    | 00    | 3.,        | 3     | F   | 3.6    | 06    | ,           | 34    | F   | 08     | 80     | 8     |
| 6(FFI L                   | 3D            | 34,     | F   | 030    | 00    | 340        | 0     | F   | 34,    | 34    | D           | 06    | F   | 88     | 84     | ,;    |
| WPyg9                     | 5D            | . 8.    | F   | DF6    | D8    | . 63       | D     | F   | . 64   | 5D    | 36          | . 5   | F   | 43     | 385    | 35    |
| % CppuPgar                | DE %          | 4375%   | F%  | :      | - 1   | 4D/4%      | 373%  | F%  | :      | - 1   | 3576%       | D876% | P%  | :      |        |       |
| % WPyg9                   | , 73%         | , , 76% | F%  | , DI5% |       | , 67, %    | F76%  | F%  | , 674% |       | F74%        | , 75% | P%  | 676%   |        |       |
| 11T                       | F7545         | F74, 5  | - : | F746F  |       | F740D      | F755. | - 1 | F7404  |       | F7, F5      | F7 6F | :   | F755.  |        | F74   |
| deoryi gcHL PyPuava9ni    | 58            | 54D     | F   | . 53   |       | . F.       | D     | F   | . 36   |       | 38          | . 8   | F   | D5     | :      | 36    |
| % deor yi gcHL PyPuava9ni | 4075%         | 4, 7 %  | F%  | 4, 76% |       | 4, 73%     | 3FF%  | F%  | 4, 70% |       | D57 %       | 4573% | P%  | 4, 76% |        | 4, 7, |
| 1 ng-v                    | 3             | 3.      | F   | 3D     | - 1   | 38         | F     | F   | 38     | - 1   | F           | 0     | F   | 0      |        | -     |
| % 1 ng- v                 | 376%          | 078%    | F%  | 070%   |       | 37 %       | F%    | F%  | 37 %   |       | F%          | 075%  | P%  | 070%   |        | 07F   |
| Besva9ni Pc RPgH          | ,             | 00      | F   | 05     | - 1   | 83         | F     | F   | 83     | - 1   | 0           | 3     | F   | 8      |        |       |
| % Beava9ni Pc RPgH        | 674%          | 87F%    | F%  | 870%   |       | , 23%      | F%    | F%  | , 73%  |       | 3878%       | 378%  | P%  | 878%   |        | 875   |
| l nHni yangci             |               | :       | - 1 | - 1    | . 5   | :          |       | - : | - 1    | 55    | :           |       | - : | - :    | 388    |       |
| % 1 nHni yuegci           |               | :       | - : | - 1    | 487D% | - :        |       | :   | - 1    | 4.73% |             |       | - : | - :    | 4. 7D% |       |
| Beava9ni Pc s uPi i wg9t  |               | :       | - 1 | - 1    | 6     | :          |       | - : | - 1    | 0     | :           |       | - : | - :    | 8      |       |
| % Beava9ni Pc suPiiwg9t   |               |         | - 1 |        | 570%  |            | - 1   | - 1 | - 1    | 074%  |             |       | - 5 | - 1    | 070%   |       |

\*1 nHni yungci gcHBeava9ni Pc s uPi i wg9.7d(dnOj2R(Reory2W(Wru)2U(U:W)uc

3 of 5

#### 5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC

5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC
Sat My7, 20PUFF
1 L leng l2(, 11 L : 1, 11 L 3: M/ean—leng 6 P) a
C -s mile in thor 7a ncHL P/Payvy-ei 06 en/w 01 eHei 7atnci 0Btyvy-ei Pc RPnH/DBtyvy-ei Pc
saPi iwn-g3
C—L PAek ec7
nb (, uuFQ 90d Pyn/Pc(214591, 0:814 D2, 8, 0bt/2 s PHe( 2u., 2, u)

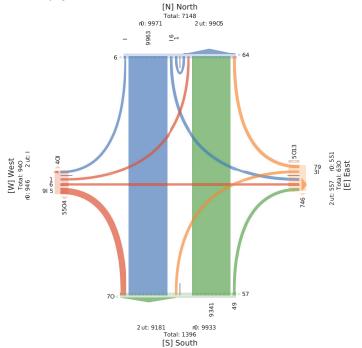


4 ut: 569 30: 56I Total: 7677 [S] South

### 5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC

5589707 - FANNA 19 ELTHU DK - UCT 14 2022 - IMC The May 3, 20F00 Til Ling by (1 of A F 9 193AF - 9 P ULCS high ofhe(f) st d 9 oyana falgi 2c gsH 2- gdgi yast 12v ear aligi ot Bosd2v ear aligi ot Choil RShP ULS office gr

4 of 5


1 of 4

| nli A3FF0D842noasy                             | ot A, 7 | 78 571       | D4521   | 478 I  | )::,2  | beg   | Codg/     | , F. | 3: 3F:  |       |            |          |        |      |     |            |       |          | Ngp  | gst 21 | VIIN.2 | ZKUG  | /J5.  | 2C)      |
|------------------------------------------------|---------|--------------|---------|--------|--------|-------|-----------|------|---------|-------|------------|----------|--------|------|-----|------------|-------|----------|------|--------|--------|-------|-------|----------|
| ngh                                            | Nou     |              |         |        |        |       | Esiv      |      |         |       |            | bol v(   |        |      |     |            |       | Sgiy     | _    |        |        |       |       |          |
| eugayeot                                       | bol y f | ol t d       |         |        |        |       | S giyf ol | t d  |         |       |            | Nous fo  | ol t d |      |     |            |       | Esiyf ol | t d  |        |        |       |       |          |
| ¥kg                                            | В       | W            | n       | U      | ) pp   | - gd* | В         | W    | n U     | ) pp  | - gd*      | В        | W      | n    | U   | ) pp       | - gd* | В        | W    | n      | U      | ) pp  | - gd* | my       |
| 0F0013F13, : AF- 9                             | F       | 35,          | 3       | F      | 357    | F     | ,         | F    | : F     | 4     | 3:         | 3        | 37.    | F    | F   | 374        | F     | 34       | F    | F      | F      | 34    | 70    | :        |
| : A7-9                                         | 3       | 3D4          | 0       | F      | 35F    | 3     |           | F    | F F     | ٠.    | 3F         |          | 35F    | F    | F   | 35,        | F     | 0F       | F    | F      | F      | 0F    | 7.    |          |
| c ol uir Woys I                                | . 3     | : IB         | - :     | F      | : D7   | 3     | D         | F    | : F     | 33    | 0:         | 7        | 14.5   | F    | F   | : 73       | F     | :4       | F    | F      | F      | :4    | 3FD   | 4        |
| , AFF- 9                                       | F       | 3DD          | 0       | F      | 35F    | 3     | - :       | F    | 3 F     | ,     | 00         |          | 34D    | F    | F   | 300        | F     | 3.       | F    | F      | F      | 3.    | - ::  | :        |
| . Ai7-9                                        | 3       | 35.          | F       | F      | 357    | F     | D         | F    | : F     | 33    | 07         | ,        | 03.    | F    | F   | 00F        | F     | - 00     | F    | F      | F      | 00    | , D   |          |
| , AF- 9                                        | F       | 0F7          | 0       | F      | 0F4    | F     | -         | F    | : F     | 5     | 73         |          | 35,    |      | F   | 35D        | F     | 3.       | F    | F      | F      | 3.    | :,    |          |
| , A7-9                                         | F       | 34           | _       | F      | 344    | 3     | 5         | F    | 3 F     | 3F    | 7F         | 7        | 350    |      | F   | 354        | 3     | 3.       | F    | F      | F      | 3.    | 7:    |          |
| c ol uir Woys I                                | . 3     | 4. F         | D       | F      | 4.5    | 0     | 0         | F    | D F     | :,    | 3, D       | 34       | 4DF    |      | F   | 454        | 3     | 4F       | F    | F      | F      | 4F    | 3. D  | 3.       |
| 7AFF-9                                         | F       | 033          | :       | F      | 03,    | F     | D         | F    | 3 F     | -,    | 40         |          | 03:    | -    | F   | 034        | F     | 3,       | 3    | 3      | F      | 3     |       |          |
| 7,87-9                                         | F       | 3DB          |         | F      | 3D     | 0     | 7         | E    | 3 F     |       | D          | 7        | 357    |      | E   | 0FF        | F     | 35       | F    | F      | E      | 35    | . F   |          |
| 7AF-9                                          | F       | 350          | 0       | F      | 35.    |       | 3         | F    | FF      | 3     | 7:         | -        | 3D     |      | F   | 3DD        | F     | 0:       | F    | F      | F      | 0:    | :5    |          |
| 7A7-9                                          | F       | 3. D         |         | F      | 343    | F     | 3         | F    | 0 F     | 7     | 7.         | ,        | 37:    |      | F   | 377        | F     | 3.       | F    | F      | F      | 3     | 77    | :        |
| c ol uir Woys I                                | F       | 470          | 33      | F      | 4.:    | 7     | 34        | F    | . F     | 03    | 0.5        | 37       | 4, 7   |      | F   | 4. F       | F     | 40       | 3    | 3      | F      | 4,    | 35D   | 3.       |
|                                                |         |              |         |        |        | F     |           | F    |         | 0.3   | 304        | 7        |        |      | F   |            |       |          | F    |        | F      | 05    | 35D   |          |
| . AFF- 9                                       | F       | 3, .<br>3: D | 0       | F      | 3, D   | F     | 0         | F    | 0 F     |       | 304        | 3        | 3, 5   |      | F   | 37,<br>350 | F     | 0D       | F    | 3      |        | 05    | 50    | :        |
| . 267-9                                        |         |              | 3       | _      |        | ,     | F         |      | 3 F     | 3     |            | -        |        |      |     |            | F     | 00       |      | F      | F      |       |       | :        |
| . AF- 9                                        | F       | 3: D         | 3       | F      | 3: 5   | 3     | - :       | F    | F F     | :     | : FF       | 3        | 343    |      | F   | 340        | F     | 35       | 3    | F      | F      | 0F    | . 5   | :        |
| . д.7- 9                                       | 3       | 3: D         | 0       | F      | 3, 3   | 4     | F         | F    | 0 F     | 0     | : 0,       | ,        | 3: 4   |      | F   | 3, 3       | F     | 0.       | F    | 3      | F      | 04    | . F   | :        |
| coluir Woys I                                  | . 3     | 7. F         |         | F      | 7.4    | 30    | 7         | F    | 7 F     | 3F    | 50:        | 33       | ., D   | -    | F   | . 75       | F     | 57       | 3    | 0      | F      | 5D    | 0.4   | 3:       |
| 4AF-9                                          | F       | 37D          | 3       | F      | 375    | F     | F         | F    | F F     | F     | OF:        | 3        | 34.    |      | F   | 344        | 0     | 3D       | F    | F      | F      | 3D    | 74    | :        |
| 4/67-9                                         | F       | 3. D         | ,       | F      | 340    | F     | 3         | F    | 3 F     | 0     | 3, .       | 3        | 3:5    |      | F   | 3, F       | F     | 37       | F    |        | F      | 3D    | 7D    | :        |
| 4AF-9                                          | F       | 37F          | 3       | :      | 37,    | 7     | 0         | F    | 3 F     | :     | D          | 0        | 3:,    | F    | F   | 3:.        | F     | 5        | F    | 3      | F      | 3F    | : F   | :        |
| 4A.7-9                                         | F       | 374          | :       | F      | 3. F   | 3     | 0         | F    | 0 F     | ,     | 70         | 3        | 30D    | F    | F   | 305        | F     | 30       | F    | F      | F      | 30    | , 4   | :        |
| c ol uir Woys I                                | F       | .::          | 5       | :      | .,7    | -     | 7         | F    | , F     | 5     | , D        | 7        | 744    | F    | F   | 7E0        | 0     | 7,       | F    | ,      | F      | 7D    | 350   | 30       |
| DÆF- 9                                         | F       | 33.          | 0       | 3      | 335    | F     |           | F    | F F     | :     | 7.         | 3        | 334    | F    | F   | 33D        | F     | 30       | F    | 3      | F      | 3:    | 34    | 0        |
| D#87-9                                         | F       | 3:,          | - :     | F      | 3:4    | 3     | ,         | F    | : F     | 4     | 05         | 0        | 33:    | F    | F   | 337        | F     | 3,       | F    | F      | F      | 3,    | :3    | 0        |
| DAF-9                                          | 3       | 30F          | F       | F      | 303    | F     | 0         | F    | F F     | 0     |            | F        | 330    | F    | F   | 330        | F     | 5        | F    | F      | F      | 5     | 1.    | 0        |
| DA7-9                                          | F       | 3F0          | 0       | F      | 3F,    | F     | 0         | F    | 3 F     | :     | :5         | 3        | 3F.    | F    | F   | 3F4        | F     | D        | F    | F      | F      | D     | : F   | 0        |
| c ol uir Woys I                                | 3       | . 40         | 4       | 3      | , IB   | 3     | 33        | F    | . F     | 37    | 3DD        |          | D      | F    | F   | , 70       | F     |          | F    | 3      | F      |       | 33,   | 5        |
| 5AF-9                                          | F       | 5.           | 0       | F      | 5.     | F     | - :       | F    | F F     | :     | . F        | 3        | 5:     | F    | F   | 5.         | F     | 33       | F    | F      | F      | 33    | 0.    | 0        |
| 5/87-9                                         | 3       | 45           | 0       | 3      | D      | F     | 0         | F    | F F     | 0     | 4D         | F        | 3F0    | F    | F   | 3F0        | D     | 4        | F    | F      | F      | 4     | : 0   | 3        |
| 5AF-9                                          | F       | 4D           | 3       | 0      | DB     | F     | 0         | F    | F F     | 0     | :3         | F        | D4     |      | F   | D4         | 0     | 5        | F    | F      | F      | 5     | 00    | 3        |
| 5A7-9                                          | F       | 4F           | 0       | F      | 40     | F     | 3         | F    | F F     | 3     | 4F         | F        | 5,     |      | F   | 5,         | D     | 0        | F    | F      | F      | 0     | 4D    | 3.       |
| c ol uir Woys I                                | . 3     | : 03         | 4       | -      | ::0    | F     | D         | F    | FF      | D     | 035        | 3        | : 4.   |      | F   | : 44       | 3D    | 05       | F    | F      | F      | 05    | 37D   | 4        |
| 3FAFF-9                                        | F       | 74           | F       | F      | 74     | F     | F         | F    | : F     | :     | 3DF        | 0        | 40     |      | F   | 4,         | 7.    | 03       | F    | F      | F      | 03    | , 7,  | 3.       |
| 3FAF- 9                                        | F       | 43           | F       | 3      | 40     | F     | F         | F    | 0 F     | 0     | - 3<br>- 3 | 3        | 57     |      | F   | 5.         | 03    | 34       | F    | F      | F      | 34    | D     | 3        |
|                                                |         |              |         |        |        | P -   | P         | F    |         | 7     |            |          |        |      |     |            | U.S   |          |      |        |        |       |       |          |
| 3FAF- 9                                        | F       | 50           | F       | 3      | 5:     | 3     | - :       |      | 0 F     |       | 5,         | 0        |        |      | F   | . D        |       | 4        | F    | F      | F      | 4     | : 4   | 3        |
| 3FA.7-9                                        | F       | 30.          | F       | F      | 30.    | F     | F         | F    | F F     | F     | , D        | F        | 44     |      | F   | 44         | F     | 4        | F    | 3      | F      | D     | : 3   | α        |
| c ol uIr Woys I                                | F       | :,.          | F       | 0      | :,D    | 3     | - :       | F    | 4 F     | 3F    | : 7:       | 7        | : 3F   |      | F   | : 37       | 44    | :4       | F    | 3      | F      | : D   | . FD  | 4        |
| 33AFF- 9                                       | F       | 337          | 3       | F      | 33.    | F     | 3         | F    | F F     | 3     | 0:         | 3        | . 7    |      | F   |            | 3     | 5        | F    | F      | F      | 5     | 03    | 3        |
| 33/67-9                                        | F       | D            | F       | F      | D      | F     | F         | F    | F F     | F     | 07         | F        | 4,     |      | F   | 4,         | -     | 7        | F    | F      | F      | 7     | 34    | 3.       |
| c ol uir Woys I                                | F       | 35D          | 3       | F      | 355    | F     | 3         | F    | F F     | 3     | , D        | 3        | 3:5    | F    | F   | 3, F       | 4     | 3,       | F    | F      | F      | 3,    | : D   | - :1     |
| Woys I                                         | . 7     | , , 0:       | 70      | 5      | ,,E5   | 0D    | D)        | F    | :7 F    | 335   | 0.77       | .,       | ,:.5   | F    | F   | ,,::       | 3F7   | , 73     | 0    | 5      | F      | ,.0   | 3D73  | 57       |
| %) ppuosa(                                     | F88% :  | 5D67%        | 380%    | F80%   | 1      | 1     | 4F8 % F   | % O  | 58 % F% | 1     | 1          | 38 % 5   | 5D8 %  | F% F | %   | 1          | 1     | 548 %    | FB % | 385% 1 | F%     | 1     | 1     |          |
| % Woys I                                       | F83%,   | . 87%        | F87%    | F83%,  | 480%   | 1     | F85% F    | % :  | F8 % F% | 38 %  | 1          | F84%,    | . 82%  | F% F | %,  | .8%        | 1     | , 84%    | F%   | F88% I | -% ,   | , 85% | 1     |          |
| neh( yi st d 9 oyouaralgi                      | F       | , 30,        | , D     | 5      | , 3DB  | 1     | . 0       | F    | :: F    | 57    | 1          | , 0      | , 3F,  | F    | F   | , 3, .     | 1     |          | 0    | 5      | F      | ,74   | 1     | DE       |
| % neh(yi st d                                  |         |              |         |        |        |       |           |      |         |       |            |          |        |      |     |            |       |          | _    |        |        |       |       |          |
| 9 oyouaralgi                                   | F% :    | 5: 80%       | 508 % 3 | 3FP% : | 5: 88% | 1     | 4: 8D% F  | % 5  | 8% F%   | 4580% | 1          | . 78 % 3 | 5: 85% | F% F | % 5 | : 87%      | 1     | 5D65% 3  | SFF% | 3FP% I | F% 5   | DE5%  | 1     | 5:8      |
| c gsHr                                         | F       | 3, .         | F       | F      | 3, .   | 1     | F         | F    | 3 F     | 3     | 1          | F        | 3, 3   | F    | F   | 3, 3       | 1     | 3        | F    | F      | F      | 3     | 1     | 0        |
| % c gsHr                                       | F%      | :8%          | F%      | F%     | :8%    | 1     | F% F      | %    | 085% F% | FBD%  | 1          | F%       | : 80%  | P% F | %   | : 80%      | 1     | F80%     | F%   | P% I   | F% I   | F80%  | 1     | :8       |
| veralgi ot Bosd                                | 7       | 37:          | ,       | F      | 3. 0   | 1     | 00        | F    | 3 F     | 0:    | 1          | 00       | 30,    | F    | F   | 3, .       | 1     | ٠,       | F    | F      | F      | ,     | 1     | :        |
| % veralgi ot Bosd                              | 3FF%    | : 87%        | 484%    | F%     | :8%    | 1     | 0.80% F   | %    | 085% F% | 358 % | 1          | :,8%     | 080%   | P% F | %   | :8%        | 1     | F85%     | F%   | P% I   | F% 1   | F85%  | 1     | :8       |
| - gdgi yast i                                  | 1       | 1            | 1       | 1      | 1      | 0.    | 1         | 1    | 1 1     | 1     | 0.7:       | 1        | 1      | 1    | 1   | 1          | 3F:   | - 1      | 1    | 1      | 1      | 1     | 3DB.  |          |
| % - gdgi yust i                                | 1       | 1            | 1       | 1      |        | 085%  | 1         | 1    | 1 1     |       | 5585%      | 1        | 1      | 1    | 1   | _          | DB%   | 1        | 1    | 1      | 1      |       | DB%   |          |
|                                                | -       | 1            | 1       | 1      | 1      | 00070 | 1         | 1    | 1 1     | 1     | 0          | 1        | 1      | 1    | 1   | 1          | 0     | 1        | 1    | - 1    | 1      | 1     | . 7   | $\vdash$ |
| verals of Cmil RsIv                            | 1       |              |         |        |        |       |           |      |         |       |            |          |        |      |     |            |       |          |      |        |        |       |       |          |
| veralgi ot CuniiRslw<br>6 veralgi ot CuniiRslw | 1       | 1            | - 1     | - 1    | - 1    | 488%  | 1         | 1    | 1 1     | - 1   | F88%       | - 1      | 1      | 1    | 1   | 1          | 385%  | 1        | 1    | 1      | 1      | - 1   | 385%  |          |

5 of 5

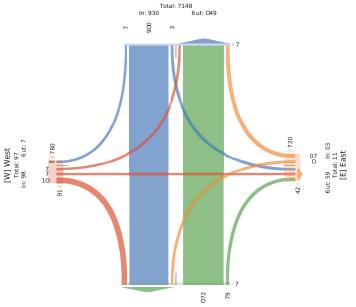
5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC





5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC

5589/07 - BANK S1 (# ECHO DR - OCT 14 2022 - 1 MC Tre May 3, 2009 |
1 L Ingr h, G6 I L : 6(36 I L A: M-nug9l ngr 1 P)u
1 L Ingr h, G6 I L : 6(36 I L A: M-nug9l ngr 1 P)u
C9S- sgi ni Horry (g-HL P)Punva9ni 21 ng- v21 nithi yungci 2Banva9ni Pc RPgF2Banva9ni Pc
suPi vg9 A
C991. P- nk ncy
nk ( 3FF01B42d Pagg4c) ( 67856D152:467 D, 88, 2ben s Pth(, F. 383F8)




| dno                           | NPug  |        |        |     |        |       | Egiy     |      |         |      |       |       | bP)yr   |           |      |      |        |       | Sniy     |       |       |      |       |       |        |
|-------------------------------|-------|--------|--------|-----|--------|-------|----------|------|---------|------|-------|-------|---------|-----------|------|------|--------|-------|----------|-------|-------|------|-------|-------|--------|
| I enayePc                     | bP) y | fP)cH  |        |     |        |       | S niyf P | ) cH |         |      |       |       | NPuyr f | P) cH     |      |      |        |       | Egiyl P) | cH)   |       |      |       |       |        |
| Wek n                         | R     | · W    | / d    | U   | Срр    | l nH⁵ | R        | W    | d       | U    | Cpp   | l nH⁵ | R       | W         | d    | U    | Cpp    | l nH⁵ | R        | W     | ď     | U    | Cpp   | l nH* | may    |
| 0F00:3F:3, , (36l L           | 3     | 35,    | F      | F   | 356    | F     | D        | F    | 8       | F    | 33    | 06    | ,       | 03.       | F    | F    | 00F    | F     | 00       | F     | F     | F    | 00    | , D   | ,,I    |
| , (8Fl L                      | F     | 0F6    | 0      | F   | 0F4    | F     |          | F    | 8       | F    | 5     | 63    | ,       | 35,       | F    | F    | 35D    | F     | 3.       | F     | F     | F    | 3.    | 8,    | , 8F   |
| , (, 6l L                     | F     | 348    | ,      | F   | 344    | 3     | 5        | F    | 3       | F    | 3F    | 6F    | 6       | 350       | F    | F    | 354    | 3     | 3.       | F     | F     | F    | 3.    | 68    | , FF   |
| 6(FFl L                       | F     | 033    | 8      | F   | 03,    | F     | D        | F    | 3       | F    | 5     | 40    | ,       | 038       | F    | F    | 034    | F     | 3,       | 3     | 3     | F    | 3.    |       | , 6.   |
| WPygS                         | 3     | 4D8    | 5      | F   | 458    | 3     | 83       | F    | D       | F    | 85    | 35D   | 34      | D86       | F    | F    | D80    | 3     | . D      | 3     | 3     | F    | 4F    | 345   | 348,   |
| % CppuPgar                    | F28%  | 5D4%   | 373%   | F%  | :      | - :   | 4576% 1  | P% ( | )F76% I | 7%   | :     | - 1   | 07F%    | 5DF%      | F% I | F%   | :      | - :   | 5473%    | 37, % | 37, % | F%   | :     | - :   |        |
| % WPygS                       | F28%  | , 670% | F76%   | F%. | , 674% | - :   | 370% 1   | P%   | F76% I  | 7%   | 070%  | - 1   | 37F%    | , 47F%    | F% I | F%,  | DIF%   | - :   | 875%     | F73%  | F/3%  | F%   | , IF% | - :   |        |
| l 1 T                         | :     | F7588  | F7, 8D | :   | F7588  | - :   | F7. 6.   | :    | F76D8   | :    | F744D | - 1   | F7 DD   | F758D     | :    | :    | F75, 0 | - :   | F74.3    | F706F | F706F | :    | F74D, | - :   | FZ585  |
| deoryi gcHL PyPuava9ni        | F     | 4, F   | 4      | F   | 4, 4   | - :   | 03       | F    | 4       | F    | 0D    |       | 33      | 4.5       | F    | F    | 4DF    | - :   | . 4      | 3     | 3     | F    | . 5   | - :   | 3. 0,  |
| % deor yi gcF<br>L PyPuava9ni |       | 5, 76% | 4470%  | F%: | 5, 70% |       | . 474% 1 | P% I | D476% I | 7% 4 | 1370% |       | . , 74% | 5, 7, % : | F% I | F% 5 | 870%   |       | 5D%%     | 3FF%  | 3FF%  | F% 5 | 5DF % |       | 5874%  |
| 1 ng-v                        | F     | 3E     | ) F    | F   | 3D     | - :   | F        | F    | F       | F    | F     | - 1   | F       | 36        | F    | F    | 36     | - :   | F        | F     | F     | F    | F     | - :   | 88     |
| % 1 ng- v                     | F%    | 0.78%  | F%     | F%  | 078%   | - :   | F% I     | P%   | P% I    | 7%   | F%    | - 1   | F%      | 37D%      | F% I | F%   | 370%   | - :   | F%       | F%    | F%    | F%   | P%    | - :   | 375%   |
| Beava9ni Pc RPgH              | 3     | 06     | 0      | F   | 0D     | - :   | 3F       | F    | 3       | F    | 33    | - :   |         | 83        | F    | F    | 84     | - :   | 3        | F     | F     | F    | 3     | - :   | 44     |
| % Besva9ni Pc RPgH            | 3FF%  | 870%   | 0070%  | F%  | 876%   | - :   | 8078% 1  | P% : | 3076% I | % (  | D0%   | - :   | 8678%   | 87D%      | F% I | F%   | , 7,%  | - :   | 376%     | F%    | F%    | F%   | 37 %  | - :   | , 7, % |
| l nHni yagci                  | :     | :      | - :    | - : | - :    | 3     | :        | - :  | - :     | :    | - :   | 35D   | :       | :         | :    | :    | - :    | F     | - :      | - :   | :     | - :  | - :   | 3     |        |
| % 1 nHni yaggci               | :     |        |        |     |        | 3FF%  | :        |      |         |      |       | 3FP%  |         |           |      |      |        | F%    | - :      |       |       |      |       | 5074% |        |
| Benva9ni Pc s uPiiwg9t        | :     | :      | :      | :   |        | F     | :        | - 1  | - :     | :    | :     | F     | :       | :         | :    | :    | :      | 3     |          |       | :     | :    | :     | 38    |        |
| % Benva9ni Pc s uPiiwg9t      |       |        |        | -   |        | F%    |          | -    | -       | -    |       | P%    |         |           | - :  |      |        | 3FF%  |          | _     |       |      |       | 478%  |        |

<sup>\*</sup>l nHniyungci gcHBeava9ni Pc s uPiiwg9.7d(dnG)2R(Reory2W(Wru)2U(U:W)uc

2 of 4

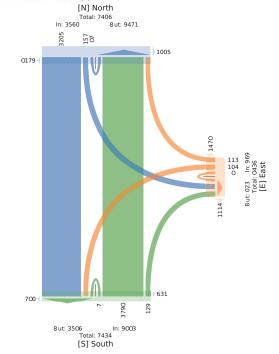
5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC 5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC
Sat My7, 20PUFF
11. leng l2(, 111. : 1, 111. 3: M/ean-leng 6 P) a
C-s ani ein flotor 7a ncHL P/Payvy-ei 06 en/v01 eHei 7atnci 0Btyvy-ei Pc RPnHDBtyvy-ei Pc
saPi iwn-g3
C-L PAek ec7
nb (, uuFQ) 90d Pyn/Pc(2145. 1DB. 0:9148D25520bt/le s PHe(2u/8, 5, u.5) [N] North



6 ut: O23 In: O05 Total: 7137 [S] South

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC The May3, 20700 THL ng hy, 60 AT - 19 33 AF - 9 P ) ILCEstigi findh (yi st d 9 oyour algi 2c gsH 2- gdgi yust i 2v mralgi ot Bosd2v mralgi ot Cunil Rs Ng ) ILS9 otk; gr yi A 38FHDIS: 20 noswort A 42 815. 21547 DIDS: 2b nor Code A. F. 353F:

| nh A3FF0D8: 2n oas yeot A, 4                             | 47. 8D5.      | , 21547. | D4D8: | 2beg  | CodgA    | F. 353       | F:         |       |               |           |          |        | 08.0.      | t 2MN2     |       |      |
|----------------------------------------------------------|---------------|----------|-------|-------|----------|--------------|------------|-------|---------------|-----------|----------|--------|------------|------------|-------|------|
| ngh                                                      | Nou)(         |          |       |       |          | Esiy         |            |       |               |           | bol y(   |        |            |            |       |      |
| eugayeot                                                 | bol y(fol     | t d      |       |       |          | S giyf ol    | t d        |       |               |           | Nous fol | t d    |            |            |       |      |
| Nek g                                                    | W             | n        | U     | ) pp  | - gd*    | В            | n          | U     | ) pp          | - gd*     | В        | W      | U          | ) pp       | - gd* |      |
| 0F0013F13, : AF- 9                                       | 334           | - 11     | F     | 3, D  | , 0      | 3:           | 0:         | F     | 1.            | , 4       | 08       | 8,     | F          | 30:        | 3,    | :    |
| : A.4-9                                                  | 88            | : 4      | 3     | 3:4   | 0,       | 00           | 0.         | F     | , D           | 55        | : 4      | 3F.    | F          | 3, 3       | 38    |      |
| c ol uir Woys I                                          | 03,           | . D      | 3     | 0D    |          | :4           | , 8        | F     | D,            | 300       | ٠,       | 0FF    | F          | 0.,        | - ::  | -    |
| , AFF- 9                                                 | 334           | : 4      | F     | 34F   |          | 33           | : 5        | F     | , D           | D,        | 0D       | 8D     | 3          | 305        | 05    |      |
| , As4-9                                                  | 335           | ,:       | 3     | 3.3   | 43       | 3D           | 03         | F     | :8            | D4        | : 5      | 3: 0   | F          | 3.8        | 05    | :    |
| , AF- 9                                                  | 33.           | ,:       | 3     | 3. F  | .,       | 3.           | 0D         | F     | ,,            | 8:        | : D      | 33D    | 3          | 345        | 05    | :    |
| , A.4-9                                                  | 3:0           | - 11     | 4     | 35F   | D        | 38           | 0,         | F     | ,:            | 3, F      | 1,       | 33D    | F          | 340        | : 4   | :    |
| c ol uir Woys I                                          | , DF          | 34,      | 5     | .,3   | 0.3      | .,           | 33F        | F     | 35,           | , F0      | 3: 5     | ,      | 0          | . F4       | 33.   | 3,   |
| 4AFF- 9                                                  | 348           | 33       | 0     | 350   | 3F4      | 3D           | 0:         | F     | , 3           | 335       | 0,       | 343    | 3          | 35.        | ,.    | :    |
| 484-9                                                    | 308           | F        | F     | 308   | 33D      | F            | F          | F     | F             | 34.       | :        | 350    | F          | 354        | . F   | :    |
| 4AF-9                                                    | 3,:           | F        | F     | 3,:   | 3, 8     | F            | F          | F     | F             | 38F       | F        | 358    | F          | 358        | ,,    | :    |
| 4A4-9                                                    | 3:8           | F        | F     | 3:8   | 30.      | F            | 3          | F     | 3             | 0F0       | F        | 3.0    | F          | 3.0        | . 8   | :    |
| c ol uir Woys I                                          | 45F           | 33       | 0     | 4D    | , 8D     | 3D           | 0,         | F     | , 0           | 4         | 05       | ,      | 3          | . 80       | 038   | 3:   |
| . AFF- 9                                                 | 3, D          | F        | F     | 3, D  | 0.,      | F            | F          | 3     | 3             | 00D       | F        | 3. 5   | F          | 3.5        | 4,    | :    |
| . A4-9                                                   | 344           | F        | F     | 344   | ODF      | F            | F          | F     | F             | 04F       | F        | 350    | F          | 350        | 4F    |      |
| . AF- 9                                                  | 3: F          | F        | 3     | 3:3   | 0.4      | F            | - F        | F     | F             | 034       | F        | 35:    | F          | 35:        |       |      |
| .A4-9                                                    | 3. 8          | F        | 3     | 34F   | . F.     | F            | F          | F     | F             | OF.       | F        | 3:.    | F          | 3:.        | 4.    |      |
| c ol uir Woys I                                          | 4D0           | F        | 0     | 4D    | 3034     | F            | F          | 3     | 3             | D88       | F        | ., D   | F          | ., D       | 00.   | 30   |
| 5AFF- 9                                                  | 34.           | F        | 3     | 344   | 0        | F            | F          | F     | F             | 3: 5      | F        | 3      | F          | 3          | , 3   | -    |
| 5A4-9                                                    | 344           | F        | F     | 344   | 0FF      | F            | F          | F     | F             | D8        | F        | 35F    | F          | 35F        | , F   |      |
| 5AF-9                                                    | 3, 0          | F        | F     | 3, 0  | 58       | F            | F          | F     | F             | D.        | F        | 3, 3   | F          | 3, 3       | ; F   |      |
| 5A4-9                                                    | 300           | F        | F     | 300   | 36<br>4F | 3            | F          | F     | 3             | . 3       | F        | 303    | F          | 303        | : F   |      |
| c ol uir Woys I                                          | 45:           | F        | 3     | 45.   | 484      | 3            | F          | F     | 3             | :53       | F        | 48D    | F          | 48D        | 3, 3  | 33   |
|                                                          | -             | F        |       |       |          | 3<br>F       | F          | F     | 3<br>F        |           |          |        | F          |            |       |      |
| DÆF- 9                                                   | 33,<br>300    | F        | F     | 33,   | :5       | F            | F          | F     | F             | , F<br>50 | F        | 304    | F          | 304<br>33F | , 3   |      |
| D84-9                                                    | _             |          | 0     | 30,   | , 8      |              |            |       |               |           | F        | 33F    |            |            | , 4   |      |
| DA F- 9                                                  | 8D            | F        | F     | 8D    | 53       | F            | F          | F     | F             | D         | F        | 333    | F          | 333        | 04    | (    |
| DA 4- 9                                                  | 8:            | F        | F     | 8:    | 1.       | F            | 3          | F     | 3             | 4.        | F        | D0     | F          | D0         | 04    | 3    |
| c ol uir Woys I                                          | , 05          | F        | 0     | , 08  | 38:      | F            | 3          | F     | 3             | 04,       | F        | , 0D   | F          | , 0D       | 3: .  | 1    |
| 8AFF- 9                                                  | 8F            | F        | F     | 8F    | . F      | F            | F          | F     | F             | D8        | F        | 30,    | F          | 30,        | , 3   |      |
| 8A94-9                                                   | 3FF           | F        | F     | 3FF   | : D      | F            | F          | F     | F             | 30.       | F        | 3F0    | F          | 3F0        | 03    | - (  |
| 8AF-9                                                    | 85            | F        | 3     | 8D    | 53       | F            | F          | F     | F             | 3FD       | F        | 8.     | F          | 8.         | 43    | 3    |
| 8A4-9                                                    | DB            | F        | F     | DB    | 3, :     | F            | F          | F     | F             | 00F       | F        | D,     | F          | D)         | 4D    |      |
| c ol ulir Woys I                                         | :. D          | F        | 3     | :.8   | : 30     | F            | F          | F     | F             | 4, :      | F        | , F.   | F          | , F.       | 353   |      |
| 3FÆF- 9                                                  | 43            | F        | F     | 43    | ,,5      | F            | F          | F     | F             | 44.       | F        | DB     | F          | DB         | : F4  | 3    |
| 3FA4-9                                                   | D0            | F        | F     | 120   | 8.       | 3            | F          | F     | 3             | 3.8       | F        | 8F     | F          | 8F         | 5F    | 3    |
| 3FAF-9                                                   | 33D           | 3        | F     | 338   | . D      |              | 3          | F     | ,             | 335       | F        | 84     | F          | 84         | 4.    | (    |
| 3FA4-9                                                   | D8            | 8        | F     | 8D    | : 4      | 4F           | 33         | F     | . 3           | 8D        | 4        | . D    | F          | 5:         | : 3   |      |
| c ol uir Woys I                                          | :, F          | 3F       | F     | :4F   | .,.      | 4,           | 30         | F     |               | 8, F      | 4        | ::,    | F          | ::8        | ,.0   |      |
| 33AFF- 9                                                 | 4,            | 1.       | 3     | 83    | :3       | 08           | :3         | F     | . F           | , 5       | 3,       | , 8    | ,          | . 5        | 30    | (    |
| 33A4-9                                                   | 43            | 38       | 3     | 53    | 0.       | 00           | 0:         | F     | , 4           | 4D        | 35       | , D    | 3          |            | : 3   | 3    |
| c ol uir Woys I                                          | 3F4           | 44       | 0     | 3.0   | 45       | 43           | 4,         | F     | 3F4           | 3F4       | :3       | 85     | 4          | 3::        | ,:    |      |
| Work                                                     | :.48          | 08D      | 3D    | : 854 | : D :    | 00:          | 04F        | 3     | , 5,          | ,:F3      | 0        | : D 3  | D          | . 33:      | 34, 5 | D    |
| %) ppuosa(                                               | 8073%         | 574%     | F74%  | 1     |          | , 57F%       | 4075%      | F70%  | 1             | ,         | . 7 %    | 8: 7 % | F70%       | , 55.      | 1     |      |
| % Woys I                                                 | ,025%         | : 74%    | F70%  | 7%    | 1        | 07 %         | 078%       | F%    | 474%          | 1         | : 73%    | ,,78%  | F25%       | . DIF%     | 1     |      |
| neh( vi st d 9 oyouar algi                               | -             | 08:      | 3D    | : 558 | - 1      | 03.          | 0:5        | 3     |               | - 1       | 044      | :.00   | D          | : DD4      | - 1   | D    |
| nen(yi st d 9 oyouar aigi<br>% neh(yi st d 9 oyouar aigi | :,.D<br>8,70% | 8DF %    | 3FF%  | 8473% | - 1      | 8.78%        | 8, 7D%     | 3FF%  | , 4,<br>847D% | - 1       | 8. 7 %   | 8, 7 % | 3FF%       | 8, 74%     | - 1   | 8, 7 |
| c gsHr                                                   | 3, 0          | OLE 70   | 3FF76 | 3,:   | 1        | 0. A070<br>F | 0, AD%     | SFF76 | 644.0%        | 1         | 0. 4.76  | 3:0    | SFF76<br>F | 3:4        | 1     |      |
|                                                          |               |          |       | : 7 % | - 1      | F%           |            |       | FZ %          | - 1       | 373%     |        | F%         | : 7.%      | - 1   | : 7  |
| % c gsHr                                                 | : 78%         | F7 %     | F%    |       | - 1      | F%           | 370%<br>3F | F%    | F7 %          | - 1       | 3.5%     | : 7,%  | F%         |            | 1     |      |
| veralgi ot Bosd                                          | , 8           | ,        | F     | 4:    | - 1      |              |            |       |               | - 1       |          | DS     |            | 8:         | - 1   |      |
| % veralgi ot Bosd                                        | 37 %          | 37.%     | F%    | 37 %  | 1        | : 73%        | , Æ%       | F%    | : 7 %         | 1         | 07.%     | 07 %   | F%         | 07 %       | 1     | 37   |
| - gdgi yust i                                            | 1             | 1        | 1     | 1     | : D03    | 1            | 1          | 1     | 1             | , 0D0     | 1        | 1      | 1          | 1          | 3400  |      |
| % - gdgi yast i                                          | 1             | 1        | 1     | 1     | 887 %    | 1            | 1          | 1     | 1             | 887 %     | 1        | 1      | 1          | 1          | 8DE % | 1    |
| veralgi ot CuoiiRslw                                     | - 1           | 1        | - 1   | 1     | 00       | 1            | 1          | 1     | 1             | 38        | 1        | 1      | 1          | 1          | 04    |      |


| ngh Nou        | u)(     |   |   |      |       | Esiy          |   |   |      |       | bol y(     |   |   |      |       |     |
|----------------|---------|---|---|------|-------|---------------|---|---|------|-------|------------|---|---|------|-------|-----|
| I eggayeot bol | y(foltd |   |   |      |       | S giyf ol t d |   |   |      |       | Noug(foltd |   |   |      |       |     |
| Wik g          | W       | n | U | ) pp | - gd* | В             | n | U | ) pp | - gd* | В          | W | U | ) pp | - gd* | mby |

% verralgi or CuoirRslw 1 1 1 1 1 FZ % 1 1

\*- gdgi yusst i st d v ear algi ot CuoirRslw?n An g@2BABch(y2WAW(ul 2UAU IW ut

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC



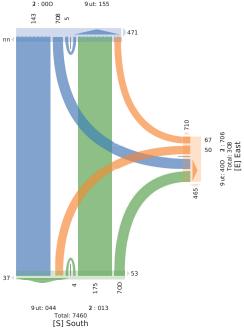


2 of 5 3 of 5

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC
The May3, 200100
11. Ing h, G61 L : 6G61 L A: M-nag991 ngr 1 P) u
C99. Sghini Hûroryi gcHL PyPurva9ni21 ng-v21 nHi yangci2Bmva9ni Pc RPgH2Bmva9ni Pc
suPi vog91 A
C991. P-n ki ncyi
nh (3FF0DB42d PagqePc(, 678815., 2:567. D6DB42bep s PHn(, F. 353F4

| dno                        | NPur        |       |        |       |       | Egiy        |        |     |         |       | bP) yr    |        |       |       |       |        |
|----------------------------|-------------|-------|--------|-------|-------|-------------|--------|-----|---------|-------|-----------|--------|-------|-------|-------|--------|
| I enayePc                  | bP) yr f P) | cH    |        |       |       | S niyf P) o | H      |     |         |       | NPug f P) | cH     |       |       |       |        |
| Wek n                      | W           | d     | U      | Срр   | l nH* | R           | d      | U   | Срр     | l nH* | R         | W      | U     | Срр   | l nH* | ney    |
| 0F00:3F:3, , (361 L        | 335         | , 4   | 3      | 3.3   | 63    | 3D          | 03     | F   | 48      | D6    | 45        | 340    | F     | 3.8   | 05    | 4.8    |
| , (4Fl L                   | 33.         | , 4   | 3      | 3. F  | ٠,    | 3.          | 0D     | F   | ,,      | 84    | 4D        | 33D    | 3     | 365   | 05    | 4.3    |
| , (, 61 L                  | 340         | 44    | 6      | 35F   | D4    | 38          | 0,     | F   | , 4     | 3, F  | 4,        | 33D    | F     | 360   | 46    | 4.6    |
| 6(FFI L                    | 368         | 33    | 0      | 350   | 3F6   | 3D          | 04     | F   | ,3      | 335   | 0,        | 363    | 3     | 35.   | , .   | 4D8    |
| WPyg9                      | 60,         | 34F   | 8      | 4     | 4F4   | 53          | 8.     | F   | 3.5     | , 46  | 344       | 638    | 0     | . 6,  | 346   | 3, D;  |
| % CppuPgar                 | 587P%       | 387 % | 37, %  |       | :     | , 076%      | 6576%  | F%  |         | :     | 0F74%     | 587, % | F74%  | :     |       |        |
| % WPyg9                    | 4674%       | DID%  | FZ %   | ,,75% | - 1   | , 7D%       | . 76%  | P%  | 3374%   |       | 87F%      | 467F%  | F3%   | ,,73% |       |        |
| l1T                        | FÆBF        | F756F | F7, 6F | F786F | - 1   | F7843       | F7D, D | - : | F78, 0  |       | F7D 0     | F7D; 0 | F76FF | F7835 | - 1   | F78, 0 |
| deor yi gcHL PyPusva9ni    | , 86        | 308   | 8      | . 44  | - :   | . 5         | 8,     | F   | 3.3     |       | 30D       | , 8,   | 0     | . 0,  |       | 3, 3D  |
| % deor yi gcHL PyPuava9ni  | 8, 76%      | 8870% | 3FF%   | 8676% | - :   | 8, 7, %     | 8578%  | F%  | 8. 7, % |       | 8.70%     | 8670%  | 3FF%  | 867,% |       | 867 %  |
| 1 ng-v                     | 35          | F     | F      | 35    | - :   | F           | 3      | F   | 3       |       | 4         | 33     | F     | 3,    |       | 40     |
| % 1 ng- v                  | 470%        | F%    | F%     | 07 %  | - :   | F%          | 37F%   | F%  | FZ %    |       | 074%      | 073%   | F%    | 073%  |       | 070%   |
| Beava9ni Pc RPgH           | 30          | 3     | F      | 34    | - :   | ,           | 3      | F   | 6       |       | 0         | 3,     | F     | 3.    |       | 4,     |
| % Beava9ni Pc RPgH         | 074%        | F7D%  | F%     | 07P%  | - 1   | 67. %       | 37F%   | F%  | 47P%    |       | 376%      | 075%   | F%    | 07,%  |       | 074%   |
| l nHni yugci               | - :         |       |        |       | 4FF   |             |        |     |         | , 40  | :         |        |       |       | 306   |        |
| % 1 nHni yangci            | :           |       |        | - 1   | 887P% |             | - 1    | - 1 | - 1     | 8874% | :         | - 1    | - 1   | - :   | 807 % |        |
| Beava9ni Pc s uPiiwg9t     | - :         | - 1   | - :    | - 1   | 4     | - 1         | - 1    | - : | - 1     | 4     | - 1       |        | - 1   | - 1   | 3F    |        |
| % Beava9ni Pc s uPi i wg9t | :           | - 1   | - 1    | - 1   | 377%  | - 1         | - 1    | - 1 | - 1     | F/5%  |           | - 1    | - 1   | - 1   | 57,%  | :      |


<sup>\*1</sup> nHni yuegci gcHBeava9ni Pc s uPiiwg9t7d(dnG)2R(Reory2W(Wru)2U(U:W)uc

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC
Sat My7, 20PtEF
11. leng l2(, 11 L : 1, 11 L 3: M/ean-leng 6 P) a
C-s - ani ein lidror 7a ncHL P?Payvy-ei06 en/w0l eHei 7anci 0Btyvy-ei Pc RPnH0Btyvy-ei Pc
s aPi iwn-eg3
C-L PAek ec7
nb (, uuFD, 90d Pyn7Pc (214/5D 820: 14/8DLDS90bt7e s PHc (2u8, , , u9)

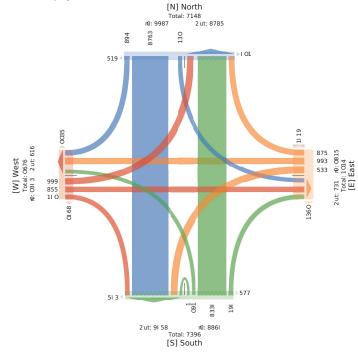
l uP-eHnHfv(s eyv POMygwg 3FFs Pciyn99gyePc I u2 Nnpngc2MN2K0G6J82sC

[N] North Total: 7404 2 : 000 9 ut: 155 143 28



4 of 5 5 of 5

5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC
Tu-hhy3, 20F00
Til Ling hy (6 AF - 9 B3AF - 9 P)
Il Clisti gif indit/y st d 9 oyour algi 2c gsH 2- gdgj yust i 2v urr algi ot Bosd2v urr algi ot Curi IRsbP
Il 30 Hyk g sj
ih A3FF0128F2n ossyot A, 47, F3852 15478 D5412. eg CodgA F8383P:




| ngh<br>engayent                          | Oouy(<br>. ol y( bo | ol t d |           |      |            |       | Esiy<br>Sgiybol | t d      |           |       |           |           | . ol y(<br>Oou( bo | l t d |             |        |        |       | S giy<br>Esiybol t | t d             |          |             |               |         |
|------------------------------------------|---------------------|--------|-----------|------|------------|-------|-----------------|----------|-----------|-------|-----------|-----------|--------------------|-------|-------------|--------|--------|-------|--------------------|-----------------|----------|-------------|---------------|---------|
| Mik g                                    | В                   | W      | n         | U    | ) NN       | - gd+ | В               | W        | п         | U     | ) NN      | - gd+     | В                  | W     | п           | U      | ) NN   | - gd+ | В                  | W               |          | п т         | NN - gd       | i* mby  |
| 0F0013F13, : AF- 9                       | 8                   | 3:8    | 3F        | F    | 340        | 83    | 8               | 5        | 34        | F     | 0D        | SF.       | 3                  | 3FD   | F           | F      | 3FJ    | : 4   | 5                  | 34              |          |             | :4 J          |         |
| : A4-9                                   | 3:                  | 308    | 4         | F    | 3,,        | - 5   | 8               | D        | 3:        | F     | 05        | J:        | 0                  | 3F8   | 3           | F      | 3FJ    | - P   | J I                | 34<br>D         |          |             | :, 8          |         |
| coluir Wow.L                             | 3J                  | 080    | 34        | F    | 3,,<br>0J8 | JD    | 30              | 34       | 0D        | F     | 44        | 38:       |                    | 03.   | 3           | F      | 03D    | 5:    | 38                 | 0:<br>D         |          |             | 8J 34         |         |
|                                          | 3:                  | 304    | 34        | F    | 3          | JD    | 30              | 34       | 3.        | F     | :3        | 38:<br>DB | 4                  | 33.   | 8           | F      | 304    | 3     | 38                 | 34              |          |             | <b>.0</b> 5   |         |
| , AFF- 9                                 |                     |        | 8         |      |            | -,:   |                 |          |           | -     |           |           |                    |       |             |        |        | ,     |                    |                 |          |             |               | , .,    |
| , A4-9                                   | 5                   | 3:5    | ,         | F    | 3, D       | , F   | 4               | 3,       | 38        | F     | :4        | 3FD       | J                  | 30J   | :           | 3      | 3, 0   | 0J    | 3F                 | 35              |          |             | :D 8          |         |
| , AF- 9                                  | 3,                  | 3, 0   | 8         | F    | 380        | , D   | 33              | 3F       | 3J        | F     | , F       | 3: D      | 33                 | 33F   | - :         | F      | 30,    | 3D    | 33                 | 3,              |          |             | :8 I          |         |
| , A4-9                                   | J                   | 34:    | D         | F    | 35F        | - ,:  | 3,              | 3,       | 03        | F     | , Ј       | 3F8       | 5                  | 303   | ,           | F      | 3:0    | - ::  | 30                 | 30              | 33       |             | :4 J          | ,       |
| c ol ulir Woys I.                        | ,:                  | 445    | 0,        | F    | 80,        | 35,   | :4              | 4F       | 5F        | F     | 344       | ,:D       | : 0                | , 5,  | 38          | 3      | 40:    | 303   | ,5                 | 4D              |          |             | 43 : 3        |         |
| 4ÆF- 9                                   | 34                  | 345    | D         | F    | 3DF        | :5    | 5               | 33       | 03        | F     | :J        | 3F4       | J                  | 304   | 8           | F      | 3, F   | ,,    | 5                  | 33              |          |             | :J [          |         |
| 4Æ4-9                                    | 38                  | 3, 5   | 33        | F    | 35,        | , 0   | 3J              | 38       | 3F        | F     | , 4       | 3:5       | 3F                 | 3F,   | 8           | F      | 30F    | - ::  | D                  | 34              |          |             |               | D :5    |
| 4AF-9                                    | 3D                  | 3, 0   | ,         | F    | 38,        | 4,    | 30              | 0F       | 3J        | F     | 43        | 3, F      | 3F                 | 3F:   | 5           | F      | 30F    | 40    | J                  | 34              | 3:       | F :         | :5 3F         | 4 :5    |
| 4A4-9                                    | 34                  | 38:    | J         | F    | 3D6        | :8    | 3,              | 00       | 03        | F     | 45        | 38F       | 3:                 | 55    | ,           | F      | J,     | , F   | 4                  | 33              | 34       | F :         | : <b>3</b> 30 |         |
| c ol ulir Woys I.                        | 8,                  | 8FJ    | :0        | F    | 5F4        | 38J   | 40              | 8J       | 53        | F     | 310       | 4, 0      | , 0                | , FJ  | 0:          | F      | , 5,   | 38J   | 0J                 | 40              | 8,       | F 3         | ,4 :J         | J 343   |
| 8ÆF-9                                    | 34                  | 34D    | D         | F    | 3D8        | , D   | D               | 3J       | 00        | F     | , J       | 35D       | 38                 | 333   | 8           | F      | 3::    | - ::  | 3:                 | 03              | 0F       | F ·         | <b>4,</b> 3,  | 8 ,3    |
| 884-9                                    | 3:                  | 343    | 8         | F    | 35F        | 80    | 3J              | 0:       | 3D        | F     | 8F        | 0F3       | 5                  | IJ    | 8           | F      | 330    | , 5   | J                  | 3J              | 03       | F,          | <b>, J</b> 3J | 5 :J    |
| 8AF-9                                    | 30                  | 34:    |           | F    | 38D        | 8:    | 33              | 3D       | 3,        | F     | .:        | 0, F      | 3:                 | 33:   | 0           | F      | 30D    | , J   | D                  | 34              | 3,       | F :         | :5 38         | : 5     |
| 8A4-9                                    | 3J                  | 383    | 5         | F    | 3D6        | 48    | 33              | 3J       | 30        | F     | ,0        | 014       | D                  | DB    | 4           | F      | J,     | - 12  | 33                 | 35              | 3,       | F,          | .0 38         | 3 :8    |
| c ol uir Woys I.                         | 4J                  | 80:    | 0,        | F    | 5F8        | 00J   | , J             | 5J       | 88        | F     | 3J.       | J3.       |                    | , F,  | 3J          | F      | . 85   | 350   | .3                 | 50              | 8J       | F 3         | <b>DO</b> 85  | : 34,   |
| 5ÆF-9                                    | 38                  | 3: D   | D         | F    | 380        | 04    | 3:              | 3D       | 0F        | F     | 43        | 3J4       | 30                 | 3F5   | 4           | F      | 30.    | :8    | 3,                 | 3:              | 38       | F .         | .: 30         |         |
| 5.84-9                                   | 38                  | 388    | D         | F    | 3JF        | , F   | 0F              | 04       | 3,        | F     | 4J        | 34J       | 30                 | 3F5   | 4           | F      | 30.    | 0J    | 5                  | 38              | 3D       |             |               | D ,3    |
| 5AF-9                                    | 30                  | 3:3    | 30        | F    | 344        | : F   | 0F              | D        | 0.        | F     | 40        | 335       | 30                 | DI    | 5           | F      | 3FD    | . 3   | 5                  | 3F              |          |             |               | ъ :4    |
| 5A4-9                                    | 8                   | 330    | D         | F    | 308        | 0:    | 33              | 35       | 03        | F     | .J        | 33J       | 4                  | J3    | 8           | F      | 3F0    | 0J    | 38                 | 30              |          |             | .0 4          |         |
| c ol ula Wows L                          | 4F                  | 4.5    | :8        | F    | 8::        | 33D   | 8,              | 8D       | 5J        | F     | 033       | 4JF       | , 3                | :J,   | 0:          | F      | . 4D   | 3:4   | 30                 | 43              |          |             | 83 :.         | . 3.8   |
| DEF- 9                                   | 33                  | 3FJ    | . 0       | F    | 300        | 08    | o,              | 3F       | 08        | F     |           | 88        | 5                  | .J,   | D.          | F      | 333    | :8    | ,,<br>D            | 43<br>D         |          |             |               | , 3,6   |
| D\$4-9                                   | 33                  | 3F:    | 8         | F    | 30F        | 04    | 33              | D        | 0:        | F     | ,,        | J:        | 5                  | 85    | 5           | F      | DB     |       | 5                  | 3F              |          |             |               | 5 05    |
| DAF-9                                    | 33                  | 333    | 4         | F    | 303        | 8     | 38              | 3:       | 0F        | F     | , U       | 8D        | 8                  | DB    | 4           | F      | 10     | 0:    | 5                  | JF<br>D         |          |             |               | 0 OJ    |
|                                          |                     |        |           |      |            |       |                 |          |           |       |           |           |                    |       | - 4         |        | DR.    |       | 3<br>I             | D               |          |             |               |         |
| DA4-9                                    | 4                   | D4     |           | F    | J,         | 0,    | 3:              | 33       | J         | F     | ::        | 3F0       | 3                  | 55    |             | F      |        | 0:    | _                  | ,               |          |             |               | D 00    |
| c ol ulr Woys I.                         | : 0                 | , FD   | 35        | F    | , 45       | EB    | , D             | , 0      | 5D        | F     | 38D       | : 0J      | 03                 | : 03  | 0:          | F      | : 84   | 304   | :3                 | : F             |          |             | <b>FO</b> 0F  |         |
| JÆF-9                                    | 3,                  | J4     | ,         | F    | 33:        | 0D    | 5               | 3:       | 3:        | F     | ::        | JD        | 0                  | 58    | 4           | F      | D      | 0,    |                    | 3F              |          | _           |               | U 04    |
| J.84-9                                   | 33                  | 3F:    | J         | F    | 30:        | 0:    | 30              | J        | 3F        | F     | :3        | 33,       | 4                  | 4D    | - :         | 3      | 85     | :3    | ,                  | ,               |          |             |               | 8F 0,   |
| JAF-9                                    | 8                   | 3F5    | 5         | F    | 30F        | 0:    | 3F              | 33       | 33        | F     | :0        | 334       | 3,                 | 88    |             | F      | D)     | : F   | 8                  | J               |          |             |               | 3 08    |
| JA4-9                                    | 0                   | J5     | - :       | F    | 3F0        | :3    | 3F              | 3:       | 3F        | F     | ::        | 3DB       | J                  | 50    | 8           | F      | DБ     | :3    | D                  | J               |          |             |               | 0 04    |
| c ol ufr Woys I.                         | ::                  | , F0   | 0:        | F    | , 4D       | 3F4   | :J              | , 8      | .,,       | F     | 30J       | 43:       | : F                | 050   | 3D          | 3      | : 03   | 338   | 00                 | :0              |          |             | <b>FO</b> 0,  |         |
| 3FÆF- 9                                  | 8                   | 5:     |           | F    | D0         | 55    | 3:              | 3J       | D         | F     | , F       | , D       | 8                  | 8J    | 4           | F      | DF     | D     |                    | 4               | 35       | F (         | <b>08</b> 0F  | 4 00    |
| 3FÆ4-9                                   | 30                  | 5D     | 5         | F    | J5         | : F   | 30              | 38       | 3F        | F     | : D       | : 50      | :                  | J:    | 8           | F      | 3F0    | 5:    | 4                  | J               | 0,       | F :         | : <b>D</b> 30 | 05      |
| 3FAF-9                                   | 3D                  | 10     | 8         | F    | 338        | : F   | 04              | 0F       | 33        | F     | 48        | 38J       | 8                  | 5,    | ,           | F      | ц      | :3    | J                  | J               | 35       | F :         | :4 8          | BD OJ   |
| 3FA4-9                                   | 5                   | D4     | - :       | F    | J4         | 34    | 0F              | J        | 38        | F     | ,4        | 3F:       | 5                  | 3FF   | 3           | F      | 3FD    | 38    | 4                  | 3F              | 34       | F :         | :F :          | F 05    |
| coluir Woys I                            | - 11                | : 0D   | 3J        | F    | :JF        | 340   | 5F              | 8,       | , 4       | F     | 35J       | 330D      | 00                 | ::8   | 38          | F      | :5,    | 0FJ   | 0:                 | ::              | 5:       | F 3         | OJ , O        | 4 3F5   |
| 33ÆF- 9                                  | - :                 | 58     | 5         | F    | DB         | 5     | 30              | ,        | 3F        | F     | 08        | 84        | 0                  | JF    | 0           | F      | J,     | 3F    | 4                  | ,               | - :      | F :         | <b>30</b> 0   | 0 03    |
| 33Æ4-9                                   | 3                   | 5D     |           | F    | D          | - :   |                 | -:       | J         | F     | 38        | ::        | J                  | 10    | 3           | F      | 3F0    | 3D    | :                  | F               |          | F           | 5 3           | . 0F    |
| c ol ufr Woys I.                         |                     | 34,    | 33        | F    | 38J        | 3F    | 38              | 5        | 3J        | F     | ,0        | JD        | 33                 | 3D0   | :           | F      | 3J8    | 0D    | D                  |                 | 5        | F :         | 3J :          | 8 ,0    |
| Worst                                    | :,5                 | : DIF  | 0F3       |      | ,,:D       | 33: 8 | : D4            | F        | 4FF       | F     | 3: 04     | . 534     | 0,8                | : FF8 | 3, 0        |        | ::J8   | 33. D | 083                | : 44            |          | F 3F        |               |         |
| %) NNinsa(                               | 57D% E              |        | . 74% F   |      | ,,         |       | 0J 73%:         |          | 575% I    |       | 3.04      | , 234     | 570% I             |       |             | F78%   | 1      |       | 0. 78% :           | : 74% .         | . 371% F |             | 1             | 1 3703  |
| % ) Nvubsa(<br>% Worst                   | : 7 % :             |        | 07P% F    |      |            | - 1   | : 70%           | . 7.%    | , 71% 1   |       |           | - 1       | 07%                |       | 37,%        |        | : 70%  | - 1   | 0,28%              | : 4% ,<br>: 74% | , 2% P   |             |               | 1       |
| neh( vi st d 9 ovouaralgi                |                     | : 8J0  | 3JD       |      | . 00.      | - 1   | - DB            | ; J.     | , 10 70 1 | F     | 308D      | -         | 0; % (             | 05JF  | 3:4         |        | : 383  | - 1   | 0.6%               | - 38            | , 2 70 F |             |               | 1 J88   |
| nen(yı sto 9 oyouaraıgı<br>% neh(yi stol | ,                   | . 630  | JJD       | r    | , 00,      | 1     | . LB            |          | , 1:      | r     | SUGD      | - 1       | ο:,                | UaJF  | 3:4         | U      | . 363  | - 1   | 04,                | . 36            | , . D    | r 3P        | no .          | 1 188   |
|                                          | J87 % J             | 796 1  | I DOM: D  | 2004 | 1/7994     | 1     | JJ7F% I         | N 7894 1 | rmsc r    | 294 1 | 47594     |           | J 473% J           | 0794  | 147896 1    | REDUCT | - 7994 | 1     | 157 % F            | N 7004          | JDB% P   | K 147       | 194           | 1J. 749 |
| c gsHr                                   | 0 0.878             | 3:8    | J LI476 F | F F  | 3.3        | - 1   | 31.4-26.1       | ≠ A+70 J | LM070 I   | % J   | 4.0%<br>D | - 1       | →4.070 J           | 30D   | y → 1,370 S | F      | 3:4    | - 1   | J57.% L            | 0.0             |          | % J425<br>F | 8             | 1 0J    |
|                                          | F78%                | : 74%  | 374% F    |      | : 70%      | - 1   | FZ %            | F75%     | F7D% I    | _     | F78%      |           | 370%               | , 7 % | 070%        | P%     | . 7P%  | - 1   |                    | F78%            | F75% F   |             |               | 1 0708  |
| %cgsHr                                   |                     |        |           |      |            | 1     | 17.7%           | 10%      |           |       |           | - 1       |                    |       | U.4.8%      |        |        | - 1   |                    |                 |          |             |               |         |
| veralgi ot Bosd                          | 33                  | 80     | F         | F    | 5:         | 1     |                 | :        | :         | F     | , J       | - 1       | J                  | DD    | :           | F      | 3FF    | 1     | 8                  | : 5             |          |             | , 8           | 1 08    |
| % verralgi ot Bosd                       | : 70%               | 378%   | P% F      |      | 378%       | 1     | F7D%            | J 7D%    | F78% I    |       | : 75%     | 1         | : 75%              | 031%  | 073%        | P%     | 031%   | 1     | 07 % 3             | 1F7 %           | F25% F   |             |               | 1 0789  |
| - gdgi yast i                            | 1                   | 1      | 1         | 1    | 1          | 3300  | 1               | 1        | 1         | 1     | 1         | , 530     | - 1                | 1     | 1           | 1      | 1      | 33: J | 1                  | 1               | 1        | 1           | 1 055         |         |
|                                          |                     |        |           |      |            |       |                 |          |           |       |           |           |                    |       |             | - 1    |        | J70%  | - 1                |                 |          |             |               | ar I    |
| % - gdgi yæst i                          | 1                   | 1      | 1         | 1    | 1.1        | DD%   | 1               | 1        | 1         | 1     | 1 J       | 17%       | - 1                | - 1   | - 1         |        | 1.1    | J JU% | -                  | - 1             | 1        | 1           | 11172         |         |
|                                          | 1                   | 1      | 1         | 1    | 1.1        | 3,    | 1               | 1        | 1         | 1     | 1 J       | 121%      | 1                  | 1     | 1           | 1      | 1.1    | J.0%  | 1                  | 1               | 1        | 1           |               | J J     |

5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC

55897/07 - BANK ST @ HFTH AVE - OCT 14 2022 - IMC
Sat My7, 20F0F
ST LE ngh7 E 3 u A - 6, 3 u A - P
J LICEStini Leth(7 sgd - o7ooyryfniOc nsH OAndni 7asgiOv tyr ylni og BosdOv tyr ylni og
Caoi 18.5 kbP
J L- oHkk ng7
nt 3, uuFD u0e oys7og32942u, 5. 06 945D 9D08t7a Codn32u5, 5, u:

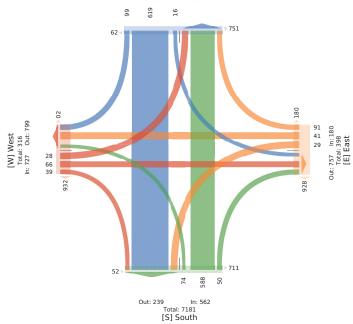




1 of 4 2 of 4

#### 5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC

|                              |         |        |       |      |       |       |         |        |         | _    |        | _     |          |        |        | _     |       |       |          |        |        | _     |       |       |         |
|------------------------------|---------|--------|-------|------|-------|-------|---------|--------|---------|------|--------|-------|----------|--------|--------|-------|-------|-------|----------|--------|--------|-------|-------|-------|---------|
|                              | O) ujc  |        |       |      |       |       | Egdy    |        |         |      |        |       | 5) Gc    |        |        |       |       |       | S ndy    |        |        |       |       |       |         |
| Denaye) H                    | 5) Cycb | ) CH/  |       |      |       |       | S ndyb) | Œŀ     |         |      |        |       | O) ujcb) | )CHv   |        |       |       |       | Egdyb) ( | CH/    |        |       |       |       |         |
| Wenn                         | w       | W      | 0     | U    | s NN  | l nv+ | W       | W      | 0       | U    | s NN   | l nv* | w        | W      | 0      | U     | s NN  | l nv+ | w        | W      | 0      | U     | s NN  | l nv+ | IHy     |
| 0F00:3F:3, (6(1L             | 3(      | 3A     | J     | F    | 348   | . A   | 3,      | 00     | 03      | F    | (8     | 3AF   | 3.       | 88     | ,      | F     | J,    | , F   | (        | 33     | 3(     | F     | . 3   | 300   | . AJ    |
| AGFFI L                      | 3(      | 3(4    | 4     | F    | 343   | , 4   | 4       | 3J     | 00      | F    | , Ј    | 384   | 3A       | 333    | A      | F     | 3     |       | 3.       | 03     | 0F     | F     | (,    | 3, A  | , 38    |
| AG(1 L                       | 3.      | 3(3    | A     | F    | 38F   | A0    | 3J      | 0.     | 34      | F    | AF     | 0F3   | 8        | IJ     | A      | F     | 330   | , 8   | J        | 3J     | 03     | F     | , Ј   | 318   | . J3    |
| AG FI L                      | 30      | 3(.    |       | F    | 3A4   | A     | 33      | 34     | 3,      | F    | ,.     | 0, F  | 3.       | 33.    | 0      | F     | 304   | , J   | 4        | 3(     | 3,     | F     | . 8   | 3AJ   | . 8A    |
| WJyg1                        | ((      | A0(    | 0.A   | F    | 8FA   | 0FJ   | (0      | 40     | 8(      | F    | 0FJ    | 88J   | , Ј      | , FF   | 34     | F     | , AB  | 3AJ   | . (      | AA     | 8F     | F     | 383   | Α,    | 3((.    |
| % s NNi) gac                 | 874%    | 447(%  | . 78% | F%   | :     | :     | 0, 71%  | J 70%  | .(7%)   | P%   | :      | -     | 3F7(%    | 4( 7B% | . 71%  | F%    | :     | - :   | 0F7(%    | . 474% | F3%    | F%    | :     |       | :       |
| % WJ yg1                     | . 7(%   | , F70% | 378%  | F%,  | (7%   | - :   | . 7 %   | (7%    | , 74% 1 | P% 3 | 3. 7(% |       | . 70% (  | 0(74%  | 370%   | F%.   | F75%  | - :   | 07.%     | , 70%  | , 7(%) | F% 3  | 37P%  |       | - 1     |
| 1 P T                        | F7 FF   | F3A    | F7800 | - :  | FØ, A | - :   | F744,   | F748(  | F74(0   | -:   | F74A,  |       | F78( F   | F744,  | F7AAB  | - : : | F74J0 | - :   | F748.    | F7844  | F74    | - : : | F7BJ0 |       | F7.,    |
| oercydgHvL)y)uaBaind         | (,      | (4F    | 0.A   | F    | AAF   | - :   | (0      | 88     | 8(      | F    | OF,    |       | , 4      | . (J   | 3(     | F     | , 00  | - :   | . (      | A      | 8F     | F     | 3A4   |       | 3, (,   |
| % oercyd gHv<br>L)y) uaBalad |         | J 074% | 3FF%  | F% I | 1.7(% | :     | 3FF% .  | J. 7J% | 3FF% I  | F% J | 187466 |       | J47F%    | 4J 74% | 4. 7 % | P% J  | F7 %  |       | 3FP%     | J(7%   | 3FP%   | P% J  | 470%  | 7     | J. 7496 |
| P ng9B                       | F       | . A    | F     | F    | . A   | - :   | F       | F      | F       | F    | F      | -     | F        | . F    | 3      | F     | . 3   | - :   | F        | F      | F      | F     | F     |       | AB      |
| % Png9B                      | P%      | (74%   | F%    | F%   | (23%  | - :   | F%      | P%     | F% I    | F%   | P%     |       | P%       | 87,%   | (74%)  | F%    | A7P86 | - :   | P%       | F%     | F%     | F%    | P%    |       | , 7.%   |
| RenBaind) Hw) gv             | 3       | J      | F     | F    | 3F    | - :   | F       | (      | F       | F    | (      |       | 3        | 33     | 0      | F     | 3,    | - :   | F        |        | F      | F     |       |       | . 0     |
| % ResBalad) Hw) gv           | 374%    | 37,%   | F%    | F%   | 37,%  | :     | F%      | A33%   | F% I    | P%   | 07, %  | -     | 07F%     | 074%   | 3373%  | F%    | . IP% | - :   | P%       | ,7%    | F%     | F%    | 374%  |       | 073%    |
| l nvndjægHd                  | :       | - :    | - :   | - :  | - :   | 0FA   | - :     | - :    | :       | - :  | - :    | 88J   | :        | - :    | - :    | - 1   | - :   | 3A,   | :        | - :    | - :    | - :   | - :   | A 3   |         |
| % I nvndyægHil               | :       | - :    | - :   | - :  | : 1   | 47496 | - :     | - :    | :       | :    | : 3    | FF%   |          | - :    | - 1    | - 1   | : 1   | 872%  | :        | - :    | - :    | - :   | : 1   | 117%  | - :     |
| RmBahd) Hi u) ddk glt        | - :     | - :    | - :   | - :  | - :   |       | - :     | - :    | :       | - :  | - :    | F     | :        | - :    | - :    | - 1   | - :   | (     |          | - :    | - :    | - :   | - :   |       |         |
| % RenBalnd) Hi u) ddk glt    | - :     | - :    | - :   | - :  | - :   | 37, % | - :     | - :    | :       | - :  | - :    | F%    | :        | - :    | - :    | - 1   | - :   | . IP% |          | - :    | - :    | - :   | - :   | F7(%  | - :     |
|                              |         |        |       |      |       |       |         |        |         |      |        |       |          |        |        |       |       |       |          |        |        |       |       |       |         |


<sup>\*1</sup> nvndyugHtlgHv ReaBa Ind ) Hi u) ddk git 7o 6o nfy2w6wer cy2W6WcuC2U6U: WCuH

#### 5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC

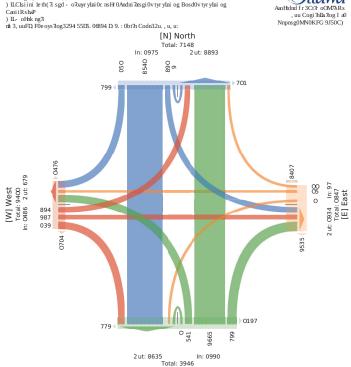
5589707 - BANK 7 & HFTH AVE - OCT 14 2022 - TMC
Sat My7, 20FUFF
I. I. leng ft [2 | I. 1. 32 | I. A. M-cantfoll eng P | Ca
s 66 i Giddelth ort 7d Inft L ) 7) ay ByfedDP en - B0l evedZanHtDRtyByfed | Hw) nv0RtyByfed | H
i a) dk nigA
s 66L ) - emeHI
ID1, uuF9, u00 ) yn7) H 2 (-2u, 350:5 (-495 ( 90. 1% i ) ve12u3, 3, u8

[N] North Total: 7114 Out: 911 In: 286





3 of 4 4 of 4


5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC
Tur Mry 3, 20F00
Till ang hy (£ AF - 9 193AF - 9 P)
Jil Clisti gi field y st d 9 opear a figi 2c gsH 2 - gdgj usst i 2v ear algi ot Bosd2v ear algi ot Canii Rsb.P)
Jil 9 oligk gi y
A AFFORD/2020nosyot A 47 881ES21. 4751545: 2bog CodgA F53F3F:

3FF Cot i ygllsyeot I u2Ngp

l uP-eHnHfv(s eyv POMyygwg 3FFs Pciyn99gyePc I u2 Nnpngc2MN2K0G 6J82s C

| nh A3FF0D802noasy         | ot A, 4  | 7 88I  | 26521.  | 475DE | 45: 2  | beyg ( | CodgA,    | F53F     | 3F:    |     |       |       |        |        |       | 511 | Cut   | ,,6.22 | <i>y</i>  |       | B./. 2. |        | -      | JO2-C)        | ,      |
|---------------------------|----------|--------|---------|-------|--------|--------|-----------|----------|--------|-----|-------|-------|--------|--------|-------|-----|-------|--------|-----------|-------|---------|--------|--------|---------------|--------|
| ngh                       | Nou(     |        |         |       |        |        | Esiy      |          |        |     |       |       | bol y( |        |       |     |       |        | Sgiy      | _     |         |        |        | $\top$        | $\neg$ |
| I eigayeot                | bol y(fo | ol t d |         |       |        |        | Sgiyfo    | l t d    |        |     |       |       | Nous(f | ol t d |       |     |       |        | Esiyf ol  | t d   |         |        |        |               |        |
| Wekg                      | В        | W      | n       | U     | ) pp   | - gd+  | В         | W        | n      | U   | ) pp  | - gd+ | В      | W      | n     | U   | ) pp  | - gd+  | В         | W     | n       | U)     | pp - 1 | şl÷ <b>my</b> | ,      |
| 0F0013F13, : AF-9         | 8        | 3:8    |         | F     | 344    | 38     | F         | F        | F      | F   | F     | 8F    | 30     | 3F4    | 8     | F   | 305   | ,:     | 5         | -,    | D       | F      |        |               | 880    |
| : A4-9                    | 38       | 308    | 5       | F     | 34,    | 1.     | 3         | F        | F      | F   | 3     | 33F   | 03     | 300    | 33    | F   | 34,   | , 4    | 38        | 0     | -       | F      | 0D     | ,8 :          | ::.    |
| c ol ulr Woysl            | 0D       | 05D    | 3:      | F     | : F8   | 45     | 3         | F        | F      | F   | 3     | 0FF   | ::     | 00.    | 0F    | F   | 0DF   | DD     | 04        | 5     | 34      | F      | ,5     | 88 5          | 5:5    |
| , ÆF- 9                   | -        | 308    | 4       | F     | 3, 3   | : 3    | 3         | F        | 3      | F   | 0     | 33F   | 3D     | 3F4    | D     | F   | 3: 3  | 40     | 3:        | 5     | 8       | F      | 0Đ     | :8:           | F0     |
| , A4-9                    | -        | 3,,    | 5       | F     | 34.    | : F    | F         | F        | F      | F   | F     | 333   | 3,     | 3, ,   | 33    | F   | 358   | 4:     | 38        |       | 3F      | F      | 5      | , D :         | : 50   |
| , AF- 9                   | 0F       | 3::    | 4       | F     | 34D    | 04     | F         | F        | F      | F   | F     | 34F   | 00     | 3:,    | 35    | F   | 3. 0  | 50     | 3D        | 4     | 34      | F      | D      | 4D :          | 5D     |
| , A4-9                    | 30       | 354    | 5       | 3     | 3D     | - 1,   | F         | F        | F      | F   | F     | 3.,   | 38     | 300    | 35    | F   | 34.   | , 4    | 35        | -     | 30      | F      | 4      | 5: :          | . 5    |
| c ol ulz Wóys l           | , 5      | 4.3    | 00      | 3     | 5, F   | 30F    | 3         | F        | 3      | F   | 0     | 4,4   | - :    | 4F4    | 43    | F   | 508   | 030    | 55        | 04    | ,5      | F 3    | . (    | )FD 3,        | , FD   |
| 4AFF- 9                   | 34       | 3, .   | 3F      | F     | 3.0    | 0,     | 3         | F        | F      | F   | 3     | 3, F  | 03     | 3, F   | 33    | F   | 3. 0  | 45     | 38        | D     | 8       | F      | 5      |               | DB     |
| 4A4-9                     | 34       | 33D    | 0F      | F     | 34:    | 0:     | F         | 0        | F      | F   | 0     | 3:.   | ,.     | 333    | 34    | F   | 3.:   | 83     | 3F        | 30    | 30      | F      | ,      | DB :          | 50     |
| 4AF-9                     | -        | 30,    | 3.      | F     | 3, D   |        | F         | F        | F      | F   | F     | 383   | :3     | 3F5    | 04    | F   | 350   | - :    | 8         | 3F    | 33      | F      | F      | 5D :          | , F    |
| 4A.4-9                    | 3.       | 33D    | 3D      | F     | 34:    | 50     | F         | :        | F      | F   | - :   | 0,8   | , 0    |        | 05    | F   | 3, 4  | 85     | 38        | 30    | 3F      | F      | , 3    | BF. :         | , 0    |
| c ol uir Woys l           | 4,       | 4F.    | 54      | F     | 505    | 3D     | 3         | 4        | F      | F   | 5     | . 3.  | 3, 3   | ,:,    |       | F   | 540   | : 35   | 4.        | , 0   | , 0     | F 3    | 3 :    | 30 3,         | 04     |
| 5ÆF-9                     | 35       | 34:    | 3,      | F     | 3D     | 58     | 3         | - :      | F      | F   | ,     | 0,4   | - 1.   | 300    | 0F    | F   | 3.8   | 304    | 3:        | 3F    | 33      | F      | ,      | , 000         | FF     |
| 5A4-9                     | 03       | 3:0    | 3:      | F     | 355    | 33,    | F         | F        | F      | F   | F     | 1.1   | :5     | 8.     | 03    | F   | 34,   | 3, 0   | 38        | 30    | ,       | F      | 4      | 3, F :        | 44     |
| 5AF-9                     | 33       | 30:    | 3.      | F     | 343    | 8F     | F         | F        | F      | F   | F     | 05D   | :5     | 33,    | 00    | F   | 3.0   | 03:    | 3,        | 8     | -,      | F      | D. (   | 3. :          | 4F     |
| 5A4-9                     | 0.       | 304    | D       | F     | 35F    | 8.     | F         | F        | F      | F   | F     | 04,   | ::     |        | 04    | F   | 3:4   | 3D6    | 35        | -     | -       | F      | F (    | )F. :         | 04     |
| c ol ulr Wóysl            | . 4      | 4::    | 40      | F     | 55F    | :.F    | 3         | :        | F      | F   | ,     | 33, F | 3, 0   | , 3F   | DD    | F   | 5, F  | 555    | 50        | : D   | 05      | F 3    | 05     | 5D5 3,        | : F    |
| . ÆF- 9                   | 8        | 3:,    | 3,      | F     | 34.    | D0     | F         | 0        | F      | F   | 0     | 03,   | 04     | 330    | 35    | F   | 34:   | 35F    | 00        | 5     | 3F      | F      | D 3    | 3.F :         | 4F     |
| . A4-9                    | 03       | 3:3    | 3.      | F     | 358    | - ,:   | F         | F        | F      | F   | F     | 3.,   | 4F     | 33:    | 05    | F   | 3D8   | 30F    | 35        | 8     | 3F      | F      | 4      | 38 :          | 8:     |
| . AF- 9                   | 34       | 3::    | 3,      | F     | 350    | 0D     | F         | F        | F      | F   | F     | 35F   | - 11   | 85     | 34    | F   | 3, ,  | 55     | 3D        | 3,    | 3:      | F      | .4     | 54 :          | 43     |
| . A4-9                    | 35       | 33,    | 3F      | F     | 3, F   | :5     | F         | F        | F      | F   | F     | 3.:   | 0:     | DD     | 35    | F   | 30.   | 40     | 3F        | -     | 34      | F      | 0      | 55 0          | 088    |
| c ol ulz Wóys l           | 53       | 430    | 44      | F     | 50D    | 3D8    | F         | 0        | F      | F   | 0     | . 03  | 3:3    | , F8   | :     | F   | 53:   | : 8D   | 55        | :5    | , D     | F 3    | 4F .   | 0F 3:         | 8:     |
| DÆF-9                     | 3D       | 3FF    | 30      | F     | 3: F   | - 1.   | F         | F        | F      | F   | F     | 3F,   | 03     | D8     | 35    | F   | 305   | - 1.   | 30        | 3:    | D       | F      | ::     | .4 0          | 0DB    |
| D\$4-9                    | 5        | 3F5    | D       | F     | 30F    | 04     | F         | F        | F      | F   | F     | 308   | 03     | D)     | 3,    | F   | 338   | : F    | 30        | 30    | 8       | F      | :      | 40 0          | 0.0    |
| DAF-9                     | 3F       | 3F0    | 8       | F     | 303    | 3D     | F         | 3        | F      | F   | 3     | 3:0   | 0,     | . F    | 30    | F   | 3F5   | : D    | 33        | 8     | 3,      | F      | ,      | 45 0          | 050    |
| DA4-9                     | -        |        | 3F      | F     | 8,     | 3,     | F         | 3        | F      | F   | 3     | 333   | D      | 58     | 30    | F   | D8    | :3     | 30        | -,    | 30      | F      | 0D     | 0. 0          | 030    |
| c ol ulz Wóys l           | , 3      | : D4   | :8      | F     | , 54   | 8,     | F         | 0        | F      | F   | 0     | ,.5   | ,      | : 30   | 4,    | F   | ,,F   | 3:5    | ,.        | : D   | y.:     | F 3    | 0D 3   | BDF 3F        | F: 4   |
| 8AFF- 9                   | 38       | D4     | 8       | F     | 33:    | :3     | F         | F        | F      | F   | F     | 304   | 0F     | . 0    | 3.    | F   | 3F8   | , 4    | D         | D     | 33      | F      | 0.     | , 8 0         | 0, 8   |
| 8/84-9                    | 34       |        | 5       | F     | 8,     | - 12   | F         | F        | F      | F   | F     | 353   | 0F     | 5F     | 38    | F   | 88    | 4,     | 0,        | 3F    | -       | F      | .3     | , 8 0         | D: ,   |
| 8AF-9                     | 34       | - ::   | D       | F     | 85     | : 4    | 5         | F        | F      | F   | 5     | 35.   | 35     | 5.     | 35    | F   | 88    |        | 05        | D     | -       | F      | . 3    | 54 0          | 0, 0   |
| 8A.4-9                    | 03       | 5.     | D       | F     | 85     | : D    | F         | F        | F      | F   | F     | 04,   | 38     | 4F     | 8     | F   | . D   | 40     | 3D        |       | 3F      | F      | 4      | 83 0          | 0F8    |
| c ol ulr Wóysl            | . F      | 08D    | :3      | F     | : 88   | 3, .   | 5         | F        | F      | F   | 5     | . F.  | . 4    | 0, 8   | 53    | F   | : D4  | 384    | . 5       | - ::  | :4      | F 3    | , (    | 34, 8         | B:,    |
| 3FAFF- 9                  | 3:       | , D    | D       | F     | 58     | D      | F         | F        | F      | F   | F     | :.4   | 3F     | 5.     | 5     | 3   | D)    | 3.3    |           | 0     | 34      | F      | 0, :   | .0 3          | 3      |
| 3FÆ4-9                    | 34       | 5D     | D       | F     | 83     | 4D     | F         | F        | F      | F   | F     | 0D0   | 3,     | 5:     | 34    | F   | 80    | 8,     | 35        | -     | 8       | F      | 0 3    | 900 0         | 034    |
| 3FAF-9                    | 30       | D      | 5       | F     | 3F4    | , 8    | F         | :        | F      | F   | - :   | 0F,   | 3,     | . 8    | 38    | F   | 330   | 43     | 00        | 4     | 33      | F      | D      | 5: 0          | 04D    |
| 3FA-4-9                   | 0:       | D,     | D       | F     | 334    | 5F     | F         | F        | F      | F   | F     | 3: F  | 3:     | D0     | 00    | F   | 33.   | 3.     | 0F        | 4     | D       | F      | ::     |               | 054    |
| c ol ulz Wóysl            | 5:       | 0D     | : F     | F     | : DF   | 04,    | F         | - :      | F      | F   | - 1   | 883   | 43     | 083    | 50    | 3   | , F4  | :::    | 54        | 38    | - ,:    | F 3    | D      | EDD 8         | B34    |
| 33ÆF-9                    | D        | .,     | 33      | 3     | 8,     | 3.     | F         | F        | F      | F   | F     | DF    | 0      | . 4    | 30    | F   | DB    | : D    | 8         | F     | 35      | F      | 04     | :8 0          | 0FD    |
| 33A4-9                    | 4        | 55     |         | F     | ٠,     | D      | 3         | F        | F      | F   | 3     | 44    | F      | D      | D     | F   | 83    | 3.     | 8         | F     | 5       | F      | 34     | :: 3          | 3DB    |
| c ol ulz Wóys l           | 3:       | 3, F   | 3,      | 3     | 35D    | 04     | 3         | F        | F      | F   | 3     | 3:4   | 0      | 34D    | 0F    | F   | 3DF   | 44     | 3D        | F     | 00      | F      | F      | .0 :          | DB     |
| Wóysl                     | , 43     | : 4F3  | : 03    | 0     | , 0. 4 | 3, : D | 33        | 34       | 3      | F   | 0.    | 45:0  | . 00   | 0884   | 4F5   | 3   | , 00, | 0:88   | , D0      | 0:.   | : 0F    | F 3F   | 8 01   | 288 84        | 454    |
| %) ppuosa(                | 3F74% I  | 0878%  | . 74%   | F%    | 1      | - 1    | , FZ % 4  | 4475%    | 7.% F  | 296 | 1     | 1     | 3. 73% | . F78% | 307P% | F%  | 1     | - 1    | , 57, % 0 | 070%: | F7D% F  | %      | 1      | 1             | 1      |
| % Woysl                   | . 7 %:   | 575%   | : 7,%   | F%,   | , 7%   | - 1    | F73%      | F70%     | P% F   | 296 | FZ %  | 1     | . 74%  | : 37 % | 47 %  | F%, | , 70% | - 1    | 47F%      | 074%  | : 7% P  | % 3F7E | %      | 1             | 1      |
| neh( vi st d 9 oyour algi | :        | : 080  | :3D     | 3     | , F4,  | - 1    |           | 3        | F      | F   | -     | 1     | . 0F   | 0D8,   | , 83  | 3   | , F05 | - 1    | 0         | 005   | : 3.    | F 3F   | 34     | 1 8F          | F88    |
| % neh( vi st d            |          |        |         |       |        |        |           |          |        |     |       |       |        |        |       |     |       |        | -         |       |         |        |        | _             | $\neg$ |
| 9 oyouralgi               |          |        | 8873% 4 |       |        | 1      |           | 57 %     | P% F   |     |       | 1     | 887 %  |        |       |     |       | 1      | 8.78%8    |       |         |        | %      | 1847          |        |
| c gsHr                    | 3        | 3, 3   | 3       | F     | 3,:    | - 1    | F         | F        | F      | F   | F     | 1     | F      | 3:,    | 8     | F   | 3, :  | - 1    |           | 3     |         | F      | _      |               | 08:    |
| %cgsHr                    | F70%     | , T%   | FZ %    | F%    | : 7 %  | - 1    | P%        | F%       | P% F   |     | P%    | 1     | P%     | , 74%  | 37D%  | F%  | : 7,% | - 1    | F75%      |       | F78% P  |        |        |               | 3%     |
| venralgi ot Bosd          |          | 5D     | 0       | 3     | . D    | - 1    | D         | 3,       | 3      | F   | 0:    | 1     | 0      |        | 5     | F   | 44    | - 1    |           | 3F    | F       | F      | 3.     | 1 3           | 3. :   |
| % verralgi ot Bosd        | 375%     | 378%   | F75% 4  | FF%   | 370%   | 1      | . 07. % 8 | B: 7 % 3 | BFP% F | % E | 1470% | 1     | F7.%   | 375%   | 370%  | F%  | 37 %  | 1      | 374%      | , 70% | F% F    | % 375  | %      | 1 37          | D%     |
| - gdgi yast i             | 1        | 1      | 1       | 1     | 1      | 3, 08  | 1         | 1        | 1      | 1   | 1     | 453:  | 1      | 1      | 1     | 1   | 1     | 0:53   | 1         | 1     | 1       | 1      | 1 0.   | 8:            | ٦      |

#### 5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC

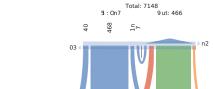


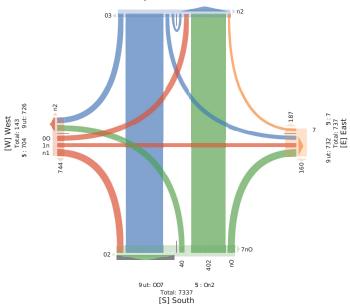
[S] South

1 of 4

#### 5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC

5589707 - BANK 51' @ HOLMWOOD AVE - OCT 14 20... - TMC
The May 3, 200° BO |
1L lngs h, G6 | L : G(36 | L A: M-nag9l ng; 1 P) u
C98- ggì nì thượn gi chi L. PjPava 3ni 21 ng- v21 ni hi yang ci 2Bau va9ni Pc RPgH2Bau va9ni Pc
si Pli vgi 1 A
C99L P- nk nc y
nà (3FF01B02d PaggMeC), 64'881B52:: 64'61B6572b ng s Phú (, F53F3F7


| dno                           | NPusr    |       |       |      |        |       | Egiy   |       |      |     |       |       | bP) yr  |       |       |      |        |        | Sniy    |       |       |      |       |       |        |
|-------------------------------|----------|-------|-------|------|--------|-------|--------|-------|------|-----|-------|-------|---------|-------|-------|------|--------|--------|---------|-------|-------|------|-------|-------|--------|
| I enayePc                     | bP) yr f | P) cH |       |      |        |       | S niyf | P) cI | ł    |     |       |       | NPuyr f | P) cH |       |      |        |        | Egiyf P | )cH   |       |      |       |       |        |
| Wek n                         | R        | W     | d     | U    | Срр    | l nH* | R      | W     | d    | U   | Срр   | l nH° | R       | W     | d     | U    | Срр    | l nH⁵  | R       | W     | ď     | U    | Срр   | lnH⁵  | my     |
| 0F00:3F:3, , (36l L           |          | 3, ,  | 5     | F    | 36.    | 7F    | F      | F     | F    | F   | F     | 333   | 3,      | 3, ,  | 33    | F    | 358    | 67     | 38      |       | 3F    | F    | 75    | , D   | 750    |
| , (7Fl L                      | 0F       | 377   | 6     | F    | 36D    | 06    | F      | F     | F    | F   | F     | 36F   | 00      | 37,   | 35    | F    | 3.0    | 50     | 3D      | 6     | 36    | F    | 7D    | 6D    | 75E    |
| , (, 6l L                     | 30       | 356   | 5     | 3    | 3D,    | 7,    | F      | F     | F    | F   | F     | 3.,   | 38      | 300   | 35    | F    | 36.    | , 6    | 35      |       | 30    | F    | 76    | 57    | 7. 5   |
| 6(FFl L                       | 36       | 3, .  | 3F    | F    | 3. 0   | 0,    | 3      | F     | F    | F   | 3     | 3, F  | 03      | 3, F  | 33    | F    | 3. 0   | 65     | 38      | D     | 8     | F    | 75    | 65    | 7D8    |
| WPyg9                         | 6,       | 6D8   | 0.    | 3    | 5. 3   | 337   | 3      | F     | F    | F   | 3     | 6.6   | . 5     | 6, F  | 6,    | F    | 5. F   | 035    | . 0     | 0.    | , 5   | F    | 3, 6  | 006   | 3, D   |
| % СрриРуаг                    | D4F%     | D 40% | , 47% | F48% | :      | :     | 3FF%   | F% I  | F% I | %   | :     | - :   | 3347%   | IF45% | D8%   | F%   | :      | - :    | , 84 %  | 3D45% | 734 % | F%   | :     | :     |        |
| % WPyg9                       | 745%     | 7845% | 340%  | F48% | , 648% | :     | F48%   | P% I  | F% I | % F | F48%  | - :   | 643%    | 7547% | 745%  | F%,  | 648%   |        | , 42%   | 342%  | 748%  | F%   | 840%  | - :   | :      |
| 11T                           | F4557    | F4080 | F4 00 |      | F483D  | :     | F406F  | :     | :    | : F | 406F  | - :   | F415,   | F4873 | F400D | :    | F48. 0 | - :    | F487,   | F4 6F | F4 5. | - :  | F4867 | :     | F48. 8 |
| deor yi gcHL PyPuava9ni       | 60       | 657   | 05    | F    | 5, 3   | :     | 3      | F     | F    | F   | 3     | - :   | . 5     | 600   | 60    | F    | 56F    |        | . F     | 07    | , 5   | F    | 378   | - :   | 3, 73  |
| % deor yi gcH<br>L PyPusva9ni |          | 8645% | 8547% | P%   | 8646%  |       | 3FF%   | P% !  | P% I | % 3 | FP%   | :     | 3FF%    | 854 % | 8547% | F% 8 | 3. 4P% |        | 8. 40%  | D640% | 3FP%  | F% 8 | 3648% |       | 8540%  |
| 1 ng- v                       | 3        | 36    | F     | F    | 35     | :     | F      | F     | F    | F   | F     | - :   | F       | 3,    | 3     | F    | 36     |        | 3       | 3     | F     | F    | 0     | :     | 77     |
| % 1 ng- v                     | 348%     | 046%  | F%    | P%   | 04 %   | :     | F%     | F% I  | F% I | %   | P%    | - :   | F%      | 045%  | 348%  | F%   | 040%   | - :    | 34 %    | 74 %  | F%    | F%   | 34 %  | :     | 040%   |
| Benva9ni Pc RPgH              | 3        | 33    | 3     | 3    | 3,     | :     | F      | F     | F    | F   | F     | - :   | F       | ,     | 3     | F    | 6      |        | 3       | 7     | F     | F    | ,     | :     | 07     |
| % Beava9ni Pc RPgH            | 348%     | 348%  | 74 %  | 3FP% | 048%   | :     | F%     | F% I  | F% I | %   | P%    | - :   | F%      | F4 %  | 348%  | F%   | F4 %   | - :    | 34 %    | 3348% | F%    | F%   | 040%  | :     | 346%   |
| l nHni yargci                 |          | - :   | - :   |      | - :    | 337   | - :    | - :   | - 5  | :   | - :   | 6.3   | :       | :     | - :   | - :  | :      | 03F    | - :     | - :   | - :   | - 1  | - :   | 003   |        |
| % 1 nHni yuggci               |          | - :   | - :   | - 1  |        | 3FF%  | - 1    | - :   | - 1  | :   | - : 1 | 8847% | :       | - :   | - :   | - :  | - 1    | 8. 40% |         | - :   | :     | - 1  | : 1   | 3D40% |        |
| Benva9ni Pc s uPi i wg9.      | :        |       | :     | :    | :      | F     | :      | - 1   |      |     | - :   | ,     | :       | :     | - :   | - 1  | :      | 5      | :       |       | :     | - 1  | - :   | ,     |        |
| % Benva9ni Pc s uPiiwg9t      | -        | -     |       |      |        | P%    |        |       | - 1  |     | -     | F4 %  |         |       | -     |      |        | 040%   |         | -     | -     | - 1  |       | 340%  |        |


<sup>\*</sup>l nHni yugoci gcHBeava9ni Pc s uPi i wg9.4d( dnOj2R( Reory2W( Wru) 2U( U:W) uc

### 5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC

5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC
Sat My7, 20Pt FI
11. leng 12(, 111. : 1, 111. 3: M/sean - leng 6 P) a.
C - s mile in thor 7a ncHL P?Payvy-ei06 enAv0l eHi 7atnci 0Btyvy-ei Pc R?nH0Btyvy-ei Pc
s aPi iwn-g3
C - L, PAek ec7
nb (, uuFD, F0d Pyn7Pc ( 21985505. 0:819 D. 1. 40bt 7e s PHe ( 2u., u, u4

[N] North





3 of 4 4 of 4

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC
Tuchtys, 2.0000
Till.ng by (6 AF - 9 B3AF - 9 P
) Il.C.Giig 6 indiv, 4 st d 9 oyour aligi 2c gsH 2 - gdg yast | 2v ear aligi ot Bosd2v ear aligi ot
Cuil Risby
) Il.30 olik; gs y
in ASPFOID: Zonosyot A 47 8, 0832/547 D , F82beg CodgA F. 343F:



| nh A3FF0D0: 2n oasy        | eot A, 4 | 7 8, 0   | 83215    | 547 D  | , F82  | beyg   | CodgA,     | F. 34  | 43F:   |       |      |           |         |          |         |        |       |           | 95      | got Zivii v | 2100     | -502  |          |
|----------------------------|----------|----------|----------|--------|--------|--------|------------|--------|--------|-------|------|-----------|---------|----------|---------|--------|-------|-----------|---------|-------------|----------|-------|----------|
| n gh                       | Nou(     |          |          |        |        |        | Esiy       |        |        |       |      |           | bol y(  |          |         |        |       | Sgiy      |         |             |          |       | l .      |
| I eggyeot                  | bol y(f  | ol t d   |          |        |        |        | S giyf ol  | t d    |        |       |      |           | Nous(f  | ol t d   |         |        |       | Esiyfol t | t d     |             |          |       |          |
| Wek g                      | В        | W        | n        | U      | ) pp   | - gd+  | В          | W      | n      | U)    | pp   | - gd+     | В       | W        | n U     | ) pp   | - gd+ | В         | W       | n U         | ) pp     | - gd+ | mby      |
| 0F0013F13, : AF-9          | 0:       | 3, 3     | :0       | F      | 38.    | 38     | , F        | 03     |        | F     | . 4  | 0.        | D       | 3FD      | D F     | 30,    | . 3   | D         | 5       | . F         | 03       | D0    | , F      |
| : A.4-9                    | 3.       | 3, F     | 1.       | F      | 380    | - 11   | , D        | 3.     | 0      | F     |      | . F       | 5       | 3F:      | , F     | 33,    | 338   |           | 3:      | D F         | 05       | 3F8   | :8       |
| c ol uir Woys              | L :8     | 0DB      | . D      | F      | :DD    | 40     | DD         | :5     | -      | F 3   | 3:3  | D         | 34      | 033      | 30 F    | 0: D   | 3DF   | 3,        | 0F      | 3, F        | , D      | 383   | DF       |
| , ÆF- 9                    | 3D       | 3, 3     | 0,       | F      | 3D     | 0.     | 43         | 3D     | 3      | F     | 5F   | 0D        | :       | 3FD      | 5 F     | 33D    | : D   | 3F        | 0F      | D F         | : D      | 4,    | , F      |
| , A4-9                     | 38       | 34.      | 0D       | F      | OF:    | 04     | . F        | 30     | F      | F     | 50   | 05        |         | 303      | : F     | 30D    | 0F    |           | 33      | 30 F        | 0.       | 40    | , 0      |
| , AF- 9                    | 30       | 3,:      | :3       | F      | 3D     | 0.     | , 8        | 3D     |        | F     | 53   | . F       | 5       | 338      | D F     | 3:,    | 0D    |           | 33      | 3. F        | ::       | 48    | , 0,     |
| , A4-9                     | 3.       | 3: D     | - :.     | F      | 3DD    | :5     | :5         | 0:     |        | F     | ٠.   | 05        | 3       | 30F      | . F     | 305    | 3D    | 30        | 04      | 3F F        | , 5      | .:    | , 0      |
| c ol uir Woys              | L .4     | 45D      | 335      | F      | 5. F   | 33.    | 385        | 53     |        | F (   | 055  | 300       | 34      | D        | 0, F    | 4F5    | 3F.   | :3        | . 5     | F           | 3, ,     | 00D   | 3. E     |
| 4ÆF-9                      | 00       | 3.5      | ::       | F      | 000    | 0F     | , 3        | 04     | 0      | F     | . D  | , D       | 8       | 3. D     | : F     | 3. F   | 0.    | 3F        | 3.      | 30 F        | : D      |       | , г      |
| 484-9                      | 0D       | 3        | - ::     | F      | 0F4    | 0.     | ; F        | 3.     |        | F     | 4F   | ,         | 33      | 303      | 3F F    | 3.0    | 0.    | D         | 35      | 33 F        | :.       | 55    | ,:       |
| 4AF-9                      | 34       | 34.      | :4       | F      | OF.    | 0.     |            | 35     |        | F     | ,    | 4.        | 33      | 30F      | 5 F     | 3::    | 38    |           | 3D      | 3D F        | ,0       | . D   | ,,,      |
| 4A4-9                      | 38       | 333      | .0       | F      | 350    | - 5    | 00         | 3      |        | F     | - 8  | 48        | . 8     | 3:3      | 33 F    | 343    | 3.    | - 8       | 5       | 30 F        | 0D       | DB    | :8       |
| c ol ulr Wow               |          | 45D      | 3.:      | F      | DF4    | 3F5    | 3:5        | 5.     |        |       | 003  | 004       | :4      | 40F      | :3 F    | 4D     | D.    | ::        | 4D      | 4: F        | 3, ,     | 04D   | 354      |
| . AFF-9                    | 04       | 33D      | 0D       | F      | 353    | 313    | 3. 3<br>3D | 3.     |        | F     | :.   | . 8       | 3D      | 300      | . 5 F   | 3, ,   | 35    | 3F        | 08      | 4. F        | 3, ,     | 40    | :8       |
|                            |          |          |          | F      | 343    | - ::   |            |        |        | F     |      |           |         |          |         |        |       |           |         |             |          |       |          |
| . A4- 9                    | 00       | 333      | 3D       |        |        | , 3    | 3,         | 35     |        |       | ٠,   | . 4       | 5       | 30.      |         | 3, 3   | : 0   | D         | 0:      |             | , 8      | 3: F  | :5       |
| . AF- 9                    | 35       | 33.      | 08       | F      | 3.0    | : 0    | 0:         | 0F     |        | F     | , 4  | 33D       | 3:      | 3F:      | 30 F    | 30D    | , 3   | 3:        | 3.      | 5 F         | 1.       | D5    | : 53     |
| . A4-9                     | :3       | 88       | 04       | F      | 344    | , 3    | 0,         | 00     |        | F     | , 5  | D         | ,       | 88       | 5 F     | 33F    | : 8   | 5         | 3.      | 3F F        | - 11     | 8F    | :,4      |
| c ol ulr Woys              |          | ,,,      | 3FF      | F      | .:8    | 3, 5   | 58         | 5:     |        |       | 3. 0 | : 34      | , 0     | , 4F     | :3 F    | 40:    | 308   | : D       | D)      | , 0 F       | 3.,      | : 48  | 3, D     |
| 5AFF- 9                    | : 3      | 300      | 0,       | F      | 355    |        | 35         | 3D     |        | F     | , F  | , 0       |         | 3:4      | 4 F     | 3, .   | 0:    |           | 35      | 33 F        | :,       | DB    | : 8:     |
| 5A4-9                      | 0:       | 33D      | 04       | 3      | 3.5    | 0:     | 0:         | 3,     |        | F     | ,,   | , 8       | 4       | 8:       | 5 F     | 3F4    | 3:    | 33        | 30      | 30 F        | :4       | . 4   | :4       |
| 5AF-9                      | 04       | 335      | 08       | F      | 353    | 3,     | 3D         | 3.     |        | F     | : D  | ,:        |         | DD       | 33 F    | 3F0    | 3F    | 4         | 8       | 30 F        | 0.       | 04    | ::!      |
| 5A4-9                      | 03       | 33.      | 0F       | F      | 345    | 3,     | 0:         | 33     | 0      | F     | :.   | 05        | :       | DB       | 4 F     | 85     | 38    |           | 38      | 30 F        | :5       | : 4   | : 00     |
| c ol ulr Woys              | L 3FF    | , 5:     | 8D       | 3      | . 50   | 84     | DB         | 48     | 3D     | F 3   | 34D  | 3.3       | 35      | , F4     | 0D F    | , 4F   | . 4   | 0D        | 45      | ,5 F        | 3:0      | 03,   | 3, 3     |
| D#F-9                      | 3D       | D5       | 35       | F      | 300    | 34     | 38         | 30     | 3      | F     | :0   | 03        | 4       | DB       | 8 F     | 84     | 03    | 3F        | 3:      | D F         | :3       | 03    | 0Đ       |
| D#4-9                      | 3,       | 3F5      | 8        | F      | 3: F   | 3,     | 38         | D      | 4      | F     | :0   | 0.        | 3       | 5.       | 5 F     | D      | 3,    |           | 5       | . F         | 35       | 0,    | 0. :     |
| DAF-9                      | 33       | DD       | 3,       | F      | 33:    | 3D     | 3F         | 3F     |        | F     | 0:   | , 0       | 5       | DF       | . F     | 8:     | 3,    |           | 0       | 33 F        | 3.       | : 0   | 0,4      |
| DA4-9                      | 34       | 53       | 38       | F      | 3F4    | 35     | 8          | D      | 4      | F     | 00   | OR.       | 4       | DB       | 4 F     | 83     | 30    | 5         |         | 4 F         | 3.       | - 4   | 0:,      |
| c ol ulr Woys              | L 4D     | : 4:     | 48       | F      | , 5F   |        | 45         | : D    |        | F 3   | BF8  | 33D       | 3D      | : 3D     | 05 F    | :.:    | . 3   | 0,        | 0.      | :F F        | DF       | 330   | 3F0      |
| 8AF-9                      | 30       |          | 35       | F      | 80     | 0:     | 3.         | :      |        | F     | 0:   | 38        | 3       | 53       | 4 F     | 55     | 3,    | D         | 5       | 8 F         | 0,       | 00    | 03       |
| 8A4-9                      | D        | 5:       | 30       | F      | 8:     | 00     | 3,         | 5      |        | F     | 0,   | 05        |         | 53       | 0 F     | 5.     | 3D    | 3F        | 30      | 8 F         | :3       | 05    | 00,      |
| 8AF-9                      | 4        |          | 33       | F      | DF     | 3,     | 33         |        |        | F     | 03   | 05        | -       | 4D       | . F     |        | 3.    | 3         | .50     | : F         | 3F       | :3    | 35       |
| 8A4-9                      | 5        | 50       | 33       | F      | D0     | 34     | 30         | _      |        | F     | 03   | : 4       | 3       | DF       | 5 F     | DD.    | 30    | 0         | _       | 4 F         | 33       | 4F    | 0F       |
| c ol ulr Woys              |          | 050      | _        | F      | :,5    | 5,     | 4:         | 00     |        | F     | DB   | 3FD       | 8       | 0DF      | 3D F    | :F5    | _     | 03        | 08      | 0. F        | 5.       | 3: F  | DBI      |
| 3FAF-9                     | 3F       | 40       | ,:<br>3F | F      | 50     | : F    | 4:<br>D    | UU     |        | F     | OF   | 3DB       | 0       |          | 3D F    |        | . F   | 0.5       | 5       | 0. F        | 5.<br>0F | 00D   | 35       |
| 3FA4-9                     | _        | 40<br>D8 | JF<br>F  | F      | D4     |        | 8          |        |        | F     | :0   | SLB<br>SD | _       | .:       |         | 50     | 38    | D         | 5       | 34 F        |          | 3:.   | 03       |
|                            | ,        |          |          | F      | RR     | , 5    | 5          | 3.     |        |       |      |           | : 3     | 4D       |         |        |       | D         | 8       |             | : F      |       | 38:      |
| 3FAF- 9                    | D        | 8F       | 3        | -      |        | 8      |            | -      |        | F     | 3:   | , 4       | -       | 4D<br>44 | , F     | - ::   | 3F    | -         |         | : F         | 3D       | ,:    |          |
| 3FA4-9                     | 3.       | D4       | D        | F      | 3F8    | 35     | 4          | -      |        | F     |      | 38        | 3       |          | D F     | ٠,     | 5     | D         | 4       | 8 F         | 00       | 0F    | 038      |
| c ol ulir Woys             |          |          | 38       | F      | :.4    | 3F:    | 08         | ٠,     |        | F     | ΠF   | :,:       | 5       | 0: D     | 0F F    | 0.4    | 48    | 0D        | 0D      | :, F        | 8F       | , 05  | DF       |
| 33ÆF- 9                    | 4        | 303      | 3F       | F      | 3:.    | 4      | 4          | - 1    |        | F     | D    | 38        | F       | , 4      | , F     | ,8     | F     | 4         | 4       | 8 F         | 38       | 0:    | 03       |
| 33A4-9                     | 33       |          | 33       | F      | DD     | -      | -          | 4      |        | F     | 30   | 34        | - :     | 40       | : F     | 4D     | 8     | 5         | 0       | D F         | 35       | 03    | 35       |
| c ol ulr Woys              | I. 3.    | 305      | 03       | F      | 00,    | 33     | 33         | D      |        | F     | 0F   | :,        | - :     | 85       | 5 F     | 3F5    | 8     | 30        | 5       | 35 F        | 1.       |       | : D      |
| Woys                       | L 405    | :,5,     | D        | 3      | ,.5F   | 5. 5   | 5:0        | , 3.   | 88     | F 30  | ), 5 | 3430      | 3. 3    | 08126    | 38D F   | ::,.   | 54F   | 800       | : 5.    | :F8 F       | 83,      | 38.:  | 3F35     |
| %) ppuosa(                 | 337 %    | 5, 7%    | 3, 7%    | F%     | 1      | - 1    | 4D5%:      | : 7%   | 578% P | 16    | 1    | 1         | , 7D% I | 287 %    | 478% F% | 1      | 1     | 0473%,    | 373%:   | : 7D% F%    | 1        | 1     |          |
| % Wbys                     | 470%     | :, 73%   | . 7%     | F%,    | 478%   | - 1    | 570%       | , 73%  | 37P% P | 6 307 | %    | 1         | 37 % 0  | 087 %    | 378% F% | : 078% | 1     | 07.96     | : 75%   | : 7P% F%    | 87P%     | 1     |          |
| neh( yi st d 9 oyouar algi | , DD     | : 058    |          | 3      | ,,:,   | - 1    | 530        | , 30   | 8D     | F 30  | 000  | 1         | 3.3     | 0583     | 38D F   | : 34F  | 1     | 00.       | :.3     | 08, F       | DDB      | 1     | 8. E     |
| % neh( vi st d             | i        |          |          |        |        |        |            |        |        |       |      |           |         |          |         |        |       |           |         |             |          |       |          |
| 9 oyouar algi              | 807 %    | 8, 7,%   | B875%    | 3FF% 8 | 3, 78% | 1      | 857 % 8    | 87F% 8 | 387% P | 6 8D  | P%   | 1         | 3FF% 8  | 3: 7 % 3 | 3FP% P% | 8, 78% | 1     | 8D5% 8    | . IF% 8 | 43% F%      | 8. 7,%   | 1     | 84709    |
| c gsHr                     | : 3      | 33D      | 3        | F      | 34F    | - 1    | ,          | 0      | 3      | F     | 5    | 1         | F       | 300      | F F     | 300    | 1     | 3         | 4       | 3: F        | 38       | 1     | 08       |
| % c gsH                    | 47B%     | :7%      | FB%      | F%     | : 70%  | - 1    | FA%        | F24%   | 37P% P | % F7  | %    | 1         | F%      | , 23%    | P% P%   | : 7 %  | 1     | F7, %     | 37 %    | , 70% F%    | 073%     | 1     | 0789     |
| veralgi ot Bosd            | D        | 55       | 3        | F      | D      | - 1    | 3.         | 0      | F      | F     | 3D   | 1         | F       | 5,       | F F     | 5,     | 1     | 0         | 3F      | 0 F         | 3,       | 1     | 38       |
| % venralgi ot Bosd         | 374%     | 070%     | FB%      | F%     | 370%   | - 1    | 070%       | F74%   | P% P   | 6 37  | %    | 1         | F%      | 074%     | P% P%   | 070%   | 1     | F78%      | 025%    | F7 % F%     | 374%     | 1     | 3789     |
| - gdgi west i              | 1        | 1        | 1        | 1      | 1      | 5. 3   | 1          | 1      | - 1    | 1     | 1    | 34F4      | 1       | - 1      | 1 1     | 1      | 5:4   | 1         | 1       | 1 1         | 1        | 38:.  | <u> </u> |
| % - gdgi yest i            | 1        | 1        | 1        | 1      | 18     | 870%   | 1          | - 1    | 1      | 1     | 15   | 3874%     | 1       | 1        | 1 1     | . 10   | BDF%  | 1         | 1       | 1 1         |          | DP4%  | -        |
| venralgi ot CuniiRsly      | -        | -        | 1        | 1      | 1      |        | 1          | 1      | 1      | 1     | 1    | 5         | 1       | 1        | 1 1     | . 1    | 34    | 1         | 1       | 1 1         | 1        | 08    |          |
| % venralgi ot CupiiRsIv    |          | 1        | 1        | 1      | _      | FZD%   | 1          | 1      | 1      | 1     | _    | F74%      | 1       | 1        | 1 1     | . 1    | 075%  | 1         | 1       | 1 1         |          | 374%  | -        |
| 20 von aug or Custiksty    | 1 1      | 1        |          | 1      | 1      | * /L/O | 1          | 1      | 1      | 4     | 1    | 1:14:1b   | - 1     | 1        | 1 1     | . 1    | J/F70 | 1         | - 1     | 1 1         | 1        | JA70  |          |

<sup>\*-</sup>gdgiyusti std v æralgi ot CuoiiRslw7n An gQ2BABeh(y2WAW(ul 2UAUIW ut

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC

AaoHdnd fr 3Ct7r oOM7sRs , uu Cogi 7nIIs7tog I a0 Nnpnsg0MN0KFG 9J50C) [N] North Total: 7144 5 ut: 9264 r0: 9182 686 890 117 969 731 [W] West Total: 6200 n0: 439 5 ut: 3393 1: 3620 n0: 3698 Total: 6906 [E] East 124 I 81 664 2 nt: 3218 141 693

347 6478 313

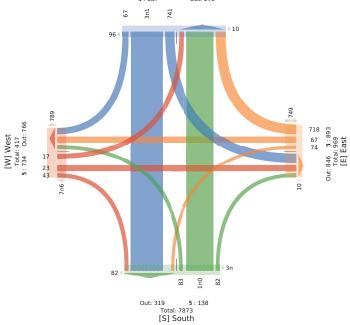
2 of 4

5 ut: I 726 r0: I I 91 Total: 8397 [S] South

1 of 4

#### 5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC

5589707 - BANK 51 @ SUNNYSUE AVE - OC. 1 19 2... - 1 11000
1L l ng h ( 61 L : 6(, 61 L & M-nag9li ng 1 P) u
1L l ng h ( 61 L : 6(, 61 L & M-nag9li ng 1 P) u
598 sg hin Havor g g-HL PyPava94121 ng- V2l niHi yage(12Bava94) Pc RPgtPBava941 Pc
191 l vigit A
C991. P-nk ncy
nk (3FP0DM2d PaguPc (, 678, 0832:567 Di, F82bpn s PHr (, F. 363F4


| dno                           | NPur     |       |        |      |       |       | Egiy      |       |       |      |       |        | bP) yr |        |       |      |        |        | Sniy     |         |       |      |       |        |        |
|-------------------------------|----------|-------|--------|------|-------|-------|-----------|-------|-------|------|-------|--------|--------|--------|-------|------|--------|--------|----------|---------|-------|------|-------|--------|--------|
| I emayePc                     | bP) yr f | P) cH |        |      |       |       | S ni yf F | )cH   |       |      |       |        | NPuri  | P) cH  |       |      |        |        | Egi yf P | cH      |       |      |       |        |        |
| Wek n                         | R        | W     | d      | U    | Срр   | l nH⁵ | R         | W     | d     | U    | Срр   | l nH*  | R      | W      | d     | U    | Срр    | l nH⁵  | R        | W       | d     | U    | Срр   | l nHº  | nty    |
| 0F00:3F:3, , (, 6l L          | 3.       | 34D   | 4,     | F    | 3DD   | 45    | 45        | 04    |       | F    |       | 05     | 3      | 30F    |       | F    | 305    | 3D     | 30       | 06      | 3F    | F    | ,5    | . 4    | , 0.   |
| 6(FFI L                       | 00       | 3.5   | 44     | F    | 000   | 0F    | , 3       | 06    | 0     | F    | . D   | , D    | 8      | 3, D   | - 4   | F    | 3. F   | 0,     | 3F       | 3.      | 30    | F    | 4D    | - , ,  | , DD   |
| 6(36l L                       | 0D       | 3, ,  | 44     | F    | 0F6   | 0.    | 4F        | 3.    |       | F    | 6F    |        | 33     | 303    | 3F    | F    | 3, 0   | 0.     | D        | 35      | 33    | F    | 4.    | 55     | , 44   |
| 6(4Fl L                       | 36       | 36.   | 46     | F    | OF.   | 0,    | ,,        | 35    | 4     | F    | ٠,    | 6,     |        | 30F    | 5     | F    | 344    | 38     |          | 3D      | 3D    | F    | , 0   | , D    | ,,6    |
| WPyg9                         | DB       | . F6  | 346    | F    | D03   | 3F5   | 360       | DB    | 34    | F    | 0, .  | 384    | 05     | 6F8    | 0.    | F    | 6.0    | DБ     | 4.       | 5.      | 63    | F    | 3.4   | 040    | 3580   |
| % СрриРузг                    | 878%     | 5475% | 3. 7 % | P%   | :     | :     | . 370%    | 4078% | 674%  | P%   | - :   | :      | , 7D%  | 8F7 %  | , 7%  | F%   | :      | :      | 0073%    | , . 7.% | 4374% | P%   | :     | :      | :      |
| % WPvg9                       | , 75%    | 447D% | 576%   | P%,  | 670%  | - :   | 136%      | , 75% | FZ%   | P% 3 | 3475% | - :    | 375%   | 0DF, % | 375%  | F% 4 | 137, % | - :    | 07P%     | , 70%   | 070%  | P%   | 83%   | - 1    |        |
| l1T                           | F7500    | F7834 | F7B.,  | - :  | F7805 | - :   | F7D6D     | FÆBF  | FÆB4  | :    | F7BF3 | - :    | FZ 3,  | FÆ).   | F7 6F | :    | F7D.   | :      | FZ6F     | F7553   | F7546 | - :  | FZDF  | - :    | F7834  |
| deor yi gcHL PyPunva9ni       | 5,       | 656   | 346    | F    | 5D,   | :     | 363       | DF    | 30    | F    | 0, 4  | :      | 05     | , DF   | 0.    | F    | 644    | :      | 4.       | 5,      | 6F    | F    | 3. F  | - :    | 350F   |
| % deor yi gcH<br>L PyPunva9ni |          | 867F% | 3FP%   | P% I | 3676% |       | 8874%     | BDRD% | 8074% | P% 8 | BDID% |        | 3FF%   | 8, 74% | 3FF%  | P% 8 | 3, 70% |        | 3FF%     | 857, %  | 8DF%  | P% 8 | BD70% |        | 8. 7F% |
| 1 ng- v                       | ,        | 34    | F      | F    | 35    | - :   | F         | 3     | 3     | F    | 0     | - :    | F      | 3,     | F     | F    | 3,     | :      | F        | F       | F     | F    | F     | - :    | 44     |
| % 1 ng- v                     | , 7B%    | 073%  | P%     | P%   | 073%  | - :   | F%        | 370%  | 575%  | P%   | FZD%  | - :    | F%     | 070%   | F%    | F%   | 076%   | :      | F%       | F%      | F%    | P%   | F%    | - :    | 370%   |
| Benva9ni Pc RPgH              | 4        | 35    | F      | F    | 0F    | - :   | 3         | F     | F     | F    | 3     | - :    | F      | 36     | F     | F    | 36     | - :    | F        | 0       | 3     | F    | 4     | - :    | 48     |
| % Beava9ni Pc RPgH            | 475%     | 070%  | P%     | P%   | 07,%  | - :   | F/5%      | P%    | P%    | P%   | F7, % | - :    | F%     | 078%   | F%    | F%   | 075%   | - :    | P%       | 07. %   | 07F%  | P%   | 370%  | - :    | 070%   |
| l nHni yargci                 | :        | - :   | :      | - :  | :     | 3F5   | :         | - :   | :     | :    | :     | 38F    | :      | :      | :     | :    | - :    | D4     | :        | - :     | :     | - :  | :     | 00,    |        |
| % l nHni yugci                | :        | - :   | :      | - :  | :     | 3FF%  | :         | - :   | :     | :    | : 1   | BDF, % | :      | :      | :     | :    | - :    | 867, % | :        | - :     | :     | - :  | : 8   | 3. 7 % | :      |
| Besva9ni Pc s uPiiwg9t        | :        | - :   | :      | - :  | :     | F     | :         | - :   | :     | :    | :     | 4      | :      | - :    |       | :    | - :    | ,      | - :      | - :     | :     | :    | - :   | D      |        |
| % Benva9ni Pc s uPiiwg9t      | :        | - :   | :      | - 1  | - :   | P%    | :         | - :   | :     | - 1  | - :   | 37.%   | - :    | - :    | - :   | - :  | - :    | , 7 %  | :        | - :     | - :   | - :  | - :   | 47,%   | :      |

<sup>\*1</sup> nHni yuegci gcHBeava9ni Pc s uPi i wg9.7d(dnQ)2R(Reory2W(Wru)2U(U:W)uc

#### 5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC
Sat My7, 20PtUF
11. leng 18(2111.: 1(2111.3: MAean—leng 6 P) a
C—s antiel thior 7a crk1. P?Payvy-ei06 en4voll eHei7atnci0Btyvy-ei Pc RPnHDBtyvy-ei Pe saPiiwn-g3
C—1. PAek ec7
nb (, uuFDF90d Pyn7Pc (214952F5, 0:. 148D92u50bt7e s PHc (208, 11, u.9)

[N] North Total: 7144 5 : 687 Out: 278



3 of 4 4 of 4

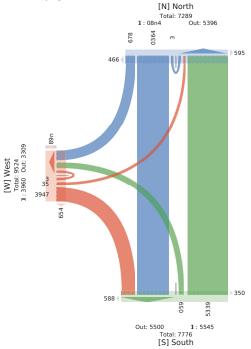
#### 5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC

5369/07 - BANNA 51 @ WILLION CRES - OCT 14 2022 - TIME The May3, 2019 THE THE METER OF THE METER



|         | _     |        |      |       | r de              |       |         |    |        | h -1 -/            |       |        |      |        | Marrie             |                              |
|---------|-------|--------|------|-------|-------------------|-------|---------|----|--------|--------------------|-------|--------|------|--------|--------------------|------------------------------|
|         |       |        |      |       | Egiy<br>Ssivfoltd |       |         |    | t d    | boly(<br>Nouv(fol: |       |        |      | t d    | Nouy(<br>bol v(fol | ı<br>gayeot                  |
|         | - gd* | ) pp   | U    | n     | B                 | - gd* | ) pp    | U  | n      | W                  | - gd* | ) pp   | U    | W      | B                  | gayan                        |
| :.F     | - 80  | ) PP   | F    | 4     | .3                | - gu  | 3.3     | F  | :4     | 30.                | - gu  | 3::    | F    | 30:    | 3F                 | 0F0013F13, : AF- 9           |
| : 58    | , 8   | 48     | F    | 3     | 4D                | F     | 38F     | F  | , 4    | 3.4                | 3     | 3: F   | F    | 338    | 33                 | : A4-9                       |
| 5:8     | 84    | 304    | F    |       | 338               | F     | : 43    | F  | DF     | 053                | 0     | 0. :   | F    | 0, 0   | 03                 | c ol ulir Wovs L             |
| : D     | ,:    | 4,     | F    | F     | 4.                | F     | 35.     | F  | ,3     | 3:4                |       | 34.    | F    | 3: 8   | 34                 | , AFF- 9                     |
| , OD    | ,8    | .3     | F    | 3     | . F               | F     | 008     | F  | . F    | 3.8                | 5     | 3: D   | F    | 3: F   | D                  | , A4-9                       |
| , 30    | ; F   | 5,     | F    | F     | 5,                | F     | 380     | F  | ,,     | 3. D               | 3     | 3, .   | F    | 3: 0   | 3,                 | , AF- 9                      |
| , F4    | , 8   | 4.     | F    | F     | 4.                | F     | 38.     | F  | :,     | 3. F               |       | 344    | F    | 3: 4   | 0F                 | , A4-9                       |
| 3. 08   | 353   | 0, 4   | F    | 3     | 0, ,              | F     | 583     | F  | 358    | . 30               | 34    | 48:    | F    | 4:.    | 45                 | c ol ulr Woys I              |
| , 54    | 4     | 5F     | F    | 4     | . 4               | F     | 003     | F  | , 5    | 35,                | F     | 3D     | F    | 34.    | : F                | 4AF-9                        |
| , 3:    | . 3   | 50     | F    | F     | 50                | F     | 0F0     | F  | 00     | 3DF                | 3F    | 3:8    | 3    | 333    | 05                 | 484-9                        |
| , F.    | ,,    | 5:     | F    | F     | 5:                | 4     | 3D8     | F  | 3      | 3DD                | 4     | 3, ,   | F    | 33D    | 0.                 | 4AF-9                        |
| :,3     | . 8   | 44     | F    | F     | 44                | F     | 343     | F  | F      | 343                | 3:    | 3:4    | F    | 333    | 0.                 | 4A4-9                        |
| 3.:4    | 0: F  | 05F    | F    | 4     | 0.4               | 4     | 5. :    | F  | 5F     | . 8:               | 0D    | . F0   | 3    | , 8,   | 3F5                | c ol ulr Woys I              |
| :5,     | .:    | ,3     | F    | 3     | , F               | 3     | 35.     | F  | F      | 35.                | 3D    | 348    | F    | 3F8    | 4F                 | . AFF- 9                     |
| :, D    | DD    | ::     | F    | F     | - ::              | 30    | 350     | F  | F      | 350                | ,,    | 3,:    | F    | 3F4    | : D                | . A4-9                       |
| :4.     | 30.   | 40     | F    | F     | 40                | 3D    | 353     | F  | 0      | 3.8                | 50    | 3::    | F    | DF     | 4:                 | . AF- 9                      |
| : 05    | 30:   | , D    | F    | F     | , D               | 38    | 3: 0    | F  | 3      | 3:3                | Db    | 3, 5   | F    | 8.     | 43                 | . A4-9                       |
| 3. F4   | . FF  | 35.    | F    | 3     | 35:               | 4F    | .,8     | F  | - 1    | .,.                | 003   | 4D0    | F    | :8F    | 380                | c ol ulr WowI                |
| : 5D    | D     | ,,     | F    | F     | ,,                | 0.    | 3DF     | F  | F      | 3DF                | 54    | 34.    | F    | 33.    | , F                | 5ÆF- 9                       |
| :4.     | . 3   | 40     | F    | F     | 40                | 3.    | 34F     | F  | F      | 34F                | :4    | 34,    | F    | 335    | :5                 | 5A4-9                        |
| : 05    | 03    | ,.     | F    | F     | ,.                | 8     | 3, F    | F  | F      | 3. F               | 0D    | 3, 3   | F    | 3F8    | :0                 | 5AF-9                        |
| : F5    | , 3   | 43     | F    | F     | 43                | 38    | 304     | F  | F      | 304                | 3,    | 3:3    | F    | 3FF    | :3                 | 5A4-9                        |
| 3: . D  | OF.   | 38:    | F    | F     | 38:               | 5F    | 484     | F  | F      | 484                | 340   | 4DF    | F    | , , F  | 3, F               | c ol ulr Woys I              |
| 050     | 38    | 0D     | F    | F     | 0D                | D     | 30:     | F  | F      | 30:                | D     | 303    | F    | D8     | :0                 | DÆF-9                        |
| 05.     | : 0   | ,:     | F    | F     | ,:                | 0     | 33:     | F  | F      | 33:                | D     | 33D    | F    | 80     | 0.                 | D\$4-9                       |
| 0.5     | :3    | , F    | F    | F     | , F               | 4     | 33,     | F  | F      | 33,                | 3     | 33:    | F    | D4     | 0D                 | DAF-9                        |
| 0FD     | 04    | 0D     | F    | F     | 0D                | 0     | 8.      | F  | F      | 8.                 | 3     | D      | F    |        | 0F                 | DA4-9                        |
| 3F03    | 3F5   | 3:8    | F    | F     | 3:8               | 35    | ,,.     | F  | F      | ,,.                | 3D    | ,:.    | F    | ::F    | 3F.                | c ol ulr Woys I              |
| 0:0     | : 8   | :3     | F    | F     | :3                | 3F    | 3F.     | F  | F      | 3F.                | 35    | 84     | F    | 50     | 0:                 | 8AF-9                        |
| OF.     | 03    | 0      | F    | F     | 0                 | 0     | 3F4     | F  | F      | 3F4                | 3.    | 88     | F    | DF     | 38                 | 8.84-9                       |
| 355     | : F   | F      | F    | F     | F                 | 08    | D       | F  | F      | D                  | 00    | 83     | F    | 55     | 3,                 | 8AF-9                        |
| 3D0     | : D   | 3      | F    | F     | 3                 | 43    | 83      | F  | F      | 83                 | 43    | 8F     | F    | . D    | 00                 | 8A4-9                        |
| 585     | 30D   | :,     | F    | F     | 1,                | 80    | :DD     | F  | F      | : DD               | 3F.   | : 54   | F    | 085    | 5D                 | c ol ulr Woys I              |
| 3:0     | 3D    | ,      | F    | F     | ,                 | : 4.  | 5F      | F  | F      | 5F                 | . FF  | 4D     | F    | , D    | 3F                 | 3FAFF- 9                     |
| 3D8     | ,,    | F      | F    | F     | F                 | : D   | 3FF     | F  | F      | 3FF                | 3D    | DB     | F    | . 5    | 3,                 | 3FA4-9                       |
| 0FF     | 1.    | 3      | 3    | F     | F                 | D     | D0      | F  | F      | D0                 | 0:    | 335    | F    | 85     | 0F                 | 3FAF- 9                      |
| 034     | 05    | : D    | F    | F     | : D               |       | 5D      | F  | F      | 5D                 |       | 88     | F    | 58     | 0F                 | 3FA4-9                       |
| 50D     | 08F   | ,:     | 3    | F     | , 0               | , F4  | ::F     | F  | F      | ::F                | ,,5   | : 44   | F    | 083    | ٠,                 | c ol ulr Woys I              |
| 0FF     | 35    | 0D     | F    | F     | 0D                | 0     | . 5     | F  | 0      | . 4                | 0     | 3F4    | F    | 80     | 3:                 | 33ÆF-9                       |
| 35F     | 05    | 00     | F    | 3     | 03                | 3     | 5,      | F  | D      |                    | 30    | 5,     | F    | - 11   | 33                 | 33.84-9                      |
| : 5F    |       | 4F     | F    | 3     | , 8               | :     | 3, 3    | F  | 3F     | 3:3                | 3,    | 358    | F    | 344    | 0,                 | c ol ulir Wöys L             |
| 8, 80   | 3.53  | 305:   | 3    | 3,    | 304D              | .,0   | , , 4,  | F  | :,0    | . 330              | 3FF3  | : 8. 4 | 3    | : 354  | 5D8                | WoysI                        |
| 1       | 1     | 1      | F73% | 373%  | 8DID%             | 1     | 1       | F% | 575%   | 807.%              | 1     | 1      | F%   | DF73%  | 3878%              | %) ppuosa(                   |
|         | 1     | 3: 73% | F%   | F73%  | 3: 7F%            | 1     | 7F%     | F% | : 74%  | . 07 %             | 1     | . F78% | F%   | : 070% | D8%                | % Worst                      |
| 834:    | 1     | 30: 0  | 3    | 8     | 3000              | 1     | . 0F.   | F  | : 08   | : D54              | 1     | : 535  | 3    | 08: 5  | 558                | nehí vi st d 9 ovouar algi   |
| 8, 7, % | 1     | 8. 7D% | 3FF% | .,7.% | 8573%             | 1     | 8, 7, % | P% | 8. 70% | 8, 70%             | 1     | 8: 75% | 3FP% |        | 8D/5%              | % neh( vi st d 9 oyouar algi |
| 0D5     | 1     | 5      | F    | 3     |                   | 1     | 3, F    | F  | 0. 270 | 3: D               | 1     | 3, F   | F    | 3:.    |                    | c gsHr                       |
| : 72%   | 1     | F74%   | F%   | 573%  | F74%              | 1     | : 73%   | F% | FZ %   | : 7,96             | 1     | : 74%  | F%   | , 7.%  | F74%               | % c gsHr                     |
| 040     | 1     | :,     | F    |       | :F                | 1     | 33F     | F  | 33     | 88                 | 1     | 3FD    | F    | 3F0    |                    | veralgi ot Bosd              |
| 07 %    | 1     | 075%   | F%   | 0DE % | 07,%              | 1     | 074%    | F% | : 70%  | 07, %              | 1     | 075%   | F%   | : 70%  | F7D%               | % veralgi ot Bosd            |
| 70      | 3.,,  | 1      | 1    | 1     | 1                 | . , F | 1       | 1  | 1      | 1                  | 88D   | 1      | 1.0  | 1      | 1                  | - gdgi yust i                |
| 1       | 8DE % | 1      | 1    | 1     | 1                 | 8875% | 1       |    | 1      | 1                  | 8875% | 1      | 1    | 1      | 1                  | % - gdgi yust i              |
|         | 05    | 1      | 1    |       |                   |       |         | 1  | 1      | 1                  | /9    | 1      | 1    | 1      | 1                  | veralgi ot CupiiRsIw         |

| ngh                     | Nous(               |         |                                  |                                     |                                      | boly(                                                                                                  |          |         |          |          | Egiy         |         |         |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |
|-------------------------|---------------------|---------|----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|----------|---------|----------|----------|--------------|---------|---------|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| I eugayeot              | bol y(foltd         |         |                                  |                                     |                                      | Nouy(foltd                                                                                             |          |         |          |          | Ssiyf ol t d |         |         |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |
| Wek g                   | В                   | W       | U                                | ) pp                                | - gd*                                | W                                                                                                      | n        | U       | ) pp     | - gd*    | В            | n       | U       | ) pp | - gd*   | mty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |
|                         |                     |         |                                  |                                     |                                      |                                                                                                        |          |         |          |          |              |         |         |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |
| % verralgi ot CupiiRsIw | 1                   | 1       | 1                                | 1                                   | FZ %                                 | 1                                                                                                      | 1        | 1       | 1        | F7. %    | 1            | 1       | 1       | 1    | 37.%    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |
|                         | I eugayeot<br>Wek g | Wik g B | I agayot bol y(foltd<br>Wekg B W | I agayot bol y f ol t d Wek g B W U | I egayot bol (foltd Wek g B W U ) pp | I agayot         bol y(folt d           Wek g         B         W         U         ) pp         - gd* | Lagsyeot | Lagsyer | Lagsyert | Lagsynot | Lagayor      | Lappyox | Lappyox |      | Lagypox | Lagguptor   bolyfold   Nongfold   Sstyfold   Note   Nongfold   Sstyfold   Note   Nongfold   Note   Nongfold   Note   No | Lagsport   bolyfoltd   Nougfoltd   Satyfoltd   Satyfoltd   Wekg   B W U ) pp -gt*   W n U ) pp -gt*   B n U ) pp -gt*   may |


<sup>\*-</sup> gdgi yusst i st d v ear a Igi ot CuoiiRsIw7n An gOj2BABeh(y2WAW(ul 2UAU1Wiut

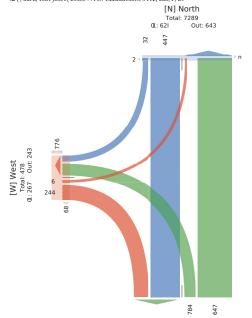
5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC
Tte May3, 20700
1L. 1 ngr. h, (361 L.: 6(361 L. A: M-nug9)1 ngr. 1 P) u
C995 sgi nii hidor yi gcHL. PyPuva9ni 21 ngr. v21 nihii yugci 2Bava9ni Pc RPgH2Bava9ni Pc
stPiivg94 A
C991. P nik ncji
n(3FF0DBSC4PavaPc/: 647855502-564 PC DS2bara DELE/ P. 2022)

| C99s 9giinihdeoryigcHLP<br>suPiiwg9tA<br>C99LP-nkncyi<br>nh(3FF0D862dPagyePc(,64 | ,             |        |     | , ,    |       |              | RPgH   | 2Beav | va9ni Pc |       |             |       |     | hHf v( s | seyvP0<br>Pciyn99g | OMyygwg<br>gyePcIu2<br>6J82sC |
|----------------------------------------------------------------------------------|---------------|--------|-----|--------|-------|--------------|--------|-------|----------|-------|-------------|-------|-----|----------|--------------------|-------------------------------|
| dno                                                                              | NPuyr         |        |     |        |       | bP) yr       |        |       |          |       | E niy       |       |     |          |                    |                               |
| I eunayePc                                                                       | bP) yr f P) c | :H     |     |        |       | NPuyr f P) c | H      |       |          |       | Sgiyf P) cF | ł     |     |          |                    |                               |
| Wek n                                                                            | R             | W      | U   | Cpp    | l nH⁵ | W            | d      | U     | Срр      | 1 nH* | R           | d     | U   | Cpp      | l nH*              | my                            |
| 0F00:3F:3, , (36l L                                                              | D             | 37F    | F   | 37D    | 5     | 3.8          | . F    | F     | 800      | F     | . F         | 3     | F   | . 3      | , 8                | , 0D                          |
| , (7Fl L                                                                         | 3,            | 370    | F   | 3, .   | 3     | 3, D         |        | F     | 380      | F     | 5,          | F     | F   | 5,       | 7F                 | , 30                          |
| , (, 6l L                                                                        | 0F            | 376    | F   | 366    | 7     | 3. F         | 7,     | F     | 38,      | F     | 6.          | F     | F   | 6.       | , 8                | , F6                          |
| 6(FFI L                                                                          | 7F            | 36,    | F   | 3D,    | F     | 35,          | , 5    | F     | 003      | F     | . 6         | 6     | F   | 5F       | 6.                 | , 56                          |
| Wygs                                                                             | 50            | 663    | F   | . 07   | 33    | . 63         | 3D6    | F     | DF.      | F     | 066         | -     | F   | 0.3      | 3D)                | 350F                          |
| % CppuPgar                                                                       | 334 %         | DD4 %  | F%  | :      |       | 5548%        | 0048%  | F%    | :        |       | 8545%       | 047%  | F%  |          | - :                | - :                           |
| % WPyg9                                                                          | , 40%         | 704P%  | F%  | 7.40%  |       | 7540%        | 3F4D%  | F%    | , D4 %   |       | 3, 40%      | F47%  | F%  | 3640%    | - :                |                               |
| 111                                                                              | F4 FF         | F48F,  | :   | F4067  | - 1   | F48F8        | F455.  | - :   | F48F7    | - 1   | F4DD        | F47FF | - : | F48F8    | :                  | F4D8,                         |
| deoryi gcHL PyPuava9ni                                                           | 53            | 63D    | F   | 6D8    |       | . 3,         | 358    | F     | 587      |       | 0, 7        |       | F   | 0, 8     | - :                | 3.73                          |
| % deoryi gcHL PyPuava9ni                                                         | 8D4 %         | 8, 4F% | F%  | 8, 46% |       | 8, 47%       | 8. 4D% | F%    | 8, 48%   |       | 8647%       | 3FF%  | F%  | 864 %    | - :                | 8, 40%                        |
| 1 ng- v                                                                          | 3             | 35     | F   | 3D     |       | 36           | 3      | F     | 3.       |       | 0           | F     | F   | 0        | - :                | 7.                            |
| % 1 ng- v                                                                        | 34 %          | 748%   | F%  | 048%   |       | 047%         | F46%   | F%    | 348%     |       | F4D%        | F%    | F%  | F4D%     | - :                | 048%                          |
| Beava9ni Pc RPgH                                                                 | F             | 3.     | F   | 3.     |       | 00           | 6      | F     | 05       |       | 3F          | F     | F   | 3F       | - :                | 67                            |
| % Beava9ni Pc RPgH                                                               | F%            | 048%   | F%  | 04 %   |       | 74%          | 045%   | F%    | 740%     |       | 748%        | F%    | F%  | 740%     | :                  | 748%                          |
| l nHni yuggci                                                                    | - 1           | - :    | :   | :      | 3F    | :            | - :    | - :   | - 1      | F     |             | :     | - : | - 1      | 3DB                |                               |
| % 1 nHni yuegci                                                                  |               |        | - : | :      | 8F48% | :            |        | - :   |          | - 1   |             | - 1   | - : | - 1      | 8D4 %              |                               |
| Beava9ni Pc s uPiiwg9t                                                           |               | - :    | :   | :      | 3     | :            | - :    | - :   | - 1      | F     |             | :     | - : | - 1      | 7                  |                               |
| % Beava9ni Pc s uPiiwg9t                                                         |               | - 1    | - 1 | - 1    | 848%  | - 1          |        | - 1   | - 1      |       |             |       | - 1 | - 1      | 34 %               |                               |

<sup>\*</sup>I nHi yuggci gcHBœva9hi Pc s uPi i wg9 4d(dn992R(Reory2W(Wru) 2U(U:W)uc

5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC
Sat My7, 20FuFF
Sli Llengh7, 13 u A- 6, 3 u A- P
) ILCSki ni beth 7 a ggl - ο λοφγ yfai 0c nsH 0Andni Zasgi 0v tyr yfai og Bosd0v tyr yfai og Caoi iRskb#
) IL- oHkh ng7
ni 3, uuFt) 90c oys λοg 3294 5... F06 948D92u90bt7i Codn32u8, F, u:




3 of 5 4 of 5

2 of 5

#### 5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC

5589/07 - BANK S1 @ WILLON CRES - OLT 14 2022 - IMC
Sat My7, 20PUFF 1
L1 leng l2(, 11 L : (, 11 L : 3: M/ean-1 eng 6 P) a
C-s - ani ein hitor 7a ncHL P/Payvy-ei06 en/v01 eHei 7atnci 0Btyvy-ei Pc RPnH0Btyvy-ei Pc saPi iwneg3
C-L PAek ec7
nb (, uuFD) 10d Pyn/Pc(21945... FO: 19BDI 2u10bt/le s PHe( 2u/8, F, u4

l aPAtHeHf v(s t7v POM7/nwn , uu s Pci 7e--n7tPc I a0 Nepenc0MN0KFG 1J50s C

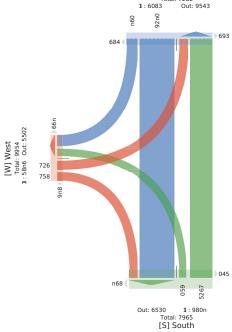


5 of 5

| n gh                          | Nous(      |     |   |      |       | bol y(     |     |     |      |        | E giy        |     |     |      |        |     |
|-------------------------------|------------|-----|---|------|-------|------------|-----|-----|------|--------|--------------|-----|-----|------|--------|-----|
| I eigayeot                    | boly(foltd |     |   |      |       | Nou)(foltd |     |     |      |        | Ssiyf ol t d |     |     |      |        |     |
| Wekg                          | В          | W   | U | ) pp | - gd* | W          | n   | U   | ) pp | - gd*  | В            | n   | U   | ) pp | - gd*  | mby |
|                               |            |     |   |      |       |            |     |     |      |        |              |     |     |      |        |     |
| 96 years also at Cynii Delius | 1          | - 1 | 1 | - 1  | TP %  | 1          | - 1 | - 1 | - 1  | D17896 | 1            | - 1 | - 1 | - 1  | - 7.96 | 1   |

[S] South

5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC
Tte-May3, 20F00
Til Ling fry (it AF-9 133AF-9 P)
ILChi jig fridrig is std 9 oyour algi 2c gsH 2- gdgj yust 12v eur algi ot Bosd2v eur algi ot
Lini iRshaP
ILG of the State o




| gh       |                        | Nous(       |            |    |             |          | bol y(   |         |        |             |            | E giy        |        |    |            |        |         |
|----------|------------------------|-------------|------------|----|-------------|----------|----------|---------|--------|-------------|------------|--------------|--------|----|------------|--------|---------|
| eugayeot |                        | bol y(fol t |            | U  | -           |          | Nou(folt |         |        |             |            | Ssiyf ol t d |        |    |            | -      |         |
| ak g     | 0F0013F13, : AF- 9     | B<br>0D     | W<br>34F   | F  | ) pp<br>35D | - gd*    | W<br>44  | n<br>30 | U<br>F | ) pp<br>. 5 | - gd*      | B<br>5       | n<br>8 | U  | ) pp<br>3. | - gd*  | may 0.3 |
|          | : A4-9                 | 38          | 34F<br>304 | F  | 35D         | 05<br>0F | . F      | 30      | F      | . 5         | 0D         | D D          | 3F     | F  | 3.<br>3D   | 34     | 0.3     |
|          | c ol uir Woys L        | .5          | 054        | F  | :00         | ,5       | 334      | 05      | F      | 3.0         | 4.         | 34           | 38     | F  | :,         | 0,     | , 80    |
|          | . AFF- 9               | 34          | 3. 0       | F  | 355         | 3.       | 334      | 3F      | F      | 3, 0        | 4.<br>: F  | 5            | 38     | F  | 0.         | U,     | 0       |
|          | , A4-9                 | 0,          | 3FD        | F  | 3:0         | 38       | . 0      | 35      | F      | 58          | : F        | 30           | 35     | F  | 08         | 3D     | 0. F    |
|          | , AF- 9                | 0,<br>0D    | 3. D       | F  | 38.         | 0.       |          | 33      | F      | 54          | . 4        | 5            | 34     | F  | 00         | 0F     | 0, 1    |
|          | , A4-9                 | ,:          | 34D        | F  | 0F3         | 0.       | 4.       | 3D      | F      | 5,          | : 0        | 3F           | 35     | F  | 05         | 0.     | : F0    |
|          | c ol ulr Woys L        | 33F         | 48.        | F  | SF.         | D5       | 0:4      | 4.      | F      | 083         | 3:5        | 1.           | . D    | F  | 3F.        | 50     | 33F3    |
|          | 4AFF-9                 | 0:          | 3. F       | F  | 3D          |          | 0.4      | 35      | F      | D           |            | 03           | 3F     | F  | :3         | 0,     | 085     |
|          | 4A4-9                  | 0.          | 354        | F  | OF,         | 38       | 45       | 3:      | F      | 5F          | , .<br>. F | 05           | 3:     | F  | , F        | 30     | :3,     |
|          | 4AF-9                  | 0D          | 3:.        | F  | 3.,         | :3       | 5.       | 03      | F      | 85          | :5         | 08           | 00     | F  | 43         | 3D     | : 30    |
|          | 4A4-9                  | :5          | , F        | F  | 55          | 05       | :5       | 3.      | F      | 4:          | , 3        | 04           | 00     | F  | ,5         | 05     | 355     |
|          | c ol uir Woys L        | 335         | 433        | F  | . 0D        | 303      | 0:.      | .5      | F      | : F:        | 3D         | 3F0          | .5     | F  | 3.8        | DB     | 33FF    |
|          | . AFF- 9               | ::          | . F        | F  | 8:          | 0:       | 4F       | 00      | F      | 50          | . 0        | 0:           | 00     | F  | , 4        | ::     | 03F     |
|          | . 84-9                 | : F         | , 0        | F  | 50          | , 8      | .8       | 5       | F      | 4.          | 85         | 0:           | 38     | F  | .0         | - :,   | 35F     |
|          | . AF- 9                | 00          | , 4        | F  | . 5         | :3       | 40       | 33      | F      |             | D8         | 3.           | 3D     | F  | :,         | -,,    | 3       |
|          | . A4- 9                | 05          | -,.        | F  | 5:          | 1.       | : D      | 0D      | F      |             | D          | 04           | 3F     | F  | :4         | ; D    | 35.     |
|          | c ol ulr Wöys L        | 330         | 38:        | F  | : F4        | 3:8      | 3D8      | . D     | F      | 045         | 11,        | DS           | . 8    | F  | 34.        | 343    | 53D     |
|          | 5AFF- 9                | ,.          | 4,         | F  | 3FF         | 3F       | 4F       | 0.      | F      | 5.          | . 0        | 0,           | 0:     | F  | ,5         | 0.     | 00:     |
|          | 5,84-9                 | :3          | 5F         | F  | 3F3         | 30       | ,.       | 33      | F      | 45          | ,.         | 0.           | 35     | F  | ,:         | 34     | 0F3     |
|          | 5AF-9                  | 05          | DB         | F  | 33.         |          | ,:       | D       | F      | 43          | . F        | :5           | 04     | F  | .0         |        | 005     |
|          | 5A4-9                  | 08          | 5:         | F  | 3F0         | 34       | 0D       | 38      | F      | ,5          | 04         | 34           | 00     | F  | :5         | 8      | 3D      |
|          | c ol uir Woys L        | 3::         | 0D         | F  | , 35        | ,:       | 3.5      |         | F      | 0:3         | 35:        | 3F0          | Db     | F  | 3D8        | 4,     | D 5     |
|          | DFF-9                  | 0.          | . 3        | F  | D5          | 3,       | :,       | 3:      | F      | ,5          | 34         | 30           | 3:     | F  | 04         | 4      | 348     |
|          | D%4-9                  | 3.          | 45         | F  | 5:          | 3:       | 08       | 5       | F      | 1.          | 33         | 34           | 35     | F  | :0         | 3F     | 3.3     |
|          | DAF-9                  | 3F          | ,:         | F  | 4:          | 30       | 0.       | 33      | F      | :5          | 34         | D            | D      | F  | 3.         | 3,     | 3F.     |
|          | DA 4- 9                | D           | 4:         | F  | . 3         | 33       | 08       |         | F      | :4          | 0F         | 3F           | 4      | F  | 34         | :      | 333     |
|          | c ol uir Woys L        | . F         | 03,        | F  | 05,         | 4F       | 33D      | :5      | F      | 344         | . 3        | , 4          | ,:     | F  | DD         | : 0    | 435     |
|          | 8AFF- 9                | 3.          | . F        | F  | 5.          | 4        | 0:       | 33      | F      | :,          | 00         | 38           | 3,     | F  | - ::       | 3:     | 3.:     |
|          | 8.84-9                 | 35          | . D        | F  | D4          | 3D       | :5       | 3,      | F      | 43          | 05         | 33           | 3F     | F  | 03         | 3.     | 345     |
|          | 8AF-9                  | 0,          | . D        | F  | 80          | D        | .8       | - 1     | F      | 40          | 03         | 3:           | 34     | F  | 0D         | 8      | 350     |
|          | 8A4-9                  | 0F          | 3F3        | F  | 303         | Г        |          | 00      | F      | 84          | 34         | 3:           | 03     | F  | :,         | 38     | 04F     |
|          | c ol uir Wöys L        | 55          | 085        | F  | : 5,        | :8       | 3D0      | 4F      | F      | 0: 0        | D4         | 4.           | . F    | F  | 33.        | 45     | 500     |
|          | 3FÆF- 9                | 3D          | .,         | F  | D0          | OE:      | 48       | 30      | F      | 53          | D          | 33           | 0D     | F  | :8         | 43     | 380     |
|          | 3FA\$4-9               | 34          | . 5        | F  | D0          | , F      | D        |         | F      | 8F          | . 8        | 35           | , 3    | F  | 4D         | . F    | 0: F    |
|          | 3FAF-9                 | 3,          | 43         | F  | .4          | 0F       | DF       | ,       | F      | D           | 00         | 38           | , 0    | F  | . 3        | 3.     | 03F     |
|          | 3FA4-9                 | 33          | : D        | F  | , 8         | 30       | . 8      | 4       | F      | 5,          | 5          | 3.           | 0:     | F  | :8         | 0      | 3.0     |
|          | c ol uir Woys L        | 4D          | 00F        | F  | 05D         | 3FF      | 08,      | 04      | F      | : 38        | 3D0        | .:           | 3:,    | F  | 385        | 308    | 58,     |
|          | 33ÆF- 9                | 3F          | , F        | F  | 4F          | - :      | 5F       | 3,      | F      | D,          | ,          | ,            | 33     | F  | 34         | ,      | 3, 8    |
|          | 33,84-9                | 3F          | - ,,       | F  | 4,          | D        | 08       | ,       | F      | - ::        | 4          | F            | 4      | F  | 4          | - :    | 80      |
|          | c ol ulir Wöys L       | 0F          | D,         | F  | 3F,         | 33       | 88       | 3D      | F      | 335         | 8          | ,            | 3.     | F  | 0F         | 5      | 0, 3    |
|          | WorkL                  | 5:.         | 0.5.       | F  | :. FD       | .:5      | 3.:4     | . 30    | F      | 0F. 5       | 3003       | 43F          | 4.:    | F  | 3F5:       | . F5   | . 40D   |
|          | %) ppuosa(             | 0374%       |            | F% | 1           | 1        | 5878%    | 0F73%   | F%     | 1           | 1          | , 574%       | 4074%  | F% | 1          | 1      | 1       |
|          | % Woys L               | 3370%       | ,37F%      | F% | 4070%       | 1        | 047P%    | . 7.%   | F%     | : 37, %     | 1          | 570%         | DE %   | F% | 3. 7 %     | 1      | 1       |
| neh      | (vi st d 9 oyouar algi | 53F         | 0. F:      | F  | ::3:        | 1        | 345F     | , F5    | F      | 3855        | 1          | 4F3          | 444    | F  | 3F4.       | 1      | .:,.    |
|          | (yi std 9 oyouaralgi   | 8. 75%      |            | F% | 8570%       | 1        | 8. 7P%   | 8DID%   | F%     | 8. 7 %      | 1          | 8D0%         | 8DF %  | F% | 8DF %      | 1      | 8570%   |
|          | c gsHr                 | :           | 40         | F  | 44          | 1        | 44       | :       | F      | 4D          | 1          | -            | :      | F  | 5          | 1      | 30F     |
|          | % cgsHr                | F7 %        | 378%       | F% | 37 %        | 1        | : 7, %   | F75%    | F%     | 070%        | 1          | F7D%         | F74%   | F% | F75%       | 1      | 370%    |
|          | veralgi ot Bosd        | 03          | 38         | F  | , F         | 1        | 3F       | 0       | F      | 30          | 1          | 4            | 4      | F  | 3F         | 1      | . 0     |
|          | % vearalgi ot Bosd     | 078%        |            | F% | 370%        | 1        | F7. %    | F74%    | F%     | F7 %        | 1          | 37F%         | F78%   | F% | F78%       | 1      | F78%    |
|          | - gdgi yust i          | 1           | 1          | 1  | 1           | 4D       | 1        | 1       | 1      | 1           | 3300       | 1            | 1      | 1  | 1          | 4D4    |         |
|          | % - gdgi yust i        | 1           | 1          | 1  | 1           | 8375%    | 1        | 1       | 1      | 1           | 8378%      | 1            | 1      | 1  | 1          | 8. 7 % | 1       |
|          | eralgi ot CupiiRslw    | 1           | 1          | 1  | 1           | 4:       | 1        | 1       | 1      | 1           | 88         | 1            | 1      | 1  | 1          | 00     |         |

5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC
Sat My7, 20FuFF
Sli Lenghīt, 1:3 u.A. 6, 3 u.A. P
) ILCStini le th(7 a sgd - o7bayr ylni 0c nsH 0Andni 7atsgi 0v tyr ylni og Bosd0v tyr ylni og
Caoi 1Rshav
) IL. OHN ng7
nh 3, uuFD, 0e oys 7og 329-42u: 5F, 06 9-48D, 5, 20b/th Codn32u6, , , , u:

[N] North Total: 7282 1: 6083 Out: 9543 92 n0 09u 693





3 of 5 2 of 5

<sup>-</sup> gdgi yusst i st d v ear algi ot CuoiiRslw7n An gO¢BABeh(y2WAW(ul 2UAU1W ut

#### 5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC

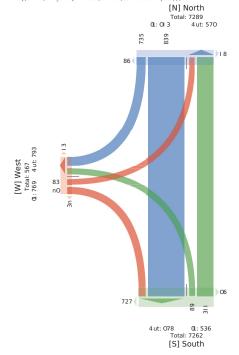
5369/07 - QUEEN ELIZABELH DRWY @ FIFTH AVE -... - TMC
TEC May 3, 2010 1. 6(, 61 L. 6, 61 L. A. Hrug99 ngr. 1 P) u

CSS-98 spin in Horry ig cHL PyPurva9ni21 ng-v21 nhi yugci2Bouva9ni Pc RPgH2Bouva9ni Pc stPii vg9 A

C991. P-nk ncyi
nh (3FP0D332d PagyePc), 67, F48032:567. D885, 2bejn s Pth(, F. 333F4



| dno                       | NPuyr       |       |     |        |       | bP) yr     |       |     |       |       | E niy       |         |     |       |       |        |
|---------------------------|-------------|-------|-----|--------|-------|------------|-------|-----|-------|-------|-------------|---------|-----|-------|-------|--------|
| I enayePc                 | bP) yr f P) | cH    |     |        |       | NPuyr f P) | cH    |     |       |       | Sgiyf P) cl | H       |     |       |       |        |
| Wek n                     | R           | W     | 7 U | Срр    | l nH⁵ | W          | d     | U   | Срр   | l nH* | R           | d       | U   | Срр   | l nH* | ney    |
| 0F00:3F:3, , (, 6l L      | , 4         | 36D   | F   | 0F3    | 0.    | 6.         | 3D    | F   | 5,    | 40    | 3F          | 35      | F   | 05    | 0.    | 4Ft    |
| 6(FFI L                   | 04          | 3. F  | F   | 3D4    |       |            | 35    | F   | D4    | , , . | 03          | 3F      | F   | 43    | 0,    | 085    |
| 6(361 L                   | 08          | 356   | F   | 0F,    | 38    | 65         | 34    | F   | 5F    | . F   | 05          | 34      | F   | , F   | 30    | 43,    |
| 6(4Fl L                   | 0D          | 34.   | F   | 3.,    | 43    | 5.         | 03    | F   | 85    | 45    | 08          | 00      | F   | 63    | 3D    | 430    |
| WPygs                     | 304         | . 08  | F   | 560    | 30F   | 066        | . 8   | F   | 40,   | 356   | DБ          | . 0     | F   | 3, 8  | DF    | 3006   |
| % CppuPgar                | 3. 7, %     | D47 % | F%  |        | :     | 5D5%       | 0374% | F%  | :     | :     | 6DE %       | , 37. % | F%  | :     | - :   |        |
| % WPygs                   | 3F7F%       | 6374% | F%  | . 37 % | :     | 0F7D%      | 67.%  | F%  | 0.7,% | :     | 573%        | 673%    | F%  | 3070% | - :   |        |
| 117                       | F/54.       | FZD8, | :   | F783D  |       | F7D4.      | F7D03 | :   | F7D40 |       | F75, 3      | F75F6   | - 1 | F7506 | - 1   | F7850  |
| deor yi gcHL PyPuava9ni   | 3F8         | . 34  | F   | 500    |       | 0,5        | . D   | F   | 436   |       | D           | . 0     | F   | 3, D  | - 1   | 33D    |
| % deor yi gcHL PyPusva9ni | DDE %       | 8576% | F%  | 8. 7P% | :     | 8.78%      | 8DF % | F%  | 8570% | :     | 8D/8%       | 3FF%    | F%  | 8874% | - :   | 8. 759 |
| 1 ng-v                    | F           | 8     | F   | 8      |       | 5          | 3     | F   | D     |       | F           | F       | F   | F     | - :   | 35     |
| % 1 ng- v                 | F%          | 37,%  | F%  | 370%   | :     | 075%       | 37, % | F%  | 076%  | :     | F%          | F%      | F%  | F%    | - :   | 37,9   |
| Beava9ni Pc RPgH          | 3,          | 5     | F   | 03     |       | 3          | F     | F   | 3     |       | 3           | F       | F   | 3     | - :   | 04     |
| % Beava9ni Pc RPgH        | 337,%       | 373%  | F%  | 070%   | :     | F7, %      | F%    | F%  | F74%  | :     | 373%        | F%      | F%  | F75%  | - :   | 378%   |
| l nHni yægci              | - 1         | - :   | - : |        | 3FE   | :          |       | - : |       | 3. 4  | - 1         | :       | - 1 |       | 56    |        |
| % 1 nHni yuegci           |             |       | :   | - 1    | 8F7P% | - 1        |       | - : |       | 8473% |             | :       | - : |       | 847D% |        |
| Beava9ni Pc s uPi i wg9t  | - 1         | - :   | - : |        | 30    | - 1        |       | - : |       | 30    | - 1         | :       | - 1 |       | 6     |        |
| % Resva9ni Pc s iPi i wo9 |             | -     | -   | -      | 3ETP% |            | -     |     | -     | 7894  |             |         | -   | -     | 7196  |        |


<sup>%</sup> Bawashi Pc s uPii wgsl : : : 3F7% : : : \*

In Hhi yungci gcHBeuvaShi Pc s uPii wgsl 7d (dn@2R (Reory2W(Wru)2U(U:W)uc

#### 5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC

5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC
SAT M/7, 20PELT : 1(211L.3: MAean-leng 6 P) a
C -s antien thror 7a ncHL P?Payvy-e106 en&v01 ePti 7atnci 0Btyvy-ei Pc RPnH0Btyvy-ei Pc
s aPti wn-eg3
C -L PAek ec7
nb (, uuFD), 0d Pyn7Pc(21-2u95F, 0:. 148Q. 5. 20bt 7e s PHc(2u8, , , u9

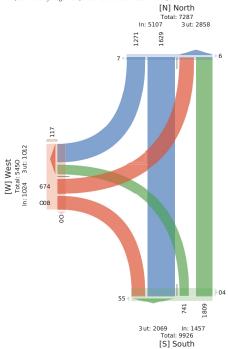
, uu s Pci 7e-n7iPc I a0 Nepenc0MN0KFG 1J50s C



4 of 5 5 of 5



|        |                          | Noun               |               |         |                |       | . ol v         |              |         |                |             | T also             |              |         |                 |              |           |
|--------|--------------------------|--------------------|---------------|---------|----------------|-------|----------------|--------------|---------|----------------|-------------|--------------------|--------------|---------|-----------------|--------------|-----------|
| ayeot  |                          | Noun(<br>oly(folt) | a             |         |                |       | Noun(folt      | a            |         |                |             | E giy<br>Ssiyfolto |              |         |                 |              |           |
| g<br>g |                          | B                  | u<br>W        | U       | ) pp           | - gd* | W              | n n          | U       | ) pp           | - gd*       | B                  | n            | U       | ) pp            | - gd*        | mv        |
|        | 0F00BFB, : AF-9          | :5                 | 337           | F       | 373            | F     | 77             | 37           | F       | 4F             | - Bm        | 3:                 | 30           | F       | 07              | 3F           | 0         |
|        | : A7-9                   | :3                 | b5            | F       | 304            | F     | 70             | 03           | F       | 4:             |             | 3b                 | 3:           | F       | :0              | 3F           | 0         |
|        | c ol ulir Wöys I.        | 54                 | 033           | F       | 04D            | F     | 3F4            | :5           | F       | 3, :           | 5           | :0                 | 07           | F       | 74              | 0F           |           |
|        | , AFF- 9                 | , 7                | 3: 7          | F       | 3DF            | F     | 05             | 3F           | F       | :5             | 5           | 0D                 | 0:           | F       | 73              | 5            | 0         |
|        | , 487-9                  | , F                | D             | F       | 30:            |       | 77             | 3b           | F       | 4,             | 0           | 37                 | 00           | F       | :4              | b            | 0         |
|        | , AF- 9                  | ; b                | 300           | F       | 353            | F     | 53             | 34           | F       | 4D             | 3           | 00                 | 3,           | F       | :5              | D            | 0         |
|        | , A7-9                   | , b                | 30F           | F       | 35b            | F     | 57             | 0:           | F       | DD             | D           | 3:                 | 35           | F       | 0b              | D            | 0         |
|        | c ol ulir Woys I.        | 34:                | , 5F          | F       | 5::            | - :   | 0F4            | 5b           | F       | 045            | 34          | 4D                 | 47           | F       | 37:             | :3           | 3E        |
|        | 7AFF-9                   | 57                 | 335           | F       | 3D8            | F     | 5F             | 0F           | F       | DF             |             | 0F                 | 3D           | F       | :D              | 3:           | 36        |
|        | 7,87-9                   | D,                 | 33b           | F       | OF:            | F     | 70             | :3           | F       | D              | -           | 0D                 | :3           | F       | 7b              | J.           | :         |
|        | 7AF-9                    | 7D                 | D5            | F       | 3, ,           | F     | 77             | :3           | F       | D5             | 5           | :5                 | 0b           | F       | 57              | 3:           |           |
|        | 7A7-9                    | /D                 | 00            | F       | 57             | F     | 77<br>0h       | 0:           | F       | 70             | 0           | 37                 | 0,           | F       | : b             | 3:<br>D      | 3         |
|        | c ol ulr Woys I          | 07F                |               | F       | 7b:            | F     | 3b5            | 3F7          | F       | :F3            | 37          | bb                 | 3F0          | F       | 0F3             |              | 31        |
|        | 5AFF- 9                  | 57                 | 0,            | F       | /b:<br>Db      | F     | . 4            |              | F       | : F3           | 3/          | 0:                 | 0,           | F       | , 4             | ,:           | 31        |
|        |                          | 7F                 |               |         | 53             |       | 03             | ,,           | F       | 53             |             |                    |              | F       | 55              |              | 3         |
|        | 5/87-9                   |                    | 33            | F       |                | F     |                | , F          |         |                |             | :3                 | : 7          |         |                 | 7            |           |
|        | 5AF- 9                   | : 4                | 03            | F       | 7D             | F     | , 5            | :,           | F       | DF             | ,           | 0:                 | 07           | F       | , D             |              | 3         |
|        | 5A.7-9                   | , F                | : b           | F       | 4b             | - :   | 70             | : 0          | F       | D,             | 3F          | 0F                 | 34           | F       | :4              | 33           | -         |
|        | c ol ulir Woys I.        | 3b0                | b7            | F       | 0D4            |       | 355            | 37F          | F       | : 35           | 3D          | b4                 | 3F3          | F       | 3bD             | : 0          | 1         |
|        | 4AFF- 9                  | 0b                 | 70            | F       | D8             | 0     | 7:             | 0D           | F       | DB             | 4           | 3:                 | 3D           | F       | :3              | D            | 3         |
|        | 4/87-9                   | 44                 | , 0           | F       | 33b            | 0     | 04             | 3b           | F       | ,5             | 0           | 03                 | 3b           | F       | , F             | b            | (         |
|        | 4AF-9                    | 53                 | 5F            | F       | 303            | F     | 34             | 0F           | F       | :4             | ,           | 0D                 | :,           | F       | 50              | F            | (         |
|        | 4A.7-9                   | ,,                 | ,,            | F       | DD             | F     | 37             | 33           | F       | 05             | 0           | 00                 | :,           | F       | 75              | 3            | 3         |
|        | c ol ulir Woys I.        | 033                | 3bD           | F       | , Fb           | ,     | 330            | 4D           | F       | 3bF            | 37          | D)                 | 3F7          | F       | 3Db             | 3D           | 4         |
|        | D#F- 9                   | 07                 | , 4           | F       | 40             | F     | 3b             | 0            | F       | 03             | 3           | 0F                 | 04           | F       | , 4             | F            | 3         |
|        | D\$7-9                   | ٠.,                | , 0           | F       | 45             | F     | 0:             | 3F           | F       | ::             | :           | 0:                 | 30           | F       | :7              | ,            | 3         |
|        | DAF- 9                   | 3:                 | ٠.,           | F       | , 4            | F     | 00             | 7            | F       | 04             | F           | 3D                 | 3b           | F       | :4              | 5            | 3         |
|        | DA 7-9                   | 00                 | : D           | F       | 5F             | 0     | 33             | 3F           | F       | 03             | F           | 0:                 | 00           | F       | ,7              | 5            | 3         |
|        | c ol ulir Woys L         | b,                 | 353           | F       | 077            | 0     | 47             | 04           | F       | 3F0            |             | D                  | DF           | F       | 35,             | 35           | - 7       |
|        | bÆF-9                    | : 0                | ,:            | F       | 47             | F     | 3,             | 30           | F       | 05             | 0           | : F                | 0,           | F       | 7,              | 0            | 3         |
|        | bA\$7-9                  | : F                | 73            | F       | DB             | F     | 00             | 4            | F       | 0b             | F           | 0b                 | : 0          | F       | 53              | - 1          | 3         |
|        | bAF-9                    | 0b                 | 70            | F       | DB.            | 3     | 00             | D            | F       | : F            | 0           | :7                 | :5           | F       | 43              | 0            | 3         |
|        | bA.7-9                   | ,:                 | 5D            | F       | 333            | 3     | 0,             | 37           | F       | : b            | 0           | , D                | 4F           | F       | 33D             | 5            | (         |
|        | c ol ulr Woys I.         | 3:,                | 03,           | F       | :,D            | 0     | D0             | , 0          | F       | 30,            | 5           | 3, 0               | 350          | F       | : F,            | 3:           | 4         |
|        | 3FÆF- 9                  | 0:                 | 7F            | F       | 4:             | F     | :3             | 37           | F       | , 5            | 35          | 73                 | : b          | F       | bF              | 3F           | (         |
|        | 3FA\$7-9                 | :5                 | 70            | F       | DD             | F     | 0D             | b            | F       | :4             | 5           | 7b                 | 5b           | F       | 30D             |              | - 1       |
|        | 3FAF-9                   | 07                 | ,7            | F       | 4F             | F     | 05             | 33           | F       | :4             | 5           | 70                 | 5F           | F       | 330             | -            | (         |
|        | 3FA.7-9                  | 3,                 | , 3           | F       | 77             | F     | 3b             | 37           | F       | 1.             | F           | - ::               | , 4          | F       | DF              | 3            | 3         |
|        | c ol ulr Woys I.         | bD                 | 3DD           | F       | OD5            | F     | 3F,            | 7F           | F       | 37,            | 0D          | 3b7                | 037          | F       | , 3F            | 3b           | 1         |
|        | 33ÆF- 9                  | 35                 | 0D            | F       | ,,             | F     | 35             | 0            | F       | 3D             | F           | :5                 | 40           | F       | 3FD             | 3            | 3         |
|        | 33A37-9                  | 35                 | 05            | F       | ,0             | F     | b              | 0            | F       | 33             | F           | 0:                 | 3b           | F       | ,0              | F            |           |
|        | c ol ulir Wöys I.        | : 0                | 7,            | F       | D5             | F     | 07             |              | F       | 0b             | F           | 7b                 | b3           | F       | 37F             | 3            | (         |
|        | Worst                    | 3073               | 3b0.          | F       | : 347          | 3,    | 3F4.           | 753          | F       | 35: 7          | 3Fb         | D4F                | b75          | F       | 3D05            | 3b:          | 55        |
|        |                          | : b8 %             | 5F85%         | F%      | : 34/          | ٥,    | 5784%          | :.8%         | P%      | 35: /          | SPU<br>1    | . 485%             | 708 %        | F%      | 31103           | 30:          | 30        |
|        | % ) ppuosa(<br>% WowL    | 3D89%              | 0b8F%         | P%      | . 480%         | 1     | 3580%          | :,8%<br>D87% | P%      | 0,85%          | 1           | 3: 88%             |              | F%      | 0487%           | - 1          |           |
|        |                          | 3037               | 3DD4          | F%      | ,              | - 1   |                | 7F:          | F%      |                | - 1         |                    | 3,8%         | F%      | 34: 0           | - 1          | -         |
|        | eh(yi st d 9 oyouar algi | 3037<br>b488%      | 3DD4<br>bD88% | F<br>F% | : 3F0<br>b484% | - 1   | 3F: 3<br>b58F% | 7F:<br>Db84% | F<br>F% | 37:,<br>b: 80% | 1           | DF7<br>b087%       | b04<br>b48P% | F<br>F% | 34: 0<br>b. 8b% | - 1          | 5:<br>b58 |
| % n    | eh(yi st d 9 oyouaralgi  |                    |               | P%      | b484%<br>7:    | - 1   |                | 74           | F%      | b: 80%<br>Db   | - 1         |                    |              | F%      | b, 8b%          | - 1          | b58       |
|        | c gsHr                   | 05                 | 04            |         |                | - 1   | :0             |              |         |                | - 1         | 75                 | 04           |         |                 | - 1          |           |
|        | % c gsHr                 | 08%                | 38 %          | P%      | 384%           | 1     | : 81%          | 3F80%        | P%      | 78,%           | 1           | 58 %               | 08D%         | F%      | , 87%           | 1            | : 8       |
|        | veralgi ot Bosd          | 3F                 | 3F            | F       | 0F             | 1     | 33             | 3            | F       | 30             | 1           | b                  | 0            | F       | 33              | 1            |           |
|        | % veralgi ot Bosd        | F8D%               | F87%          | P%      | F85%           | - 1   | 38P%           | F80%         | P%      | F84%           | - 1         | 38F%               | F80%         | F%      | F85%            | 1            | F8        |
|        | - gdgi yust i            | 1                  | 1             | 1       | 1              | 3,    | 1              | 1            | 1       | 1              | 4:<br>548F% | 1                  | 1            | 1       | 1               | 375<br>DF8D% |           |
|        | % - gdgi yust i          | 1                  | 1             | 1       | 1              | 3FF%  | 1              | 1            | 1       |                |             |                    |              |         |                 |              |           |


| ngh                     | Nous(       |   |   |      |       | . ol y(    |   |   |      |        | E giy     |   |   |      |       |     |
|-------------------------|-------------|---|---|------|-------|------------|---|---|------|--------|-----------|---|---|------|-------|-----|
| I eigayeot              | . oly(foltd |   |   |      |       | Nous(foltd |   |   |      |        | Ssiyfoltd |   |   |      |       |     |
| Wik g                   | В           | W | U | ) pp | - gd* | W          | n | U | ) pp | - gd*  | В         | n | U | ) pp | - gd* | mby |
|                         |             |   |   |      |       |            |   |   |      |        |           |   |   |      |       |     |
| % venralgi ot CupiiRsIw |             |   |   |      | 1007  |            |   |   |      | :: 8F% |           |   |   |      | 3b80% |     |

<sup>\*-</sup> gdgi yusti std v earalgi ot CuoiiRslw8n An g0j2BABeh(y2WAW(ul 2UAU1Wlut

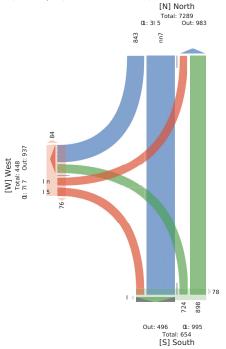
2 of 5

#### 5589707 - QUEEN ELIZABETH DRWY @ PRINCESS PA... - TMC





5589707 - QUEEN ELIZABETH DRWY @ PRINCESS PA... - TMC
Tte-May3, 20700
1 L 1 ng 'h, (c l L : 6t, 6 l L A: M-mg9l ng 1 P) u
C99s 9ji ni hidor yi gcHL PyPuwa9ii 21 ng-v2l nithi yagci 2Bawa9ii Pc RPgt2Bawa9ii Pc st ti vigi A
C99L P-nik ncyi
ni (3FPDID42d Pagq4Pc(, 67, E34, 2:4678LE54D2. on s Pth(, F8Fb3F5




| dno                       | NPusr          |       |     |        |       | . P) yr      |       |     |       |       | E ni y      |        |     |        |       |      |
|---------------------------|----------------|-------|-----|--------|-------|--------------|-------|-----|-------|-------|-------------|--------|-----|--------|-------|------|
| I enayePc                 | . P) yr f P) o | H     |     |        |       | NPuyr f P) c | H     |     |       |       | Sgiyf P) cH | I      |     |        |       |      |
| Wek n                     | R              | W     | U   | Срр    | l nH* | W            | d     | U   | Срр   | l nH⁵ | R           | d      | U   | Срр    | l nH* | my   |
| 0F00:3F:3, , (, 6l L      | , b            | 30F   | F   | 38b    | F     | 86           | 05    | F   | DD    | D     | 35          | 38     | F   | 0b     | D     | OI   |
| 6(FFI L                   | 86             | 338   | F   | 3DB    | F     | 8F           | 0F    | F   | DF    | 5     | 0F          | 3D     | F   | 5D     | 35    | Ob   |
| 6(361 L                   | D              | 33b   | F   | 0F5    | F     | 60           | 53    | F   | DS    | ,     | 0D          | 53     | F   | 6b     | b     | 5,   |
| 6(5Fl L                   | 6D             | D8    | F   | 3, ,   | F     | 66           | 53    | F   | DB    | 8     | 58          | 0b     | F   | 86     | 35    | 0b   |
| WPyg5                     | 068            | ,,3   | F   | 8b4    | F     | 050          | 3F6   | F   | 554   | 03    | b4          | b,     | F   | 3b3    | , 5   | 300  |
| % CppuPgar                | 5874%          | 8575% | F%  | :      |       | 8DfD%        | 5370% | F%  | :     | - 1   | 6F7D%       | , b70% | F%  |        | - 1   |      |
| % WPygS                   | 0F7b%          | 587P% | F%  | 6875%  | - :   | 3Dfb%        | DI8%  | F%  | 0476% | - 1   | 47b%        | 474%   | F%  | 3678%  | - :   |      |
| 111                       | F744,          | F7b3b | :   | F7D8F  |       | F7Db6        | F7D 4 | :   | F7b8F |       | F784,       | F746D  | - : | F7456  |       | FIX  |
| deor yi gcHL PyPuava9ni   | 0, 4           | , 50  | F   | 84b    | - 1   | 008          | 3F3   | F   | 504   | - 1   | ь0          | Db     | F   | 3D8    | - :   | 331  |
| % deor yi gcHL PyPusva9ni | b876%          | bDÆ%  | F%  | b47, % |       | b47, %       | b870% | F%  | b47F% |       | b, 7D%      | b, 74% | F%  | b, 70% |       | b87b |
| 1 ng-v                    | 4              | 0     | F   | b      |       | 5            | ,     | F   | 4     | - 1   | 6           | 6      | F   | 3F     | - 1   | (    |
| % 1 ng-v                  | 074%           | F76%  | F%  | 375%   |       | 375%         | 57D%  | F%  | 073%  |       | 670%        | 675%   | F%  | 670%   |       | 0.23 |
| Beava9ni Pc RPgH          | 0              | 4     | F   | b      | - :   | 5            | F     | F   | 5     | - 1   | F           | F      | F   | F      | - :   | 3    |
| % Bæva9ni Pc RPgH         | F7D%           | 378%  | F%  | 375%   | - :   | 375%         | F%    | F%  | F76%  | - 1   | F%          | P%     | F%  | F%     | - :   | 37F  |
| l nHni yuegci             | :              | - 1   | - 1 | :      | F     | :            | - 1   | - : | :     | 03    |             |        | - : |        | 5b    |      |
| % 1 nHni yuegci           | - 1            |       | - 1 |        | - :   | - :          |       | - 1 | - :   | 3FF%  |             | - 1    | - : | - 1    | bF74% |      |
| Beava9ni Pc s uPi i wg9t  | :              | - 1   | - 1 | :      | F     | :            | - 1   | - : | :     | F     |             |        | - : |        | ,     |      |
| % Beava9ni Pc s uPiiwg9t  | - :            | - 1   | - 1 | - :    | - 1   |              | - 1   | - 1 | - :   | F%    |             | - 1    | - 1 | - 1    | b75%  |      |

<sup>\*</sup>l nHni yungci gcHBeava9ni Pc s uPi i wg9t 7d (dn0j2R (Reory2W (Wru) 2U (U:W) uc

3 of 5 4 of 5

5589707 - QUEEN ELIZABETH DRWY @ PRINCESS PA... - TMC
Sat My7, 20FuFF
1 L 1 eng 12(211 L : 1(211 L 3: MAean-1 eng 6 P) a
C-s - ani ein lintor 7a ncHL PPRayoy-ei 06 enAv01 eHei 7anci 0Btyvy-ei Pc RPnHDBtyvy-ei Pc saPi iwneg3
C-L PAek ec7
nl (, uuFLP90d PynPc(21-2u, 920:914-Du. 9D081% s PHe(2u5ub, u.



# **APPENDIX B - INTERSECTION COLLISION DATA**



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: AYLMER AVE @ BANK ST

Traffic Control: Traffic signal Total Collisions: 18

| Date/Day/Time          | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver Vehicle type               | First Event           | No. Ped |
|------------------------|-------------|-------------|------------------|-------------------|----------|----------------------------------------------|-----------------------|---------|
| 2015-Jul-28, Tue,20:27 | Clear       | Rear end    | Non-fatal injury | Dry               | North    | Slowing or stopping Bicycle                  | Other motor vehicle   | 0       |
|                        |             |             |                  |                   | North    | Going ahead Automobile, station wago         | n Cyclist             |         |
| 2015-Aug-24, Mon,13:28 | Rain        | Rear end    | P.D. only        | Wet               | South    | Slowing or stopping Automobile, station wago | n Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped Automobile, station wago             | n Other motor vehicle |         |
| 2016-Mar-17, Thu,18:15 | Clear       | Rear end    | P.D. only        | Dry               | North    | Slowing or stopping Delivery van             | Other motor vehicle   | 0       |
|                        |             |             |                  |                   | North    | Stopped Automobile, station wago             | n Other motor vehicle |         |
|                        |             |             |                  |                   | North    | Stopped Pick-up truck                        | Other motor vehicle   |         |
| 2016-Jun-12, Sun,11:35 | Rain        | SMV other   | Non-fatal injury | Wet               | East     | Turning left Automobile, station wago        | n Pedestrian          | 1       |
| 2016-Jul-06, Wed,13:32 | Clear       | Sideswipe   | P.D. only        | Dry               | South    | Changing lanes Automobile, station wago      | n Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Going ahead Automobile, station wago         | n Other motor vehicle |         |
| 2016-Jul-18, Mon,17:37 | Clear       | Rear end    | P.D. only        | Dry               | North    | Slowing or stopping Automobile, station wage | n Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped Pick-up truck                        | Other motor vehicle   |         |
| 2017-Jan-31, Tue,17:10 | Clear       | Rear end    | P.D. only        | Dry               | South    | Going ahead Automobile, station wago         | n Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Slowing or stopping Automobile, station wago | n Other motor vehicle |         |
| 2017-Jul-01, Sat,22:34 | Clear       | Rear end    | Non-fatal injury | Wet               | South    | Going ahead Automobile, station wago         | n Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped Automobile, station wago             | n Other motor vehicle |         |
| 2017-Jul-08, Sat,18:29 | Clear       | SMV other   | Non-fatal injury | Dry               | North    | Turning left School bus                      | Pedestrian            | 1       |
| 2017-Aug-01, Tue,17:39 | Clear       | Rear end    | P.D. only        | Dry               | South    | Slowing or stopping Automobile, station wago | n Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped Automobile, station wago             | n Other motor vehicle |         |
| 2017-Aug-30, Wed,08:10 | Clear       | Rear end    | P.D. only        | Dry               | East     | Slowing or stopping Automobile, station wago | n Other motor vehicle | 0       |
|                        |             |             |                  |                   | East     | Stopped Automobile, station wago             | n Other motor vehicle |         |
| 2018-Dec-28, Fri,13:46 | Rain        | Angle       | P.D. only        | Wet               | West     | Turning left Unknown                         | Other motor vehicle   | 0       |
|                        |             |             |                  |                   | North    | Going ahead Delivery van                     | Other motor vehicle   |         |

May 01, 2023 Page 1 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: AYLMER AVE @ BANK ST

Traffic Control: Traffic signal Total Collisions: 18

| Date/Day/Time          | Environment | Impact Type      | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | r Vehicle type            | First Event         | No. Ped |
|------------------------|-------------|------------------|----------------|-------------------|----------|--------------------|---------------------------|---------------------|---------|
| 2019-Jan-05, Sat,01:45 | Clear       | Sideswipe        | P.D. only      | Wet               | North    | Going ahead        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2019-Mar-14, Thu,21:55 | Clear       | Turning movement | P.D. only      | Wet               | South    | Turning right      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2019-Sep-20, Fri,08:45 | Clear       | Sideswipe        | P.D. only      | Dry               | South    | Changing lanes     | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2019-Dec-21, Sat,16:00 | Clear       | Sideswipe        | P.D. only      | Dry               | North    | Changing lanes     | Passenger van             | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2020-Oct-10, Sat,11:39 | Clear       | Rear end         | P.D. only      | Dry               | North    | Slowing or stoppin | g Pick-up truck           | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Stopped            | Pick-up truck             | Other motor vehicle |         |
| 2021-Mar-11, Thu,20:00 | Rain        | Sideswipe        | P.D. only      | Wet               | South    | Changing lanes     | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Stopped            | Pick-up truck             | Other motor vehicle |         |

Location: BANK ST @ ECHO DR

Traffic Control: Stop sign Total Collisions: 9

| Date/Day/Time          | Environment | Impact Type | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | r Vehicle type              | First Event         | No. Ped |
|------------------------|-------------|-------------|----------------|-------------------|----------|--------------------|-----------------------------|---------------------|---------|
| 2015-Jan-26, Mon,12:17 | Clear       | Rear end    | P.D. only      | Ice               | West     | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                |                   | West     | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2015-May-06, Wed,11:23 | Clear       | Sideswipe   | P.D. only      | Dry               | North    | Changing lanes     | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |             |                |                   | North    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 2015-Jul-09, Thu,20:45 | Clear       | Angle       | P.D. only      | Dry               | East     | Turning right      | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |             |                |                   | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 2016-Aug-16, Tue,17:39 | Rain        | Angle       | P.D. only      | Wet               | East     | Turning right      | Pick-up truck               | Other motor vehicle | 0       |
|                        |             |             |                |                   | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |

May 01, 2023 Page 2 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ ECHO DR

Traffic Control: Stop sign Total Collisions: 9

| Date/Day/Time          | Environment   | Impact Type      | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve | r Vehicle type            | First Event         | No. Ped |
|------------------------|---------------|------------------|----------------|-------------------|----------|------------------|---------------------------|---------------------|---------|
| 2017-Jan-24, Tue,09:05 | Freezing Rain | Approaching      | P.D. only      | Ice               | West     | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |               |                  |                |                   | East     | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
|                        |               |                  |                |                   | West     | Unknown          | Passenger van             | Other motor vehicle |         |
|                        |               |                  |                |                   | East     | Unknown          | Automobile, station wagon | Other motor vehicle |         |
|                        |               |                  |                |                   | East     | Unknown          | Pick-up truck             | Other motor vehicle |         |
| 2017-Feb-22, Wed,14:35 | Clear         | Angle            | P.D. only      | Dry               | East     | Turning left     | Pick-up truck             | Other motor vehicle | 0       |
|                        |               |                  |                |                   | South    | Going ahead      | Pick-up truck             | Other motor vehicle |         |
| 2019-Feb-05, Tue,08:39 | Rain          | Sideswipe        | P.D. only      | Wet               | South    | Unknown          | Unknown                   | Other motor vehicle | 0       |
|                        |               |                  |                |                   | South    | Stopped          | Municipal transit bus     | Other motor vehicle |         |
| 2019-Jun-26, Wed,23:50 | Clear         | Turning movement | P.D. only      | Dry               | South    | Making "U" turn  | Automobile, station wagon | Other motor vehicle | 0       |
|                        |               |                  |                |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2021-Aug-20, Fri,14:15 | Clear         | Other            | P.D. only      | Dry               | North    | Reversing        | Pick-up truck             | Other motor vehicle | 0       |
|                        |               |                  |                |                   | South    | Stopped          | Pick-up truck             | Other motor vehicle |         |

Location: BANK ST @ EXHIBITION WAY

Traffic Control: Traffic signal Total Collisions: 14

| Date/Day/Time          | Environment | Impact Type      | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve    | r Vehicle type              | First Event         | No. Ped |
|------------------------|-------------|------------------|----------------|-------------------|----------|---------------------|-----------------------------|---------------------|---------|
| 2015-Jan-08, Thu,12:14 | Snow        | Rear end         | P.D. only      | Packed snow       | South    | Slowing or stopping | g Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Stopped             | Truck - closed              | Other motor vehicle |         |
| 2015-Mar-14, Sat,23:43 | Snow        | Rear end         | P.D. only      | Loose snow        | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2015-Jul-17, Fri,23:22 | Clear       | Turning movement | P.D. only      | Wet               | North    | Going ahead         | Passenger van               | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Making "U" turn     | Automobile, station wagon   | Other motor vehicle |         |

May 01, 2023 Page 3 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ EXHIBITION WAY

Traffic Control: Traffic signal Total Collisions: 14

| Date/Day/Time          | Environment            | Impact Type        | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve    | Vehicle type              | First Event         | No. Ped |
|------------------------|------------------------|--------------------|------------------|-------------------|----------|---------------------|---------------------------|---------------------|---------|
| 2015-Oct-13, Tue,12:03 | Fog, mist, smoke, dust | , Turning movement | Non-fatal injury | Wet               | South    | Turning left        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | North    | Going ahead         | Pick-up truck             | Other motor vehicle |         |
| 2015-Nov-06, Fri,11:04 | Rain                   | Rear end           | P.D. only        | Wet               | South    | Slowing or stopping | Automobile, station wagon | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | South    | Stopped             | Pick-up truck             | Other motor vehicle |         |
| 2016-Sep-03, Sat,21:58 | Clear                  | Turning movement   | Non-fatal injury | Dry               | South    | Turning left        | Automobile, station wagon | Cyclist             | 0       |
|                        |                        |                    |                  |                   | North    | Going ahead         | Bicycle                   | Other motor vehicle |         |
| 2016-Nov-13, Sun,11:35 | Clear                  | SMV other          | Non-fatal injury | Dry               | West     | Turning left        | Automobile, station wagon | Pedestrian          | 2       |
| 2016-Nov-24, Thu,06:52 | Snow                   | Rear end           | P.D. only        | Loose snow        | North    | Turning right       | Passenger van             | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | North    | Turning right       | Automobile, station wagon | Other motor vehicle |         |
| 2017-Aug-12, Sat,11:20 | Clear                  | Rear end           | P.D. only        | Dry               | North    | Going ahead         | Automobile, station wagon | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | North    | Stopped             | Automobile, station wagon | Other motor vehicle |         |
| 2018-Mar-11, Sun,17:20 | Clear                  | Rear end           | P.D. only        | Dry               | North    | Going ahead         | Automobile, station wagon | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | North    | Stopped             | Pick-up truck             | Other motor vehicle |         |
| 2018-Nov-13, Tue,03:36 | Snow                   | SMV other          | P.D. only        | Wet               | North    | Going ahead         | Automobile, station wagon | Curb                | 0       |
| 2018-Nov-20, Tue,21:00 | Snow                   | Rear end           | P.D. only        | Wet               | South    | Going ahead         | Automobile, station wagon | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | South    | Going ahead         | Automobile, station wagon | Other motor vehicle |         |
| 2018-Dec-06, Thu,21:45 | Clear                  | Rear end           | P.D. only        | Wet               | South    | Going ahead         | Automobile, station wagon | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | South    | Stopped             | Automobile, station wagon | Other motor vehicle |         |
| 2019-Dec-08, Sun,13:30 | Clear                  | Sideswipe          | P.D. only        | Dry               | North    | Unknown             | Automobile, station wagon | Other motor vehicle | 0       |
|                        |                        |                    |                  |                   | North    | Unknown             | Automobile, station wagon | Other motor vehicle |         |

Location: BANK ST @ FIFTH AVE

Traffic Control: Traffic signal Total Collisions: 23

Date/Day/Time Environment Impact Type Classification Surface Veh. Dir Vehicle Manoeuver Vehicle type First Event No. Ped Cond'n

May 01, 2023 Page 4 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ FIFTH AVE

Traffic Control: Traffic signal Total Collisions: 23

| ate/Day/Time          | Environment | Impact Type            | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | r Vehicle type              | First Event         | No. Ped |
|-----------------------|-------------|------------------------|----------------|-------------------|----------|--------------------|-----------------------------|---------------------|---------|
| 015-Feb-06, Fri,17:49 | Clear       | Sideswipe              | P.D. only      | Slush             | North    | Going ahead        | Delivery van                | Other motor vehicle | 0       |
|                       |             |                        |                |                   | North    | Stopped            | Municipal transit bus       | Other motor vehicle |         |
| 015-Mar-15, Sun,16:59 | Clear       | Angle                  | P.D. only      | Dry               | South    | Going ahead        | Passenger van               | Other motor vehicle | 0       |
|                       |             |                        |                |                   | East     | Going ahead        | Passenger van               | Other motor vehicle |         |
| 015-May-26, Tue,18:00 | Clear       | Angle                  | P.D. only      | Dry               | North    | Going ahead        | Pick-up truck               | Other motor vehicle | 0       |
|                       |             |                        |                |                   | West     | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 015-Sep-03, Thu,10:18 | Clear       | Rear end               | P.D. only      | Dry               | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle | 0       |
|                       |             |                        |                |                   | South    | Going ahead        | Pick-up truck               | Other motor vehicle |         |
|                       |             |                        |                |                   | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 016-Mar-04, Fri,18:42 | Clear       | Sideswipe              | P.D. only      | Dry               | North    | Unknown            | Automobile, station wagon   | Other motor vehicle | 0       |
|                       |             |                        |                |                   | North    | Unknown            | Automobile, station wagon   | Other motor vehicle |         |
| 016-Oct-06, Thu,18:44 | Clear       | Sideswipe              | P.D. only      | Dry               | South    | Changing lanes     | Pick-up truck               | Other motor vehicle | 0       |
|                       |             |                        |                |                   | South    | Going ahead        | Passenger van               | Other motor vehicle |         |
| 016-Oct-19, Wed,16:29 | Clear       | Turning movement       | P.D. only      | Dry               | West     | Turning right      | Unknown                     | Other motor vehicle | 0       |
|                       |             |                        |                |                   | West     | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 016-Nov-25, Fri,19:26 | Clear       | Turning movement       | P.D. only      | Wet               | North    | Turning left       | School bus                  | Other motor vehicle | 0       |
|                       |             |                        |                |                   | South    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 017-May-15, Mon,08:48 | Clear       | Turning movement       | P.D. only      | Dry               | North    | Turning left       | Automobile, station wagon   | Other motor vehicle | 0       |
|                       |             |                        |                |                   | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 017-Jun-26, Mon,22:42 | Rain        | Rear end               | P.D. only      | Wet               | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle | 0       |
|                       |             |                        |                |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 017-Dec-16, Sat,16:52 | Clear       | SMV unattended vehicle | P.D. only      | Wet               | East     | Turning left       | Fire vehicle                | Unattended vehicle  | 0       |

May 01, 2023 Page 5 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ FIFTH AVE

Traffic Control: Traffic signal Total Collisions: 23

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver                  | Vehicle type                | First Event         | No. Ped |
|------------------------|-------------|------------------|------------------|-------------------|----------|------------------------------------|-----------------------------|---------------------|---------|
| 2018-Apr-26, Thu,07:12 | Rain        | Sideswipe        | P.D. only        | Wet               | South    | Changing lanes                     | Truck - closed              | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped                            | Truck - tractor             | Other motor vehicle |         |
| 2019-Mar-07, Thu,13:38 | Clear       | SMV other        | Non-fatal injury | Dry               | West     | Turning left                       | Automobile, station wagon   | Pedestrian          | 1       |
| 2019-Aug-16, Fri,23:17 | Clear       | Sideswipe        | P.D. only        | Dry               | North    | Changing lanes                     | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead                        | Automobile, station wagon   | Other motor vehicle |         |
| 2019-Oct-03, Thu,06:13 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Going ahead                        | Bicycle                     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Turning left                       | Automobile, station wagon   | Cyclist             |         |
| 2019-Oct-06, Sun,00:00 | Rain        | Angle            | P.D. only        | Wet               | West     | Turning right                      | Fire vehicle                | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped                            | Automobile, station wagon   | Other motor vehicle |         |
| 2019-Nov-21, Thu,18:18 | Rain        | Turning movement | Non-fatal injury | Wet               | North    | Turning left                       | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead                        | Automobile, station wagon   | Other motor vehicle |         |
| 2020-Jan-04, Sat,17:15 | Clear       | Rear end         | P.D. only        | Wet               | North    | Stopped                            | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead                        | Automobile, station wagon   | Other motor vehicle |         |
| 2020-Feb-15, Sat,14:00 | Clear       | Rear end         | P.D. only        | Packed snow       | West     | Slowing or stopping                | g Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | West     | Stopped                            | Automobile, station wagon   | Other motor vehicle |         |
| 2020-Aug-28, Fri,11:58 | Clear       | Sideswipe        | P.D. only        | Dry               | North    | Pulling away from shoulder or curb | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead                        | Automobile, station wagon   | Other motor vehicle |         |
| 2020-Nov-05, Thu,11:11 | Clear       | SMV other        | Non-fatal injury | Dry               | West     | Turning left                       | Pick-up truck               | Pedestrian          | 1       |
| 2021-Mar-17, Wed,13:56 | Clear       | Turning movement | Non-fatal injury | Dry               | West     | Turning left                       | Automobile, station wagon   | Cyclist             | 0       |
|                        |             |                  |                  |                   | East     | Going ahead                        | Bicycle                     | Other motor vehicle |         |
| 2021-Mar-17, Wed,14:58 | Clear       | Rear end         | Non-fatal injury | Dry               | South    | Going ahead                        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead                        | Pick-up truck               | Other motor vehicle |         |

May 01, 2023 Page 6 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ HOLMWOOD AVE

Traffic Control: Traffic signal Total Collisions: 21

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve    | er Vehicle type             | First Event         | No. Ped |
|------------------------|-------------|------------------|------------------|-------------------|----------|---------------------|-----------------------------|---------------------|---------|
| 2015-Jan-05, Mon,19:25 | Clear       | Rear end         | Non-fatal injury | Slush             | South    | Unknown             | Unknown                     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2016-May-17, Tue,17:08 | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead         | Pick-up truck               | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped             | Pick-up truck               | Other motor vehicle |         |
| 2016-May-25, Wed,08:51 | Clear       | Rear end         | P.D. only        | Dry               | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2016-Jun-16, Thu,09:00 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Going ahead         | Motorcycle                  | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2016-Jul-07, Thu,14:06 | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead         | Unknown                     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Turning left        | Automobile, station wagon   | Other motor vehicle |         |
| 2016-Aug-12, Fri,11:30 | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped             | Pick-up truck               | Other motor vehicle |         |
| 2016-Nov-15, Tue,15:24 | Clear       | Rear end         | Non-fatal injury | Dry               | North    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Slowing or stopping | g Automobile, station wagon | Other motor vehicle |         |
| 2016-Dec-18, Sun,12:26 | Clear       | Approaching      | Non-fatal injury | Loose snow        | North    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2017-Mar-17, Fri,12:17 | Clear       | Turning movement | P.D. only        | Dry               | North    | Turning left        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |
| 2017-May-10, Wed,20:45 | Clear       | Turning movement | P.D. only        | Dry               | North    | Turning left        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |
| 2018-Aug-22, Wed,09:23 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Turning left        | Automobile, station wagon   | Cyclist             | 0       |
|                        |             |                  |                  |                   | South    | Going ahead         | Bicycle                     | Other motor vehicle |         |
| 2018-Oct-05, Fri,22:45 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Unknown             | Unknown                     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |

May 01, 2023 Page 7 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ HOLMWOOD AVE

Traffic Control: Traffic signal Total Collisions: 21

| Date/Day/Time          | Environment | Impact Type      | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve | r Vehicle type            | First Event         | No. Ped |
|------------------------|-------------|------------------|----------------|-------------------|----------|------------------|---------------------------|---------------------|---------|
| 2019-Nov-21, Thu,13:56 | Clear       | Sideswipe        | P.D. only      | Dry               | South    | Changing lanes   | Truck - dump              | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2019-Dec-13, Fri,18:00 | Rain        | Turning movement | P.D. only      | Wet               | North    | Turning left     | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Going ahead      | Unknown                   | Other motor vehicle |         |
| 2019-Dec-28, Sat,11:42 | Clear       | Turning movement | P.D. only      | Wet               | North    | Turning left     | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2020-Jan-14, Tue,12:20 | Clear       | Rear end         | P.D. only      | Wet               | North    | Going ahead      | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Turning right    | Automobile, station wagon | Other motor vehicle |         |
| 2020-Aug-15, Sat,20:23 | Clear       | Rear end         | P.D. only      | Dry               | North    | Unknown          | Unknown                   | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2020-Sep-04, Fri,11:00 | Clear       | Turning movement | P.D. only      | Dry               | South    | Turning left     | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2020-Sep-04, Fri,17:40 | Clear       | Sideswipe        | P.D. only      | Dry               | South    | Changing lanes   | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2021-Jun-22, Tue,08:00 | Clear       | Other            | P.D. only      | Dry               | West     | Reversing        | Truck - closed            | Other motor vehicle | 0       |
|                        |             |                  |                |                   | East     | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2021-Sep-20, Mon,11:35 | Clear       | Angle            | P.D. only      | Dry               | East     | Turning right    | Unknown                   | Other motor vehicle | 0       |
|                        |             |                  |                |                   | North    | Going ahead      | Pick-up truck             | Other motor vehicle |         |

Location: BANK ST @ MARCHE WAY

Traffic Control: Stop sign Total Collisions: 2

| Date/Day/Time          | Environment   | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver | Vehicle type              | First Event | No. Ped |
|------------------------|---------------|-------------|------------------|-------------------|----------|-------------------|---------------------------|-------------|---------|
| 2018-Nov-25, Sun,06:25 | Freezing Rain | SMV other   | Non-fatal injury | Ice               | West     | Turning right     | Automobile, station wagon | Pedestrian  | 1       |

May 01, 2023 Page 8 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ MARCHE WAY

Traffic Control: Stop sign Total Collisions: 2

| Date/Day/Time          | Environment | Impact Type | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | er Vehicle type           | First Event         | No. Ped |
|------------------------|-------------|-------------|----------------|-------------------|----------|--------------------|---------------------------|---------------------|---------|
| 2021-Aug-30, Mon,17:06 | Clear       | Rear end    | P.D. only      | Dry               | North    | Slowing or stoppin | g Pick-up truck           | Other motor vehicle | 0       |
|                        |             |             |                |                   | North    | Turning right      | Automobile, station wagon | Other motor vehicle |         |

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

| Date/Day/Time          | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | r Vehicle type            | First Event         | No. Ped |
|------------------------|-------------|-------------|------------------|-------------------|----------|--------------------|---------------------------|---------------------|---------|
| 2015-Jan-15, Thu,20:34 | Clear       | Sideswipe   | P.D. only        | Slush             | South    | Changing lanes     | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2015-Jan-22, Thu,10:28 | Clear       | Rear end    | P.D. only        | Ice               | South    | Going ahead        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped            | Automobile, station wagon | Other motor vehicle |         |
| 2015-Feb-11, Wed,22:08 | Snow        | Angle       | P.D. only        | Loose snow        | North    | Going ahead        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | East     | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2015-Mar-18, Wed,16:25 | Clear       | Rear end    | P.D. only        | Dry               | South    | Unknown            | Unknown                   | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped            | Automobile, station wagon | Other motor vehicle |         |
| 2015-May-13, Wed,18:10 | Clear       | Rear end    | P.D. only        | Dry               | West     | Going ahead        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | West     | Stopped            | Pick-up truck             | Other motor vehicle |         |
| 2015-May-26, Tue,07:02 | Clear       | Sideswipe   | Non-fatal injury | Dry               | East     | Going ahead        | Automobile, station wagon | Cyclist             | 0       |
|                        |             |             |                  |                   | East     | Going ahead        | Bicycle                   | Other motor vehicle |         |
| 2015-Jun-18, Thu,15:38 | Clear       | Sideswipe   | P.D. only        | Dry               | North    | Going ahead        | Truck - tractor           | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Automobile, station wagon | Other motor vehicle |         |
| 2015-Jun-25, Thu,09:30 | Clear       | Rear end    | P.D. only        | Dry               | South    | Slowing or stoppin | g Motorcycle              | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped            | Automobile, station wagon | Other motor vehicle |         |
| 2015-Jun-28, Sun,20:10 | Rain        | Rear end    | P.D. only        | Wet               | West     | Going ahead        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | West     | Stopped            | Automobile, station wagon | Other motor vehicle |         |

May 01, 2023 Page 9 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

|                        |             |                  |                  |                   |          |                    |                             | 0.                  |         |
|------------------------|-------------|------------------|------------------|-------------------|----------|--------------------|-----------------------------|---------------------|---------|
| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | er Vehicle type             | First Event         | No. Ped |
| 2015-Sep-29, Tue,17:59 | Rain        | Turning movement | Non-fatal injury | Wet               | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Turning left       | Automobile, station wagon   | Other motor vehicle |         |
| 2015-Sep-30, Wed,15:00 | Clear       | Rear end         | P.D. only        | Dry               | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2015-Oct-15, Thu,12:42 | Rain        | Rear end         | P.D. only        | Wet               | East     | Going ahead        | Pick-up truck               | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | East     | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2015-Dec-29, Tue,15:30 | Snow        | Sideswipe        | P.D. only        | Loose snow        | North    | Unknown            | Unknown                     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead        | Pick-up truck               | Other motor vehicle |         |
| 2016-Jun-09, Thu,20:39 | Clear       | Rear end         | P.D. only        | Dry               | East     | Going ahead        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | East     | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
|                        |             |                  |                  |                   | East     | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2016-Oct-08, Sat,21:31 | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead        | Unknown                     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 2016-Nov-30, Wed,16:44 | Rain        | SMV other        | Non-fatal injury | Wet               | South    | Going ahead        | Automobile, station wagon   | Pedestrian          | 1       |
| 2016-Dec-17, Sat,11:41 | Clear       | Rear end         | P.D. only        | Loose snow        | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2017-Jan-28, Sat,08:58 | Rain        | Turning movement | P.D. only        | Wet               | North    | Turning left       | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
|                        |             |                  |                  |                   | East     | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2017-Mar-14, Tue,12:42 | Clear       | Turning movement | P.D. only        | Loose snow        | North    | Turning left       | Pick-up truck               | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead        | Passenger van               | Other motor vehicle |         |
| 2017-May-20, Sat,17:53 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Changing lanes     | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |

May 01, 2023 Page 10 of 16



### **Collision Details Report - Public Version**

From: January 1, 2015 To: December 31, 2021

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve | r Vehicle type            | First Event         | No. Ped |
|------------------------|-------------|------------------|------------------|-------------------|----------|------------------|---------------------------|---------------------|---------|
| 2017-Jun-25, Sun,09:30 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Changing lanes   | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2017-Aug-10, Thu,13:59 | Clear       | Sideswipe        | P.D. only        | Dry               | North    | Changing lanes   | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead      | Truck - tractor           | Other motor vehicle |         |
| 2017-Sep-11, Mon,07:46 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Turning left     | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2017-Sep-25, Mon,21:17 | Clear       | Turning movement | Non-fatal injury | Dry               | East     | Turning left     | Bicycle                   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | West     | Going ahead      | Automobile, station wagon | Cyclist             |         |
| 2017-Nov-09, Thu,21:06 | Rain        | SMV other        | Non-fatal injury | Wet               | South    | Turning left     | Automobile, station wagon | Pedestrian          | 1       |
| 2018-Aug-01, Wed,16:36 | Clear       | Turning movement | P.D. only        | Dry               | East     | Turning left     | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | West     | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2018-Sep-14, Fri,13:34 | Clear       | SMV other        | Non-fatal injury | Dry               | North    | Turning left     | Automobile, station wagon | Pedestrian          | 1       |
| 2018-Oct-06, Sat,16:40 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Changing lanes   | Municipal transit bus     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2018-Oct-31, Wed,15:51 | Rain        | Rear end         | Non-fatal injury | Wet               | South    | Going ahead      | Passenger van             | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
|                        |             |                  |                  |                   | South    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
|                        |             |                  |                  |                   | South    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2019-Feb-02, Sat,09:50 | Snow        | Rear end         | P.D. only        | Loose snow        | South    | Going ahead      | Unknown                   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped          | Pick-up truck             | Other motor vehicle |         |
| 2019-Apr-26, Fri,15:15 | Rain        | Sideswipe        | P.D. only        | Wet               | North    | Changing lanes   | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2019-Sep-27, Fri,14:04 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Stopped          | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |

May 01, 2023 Page 11 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve | r Vehicle type            | First Event         | No. Ped |
|------------------------|-------------|------------------|------------------|-------------------|----------|------------------|---------------------------|---------------------|---------|
| 2020-Aug-08, Sat,17:53 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Turning right    | Municipal transit bus     | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Pick-up truck             | Other motor vehicle |         |
| 2021-Feb-15, Mon,08:29 | Clear       | Turning movement | P.D. only        | Dry               | South    | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Turning left     | Automobile, station wagon | Other motor vehicle |         |
| 2021-May-11, Tue,10:51 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Turning left     | Pick-up truck             | Other motor vehicle |         |
| 2021-Aug-26, Thu,15:23 | Clear       | SMV other        | Non-fatal injury | Dry               | North    | Going ahead      | Motorcycle                | Skidding/sliding    | 0       |
| 2021-Oct-02, Sat,01:00 | Rain        | Turning movement | P.D. only        | Wet               | South    | Turning left     | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |

Location: BANK ST @ WILTON CRES

Traffic Control: Stop sign Total Collisions: 26

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver | Vehicle type              | First Event         | No. Ped |
|------------------------|-------------|------------------|------------------|-------------------|----------|-------------------|---------------------------|---------------------|---------|
| 2015-Jan-30, Fri,15:45 | Clear       | Rear end         | Non-fatal injury | Dry               | North    | Going ahead       | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Turning left      | Automobile, station wagon | Other motor vehicle |         |
| 2015-Apr-03, Fri,22:13 | Rain        | Turning movement | P.D. only        | Wet               | South    | Turning right     | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead       | Automobile, station wagon | Other motor vehicle |         |
| 2015-Sep-25, Fri,12:22 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Turning left      | Automobile, station wagon | Cyclist             | 0       |
|                        |             |                  |                  |                   | South    | Going ahead       | Bicycle                   | Other motor vehicle |         |
| 2015-Oct-25, Sun,22:40 | Clear       | Turning movement | P.D. only        | Dry               | North    | Turning left      | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead       | Automobile, station wagon | Other motor vehicle |         |
| 2016-Feb-07, Sun,12:07 | Clear       | Rear end         | Non-fatal injury | Dry               | North    | Going ahead       | Truck - closed            | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Turning left      | Automobile, station wagon | Other motor vehicle |         |

May 01, 2023 Page 12 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ WILTON CRES

Traffic Control: Stop sign Total Collisions: 26

| Date/Day/Time          | Environment   | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve    | r Vehicle type              | First Event         | No. Ped |
|------------------------|---------------|------------------|------------------|-------------------|----------|---------------------|-----------------------------|---------------------|---------|
| 2016-Apr-01, Fri,18:31 | Clear         | Angle            | P.D. only        | Dry               | East     | Turning right       | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |               |                  |                  |                   | South    | Going ahead         | Municipal transit bus       | Other motor vehicle |         |
| 2016-Apr-19, Tue,14:40 | Clear         | Rear end         | P.D. only        | Dry               | North    | Going ahead         | Delivery van                | Other motor vehicle | 0       |
|                        |               |                  |                  |                   | North    | Turning left        | Automobile, station wagon   | Other motor vehicle |         |
| 2016-May-28, Sat,14:38 | Clear         | Angle            | P.D. only        | Dry               | East     | Turning left        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |               |                  |                  |                   | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |
| 2016-Jun-15, Wed,14:08 | Clear         | Turning movement | Non-fatal injury | Dry               | North    | Turning left        | Automobile, station wagon   | Cyclist             | 0       |
|                        |               |                  |                  |                   | South    | Going ahead         | Bicycle                     | Other motor vehicle |         |
| 2016-Oct-01, Sat,13:19 | Clear         | Angle            | P.D. only        | Dry               | East     | Turning right       | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |               |                  |                  |                   | South    | Going ahead         | Pick-up truck               | Other motor vehicle |         |
| 2016-Oct-11, Tue,10:30 | Clear         | Angle            | Non-fatal injury | Dry               | East     | Turning right       | Automobile, station wagon   | Cyclist             | 0       |
|                        |               |                  |                  |                   | North    | Going ahead         | Bicycle                     | Other motor vehicle |         |
| 2016-Dec-12, Mon,14:20 | Drifting Snow | Rear end         | P.D. only        | Packed snow       | South    | Going ahead         | Municipal transit bus       | Other motor vehicle | 0       |
|                        |               |                  |                  |                   | South    | Slowing or stopping | g Pick-up truck             | Other motor vehicle |         |
| 2017-Jul-28, Fri,17:07 | Clear         | Turning movement | Non-fatal injury | Dry               | North    | Turning left        | Automobile, station wagon   | Cyclist             | 0       |
|                        |               |                  |                  |                   | South    | Going ahead         | Bicycle                     | Other motor vehicle |         |
| 2017-Sep-24, Sun,13:23 | Clear         | Sideswipe        | Non-fatal injury | Dry               | North    | Stopped             | Automobile, station wagon   | Cyclist             | 0       |
|                        |               |                  |                  |                   | North    | Going ahead         | Bicycle                     | Other motor vehicle |         |
| 2017-Dec-14, Thu,08:45 | Clear         | Angle            | P.D. only        | Dry               | East     | Turning right       | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |               |                  |                  |                   | South    | Slowing or stopping | g Automobile, station wagon | Other motor vehicle |         |
| 2018-Jan-12, Fri,12:22 | Rain          | Sideswipe        | P.D. only        | Wet               | North    | Unknown             | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |               |                  |                  |                   | North    | Unknown             | Automobile, station wagon   | Other motor vehicle |         |

May 01, 2023 Page 13 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ WILTON CRES

Traffic Control: Stop sign Total Collisions: 26

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve | r Vehicle type            | First Event         | No. Ped |
|------------------------|-------------|------------------|------------------|-------------------|----------|------------------|---------------------------|---------------------|---------|
| 2018-Jun-19, Tue,13:49 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Turning left     | Automobile, station wagon | Cyclist             | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Bicycle                   | Other motor vehicle |         |
| 2018-Oct-19, Fri,22:50 | Clear       | Rear end         | Non-fatal injury | Wet               | North    | Going ahead      | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
|                        |             |                  |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
|                        |             |                  |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
|                        |             |                  |                  |                   | North    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2018-Nov-15, Thu,17:00 | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2018-Dec-12, Wed,11:20 | Clear       | Rear end         | P.D. only        | Dry               | East     | Unknown          | Unknown                   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | East     | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2019-Jun-01, Sat,15:40 | Clear       | Turning movement | P.D. only        | Dry               | South    | Making "U" turn  | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2019-Jun-23, Sun,22:45 | Clear       | Turning movement | P.D. only        | Dry               | North    | Turning left     | Unknown                   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2019-Jul-14, Sun,10:45 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Changing lanes   | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2019-Dec-21, Sat,06:39 | Clear       | SMV other        | P.D. only        | Dry               | North    | Going ahead      | Automobile, station wagon | Curb                | 0       |
| 2020-Feb-21, Fri,15:23 | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped          | Automobile, station wagon | Other motor vehicle |         |
|                        |             |                  |                  |                   | North    | Turning left     | Automobile, station wagon | Other motor vehicle |         |
| 2021-Nov-27, Sat,19:59 | Rain        | Turning movement | Non-fatal injury | Wet               | North    | Turning left     | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |

May 01, 2023 Page 14 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: FIFTH AVE @ QUEEN ELIZABETH DRWY

Traffic Control: Traffic signal Total Collisions: 10

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve    | r Vehicle type              | First Event             | No. Pe |
|------------------------|-------------|------------------|------------------|-------------------|----------|---------------------|-----------------------------|-------------------------|--------|
| 2016-Jan-12, Tue,15:10 | Snow        | Rear end         | P.D. only        | Dry               | South    | Slowing or stoppin  | g Pick-up truck             | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | South    | Slowing or stoppin  | g Automobile, station wagon | Other motor vehicle     |        |
| 2016-Jan-13, Wed,08:30 | Clear       | Sideswipe        | P.D. only        | Loose snow        | North    | Unknown             | Unknown                     | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | North    | Stopped             | Automobile, station wagon   | Other motor vehicle     |        |
| 2016-Apr-15, Fri,18:32 | Clear       | Turning movement | P.D. only        | Dry               | North    | Turning left        | Automobile, station wagon   | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | South    | Going ahead         | Pick-up truck               | Other motor vehicle     |        |
| 2016-Apr-23, Sat,19:45 | Clear       | Rear end         | P.D. only        | Dry               | East     | Slowing or stoppin  | g Pick-up truck             | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | East     | Stopped             | Automobile, station wagon   | Other motor vehicle     |        |
| 2016-Aug-20, Sat,17:15 | Clear       | SMV other        | P.D. only        | Dry               | South    | Turning left        | Pick-up truck               | Pole (sign, parking met | er) 0  |
| 2016-Oct-16, Sun,10:35 | Rain        | Turning movement | Non-fatal injury | Wet               | South    | Making "U" turn     | Automobile, station wagon   | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | South    | Overtaking          | Pick-up truck               | Other motor vehicle     |        |
| 2016-Dec-29, Thu,16:50 | Snow        | Rear end         | Non-fatal injury | Slush             | North    | Going ahead         | Automobile, station wagon   | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | North    | Slowing or stoppin  | g Truck-other               | Other motor vehicle     |        |
| 2017-Jul-06, Thu,20:45 | Clear       | Rear end         | P.D. only        | Dry               | North    | Slowing or stoppin  | g Automobile, station wagon | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | North    | Slowing or stopping | g Truck - closed            | Other motor vehicle     |        |
| 2017-Dec-15, Fri,18:19 | Snow        | Rear end         | P.D. only        | Loose snow        | North    | Slowing or stoppin  | g Automobile, station wagon | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | North    | Stopped             | Passenger van               | Other motor vehicle     |        |
| 2019-Jan-17, Thu,17:20 | Clear       | Rear end         | P.D. only        | Wet               | South    | Going ahead         | Passenger van               | Other motor vehicle     | 0      |
|                        |             |                  |                  |                   | South    | Stopped             | Pick-up truck               | Other motor vehicle     |        |

Location: PRINCESS PATRICIA WAY @ QUEEN ELIZABETH DRWY

Traffic Control: Stop sign Total Collisions: 8

| Date/Day/Time | Environment | Impact Type | Classification | Surface | Veh. Dir | Vehicle Manoeuver Vehicle type | First Event | No. Ped |
|---------------|-------------|-------------|----------------|---------|----------|--------------------------------|-------------|---------|
|               |             |             |                | Cond'n  |          |                                |             |         |

May 01, 2023 Page 15 of 16



### **Collision Details Report - Public Version**

**From:** January 1, 2015 **To:** December 31, 2021

Location: PRINCESS PATRICIA WAY @ QUEEN ELIZABETH DRWY

Traffic Control: Stop sign Total Collisions: 8

| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve    | r Vehicle type              | First Event         | No. Ped |
|------------------------|-------------|------------------|------------------|-------------------|----------|---------------------|-----------------------------|---------------------|---------|
| 2016-May-18, Wed,11:56 | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead         | Motorcycle                  | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2017-May-06, Sat,15:30 | Rain        | Approaching      | Non-fatal injury | Wet               | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2017-Jun-30, Fri,17:48 | Clear       | Rear end         | P.D. only        | Wet               | North    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | North    | Slowing or stopping | g Automobile, station wagon | Other motor vehicle |         |
| 2018-Mar-19, Mon,23:36 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Merging             | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |
| 2019-Feb-15, Fri,18:12 | Clear       | Angle            | P.D. only        | Wet               | East     | Turning left        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |
| 2019-Mar-03, Sun,21:00 | Clear       | Angle            | P.D. only        | Wet               | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | East     | Turning left        | Automobile, station wagon   | Other motor vehicle |         |
| 2019-Apr-22, Mon,20:38 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Turning left        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead         | Motorcycle                  | Other motor vehicle |         |
| 2019-Aug-24, Sat,17:05 | Clear       | Angle            | Non-fatal injury | Dry               | East     | Turning left        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |                  |                  |                   | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |

May 01, 2023 Page 16 of 16

# **APPENDIX C - TDM CHECKLIST**

### Introduction

The City of Ottawa's *Transportation Impact Assessment (TIA) Guidelines* (specifically Module 4.3—Transportation Demand Management) requires proponents of qualifying developments to assess the context, need and opportunity for transportation demand management (TDM) measures at their development. The guidelines require that proponents complete the City's **TDM Measures Checklist**, at a minimum, to identify any TDM measures being proposed.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM Measures Checklist: Non-Residential Developments
- TDM Measures Checklist: Residential developments

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

### **Using the Checklist**

The City's *TIA Guidelines* are designed so that *Module 3.1—Development-Generated Travel Demand*, *Module 4.1—Development Design*, and *Module 4.2—Parking* are complete before a proponent begins *Module 4.3—Transportation Demand Management*.

Within Module 4.3, *Element 4.3.1—Context for TDM* and *Element 4.3.2—Need and Opportunity* are intended to create an understanding of the need for any TDM measures, and of the results they are expected to achieve or support. Once those two elements are complete, proponents begin *Element 4.3.3—TDM Program* that requires proponents to identify proposed TDM measures using the **TDM Measures Checklist**, at a minimum. The *TIA Guidelines* note that the City may require additional analysis for large or complex development proposals, or those that represent a higher degree of performance risk; as well, proponents proposing TDM measures for a new development must also propose an implementation plan that addresses planning and coordination, funding and human resources, timelines for action, performance targets and monitoring requirements.

This **TDM Measures Checklist** document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multifamily, condominium or subdivision). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the TDM measures being proposed and provides additional detail on them, including an implementation plan as required by the City's *TIA Guidelines*.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- BASIC —The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- BETTER —The measure could maximize support for users of sustainable modes, and optimize development performance.
- —The measure is one of the most dependably effective tools to encourage the use of sustainable modes.

### **Glossary**

This glossary defines and describes the following measures that are identified in the **TDM Measures Checklist**:

### TDM program management

- Program coordinator
- Travel surveys

### **Parking**

Priced parking

### Walking & cycling

- Information on walking/cycling routes & destinations
- Bicycle skills training
- Valet bike parking

#### Transit

- Transit information
- Transit fare incentives
- Enhanced public transit service
- Private transit service

### Ridesharing

- Ridematching service
- Carpool parking price incentives
- Vanpool service

### Carsharing & bikesharing

- Bikeshare stations & memberships
- Carshare vehicles & memberships

### **TDM marketing & communications**

- Multimodal travel information
- Personalized trip planning
- Promotions

### Other incentives & amenities

- Emergency ride home
- Alternative work arrangements
- Local business travel options
- Commuter incentives
- On-site amenities

For further information on selecting and implementing TDM measures (particularly as they apply to non-residential developments, with a focus on workplaces), readers may find it helpful to consult Transport Canada's *Workplace Travel Plans: Guidance for Canadian Employers*, which can be downloaded in English and French from the ACT Canada website at

www.actcanada.com/resources/act-resources.

### ► TDM program management

While some TDM measures can be implemented with a minimum of effort through routine channels (e.g. parking or human resources), more complex measures or a larger development site may warrant assigning responsibility for TDM program coordination to a designated person either inside or outside the implementing organization. Similarly, some TDM measures are more effective if they are targeted or customized for specific audiences, and would benefit from the collection of related information.

**Program coordinator**. This person is charged with day-to-day TDM program development and implementation. Only in very large employers with thousands of workers is this likely to be a full-time, dedicated position. Usually, it is added to an existing role in parking, real estate, human resources or environmental management. In practice, this role may be called TDM coordinator, commute trip reduction coordinator or employee transportation coordinator. The City of Ottawa can identify external resources (e.g. non-profit organizations or consultants) that could provide these services.

**Travel surveys.** Travel surveys are most commonly conducted at workplaces, but can be helpful in other settings. They identify how and why people travel the way they do, and what barriers and opportunities exist for different behaviours. They usually capture the following information:

- Personal data including home address or postal code, destination, job type or function, employment status (full-time, part-time and/or teleworker), gender, age and hours of work
- Commute information including distance or time for the trip between home and work, usual methods of commuting, and reasons for choosing them
- Barriers and opportunities including why other commuting methods are unattractive, willingness to consider other options, and what improvements to other options could make them more attractive

### ► Parking

**Priced parking.** Charging for parking is typically among the most effective ways of getting drivers to consider other travel options. While drivers may not support parking fees, they can be more accepting if the revenues are used to improve other travel options (e.g. new showers and change rooms, improved bicycle parking or subsidized transit passes). At workplaces or daytime destinations, parking discounts (e.g. early bird specials, daily passes that cost significantly less than the equivalent hourly charge, monthly passes that cost significantly less than the equivalent daily charge) encourage long-term parking and discourage the use of other travel options. For residential uses, unbundling parking costs from dwelling purchase, lease or rental costs provides an incentive for residents to own fewer cars, and can reduce car use and the costs of parking provision.

### ► Walking & cycling

Active transportation options like cycling and walking are particularly attractive for short trips (typically up to 5 km and 2 km, respectively). Other supportive factors include an active, health-conscious audience, and development proximity to high-quality walking and cycling networks. Common challenges to active transportation include rain, darkness, snowy or icy conditions, personal safety concerns, the potential for bicycle theft, and a lack of shower and change facilities for those making longer trips.

**Information on walking/cycling routes & destinations.** Ottawa, Gatineau and the National Capital Commission all publish maps to help people identify the most convenient and comfortable walking or cycling routes.

**Bicycle skills training.** Potential cyclists can be intimidated by the need to ride on roads shared with motor vehicles. This barrier can be reduced or eliminated by offering cycling skills training to interested cyclists (e.g. CAN-BIKE certification courses).

**Valet bike parking.** For large events, temporary "valet parking" areas can be easily set up to maximize convenience and security for cyclists. Experienced local non-profit groups can help.

### ► Transit

**Transit information.** Difficulty in finding or understanding basic information on transit fares, routes and schedules can prevent people from trying transit. Employers can help by providing online links to OC Transpo and STO websites. Transit users also appreciate visible maps and schedules of transit routes that serve the site; even better, a screen that shows real-time transit arrival information is particularly useful at sites with many transit users and an adjacent transit stop or station.

**Transit fare incentives.** Free or subsidized transit fares are an attractive incentive for non-transit riders to try transit. Many non-users are unsure of how to pay a fare, and providing tickets or a preloaded PRESTO card (or, for special events, pre-arranging with OC Transpo that transit fares are included with event tickets) overcome that barrier.

**Enhanced public transit service.** OC Transpo may adjust transit routes, stop locations, service hours or frequencies for an agreed fee under contract, or at no cost where warranted by the potential ridership increase. Information provided by a survey of people who travel to a given development can support these decisions.

**Private transit service.** At remote suburban or rural workplaces, a poor transit connection to the nearest rapid transit station can be an obstacle for potential transit users, and an employer in this situation could initiate a private shuttle service to make transit use more feasible or attractive. Other circumstances where a shuttle makes sense include large special events, or a residential development for people with limited independent mobility who still require regular access to shops and services.

### ► Ridesharing

Ridesharing's potential is greatest in situations where transit ridership is low, where parking costs are high, and/or where large numbers of car commuters (e.g. employees or full-time students) live reasonably far from the workplace.

**Ridematching service.** Potential carpoolers in Ottawa are served by www.OttawaRideMatch.com, an online service to help people find carpool partners. Employers can arrange for a dedicated portal where their employees can search for potential carpool partners only among their colleagues, if they desire. Some very large employers may establish internal ridematching services, to maximize employee uptake and corporate control. Ridematching service providers typically include a waiver to relieve employers of liability when their employees start carpooling through a ridematching service. Ridesharing with co-workers also tends to eliminate security concerns.

**Carpool parking price incentives.** Discounted parking fees for carpools can be an extra incentive to rideshare.

**Vanpool service.** Vanpools operate in the Toronto and Vancouver metropolitan areas, where vans that carry up to about ten occupants are driven by one of the vanpool members. Vanpools tend to operate on a cost-recovery basis, and are most practical for long-distance commutes where transit is not an option. Current legislation in Ontario does not permit third-party (i.e. private or non-profit) vanpool services, but does permit employers to operate internal vanpools.

### ► Carsharing & bikesharing

**Bikeshare station & memberships.** VeloGO Bike Share and Right Bike both operate bikesharing services in Ottawa. Developments that would benefit from having a bikeshare station installed at or near their development may negotiate directly with either service provider.

Carshare vehicles & memberships. VRTUCAR and Zipcar both operate carsharing services in Ottawa, for use by the general public or by businesses as an alternative to corporate fleets. Carsharing services offer 24-hour access, self-serve reservation systems, itemized monthly billings, and outsourcing of all financing, insurance, maintenance and administrative responsibilities.

### ► TDM marketing & communications

**Multimodal travel information.** Aside from mode-specific information discussed elsewhere in this document, multimodal information that identifies and explains the full range of travel options available to people can be very influential—especially when provided at times and locations where individuals are actively choosing among those options. Examples include: employees when their employer is relocating, or when they are joining a new employer; students when they are starting a program at a new institution; visitors or customers travelling to an unfamiliar destination, or when faced with new options (e.g. shuttle services or parking restrictions); and residents when they purchase or occupy a residence that is new to them.

**Personalized trip planning.** As an extension to the simple provision of information, this technique (also known as *individualized marketing*) is effective in helping people make more sustainable travel choices. The approach involves identifying who is most likely to change their travel choices (notably relocating employees, students or residents) giving them customized information, training and incentives to support them in making that change. It may be conducted with assistance from an external service provider with the necessary skills, and delivered in a variety of settings including workplaces and homes.

**Promotions.** Special events and incentives can raise awareness and encourage individuals to examine and try new travel options.

- Special events can help attract attention, build participation and celebrate successes. Events that have been held in Ottawa include Earth Day (in April) Bike to Work Month (in May), Environment Week (early June), International Car Free Day (September 22), and Canadian Ridesharing Week (October). At workplaces or educational institutions, similarly effective internal events could include workshops, lunch-and-learns, inter-departmental challenges, pancake breakfasts, and so on.
- Incentives can encourage trial of sustainable modes, and might include loyalty rewards for duration or consistency of activity (e.g. 1,000 km commuted by bicycle), participation prizes (e.g. for completing a survey or joining a special event), or personal recognition that highlights individual accomplishments.

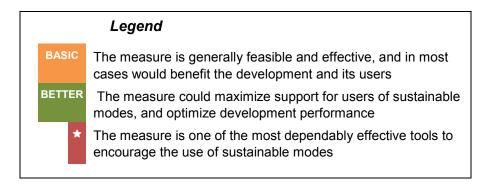
### ► Other incentives & amenities

**Emergency ride home.** This measure assures non-driving commuters that they will be able to get home quickly and conveniently in case of family emergency (or in some workplaces, in case of unexpected overtime, severe weather conditions, or the early departure of a carpool driver) by offering a chit or reimbursement for taxi, carshare or rental car usage. Limits on annual usage or cost per employee may be set, although across North America the actual rates of usage are typically very low.

**Alternative work arrangements.** A number of alternatives to the standard 9-to-5, Monday-to-Friday workweek can support sustainable commuting (and work-life balance) at workplaces:

- Flexible working hours allow transit commuters to take advantage of the fastest and most convenient transit services, and allow potential carpoolers to include people who work slightly different schedules in their search for carpool partners. They also allow active commuters to travel at least one direction in daylight, either in the morning or the afternoon, during the winter.
- Compressed workweeks allow employees to work their required hours over fewer days (e.g. five days in four, or ten days in nine), eliminating the need to commute on certain days. For employees, this can promote work-life balance and gives flexibility for appointments. For employers, this can permit extended service hours as well as reduced parking demands if employees stagger their days off.
- Telework is a normal part of many workplaces. It helps reduce commuting activity, and can lead to significant cost savings through workspace sharing. Telework initiatives involve many stakeholders, and may face as much resistance as support within an organization. Consultation, education and training are helpful.

**Local business travel options.** A common obstacle for people who might prefer to not drive to work is that their employer requires them to bring a car to work so they can make business trips during the day. Giving employees convenient alternatives to private cars for local business travel during the workday makes walking, cycling, transit or carpooling in someone else's car more practical.


- Walking and cycling—Active transportation can be a convenient and enjoyable way to make short business trips. They can also reduce employer expenses, although they may require extra travel time. Providing a fleet of shared bikes, or reimbursing cyclists for the kilometres they ride, are inexpensive ways to validate their choice.
- Public transit—Transit can be convenient and inexpensive compared to driving.
   OC Transpo's PRESTO cards are transferable among employees and automatically reloadable, making them the perfect tool for enabling transit use during the day.
- *Ridesharing*—When multiple employees attend the same off-site meeting or event, they can be reminded to carpool whenever possible.
- Taxis or ride-hailing—Taxis and ride-hailing can eliminate parking costs, save time and eliminate collision liability concerns. Taxi chits eliminate cash transactions and minimize paperwork.
  - Fleet vehicles or carsharing—Fleet vehicles can be cost-effective for high travel volumes, while carsharing is a great option for less frequent trips.
  - o *Interoffice shuttles*—Employers with multiple worksites in the region could use a shuttle service to move people as well as mail or supplies.
  - Videoconferencing—New technologies mean that staying in the office to hold meetings electronically is more viable, affordable and productive than ever.

Commuter incentives. Financial incentives can help create a level playing field and support commuting by sustainable modes. A "commuting allowance" given to all employees as a taxable benefit is one such incentive; employees who choose to drive could then be charged for parking, while other employees could use the allowance for transit fares or cycling equipment, or for spending or saving. (Note that in the United States this practice is known as "parking cash-out," and is popular because commuting allowances are not taxable up to a certain limit). Alternatively, a monthly commuting allowance for non-driving employees would give drivers an incentive to choose a different commuting mode. Another practical incentive for active commuters or transit users is to offer them discounted "rainy day" parking passes for a small number of days each month.

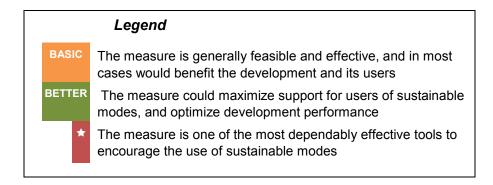
**On-site amenities.** Developments that offer services to limit employees' need for a car during their commute (e.g. to drop off clothing at the dry cleaners) or during their workday (e.g. to buy lunch) can free employees to make the commuting decision that otherwise works best for them.

### **TDM Measures Checklist:**

Non-Residential Developments (office, institutional, retail or industrial)



|        | TDM            | measures: Non-residential developments                                                                                      |            | Check if proposed & add descriptions |
|--------|----------------|-----------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------|
|        | 1.             | TDM PROGRAM MANAGEMENT                                                                                                      |            |                                      |
|        | 1.1            | Program coordinator                                                                                                         |            |                                      |
| BASIC  | ★ 1.1.1        | Designate an internal coordinator, or contract with an external coordinator                                                 | $\Delta$   | Currently in place                   |
|        | 1.2            | Travel surveys                                                                                                              |            |                                      |
| BETTER | 1.2.1          | Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress  | <b>\</b>   | Currently in place                   |
|        | 2.             | WALKING AND CYCLING                                                                                                         |            |                                      |
|        | 2.1            | Information on walking/cycling routes & destin                                                                              | ation      | S                                    |
| BASIC  | 2.1.1          | Display local area maps with walking/cycling access routes and key destinations at major entrances                          | Ø          |                                      |
|        | 2.2            | Bicycle skills training                                                                                                     |            |                                      |
|        |                | Commuter travel                                                                                                             |            |                                      |
| BETTER | <b>★</b> 2.2.1 | Offer on-site cycling courses for commuters, or subsidize off-site courses                                                  |            | N/A                                  |
|        | 2.3            | Valet bike parking                                                                                                          |            |                                      |
|        |                | Visitor travel                                                                                                              |            |                                      |
| BETTER | 2.3.1          | Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games) | <b>▽</b> ⁄ |                                      |


|          | TDM   | measures: Non-residential developments                                                                                                    |           | Check if proposed & add descriptions |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|
|          | 3.    | TRANSIT                                                                                                                                   |           |                                      |
|          | 3.1   | Transit information                                                                                                                       |           |                                      |
| BASIC    | 3.1.1 | Display relevant transit schedules and route maps at entrances                                                                            | Ø         |                                      |
| BASIC    | 3.1.2 | Provide online links to OC Transpo and STO information                                                                                    | $\square$ |                                      |
| BETTER   | 3.1.3 | Provide real-time arrival information display at entrances                                                                                |           | N/A                                  |
|          | 3.2   | Transit fare incentives                                                                                                                   |           |                                      |
|          |       | Commuter travel                                                                                                                           |           |                                      |
| BETTER   | 3.2.1 | Offer preloaded PRESTO cards to encourage commuters to use transit                                                                        |           | N/A                                  |
| BETTER * | 3.2.2 | Subsidize or reimburse monthly transit pass purchases by employees                                                                        |           | N/A                                  |
|          |       | Visitor travel                                                                                                                            |           |                                      |
| BETTER   | 3.2.3 | Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)                                      | $\Delta$  |                                      |
|          | 3.3   | Enhanced public transit service                                                                                                           |           |                                      |
|          |       | Commuter travel                                                                                                                           |           |                                      |
| BETTER   | 3.3.1 | Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)                                          |           |                                      |
|          |       | Visitor travel                                                                                                                            |           |                                      |
| BETTER   | 3.3.2 | Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)                                       |           |                                      |
|          | 3.4   | Private transit service                                                                                                                   |           |                                      |
|          |       | Commuter travel                                                                                                                           |           |                                      |
| BETTER   | 3.4.1 | Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)    |           |                                      |
|          |       | Visitor travel                                                                                                                            |           |                                      |
| BETTER   | 3.4.2 | Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games) |           |                                      |

|        | TDM     | measures: Non-residential developments                                                        |             | Check if proposed & add descriptions |
|--------|---------|-----------------------------------------------------------------------------------------------|-------------|--------------------------------------|
|        | 4.      | RIDESHARING                                                                                   |             |                                      |
|        | 4.1     | Ridematching service                                                                          |             |                                      |
|        |         | Commuter travel                                                                               |             |                                      |
| BASIC  | ★ 4.1.1 | Provide a dedicated ridematching portal at OttawaRideMatch.com                                |             | N/A                                  |
|        | 4.2     | Carpool parking price incentives                                                              |             |                                      |
|        |         | Commuter travel                                                                               |             |                                      |
| BETTER | 4.2.1   | Provide discounts on parking costs for registered carpools                                    |             | N/A                                  |
|        | 4.3     | Vanpool service                                                                               |             |                                      |
|        |         | Commuter travel                                                                               |             |                                      |
| BETTER | 4.3.1   | Provide a vanpooling service for long-distance commuters                                      |             | N/A                                  |
|        | 5.      | CARSHARING & BIKESHARING                                                                      |             |                                      |
|        | 5.1     | Bikeshare stations & memberships                                                              |             |                                      |
| BETTER | 5.1.1   | Contract with provider to install on-site bikeshare station for use by commuters and visitors |             | N/A                                  |
|        |         | Commuter travel                                                                               |             |                                      |
| BETTER | 5.1.2   | Provide employees with bikeshare memberships for local business travel                        |             | N/A                                  |
|        | 5.2     | Carshare vehicles & memberships                                                               |             |                                      |
|        |         | Commuter travel                                                                               |             |                                      |
| BETTER | 5.2.1   | Contract with provider to install on-site carshare vehicles and promote their use by tenants  |             | N/A                                  |
| BETTER | 5.2.2   | Provide employees with carshare memberships for local business travel                         |             | N/A                                  |
|        | 6.      | PARKING                                                                                       |             |                                      |
|        | 6.1     | Priced parking                                                                                |             |                                      |
|        |         | Commuter travel                                                                               |             |                                      |
| BASIC  | ★ 6.1.1 | Charge for long-term parking (daily, weekly, monthly)                                         | $\triangle$ |                                      |
| BASIC  | 6.1.2   | Unbundle parking cost from lease rates at multi-tenant sites                                  | Ž           |                                      |
|        |         | Visitor travel                                                                                |             |                                      |
| BETTER | 6.1.3   | Charge for short-term parking (hourly)                                                        | $\square$   |                                      |

|          | TDM        | measures: Non-residential developments                                                                                                              |           | Check if proposed & add descriptions |
|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|
|          | 7.         | TDM MARKETING & COMMUNICATIONS                                                                                                                      |           |                                      |
|          | 7.1        | Multimodal travel information                                                                                                                       |           |                                      |
| ,        |            | Commuter travel                                                                                                                                     |           |                                      |
| BASIC ★  | 7.1.1      | package to new/relocating employees and students                                                                                                    | Ø         |                                      |
|          | l <b>-</b> | Visitor travel                                                                                                                                      |           |                                      |
| BETTER ★ | 7.1.2      | Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games) | $\square$ |                                      |
|          | 7.2        | Personalized trip planning                                                                                                                          |           |                                      |
|          |            | Commuter travel                                                                                                                                     |           |                                      |
| BETTER ★ | 7.2.1      | Offer personalized trip planning to new/relocating employees                                                                                        |           | N/A                                  |
|          | 7.3        | Promotions                                                                                                                                          |           |                                      |
|          |            | Commuter travel                                                                                                                                     |           |                                      |
| BETTER   | 7.3.1      | Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes                              | Ø         |                                      |
|          | 8.         | OTHER INCENTIVES & AMENITIES                                                                                                                        |           |                                      |
|          | 8.1        | Emergency ride home                                                                                                                                 |           |                                      |
|          |            | Commuter travel                                                                                                                                     | ı         |                                      |
| BETTER ★ | 8.1.1      | Provide emergency ride home service to non-driving commuters                                                                                        |           | N/A                                  |
|          | 8.2        | Alternative work arrangements                                                                                                                       |           |                                      |
|          | 1          | Commuter travel                                                                                                                                     |           |                                      |
| BASIC ★  | 8.2.1      | Encourage flexible work hours                                                                                                                       |           |                                      |
| BETTER   | 8.2.2      | Encourage compressed workweeks                                                                                                                      |           | N/A                                  |
| BETTER ★ |            | Encourage telework                                                                                                                                  |           |                                      |
|          | 8.3        | Local business travel options                                                                                                                       |           |                                      |
|          |            | Commuter travel                                                                                                                                     | 1         |                                      |
| BASIC ★  | 8.3.1      | Provide local business travel options that minimize the need for employees to bring a personal car to work                                          |           | N/A                                  |
|          | 8.4        | Commuter incentives                                                                                                                                 |           |                                      |
|          |            | Commuter travel                                                                                                                                     |           |                                      |
| BETTER   | 8.4.1      | Offer employees a taxable, mode-neutral commuting allowance                                                                                         |           | N/A                                  |
|          | 8.5        | On-site amenities                                                                                                                                   |           |                                      |
|          |            | Commuter travel                                                                                                                                     | ,         |                                      |
| BETTER   | 8.5.1      | Provide on-site amenities/services to minimize mid-day or mid-commute errands                                                                       |           | N/A                                  |

### **TDM Measures Checklist:**

Residential Developments (multi-family, condominium or subdivision)



|        | TDM     | measures: Residential developments                                                                                             | Check if proposed & add descriptions |
|--------|---------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|        | 1.      | TDM PROGRAM MANAGEMENT                                                                                                         |                                      |
|        | 1.1     | Program coordinator                                                                                                            |                                      |
| BASIC  | ★ 1.1.1 | Designate an internal coordinator, or contract with an external coordinator                                                    |                                      |
|        | 1.2     | Travel surveys                                                                                                                 |                                      |
| BETTER | 1.2.1   | Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress     |                                      |
|        | 2.      | WALKING AND CYCLING                                                                                                            |                                      |
|        | 2.1     | Information on walking/cycling routes & des                                                                                    | tinations                            |
| BASIC  | 2.1.1   | Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium) |                                      |
|        | 2.2     | Bicycle skills training                                                                                                        |                                      |
| BETTER | 2.2.1   | Offer on-site cycling courses for residents, or subsidize off-site courses                                                     |                                      |

Residential TDM Details to be addressed through subsequent phases of permitting and approvals (i.e. Phase 3 of Lansdowne 2.0)

|        |   | TDM   | measures: Residential developments                                                                                                | Check if proposed & add descriptions |
|--------|---|-------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|        |   | 3.    | TRANSIT                                                                                                                           |                                      |
|        |   | 3.1   | Transit information                                                                                                               |                                      |
| BASIC  |   | 3.1.1 | Display relevant transit schedules and route maps at entrances (multi-family, condominium)                                        |                                      |
| BETTER |   | 3.1.2 | Provide real-time arrival information display at entrances (multi-family, condominium)                                            |                                      |
|        |   | 3.2   | Transit fare incentives                                                                                                           |                                      |
| BASIC  | * | 3.2.1 | Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit   |                                      |
| BETTER |   | 3.2.2 | Offer at least one year of free monthly transit passes on residence purchase/move-in                                              |                                      |
|        |   | 3.3   | Enhanced public transit service                                                                                                   |                                      |
| BETTER | * | 3.3.1 | Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision) |                                      |
|        |   | 3.4   | Private transit service                                                                                                           |                                      |
| BETTER |   | 3.4.1 | Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)                      |                                      |
|        |   | 4.    | CARSHARING & BIKESHARING                                                                                                          |                                      |
|        |   | 4.1   | Bikeshare stations & memberships                                                                                                  |                                      |
| BETTER |   | 4.1.1 | Contract with provider to install on-site bikeshare station ( <i>multi-family</i> )                                               |                                      |
| BETTER |   | 4.1.2 | Provide residents with bikeshare memberships, either free or subsidized (multi-family)                                            |                                      |
|        |   | 4.2   | Carshare vehicles & memberships                                                                                                   |                                      |
| BETTER |   | 4.2.1 | Contract with provider to install on-site carshare vehicles and promote their use by residents                                    |                                      |
| BETTER |   | 4.2.2 | Provide residents with carshare memberships, either free or subsidized                                                            |                                      |
|        |   | 5.    | PARKING                                                                                                                           |                                      |
|        |   | 5.1   | Priced parking                                                                                                                    |                                      |
| BASIC  | * | 5.1.1 | Unbundle parking cost from purchase price (condominium)                                                                           |                                      |
| BASIC  | * | 5.1.2 | Unbundle parking cost from monthly rent (multi-family)                                                                            |                                      |

Residential TDM Details to be addressed through subsequent phases of permitting and approvals (i.e. Phase 3 of Lansdowne 2.0)

|            | TDM   | measures: Residential developments                                      | Check if proposed & add descriptions |  |  |  |  |  |  |  |
|------------|-------|-------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| 6          | 6.    | TDM MARKETING & COMMUNICATIONS                                          |                                      |  |  |  |  |  |  |  |
| 6          | 6.1   | Multimodal travel information                                           |                                      |  |  |  |  |  |  |  |
| BASIC ★ 6  | 5.1.1 | Provide a multimodal travel option information package to new residents |                                      |  |  |  |  |  |  |  |
| 6          | 6.2   | Personalized trip planning                                              |                                      |  |  |  |  |  |  |  |
| BETTER ★ 6 | 3.2.1 | Offer personalized trip planning to new residents                       |                                      |  |  |  |  |  |  |  |

Residential TDM Details to be addressed through subsequent phases of permitting and approvals (i.e. Phase 3 of Lansdowne 2.0)

# APPENDIX D - SYNCHRO SUMMARY SHEETS

## **Existing scenario**

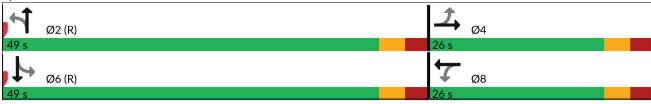
2024 Weekday AM Peak Hour

1: Bank & Fifth 08/01/2024

|                        | ≯     | <b>→</b> | <     | +              | •     | †     | <b>\</b> | <b>↓</b> |  |
|------------------------|-------|----------|-------|----------------|-------|-------|----------|----------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT            | NBL   | NBT   | SBL      | SBT      |  |
| Lane Configurations    |       | 4        | 7     | T <sub>P</sub> |       | 474   |          | 4TÞ      |  |
| Traffic Volume (vph)   | 37    | 57       | 47    | 49             | 9     | 534   | 19       | 410      |  |
| Future Volume (vph)    | 37    | 57       | 47    | 49             | 9     | 534   | 19       | 410      |  |
| Lane Group Flow (vph)  | 0     | 135      | 52    | 86             | 0     | 635   | 0        | 515      |  |
| Turn Type              | Perm  | NA       | Perm  | NA             | Perm  | NA    | Perm     | NA       |  |
| Protected Phases       |       | 4        |       | 8              |       | 2     |          | 6        |  |
| Permitted Phases       | 4     |          | 8     |                | 2     |       | 6        |          |  |
| Minimum Split (s)      | 26.0  | 26.0     | 26.0  | 26.0           | 49.0  | 49.0  | 49.0     | 49.0     |  |
| Total Split (s)        | 26.0  | 26.0     | 26.0  | 26.0           | 49.0  | 49.0  | 49.0     | 49.0     |  |
| Total Split (%)        | 34.7% | 34.7%    | 34.7% | 34.7%          | 65.3% | 65.3% | 65.3%    | 65.3%    |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0            | 3.0   | 3.0   | 3.0      | 3.0      |  |
| All-Red Time (s)       | 2.5   | 2.5      | 2.5   | 2.5            | 2.5   | 2.5   | 2.5      | 2.5      |  |
| Lost Time Adjust (s)   |       | 0.0      | 0.0   | 0.0            |       | 0.0   |          | 0.0      |  |
| Total Lost Time (s)    |       | 5.5      | 5.5   | 5.5            |       | 5.5   |          | 5.5      |  |
| Lead/Lag               |       |          |       |                |       |       |          |          |  |
| Lead-Lag Optimize?     |       |          |       |                |       |       |          |          |  |
| Act Effct Green (s)    |       | 20.5     | 20.5  | 20.5           |       | 43.5  |          | 43.5     |  |
| Actuated g/C Ratio     |       | 0.27     | 0.27  | 0.27           |       | 0.58  |          | 0.58     |  |
| v/c Ratio              |       | 0.36     | 0.18  | 0.21           |       | 0.38  |          | 0.32     |  |
| Control Delay (s/veh)  |       | 21.9     | 22.9  | 15.9           |       | 3.7   |          | 8.5      |  |
| Queue Delay            |       | 0.0      | 0.0   | 0.0            |       | 0.0   |          | 0.0      |  |
| Total Delay (s/veh)    |       | 21.9     | 22.9  | 15.9           |       | 3.7   |          | 8.5      |  |
| LOS                    |       | С        | С     | В              |       | Α     |          | Α        |  |
| Approach Delay (s/veh) |       | 21.9     |       | 18.5           |       | 3.7   |          | 8.5      |  |
| Approach LOS           |       | С        |       | В              |       | Α     |          | Α        |  |
| Queue Length 50th (m)  |       | 12.9     | 5.6   | 5.7            |       | 6.6   |          | 17.1     |  |
| Queue Length 95th (m)  |       | 27.2     | 14.0  | 16.0           |       | 8.1   |          | 25.6     |  |
| Internal Link Dist (m) |       | 49.7     |       | 112.4          |       | 195.6 |          | 190.0    |  |
| Turn Bay Length (m)    |       |          | 45.0  |                |       |       |          |          |  |
| Base Capacity (vph)    |       | 376      | 290   | 418            |       | 1655  |          | 1594     |  |
| Starvation Cap Reductn |       | 0        | 0     | 0              |       | 0     |          | 0        |  |
| Spillback Cap Reductn  |       | 0        | 0     | 0              |       | 0     |          | 0        |  |
| Storage Cap Reductn    |       | 0        | 0     | 0              |       | 0     |          | 0        |  |
| Reduced v/c Ratio      |       | 0.36     | 0.18  | 0.21           |       | 0.38  |          | 0.32     |  |
| Intersection Summary   |       |          |       |                |       |       |          |          |  |

Cycle Length: 75

Actuated Cycle Length: 75


Offset: 33 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75 Control Type: Pretimed Maximum v/c Ratio: 0.38

Intersection Signal Delay (s/veh): 8.6 Intersection LOS: A Intersection Capacity Utilization 53.5% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth



### 2: Bank & Holmwood

|                                     | <b>→</b>     | •          | †         | <b>/</b>  | <b>↓</b>    |              |
|-------------------------------------|--------------|------------|-----------|-----------|-------------|--------------|
| Lane Group                          | EBT          | NBL        | NBT       | SBL       | SBT         | Ø3           |
| Lane Configurations                 | 4            | HUL        | 414       | <u> </u>  | 414         |              |
| Traffic Volume (vph)                | 21           | 16         | 521       | 11        | 366         |              |
| Future Volume (vph)                 | 21           | 16         | 521       | 11        | 366         |              |
| Lane Group Flow (vph)               | 85           | 0          | 627       | 0         | 443         |              |
| Turn Type                           | NA           | Perm       | NA        | Perm      | NA          |              |
| Protected Phases                    | 4            | . 01111    | 2         | . 01111   | 6           | 3            |
| Permitted Phases                    | 7            | 2          | _         | 6         | 0           |              |
| Detector Phase                      | 4            | 2          | 2         | 6         | 6           |              |
| Switch Phase                        |              | _          | _         | •         | •           |              |
| Minimum Initial (s)                 | 4.4          | 10.0       | 10.0      | 4.0       | 4.0         | 1.0          |
| Minimum Split (s)                   | 22.0         | 48.0       | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (s)                     | 22.0         | 48.0       | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (%)                     | 29.3%        | 64.0%      | 64.0%     | 64.0%     | 64.0%       | 7%           |
| Yellow Time (s)                     | 3.0          | 3.0        | 3.0       | 3.0       | 3.0         | 2.0          |
| All-Red Time (s)                    | 2.6          | 2.2        | 2.2       | 2.2       | 2.2         | 0.0          |
| Lost Time Adjust (s)                | 0.0          | <i>L.L</i> | 0.0       | ۷.۲       | 0.0         | 0.0          |
| Total Lost Time (s)                 | 5.6          |            | 5.2       |           | 5.2         |              |
| Lead/Lag                            | Lag          |            | 0.2       |           | 0.2         | Lead         |
| Lead-Lag Optimize?                  | Lag          |            |           |           |             | Load         |
| Recall Mode                         | None         | C-Max      | C-Max     | C-Max     | C-Max       | None         |
| Act Effct Green (s)                 | 10.0         | O-IVIAX    | 57.5      | O-IVIAX   | 57.5        | NULLE        |
| Actuated g/C Ratio                  | 0.13         |            | 0.77      |           | 0.77        |              |
| v/c Ratio                           | 0.13         |            | 0.77      |           | 0.77        |              |
| Control Delay (s/veh)               | 37.6         |            | 1.0       |           | 3.1         |              |
| Queue Delay                         | 0.0          |            | 0.0       |           | 0.0         |              |
| Total Delay (s/veh)                 | 37.6         |            | 1.0       |           | 3.1         |              |
| LOS                                 | 37.6<br>D    |            | 1.0<br>A  |           | 3.1<br>A    |              |
|                                     | 37.6         |            | 1.0       |           | 3.1         |              |
| Approach Delay (s/veh) Approach LOS | 37.6<br>D    |            |           |           |             |              |
|                                     |              |            | A<br>1.7  |           | A           |              |
| Queue Length 50th (m)               | 11.3         |            |           |           | 6.9         |              |
| Queue Length 95th (m)               | 22.6         |            | 4.5       |           | 13.2        |              |
| Internal Link Dist (m)              | 39.8         |            | 31.5      |           | 195.6       |              |
| Turn Bay Length (m)                 | .000         |            | 0444      |           | 0454        |              |
| Base Capacity (vph)                 | 298          |            | 2141      |           | 2154        |              |
| Starvation Cap Reductn              | 0            |            | 0         |           | 0           |              |
| Spillback Cap Reductn               | 0            |            | 0         |           | 0           |              |
| Storage Cap Reductn                 | 0            |            | 0         |           | 0           |              |
| Reduced v/c Ratio                   | 0.29         |            | 0.29      |           | 0.21        |              |
| Intersection Summary                |              |            |           |           |             |              |
| Cycle Length: 75                    |              |            |           |           |             |              |
| Actuated Cycle Length: 75           |              |            |           |           |             |              |
| Offset: 28 (37%), Reference         | ced to phas  | e 2:NBT    | L and 6:S | SBTL, Sta | art of Gree | en           |
| Natural Cycle: 75                   |              |            |           |           |             |              |
| Control Type: Actuated-Co           | ordinated    |            |           |           |             |              |
| Maximum v/c Ratio: 0.47             |              |            |           |           |             |              |
| Intersection Signal Delay (         | •            |            |           |           | ntersectio  |              |
| Intersection Capacity Utiliz        | cation 51.4° | %          |           | I         | CU Level    | of Service A |
| Analysis Period (min) 15            |              |            |           |           |             |              |

Splits and Phases: 2: Bank & Holmwood



### 3: Bank & Exhibition

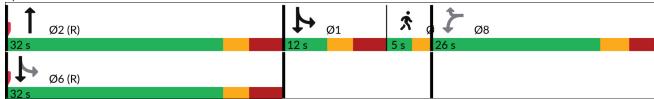
|                        | •     | *     | <b>†</b> | -      | <b>↓</b> |       |      |  |
|------------------------|-------|-------|----------|--------|----------|-------|------|--|
| Lane Group             | WBL   | WBR   | NBT      | SBL    | SBT      | Ø6    | Ø7   |  |
| Lane Configurations    | 7     | 7     | ħβ       | *      | 44       |       |      |  |
| Traffic Volume (vph)   | 51    | 32    | 495      | 64     | 332      |       |      |  |
| Future Volume (vph)    | 51    | 32    | 495      | 64     | 332      |       |      |  |
| Lane Group Flow (vph)  | 57    | 36    | 661      | 71     | 369      |       |      |  |
| Turn Type              | Perm  | Perm  | NA       | custom | NA       |       |      |  |
| Protected Phases       |       |       | 2        | 1      | 16       | 6     | 7    |  |
| Permitted Phases       | 8     | 8     |          | 6      |          |       |      |  |
| Detector Phase         | 8     | 8     | 2        | 1      | 16       |       |      |  |
| Switch Phase           |       |       |          |        |          |       |      |  |
| Minimum Initial (s)    | 10.0  | 10.0  | 10.0     | 1.0    |          | 10.0  | 4.0  |  |
| Minimum Split (s)      | 26.0  | 26.0  | 27.0     | 7.9    |          | 44.0  | 8.0  |  |
| Total Split (s)        | 26.0  | 26.0  | 32.0     | 12.0   |          | 32.0  | 5.0  |  |
| Total Split (%)        | 34.7% | 34.7% | 42.7%    | 16.0%  |          | 43%   | 7%   |  |
| Yellow Time (s)        | 3.3   | 3.3   | 3.0      | 3.0    |          | 3.0   | 2.0  |  |
| All-Red Time (s)       | 3.0   | 3.0   | 3.9      | 3.9    |          | 3.9   | 0.0  |  |
| Lost Time Adjust (s)   | 0.0   | 0.0   | 0.0      | 0.0    |          |       |      |  |
| Total Lost Time (s)    | 6.3   | 6.3   | 6.9      | 6.9    |          |       |      |  |
| Lead/Lag               |       |       |          | Lead   |          |       | Lag  |  |
| Lead-Lag Optimize?     |       |       |          | Yes    |          |       | Yes  |  |
| Recall Mode            | None  | None  | C-Max    | None   |          | C-Max | None |  |
| Act Effct Green (s)    | 10.3  | 10.3  | 42.7     | 47.8   | 56.1     |       |      |  |
| Actuated g/C Ratio     | 0.14  | 0.14  | 0.57     | 0.64   | 0.75     |       |      |  |
| v/c Ratio              | 0.29  | 0.20  | 0.41     | 0.17   | 0.16     |       |      |  |
| Control Delay (s/veh)  | 33.0  | 13.2  | 10.6     | 11.6   | 9.0      |       |      |  |
| Queue Delay            | 0.0   | 0.0   | 0.0      | 0.0    | 0.0      |       |      |  |
| Total Delay (s/veh)    | 33.0  | 13.2  | 10.6     | 11.6   | 9.0      |       |      |  |
| LOS                    | С     | В     | В        | В      | Α        |       |      |  |
| Approach Delay (s/veh) | 25.3  |       | 10.6     |        | 9.4      |       |      |  |
| Approach LOS           | С     |       | В        |        | Α        |       |      |  |
| Queue Length 50th (m)  | 7.4   | 0.0   | 26.3     | 5.7    | 15.7     |       |      |  |
| Queue Length 95th (m)  | 17.2  | 7.4   | 40.3     | 12.2   | 22.9     |       |      |  |
| Internal Link Dist (m) | 30.6  |       | 33.7     |        | 44.8     |       |      |  |
| Turn Bay Length (m)    |       |       |          | 40.0   |          |       |      |  |
| Base Capacity (vph)    | 377   | 316   | 1623     | 427    | 2350     |       |      |  |
| Starvation Cap Reductn | 0     | 0     | 0        | 0      | 0        |       |      |  |
| Spillback Cap Reductn  | 0     | 0     | 0        | 0      | 0        |       |      |  |
| Storage Cap Reductn    | 0     | 0     | 0        | 0      | 0        |       |      |  |
| Reduced v/c Ratio      | 0.15  | 0.11  | 0.41     | 0.17   | 0.16     |       |      |  |
| Intersection Summary   |       |       |          |        |          |       |      |  |

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 25 (33%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 90

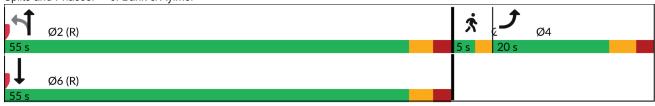

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.41

Intersection Signal Delay (s/veh): 11.3 Intersection LOS: B Intersection Capacity Utilization 55.3% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition




### 6: Bank & Aylmer

|                                | ۶         | 1        | <b>†</b> | ļ           |                     | _ |
|--------------------------------|-----------|----------|----------|-------------|---------------------|---|
| Lane Group                     | EBL       | NBL      | NBT      | SBT         | Ø3                  |   |
| Lane Configurations            | <b>W</b>  | 1100     | 414      | <b>↑</b> ⊅  |                     |   |
| Traffic Volume (vph)           | 58        | 14       | 690      | 509         |                     |   |
| Future Volume (vph)            | 58        | 14       | 690      | 509         |                     |   |
| Lane Group Flow (vph)          | 71        | 0        | 783      | 622         |                     |   |
| Turn Type                      | Prot      | Perm     | NA       | NA          |                     |   |
| Protected Phases               | 4         |          | 2        | 6           | 3                   |   |
| Permitted Phases               | 4         | 2        |          | 6           |                     |   |
| Detector Phase                 | 4         | 2        | 2        | 6           |                     |   |
| Switch Phase                   |           |          |          |             |                     |   |
| Minimum Initial (s)            | 10.0      | 30.0     | 30.0     | 30.0        | 1.0                 |   |
| Minimum Split (s)              | 20.0      | 55.0     | 55.0     | 55.0        | 5.0                 |   |
| Total Split (s)                | 20.0      | 55.0     | 55.0     | 55.0        | 5.0                 |   |
| Total Split (%)                | 25.0%     | 68.8%    | 68.8%    | 68.8%       | 6%                  |   |
| Yellow Time (s)                | 3.3       | 3.0      | 3.0      | 3.0         | 2.0                 |   |
| All-Red Time (s)               | 2.2       | 2.2      | 2.2      | 2.2         | 0.0                 |   |
| Lost Time Adjust (s)           | 0.0       |          | 0.0      | 0.0         |                     |   |
| Total Lost Time (s)            | 5.5       |          | 5.2      | 5.2         |                     |   |
| Lead/Lag                       | Lag       |          |          |             | Lead                |   |
| Lead-Lag Optimize?             |           |          |          |             |                     |   |
| Recall Mode                    | Ped       | C-Max    | C-Max    | C-Max       | Max                 |   |
| Act Effct Green (s)            | 14.0      |          | 50.3     | 50.3        |                     |   |
| Actuated g/C Ratio             | 0.18      |          | 0.63     | 0.63        |                     |   |
| v/c Ratio                      | 0.26      |          | 0.42     | 0.33        |                     |   |
| Control Delay (s/veh)          | 29.5      |          | 3.6      | 7.2         |                     |   |
| Queue Delay                    | 0.0       |          | 0.0      | 0.0         |                     |   |
| Total Delay (s/veh)            | 29.5      |          | 3.6      | 7.2         |                     |   |
| LOS                            | С         |          | Α        | Α           |                     |   |
| Approach Delay (s/veh)         | 29.5      |          | 3.6      | 7.2         |                     |   |
| Approach LOS                   | С         |          | A        | A           |                     |   |
| Queue Length 50th (m)          | 8.6       |          | 10.4     | 19.6        |                     |   |
| Queue Length 95th (m)          | 19.9      |          | m14.6    | 28.1        |                     |   |
| Internal Link Dist (m)         | 76.7      |          | 28.1     | 10.1        |                     |   |
| Turn Bay Length (m)            | 60.       |          | 1015     | 46==        |                     |   |
| Base Capacity (vph)            | 281       |          | 1848     | 1877        |                     |   |
| Starvation Cap Reductn         | 0         |          | 0        | 0           |                     |   |
| Spillback Cap Reductn          | 0         |          | 0        | 0           |                     |   |
| Storage Cap Reductn            | 0         |          | 0        | 0           |                     |   |
| Reduced v/c Ratio              | 0.25      |          | 0.42     | 0.33        |                     |   |
| Intersection Summary           |           |          |          |             |                     |   |
| Cycle Length: 80               |           |          |          |             |                     |   |
| Actuated Cycle Length: 80      |           |          |          |             |                     |   |
| Offset: 4 (5%), Referenced t   | o phase   | 2:NBTL a | and 6:SB | T, Start of | Green               |   |
| Natural Cycle: 80              | 1         |          |          | ,           |                     |   |
| Control Type: Actuated-Cool    | rdinated  |          |          |             |                     |   |
| Maximum v/c Ratio: 0.42        |           |          |          |             |                     |   |
| Intersection Signal Delay (s/  | veh): 6.4 |          |          | Ir          | tersection LOS: A   |   |
| Intersection Capacity Utilizat |           |          |          |             | CU Level of Service | A |
| Analysis Period (min) 15       |           |          |          |             |                     |   |

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Bank & Aylmer



### 7: Bank & Sunnyside

|                        | ۶     | -     | •     | <b>←</b> | 4     | †      | <b>&gt;</b> | <b>↓</b> |      |       |      |  |
|------------------------|-------|-------|-------|----------|-------|--------|-------------|----------|------|-------|------|--|
| Lane Group             | EBL   | EBT   | WBL   | WBT      | NBL   | NBT    | SBL         | SBT      | Ø3   | Ø6    | Ø7   |  |
| Lane Configurations    |       | 4     |       | 4        |       | 475    |             | €î∌      |      |       |      |  |
| Traffic Volume (vph)   | 56    | 58    | 18    | 58       | 22    | 945    | 183         | 374      |      |       |      |  |
| Future Volume (vph)    | 56    | 58    | 18    | 58       | 22    | 945    | 183         | 374      |      |       |      |  |
| Lane Group Flow (vph)  | 0     | 139   | 0     | 380      | 0     | 1088   | 0           | 666      |      |       |      |  |
| Turn Type              | Perm  | NA    | Perm  | NA       | Perm  | NA     | custom      | NA       |      |       |      |  |
| Protected Phases       |       | 4     |       | 8        |       | 2      | 1           | 16       | 3    | 6     | 7    |  |
| Permitted Phases       | 4     |       | 8     |          | 2     |        | 6           |          |      |       |      |  |
| Detector Phase         | 4     | 4     | 8     | 8        | 2     | 2      | 1           | 16       |      |       |      |  |
| Switch Phase           |       |       |       |          |       |        |             |          |      |       |      |  |
| Minimum Initial (s)    | 6.4   | 6.4   | 5.3   | 5.3      | 17.0  | 17.0   | 5.0         |          | 1.0  | 17.0  | 1.0  |  |
| Minimum Split (s)      | 26.0  | 26.0  | 26.0  | 26.0     | 38.0  | 38.0   | 11.0        |          | 5.0  | 49.0  | 5.0  |  |
| Total Split (s)        | 26.0  | 26.0  | 26.0  | 26.0     | 38.0  | 38.0   | 11.0        |          | 5.0  | 38.0  | 5.0  |  |
| Total Split (%)        | 32.5% | 32.5% | 32.5% | 32.5%    | 47.5% | 47.5%  | 13.8%       |          | 6%   | 48%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0    | 3.0         |          | 2.0  | 3.0   | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6   | 2.6   | 2.6      | 3.0   | 3.0    | 2.9         |          | 0.0  | 3.0   | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0   |       | 0.0      |       | 0.0    |             |          |      |       |      |  |
| Total Lost Time (s)    |       | 5.6   |       | 5.6      |       | 6.0    |             |          |      |       |      |  |
| Lead/Lag               | Lag   | Lag   | Lag   | Lag      |       |        |             |          | Lead |       | Lead |  |
| Lead-Lag Optimize?     |       |       | Yes   | Yes      |       |        |             |          |      |       | Yes  |  |
| Recall Mode            | None  | None  | None  | None     | C-Max |        | None        |          | None | C-Max | None |  |
| Act Effct Green (s)    |       | 20.2  |       | 20.2     |       | 34.4   |             | 42.4     |      |       |      |  |
| Actuated g/C Ratio     |       | 0.25  |       | 0.25     |       | 0.43   |             | 0.53     |      |       |      |  |
| v/c Ratio              |       | 0.68  |       | 0.87     |       | 0.86   |             | 0.67     |      |       |      |  |
| Control Delay (s/veh)  |       | 43.0  |       | 32.4     |       | 30.6   |             | 19.5     |      |       |      |  |
| Queue Delay            |       | 0.0   |       | 0.0      |       | 0.0    |             | 0.0      |      |       |      |  |
| Total Delay (s/veh)    |       | 43.0  |       | 32.4     |       | 30.6   |             | 19.5     |      |       |      |  |
| LOS                    |       | D     |       | С        |       | С      |             | В        |      |       |      |  |
| Approach Delay (s/veh) |       | 43.0  |       | 32.4     |       | 30.6   |             | 19.5     |      |       |      |  |
| Approach LOS           |       | D     |       | С        |       | С      |             | В        |      |       |      |  |
| Queue Length 50th (m)  |       | 18.1  |       | 23.2     |       | 80.4   |             | 29.9     |      |       |      |  |
| Queue Length 95th (m)  |       | 35.5  |       | #68.0    |       | #122.0 |             | #48.4    |      |       |      |  |
| Internal Link Dist (m) |       | 75.1  |       | 136.0    |       | 63.1   |             | 79.0     |      |       |      |  |
| Turn Bay Length (m)    |       |       |       |          |       |        |             |          |      |       |      |  |
| Base Capacity (vph)    |       | 231   |       | 469      |       | 1265   |             | 990      |      |       |      |  |
| Starvation Cap Reductn |       | 0     |       | 0        |       | 0      |             | 0        |      |       |      |  |
| Spillback Cap Reductn  |       | 0     |       | 0        |       | 0      |             | 0        |      |       |      |  |
| Storage Cap Reductn    |       | 0     |       | 0        |       | 0      |             | 0        |      |       |      |  |
| Reduced v/c Ratio      |       | 0.60  |       | 0.81     |       | 0.86   |             | 0.67     |      |       |      |  |

### Intersection Summary

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 79 (99%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 95

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.87

Intersection Signal Delay (s/veh): 28.4 Intersection LOS: C Intersection Capacity Utilization 92.2% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.



|                               | ۶         | 1     | <b>†</b>   | ļ        |              |           |  |
|-------------------------------|-----------|-------|------------|----------|--------------|-----------|--|
| Lane Group                    | EBL       | NBL   | NBT        | SBT      | Ø4           |           |  |
| Lane Configurations           | W         |       | 4          | <b>1</b> |              |           |  |
| Traffic Volume (vph)          | 46        | 23    | 217        | 280      |              |           |  |
| Future Volume (vph)           | 46        | 23    | 217        | 280      |              |           |  |
| Lane Group Flow (vph)         | 70        | 0     | 267        | 363      |              |           |  |
| Turn Type                     | Prot      | Perm  | NA         | NA       |              |           |  |
| Protected Phases              | 10        |       | 2          | 6        | 4            |           |  |
| Permitted Phases              |           | 2     |            |          |              |           |  |
| Detector Phase                | 10        | 2     | 2          | 6        |              |           |  |
| Switch Phase                  |           |       |            |          |              |           |  |
| Minimum Initial (s)           | 10.0      | 4.0   | 4.0        | 4.0      | 4.0          |           |  |
| Minimum Split (s)             | 22.0      | 32.0  | 32.0       | 32.0     | 16.0         |           |  |
| Total Split (s)               | 22.0      | 32.0  | 32.0       | 32.0     | 16.0         |           |  |
| Total Split (%)               | 31.4%     | 45.7% | 45.7%      | 45.7%    | 23%          |           |  |
| Yellow Time (s)               | 3.0       | 3.0   | 3.0        | 3.0      | 3.0          |           |  |
| All-Red Time (s)              | 2.7       | 3.8   | 3.8        | 3.8      | 2.7          |           |  |
| Lost Time Adjust (s)          | 0.0       |       | 0.0        | 0.0      |              |           |  |
| Total Lost Time (s)           | 5.7       |       | 6.8        | 6.8      |              |           |  |
| Lead/Lag                      |           |       |            |          |              |           |  |
| Lead-Lag Optimize?            |           |       |            |          | M            |           |  |
| Recall Mode                   | Min       | None  | None       | Max      | None         |           |  |
| Act Effct Green (s)           | 10.0      |       | 25.2       | 25.2     |              |           |  |
| Actuated g/C Ratio            | 0.21      |       | 0.53       | 0.53     |              |           |  |
| v/c Ratio                     | 0.21      |       | 0.32       | 0.42     |              |           |  |
| Control Delay (s/veh)         | 17.6      |       | 7.7        | 8.6      |              |           |  |
| Queue Delay                   | 0.0       |       | 0.0<br>7.7 | 0.0      |              |           |  |
| Total Delay (s/veh)<br>LOS    | 17.6<br>B |       | 7.7<br>A   | 8.6<br>A |              |           |  |
| Approach Delay (s/veh)        | 17.6      |       | 7.7        | 8.6      |              |           |  |
| Approach LOS                  | 17.6<br>B |       | 7.7<br>A   | 0.0<br>A |              |           |  |
| Queue Length 50th (m)         | 4.9       |       | 11.2       | 16.2     |              |           |  |
| Queue Length 95th (m)         | 12.9      |       | 21.9       | 30.5     |              |           |  |
| Internal Link Dist (m)        | 57.2      |       | 0.1        | 5.9      |              |           |  |
| Turn Bay Length (m)           | 01.2      |       | 0.1        | 0.0      |              |           |  |
| Base Capacity (vph)           | 535       |       | 841        | 873      |              |           |  |
| Starvation Cap Reductn        | 0         |       | 0          | 0/3      |              |           |  |
| Spillback Cap Reductn         | 0         |       | 0          | 0        |              |           |  |
| Storage Cap Reductn           | 0         |       | 0          | 0        |              |           |  |
| Reduced v/c Ratio             | 0.13      |       | 0.32       | 0.42     |              |           |  |
|                               | 0.10      |       | 0.02       | U. T.    |              |           |  |
| Intersection Summary          |           |       |            |          |              |           |  |
| Cycle Length: 70              |           |       |            |          |              |           |  |
| Actuated Cycle Length: 47.7   | 7         |       |            |          |              |           |  |
| Natural Cycle: 70             |           |       |            |          |              |           |  |
| Control Type: Semi Act-Unc    | oord      |       |            |          |              |           |  |
| Maximum v/c Ratio: 0.42       |           |       |            |          |              | 00.4      |  |
| Intersection Signal Delay (s/ |           |       |            |          | tersection I |           |  |
| Intersection Capacity Utiliza | tion 51.0 | %     |            | 10       | CU Level of  | Service A |  |
| Analysis Period (min) 15      |           |       |            |          |              |           |  |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



HCM 95th-tile Q

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.6  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBL  | EBT   | WBT   | WBR   | SBL  | SBR  |
| Lane Configurations        |      | सी    | 1≽    |       | 14   |      |
| Traffic Vol, veh/h         | 5    | 104   | 65    | 5     | 5    | 5    |
| Future Vol, veh/h          | 5    | 104   | 65    | 5     | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 6    | 116   | 72    | 6     | 6    | 6    |
| Number of Lanes            | 0    | 1     | 1     | 0     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | SB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  | SB   |       | ,     |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0     |       | 1    |      |
| Conflicting Approach Right |      |       | SB    |       | EB   |      |
| Conflicting Lanes Right    | 0    |       | 1     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.7  |       | 7.4   |       | 7.2  |      |
| HCM LOS                    | A    |       | Α     |       | A    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | EBLn1 | WBLn1 | SBLn1 |      |      |
| Vol Left, %                |      | 5%    | 0%    | 50%   |      |      |
| Vol Thru, %                |      | 95%   | 93%   | 0%    |      |      |
| Vol Right, %               |      | 0%    | 7%    | 50%   |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 109   | 70    | 10    |      |      |
| LT Vol                     |      | 5     | 0     | 5     |      |      |
| Through Vol                |      | 104   | 65    | 0     |      |      |
| RT Vol                     |      | 0     | 5     | 5     |      |      |
| Lane Flow Rate             |      | 121   | 78    | 11    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.135 | 0.086 | 0.013 |      |      |
| Departure Headway (Hd)     |      | 4.021 | 4.001 | 4.074 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 893   | 894   | 866   |      |      |
| Service Time               |      | 2.041 | 2.03  | 2.157 |      |      |
| HCM Lane V/C Ratio         |      | 0.135 | 0.087 | 0.013 |      |      |
| HCM Control Delay, s/veh   |      | 7.7   | 7.4   | 7.2   |      |      |
| HCM Lane LOS               |      | Α.    | Α.Τ   | Α     |      |      |
| LICM OF the tile O         |      | ^ F   | 0.2   | ^     |      |      |

0.5

0.3

0

HCM Control Delay, s/veh

HCM Lane LOS

HCM 95th-tile Q

| Intersection               |          |       |       |       |      |      |
|----------------------------|----------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.6      |       |       |       |      |      |
| Intersection LOS           | 7.0<br>A |       |       |       |      |      |
| IIIGISCUUII LOO            |          |       |       |       |      |      |
|                            |          |       |       |       |      |      |
| Movement                   | EBT      | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | f)       |       |       | र्स   | W    |      |
| Traffic Vol, veh/h         | 2        | 5     | 5     | 119   | 5    | 5    |
| Future Vol, veh/h          | 2        | 5     | 5     | 119   | 5    | 5    |
| Peak Hour Factor           | 0.90     | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2        | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 2        | 6     | 6     | 132   | 6    | 6    |
| Number of Lanes            | 1        | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB       |       | WB    |       | NB   |      |
| Opposing Approach          | WB       |       | EB    |       |      |      |
| Opposing Lanes             | 1        |       | 1     |       | 0    |      |
| Conflicting Approach Left  |          |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0        |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB       |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1        |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 6.7      |       | 7.7   |       | 7.1  |      |
| HCM LOS                    | Α        |       | Α     |       | А    |      |
|                            |          |       |       |       |      |      |
| Lane                       |          | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |          | 50%   | 0%    | 4%    |      |      |
| Vol Thru, %                |          | 0%    | 29%   | 96%   |      |      |
| Vol Right, %               |          | 50%   | 71%   | 0%    |      |      |
| Sign Control               |          | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |          | 10    | 7     | 124   |      |      |
| LT Vol                     |          | 5     | 0     | 5     |      |      |
| Through Vol                |          | 0     | 2     | 119   |      |      |
| RT Vol                     |          | 5     | 5     | 0     |      |      |
| Lane Flow Rate             |          | 11    | 8     | 138   |      |      |
| Geometry Grp               |          | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |          | 0.012 | 0.008 | 0.152 |      |      |
| Departure Headway (Hd)     |          | 3.985 | 3.627 | 3.968 |      |      |
| Convergence, Y/N           |          | Yes   | Yes   | Yes   |      |      |
| Cap                        |          | 890   | 985   | 908   |      |      |
| Service Time               |          | 2.045 | 1.656 | 1.972 |      |      |
|                            |          |       |       |       |      |      |
| HCM Lane V/C Ratio         |          | 0.012 | 0.008 | 0.152 |      |      |

7.1

Α

6.7

Α

7.7

Α

0.5

HCM Control Delay, s/veh

HCM Lane LOS

HCM 95th-tile Q

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.9  |       |       |       |      |      |
| Intersection LOS           | А    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | ĵ.   |       |       | ની    | W    |      |
| Traffic Vol, veh/h         | 2    | 5     | 65    | 55    | 69   | 40   |
| Future Vol, veh/h          | 2    | 5     | 65    | 55    | 69   | 40   |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 2    | 6     | 72    | 61    | 77   | 44   |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 6.9  |       | 8.1   |       | 7.8  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 63%   | 0%    | 54%   |      |      |
| Vol Thru, %                |      | 0%    | 29%   | 46%   |      |      |
| Vol Right, %               |      | 37%   | 71%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 109   | 7     | 120   |      |      |
| LT Vol                     |      | 69    | 0     | 65    |      |      |
| Through Vol                |      | 0     | 2     | 55    |      |      |
| RT Vol                     |      | 40    | 5     | 0     |      |      |
| Lane Flow Rate             |      | 121   | 8     | 133   |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.137 | 0.008 | 0.158 |      |      |
| Departure Headway (Hd)     |      | 4.086 | 3.822 | 4.262 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Сар                        |      | 866   | 920   | 835   |      |      |
| Service Time               |      | 2.164 | 1.915 | 2.32  |      |      |
| HCM Lane V/C Ratio         |      | 0.14  | 0.009 | 0.159 |      |      |

7.8

Α

0.5

6.9

Α

8.1

Α

0.6

| miloroccion 200            | , ,  |      |      |      |      |      |      |      |      |      |      |      |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
|                            |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 65   | 40   | 0    | 0    | 0    | 70   | 18   | 31   | 23   | 0    | 0    | 105  |
| Future Vol, veh/h          | 65   | 40   | 0    | 0    | 0    | 70   | 18   | 31   | 23   | 0    | 0    | 105  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 72   | 44   | 0    | 0    | 0    | 78   | 20   | 34   | 26   | 0    | 0    | 117  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.4  |      |      |      |      | 7.3  | 7.8  |      |      |      |      | 7.4  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 25%   | 62%   | 0%    | 0%    |  |
| Vol Thru, %              | 43%   | 38%   | 0%    | 0%    |  |
| Vol Right, %             | 32%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 72    | 105   | 70    | 105   |  |
| LT Vol                   | 18    | 65    | 0     | 0     |  |
| Through Vol              | 31    | 40    | 0     | 0     |  |
| RT Vol                   | 23    | 0     | 70    | 105   |  |
| Lane Flow Rate           | 80    | 117   | 78    | 117   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.096 | 0.148 | 0.084 | 0.125 |  |
| Departure Headway (Hd)   | 4.341 | 4.562 | 3.881 | 3.855 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 828   | 791   | 926   | 932   |  |
| Service Time             | 2.356 | 2.562 | 1.895 | 1.868 |  |
| HCM Lane V/C Ratio       | 0.097 | 0.148 | 0.084 | 0.126 |  |
| HCM Control Delay, s/veh | 7.8   | 8.4   | 7.3   | 7.4   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.3   | 0.5   | 0.3   | 0.4   |  |

| Intersection                                            |         |                      |               |             |         |      |
|---------------------------------------------------------|---------|----------------------|---------------|-------------|---------|------|
| Int Delay, s/veh                                        | 5.1     |                      |               |             |         |      |
| Movement                                                | EBL     | EBR                  | NBL           | NBT         | SBT     | SBR  |
| Lane Configurations                                     | LDL     | 7                    | HUL           | 41          | - T∌    | ODIT |
| Traffic Vol, veh/h                                      | 1       | 182                  | 138           | 608         | 351     | 25   |
| Future Vol, veh/h                                       | 1       | 182                  | 138           | 608         | 351     | 25   |
| Conflicting Peds, #/h                                   |         | 0                    | 178           | 0           | 0       | 107  |
| Sign Control                                            | Stop    | Stop                 | Free          | Free        | Free    | Free |
| RT Channelized                                          | -       | None                 | -             |             | -       | None |
| Storage Length                                          | -       | 0                    | -             | -           | -       | -    |
| Veh in Median Storag                                    | ae.# 0  | -                    | -             | 0           | 0       | -    |
| Grade, %                                                | 0       | -                    | -             | 0           | 0       | -    |
| Peak Hour Factor                                        | 90      | 90                   | 90            | 90          | 90      | 90   |
| Heavy Vehicles, %                                       | 5       | 5                    | 5             | 5           | 5       | 5    |
| Mvmt Flow                                               | 1       | 202                  | 153           | 676         | 390     | 28   |
|                                                         |         |                      |               |             |         |      |
| N A . ' /N A'                                           | N4: O   |                      | A . ' A       |             | 4 0     |      |
|                                                         | Minor2  |                      | Major1        |             | /lajor2 |      |
| Conflicting Flow All                                    | 1226    | 582                  | 596           | 0           | -       | 0    |
| Stage 1                                                 | 582     | -                    | -             | -           | -       | -    |
| Stage 2                                                 | 644     | -                    | -             | -           | -       | -    |
| Critical Hdwy                                           |         | 6.275                | 4.1/5         | -           | -       | -    |
| Critical Hdwy Stg 1                                     | 5.475   | -                    | -             | -           | -       | -    |
| Critical Hdwy Stg 2                                     | 5.875   | -                    | -             | -           | -       | -    |
|                                                         | 3.54753 |                      |               | -           | -       | -    |
| Pot Cap-1 Maneuver                                      |         | 505                  | 961           | -           | -       | -    |
| Stage 1                                                 | 550     | -                    | -             | -           | -       | -    |
| Stage 2                                                 | 479     | -                    | -             | -           | -       | -    |
| Platoon blocked, %                                      | 0.0     | 440                  | 700           | -           | -       | -    |
| Mov Cap-1 Maneuve                                       |         | 410                  | 780           | -           | -       | -    |
| Mov Cap-2 Maneuve                                       |         | -                    | -             | -           | -       | -    |
| Stage 1                                                 | 339     | -                    | -             | -           | -       | -    |
| Stage 2                                                 | 389     | -                    | -             | -           | -       | -    |
|                                                         |         |                      |               |             |         |      |
| Approach                                                | EB      |                      | NB            |             | SB      |      |
| HCM Control Delay,                                      |         |                      | 3.44          |             | 0       |      |
| HCM LOS                                                 | С       |                      | • • • • •     |             |         |      |
|                                                         |         |                      |               |             |         |      |
|                                                         |         |                      |               |             |         |      |
|                                                         |         | NBL                  | NBTE          | EBLn1       | SBT     | SBR  |
| Minor Lane/Major Mv                                     | mt      |                      |               |             |         |      |
| Capacity (veh/h)                                        |         | 634                  | -             |             | -       | -    |
| Capacity (veh/h) HCM Lane V/C Ratio                     |         | 634<br>0.197         | -             | 0.493       | -       | -    |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay ( |         | 634<br>0.197<br>10.7 | -<br>-<br>1.8 | 0.493<br>22 | -       | -    |
| Capacity (veh/h) HCM Lane V/C Ratio                     | s/veh)  | 634<br>0.197         | -             | 0.493       | -       |      |

| Intersection                |           |              |         |          |         |        |
|-----------------------------|-----------|--------------|---------|----------|---------|--------|
| Int Delay, s/veh            | 0.3       |              |         |          |         |        |
| Movement                    | EBL       | EBR          | NBL     | NBT      | SBT     | SBR    |
| Lane Configurations         | LDL       | 7            | HDL     | <b>1</b> |         | OBIN   |
| Traffic Vol, veh/h          | 0         | 26           | 0       | 735      | 523     | 0      |
| Future Vol, veh/h           | 0         | 26           | 0       | 735      | 523     | 0      |
| Conflicting Peds, #/hr      | 0         | 0            | 0       | 0        | 0       | 86     |
|                             |           |              |         | Free     |         | Free   |
| Sign Control RT Channelized | Stop<br>- | Stop<br>None | Free    | None     | Free    | None   |
|                             | -         | 0            | -       |          | -       | None - |
| Storage Length              |           | -            | -       | 0        | 0       | -      |
| Veh in Median Storage       |           |              |         |          |         |        |
| Grade, %                    | 0         | -            | -       | 0        | 0       | -      |
| Peak Hour Factor            | 90        | 90           | 90      | 90       | 90      | 90     |
| Heavy Vehicles, %           | 5         | 5            | 5       | 5        | 5       | 5      |
| Mvmt Flow                   | 0         | 29           | 0       | 817      | 581     | 0      |
|                             |           |              |         |          |         |        |
| Major/Minor N               | 1inor2    | ١            | /lajor1 | N        | /lajor2 |        |
| Conflicting Flow All        | _         | 581          | -       | 0        |         | 0      |
| Stage 1                     | _         | -            | _       | -        | _       | -      |
| Stage 2                     | _         | _            | _       | _        | _       | _      |
| Critical Hdwy               | _         | 6.275        | _       | _        | _       | _      |
| Critical Hdwy Stg 1         |           | 0.210        | _       | _        | _       | _      |
| Critical Hdwy Stg 1         |           |              |         |          |         |        |
|                             | -         | 3.3475       | -       | -        | -       | -      |
| Follow-up Hdwy              |           |              |         | -        |         |        |
| Pot Cap-1 Maneuver          | 0         | 506          | 0       | -        | -       | 0      |
| Stage 1                     | 0         | -            | 0       | -        | -       | 0      |
| Stage 2                     | 0         | -            | 0       | -        | -       | 0      |
| Platoon blocked, %          |           |              |         | -        | -       |        |
| Mov Cap-1 Maneuver          | -         | 506          | -       | -        | -       | -      |
| Mov Cap-2 Maneuver          | -         | -            | -       | -        | -       | -      |
| Stage 1                     | -         | -            | -       | -        | -       | -      |
| Stage 2                     | -         | -            | -       | -        | -       | -      |
|                             |           |              |         |          |         |        |
| Approach                    | EB        |              | NB      |          | SB      |        |
| HCM Control Delay, s/       |           |              | 0       |          | 0       |        |
|                             |           |              | U       |          | U       |        |
| HCM LOS                     | В         |              |         |          |         |        |
|                             |           |              |         |          |         |        |
| Minor Lane/Major Mvm        | nt        | NBTE         | BLn1    | SBT      |         |        |
| Capacity (veh/h)            |           | -            | 506     | -        |         |        |
| HCM Lane V/C Ratio          |           | -            | 0.057   | -        |         |        |
| HCM Control Delay (s/       | veh)      | -            | 12.6    | -        |         |        |
| HCM Lane LOS                | ,         | -            | В       | -        |         |        |
| HCM 95th %tile Q(veh        | )         | -            | 0.2     | -        |         |        |
|                             | ,         |              |         |          |         |        |

| Intersection           |           |        |           |       |           |      |
|------------------------|-----------|--------|-----------|-------|-----------|------|
| Int Delay, s/veh       | 1.6       |        |           |       |           |      |
| Movement               | EBL       | EBR    | NBL       | NBT   | SBT       | SBR  |
| Lane Configurations    | W         | בטוע   | TABL      | 4     | <b>1</b>  | OBIN |
| Traffic Vol, veh/h     | 19        | 23     | 63        | 241   | 269       | 68   |
| Future Vol, veh/h      | 19        | 23     | 63        | 241   | 269       | 68   |
| Conflicting Peds, #/hr | 0         | 0      | 0         | 0     | 0         | 00   |
| Sign Control           | Stop      | Stop   | Free      | Free  | Free      | Free |
| RT Channelized         | Stop<br>- | None   | riee<br>- | None  | riee<br>- | None |
| Storage Length         | 0         | None - |           |       | -         |      |
| 0 0                    |           |        | -         | -     | 0         | -    |
| Veh in Median Storage  |           | -      | -         | 0     | 0         | -    |
| Grade, %               | 0         | -      | -         | 0     | 0         | -    |
| Peak Hour Factor       | 90        | 90     | 90        | 90    | 90        | 90   |
| Heavy Vehicles, %      | 0         | 0      | 0         | 0     | 0         | 0    |
| Mvmt Flow              | 21        | 26     | 70        | 268   | 299       | 76   |
|                        |           |        |           |       |           |      |
| Major/Minor N          | /linor2   | N      | /lajor1   | _ \   | /lajor2   |      |
| Conflicting Flow All   | 744       | 337    | 374       | 0     | -         | 0    |
| Stage 1                | 337       | -      | -         | -     | _         | -    |
| Stage 2                | 408       | _      | _         | _     | _         | _    |
| Critical Hdwy          | 6.4       | 6.2    | 4.1       | -     |           |      |
| Critical Hdwy Stg 1    | 5.4       | U.Z    | 4.1       | _     | -         | -    |
|                        |           | -      | -         |       |           |      |
| Critical Hdwy Stg 2    | 5.4       | -      | -         | -     | -         | -    |
| Follow-up Hdwy         | 3.5       | 3.3    | 2.2       | -     | -         | -    |
| Pot Cap-1 Maneuver     | 385       | 710    | 1195      | -     | -         | -    |
| Stage 1                | 728       | -      | -         | -     | -         | -    |
| Stage 2                | 676       | -      | -         | -     | -         | -    |
| Platoon blocked, %     |           |        |           | -     | -         | -    |
| Mov Cap-1 Maneuver     | 358       | 710    | 1195      | -     | -         | -    |
| Mov Cap-2 Maneuver     | 358       | -      | -         | -     | -         | -    |
| Stage 1                | 678       | -      | -         | -     | -         | -    |
| Stage 2                | 676       | _      | _         | _     | _         | _    |
| 2.5.30 2               | 5.0       |        |           |       |           |      |
|                        |           |        |           |       |           |      |
| Approach               | EB        |        | NB        |       | SB        |      |
| HCM Control Delay, s/  | 13.09     |        | 1.7       |       | 0         |      |
| HCM LOS                | В         |        |           |       |           |      |
|                        |           |        |           |       |           |      |
| Minor Long/Major M.    |           | NDI    | NDT       | TDI 1 | CDT       | CDD  |
| Minor Lane/Major Mvm   | IĽ        | NBL    |           | EBLn1 | SBT       | SBR  |
| Capacity (veh/h)       |           | 373    | -         |       | -         | -    |
| HCM Lane V/C Ratio     |           | 0.059  |           | 0.095 | -         | -    |
| HCM Control Delay (s/  | veh)      | 8.2    | 0         | 13.1  | -         | -    |
| HCM Lane LOS           |           | Α      | Α         | В     | -         | -    |
| HCM 95th %tile Q(veh   | )         | 0.2    | -         | 0.3   | -         | -    |
|                        |           |        |           |       |           |      |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      |            |       |         |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------|-------|---------|----------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4     |      |            |       |         |          |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WBL     | WBR  | NBT        | NBR   | SBL     | SBT      |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 7    | <b>↑</b> ⊅ |       |         | <b>†</b> |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0       | 33   | 527        | 7     | 0       | 398      |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 33   | 527        | 7     | 0       | 398      |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0    | 0          | 100   | 0       | 0        |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stop    | Stop | Free       | Free  | Free    | Free     |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Ctop  | None | -          | None  | -       | None     |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       | 0    | _          | -     | _       | -        |
| Veh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 0     | -    | 0          | -     | _       | 0        |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | _    | 0          | _     | _       | 0        |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90      | 90   | 90         | 90    | 90      | 90       |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 15   | 6          | 0     | 0       | 5        |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 37   | 586        | 8     | 0       | 442      |
| IVIVIIIL FIOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U       | 31   | 500        | 0     | U       | 442      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |            |       |         |          |
| Major/Minor N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /linor1 | 1    | //ajor1    | N     | /lajor2 |          |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       | 397  | 0          | 0     | -       | -        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -       | -    | -          | -     | -       | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -       | -    | -          | -     | -       | -        |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       | 7.2  | -          | _     | -       | -        |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | -    | -          | -     | -       | -        |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _       | -    | _          | -     | _       | -        |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       | 3.45 | -          | -     | -       | -        |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0       | 567  | -          | _     | 0       | -        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | _    | _          | _     | 0       | _        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | _    | _          | _     | 0       | _        |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ū       |      | _          | _     | V       | _        |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _       | 507  | _          | _     | _       | _        |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _       | -    | _          | _     | _       | _        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _       | _    | _          | _     | _       | _        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -       | _    | -          | -     |         | -        |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -       | -    | -          |       | -       | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |            |       |         |          |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WB      |      | NB         |       | SB      |          |
| HCM Control Delay, s/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.65   |      | 0          |       | 0       |          |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В       |      |            |       |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |            |       |         |          |
| NAME OF THE PARTY | -1      | NDT  | NDD        | UDI 4 | ODT     |          |
| Minor Lane/Major Mvn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ונ      | NBT  | NRKA       | VBLn1 | SBT     |          |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | -    | -          | 507   | -       |          |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | -    | -          | 0.072 | -       |          |
| HCM Control Delay (s/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | veh)    | -    | -          |       | -       |          |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | -    | -          | В     | -       |          |
| HCM 95th %tile Q(veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )       | -    | -          | 0.2   | -       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |            |       |         |          |

| Intersection                          |       |           |        |      |          |      |
|---------------------------------------|-------|-----------|--------|------|----------|------|
| Int Delay, s/veh                      | 1.3   |           |        |      |          |      |
|                                       | EBT   | EBR       | WBL    | WBT  | NBL      | NBR  |
| Lane Configurations                   | -101  | LDIX      | VVDL   | 4    | NDL NDL  | NOIL |
|                                       |       | 60        | _      |      |          | 5    |
| Traffic Vol, veh/h                    | 104   | 60        | 5      | 65   | 18       | 5    |
| Future Vol, veh/h                     | 104   | 60        | 5      | 65   | 18       | 5    |
| Conflicting Peds, #/hr                | 0     | 100       | 100    | 0    | 100      | 100  |
| 3                                     | Free  | Free      | Free   | Free | Stop     | Stop |
| RT Channelized                        | -     | None      | -      | None | -        | None |
| Storage Length                        | -     | -         | -      | -    | 0        | -    |
| Veh in Median Storage,                | # 0   | -         | -      | 0    | 0        | -    |
| Grade, %                              | 0     | -         | -      | 0    | 0        | -    |
| Peak Hour Factor                      | 90    | 90        | 90     | 90   | 90       | 90   |
| Heavy Vehicles, %                     | 2     | 2         | 2      | 2    | 2        | 2    |
| Mymt Flow                             | 116   | 67        | 6      | 72   | 20       | 6    |
| IVIVIII( I IOVV                       | 110   | 01        | U      | 12   | 20       | U    |
|                                       |       |           |        |      |          |      |
| Major/Minor Ma                        | ajor1 | N         | Major2 | N    | Minor1   |      |
| Conflicting Flow All                  | 0     | 0         | 282    | 0    | 432      | 349  |
| Stage 1                               | _     | _         | _      | _    | 249      | _    |
| Stage 2                               | _     | _         | _      | _    | 183      | _    |
| Critical Hdwy                         |       |           | 4.12   | _    | 6.42     | 6.22 |
| Critical Hdwy Stg 1                   | _     |           | 7.12   | _    | 5.42     | 0.22 |
| , ,                                   |       |           |        |      |          |      |
| Critical Hdwy Stg 2                   | -     | -         | -      | -    | 5.42     | -    |
| Follow-up Hdwy                        | -     |           | 2.218  | -    | 3.518    |      |
| Pot Cap-1 Maneuver                    | -     | -         | 1280   | -    | 580      | 694  |
| Stage 1                               | -     | -         | -      | -    | 793      | -    |
| Stage 2                               | -     | -         | -      | -    | 848      | -    |
| Platoon blocked, %                    | -     | -         |        | -    |          |      |
| Mov Cap-1 Maneuver                    | -     | -         | 1145   | -    | 462      | 555  |
| Mov Cap-2 Maneuver                    | _     | _         | _      | _    | 462      | _    |
| Stage 1                               | _     | _         | _      | _    | 709      | _    |
| Stage 2                               | _     |           |        | _    | 755      | _    |
| Stage 2                               |       |           |        |      | 133      | _    |
|                                       |       |           |        |      |          |      |
| Approach                              | EB    |           | WB     |      | NB       |      |
| HCM Control Delay, s/v                | 0     |           | 0.58   |      | 12.93    |      |
| HCM LOS                               |       |           | 0.00   |      | В        |      |
| TIOW LOO                              |       |           |        |      |          |      |
|                                       |       |           |        |      |          |      |
| Minor Lane/Major Mvmt                 | : 1   | NBLn1     | EBT    | EBR  | WBL      | WBT  |
| Capacity (veh/h)                      |       | 479       | _      | _    | 129      | _    |
| HCM Lane V/C Ratio                    |       | 0.053     | _      | _    | 0.005    | _    |
| HCM Control Delay (s/v                | ah)   | 12.9      | _      | _    | 8.2      | 0    |
|                                       | GII)  | 12.9<br>B | •      |      | 0.2<br>A | A    |
| HUMIanaine                            |       |           | -      | -    | А        | А    |
| HCM Lane LOS<br>HCM 95th %tile Q(veh) |       | 0.2       |        | _    | 0        | _    |

| Intersection                           |         |          |                 |      |                |       |
|----------------------------------------|---------|----------|-----------------|------|----------------|-------|
| Int Delay, s/veh                       | 0.7     |          |                 |      |                |       |
| Movement                               | EBL     | EBT      | WBT             | WBR  | SBL            | SBR   |
|                                        | EDL     | <u>€</u> |                 | MOR  | SDL<br>W       | SDIX  |
| Lane Configurations Traffic Vol, veh/h | 5       | 37       | <b>Љ</b><br>116 | 15   | <b>""</b><br>5 | 4     |
| Future Vol, veh/h                      | 5       | 37       | 116             | 15   | 5              | 4     |
| Conflicting Peds, #/hr                 | 0       | 0        | 0               | 0    | 0              | 0     |
| Sign Control                           | Free    | Free     | Free            | Free | Stop           | Stop  |
| RT Channelized                         | Free -  | None     |                 | None | Stop<br>-      |       |
|                                        |         |          | -               |      |                |       |
| Storage Length                         | - #     | -        | -               | -    | 0              | -     |
| Veh in Median Storage                  |         | 0        | 0               | -    | 0              | -     |
| Grade, %                               | -       | 0        | 0               | -    | 0              | -     |
| Peak Hour Factor                       | 90      | 90       | 90              | 90   | 90             | 90    |
| Heavy Vehicles, %                      | 2       | 2        | 2               | 2    | 2              | 2     |
| Mvmt Flow                              | 6       | 41       | 129             | 17   | 6              | 4     |
|                                        |         |          |                 |      |                |       |
| Major/Minor N                          | /lajor1 | N        | //ajor2         | N    | Minor2         |       |
| Conflicting Flow All                   | 146     | 0        | -               | 0    | 189            | 137   |
| Stage 1                                | -       | -        | -               | -    | 137            | -     |
| Stage 2                                | _       | _        | _               | _    | 52             | _     |
| Critical Hdwy                          | 4.12    | _        | _               | _    | 6.42           | 6.22  |
| Critical Hdwy Stg 1                    | 7.12    | _        | _               | _    | 5.42           | 0.22  |
| Critical Hdwy Stg 2                    |         | -        | _               |      | 5.42           |       |
|                                        | 2.218   | -        | -               |      | 3.518          |       |
| Pot Cap-1 Maneuver                     |         |          |                 |      | 800            | 911   |
| •                                      | 1437    | -        | -               | -    | 889            |       |
| Stage 1                                | -       | -        | -               | -    |                | -     |
| Stage 2                                | -       | -        | -               | -    | 970            | -     |
| Platoon blocked, %                     | 4.407   | -        | -               | -    | 700            | 044   |
| Mov Cap-1 Maneuver                     |         | -        | -               | -    | 796            | 911   |
| Mov Cap-2 Maneuver                     | -       | -        | -               | -    | 796            | -     |
| Stage 1                                | -       | -        | -               | -    | 886            | -     |
| Stage 2                                | -       | -        | -               | -    | 970            | -     |
|                                        |         |          |                 |      |                |       |
| Approach                               | EB      |          | WB              |      | SB             |       |
| HCM Control Delay, s/                  |         |          | 0               |      | 9.32           |       |
| HCM LOS                                | V U.UJ  |          | U               |      | 9.52<br>A      |       |
| TOW LOG                                |         |          |                 |      | ٨              |       |
|                                        |         |          |                 |      |                |       |
| Minor Lane/Major Mvn                   | nt      | EBL      | EBT             | WBT  | WBR            |       |
| Capacity (veh/h)                       |         | 214      | -               | -    | -              | 844   |
| HCM Lane V/C Ratio                     |         | 0.004    | -               | -    | -              | 0.012 |
| HCM Control Delay (s/                  | /veh)   | 7.5      | 0               | -    | -              | 9.3   |
| HCM Lane LOS                           |         | Α        | Α               | -    | -              | Α     |
| HCM 95th %tile Q(veh                   | 1)      | 0        | -               | -    | -              | 0     |
|                                        |         |          |                 |      |                |       |

## **Existing scenario**

2022 Weekday PM Peak Hour

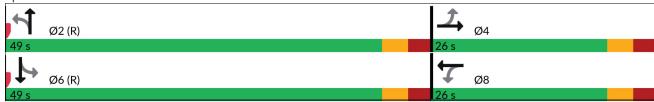
1: Bank & Fifth 08/01/2024

|                           | ۶     | <b>→</b> | €     | •        | 4     | <b>†</b> | /     | Į.    |  |
|---------------------------|-------|----------|-------|----------|-------|----------|-------|-------|--|
| Lane Group                | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBL   | SBT   |  |
| Lane Configurations       |       | 4        |       | <b>4</b> |       | 474      |       | 4Th   |  |
| Traffic Volume (vph)      | 45    | 52       | 58    | 37       | 16    | 435      | 28    | 559   |  |
| Future Volume (vph)       | 45    | 52       | 58    | 37       | 16    | 435      | 28    | 559   |  |
| Lane Group Flow (vph)     | 0     | 158      | 64    | 79       | 0     | 534      | 0     | 692   |  |
| Turn Type                 | Perm  | NA       | Perm  | NA       | Perm  | NA       | Perm  | NA    |  |
| Protected Phases          |       | 4        |       | 8        |       | 2        |       | 6     |  |
| Permitted Phases          | 4     |          | 8     |          | 2     |          | 6     |       |  |
| Detector Phase            | 4     | 4        | 8     | 8        | 2     | 2        | 6     | 6     |  |
| Switch Phase              |       |          |       |          |       |          |       |       |  |
| Minimum Initial (s)       | 4.0   | 4.0      | 4.0   | 4.0      | 4.0   | 4.0      | 4.0   | 4.0   |  |
| Minimum Split (s)         | 26.0  | 26.0     | 26.0  | 26.0     | 49.0  | 49.0     | 49.0  | 49.0  |  |
| Total Split (s)           | 26.0  | 26.0     | 26.0  | 26.0     | 49.0  | 49.0     | 49.0  | 49.0  |  |
| Total Split (%)           | 34.7% | 34.7%    | 34.7% | 34.7%    | 65.3% | 65.3%    | 65.3% | 65.3% |  |
| Yellow Time (s)           | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0   |  |
| All-Red Time (s)          | 2.5   | 2.5      | 2.5   | 2.5      | 2.5   | 2.5      | 2.5   | 2.5   |  |
| Lost Time Adjust (s)      |       | 0.0      | 0.0   | 0.0      |       | 0.0      |       | 0.0   |  |
| Total Lost Time (s)       |       | 5.5      | 5.5   | 5.5      |       | 5.5      |       | 5.5   |  |
| Lead/Lag                  |       |          |       |          |       |          |       |       |  |
| Lead-Lag Optimize?        |       |          |       |          |       |          |       |       |  |
| Recall Mode               | None  | None     | None  | None     | C-Max | C-Max    | C-Max | C-Max |  |
| Act Effct Green (s)       |       | 12.6     | 12.6  | 12.6     |       | 51.4     |       | 51.4  |  |
| Actuated g/C Ratio        |       | 0.17     | 0.17  | 0.17     |       | 0.69     |       | 0.69  |  |
| v/c Ratio                 |       | 0.65     | 0.39  | 0.29     |       | 0.27     |       | 0.36  |  |
| Control Delay (s/veh)     |       | 35.1     | 33.1  | 17.7     |       | 8.7      |       | 6.1   |  |
| Queue Delay               |       | 0.0      | 0.0   | 0.0      |       | 0.0      |       | 0.0   |  |
| Total Delay (s/veh)       |       | 35.1     | 33.1  | 17.7     |       | 8.7      |       | 6.1   |  |
| LOS                       |       | D        | С     | В        |       | Α        |       | Α     |  |
| Approach Delay (s/veh)    |       | 35.1     |       | 24.6     |       | 8.7      |       | 6.1   |  |
| Approach LOS              |       | D        |       | С        |       | Α        |       | Α     |  |
| Queue Length 50th (m)     |       | 16.8     | 8.2   | 5.0      |       | 11.5     |       | 17.5  |  |
| Queue Length 95th (m)     |       | 31.7     | 17.3  | 14.4     |       | 43.2     |       | 34.0  |  |
| Internal Link Dist (m)    |       | 49.7     |       | 112.4    |       | 195.6    |       | 190.0 |  |
| Turn Bay Length (m)       |       |          | 45.0  |          |       |          |       |       |  |
| Base Capacity (vph)       |       | 375      | 265   | 419      |       | 1951     |       | 1939  |  |
| Starvation Cap Reductn    |       | 0        | 0     | 0        |       | 0        |       | 0     |  |
| Spillback Cap Reductn     |       | 0        | 0     | 0        |       | 0        |       | 0     |  |
| Storage Cap Reductn       |       | 0        | 0     | 0        |       | 0        |       | 0     |  |
| Reduced v/c Ratio         |       | 0.42     | 0.24  | 0.19     |       | 0.27     |       | 0.36  |  |
| Intersection Summary      |       |          |       |          |       |          |       |       |  |
| Cycle Length: 75          |       |          |       |          |       |          |       |       |  |
| Actuated Cycle Length: 75 |       |          |       |          |       |          |       |       |  |

Actuated Cycle Length: 75

Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65

Intersection Signal Delay (s/veh): 11.7 Intersection LOS: B
Intersection Capacity Utilization 65.8% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth



### 2: Bank & Holmwood

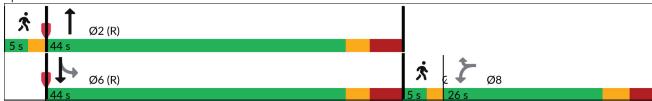
|                              | <b>→</b>    | •        | †         | <b>/</b>  | <b>+</b>    |              |
|------------------------------|-------------|----------|-----------|-----------|-------------|--------------|
| Lane Group                   | EBT         | NBL      | NBT       | SBL       | SBT         | Ø3           |
| Lane Configurations          | 4           | 1100     | 413       | <u> </u>  | 4TÞ         | ~~           |
| Traffic Volume (vph)         | 17          | 25       | 481       | 27        | 536         |              |
| Future Volume (vph)          | 17          | 25       | 481       | 27        | 536         |              |
| Lane Group Flow (vph)        | 108         | 0        | 616       | 0         | 656         |              |
| Turn Type                    | NA          | Perm     | NA        | Perm      | NA          |              |
| Protected Phases             | 4           | . 0.111  | 2         | . 01111   | 6           | 3            |
| Permitted Phases             |             | 2        | _         | 6         |             |              |
| Detector Phase               | 4           | 2        | 2         | 6         | 6           |              |
| Switch Phase                 | •           | _        | _         | Ū         |             |              |
| Minimum Initial (s)          | 4.4         | 10.0     | 10.0      | 4.0       | 4.0         | 1.0          |
| Minimum Split (s)            | 22.0        | 48.0     | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (s)              | 22.0        | 48.0     | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (%)              | 29.3%       | 64.0%    | 64.0%     | 64.0%     | 64.0%       | 7%           |
| Yellow Time (s)              | 3.0         | 3.0      | 3.0       | 3.0       | 3.0         | 2.0          |
| All-Red Time (s)             | 2.6         | 2.2      | 2.2       | 2.2       | 2.2         | 0.0          |
| Lost Time Adjust (s)         | 0.0         |          | 0.0       |           | 0.0         | 0.0          |
| Total Lost Time (s)          | 5.6         |          | 5.2       |           | 5.2         |              |
| Lead/Lag                     | Lag         |          | 0.2       |           | 0.2         | Lead         |
| Lead-Lag Optimize?           | Lug         |          |           |           |             |              |
| Recall Mode                  | None        | C-Max    | C-Max     | C-Max     | C-Max       | None         |
| Act Effct Green (s)          | 11.2        | Unida    | 56.4      | O Max     | 56.4        | 110110       |
| Actuated g/C Ratio           | 0.15        |          | 0.75      |           | 0.75        |              |
| v/c Ratio                    | 0.53        |          | 0.30      |           | 0.70        |              |
| Control Delay (s/veh)        | 38.3        |          | 4.7       |           | 4.7         |              |
| Queue Delay                  | 0.0         |          | 0.0       |           | 0.0         |              |
| Total Delay (s/veh)          | 38.3        |          | 4.7       |           | 4.7         |              |
| LOS                          | D           |          | Α.        |           | Α.          |              |
| Approach Delay (s/veh)       | 38.3        |          | 4.7       |           | 4.7         |              |
| Approach LOS                 | 30.3<br>D   |          | 4.7<br>A  |           | 4.7<br>A    |              |
| Queue Length 50th (m)        | 14.3        |          | 13.6      |           | 24.4        |              |
| Queue Length 95th (m)        | 26.7        |          | 25.8      |           | 21.1        |              |
| Internal Link Dist (m)       | 39.8        |          | 31.5      |           | 195.6       |              |
| Turn Bay Length (m)          | 03.0        |          | 01.0      |           | 199.0       |              |
| Base Capacity (vph)          | 295         |          | 2041      |           | 2112        |              |
| Starvation Cap Reductn       | 295         |          | 2041      |           | 0           |              |
| Spillback Cap Reductin       | 0           |          | 0         |           | 0           |              |
| Storage Cap Reductn          | 0           |          | 0         |           | 0           |              |
| Reduced v/c Ratio            | 0.37        |          | 0.30      |           | 0.31        |              |
|                              | 0.37        |          | 0.30      |           | 0.31        |              |
| Intersection Summary         |             |          |           |           |             |              |
| Cycle Length: 75             |             |          |           |           |             |              |
| Actuated Cycle Length: 75    |             | 0 NDT    |           | NDTI OL   |             |              |
| Offset: 74 (99%), Reference  | ed to phas  | se 2:NBT | L and 6:8 | BBTL, Sta | art of Gree | en           |
| Natural Cycle: 75            |             |          |           |           |             |              |
| Control Type: Actuated-Co    | ordinated   |          |           |           |             |              |
| Maximum v/c Ratio: 0.53      | = :         |          |           |           |             | 100          |
| Intersection Signal Delay (s |             |          |           |           | ntersectio  |              |
| Intersection Capacity Utiliz | ation 62.9° | %        |           | I I       | CU Level    | of Service B |
| Analysis Period (min) 15     |             |          |           |           |             |              |

Splits and Phases: 2: Bank & Holmwood



### 3: Bank & Exhibition

|                                    | •             | *             | <b>†</b>     | -            | Į.            |           |           |
|------------------------------------|---------------|---------------|--------------|--------------|---------------|-----------|-----------|
| Lane Group                         | WBL           | WBR           | NBT          | SBL          | SBT           | Ø1        | Ø7        |
| Lane Configurations                | ሻ             | 7             | <b>†</b> 1>  | ሻ            | 44            |           |           |
| Traffic Volume (vph)               | 118           | 61            | 453          | 113          | 476           |           |           |
| Future Volume (vph)                | 118           | 61            | 453          | 113          | 476           |           |           |
| Lane Group Flow (vph)              | 131           | 68            | 644          | 126          | 529           |           |           |
| Turn Type                          | Perm          | Perm          | NA           | Perm         | NA            |           |           |
| Protected Phases                   |               |               | 2            |              | 6             | 1         | 7         |
| Permitted Phases                   | 8             | 8             | 0            | 6            | •             |           |           |
| Detector Phase                     | 8             | 8             | 2            | 6            | 6             |           |           |
| Switch Phase                       | 40.0          | 10.0          | 10.0         | 10.0         | 10.0          | 4.0       | 4.0       |
| Minimum Initial (s)                | 10.0          | 10.0          | 10.0         | 10.0         | 10.0          | 1.0       | 1.0       |
| Minimum Split (s)                  | 26.0          | 26.0          | 44.0<br>44.0 | 44.0<br>44.0 | 44.0          | 5.0       | 5.0       |
| Total Split (s)                    | 26.0<br>32.5% | 26.0<br>32.5% | 55.0%        | 55.0%        | 44.0<br>55.0% | 5.0<br>6% | 5.0<br>6% |
| Total Split (%)<br>Yellow Time (s) | 32.5%         | 32.5%         | 3.0          | 3.0          | 3.0           | 2.0       | 2.0       |
| All-Red Time (s)                   | 3.0           | 3.0           | 3.9          | 3.9          | 3.9           | 0.0       | 0.0       |
| Lost Time Adjust (s)               | 0.0           | 0.0           | 0.0          | 0.0          | 0.0           | 0.0       | 0.0       |
| Total Lost Time (s)                | 6.3           | 6.3           | 6.9          | 6.9          | 6.9           |           |           |
| Lead/Lag                           | Lag           | Lag           | 0.0          | 0.0          | 0.5           |           | Lead      |
| Lead-Lag Optimize?                 | Lug           | Lug           |              |              |               |           | Yes       |
| Recall Mode                        | None          | None          | C-Max        | C-Max        | C-Max         | None      | None      |
| Act Effct Green (s)                | 12.7          | 12.7          | 58.7         | 58.7         | 58.7          |           |           |
| Actuated g/C Ratio                 | 0.16          | 0.16          | 0.73         | 0.73         | 0.73          |           |           |
| v/c Ratio                          | 0.54          | 0.29          | 0.31         | 0.28         | 0.23          |           |           |
| Control Delay (s/veh)              | 39.1          | 10.9          | 5.2          | 8.0          | 5.3           |           |           |
| Queue Delay                        | 0.0           | 0.0           | 0.0          | 0.0          | 0.0           |           |           |
| Total Delay (s/veh)                | 39.1          | 10.9          | 5.2          | 8.0          | 5.3           |           |           |
| LOS                                | D             | В             | Α            | Α            | Α             |           |           |
| Approach Delay (s/veh)             | 29.4          |               | 5.2          |              | 5.8           |           |           |
| Approach LOS                       | С             |               | Α            |              | Α             |           |           |
| Queue Length 50th (m)              | 18.7          | 0.0           | 15.8         | 6.5          | 13.6          |           |           |
| Queue Length 95th (m)              | 32.7          | 9.7           | 29.0         | 18.3         | 24.5          |           |           |
| Internal Link Dist (m)             | 30.6          |               | 33.7         | /            | 44.8          |           |           |
| Turn Bay Length (m)                | 070           | 000           | 0446         | 40.0         | 0000          |           |           |
| Base Capacity (vph)                | 372           | 326           | 2110         | 452          | 2328          |           |           |
| Starvation Cap Reductn             | 0             | 0             | 0            | 0            | 0             |           |           |
| Spillback Cap Reductn              | 0             | 0             | 0            | 0            | 0             |           |           |
| Storage Cap Reductn                | 0             | 0             | 0            | 0 20         | 0             |           |           |
| Reduced v/c Ratio                  | 0.35          | 0.21          | 0.31         | 0.28         | 0.23          |           |           |
| Intersection Summary               |               |               |              |              |               |           |           |
| Cycle Length: 80                   |               |               |              |              |               |           |           |
| Actuated Cycle Length: 80          |               | 0.115         | 1000         |              |               |           |           |
| Offset: 0 (0%), Referenced         | to phase      | 2:NBT ar      | nd 6:SBT     | L, Start o   | f Green       |           |           |
| Natural Cycle: 80                  | p             |               |              |              |               |           |           |
| Control Type: Actuated-Co          | ordinated     |               |              |              |               |           |           |


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.54

Intersection Signal Delay (s/veh): 8.7 Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition



### 6: Bank & Aylmer

|                                                 | *           | 4        | <b>†</b>  | ļ          |                  |        |
|-------------------------------------------------|-------------|----------|-----------|------------|------------------|--------|
| Lane Group                                      | EBL         | NBL      | NBT       | SBT        | Ø3               |        |
| Lane Configurations                             | N/          |          | 414       | <b>↑</b> ↑ |                  |        |
| Traffic Volume (vph)                            | 52          | 17       | 665       | 722        |                  |        |
| Future Volume (vph)                             | 52          | 17       | 665       | 722        |                  |        |
| Lane Group Flow (vph)                           | 81          | 0        | 758       | 899        |                  |        |
| Turn Type                                       | Prot        | Perm     | NA        | NA         |                  |        |
| Protected Phases                                | 4           |          | 2         | 6          | 3                |        |
| Permitted Phases                                | 4           | 2        |           | 6          |                  |        |
| Detector Phase                                  | 4           | 2        | 2         | 6          |                  |        |
| Switch Phase                                    |             |          |           |            |                  |        |
| Minimum Initial (s)                             | 10.0        | 30.0     | 30.0      | 30.0       | 1.0              |        |
| Minimum Split (s)                               | 22.0        | 63.0     | 63.0      | 63.0       | 5.0              |        |
| Total Split (s)                                 | 22.0        | 63.0     | 63.0      | 63.0       | 5.0              |        |
| Total Split (%)                                 | 24.4%       | 70.0%    | 70.0%     | 70.0%      | 6%               |        |
| Yellow Time (s)                                 | 3.3         | 3.0      | 3.0       | 3.0        | 2.0              |        |
| All-Red Time (s)                                | 2.2         | 2.2      | 2.2       | 2.2        | 1.0              |        |
| Lost Time Adjust (s)                            | 0.0         |          | 0.0       | 0.0        |                  |        |
| Total Lost Time (s)                             | 5.5         |          | 5.2       | 5.2        |                  |        |
| Lead/Lag                                        | Lag         |          |           |            | Lead             |        |
| Lead-Lag Optimize?                              |             |          |           |            |                  |        |
| Recall Mode                                     | Ped         | C-Max    | C-Max     | C-Max      | Max              |        |
| Act Effct Green (s)                             | 14.0        |          | 60.3      | 60.3       |                  |        |
| Actuated g/C Ratio                              | 0.16        |          | 0.67      | 0.67       |                  |        |
| v/c Ratio                                       | 0.34        |          | 0.38      | 0.45       |                  |        |
| Control Delay (s/veh)                           | 31.1        |          | 6.3       | 7.6        |                  |        |
| Queue Delay                                     | 0.0         |          | 0.0       | 0.0        |                  |        |
| Total Delay (s/veh)                             | 31.1        |          | 6.3       | 7.6        |                  |        |
| LOS                                             | C           |          | A         | A          |                  |        |
| Approach Delay (s/veh)                          | 31.1        |          | 6.3       | 7.6        |                  |        |
| Approach LOS                                    | C           |          | A         | A          |                  |        |
| Queue Length 50th (m)                           | 9.6         |          | 26.8      | 32.6       |                  |        |
| Queue Length 95th (m)<br>Internal Link Dist (m) | 22.8        |          | m32.6     | 43.7       |                  |        |
| Turn Bay Length (m)                             | 76.7        |          | 28.1      | 10.1       |                  |        |
| Base Capacity (vph)                             | 280         |          | 1975      | 2006       |                  |        |
| Starvation Cap Reductn                          | 200         |          | 1975      | 2006       |                  |        |
| Spillback Cap Reductin                          | 0           |          | 0         | 0          |                  |        |
| Storage Cap Reductn                             | 0           |          | 0         | 0          |                  |        |
| Reduced v/c Ratio                               | 0.29        |          | 0.38      | 0.45       |                  |        |
|                                                 | 0.29        |          | 0.30      | 0.43       |                  |        |
| Intersection Summary                            |             |          |           |            |                  |        |
| Cycle Length: 90                                |             |          |           |            |                  |        |
| Actuated Cycle Length: 90                       |             |          |           |            |                  |        |
| Offset: 87 (97%), Reference                     | ced to phas | se 2:NBT | L and 6:5 | SBT, Start | t of Green       |        |
| Natural Cycle: 90                               |             |          |           |            |                  |        |
| Control Type: Actuated-Co                       | ordinated   |          |           |            |                  |        |
| Maximum v/c Ratio: 0.45                         |             |          |           |            |                  |        |
| Intersection Signal Delay (                     | ,           |          |           |            | ntersection LOS: |        |
| Intersection Capacity Utiliz                    | ation 52.9° | %        |           | 10         | CU Level of Serv | vice A |
| Analysis Period (min) 15                        |             |          |           |            |                  |        |

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Bank & Aylmer

Analysis Period (min) 15



#### 7: Bank & Sunnyside

|                        | ۶     | <b>→</b> | •     | -     | 1     | †     | <b>/</b> | <b>+</b> |      |       |      |  |
|------------------------|-------|----------|-------|-------|-------|-------|----------|----------|------|-------|------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT   | NBL   | NBT   | SBL      | SBT      | Ø3   | Ø6    | Ø7   |  |
| Lane Configurations    |       | 4        |       | 4     |       | 475   |          | 41∌      |      |       |      |  |
| Traffic Volume (vph)   | 50    | 78       | 16    | 80    | 14    | 409   | 200      | 717      |      |       |      |  |
| Future Volume (vph)    | 50    | 78       | 16    | 80    | 14    | 409   | 200      | 717      |      |       |      |  |
| Lane Group Flow (vph)  | 0     | 175      | 0     | 374   | 0     | 492   | 0        | 1119     |      |       |      |  |
| Turn Type              | Perm  | NA       | Perm  | NA    | Perm  | NA    | custom   | NA       |      |       |      |  |
| Protected Phases       |       | 4        |       | 8     |       | 2     | 1        | 16       | 3    | 6     | 7    |  |
| Permitted Phases       | 4     |          | 8     |       | 2     |       | 6        |          |      |       |      |  |
| Detector Phase         | 4     | 4        | 8     | 8     | 2     | 2     | 1        | 16       |      |       |      |  |
| Switch Phase           |       |          |       |       |       |       |          |          |      |       |      |  |
| Minimum Initial (s)    | 6.4   | 6.4      | 5.3   | 5.3   | 17.0  | 17.0  | 5.0      |          | 1.0  | 17.0  | 1.0  |  |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0  | 17.0     |          | 5.0  | 60.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0  | 17.0     |          | 5.0  | 43.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8% | 47.8% | 47.8% | 18.9%    |          | 6%   | 48%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      |          | 2.0  | 3.0   | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6   | 3.0   | 3.0   | 2.9      |          | 0.0  | 3.0   | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0   |       | 0.0   |          |          |      |       |      |  |
| Total Lost Time (s)    |       | 5.6      |       | 5.6   |       | 6.0   |          |          |      |       |      |  |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag   |       |       |          |          | Lead |       | Lead |  |
| Lead-Lag Optimize?     |       |          | Yes   | Yes   |       |       |          |          |      |       | Yes  |  |
| Recall Mode            | None  | None     | None  | None  | C-Max | C-Max | None     |          | None | C-Max | None |  |
| Act Effct Green (s)    |       | 24.4     |       | 24.4  |       | 37.0  |          | 48.2     |      |       |      |  |
| Actuated g/C Ratio     |       | 0.27     |       | 0.27  |       | 0.41  |          | 0.54     |      |       |      |  |
| v/c Ratio              |       | 0.65     |       | 0.93  |       | 0.43  |          | 0.91     |      |       |      |  |
| Control Delay (s/veh)  |       | 42.2     |       | 53.1  |       | 20.2  |          | 22.5     |      |       |      |  |
| Queue Delay            |       | 0.0      |       | 0.0   |       | 0.0   |          | 0.0      |      |       |      |  |
| Total Delay (s/veh)    |       | 42.2     |       | 53.1  |       | 20.2  |          | 22.5     |      |       |      |  |
| LOS                    |       | D        |       | D     |       | С     |          | С        |      |       |      |  |
| Approach Delay (s/veh) |       | 42.2     |       | 53.1  |       | 20.2  |          | 22.5     |      |       |      |  |
| Approach LOS           |       | D        |       | D     |       | С     |          | С        |      |       |      |  |
| Queue Length 50th (m)  |       | 26.7     |       | 43.7  |       | 30.7  |          | 37.6     |      |       |      |  |
| Queue Length 95th (m)  |       | #53.6    |       | #98.3 |       | 43.9  |          | #55.3    |      |       |      |  |
| Internal Link Dist (m) |       | 75.1     |       | 136.0 |       | 63.1  |          | 79.0     |      |       |      |  |
| Turn Bay Length (m)    |       |          |       |       |       |       |          |          |      |       |      |  |
| Base Capacity (vph)    |       | 269      |       | 403   |       | 1146  |          | 1236     |      |       |      |  |
| Starvation Cap Reductn |       | 0        |       | 0     |       | 0     |          | 0        |      |       |      |  |
| Spillback Cap Reductn  |       | 0        |       | 0     |       | 0     |          | 0        |      |       |      |  |
| Storage Cap Reductn    |       | 0        |       | 0     |       | 0     |          | 0        |      |       |      |  |
| Reduced v/c Ratio      |       | 0.65     |       | 0.93  |       | 0.43  |          | 0.91     |      |       |      |  |
| Intersection Summary   |       |          |       |       |       |       |          |          |      |       |      |  |

#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 6 (7%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93

Intersection Signal Delay (s/veh): 28.9 Intersection LOS: C Intersection Capacity Utilization 92.7% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

## 7: Bank & Sunnyside



|                               | ۶          | 1         | <b>†</b>   | ļ        |            |             | • |
|-------------------------------|------------|-----------|------------|----------|------------|-------------|---|
| Lane Group                    | EBL        | NBL       | NBT        | SBT      | Ø4         |             |   |
| Lane Configurations           | W          |           | 4          | <b>1</b> |            |             | • |
| Traffic Volume (vph)          | 34         | 37        | 189        | 502      |            |             |   |
| Future Volume (vph)           | 34         | 37        | 189        | 502      |            |             |   |
| Lane Group Flow (vph)         | 75         | 0         | 251        | 628      |            |             |   |
| Turn Type                     | Prot       | Perm      | NA         | NA       |            |             |   |
| Protected Phases              | 10         |           | 2          | 6        | 4          |             |   |
| Permitted Phases              |            | 2         |            |          |            |             |   |
| Detector Phase                | 10         | 2         | 2          | 6        |            |             |   |
| Switch Phase                  |            |           |            |          |            |             |   |
| Minimum Initial (s)           | 10.0       | 4.0       | 4.0        | 4.0      | 4.0        |             |   |
| Minimum Split (s)             | 21.0       | 48.0      | 48.0       | 48.0     | 11.0       |             |   |
| Total Split (s)               | 21.0       | 48.0      | 48.0       | 48.0     | 11.0       |             |   |
| Total Split (%)               | 26.3%      | 60.0%     | 60.0%      | 60.0%    | 14%        |             |   |
| Yellow Time (s)               | 3.0        | 3.0       | 3.0        | 3.0      | 3.0        |             |   |
| All-Red Time (s)              | 2.7        | 3.8       | 3.8        | 3.8      | 2.7        |             |   |
| Lost Time Adjust (s)          | 0.0        |           | 0.0        | 0.0      |            |             |   |
| Total Lost Time (s)           | 5.7        |           | 6.8        | 6.8      |            |             |   |
| Lead/Lag                      |            |           |            |          |            |             |   |
| Lead-Lag Optimize?            |            |           |            |          |            |             |   |
| Recall Mode                   | Min        | None      | None       | C-Max    | None       |             |   |
| Act Effct Green (s)           | 10.7       |           | 56.8       | 56.8     |            |             |   |
| Actuated g/C Ratio            | 0.13       |           | 0.71       | 0.71     |            |             |   |
| v/c Ratio                     | 0.37       |           | 0.24       | 0.53     |            |             |   |
| Control Delay (s/veh)         | 36.6       |           | 5.0        | 7.7      |            |             |   |
| Queue Delay                   | 0.0        |           | 0.0        | 0.0      |            |             |   |
| Total Delay (s/veh)           | 36.6       |           | 5.0        | 7.7      |            |             |   |
| LOS                           | D          |           | Α          | Α        |            |             |   |
| Approach Delay (s/veh)        | 36.6       |           | 5.0        | 7.7      |            |             |   |
| Approach LOS                  | D          |           | Α          | Α        |            |             |   |
| Queue Length 50th (m)         | 10.7       |           | 10.6       | 35.2     |            |             |   |
| Queue Length 95th (m)         | 22.0       |           | 21.5       | 66.0     |            |             |   |
| Internal Link Dist (m)        | 57.2       |           | 0.1        | 5.9      |            |             |   |
| Turn Bay Length (m)           |            |           |            |          |            |             |   |
| Base Capacity (vph)           | 293        |           | 1028       | 1178     |            |             |   |
| Starvation Cap Reductn        | 0          |           | 0          | 0        |            |             |   |
| Spillback Cap Reductn         | 0          |           | 0          | 0        |            |             |   |
| Storage Cap Reductn           | 0          |           | 0          | 0        |            |             |   |
| Reduced v/c Ratio             | 0.26       |           | 0.24       | 0.53     |            |             |   |
| Intersection Summary          |            |           |            |          |            |             |   |
| Cycle Length: 80              |            |           |            |          |            |             |   |
| Actuated Cycle Length: 80     |            |           |            |          |            |             |   |
| Offset: 0 (0%), Referenced to | to phase   | 6:SBT. S  | tart of Gr | een      |            |             |   |
| Natural Cycle: 80             | to pridoo  | J.OD 1, O |            | 3011     |            |             |   |
| Control Type: Actuated-Coo    | rdinated   |           |            |          |            |             |   |
| Maximum v/c Ratio: 0.53       | amatou     |           |            |          |            |             |   |
| Intersection Signal Delay (s  | /veh): 9.2 |           |            | In       | tersection | LOS: A      |   |
| Intersection Capacity Utiliza | •          |           |            |          |            | f Service B |   |
| Analysis Period (min) 15      |            |           |            | 1        | 2 20,010   | . 55.1100 5 |   |
| ,                             |            |           |            |          |            |             |   |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



Analysis Period (min) 15

|                            | -              | $\rightarrow$ | •    | <b>←</b> | 1     | 1     |  |
|----------------------------|----------------|---------------|------|----------|-------|-------|--|
| Lane Group                 | EBT            | EBR           | WBL  | WBT      | NBL   | NBR   |  |
| Lane Configurations        | f <sub>a</sub> |               |      | 4        | ¥     |       |  |
| Traffic Volume (vph)       | 3              | 5             | 5    | 5        | 5     | 5     |  |
| Future Volume (vph)        | 3              | 5             | 5    | 5        | 5     | 5     |  |
| Ideal Flow (vphpl)         | 1800           | 1800          | 1800 | 1800     | 1800  | 1800  |  |
| Lane Util. Factor          | 1.00           | 1.00          | 1.00 | 1.00     | 1.00  | 1.00  |  |
| Ped Bike Factor            |                |               |      |          |       |       |  |
| Frt                        | 0.910          |               |      |          | 0.932 |       |  |
| Flt Protected              |                |               |      | 0.976    | 0.976 |       |  |
| Satd. Flow (prot)          | 1535           | 0             | 0    | 1646     | 1534  | 0     |  |
| FIt Permitted              |                |               |      | 0.976    | 0.976 |       |  |
| Satd. Flow (perm)          | 1535           | 0             | 0    | 1646     | 1534  | 0     |  |
| Link Speed (k/h)           | 30             |               |      | 30       | 30    |       |  |
| Link Distance (m)          | 115.2          |               |      | 88.5     | 69.2  |       |  |
| Travel Time (s)            | 13.8           |               |      | 10.6     | 8.3   |       |  |
| Confl. Peds. (#/hr)        |                | 100           | 100  |          | 100   | 100   |  |
| Peak Hour Factor           | 0.90           | 0.90          | 0.90 | 0.90     | 0.90  | 0.90  |  |
| Adj. Flow (vph)            | 3              | 6             | 6    | 6        | 6     | 6     |  |
| Shared Lane Traffic (%)    |                |               |      |          |       |       |  |
| Lane Group Flow (vph)      | 9              | 0             | 0    | 12       | 12    | 0     |  |
| Enter Blocked Intersection | Yes            | Yes           | Yes  | Yes      | Yes   | Yes   |  |
| Lane Alignment             | Left           | Right         | Left | Left     | Left  | Right |  |
| Median Width(m)            | 0.0            |               |      | 0.0      | 3.2   |       |  |
| Link Offset(m)             | 0.0            |               |      | 0.0      | 0.0   |       |  |
| Crosswalk Width(m)         | 1.6            |               |      | 1.6      | 1.6   |       |  |
| Two way Left Turn Lane     |                |               |      |          |       |       |  |
| Headway Factor             | 1.14           | 1.14          | 1.14 | 1.14     | 1.14  | 1.14  |  |
| Turning Speed (k/h)        |                | 14            | 24   |          | 24    | 14    |  |
| Sign Control               | Stop           |               |      | Stop     | Stop  |       |  |
| Intersection Summary       |                |               |      |          |       |       |  |
| Area Type:                 | Other          |               |      |          |       |       |  |
| Control Type: Unsignalized |                |               |      |          |       |       |  |

ICU Level of Service A

Intersection Capacity Utilization 32.7%
Analysis Period (min) 15

|                            | -     | $\rightarrow$ | •    | -     |       | 1     |
|----------------------------|-------|---------------|------|-------|-------|-------|
| Lane Group                 | EBT   | EBR           | WBL  | WBT   | NBL   | NBR   |
| Lane Configurations        | f)    |               |      | 4     | N/F   |       |
| Traffic Volume (vph)       | 3     | 5             | 136  | 5     | 5     | 118   |
| Future Volume (vph)        | 3     | 5             | 136  | 5     | 5     | 118   |
| Ideal Flow (vphpl)         | 1800  | 1800          | 1800 | 1800  | 1800  | 1800  |
| Lane Util. Factor          | 1.00  | 1.00          | 1.00 | 1.00  | 1.00  | 1.00  |
| Ped Bike Factor            |       |               |      |       |       |       |
| Frt                        | 0.910 |               |      |       | 0.871 |       |
| Flt Protected              |       |               |      | 0.954 | 0.998 |       |
| Satd. Flow (prot)          | 1535  | 0             | 0    | 1609  | 1466  | 0     |
| Flt Permitted              |       |               |      | 0.954 | 0.998 |       |
| Satd. Flow (perm)          | 1535  | 0             | 0    | 1609  | 1466  | 0     |
| Link Speed (k/h)           | 30    |               |      | 30    | 30    |       |
| Link Distance (m)          | 88.5  |               |      | 119.7 | 28.7  |       |
| Travel Time (s)            | 10.6  |               |      | 14.4  | 3.4   |       |
| Confl. Peds. (#/hr)        |       | 100           | 100  |       | 100   | 100   |
| Peak Hour Factor           | 0.90  | 0.90          | 0.90 | 0.90  | 0.90  | 0.90  |
| Adj. Flow (vph)            | 3     | 6             | 151  | 6     | 6     | 131   |
| Shared Lane Traffic (%)    |       |               |      |       |       |       |
| Lane Group Flow (vph)      | 9     | 0             | 0    | 157   | 137   | 0     |
| Enter Blocked Intersection | Yes   | Yes           | Yes  | Yes   | Yes   | Yes   |
| Lane Alignment             | Left  | Right         | Left | Left  | Left  | Right |
| Median Width(m)            | 0.0   |               |      | 0.0   | 3.2   |       |
| Link Offset(m)             | 0.0   |               |      | 0.0   | 0.0   |       |
| Crosswalk Width(m)         | 1.6   |               |      | 1.6   | 1.6   |       |
| Two way Left Turn Lane     |       |               |      |       |       |       |
| Headway Factor             | 1.14  | 1.14          | 1.14 | 1.14  | 1.14  | 1.14  |
| Turning Speed (k/h)        |       | 14            | 24   |       | 24    | 14    |
| Sign Control               | Stop  |               |      | Stop  | Stop  |       |
| Intersection Summary       |       |               |      |       |       |       |
| Area Type: (               | Other |               |      |       |       |       |
| Control Type: Unsignalized |       |               |      |       |       |       |

ICU Level of Service A

Intersection Capacity Utilization 35.3% Analysis Period (min) 15

|                            | *    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •     | $\blacktriangleleft$ | <b>†</b> | -     | -    | <b>↓</b> | 4     |
|----------------------------|------|----------|---------------|------|----------|-------|----------------------|----------|-------|------|----------|-------|
| Lane Group                 | EBL  | EBT      | EBR           | WBL  | WBT      | WBR   | NBL                  | NBT      | NBR   | SBL  | SBT      | SBR   |
| Lane Configurations        |      | ર્ન      |               |      |          | 7     |                      | 4        |       |      |          | 7     |
| Traffic Volume (vph)       | 72   | 38       | 0             | 0    | 0        | 100   | 39                   | 26       | 29    | 0    | 0        | 90    |
| Future Volume (vph)        | 72   | 38       | 0             | 0    | 0        | 100   | 39                   | 26       | 29    | 0    | 0        | 90    |
| Ideal Flow (vphpl)         | 1800 | 1800     | 1800          | 1800 | 1800     | 1800  | 1800                 | 1800     | 1800  | 1800 | 1800     | 1800  |
| Lane Util. Factor          | 1.00 | 1.00     | 1.00          | 1.00 | 1.00     | 1.00  | 1.00                 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  |
| Frt                        |      |          |               |      |          | 0.865 |                      | 0.958    |       |      |          | 0.865 |
| Flt Protected              |      | 0.968    |               |      |          |       |                      | 0.980    |       |      |          |       |
| Satd. Flow (prot)          | 0    | 1632     | 0             | 0    | 0        | 1459  | 0                    | 1583     | 0     | 0    | 0        | 1459  |
| FIt Permitted              |      | 0.968    |               |      |          |       |                      | 0.980    |       |      |          |       |
| Satd. Flow (perm)          | 0    | 1632     | 0             | 0    | 0        | 1459  | 0                    | 1583     | 0     | 0    | 0        | 1459  |
| Link Speed (k/h)           |      | 30       |               |      | 30       |       |                      | 30       |       |      | 30       |       |
| Link Distance (m)          |      | 211.4    |               |      | 68.9     |       |                      | 224.9    |       |      | 85.7     |       |
| Travel Time (s)            |      | 25.4     |               |      | 8.3      |       |                      | 27.0     |       |      | 10.3     |       |
| Peak Hour Factor           | 0.90 | 0.90     | 0.90          | 0.90 | 0.90     | 0.90  | 0.90                 | 0.90     | 0.90  | 0.90 | 0.90     | 0.90  |
| Adj. Flow (vph)            | 80   | 42       | 0             | 0    | 0        | 111   | 43                   | 29       | 32    | 0    | 0        | 100   |
| Shared Lane Traffic (%)    |      |          |               |      |          |       |                      |          |       |      |          |       |
| Lane Group Flow (vph)      | 0    | 122      | 0             | 0    | 0        | 111   | 0                    | 104      | 0     | 0    | 0        | 100   |
| Enter Blocked Intersection | Yes  | Yes      | Yes           | Yes  | Yes      | Yes   | Yes                  | Yes      | Yes   | Yes  | Yes      | Yes   |
| Lane Alignment             | Left | Left     | Right         | Left | Left     | Right | Left                 | Left     | Right | Left | Left     | Right |
| Median Width(m)            |      | 0.0      |               |      | 0.0      |       |                      | 0.0      |       |      | 0.0      |       |
| Link Offset(m)             |      | 0.0      |               |      | 0.0      |       |                      | 0.0      |       |      | 0.0      |       |
| Crosswalk Width(m)         |      | 1.6      |               |      | 1.6      |       |                      | 1.6      |       |      | 1.6      |       |
| Two way Left Turn Lane     |      |          |               |      |          |       |                      |          |       |      |          |       |
| Headway Factor             | 1.14 | 1.14     | 1.14          | 1.14 | 1.14     | 1.14  | 1.14                 | 1.14     | 1.14  | 1.14 | 1.14     | 1.14  |
| Turning Speed (k/h)        | 97   |          | 97            | 97   |          | 97    | 97                   |          | 97    | 97   | _        | 97    |
| Sign Control               |      | Stop     |               |      | Stop     |       |                      | Stop     |       |      | Stop     |       |
| Intersection Summary       |      |          |               |      |          |       |                      |          |       |      |          |       |
| 71                         | ther |          |               |      |          |       |                      |          |       |      |          |       |
| Control Type: Uncignalized |      |          |               |      |          |       |                      |          |       |      |          |       |

Control Type: Unsignalized

Intersection Capacity Utilization 28.4%

ICU Level of Service A

Analysis Period (min) 15

| Intersection           |         |           |          |           |            |      |
|------------------------|---------|-----------|----------|-----------|------------|------|
| Int Delay, s/veh       | 10.7    |           |          |           |            |      |
| Movement               | EBL     | EBR       | NBL      | NBT       | SBT        | SBR  |
| Lane Configurations    |         | 7         |          | 44        | <u>35.</u> |      |
| Traffic Vol, veh/h     | 3       | 226       | 207      | 540       | 545        | 48   |
| Future Vol, veh/h      | 3       | 226       | 207      | 540       | 545        | 48   |
| Conflicting Peds, #/hr | 0       | 0         | 178      | 0         | 0          | 107  |
| Sign Control           | Stop    | Stop      | Free     | Free      | Free       | Free |
| RT Channelized         |         | None      |          | None      |            | None |
| Storage Length         | _       | 0         | _        | -         | _          | -    |
| Veh in Median Storage  |         | -         | _        | 0         | 0          | _    |
| Grade, %               | 0       |           | _        | 0         | 0          | _    |
| Peak Hour Factor       | 90      | 90        | 90       | 90        | 90         | 90   |
| Heavy Vehicles, %      | 2       | 2         | 2        | 2         | 2          | 2    |
| Mvmt Flow              | 3       | 251       | 230      | 600       | 606        | 53   |
| IVIVIIIL FIOW          | 3       | 201       | 230      | 000       | 000        | 53   |
|                        |         |           |          |           |            |      |
| Major/Minor N          | /linor2 | N         | Major1   | N         | /lajor2    |      |
| Conflicting Flow All   | 1570    | 810       | 837      | 0         |            | 0    |
| Stage 1                | 810     | -         | -        | _         | _          | _    |
| Stage 2                | 760     | _         | _        | _         | _          | _    |
| Critical Hdwy          | 6.63    | 6.23      | 4.13     | _         | _          | -    |
| Critical Hdwy Stg 1    | 5.43    | -         |          | _         | _          | _    |
| Critical Hdwy Stg 2    | 5.83    |           |          |           |            |      |
|                        |         | 3.319     |          |           |            |      |
| Pot Cap-1 Maneuver     | 111     | 379       | 795      | _         | -          | -    |
| · ·                    | 436     | 313       | 130      | -         |            |      |
| Stage 1                |         | -         | -        | -         | -          |      |
| Stage 2                | 423     | -         | -        | -         | -          | -    |
| Platoon blocked, %     | 40      | 000       | 0.45     | -         | -          | -    |
| Mov Cap-1 Maneuver     | 42      | 308       | 645      | -         | -          | -    |
| Mov Cap-2 Maneuver     | 42      | -         | -        | -         | -          | -    |
| Stage 1                | 203     | -         | -        | -         | -          | -    |
| Stage 2                | 344     | -         | -        | -         | -          | -    |
|                        |         |           |          |           |            |      |
| Approach               | EB      |           | NB       |           | SB         |      |
|                        |         |           | 6.17     |           | 0          |      |
| HCM LOS                |         |           | 0.17     |           | U          |      |
| HCM LOS                | F       |           |          |           |            |      |
|                        |         |           |          |           |            |      |
| Minor Lane/Major Mvm   | nt      | NBL       | NBTE     | EBLn1     | SBT        | SBR  |
| Capacity (veh/h)       |         | 538       | -        | 308       |            |      |
| HCM Lane V/C Ratio     |         | 0.356     |          | 0.817     | _          | _    |
| HCM Control Delay (s/  | (veh)   | 13.6      | 3.3      | 52.9      |            | _    |
| HCM Lane LOS           | voii)   | 13.0<br>B | 3.5<br>A | 52.9<br>F |            | _    |
| HCM 95th %tile Q(veh   | \       | 1.6       |          | 6.8       |            |      |
| HOW SOUL WILL CLANE    | )       | 1.0       | -        | 0.0       | -          | -    |

| Intersection           |           |       |           |            |             |      |
|------------------------|-----------|-------|-----------|------------|-------------|------|
| Int Delay, s/veh       | 0.3       |       |           |            |             |      |
| Movement               | EBL       | EBR   | NBL       | NBT        | SBT         | SBR  |
| Lane Configurations    | LDL       | T T   | NDL       | <b>↑</b> ↑ | <u>361</u>  | ODIN |
| Traffic Vol, veh/h     | 0         | 23    | 0         | <b>77</b>  | <b>7</b> 80 | 2    |
| Future Vol, veh/h      | 0         | 23    | 0         | 755        | 780         | 2    |
| Conflicting Peds, #/hr | 0         | 0     | 0         | 0          | 0           | 86   |
| Sign Control           | Stop      | Stop  | Free      | Free       | Free        | Free |
| RT Channelized         | Stop<br>- | None  | riee<br>- | None       |             | None |
|                        |           | 0     |           |            | -           |      |
| Storage Length         | -<br># 0  |       | -         | -          | -           | -    |
| Veh in Median Storage  |           | -     | -         | 0          | 0           | -    |
| Grade, %               | 0         | -     | -         | 0          | 0           | -    |
| Peak Hour Factor       | 90        | 90    | 90        | 90         | 90          | 90   |
| Heavy Vehicles, %      | 2         | 2     | 2         | 2          | 2           | 2    |
| Mvmt Flow              | 0         | 26    | 0         | 839        | 867         | 2    |
|                        |           |       |           |            |             |      |
| Major/Minor M          | linor2    | N     | /lajor1   | N          | /lajor2     |      |
| Conflicting Flow All   | -         | 954   | -         | 0          | -           | 0    |
| Stage 1                | _         | -     | _         | -          | _           | -    |
| Stage 2                | _         | _     | _         | _          | _           | _    |
| Critical Hdwy          | _         | 6.23  | _         | _          | _           | _    |
| Critical Hdwy Stg 1    |           | 0.20  | _         | _          | _           | _    |
| Critical Hdwy Stg 2    |           |       |           |            |             |      |
| , ,                    |           |       | -         |            | -           | -    |
| Follow-up Hdwy         |           | 3.319 | -         | -          | -           | -    |
| Pot Cap-1 Maneuver     | 0         | 313   | 0         | -          | -           | -    |
| Stage 1                | 0         | -     | 0         | -          | -           | -    |
| Stage 2                | 0         | -     | 0         | -          | -           | -    |
| Platoon blocked, %     |           |       |           | -          | -           | -    |
| Mov Cap-1 Maneuver     | -         | 284   | -         | -          | -           | -    |
| Mov Cap-2 Maneuver     | -         | -     | -         | -          | -           | -    |
| Stage 1                | -         | -     | -         | -          | -           | -    |
| Stage 2                | -         | -     | -         | -          | -           | -    |
|                        |           |       |           |            |             |      |
| Approach               | EB        |       | NB        |            | SB          |      |
| HCM Control Delay, s/v |           |       | 0         |            | 0           |      |
| HCM LOS                | C 10.9    |       | U         |            | U           |      |
| HCWI LOS               | C         |       |           |            |             |      |
|                        |           |       |           |            |             |      |
| Minor Lane/Major Mvm   | t         | NBTE  | BLn1      | SBT        | SBR         |      |
| Capacity (veh/h)       |           | -     | 284       | -          | -           |      |
| HCM Lane V/C Ratio     |           | -     | 0.09      | -          | _           |      |
| HCM Control Delay (s/  | veh)      | -     | 18.9      | -          | _           |      |
| HCM Lane LOS           | ,         | _     | C         | _          | _           |      |
| HCM 95th %tile Q(veh)  |           | _     | 0.3       | -          | _           |      |
|                        |           |       | J.0       |            |             |      |

| Intersection           |        |       |         |       |             |       |
|------------------------|--------|-------|---------|-------|-------------|-------|
| Int Delay, s/veh       | 2.6    |       |         |       |             |       |
| Movement               | EBL    | EBR   | NBL     | NBT   | SBT         | SBR   |
| Lane Configurations    | W      | LDIK  | HOL     | 4     | <b>1</b> 30 | OBIN  |
| Traffic Vol, veh/h     | 51     | 54    | 45      | 249   | 480         | 66    |
| Future Vol, veh/h      | 51     | 54    | 45      | 249   | 480         | 66    |
| Conflicting Peds, #/hr | 0      | 0     | 0       | 0     | 0           | 0     |
| Sign Control           | Stop   | Stop  | Free    | Free  | Free        | Free  |
| RT Channelized         | -      | None  | -       | None  | -           | None  |
| Storage Length         | 0      | -     | _       | -     | _           | -     |
| Veh in Median Storage  |        | -     | _       | 0     | 0           | -     |
| Grade, %               | 0      | -     | _       | 0     | 0           | -     |
| Peak Hour Factor       | 90     | 90    | 90      | 90    | 90          | 90    |
| Heavy Vehicles, %      | 0      | 0     | 0       | 0     | 0           | 0     |
| Mymt Flow              | 57     | 60    | 50      | 277   | 533         | 73    |
| IVIVIIIL FIOW          | 31     | 00    | 50      | 211   | 555         | 13    |
|                        |        |       |         |       |             |       |
| Major/Minor N          | 1inor2 | ١     | /lajor1 | ١     | /lajor2     |       |
| Conflicting Flow All   | 947    | 570   | 607     | 0     | -           | 0     |
| Stage 1                | 570    | -     | -       | -     | -           | -     |
| Stage 2                | 377    | -     | -       | -     | -           | -     |
| Critical Hdwy          | 6.4    | 6.2   | 4.1     | -     | -           | -     |
| Critical Hdwy Stg 1    | 5.4    | -     | -       | -     | -           | -     |
| Critical Hdwy Stg 2    | 5.4    | -     | -       | -     | -           | -     |
| Follow-up Hdwy         | 3.5    | 3.3   | 2.2     | _     | _           | _     |
| Pot Cap-1 Maneuver     | 292    | 525   | 981     | _     | _           | _     |
| Stage 1                | 570    | -     | -       | _     | _           | _     |
| Stage 2                | 698    | _     | _       | _     | _           | _     |
| Platoon blocked, %     | 000    |       |         | _     | _           | _     |
| Mov Cap-1 Maneuver     | 275    | 525   | 981     |       | _           | _     |
| Mov Cap-1 Maneuver     | 275    | 525   | 301     | _     |             | _     |
|                        | 535    |       | -       |       |             |       |
| Stage 1                | 698    | -     | -       |       |             |       |
| Stage 2                | 090    | -     | -       | -     | -           | -     |
|                        |        |       |         |       |             |       |
| Approach               | EB     |       | NB      |       | SB          |       |
| HCM Control Delay, s/  | 19.49  |       | 1.36    |       | 0           |       |
| HCM LOS                | С      |       |         |       |             |       |
|                        |        |       |         |       |             |       |
|                        |        |       |         |       |             | 0.5.5 |
| Minor Lane/Major Mvm   | nt     | NBL   | NBTE    | EBLn1 | SBT         | SBR   |
| Capacity (veh/h)       |        | 276   | -       | 364   | -           | -     |
| HCM Lane V/C Ratio     |        | 0.051 | -       | 0.321 | -           | -     |
| HCM Control Delay (s/  | veh)   | 8.9   | 0       | 19.5  | -           | -     |
| HCM Lane LOS           |        | Α     | Α       | С     | -           | -     |
| HCM 95th %tile Q(veh)  | )      | 0.2   | -       | 1.4   | -           | -     |
|                        |        |       |         |       |             |       |

| Intersection           |         |          |            |       |         |          |
|------------------------|---------|----------|------------|-------|---------|----------|
| Int Delay, s/veh       | 0.8     |          |            |       |         |          |
|                        |         | WDD      | NDT        | NDD   | CDI     | CDT      |
| Movement               | WBL     | WBR      | NBT        | NBR   | SBL     | SBT      |
| Lane Configurations    | -       | 70       | <b>↑</b> ↑ | 7     | 4       | <b>^</b> |
| Traffic Vol, veh/h     | 5       | 72       | 522        | 7     | 1       | 587      |
| Future Vol, veh/h      | 5       | 72       | 522        | 7     | 1       | 587      |
| Conflicting Peds, #/hr | 0       | 0        | 0          | 100   | _ 0     | _ 0      |
| Sign Control           | Stop    | Stop     | Free       | Free  | Free    | Free     |
| RT Channelized         | -       |          | -          |       |         | None     |
| Storage Length         | -       | 0        | -          | -     | -       | -        |
| Veh in Median Storage  |         | -        | 0          | -     | -       | 0        |
| Grade, %               | 0       | -        | 0          | -     | -       | 0        |
| Peak Hour Factor       | 90      | 90       | 90         | 90    | 90      | 90       |
| Heavy Vehicles, %      | 0       | 3        | 2          | 0     | 0       | 3        |
| Mvmt Flow              | 6       | 80       | 580        | 8     | 1       | 652      |
|                        |         |          |            |       |         |          |
| Major/Minor N          | /linor1 | N        | /lajor1    | N     | /lajor2 |          |
| Conflicting Flow All   | 1012    | 394      | 0          | 0     | 688     | 0        |
| Stage 1                | 684     | J34<br>- | -          | -     | -       | -        |
| Stage 2                | 328     | _        |            | _     | -       | _        |
| Critical Hdwy          | 6.8     | 6.96     | -          |       | 4.1     | _        |
| •                      | 5.8     | 0.90     | -          | -     | 4.1     | _        |
| Critical Hdwy Stg 1    | 5.8     |          |            |       |         |          |
| Critical Hdwy Stg 2    | 3.5     | 3.33     | -          | -     | 2.2     | -        |
| Follow-up Hdwy         | 239     | 602      |            |       | 916     |          |
| Pot Cap-1 Maneuver     |         |          | -          | -     | 910     | -        |
| Stage 1                | 468     | -        | -          | -     | -       | -        |
| Stage 2                | 708     | -        | -          | -     | -       | -        |
| Platoon blocked, %     | 040     | 500      | -          | -     | 040     | -        |
| Mov Cap-1 Maneuver     | 213     | 539      | -          | -     | 819     | -        |
| Mov Cap-2 Maneuver     | 213     | -        | -          | -     | -       | -        |
| Stage 1                | 418     | -        | -          | -     | -       | -        |
| Stage 2                | 707     | -        | -          | -     | -       | -        |
|                        |         |          |            |       |         |          |
| Approach               | WB      |          | NB         |       | SB      |          |
| HCM Control Delay, s/  |         |          | 0          |       | 0.02    |          |
| HCM LOS                | W 2.03  |          | U          |       | 0.02    |          |
| I IOIVI LOO            | D       |          |            |       |         |          |
|                        |         |          |            |       |         |          |
| Minor Lane/Major Mvn   | nt      | NBT      | NBRV       | VBLn1 | SBL     | SBT      |
| Capacity (veh/h)       |         | -        | -          | 539   | 819     | -        |
| HCM Lane V/C Ratio     |         | -        | -          | 0.149 | 0.001   | -        |
| HCM Control Delay (sa  | /veh)   | -        | -          | 12.8  | 9.4     | -        |
| HCM Lane LOS           |         | -        | -          | В     | Α       | -        |
| HCM 95th %tile Q(veh   | 1)      | -        | -          | 0.5   | 0       | -        |
|                        |         |          |            |       |         |          |

| Intersection            |       |        |        |      |         |       |
|-------------------------|-------|--------|--------|------|---------|-------|
| Int Delay, s/veh        | 1.8   |        |        |      |         |       |
| Movement I              | EBT   | EBR    | WBL    | WBT  | NBL     | NBR   |
| Lane Configurations     | 1>    | LOIK   | ,,,,,, | 4    | 7/      | 11311 |
| Traffic Vol, veh/h      | 118   | 122    | 5      | 136  | 43      | 5     |
|                         | 118   | 122    | 5      | 136  | 43      | 5     |
| Conflicting Peds, #/hr  | 0     | 100    | 100    | 0    | 100     | 100   |
|                         | ree   | Free   | Free   | Free | Stop    | Stop  |
| RT Channelized          | -     |        | -      | None | -<br>-  | None  |
| Storage Length          | -     | NOHE - | -      | -    | 0       | -     |
| Veh in Median Storage,  | # O   |        |        | 0    | 0       |       |
| •                       |       | -      | -      |      |         | -     |
| Grade, %                | 0     | -      | -      | 0    | 0       | -     |
| Peak Hour Factor        | 90    | 90     | 90     | 90   | 90      | 90    |
| Heavy Vehicles, %       | 2     | 2      | 2      | 2    | 2       | 2     |
| Mvmt Flow               | 131   | 136    | 6      | 151  | 48      | 6     |
|                         |       |        |        |      |         |       |
| Major/Minor Ma          | ijor1 | N      | Major2 | N    | /linor1 |       |
| Conflicting Flow All    | 0     | 0      | 367    | 0    | 561     | 399   |
| Stage 1                 | -     | U      | 307    | -    | 299     | 399   |
| Stage 2                 | -     | -      | _      | -    | 262     | _     |
|                         | -     | -      | 4.12   |      |         |       |
| Critical Hdwy           |       | -      |        | -    | 6.42    | 6.22  |
| Critical Hdwy Stg 1     | -     | -      | -      | -    | 5.42    | -     |
| Critical Hdwy Stg 2     | -     | -      | -      | -    | 5.42    | -     |
| Follow-up Hdwy          | -     | -      | 2.218  | -    | 3.518   |       |
| Pot Cap-1 Maneuver      | -     | -      | 1192   | -    | 489     | 651   |
| Stage 1                 | -     | -      | -      | -    | 752     | -     |
| Stage 2                 | -     | -      | -      | -    | 782     | -     |
| Platoon blocked, %      | -     | -      |        | -    |         |       |
| Mov Cap-1 Maneuver      | -     | -      | 1066   | -    | 389     | 520   |
| Mov Cap-2 Maneuver      | -     | -      | -      | -    | 389     | -     |
| Stage 1                 | -     | -      | -      | -    | 673     | -     |
| Stage 2                 | -     | -      | -      | _    | 695     | -     |
| 5.0.50                  |       |        |        |      |         |       |
|                         |       |        |        |      |         |       |
| Approach                | EB    |        | WB     |      | NB      |       |
| HCM Control Delay, s/v  | 0     |        | 0.3    |      | 15.41   |       |
| HCM LOS                 |       |        |        |      | С       |       |
|                         |       |        |        |      |         |       |
| Minor Lane/Major Mvmt   | N     | NBLn1  | EBT    | EBD  | WBL     | WBT   |
| •                       | ı     |        | LDI    | LDK  |         | VVDI  |
| Capacity (veh/h)        |       | 399    | -      | -    | 64      | -     |
| HCM Lane V/C Ratio      |       | 0.134  | -      | -    | 0.005   | -     |
| HCM Control Delay (s/ve | eh)   | 15.4   | -      | -    | 8.4     | 0     |
| HCM Lane LOS            |       | С      | -      | -    | Α       | Α     |
| HCM 95th %tile Q(veh)   |       | 0.5    | -      | -    | 0       | -     |
|                         |       |        |        |      |         |       |

| Intersection            |       |            |         |       |            |       |
|-------------------------|-------|------------|---------|-------|------------|-------|
| Int Delay, s/veh        | 2.4   |            |         |       |            |       |
|                         | EBL   | EBT        | WBT     | WBR   | SBL        | SBR   |
| Lane Configurations     | LDL   | <u>⊏DI</u> | vvb i   | WDK   | SDL        | אמט   |
| Traffic Vol, veh/h      | 5     |            | 23      | 88    | <b>4</b> 9 | 5     |
|                         | 5     | 56         | 23      |       |            |       |
| Future Vol, veh/h       | 5     | 56         |         | 88    | 49         | 5     |
| Conflicting Peds, #/hr  |       | 0          | 0       | 0     | 0          | 0     |
| 3                       | Free  | Free       | Free    | Free  | Stop       | Stop  |
| RT Channelized          |       | None       | -       |       | -          |       |
| Storage Length          | -     | -          | -       | -     | 0          | -     |
| Veh in Median Storage,  | # -   | 0          | 0       | -     | 0          | -     |
| Grade, %                | -     | 0          | 0       | -     | 0          | -     |
| Peak Hour Factor        | 90    | 90         | 90      | 90    | 90         | 90    |
| Heavy Vehicles, %       | 2     | 2          | 2       | 2     | 2          | 2     |
| Mvmt Flow               | 6     | 62         | 26      | 98    | 54         | 6     |
|                         |       |            |         |       |            |       |
| N. 4                    |       |            | 4 : 0   |       | 4: 0       |       |
|                         | ajor1 |            | //ajor2 |       | Minor2     |       |
|                         | 123   | 0          | -       | 0     | 148        | 74    |
| Stage 1                 | -     | -          | -       | -     | 74         | -     |
| Stage 2                 | -     | -          | -       | -     | 73         | -     |
| •                       | 4.12  | -          | -       | -     | 6.42       | 6.22  |
| Critical Hdwy Stg 1     | -     | -          | -       | -     | 5.42       | -     |
| Critical Hdwy Stg 2     | -     | -          | -       | -     | 5.42       | -     |
| Follow-up Hdwy 2.       | .218  | -          | -       | -     | 3.518      | 3.318 |
| Pot Cap-1 Maneuver 1    | 464   | -          | -       | -     | 844        | 987   |
| Stage 1                 | -     | -          | -       | -     | 948        | -     |
| Stage 2                 | _     | _          | -       | _     | 950        | _     |
| Platoon blocked, %      |       | _          | _       | _     |            |       |
| Mov Cap-1 Maneuver 1    | 1464  | _          | _       | _     | 841        | 987   |
| Mov Cap-1 Maneuver      | -     | _          | _       | _     | 841        | -     |
| Stage 1                 |       |            |         |       | 945        |       |
| •                       | -     | -          | -       | -     |            |       |
| Stage 2                 | -     | -          | -       | -     | 950        | -     |
|                         |       |            |         |       |            |       |
| Approach                | EB    |            | WB      |       | SB         |       |
| HCM Control Delay, s/v( | 0.61  |            | 0       |       | 9.54       |       |
| HCM LOS                 | 0.01  |            |         |       | A          |       |
| TOW LOO                 |       |            |         |       | <i>F</i> \ |       |
| N. 1                    |       | E5:        |         | 14/57 | 14/00      | 201 4 |
| Minor Lane/Major Mvmt   |       | EBL        | EBT     | WBT   | WBR        |       |
| Capacity (veh/h)        |       | 148        | -       | -     | -          | 853   |
| HCM Lane V/C Ratio      |       | 0.004      | -       | -     | -          | 0.07  |
| HCM Control Delay (s/ve | eh)   | 7.5        | 0       | -     | -          | 9.5   |
| HCM Lane LOS            |       | Α          | Α       | -     | -          | Α     |
| HCM 95th %tile Q(veh)   |       | 0          | -       | -     | -          | 0.2   |
| ., .                    |       |            |         |       |            |       |

# **Existing scenario**

2022 Saturday Peak Hour

1: Bank & Fifth 08/01/2024

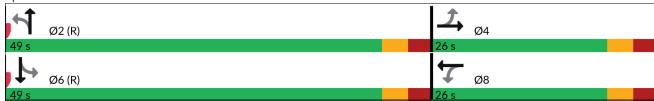
|                        | <b>*</b> | <b>→</b> | 1     | +     | 4     | †     | <b>/</b> | Į.    |  |
|------------------------|----------|----------|-------|-------|-------|-------|----------|-------|--|
| Lane Group             | EBL      | EBT      | WBL   | WBT   | NBL   | NBT   | SBL      | SBT   |  |
| Lane Configurations    |          | 4        | - ነ   | ĵ.    |       | 474   |          | 476   |  |
| Traffic Volume (vph)   | 44       | 39       | 65    | 43    | 20    | 461   | 19       | 510   |  |
| Future Volume (vph)    | 44       | 39       | 65    | 43    | 20    | 461   | 19       | 510   |  |
| Lane Group Flow (vph)  | 0        | 138      | 72    | 102   | 0     | 560   | 0        | 617   |  |
| Turn Type              | Perm     | NA       | Perm  | NA    | Perm  | NA    | Perm     | NA    |  |
| Protected Phases       |          | 4        |       | 8     |       | 2     |          | 6     |  |
| Permitted Phases       | 4        |          | 8     |       | 2     |       | 6        |       |  |
| Detector Phase         | 4        | 4        | 8     | 8     | 2     | 2     | 6        | 6     |  |
| Switch Phase           |          |          |       |       |       |       |          |       |  |
| Minimum Initial (s)    | 4.0      | 4.0      | 4.0   | 4.0   | 4.0   | 4.0   | 4.0      | 4.0   |  |
| Minimum Split (s)      | 26.0     | 26.0     | 26.0  | 26.0  | 49.0  | 49.0  | 49.0     | 49.0  |  |
| Total Split (s)        | 26.0     | 26.0     | 26.0  | 26.0  | 49.0  | 49.0  | 49.0     | 49.0  |  |
| Total Split (%)        | 34.7%    | 34.7%    | 34.7% | 34.7% | 65.3% | 65.3% | 65.3%    | 65.3% |  |
| Yellow Time (s)        | 3.0      | 3.0      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   |  |
| All-Red Time (s)       | 2.5      | 2.5      | 2.5   | 2.5   | 2.5   | 2.5   | 2.5      | 2.5   |  |
| Lost Time Adjust (s)   |          | 0.0      | 0.0   | 0.0   |       | 0.0   |          | 0.0   |  |
| Total Lost Time (s)    |          | 5.5      | 5.5   | 5.5   |       | 5.5   |          | 5.5   |  |
| Lead/Lag               |          |          |       |       |       |       |          |       |  |
| Lead-Lag Optimize?     |          |          |       |       |       |       |          |       |  |
| Recall Mode            | None     | None     | None  | None  | C-Max | C-Max | C-Max    | C-Max |  |
| Act Effct Green (s)    |          | 11.7     | 11.7  | 11.7  |       | 55.6  |          | 55.6  |  |
| Actuated g/C Ratio     |          | 0.16     | 0.16  | 0.16  |       | 0.74  |          | 0.74  |  |
| v/c Ratio              |          | 0.63     | 0.46  | 0.39  |       | 0.27  |          | 0.29  |  |
| Control Delay (s/veh)  |          | 34.2     | 36.6  | 18.5  |       | 8.6   |          | 5.1   |  |
| Queue Delay            |          | 0.0      | 0.0   | 0.0   |       | 0.0   |          | 0.0   |  |
| Total Delay (s/veh)    |          | 34.2     | 36.6  | 18.5  |       | 8.6   |          | 5.1   |  |
| LOS                    |          | С        | D     | В     |       | Α     |          | Α     |  |
| Approach Delay (s/veh) |          | 34.2     |       | 26.0  |       | 8.6   |          | 5.1   |  |
| Approach LOS           |          | С        |       | С     |       | Α     |          | Α     |  |
| Queue Length 50th (m)  |          | 13.9     | 9.4   | 6.0   |       | 11.5  |          | 14.3  |  |
| Queue Length 95th (m)  |          | 28.1     | 19.4  | 17.0  |       | 47.2  |          | 28.2  |  |
| Internal Link Dist (m) |          | 49.7     |       | 112.4 |       | 195.6 |          | 190.0 |  |
| Turn Bay Length (m)    |          |          | 45.0  |       |       |       |          |       |  |
| Base Capacity (vph)    |          | 361      | 276   | 421   |       | 2097  |          | 2122  |  |
| Starvation Cap Reductn |          | 0        | 0     | 0     |       | 0     |          | 0     |  |
| Spillback Cap Reductn  |          | 0        | 0     | 0     |       | 0     |          | 0     |  |
| Storage Cap Reductn    |          | 0        | 0     | 0     |       | 0     |          | 0     |  |
| Reduced v/c Ratio      |          | 0.38     | 0.26  | 0.24  |       | 0.27  |          | 0.29  |  |
| Intersection Summary   |          |          |       |       |       |       |          |       |  |
| Cycle Length: 75       |          |          |       |       |       |       |          |       |  |

Actuated Cycle Length: 75

Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

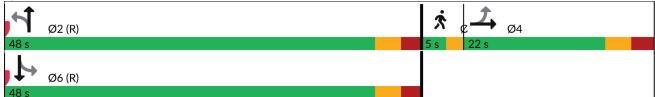
Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.63

Intersection Signal Delay (s/veh): 11.6
Intersection Capacity Utilization 55.8%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15


Splits and Phases: 1: Bank & Fifth



## 2: Bank & Holmwood

|                               | -           | •       | †           | <b>/</b>      | Ţ           |               |
|-------------------------------|-------------|---------|-------------|---------------|-------------|---------------|
| Lane Group                    | EBT         | NBL     | NBT         | SBL           | SBT         | Ø3            |
| Lane Configurations           | 4           |         | 413         |               | 414         |               |
| Traffic Volume (vph)          | 9           | 27      | 469         | 29            | 522         |               |
| Future Volume (vph)           | 9           | 27      | 469         | 29            | 522         |               |
| Lane Group Flow (vph)         | 107         | 0       | 599         | 0             | 636         |               |
| Turn Type                     | NA          | Perm    | NA          | Perm          | NA          |               |
| Protected Phases              | 4           |         | 2           |               | 6           | 3             |
| Permitted Phases              |             | 2       |             | 6             |             | -             |
| Detector Phase                | 4           | 2       | 2           | 6             | 6           |               |
| Switch Phase                  |             |         |             |               |             |               |
| Minimum Initial (s)           | 4.4         | 10.0    | 10.0        | 4.0           | 4.0         | 1.0           |
| Minimum Split (s)             | 22.0        | 48.0    | 48.0        | 48.0          | 48.0        | 5.0           |
| Total Split (s)               | 22.0        | 48.0    | 48.0        | 48.0          | 48.0        | 5.0           |
| Total Split (%)               | 29.3%       | 64.0%   | 64.0%       | 64.0%         | 64.0%       | 7%            |
| Yellow Time (s)               | 3.0         | 3.0     | 3.0         | 3.0           | 3.0         | 2.0           |
| All-Red Time (s)              | 2.6         | 2.2     | 2.2         | 2.2           | 2.2         | 0.0           |
| Lost Time Adjust (s)          | 0.0         |         | 0.0         |               | 0.0         | <b>-</b>      |
| Total Lost Time (s)           | 5.6         |         | 5.2         |               | 5.2         |               |
| Lead/Lag                      | Lag         |         | J. <u>_</u> |               |             | Lead          |
| Lead-Lag Optimize?            |             |         |             |               |             |               |
| Recall Mode                   | None        | C-Max   | C-Max       | C-Max         | C-Max       | None          |
| Act Effct Green (s)           | 11.3        |         | 56.4        |               | 56.4        |               |
| Actuated g/C Ratio            | 0.15        |         | 0.75        |               | 0.75        |               |
| v/c Ratio                     | 0.54        |         | 0.29        |               | 0.30        |               |
| Control Delay (s/veh)         | 38.5        |         | 3.1         |               | 5.5         |               |
| Queue Delay                   | 0.0         |         | 0.0         |               | 0.0         |               |
| Total Delay (s/veh)           | 38.5        |         | 3.1         |               | 5.5         |               |
| LOS                           | D           |         | A           |               | A           |               |
| Approach Delay (s/veh)        | 38.5        |         | 3.1         |               | 5.5         |               |
| Approach LOS                  | D           |         | A           |               | Α           |               |
| Queue Length 50th (m)         | 14.2        |         | 3.2         |               | 24.0        |               |
| Queue Length 95th (m)         | 26.7        |         | 15.9        |               | 41.2        |               |
| Internal Link Dist (m)        | 39.8        |         | 31.5        |               | 195.6       |               |
| Turn Bay Length (m)           | 50.0        |         | 31.0        |               | 100.0       |               |
| Base Capacity (vph)           | 291         |         | 2040        |               | 2106        |               |
| Starvation Cap Reductn        | 0           |         | 0           |               | 0           |               |
| Spillback Cap Reductn         | 0           |         | 0           |               | 0           |               |
| Storage Cap Reductn           | 0           |         | 0           |               | 0           |               |
| Reduced v/c Ratio             | 0.37        |         | 0.29        |               | 0.30        |               |
| Intersection Summary          |             |         |             |               |             |               |
| Cycle Length: 75              |             |         |             |               |             |               |
| Actuated Cycle Length: 75     |             |         |             |               |             |               |
| Offset: 74 (99%), Reference   |             | e 2:NRT | L and 6:5   | SBTL Sta      | art of Gree | en            |
| Natural Cycle: 75             | ou to pride | 2       | 0.0         | . <u></u> , o |             |               |
| Control Type: Actuated-Co     | ordinated   |         |             |               |             |               |
| Maximum v/c Ratio: 0.54       | or amateu   |         |             |               |             |               |
| Intersection Signal Delay (   | s/veh): 7.0 |         |             | li li         | ntersectio  | n I OS· A     |
| Intersection Capacity Utiliz  |             |         |             |               |             | of Service B  |
| Analysis Period (min) 15      | ulion 02.3  | 70      |             | , i           | CO LEVE     | OI OOI VICE D |
| raidiyələ i cirou (illili) 15 |             |         |             |               |             |               |

Splits and Phases: 2: Bank & Holmwood



## 3: Bank & Exhibition

|                             | •          | *        | <b>†</b>   | -         | <b>↓</b>   |      |      |
|-----------------------------|------------|----------|------------|-----------|------------|------|------|
| Lane Group                  | WBL        | WBR      | NBT        | SBL       | SBT        | Ø1   | Ø7   |
| Lane Configurations         | *          | 7        | <b>†</b> } | 75        | <b>†</b> † |      |      |
| Traffic Volume (vph)        | 83         | 68       | 429        | 119       | 452        |      |      |
| Future Volume (vph)         | 83         | 68       | 429        | 119       | 452        |      |      |
| Lane Group Flow (vph)       | 92         | 76       | 604        | 132       | 502        |      |      |
| Turn Type                   | Perm       | Perm     | NA         | Perm      | NA         |      |      |
| Protected Phases            |            |          | 2          |           | 6          | 1    | 7    |
| Permitted Phases            | 8          | 8        |            | 6         |            |      |      |
| Detector Phase              | 8          | 8        | 2          | 6         | 6          |      |      |
| Switch Phase                |            |          |            |           |            |      |      |
| Minimum Initial (s)         | 10.0       | 10.0     | 10.0       | 10.0      | 10.0       | 1.0  | 1.0  |
| Minimum Split (s)           | 26.0       | 26.0     | 39.0       | 39.0      | 39.0       | 5.0  | 5.0  |
| Total Split (s)             | 26.0       | 26.0     | 39.0       | 39.0      | 39.0       | 5.0  | 5.0  |
| Total Split (%)             | 34.7%      | 34.7%    | 52.0%      | 52.0%     | 52.0%      | 7%   | 7%   |
| Yellow Time (s)             | 3.3        | 3.3      | 3.0        | 3.0       | 3.0        | 2.0  | 3.5  |
| All-Red Time (s)            | 3.0        | 3.0      | 3.9        | 3.9       | 3.9        | 0.0  | 0.0  |
| Lost Time Adjust (s)        | 0.0        | 0.0      | 0.0        | 0.0       | 0.0        |      |      |
| Total Lost Time (s)         | 6.3        | 6.3      | 6.9        | 6.9       | 6.9        |      |      |
| Lead/Lag                    | Lag        | Lag      |            |           |            |      | Lead |
| Lead-Lag Optimize?          |            |          |            |           |            |      | Yes  |
| Recall Mode                 | None       | None     | C-Max      | C-Max     | C-Max      | None | None |
| Act Effct Green (s)         | 11.1       | 11.1     | 55.4       | 55.4      | 55.4       |      |      |
| Actuated g/C Ratio          | 0.15       | 0.15     | 0.74       | 0.74      | 0.74       |      |      |
| v/c Ratio                   | 0.41       | 0.33     | 0.28       | 0.28      | 0.21       |      |      |
| Control Delay (s/veh)       | 34.4       | 11.6     | 4.6        | 5.0       | 3.1        |      |      |
| Queue Delay                 | 0.0        | 0.0      | 0.0        | 0.0       | 0.0        |      |      |
| Total Delay (s/veh)         | 34.4       | 11.6     | 4.6        | 5.0       | 3.1        |      |      |
| LOS                         | С          | В        | Α          | Α         | Α          |      |      |
| Approach Delay (s/veh)      | 24.1       |          | 4.6        |           | 3.5        |      |      |
| Approach LOS                | С          |          | Α          |           | Α          |      |      |
| Queue Length 50th (m)       | 12.2       | 0.0      | 12.9       | 4.0       | 8.1        |      |      |
| Queue Length 95th (m)       | 23.9       | 10.3     | 23.4       | 8.1       | 11.0       |      |      |
| Internal Link Dist (m)      | 30.6       |          | 33.7       |           | 44.8       |      |      |
| Turn Bay Length (m)         |            |          |            | 40.0      |            |      |      |
| Base Capacity (vph)         | 399        | 351      | 2160       | 467       | 2342       |      |      |
| Starvation Cap Reductn      | 0          | 0        | 0          | 0         | 0          |      |      |
| Spillback Cap Reductn       | 0          | 0        | 0          | 0         | 0          |      |      |
| Storage Cap Reductn         | 0          | 0        | 0          | 0         | 0          |      |      |
| Reduced v/c Ratio           | 0.23       | 0.22     | 0.28       | 0.28      | 0.21       |      |      |
| Intersection Summary        |            |          |            |           |            |      |      |
| Cycle Length: 75            |            |          |            |           |            |      |      |
| Actuated Cycle Length: 75   |            |          |            |           |            |      |      |
| Offset: 70 (93%), Reference | ed to phas | se 2:NBT | and 6:SE   | BTL, Star | t of Greer | 1    |      |

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.41

Intersection Signal Delay (s/veh): 6.4 Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15



## 6: Bank & Aylmer

|                               | ۶           | 1        | †         | <del> </del> |                       |  |
|-------------------------------|-------------|----------|-----------|--------------|-----------------------|--|
| Lane Group                    | EBL         | NBL      | NBT       | SBT          | Ø3                    |  |
| Lane Configurations           | W           |          | 414       | <b>↑</b> ↑   |                       |  |
| Traffic Volume (vph)          | 35          | 15       | 647       | 681          |                       |  |
| Future Volume (vph)           | 35          | 15       | 647       | 681          |                       |  |
| Lane Group Flow (vph)         | 49          | 0        | 736       | 816          |                       |  |
| Turn Type                     | Prot        | Perm     | NA        | NA           |                       |  |
| Protected Phases              | 4           |          | 2         | 6            | 3                     |  |
| Permitted Phases              | 4           | 2        |           | 6            |                       |  |
| Detector Phase                | 4           | 2        | 2         | 6            |                       |  |
| Switch Phase                  |             |          |           |              |                       |  |
| Minimum Initial (s)           | 10.0        | 30.0     | 30.0      | 30.0         | 1.0                   |  |
| Minimum Split (s)             | 19.5        | 35.2     | 35.2      | 35.2         | 4.0                   |  |
| Total Split (s)               | 20.0        | 65.0     | 65.0      | 65.0         | 5.0                   |  |
| Total Split (%)               | 22.2%       | 72.2%    | 72.2%     | 72.2%        | 6%                    |  |
| Yellow Time (s)               | 3.3         | 3.0      | 3.0       | 3.0          | 2.0                   |  |
| All-Red Time (s)              | 2.2         | 2.2      | 2.2       | 2.2          | 1.0                   |  |
| Lost Time Adjust (s)          | 0.0         |          | 0.0       | 0.0          |                       |  |
| Total Lost Time (s)           | 5.5         |          | 5.2       | 5.2          |                       |  |
| Lead/Lag                      | Lag         |          |           |              | Lead                  |  |
| Lead-Lag Optimize?            |             |          |           |              |                       |  |
| Recall Mode                   | Ped         | C-Max    | C-Max     | C-Max        | Max                   |  |
| Act Effct Green (s)           | 14.0        |          | 60.3      | 60.3         |                       |  |
| Actuated g/C Ratio            | 0.16        |          | 0.67      | 0.67         |                       |  |
| v/c Ratio                     | 0.20        |          | 0.37      | 0.40         |                       |  |
| Control Delay (s/veh)         | 30.3        |          | 5.0       | 7.2          |                       |  |
| Queue Delay                   | 0.0         |          | 0.0       | 0.0          |                       |  |
| Total Delay (s/veh)           | 30.3        |          | 5.0       | 7.2          |                       |  |
| LOS                           | С           |          | Α         | Α            |                       |  |
| Approach Delay (s/veh)        | 30.3        |          | 5.0       | 7.2          |                       |  |
| Approach LOS                  | С           |          | Α         | Α            |                       |  |
| Queue Length 50th (m)         | 5.9         |          | 18.9      | 28.5         |                       |  |
| Queue Length 95th (m)         | 15.8        |          | 24.5      | 38.4         |                       |  |
| Internal Link Dist (m)        | 76.7        |          | 28.1      | 10.1         |                       |  |
| Turn Bay Length (m)           |             |          | 1000      | 0.5 = 1      |                       |  |
| Base Capacity (vph)           | 248         |          | 1989      | 2051         |                       |  |
| Starvation Cap Reductn        | 0           |          | 0         | 0            |                       |  |
| Spillback Cap Reductn         | 0           |          | 0         | 0            |                       |  |
| Storage Cap Reductn           | 0           |          | 0         | 0            |                       |  |
| Reduced v/c Ratio             | 0.20        |          | 0.37      | 0.40         |                       |  |
| Intersection Summary          |             |          |           |              |                       |  |
| Cycle Length: 90              |             |          |           |              |                       |  |
| Actuated Cycle Length: 90     |             |          |           |              |                       |  |
| Offset: 28 (31%), Reference   | ed to phas  | se 2:NBT | L and 6:5 | SBT, Start   | of Green              |  |
| Natural Cycle: 60             | o prioc     | ,        |           | , 5001       | 2.23.                 |  |
| Control Type: Actuated-Co     | ordinated   |          |           |              |                       |  |
| Maximum v/c Ratio: 0.40       |             |          |           |              |                       |  |
| Intersection Signal Delay (s  | s/veh): 6.9 |          |           | In           | tersection LOS: A     |  |
| Intersection Capacity Utiliza | •           |          |           |              | CU Level of Service A |  |
| Analysis Period (min) 15      |             |          |           |              |                       |  |
| ,                             |             |          |           |              |                       |  |
| Splits and Phases: 6: Ba      | nk & Avlm   | ner      |           |              |                       |  |



|                             | ۶           | <b>→</b>   | •          | •            | 4          | †     | <b>\</b> | Į.    |        |       |        |  |
|-----------------------------|-------------|------------|------------|--------------|------------|-------|----------|-------|--------|-------|--------|--|
| Lane Group                  | EBL         | EBT        | WBL        | WBT          | NBL        | NBT   | SBL      | SBT   | Ø3     | Ø6    | Ø7     |  |
| Lane Configurations         |             | 4          |            | 4            |            | €ि    |          | ન ે િ |        |       |        |  |
| Traffic Volume (vph)        | 40          | 36         | 19         | 55           | 28         | 464   | 80       | 516   |        |       |        |  |
| Future Volume (vph)         | 40          | 36         | 19         | 55           | 28         | 464   | 80       | 516   |        |       |        |  |
| Lane Group Flow (vph)       | 0           | 131        | 0          | 189          | 0          | 581   | 0        | 721   |        |       |        |  |
| Turn Type                   | Perm        | NA         | Perm       | NA           | Perm       | NA    | custom   | NA    |        |       |        |  |
| Protected Phases            |             | 4          |            | 8            |            | 2     | 1        | 16    | 3      | 6     | 7      |  |
| Permitted Phases            | 4           |            | 8          |              | 2          |       | 6        |       |        |       |        |  |
| Detector Phase              | 4           | 4          | 8          | 8            | 2          | 2     | 1        | 16    |        |       |        |  |
| Switch Phase                |             |            |            |              |            |       |          |       |        |       |        |  |
| Minimum Initial (s)         | 6.4         | 6.4        | 5.3        | 5.3          | 17.0       | 17.0  | 5.0      |       | 1.0    | 17.0  | 1.0    |  |
| Minimum Split (s)           | 20.0        | 20.0       | 20.0       | 20.0         | 54.0       | 54.0  | 11.0     |       | 5.0    | 54.0  | 5.0    |  |
| Total Split (s)             | 20.0        | 20.0       | 20.0       | 20.0         | 54.0       | 54.0  | 11.0     |       | 5.0    | 54.0  | 5.0    |  |
| Total Split (%)             | 22.2%       | 22.2%      | 22.2%      | 22.2%        | 60.0%      | 60.0% | 12.2%    |       | 6%     | 60%   | 6%     |  |
| Yellow Time (s)             | 3.0         | 3.0        | 3.0        | 3.0          | 3.0        | 3.0   | 3.0      |       | 2.0    | 3.0   | 2.0    |  |
| All-Red Time (s)            | 2.6         | 2.6        | 2.6        | 2.6          | 3.0        | 3.0   | 2.9      |       | 0.0    | 3.0   | 0.0    |  |
| Lost Time Adjust (s)        |             | 0.0        |            | 0.0          |            | 0.0   |          |       |        |       |        |  |
| Total Lost Time (s)         |             | 5.6        |            | 5.6          |            | 6.0   |          |       |        |       |        |  |
| Lead/Lag                    | Lag         | Lag        | Lag        | Lag          |            | 0.0   |          |       | Lead   |       | Lead   |  |
| Lead-Lag Optimize?          | 9           | 9          | Yes        | Yes          |            |       |          |       |        |       | Yes    |  |
| Recall Mode                 | None        | None       | None       | None         | C-Max      | C-Max | None     |       | None   | C-Max | None   |  |
| Act Effct Green (s)         | 110110      | 18.0       | 110110     | 18.0         | O Max      | 48.2  | 110110   | 54.6  | 110110 | O Max | 110110 |  |
| Actuated g/C Ratio          |             | 0.20       |            | 0.20         |            | 0.54  |          | 0.61  |        |       |        |  |
| v/c Ratio                   |             | 0.63       |            | 0.66         |            | 0.40  |          | 0.48  |        |       |        |  |
| Control Delay (s/veh)       |             | 46.7       |            | 33.4         |            | 13.2  |          | 6.3   |        |       |        |  |
| Queue Delay                 |             | 0.0        |            | 0.0          |            | 0.0   |          | 0.0   |        |       |        |  |
| Total Delay (s/veh)         |             | 46.7       |            | 33.4         |            | 13.2  |          | 6.3   |        |       |        |  |
| LOS                         |             | D          |            | C            |            | В     |          | A     |        |       |        |  |
| Approach Delay (s/veh)      |             | 46.7       |            | 33.4         |            | 13.2  |          | 6.3   |        |       |        |  |
| Approach LOS                |             | D          |            | C            |            | В     |          | A     |        |       |        |  |
| Queue Length 50th (m)       |             | 20.4       |            | 19.7         |            | 28.9  |          | 15.8  |        |       |        |  |
| Queue Length 95th (m)       |             | 39.1       |            | 42.1         |            | 40.7  |          | 19.5  |        |       |        |  |
| Internal Link Dist (m)      |             | 75.1       |            | 136.0        |            | 63.1  |          | 79.0  |        |       |        |  |
| Turn Bay Length (m)         |             | 70.1       |            | 100.0        |            | 50.1  |          | 10.0  |        |       |        |  |
| Base Capacity (vph)         |             | 211        |            | 290          |            | 1451  |          | 1504  |        |       |        |  |
| Starvation Cap Reductn      |             | 0          |            | 0            |            | 0     |          | 0     |        |       |        |  |
| Spillback Cap Reductn       |             | 0          |            | 0            |            | 0     |          | 0     |        |       |        |  |
| Storage Cap Reductn         |             | 0          |            | 0            |            | 0     |          | 0     |        |       |        |  |
| Reduced v/c Ratio           |             | 0.62       |            | 0.65         |            | 0.40  |          | 0.48  |        |       |        |  |
| Intersection Summary        |             |            |            |              |            |       |          |       |        |       |        |  |
| Cycle Length: 90            |             |            |            |              |            |       |          |       |        |       |        |  |
| Actuated Cycle Length: 90   |             |            |            |              |            |       |          |       |        |       |        |  |
| Offset: 33 (37%), Reference | ed to nhas  | se 2·NRT   | l and 6:5  | BTI Sta      | art of Gre | en    |          |       |        |       |        |  |
| Natural Cycle: 90           | ou to pride | , C LIND I | _ 4114 0.0 | . J . L, Old | 01 010     | 0.1   |          |       |        |       |        |  |
| Control Type: Actuated-Co   | ordinated   |            |            |              |            |       |          |       |        |       |        |  |
| Maximum v/c Ratio: 0.66     | or annatou  |            |            |              |            |       |          |       |        |       |        |  |
| Intersection Cignal Delay ( | / 1 45      | ^          |            |              | ntorocotic | 100 5 | _        |       |        |       |        |  |

Splits and Phases: 7: Bank & Sunnyside

Intersection Signal Delay (s/veh): 15.2

Intersection Capacity Utilization 69.9%

Analysis Period (min) 15



Intersection LOS: B

ICU Level of Service C

|                               | ۶           | 1        | †          | Ţ     |             |              |  |
|-------------------------------|-------------|----------|------------|-------|-------------|--------------|--|
| Lane Group                    | EBL         | NBL      | NBT        | SBT   | Ø4          |              |  |
| Lane Configurations           | 14          |          | 4          | 1     |             |              |  |
| Traffic Volume (vph)          | 52          | 40       | 235        | 339   |             |              |  |
| Future Volume (vph)           | 52          | 40       | 235        | 339   |             |              |  |
| Lane Group Flow (vph)         | 90          | 0        | 305        | 433   |             |              |  |
| Turn Type                     | Prot        | Perm     | NA         | NA    |             |              |  |
| Protected Phases              | 10          |          | 2          | 6     | 4           |              |  |
| Permitted Phases              |             | 2        |            |       |             |              |  |
| Detector Phase                | 10          | 2        | 2          | 6     |             |              |  |
| Switch Phase                  |             |          |            |       |             |              |  |
| Minimum Initial (s)           | 10.0        | 4.0      | 4.0        | 4.0   | 4.0         |              |  |
| Minimum Split (s)             | 21.0        | 48.0     | 48.0       | 48.0  | 11.0        |              |  |
| Total Split (s)               | 21.0        | 48.0     | 48.0       | 48.0  | 11.0        |              |  |
| Total Split (%)               | 26.3%       | 60.0%    | 60.0%      | 60.0% | 14%         |              |  |
| Yellow Time (s)               | 3.0         | 3.0      | 3.0        | 3.0   | 3.0         |              |  |
| All-Red Time (s)              | 2.7         | 3.8      | 3.8        | 3.8   | 2.7         |              |  |
| Lost Time Adjust (s)          | 0.0         |          | 0.0        | 0.0   |             |              |  |
| Total Lost Time (s)           | 5.7         |          | 6.8        | 6.8   |             |              |  |
| Lead/Lag                      |             |          |            |       |             |              |  |
| Lead-Lag Optimize?            |             |          |            |       |             |              |  |
| Recall Mode                   | Min         | None     | None       | C-Max | None        |              |  |
| Act Effct Green (s)           | 11.1        |          | 56.4       | 56.4  |             |              |  |
| Actuated g/C Ratio            | 0.14        |          | 0.71       | 0.71  |             |              |  |
| v/c Ratio                     | 0.42        |          | 0.29       | 0.37  |             |              |  |
| Control Delay (s/veh)         | 37.3        |          | 5.4        | 6.1   |             |              |  |
| Queue Delay                   | 0.0         |          | 0.0        | 0.0   |             |              |  |
| Total Delay (s/veh)           | 37.3        |          | 5.4        | 6.1   |             |              |  |
| LOS                           | D           |          | Α          | Α     |             |              |  |
| Approach Delay (s/veh)        | 37.3        |          | 5.4        | 6.1   |             |              |  |
| Approach LOS                  | D           |          | Α          | Α     |             |              |  |
| Queue Length 50th (m)         | 12.9        |          | 13.3       | 20.4  |             |              |  |
| Queue Length 95th (m)         | 25.2        |          | 27.5       | 40.5  |             |              |  |
| Internal Link Dist (m)        | 57.2        |          | 0.1        | 5.9   |             |              |  |
| Turn Bay Length (m)           |             |          |            |       |             |              |  |
| Base Capacity (vph)           | 297         |          | 1070       | 1168  |             |              |  |
| Starvation Cap Reductn        | 0           |          | 0          | 0     |             |              |  |
| Spillback Cap Reductn         | 0           |          | 0          | 0     |             |              |  |
| Storage Cap Reductn           | 0           |          | 0          | 0     |             |              |  |
| Reduced v/c Ratio             | 0.30        |          | 0.29       | 0.37  |             |              |  |
|                               |             |          |            |       |             |              |  |
| Intersection Summary          |             |          |            |       |             |              |  |
| Cycle Length: 80              |             |          |            |       |             |              |  |
| Actuated Cycle Length: 80     |             |          |            |       |             |              |  |
| Offset: 0 (0%), Referenced t  | to phase    | 6:SBT, S | tart of Gr | een   |             |              |  |
| Natural Cycle: 80             |             |          |            |       |             |              |  |
| Control Type: Actuated-Coo    | rdinated    |          |            |       |             |              |  |
| Maximum v/c Ratio: 0.42       | / 1) 2 -    |          |            |       |             |              |  |
| Intersection Signal Delay (s/ |             |          |            |       | ntersection |              |  |
| Intersection Capacity Utiliza | tion 61 89  | %        |            | 10    | :U Level o  | f Service B  |  |
| Analysis Period (min) 15      | 11011 0 1.0 | 70       |            |       | 20 2010. 0  | 1 001 VI00 B |  |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



HCM 95th-tile Q

| latana atian               |         |       |       |       |         |      |
|----------------------------|---------|-------|-------|-------|---------|------|
| Intersection               |         |       |       |       |         |      |
| Intersection Delay, s/veh  | 7.7     |       |       |       |         |      |
| Intersection LOS           | А       |       |       |       |         |      |
|                            |         |       |       |       |         |      |
| Movement                   | EBL     | EBT   | WBT   | WBR   | SBL     | SBR  |
| Lane Configurations        |         | 4     | 1≽    |       | W       |      |
| Traffic Vol, veh/h         | 5       | 116   | 83    | 5     | 5       | 5    |
| Future Vol, veh/h          | 5       | 116   | 83    | 5     | 5       | 5    |
| Peak Hour Factor           | 0.90    | 0.90  | 0.90  | 0.90  | 0.90    | 0.90 |
| Heavy Vehicles, %          | 2       | 2     | 2     | 2     | 2       | 2    |
| Mvmt Flow                  | 6       | 129   | 92    | 6     | 6       | 6    |
| Number of Lanes            | 0       | 1     | 1     | 0     | 1       | 0    |
| Approach                   | EB      |       | WB    |       | SB      |      |
|                            | WB      |       | EB    |       | SD      |      |
| Opposing Approach          | WB<br>1 |       | 1     |       | 0       |      |
| Opposing Lanes             | SB      |       |       |       | 0<br>WB |      |
| Conflicting Approach Left  |         |       | ^     |       |         |      |
| Conflicting Lanes Left     | 1       |       | 0     |       | 1       |      |
| Conflicting Approach Right | 0       |       | SB    |       | EB      |      |
| Conflicting Lanes Right    | 0       |       | 1     |       | 1       |      |
| HCM Control Delay, s/veh   | 7.8     |       | 7.5   |       | 7.3     |      |
| HCM LOS                    | Α       |       | А     |       | А       |      |
|                            |         |       |       |       |         |      |
| Lane                       |         | EBLn1 |       | SBLn1 |         |      |
| Vol Left, %                |         | 4%    | 0%    | 50%   |         |      |
| Vol Thru, %                |         | 96%   | 94%   | 0%    |         |      |
| Vol Right, %               |         | 0%    | 6%    | 50%   |         |      |
| Sign Control               |         | Stop  | Stop  | Stop  |         |      |
| Traffic Vol by Lane        |         | 121   | 88    | 10    |         |      |
| LT Vol                     |         | 5     | 0     | 5     |         |      |
| Through Vol                |         | 116   | 83    | 0     |         |      |
| RT Vol                     |         | 0     | 5     | 5     |         |      |
| Lane Flow Rate             |         | 134   | 98    | 11    |         |      |
| Geometry Grp               |         | 1     | 1     | 1     |         |      |
| Degree of Util (X)         |         | 0.151 | 0.109 | 0.013 |         |      |
| Departure Headway (Hd)     |         | 4.035 | 4.02  | 4.131 |         |      |
| Convergence, Y/N           |         | Yes   | Yes   | Yes   |         |      |
| Сар                        |         | 889   | 890   | 851   |         |      |
| Service Time               |         | 2.059 | 2.052 | 2.23  |         |      |
| HCM Lane V/C Ratio         |         | 0.151 | 0.11  | 0.013 |         |      |
| HCM Control Delay, s/veh   |         | 7.8   | 7.5   | 7.3   |         |      |
| HCM Lane LOS               |         | Α     | Α     | Α     |         |      |
|                            |         |       |       |       |         |      |

0.4

0

0.5

HCM Control Delay, s/veh

HCM Lane LOS

HCM 95th-tile Q

| Intersection               |          |       |       |       |      |      |
|----------------------------|----------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.3      |       |       |       |      |      |
| Intersection LOS           | 7.5<br>A |       |       |       |      |      |
| IIIIGI360IIUII LOO         |          |       |       |       |      |      |
|                            |          |       |       |       |      |      |
| Movement                   | EBT      | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | ₽        |       |       | 4     | M    |      |
| Traffic Vol, veh/h         | 15       | 5     | 5     | 70    | 5    | 5    |
| Future Vol, veh/h          | 15       | 5     | 5     | 70    | 5    | 5    |
| Peak Hour Factor           | 0.90     | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2        | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 17       | 6     | 6     | 78    | 6    | 6    |
| Number of Lanes            | 1        | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB       |       | WB    |       | NB   |      |
| Opposing Approach          | WB       |       | EB    |       |      |      |
| Opposing Lanes             | 1        |       | 1     |       | 0    |      |
| Conflicting Approach Left  |          |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0        |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB       |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1        |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7        |       | 7.4   |       | 7    |      |
| HCM LOS                    | Α        |       | Α     |       | Α    |      |
|                            |          |       |       |       |      |      |
| Lane                       |          | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |          | 50%   | 0%    | 7%    |      |      |
| Vol Thru, %                |          | 0%    | 75%   | 93%   |      |      |
| Vol Right, %               |          | 50%   | 25%   | 0%    |      |      |
| Sign Control               |          | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |          | 10    | 20    | 75    |      |      |
| LT Vol                     |          | 5     | 0     | 5     |      |      |
| Through Vol                |          | 0     | 15    | 70    |      |      |
| RT Vol                     |          | 5     | 5     | 0     |      |      |
| Lane Flow Rate             |          | 11    | 22    | 83    |      |      |
| Geometry Grp               |          | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |          | 0.012 | 0.024 | 0.092 |      |      |
| Departure Headway (Hd)     |          | 3.916 | 3.866 | 3.984 |      |      |
| Convergence, Y/N           |          | Yes   | Yes   | Yes   |      |      |
| Cap                        |          | 909   | 927   | 903   |      |      |
| Service Time               |          | 1.959 | 1.885 | 1.991 |      |      |
| HCM Lane V/C Ratio         |          | 0.012 | 0.024 | 0.092 |      |      |
| TOW Lane V/O Natio         |          | 0.012 | 0.024 | 0.032 |      |      |

7

Α

0.1

Α

7.4

Α

0.3

Cap

Service Time

HCM Lane LOS

HCM 95th-tile Q

HCM Lane V/C Ratio

HCM Control Delay, s/veh

| Intersection               |          |       |       |       |          |      |
|----------------------------|----------|-------|-------|-------|----------|------|
| Intersection Delay, s/veh  | 8        |       |       |       |          |      |
| Intersection LOS           | A        |       |       |       |          |      |
| moroodion 200              |          |       |       |       |          |      |
| Manager                    | - EDT    | EDD   | W/D:  | MDT   | NDI      | NDD  |
| Movement                   | EBT      | EBR   | WBL   | WBT   | NBL      | NBR  |
| Lane Configurations        | <b>∱</b> | _     | 00    | र्ने  | <b>\</b> |      |
| Traffic Vol, veh/h         | 15       | 5     | 83    | 5     | 101      | 20   |
| Future Vol, veh/h          | 15       | 5     | 83    | 5     | 101      | 20   |
| Peak Hour Factor           | 0.90     | 0.90  | 0.90  | 0.90  | 0.90     | 0.90 |
| Heavy Vehicles, %          | 2        | 2     | 2     | 2     | 2        | 2    |
| Mvmt Flow                  | 17       | 6     | 92    | 6     | 112      | 22   |
| Number of Lanes            | 1        | 0     | 0     | 1     | 1        | 0    |
| Approach                   | EB       |       | WB    |       | NB       |      |
| Opposing Approach          | WB       |       | EB    |       |          |      |
| Opposing Lanes             | 1        |       | 1     |       | 0        |      |
| Conflicting Approach Left  |          |       | NB    |       | EB       |      |
| Conflicting Lanes Left     | 0        |       | 1     |       | 1        |      |
| Conflicting Approach Right | NB       |       |       |       | WB       |      |
| Conflicting Lanes Right    | 1        |       | 0     |       | 1        |      |
| HCM Control Delay, s/veh   | 7.3      |       | 8.1   |       | 8.1      |      |
| HCM LOS                    | Α        |       | Α     |       | Α        |      |
|                            |          |       |       |       |          |      |
| Lane                       |          | NBLn1 | EBLn1 | WBLn1 |          |      |
| Vol Left, %                |          | 83%   | 0%    | 94%   |          |      |
| Vol Thru, %                |          | 0%    | 75%   | 6%    |          |      |
| Vol Right, %               |          | 17%   | 25%   | 0%    |          |      |
| Sign Control               |          | Stop  | Stop  | Stop  |          |      |
| Traffic Vol by Lane        |          | 121   | 20    | 88    |          |      |
| LT Vol                     |          | 101   | 0     | 83    |          |      |
| Through Vol                |          | 0     | 15    | 5     |          |      |
| RT Vol                     |          | 20    | 5     | 0     |          |      |
| Lane Flow Rate             |          | 134   | 22    | 98    |          |      |
| Geometry Grp               |          | 1     | 1     | 1     |          |      |
| Degree of Util (X)         |          | 0.157 | 0.026 | 0.119 |          |      |
| Departure Headway (Hd)     |          | 4.21  | 4.2   | 4.378 |          |      |
| Convergence, Y/N           |          | Yes   | Yes   | Yes   |          |      |
| Cam                        |          | 0.42  | 0.50  | 010   |          |      |

843

2.283

0.159

8.1

Α

0.6

858

2.2

7.3

Α

0.1

0.026

810

2.456

0.121

8.1

Α

0.4

| Intersection              |   |  |
|---------------------------|---|--|
| Intersection Delay, s/veh | 8 |  |
| Intersection LOS          | Α |  |

| III.COTOCOLIOTI ECO        | , ,  |      |      |      |      |      |      |      |      |      |      |      |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
|                            |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 39   | 46   | 0    | 0    | 0    | 90   | 56   | 38   | 35   | 0    | 0    | 101  |
| Future Vol, veh/h          | 39   | 46   | 0    | 0    | 0    | 90   | 56   | 38   | 35   | 0    | 0    | 101  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 43   | 51   | 0    | 0    | 0    | 100  | 62   | 42   | 39   | 0    | 0    | 112  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.4  |      |      |      |      | 7.5  | 8.4  |      |      |      |      | 7.5  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 43%   | 46%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 54%   | 0%    | 0%    |  |
| Vol Right, %             | 27%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 129   | 85    | 90    | 101   |  |
| LT Vol                   | 56    | 39    | 0     | 0     |  |
| Through Vol              | 38    | 46    | 0     | 0     |  |
| RT Vol                   | 35    | 0     | 90    | 101   |  |
| Lane Flow Rate           | 143   | 94    | 100   | 112   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.175 | 0.123 | 0.111 | 0.122 |  |
| Departure Headway (Hd)   | 4.403 | 4.684 | 3.999 | 3.926 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 816   | 767   | 897   | 913   |  |
| Service Time             | 2.423 | 2.703 | 2.019 | 1.946 |  |
| HCM Lane V/C Ratio       | 0.175 | 0.123 | 0.111 | 0.123 |  |
| HCM Control Delay, s/veh | 8.4   | 8.4   | 7.5   | 7.5   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.6   | 0.4   | 0.4   | 0.4   |  |

| Intersection          |            |       |         |          |         |      |
|-----------------------|------------|-------|---------|----------|---------|------|
| Int Delay, s/veh      | 0.3        |       |         |          |         |      |
| Movement              | EBL        | EBR   | NBL     | NBT      | SBT     | SBR  |
| Lane Configurations   |            | 7     |         | <b>^</b> | <b></b> |      |
| Traffic Vol, veh/h    | 1          | 31    | 0       | 641      | 654     | 0    |
| Future Vol, veh/h     | 1          | 31    | 0       | 641      | 654     | 0    |
| Conflicting Peds, #/h | r 0        |       | 0       | 0        | 0       | 86   |
| Sign Control          | Stop       |       | Free    | Free     | Free    | Free |
| RT Channelized        | -          |       | -       | None     | -       | None |
| Storage Length        | -          | 0     | -       | -        | -       | -    |
| Veh in Median Storag  | ge, # 0    | -     | -       | 0        | 0       | -    |
| Grade, %              | 0          |       | -       | 0        | 0       | -    |
| Peak Hour Factor      | 90         | 90    | 90      | 90       | 90      | 90   |
| Heavy Vehicles, %     | 3          | 3     | 3       | 3        | 3       | 3    |
| Mvmt Flow             | 1          | 34    | 0       | 712      | 727     | 0    |
|                       |            |       |         |          |         |      |
| Major/Minor           | Minor2     | N     | /lajor1 | N        | Major2  |      |
|                       |            |       |         |          |         | 0    |
| Conflicting Flow All  | 1083       | 727   | -       | 0        | -       | 0    |
| Stage 1               | 727<br>356 | -     | -       | -        | -       | -    |
| Stage 2               |            | 6 245 | -       | -        | -       | -    |
| Critical Hdwy         |            | 6.245 | -       | -        | -       | -    |
| Critical Hdwy Stg 1   | 5.445      | -     | -       | -        | -       | -    |
| Critical Hdwy Stg 2   | 5.845      | -     | -       | -        | -       | -    |
| Follow-up Hdwy        | 3.5285     |       | -       | -        | -       | -    |
| Pot Cap-1 Maneuver    |            | 421   | 0       | -        | -       | 0    |
| Stage 1               | 475        | -     | 0       | -        | -       | 0    |
| Stage 2               | 678        | -     | 0       | -        | -       | 0    |
| Platoon blocked, %    | 00.1       | 101   |         | -        | -       |      |
| Mov Cap-1 Maneuve     |            | 421   | -       | -        | -       | -    |
| Mov Cap-2 Maneuve     |            | -     | -       | -        | -       | -    |
| Stage 1               | 475        | -     | -       | -        | -       | -    |
| Stage 2               | 678        | -     | -       | -        | -       | -    |
|                       |            |       |         |          |         |      |
| Approach              | EB         |       | NB      |          | SB      |      |
| HCM Control Delay,    |            |       | 0       |          | 0       |      |
| HCM LOS               | B          |       | U       |          | U       |      |
| TIOWI LOO             | U          |       |         |          |         |      |
|                       |            |       |         |          |         |      |
| Minor Lane/Major My   | mt         | NBTE  | BLn1    | SBT      |         |      |
| Capacity (veh/h)      |            | -     | 421     | -        |         |      |
| HCM Lane V/C Ratio    |            | -     | 0.082   | -        |         |      |
| HCM Control Delay (   | s/veh)     | -     | 14.3    | -        |         |      |
| HCM Lane LOS          |            | -     | В       | -        |         |      |
| HCM 95th %tile Q(ve   | h)         | -     | 0.3     | -        |         |      |
|                       |            |       |         |          |         |      |

| Intersection           |           |       |         |        |           |             |
|------------------------|-----------|-------|---------|--------|-----------|-------------|
| Int Delay, s/veh       | 3         |       |         |        |           |             |
| Movement               | EBL       | EBR   | NBL     | NBT    | SBT       | SBR         |
| Lane Configurations    | */        |       |         | 4      | <u>\$</u> | - U - J - N |
| Traffic Vol, veh/h     | 67        | 54    | 54      | 204    | 245       | 124         |
| Future Vol, veh/h      | 67        | 54    | 54      | 204    | 245       | 124         |
| Conflicting Peds, #/hr | 0         | 0     | 0       | 0      | 0         | 0           |
| Sign Control           | Stop      | Stop  | Free    | Free   | Free      | Free        |
| RT Channelized         | Stop<br>- | None  |         | None   | -         | None        |
| Storage Length         | 0         | -     | _       | 110116 |           | -           |
| Veh in Median Storage  |           |       |         | 0      | 0         | _           |
|                        |           |       |         |        |           |             |
| Grade, %               | 0         | -     | -       | 0      | 0         | -           |
| Peak Hour Factor       | 90        | 90    | 90      | 90     | 90        | 90          |
| Heavy Vehicles, %      | 0         | 0     | 0       | 0      | 0         | 0           |
| Mvmt Flow              | 74        | 60    | 60      | 227    | 272       | 138         |
|                        |           |       |         |        |           |             |
| Major/Minor M          | linor2    | N     | /lajor1 | , l    | /lajor2   |             |
| Conflicting Flow All   | 688       | 341   | 410     | 0      | -         | 0           |
| Stage 1                | 341       | -     | -       | -      | _         | -           |
| Stage 2                | 347       | _     | _       | _      | _         | _           |
| Critical Hdwy          | 6.4       | 6.2   | 4.1     | _      |           | _           |
|                        |           |       |         |        |           |             |
| Critical Hdwy Stg 1    | 5.4       | -     | -       | -      | -         | -           |
| Critical Hdwy Stg 2    | 5.4       | -     | -       | -      | -         | -           |
| Follow-up Hdwy         | 3.5       | 3.3   | 2.2     | -      | -         | -           |
| Pot Cap-1 Maneuver     | 415       | 706   | 1160    | -      | -         | -           |
| Stage 1                | 725       | -     | -       | -      | -         | -           |
| Stage 2                | 720       | -     | -       | -      | -         | -           |
| Platoon blocked, %     |           |       |         | -      | -         | -           |
| Mov Cap-1 Maneuver     | 391       | 706   | 1160    | -      | -         | -           |
| Mov Cap-2 Maneuver     | 391       | -     | -       | -      | -         | -           |
| Stage 1                | 682       | _     | _       | -      | _         | _           |
| Stage 2                | 720       | _     | _       | _      | _         | _           |
| Olugo Z                | 120       |       |         |        |           |             |
|                        |           |       |         |        |           |             |
| Approach               | EB        |       | NB      |        | SB        |             |
| HCM Control Delay, s/v | 15.16     |       | 1.73    |        | 0         |             |
| HCM LOS                | С         |       |         |        |           |             |
| J 200                  |           |       |         |        |           |             |
|                        |           |       | NE      |        | 05-       | 055         |
| Minor Lane/Major Mvm   | t         | NBL   | NBTE    | EBLn1  | SBT       | SBR         |
| Capacity (veh/h)       |           | 377   | -       |        | -         | -           |
| HCM Lane V/C Ratio     |           | 0.052 | -       | 0.276  | -         | -           |
| HCM Control Delay (s/  | veh)      | 8.3   | 0       | 15.2   | -         | -           |
| HCM Lane LOS           |           | Α     | Α       | С      | -         | -           |
| HCM 95th %tile Q(veh)  |           | 0.2   | -       | 1.1    | -         | -           |
|                        |           |       |         |        |           |             |

| Intersection                       |        |      |            |          |        |          |
|------------------------------------|--------|------|------------|----------|--------|----------|
| Int Delay, s/veh                   | 0.8    |      |            |          |        |          |
| Movement                           | WBL    | WBR  | NBT        | NBR      | SBL    | SBT      |
| Lane Configurations                | 1,52   | 7    | <b>↑</b> ⊅ | HOR      | UDL    | <b>^</b> |
| Traffic Vol, veh/h                 | 6      | 69   | 479        | 18       | 2      | 565      |
| Future Vol, veh/h                  | 6      | 69   | 479        | 18       | 2      | 565      |
| Conflicting Peds, #/hr             | 0      | 0    | 0          | 100      | 0      | 0        |
| Sign Control                       | Stop   | Stop | Free       | Free     | Free   | Free     |
| RT Channelized                     | - Ctop |      |            | None     |        | None     |
| Storage Length                     | _      | 0    | _          | -        | _      | -        |
| Veh in Median Storage              |        | -    | 0          | _        | _      | 0        |
| Grade, %                           | 0      | _    | 0          | _        | _      | 0        |
| Peak Hour Factor                   | 90     | 90   | 90         | 90       | 90     | 90       |
|                                    | 0      | 0    | 2          | 0        | 2      | 2        |
| Heavy Vehicles, %                  | 7      | 77   | 532        | 20       | 2      | 628      |
| Mvmt Flow                          | 1      | 11   | 532        | 20       | 2      | 020      |
|                                    |        |      |            |          |        |          |
| Major/Minor N                      | 1inor1 | ١    | /lajor1    | N        | Major2 |          |
| Conflicting Flow All               | 961    | 376  | 0          | 0        | 652    | 0        |
| Stage 1                            | 642    | -    | -          | -        | -      | -        |
| Stage 2                            | 318    | -    | -          | -        | -      | -        |
| Critical Hdwy                      | 6.8    | 6.9  | _          | _        | 4.14   | _        |
| Critical Hdwy Stg 1                | 5.8    | -    | -          | _        | -      | _        |
| Critical Hdwy Stg 2                | 5.8    | _    | -          | _        | -      | _        |
| Follow-up Hdwy                     | 3.5    | 3.3  | _          | _        | 2.22   | _        |
| Pot Cap-1 Maneuver                 | 258    | 627  | _          | _        | 930    | _        |
| Stage 1                            | 491    | -    | _          | _        | -      | _        |
| Stage 2                            | 716    | _    | _          | _        | _      | _        |
| Platoon blocked, %                 | 710    |      | _          | _        |        | _        |
| Mov Cap-1 Maneuver                 | 230    | 561  | _          |          | 832    | _        |
| Mov Cap-1 Maneuver                 | 230    | 501  | _          | _        | - 002  |          |
| Stage 1                            | 439    |      | -          | -        | _      | <u> </u> |
| •                                  | 714    | _    | _          | _        | _      | _        |
| Stage 2                            | / 14   | -    | -          | -        | -      | -        |
|                                    |        |      |            |          |        |          |
| Approach                           | WB     |      | NB         |          | SB     |          |
| HCM Control Delay, s/              | 12.43  |      | 0          |          | 0.03   |          |
| HCM LOS                            | В      |      |            |          |        |          |
|                                    |        |      |            |          |        |          |
| NAI                                |        | NDT  | NDD        | VDL 4    | 001    | ODT      |
| Minor Lane/Major Mvm               | Iť     | NBT  |            | VBLn1    | SBL    | SBT      |
| Capacity (veh/h)                   |        | -    | -          |          | 832    | -        |
| HCM Lane V/C Ratio                 |        | -    |            | 0.137    |        | -        |
|                                    | voh)   | _    | -          | 12.4     | 9.3    | -        |
| HCM Control Delay (s/              | ven)   |      |            |          |        |          |
| HCM Lane LOS HCM 95th %tile Q(veh) |        | -    | -          | B<br>0.5 | A<br>0 | -        |

| Intersection            |          |       |         |      |         |      |
|-------------------------|----------|-------|---------|------|---------|------|
| Int Delay, s/veh        | 2.9      |       |         |      |         |      |
|                         | EBT      | EBR   | WBL     | WBT  | NBL     | NBR  |
| Lane Configurations     | <u>₽</u> | LUI   | VVDL    | 4    | NDL NDL | אטא  |
|                         | 116      | 117   | _       |      |         | 5    |
|                         |          |       | 5       | 83   | 68      | 5    |
|                         | 116      | 117   | 5       | 83   | 68      | 5    |
| Conflicting Peds, #/hr  | 0        | 100   | 100     | 0    | 100     | 100  |
| 9                       | ree      | Free  | Free    | Free | Stop    | Stop |
| RT Channelized          | -        | None  | -       | None |         | None |
| Storage Length          | -        | -     | -       | -    | 0       | -    |
| Veh in Median Storage,  | # 0      | -     | -       | 0    | 0       | -    |
| Grade, %                | 0        | -     | -       | 0    | 0       | -    |
| Peak Hour Factor        | 90       | 90    | 90      | 90   | 90      | 90   |
| Heavy Vehicles, %       | 2        | 2     | 2       | 2    | 2       | 2    |
|                         | 129      | 130   | 6       | 92   | 76      | 6    |
|                         | 120      | .00   | Ū       | 02   | 10      |      |
|                         |          |       |         |      |         |      |
| Major/Minor Ma          | jor1     | N     | //ajor2 | N    | /linor1 |      |
| Conflicting Flow All    | 0        | 0     | 359     | 0    | 497     | 394  |
| Stage 1                 | -        | -     | -       | -    | 294     | -    |
| Stage 2                 | -        | -     | -       | -    | 203     | -    |
| Critical Hdwy           | _        | _     | 4.12    | _    | 6.42    | 6.22 |
| Critical Hdwy Stg 1     | _        | _     | -       | _    | 5.42    | -    |
| Critical Hdwy Stg 2     | _        | _     | _       | _    | 5.42    | _    |
| Follow-up Hdwy          | -        | _     | 2.218   |      | 3.518   |      |
|                         |          |       |         |      |         |      |
| Pot Cap-1 Maneuver      | -        | -     | 1200    | -    | 532     | 655  |
| Stage 1                 | -        | -     | _       | _    | 756     | -    |
| Stage 2                 | -        | -     | -       | -    | 831     | -    |
| Platoon blocked, %      | -        | -     |         | -    |         |      |
| Mov Cap-1 Maneuver      | -        | -     | 1073    | -    | 423     | 524  |
| Mov Cap-2 Maneuver      | -        | -     | -       | -    | 423     | -    |
| Stage 1                 | -        | -     | -       | -    | 676     | -    |
| Stage 2                 | -        | -     | -       | -    | 739     | -    |
| J                       |          |       |         |      |         |      |
|                         |          |       |         |      |         |      |
| Approach                | EB       |       | WB      |      | NB      |      |
| HCM Control Delay, s/v  | 0        |       | 0.48    |      | 15.34   |      |
| HCM LOS                 |          |       |         |      | С       |      |
|                         |          |       |         |      |         |      |
| Minor Lane/Major Mvmt   | N        | NBLn1 | EBT     | EBR  | WBL     | WBT  |
|                         | <u>'</u> |       |         |      |         |      |
| Capacity (veh/h)        |          | 429   | -       | -    | 102     | -    |
| HCM Lane V/C Ratio      |          | 0.189 | -       | -    | 0.005   | -    |
| HCM Control Delay (s/ve | eh)      | 15.3  | -       | -    | 8.4     | 0    |
| HCM Lane LOS            |          | С     | -       | -    | Α       | Α    |
| HCM 95th %tile Q(veh)   |          | 0.7   | -       | -    | 0       | -    |
|                         |          |       |         |      |         |      |

| Intersection           |        |       |         |      |         |       |
|------------------------|--------|-------|---------|------|---------|-------|
| Int Delay, s/veh       | 3.3    |       |         |      |         |       |
|                        |        |       |         |      |         |       |
| Movement               | EBL    | EBT   | WBT     | WBR  | SBL     | SBR   |
| Lane Configurations    |        | र्स   | ₽       |      | ¥       |       |
| Traffic Vol, veh/h     | 5      | 30    | 72      | 106  | 91      | 5     |
| Future Vol, veh/h      | 5      | 30    | 72      | 106  | 91      | 5     |
| Conflicting Peds, #/hr | 0      | 0     | 0       | 0    | 0       | 0     |
| Sign Control           | Free   | Free  | Free    | Free | Stop    | Stop  |
| RT Channelized         | -      | None  | -       | None | -       | None  |
| Storage Length         | -      | -     | -       | -    | 0       | -     |
| Veh in Median Storage  | e,# -  | 0     | 0       | -    | 0       | -     |
| Grade, %               | -      | 0     | 0       | -    | 0       | -     |
| Peak Hour Factor       | 90     | 90    | 90      | 90   | 90      | 90    |
| Heavy Vehicles, %      | 2      | 2     | 2       | 2    | 2       | 2     |
| Mvmt Flow              | 6      | 33    | 80      | 118  | 101     | 6     |
|                        |        |       |         |      |         |       |
| Major/Minor N          | Major1 | N     | //ajor2 | N    | /linor2 |       |
| Conflicting Flow All   | 198    | 0     | -       | 0    | 183     | 139   |
| Stage 1                | -      | -     | -       | -    | 139     | -     |
| Stage 2                | _      | _     | -       | -    | 44      | _     |
| Critical Hdwy          | 4.12   | -     | -       | _    | 6.42    | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -       | -    | 5.42    | -     |
| Critical Hdwy Stg 2    | -      | -     | -       | -    | 5.42    | -     |
|                        | 2.218  | -     | -       | -    | 3.518   | 3.318 |
| Pot Cap-1 Maneuver     |        | -     | -       | -    | 806     | 909   |
| Stage 1                | -      | -     | -       | -    | 888     | -     |
| Stage 2                | -      | -     | -       | -    | 978     | -     |
| Platoon blocked, %     |        | -     | -       | -    |         |       |
| Mov Cap-1 Maneuver     | 1375   | -     | -       | -    | 803     | 909   |
| Mov Cap-2 Maneuver     | -      | -     | -       | -    | 803     | -     |
| Stage 1                | -      | -     | -       | -    | 884     | -     |
| Stage 2                | -      | -     | -       | -    | 978     | -     |
| <b>J</b>               |        |       |         |      |         |       |
| A mana a a b           | ED     |       | MD      |      | C.D.    |       |
| Approach               | EB     |       | WB      |      | SB      |       |
| HCM Control Delay, s/  | v 1.09 |       | 0       |      | 10.13   |       |
| HCM LOS                |        |       |         |      | В       |       |
|                        |        |       |         |      |         |       |
| Minor Lane/Major Mvn   | nt     | EBL   | EBT     | WBT  | WBR     | SBLn1 |
| Capacity (veh/h)       |        | 257   | -       | _    | -       | 808   |
| HCM Lane V/C Ratio     |        | 0.004 | _       | _    | _       | 0.132 |
| HCM Control Delay (s/  |        | 7.6   | 0       | -    | -       | 10.1  |
| HCM Lane LOS           |        | Α     | A       | -    | -       | В     |
| HCM 95th %tile Q(veh   | 1)     | 0     | -       | -    | -       | 0.5   |
|                        | ,      |       |         |      |         |       |

# **Existing scenario**

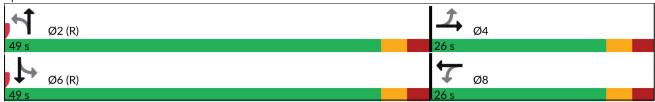
2024 Sunday Peak Hour

1: Bank & Fifth 08/01/2024

|                           | ۶     | <b>→</b> | •     | -              | 4       | <b>†</b> | -     | ļ     |  |
|---------------------------|-------|----------|-------|----------------|---------|----------|-------|-------|--|
| Lane Group                | EBL   | EBT      | WBL   | WBT            | NBL     | NBT      | SBL   | SBT   |  |
| Lane Configurations       |       | 4        | 7     | T <sub>P</sub> |         | 4T∌      |       | €ि    |  |
| Traffic Volume (vph)      | 52    | 36       | 118   | 64             | 15      | 468      | 22    | 486   |  |
| Future Volume (vph)       | 52    | 36       | 118   | 64             | 15      | 468      | 22    | 486   |  |
| Lane Group Flow (vph)     | 0     | 126      | 131   | 112            | 0       | 566      | 0     | 608   |  |
| Turn Type                 | Perm  | NA       | Perm  | NA             | Perm    | NA       | Perm  | NA    |  |
| Protected Phases          |       | 4        |       | 8              |         | 2        |       | 6     |  |
| Permitted Phases          | 4     |          | 8     |                | 2       |          | 6     |       |  |
| Detector Phase            | 4     | 4        | 8     | 8              | 2       | 2        | 6     | 6     |  |
| Switch Phase              |       |          |       |                |         |          |       |       |  |
| Minimum Initial (s)       | 4.0   | 4.0      | 4.0   | 4.0            | 4.0     | 4.0      | 4.0   | 4.0   |  |
| Minimum Split (s)         | 26.0  | 26.0     | 26.0  | 26.0           | 49.0    | 49.0     | 49.0  | 49.0  |  |
| Total Split (s)           | 26.0  | 26.0     | 26.0  | 26.0           | 49.0    | 49.0     | 49.0  | 49.0  |  |
| Total Split (%)           | 34.7% | 34.7%    | 34.7% | 34.7%          | 65.3%   | 65.3%    | 65.3% | 65.3% |  |
| Yellow Time (s)           | 3.0   | 3.0      | 3.0   | 3.0            | 3.0     | 3.0      | 3.0   | 3.0   |  |
| All-Red Time (s)          | 2.5   | 2.5      | 2.5   | 2.5            | 2.5     | 2.5      | 2.5   | 2.5   |  |
| Lost Time Adjust (s)      |       | 0.0      | 0.0   | 0.0            |         | 0.0      |       | 0.0   |  |
| Total Lost Time (s)       |       | 5.5      | 5.5   | 5.5            |         | 5.5      |       | 5.5   |  |
| Lead/Lag                  |       | 0.0      | 0.0   | 0.0            |         | 0.0      |       | 0.0   |  |
| Lead-Lag Optimize?        |       |          |       |                |         |          |       |       |  |
| Recall Mode               | None  | None     | None  | None           | C-Max   | C-Max    | C-Max | C-Max |  |
| Act Effct Green (s)       |       | 14.0     | 14.0  | 14.0           | - 11107 | 50.0     |       | 50.0  |  |
| Actuated g/C Ratio        |       | 0.19     | 0.19  | 0.19           |         | 0.67     |       | 0.67  |  |
| v/c Ratio                 |       | 0.53     | 0.65  | 0.36           |         | 0.30     |       | 0.33  |  |
| Control Delay (s/veh)     |       | 30.2     | 41.7  | 20.1           |         | 7.9      |       | 6.5   |  |
| Queue Delay               |       | 0.0      | 0.0   | 0.0            |         | 0.0      |       | 0.0   |  |
| Total Delay (s/veh)       |       | 30.2     | 41.7  | 20.1           |         | 7.9      |       | 6.5   |  |
| LOS                       |       | C        | D     | C              |         | A        |       | A     |  |
| Approach Delay (s/veh)    |       | 30.2     |       | 31.8           |         | 7.9      |       | 6.5   |  |
| Approach LOS              |       | C        |       | C              |         | Α        |       | A     |  |
| Queue Length 50th (m)     |       | 13.6     | 17.3  | 9.0            |         | 32.0     |       | 15.8  |  |
| Queue Length 95th (m)     |       | 26.4     | 30.7  | 20.0           |         | 51.3     |       | 30.8  |  |
| Internal Link Dist (m)    |       | 49.7     | 30.7  | 112.4          |         | 195.6    |       | 190.0 |  |
| Turn Bay Length (m)       |       | 10.1     | 45.0  | 112.7          |         | 100.0    |       | 100.0 |  |
| Base Capacity (vph)       |       | 338      | 297   | 431            |         | 1903     |       | 1869  |  |
| Starvation Cap Reductn    |       | 0        | 0     | 0              |         | 0        |       | 0     |  |
| Spillback Cap Reductn     |       | 0        | 0     | 0              |         | 0        |       | 0     |  |
| Storage Cap Reductn       |       | 0        | 0     | 0              |         | 0        |       | 0     |  |
| Reduced v/c Ratio         |       | 0.37     | 0.44  | 0.26           |         | 0.30     |       | 0.33  |  |
|                           |       | 0.01     | V.11  | 0.20           |         | 0.00     |       | 0.00  |  |
| Intersection Summary      |       |          |       |                |         |          |       |       |  |
| Cycle Length: 75          |       |          |       |                |         |          |       |       |  |
| Actuated Cycle Length: 75 |       |          |       |                |         |          |       |       |  |

Actuated Cycle Length: 75
Offset: 42 (56%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75


Control Type: Actuated-Coordinated

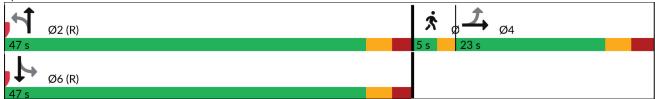
Maximum v/c Ratio: 0.65

Intersection LOS: B Intersection Signal Delay (s/veh): 12.9 Intersection Capacity Utilization 58.2% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth




#### 2: Bank & Holmwood

|                             | -          | <b>←</b> | 4         | <b>†</b>  | -          | ļ     |      |  |
|-----------------------------|------------|----------|-----------|-----------|------------|-------|------|--|
| Lane Group                  | EBT        | WBT      | NBL       | NBT       | SBL        | SBT   | Ø3   |  |
| Lane Configurations         | 4          |          |           | 4î∌       |            | 4ी∌   |      |  |
| Traffic Volume (vph)        | 17         | 0        | 31        | 494       | 22         | 519   |      |  |
| Future Volume (vph)         | 17         | 0        | 31        | 494       | 22         | 519   |      |  |
| Lane Group Flow (vph)       | 107        | 2        | 0         | 670       | 0          | 639   |      |  |
| Turn Type                   | NA         |          | Perm      | NA        | Perm       | NA    |      |  |
| Protected Phases            | 4          |          |           | 2         |            | 6     | 3    |  |
| Permitted Phases            |            |          | 2         |           | 6          |       |      |  |
| Detector Phase              | 4          |          | 2         | 2         | 6          | 6     |      |  |
| Switch Phase                |            |          |           |           |            |       |      |  |
| Minimum Initial (s)         | 4.4        |          | 10.0      | 10.0      | 4.0        | 4.0   | 1.0  |  |
| Minimum Split (s)           | 23.0       |          | 47.0      | 47.0      | 47.0       | 47.0  | 5.0  |  |
| Total Split (s)             | 23.0       |          | 47.0      | 47.0      | 47.0       | 47.0  | 5.0  |  |
| Total Split (%)             | 30.7%      |          | 62.7%     | 62.7%     | 62.7%      | 62.7% | 7%   |  |
| Yellow Time (s)             | 3.0        |          | 3.0       | 3.0       | 3.0        | 3.0   | 2.0  |  |
| All-Red Time (s)            | 2.6        |          | 2.2       | 2.2       | 2.2        | 2.2   | 0.0  |  |
| Lost Time Adjust (s)        | 0.0        |          |           | 0.0       |            | 0.0   |      |  |
| Total Lost Time (s)         | 5.6        |          |           | 5.2       |            | 5.2   |      |  |
| Lead/Lag                    | Lag        |          |           |           |            |       | Lead |  |
| Lead-Lag Optimize?          |            |          |           |           |            |       |      |  |
| Recall Mode                 | None       |          | C-Max     | C-Max     | C-Max      | C-Max | None |  |
| Act Effct Green (s)         | 11.2       | 0.0      |           | 56.4      |            | 56.4  |      |  |
| Actuated g/C Ratio          | 0.15       | 0.00     |           | 0.75      |            | 0.75  |      |  |
| v/c Ratio                   | 0.53       | 0.01     |           | 0.34      |            | 0.30  |      |  |
| Control Delay (s/veh)       | 38.2       | 0.0      |           | 7.2       |            | 8.2   |      |  |
| Queue Delay                 | 0.0        | 0.0      |           | 0.0       |            | 0.0   |      |  |
| Total Delay (s/veh)         | 38.2       | 0.0      |           | 7.2       |            | 8.2   |      |  |
| LOS                         | D          | Α        |           | A         |            | A     |      |  |
| Approach Delay (s/veh)      | 38.2       |          |           | 7.2       |            | 8.2   |      |  |
| Approach LOS                | D          |          |           | A         |            | A     |      |  |
| Queue Length 50th (m)       | 14.2       | 0.0      |           | 30.2      |            | 19.5  |      |  |
| Queue Length 95th (m)       | 26.7       | 0.0      |           | 49.5      |            | 44.3  |      |  |
| Internal Link Dist (m)      | 39.8       | 116.8    |           | 31.5      |            | 195.6 |      |  |
| Turn Bay Length (m)         | 0.40       | 4.10     |           | 4000      |            | 0404  |      |  |
| Base Capacity (vph)         | 313        | 143      |           | 1966      |            | 2124  |      |  |
| Starvation Cap Reductn      | 0          | 0        |           | 0         |            | 0     |      |  |
| Spillback Cap Reductn       | 0          | 0        |           | 0         |            | 0     |      |  |
| Storage Cap Reductn         | 0          | 0        |           | 0         |            | 0     |      |  |
| Reduced v/c Ratio           | 0.34       | 0.01     |           | 0.34      |            | 0.30  |      |  |
| Intersection Summary        |            |          |           |           |            |       |      |  |
| Cycle Length: 75            |            |          |           |           |            |       |      |  |
| Actuated Cycle Length: 75   |            |          |           |           |            |       |      |  |
| Offset: 16 (21%), Reference | ed to phas | e 2:NBT  | L and 6:S | SBTL, Sta | art of Gre | en    |      |  |
| Natural Cycle: 75           |            |          |           |           |            |       |      |  |
| Control Type: Actuated-Co   | ordinated  |          |           |           |            |       |      |  |

Maximum v/c Ratio: 0.53

Intersection Signal Delay (s/veh): 10.0 Intersection LOS: A Intersection Capacity Utilization Err% Analysis Period (min) 15 ICU Level of Service H

Splits and Phases: 2: Bank & Holmwood



### 3: Bank & Exhibition

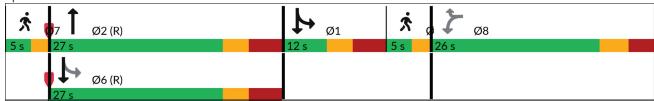
|                        | <     | *     | <b>†</b>    | -      | <b>↓</b> |      |       |      |  |
|------------------------|-------|-------|-------------|--------|----------|------|-------|------|--|
| Lane Group             | WBL   | WBR   | NBT         | SBL    | SBT      | Ø3   | Ø6    | Ø7   |  |
| Lane Configurations    | *     | 7     | <b>†</b> 1> | *      | <b>^</b> |      |       |      |  |
| Traffic Volume (vph)   | 120   | 63    | 397         | 170    | 423      |      |       |      |  |
| Future Volume (vph)    | 120   | 63    | 397         | 170    | 423      |      |       |      |  |
| Lane Group Flow (vph)  | 133   | 70    | 570         | 189    | 470      |      |       |      |  |
| Turn Type              | Perm  | Perm  |             | custom | NA       |      |       |      |  |
| Protected Phases       |       |       | 2           | 1      | 16       | 3    | 6     | 7    |  |
| Permitted Phases       | 8     | 8     |             | 6      |          |      |       |      |  |
| Detector Phase         | 8     | 8     | 2           | 1      | 16       |      |       |      |  |
| Switch Phase           |       |       | _           |        |          |      |       |      |  |
| Minimum Initial (s)    | 10.0  | 10.0  | 10.0        | 1.0    |          | 3.0  | 10.0  | 3.0  |  |
| Minimum Split (s)      | 26.0  | 26.0  | 27.0        | 7.9    |          | 5.0  | 27.0  | 5.0  |  |
| Total Split (s)        | 26.0  | 26.0  | 27.0        | 12.0   |          | 5.0  | 27.0  | 5.0  |  |
| Total Split (%)        | 34.7% | 34.7% | 36.0%       | 16.0%  |          | 7%   | 36%   | 7%   |  |
| Yellow Time (s)        | 3.3   | 3.3   | 3.0         | 3.0    |          | 2.0  | 3.0   | 2.0  |  |
| All-Red Time (s)       | 3.0   | 3.0   | 3.9         | 3.9    |          | 0.0  | 3.9   | 0.0  |  |
| Lost Time Adjust (s)   | 0.0   | 0.0   | 0.0         | 0.0    |          |      |       |      |  |
| Total Lost Time (s)    | 6.3   | 6.3   | 6.9         | 6.9    |          |      |       |      |  |
| Lead/Lag               |       |       |             | Lead   |          | Lag  |       |      |  |
| Lead-Lag Optimize?     |       |       |             | Yes    |          | Yes  |       |      |  |
| Recall Mode            | None  | None  | C-Max       | None   |          | None | C-Max | None |  |
| Act Effct Green (s)    | 12.5  | 12.5  | 40.6        | 45.7   | 54.0     |      |       |      |  |
| Actuated g/C Ratio     | 0.17  | 0.17  | 0.54        | 0.61   | 0.72     |      |       |      |  |
| v/c Ratio              | 0.53  | 0.29  | 0.36        | 0.41   | 0.21     |      |       |      |  |
| Control Delay (s/veh)  | 35.8  | 10.2  | 11.3        | 12.4   | 5.1      |      |       |      |  |
| Queue Delay            | 0.0   | 0.0   | 0.0         | 0.0    | 0.0      |      |       |      |  |
| Total Delay (s/veh)    | 35.8  | 10.2  | 11.3        | 12.4   | 5.1      |      |       |      |  |
| LOS                    | D     | В     | В           | В      | Α        |      |       |      |  |
| Approach Delay (s/veh) | 27.0  |       | 11.3        |        | 7.1      |      |       |      |  |
| Approach LOS           | С     |       | В           |        | Α        |      |       |      |  |
| Queue Length 50th (m)  | 17.6  | 0.0   | 21.9        | 7.5    | 10.4     |      |       |      |  |
| Queue Length 95th (m)  | 31.2  | 9.4   | 37.9        | 26.0   | 23.4     |      |       |      |  |
| Internal Link Dist (m) | 30.6  |       | 33.7        |        | 44.8     |      |       |      |  |
| Turn Bay Length (m)    |       |       |             | 40.0   |          |      |       |      |  |
| Base Capacity (vph)    | 399   | 347   | 1584        | 462    | 2283     |      |       |      |  |
| Starvation Cap Reductn | 0     | 0     | 0           | 0      | 0        |      |       |      |  |
| Spillback Cap Reductn  | 0     | 0     | 0           | 0      | 0        |      |       |      |  |
| Storage Cap Reductn    | 0     | 0     | 0           | 0      | 0        |      |       |      |  |
| Reduced v/c Ratio      | 0.33  | 0.20  | 0.36        | 0.41   | 0.21     |      |       |      |  |
| Intersection Summary   |       |       |             |        |          |      |       |      |  |
| 0 1 1 1 2 1 3 5        |       |       |             |        |          |      |       |      |  |

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 75


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.53

Intersection Signal Delay (s/veh): 11.6 Intersection LOS: B
Intersection Capacity Utilization 59.6% ICU Level of Service B

Analysis Period (min) 15

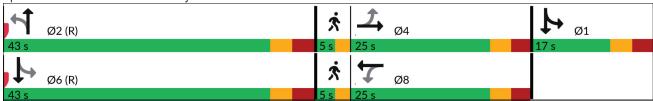
Splits and Phases: 3: Bank & Exhibition



# 6: Bank & Aylmer

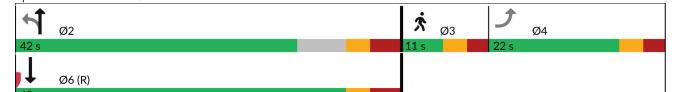
|                                         | ۶          | 1       | <b>†</b>  | ļ          |               |       |
|-----------------------------------------|------------|---------|-----------|------------|---------------|-------|
| Lane Group                              | EBL        | NBL     | NBT       | SBT        | Ø3            |       |
| Lane Configurations                     | W          |         | 414       | <b>†</b> ‡ |               |       |
| Traffic Volume (vph)                    | 50         | 13      | 572       | 627        |               |       |
| Future Volume (vph)                     | 50         | 13      | 572       | 627        |               |       |
| Lane Group Flow (vph)                   | 76         | 0       | 650       | 753        |               |       |
| Turn Type                               | Prot       | Perm    | NA        | NA         |               |       |
| Protected Phases                        | 4          |         | 2         | 6          | 3             |       |
| Permitted Phases                        | 4          | 2       |           | 6          |               |       |
| Detector Phase                          | 4          | 2       | 2         | 6          |               |       |
| Switch Phase                            |            |         |           |            |               |       |
| Minimum Initial (s)                     | 10.0       | 30.0    | 30.0      | 30.0       | 1.0           |       |
| Minimum Split (s)                       | 22.0       | 63.0    | 63.0      | 63.0       | 4.0           |       |
| Total Split (s)                         | 22.0       | 63.0    | 63.0      | 63.0       | 5.0           |       |
| Total Split (%)                         | 24.4%      | 70.0%   | 70.0%     | 70.0%      | 6%            |       |
| Yellow Time (s)                         | 3.3        | 3.0     | 3.0       | 3.0        | 2.0           |       |
| All-Red Time (s)                        | 2.2        | 2.2     | 2.2       | 2.2        | 0.0           |       |
| Lost Time Adjust (s)                    | 0.0        |         | 0.0       | 0.0        | <b>-</b>      |       |
| Total Lost Time (s)                     | 5.5        |         | 5.2       | 5.2        |               |       |
| Lead/Lag                                | Lag        |         | 0.2       | 0.2        | Lead          |       |
| Lead-Lag Optimize?                      | Lag        |         |           |            | _300          |       |
| Recall Mode                             | None       | C-Max   | C-Max     | C-Max      | None          |       |
| Act Effct Green (s)                     | 10.8       | Jillan  | 72.6      | 72.6       | 110110        |       |
| Actuated g/C Ratio                      | 0.12       |         | 0.81      | 0.81       |               |       |
| v/c Ratio                               | 0.40       |         | 0.27      | 0.31       |               |       |
| Control Delay (s/veh)                   | 35.7       |         | 2.4       | 3.4        |               |       |
| Queue Delay                             | 0.0        |         | 0.0       | 0.0        |               |       |
| Total Delay (s/veh)                     | 35.7       |         | 2.4       | 3.4        |               |       |
| LOS                                     | D          |         | Α         | Α          |               |       |
| Approach Delay (s/veh)                  | 35.7       |         | 2.4       | 3.4        |               |       |
| Approach LOS                            | D          |         | Α.        | Α          |               |       |
| Queue Length 50th (m)                   | 9.6        |         | 10.8      | 15.8       |               |       |
| Queue Length 95th (m)                   | 21.9       |         | 14.3      | 26.2       |               |       |
| Internal Link Dist (m)                  | 76.7       |         | 28.1      | 10.1       |               |       |
| Turn Bay Length (m)                     | 10.1       |         | 20.1      | 10.1       |               |       |
| Base Capacity (vph)                     | 281        |         | 2411      | 2463       |               |       |
| Starvation Cap Reductn                  | 0          |         | 0         | 0          |               |       |
| Spillback Cap Reductn                   | 0          |         | 0         | 0          |               |       |
| Storage Cap Reductn                     | 0          |         | 0         | 0          |               |       |
| Reduced v/c Ratio                       | 0.27       |         | 0.27      | 0.31       |               |       |
| Neduced V/C Natio                       | 0.21       |         | 0.21      | 0.51       |               |       |
| Intersection Summary                    |            |         |           |            |               |       |
| Cycle Length: 90                        |            |         |           |            |               |       |
| Actuated Cycle Length: 90               |            |         |           |            |               |       |
| Offset: 87 (97%), Reference             | ed to phas | e 2:NBT | L and 6:8 | SBT, Start | t of Green    |       |
| Natural Cycle: 90                       |            |         |           |            |               |       |
| Control Type: Actuated-Coo              | ordinated  |         |           |            |               |       |
| Maximum v/c Ratio: 0.40                 |            |         |           |            |               |       |
| Intersection Signal Delay (s            | /veh): 4.6 |         |           | Ir         | ntersection L | OS: A |
| Intersection Capacity Utiliza           | •          |         |           |            | CU Level of S |       |
| Analysis Period (min) 15                |            |         |           |            |               |       |
| , , , , , , , , , , , , , , , , , , , , |            |         |           |            |               |       |
| Splits and Phases: 6: Ba                | nk & Aylm  | er      |           |            |               |       |

Spins and Fhases. O. Dank & Ayimer




|                              | ۶          | <b>→</b> | •         | +        | •          | †     | <b>/</b> | <b>↓</b> |      |       |      |  |
|------------------------------|------------|----------|-----------|----------|------------|-------|----------|----------|------|-------|------|--|
| Lane Group                   | EBL        | EBT      | WBL       | WBT      | NBL        | NBT   | SBL      | SBT      | Ø3   | Ø6    | Ø7   |  |
| Lane Configurations          |            | 4        |           | 4        |            | 4ी रे |          | €ि       |      |       |      |  |
| Traffic Volume (vph)         | 41         | 32       | 15        | 49       | 18         | 448   | 113      | 482      |      |       |      |  |
| Future Volume (vph)          | 41         | 32       | 15        | 49       | 18         | 448   | 113      | 482      |      |       |      |  |
| Lane Group Flow (vph)        | 0          | 114      | 0         | 185      | 0          | 530   | 0        | 751      |      |       |      |  |
| Turn Type                    | Perm       | NA       | Perm      | NA       | Perm       | NA    | custom   | NA       |      |       |      |  |
| Protected Phases             |            | 4        |           | 8        |            | 2     | 1        | 16       | 3    | 6     | 7    |  |
| Permitted Phases             | 4          |          | 8         |          | 2          |       | 6        |          |      |       |      |  |
| Detector Phase               | 4          | 4        | 8         | 8        | 2          | 2     | 1        | 16       |      |       |      |  |
| Switch Phase                 |            |          |           |          |            |       |          |          |      |       |      |  |
| Minimum Initial (s)          | 6.4        | 6.4      | 5.3       | 5.3      | 17.0       | 17.0  | 5.0      |          | 1.0  | 17.0  | 1.0  |  |
| Minimum Split (s)            | 25.0       | 25.0     | 25.0      | 25.0     | 43.0       | 43.0  | 17.0     |          | 5.0  | 43.0  | 5.0  |  |
| Total Split (s)              | 25.0       | 25.0     | 25.0      | 25.0     | 43.0       | 43.0  | 17.0     |          | 5.0  | 43.0  | 5.0  |  |
| Total Split (%)              | 27.8%      | 27.8%    | 27.8%     | 27.8%    | 47.8%      | 47.8% | 18.9%    |          | 6%   | 48%   | 6%   |  |
| Yellow Time (s)              | 3.0        | 3.0      | 3.0       | 3.0      | 3.0        | 3.0   | 3.0      |          | 2.0  | 3.0   | 2.0  |  |
| All-Red Time (s)             | 2.6        | 2.6      | 2.6       | 2.6      | 3.0        | 3.0   | 2.9      |          | 0.0  | 3.0   | 0.0  |  |
| Lost Time Adjust (s)         |            | 0.0      |           | 0.0      |            | 0.0   |          |          |      |       |      |  |
| Total Lost Time (s)          |            | 5.6      |           | 5.6      |            | 6.0   |          |          |      |       |      |  |
| Lead/Lag                     | Lag        | Lag      | Lag       | Lag      |            |       |          |          | Lead |       | Lead |  |
| Lead-Lag Optimize?           |            |          | Yes       | Yes      |            |       |          |          |      |       | Yes  |  |
| Recall Mode                  | None       | None     | None      | None     | C-Max      | C-Max | None     |          | None | C-Max | None |  |
| Act Effct Green (s)          |            | 14.6     |           | 14.6     |            | 44.6  |          | 58.0     |      |       |      |  |
| Actuated g/C Ratio           |            | 0.16     |           | 0.16     |            | 0.50  |          | 0.64     |      |       |      |  |
| v/c Ratio                    |            | 0.78     |           | 0.70     |            | 0.37  |          | 0.49     |      |       |      |  |
| Control Delay (s/veh)        |            | 67.8     |           | 32.8     |            | 16.5  |          | 4.7      |      |       |      |  |
| Queue Delay                  |            | 0.0      |           | 0.0      |            | 0.0   |          | 0.0      |      |       |      |  |
| Total Delay (s/veh)          |            | 67.8     |           | 32.8     |            | 16.5  |          | 4.7      |      |       |      |  |
| LOS                          |            | Е        |           | С        |            | В     |          | Α        |      |       |      |  |
| Approach Delay (s/veh)       |            | 67.8     |           | 32.8     |            | 16.5  |          | 4.7      |      |       |      |  |
| Approach LOS                 |            | Е        |           | С        |            | В     |          | Α        |      |       |      |  |
| Queue Length 50th (m)        |            | 19.1     |           | 16.5     |            | 28.7  |          | 8.6      |      |       |      |  |
| Queue Length 95th (m)        |            | 34.5     |           | 35.5     |            | 47.5  |          | 11.3     |      |       |      |  |
| Internal Link Dist (m)       |            | 75.1     |           | 136.0    |            | 63.1  |          | 79.0     |      |       |      |  |
| Turn Bay Length (m)          |            |          |           |          |            |       |          |          |      |       |      |  |
| Base Capacity (vph)          |            | 199      |           | 333      |            | 1417  |          | 1547     |      |       |      |  |
| Starvation Cap Reductn       |            | 0        |           | 0        |            | 0     |          | 0        |      |       |      |  |
| Spillback Cap Reductn        |            | 0        |           | 0        |            | 0     |          | 0        |      |       |      |  |
| Storage Cap Reductn          |            | 0        |           | 0        |            | 0     |          | 0        |      |       |      |  |
| Reduced v/c Ratio            |            | 0.57     |           | 0.56     |            | 0.37  |          | 0.49     |      |       |      |  |
| Intersection Summary         |            |          |           |          |            |       |          |          |      |       |      |  |
| Cycle Length: 90             |            |          |           |          |            |       |          |          |      |       |      |  |
| Actuated Cycle Length: 90    |            |          |           |          |            |       |          |          |      |       |      |  |
| Offset: 23 (26%), Reference  | ed to phas | se 2:NBT | L and 6:S | BTL, Sta | art of Gre | en    |          |          |      |       |      |  |
| Natural Cycle: 90            |            |          |           |          |            |       |          |          |      |       |      |  |
| Control Type: Actuated-Co    | ordinated  |          |           |          |            |       |          |          |      |       |      |  |
| Maximum v/c Ratio: 0.78      | - / I-\ 40 | _        |           |          | - f        | - 100 | <b>.</b> |          |      |       |      |  |
| Intersection Signal Delay (s |            |          |           |          | ntersectio |       |          |          |      |       |      |  |

Splits and Phases: 7: Bank & Sunnyside


Intersection Capacity Utilization 72.1%

Analysis Period (min) 15



ICU Level of Service C

|                                | •          | 4            | <b>†</b>    | ļ     |                     |   |     |  |
|--------------------------------|------------|--------------|-------------|-------|---------------------|---|-----|--|
| Lane Group                     | EBL        | NBL          | NBT         | SBT   | Ø3                  |   |     |  |
| Lane Configurations            | W          |              | 4           | ĵ.    |                     |   |     |  |
| Traffic Volume (vph)           | 12         | 198          | 12          | 11    |                     |   |     |  |
| Future Volume (vph)            | 12         | 198          | 12          | 11    |                     |   |     |  |
| Lane Group Flow (vph)          | 154        | 0            | 233         | 40    |                     |   |     |  |
| Turn Type                      | Perm       | Perm         | NA          | NA    |                     |   |     |  |
| Protected Phases               |            |              | 2           | 6     | 3                   |   |     |  |
| Permitted Phases               | 4          | 2            | _           |       | •                   |   |     |  |
| Detector Phase                 | 4          | 2            | 2           | 6     |                     |   |     |  |
| Switch Phase                   | •          | <del>-</del> | _           | •     |                     |   |     |  |
| Minimum Initial (s)            | 10.0       | 4.0          | 4.0         | 4.0   | 4.0                 |   |     |  |
| Minimum Split (s)              | 22.0       | 42.0         | 42.0        | 42.0  | 9.7                 |   |     |  |
| Total Split (s)                | 22.0       | 42.0         | 42.0        | 48.0  | 11.0                |   |     |  |
| Total Split (%)                | 27.2%      | 51.9%        | 51.9%       | 59.3% | 14%                 |   |     |  |
| Yellow Time (s)                | 3.0        | 3.0          | 3.0         | 3.0   | 3.0                 |   |     |  |
| All-Red Time (s)               | 2.7        | 3.8          | 3.8         | 3.8   | 2.7                 |   |     |  |
| Lost Time Adjust (s)           | 0.0        | 0.0          | 0.0         | 0.0   | <u> </u>            |   |     |  |
| Total Lost Time (s)            | 5.7        |              | 6.8         | 6.8   |                     |   |     |  |
| Lead/Lag                       | Lag        |              | 0.0         | 0.0   | Lead                |   |     |  |
| Lead-Lag Optimize?             | Yes        |              |             |       | Yes                 |   |     |  |
| Recall Mode                    | Min        | None         | None        | C-Max | None                |   |     |  |
| Act Effct Green (s)            | 14.0       | INOILE       | 54.5        | 54.5  | NONE                |   |     |  |
| Actuated g/C Ratio             | 0.17       |              | 0.67        | 0.67  |                     |   |     |  |
| //c Ratio                      | 0.17       |              | 0.07        | 0.07  |                     |   |     |  |
| Control Delay (s/veh)          | 40.6       |              | 7.3         | 5.6   |                     |   |     |  |
| Queue Delay                    | 0.0        |              | 0.0         | 0.0   |                     |   |     |  |
| Total Delay (s/veh)            | 40.6       |              | 7.3         | 5.6   |                     |   |     |  |
| _OS                            | 40.0<br>D  |              | 7.5<br>A    | J.0   |                     |   |     |  |
| Approach Delay (s/veh)         | 40.6       |              | 7.3         | 5.6   |                     |   |     |  |
| Approach LOS                   | 40.0<br>D  |              | 7.5<br>A    | J.0   |                     |   |     |  |
| Queue Length 50th (m)          | 22.3       |              | 12.4        | 1.8   |                     |   |     |  |
| Queue Length 95th (m)          | 37.4       |              | 27.9        | 5.7   |                     |   |     |  |
| nternal Link Dist (m)          | 57.4       |              | 0.1         | 5.9   |                     |   |     |  |
| Turn Bay Length (m)            | 51.2       |              | 0.1         | 5.5   |                     |   |     |  |
| Base Capacity (vph)            | 306        |              | 804         | 1026  |                     |   |     |  |
| Starvation Cap Reductn         | 0          |              | 004         | 0     |                     |   |     |  |
| Spillback Cap Reductin         | 0          |              | 0           | 0     |                     |   |     |  |
| Storage Cap Reductn            | 0          |              | 0           | 0     |                     |   |     |  |
| Reduced v/c Ratio              | 0.50       |              | 0.29        | 0.04  |                     |   |     |  |
|                                | 0.00       |              | 0.20        | 0.01  |                     |   |     |  |
| Intersection Summary           |            |              |             |       |                     |   |     |  |
| Cycle Length: 81               |            |              |             |       |                     |   |     |  |
| Actuated Cycle Length: 81      | 14         | C.ODT O      | 11 -5 0-    |       |                     |   |     |  |
| Offset: 0 (0%), Referenced     | to phase   | 6:SB1, S     | tart of Gr  | een   |                     |   |     |  |
| Natural Cycle: 75              | P C . I    |              |             |       |                     |   |     |  |
| Control Type: Actuated-Co      | ordinated  |              |             |       |                     |   |     |  |
| Maximum v/c Ratio: 0.61        | -11.\ 40   | 1            |             |       | -tt' 100 D          |   |     |  |
| ntersection Signal Delay (s    | ,          |              |             |       | ntersection LOS: B  | Δ |     |  |
| Intersection Capacity Utiliz   | ation 38.3 | %            |             | IC    | CU Level of Service | A |     |  |
| Analysis Period (min) 15       |            |              |             |       |                     |   |     |  |
| Splits and Phases: 9: Qu       | ueen Eliza | beth Driv    | e & Fifth   |       |                     |   |     |  |
| 5p.1.0 d.1.d.1 11.d.000. 0. Q. | LIIZU      | 2001 DIIV    | - w : iiiii |       |                     |   | 1 . |  |



HCM 95th-tile Q

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.9  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBL  | EBT   | WBT   | WBR   | SBL  | SBR  |
| Lane Configurations        |      | 4     | 1≽    |       | N/   |      |
| Traffic Vol, veh/h         | 5    | 141   | 100   | 5     | 5    | 5    |
| Future Vol, veh/h          | 5    | 141   | 100   | 5     | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 6    | 157   | 111   | 6     | 6    | 6    |
| Number of Lanes            | 0    | 1     | 1     | 0     | 1    | 0    |
| Annroach                   | EB   |       | WB    |       | SB   |      |
| Approach                   |      |       |       |       | SD   |      |
| Opposing Approach          | WB   |       | EB    |       | 0    |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  | SB   |       | 0     |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0     |       | 1    |      |
| Conflicting Approach Right |      |       | SB    |       | EB   |      |
| Conflicting Lanes Right    | 0    |       | 1     |       | 1    |      |
| HCM Control Delay, s/veh   | 8    |       | 7.7   |       | 7.4  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | EBLn1 | WBLn1 | SBLn1 |      |      |
| Vol Left, %                |      | 3%    | 0%    | 50%   |      |      |
| Vol Thru, %                |      | 97%   | 95%   | 0%    |      |      |
| Vol Right, %               |      | 0%    | 5%    | 50%   |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 146   | 105   | 10    |      |      |
| LT Vol                     |      | 5     | 0     | 5     |      |      |
| Through Vol                |      | 141   | 100   | 0     |      |      |
| RT Vol                     |      | 0     | 5     | 5     |      |      |
| Lane Flow Rate             |      | 162   | 117   | 11    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.182 | 0.131 | 0.013 |      |      |
| Departure Headway (Hd)     |      | 4.048 | 4.046 | 4.328 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Сар                        |      | 886   | 883   | 832   |      |      |
| Service Time               |      | 2.076 | 2.084 | 2.328 |      |      |
| HCM Lane V/C Ratio         |      | 0.183 | 0.133 | 0.013 |      |      |
| HCM Control Delay, s/veh   |      | 8     | 7.7   | 7.4   |      |      |
| HCM Lane LOS               |      | Α     | Α     | Α     |      |      |
| LIOM OF HE ALLE O          |      | 0.7   | 0.5   | 0     |      |      |

0.5

0

HCM Lane LOS

HCM 95th-tile Q

| Intersection                  |      |            |            |             |          |      |
|-------------------------------|------|------------|------------|-------------|----------|------|
| Intersection Delay, s/veh     | 7.9  |            |            |             |          |      |
| Intersection LOS              | Α    |            |            |             |          |      |
|                               |      |            |            |             |          |      |
| Movement                      | EBT  | EBR        | WBL        | WBT         | NBL      | NBR  |
| Lane Configurations           | £    |            |            | ની          | W        |      |
| Traffic Vol, veh/h            | 14   | 5          | 5          | 158         | 5        | 5    |
| Future Vol, veh/h             | 14   | 5          | 5          | 158         | 5        | 5    |
| Peak Hour Factor              | 0.90 | 0.90       | 0.90       | 0.90        | 0.90     | 0.90 |
| Heavy Vehicles, %             | 2    | 2          | 2          | 2           | 2        | 2    |
| Mvmt Flow                     | 16   | 6          | 6          | 176         | 6        | 6    |
| Number of Lanes               | 1    | 0          | 0          | 1           | 1        | 0    |
| Approach                      | EB   |            | WB         |             | NB       |      |
| Opposing Approach             | WB   |            | EB         |             | .,,,,    |      |
| Opposing Lanes                | 1    |            | 1          |             | 0        |      |
| Conflicting Approach Left     | 1    |            | NB         |             | EB       |      |
| Conflicting Lanes Left        | 0    |            | 1          |             | 1        |      |
| Conflicting Approach Right    | NB   |            |            |             | WB       |      |
| Conflicting Lanes Right       | 1    |            | 0          |             | 1        |      |
| HCM Control Delay, s/veh      | 7.1  |            | 8          |             | 7.2      |      |
| HCM LOS                       | Α.Ι  |            | A          |             | 7.2<br>A |      |
| HOW LOO                       |      |            |            |             |          |      |
| Lane                          |      | NBLn1      | EBLn1      | WBLn1       |          |      |
| Vol Left, %                   |      | 50%        | 0%         | 3%          |          |      |
| Vol Thru, %                   |      | 0%         | 74%        | 97%         |          |      |
| Vol Right, %                  |      | 50%        | 26%        | 0%          |          |      |
| Sign Control                  |      | Stop       | Stop       |             |          |      |
|                               |      | 5top<br>10 | 5top<br>19 | Stop<br>163 |          |      |
| Traffic Vol by Lane<br>LT Vol |      |            | 0          |             |          |      |
|                               |      | 5          |            | 5<br>150    |          |      |
| Through Vol                   |      | 0          | 14         | 158         |          |      |
| RT Vol                        |      | 5          | 5          | 0           |          |      |
| Lane Flow Rate                |      | 11         | 21         | 181         |          |      |
| Geometry Grp                  |      | 1          | 1          | 1           |          |      |
| Degree of Util (X)            |      | 0.013      | 0.023      | 0.2         |          |      |
| Departure Headway (Hd)        |      | 4.083      | 3.93       | 3.976       |          |      |
| Convergence, Y/N              |      | Yes        | Yes        | Yes         |          |      |
| Сар                           |      | 864        | 907        | 906         |          |      |
| Service Time                  |      | 2.166      | 1.969      | 1.985       |          |      |
| HCM Lane V/C Ratio            |      | 0.013      | 0.023      | 0.2         |          |      |
| HCM Control Delay, s/veh      |      | 7.2        | 7.1        | 8           |          |      |
| HCM Lang LOS                  |      | ٨          | ٨          | ٨           |          |      |

Α

Α

0.1

Α

HCM Control Delay, s/veh

HCM Lane LOS

HCM 95th-tile Q

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 8    |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | 1}   |       |       | 4     | W    |      |
| Traffic Vol, veh/h         | 14   | 5     | 54    | 3     | 122  | 24   |
| Future Vol, veh/h          | 14   | 5     | 54    | 3     | 122  | 24   |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 16   | 6     | 60    | 3     | 136  | 27   |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
|                            | EB   |       | WB    | ·     | NB   | -    |
| Approach                   |      |       |       |       | INR  |      |
| Opposing Approach          | WB   |       | EB    |       | ^    |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.3  |       | 7.9   |       | 8.2  |      |
| HCM LOS                    | Α    |       | А     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 |       | WBLn1 |      |      |
| Vol Left, %                |      | 84%   | 0%    | 95%   |      |      |
| Vol Thru, %                |      | 0%    | 74%   | 5%    |      |      |
| Vol Right, %               |      | 16%   | 26%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 146   | 19    | 57    |      |      |
| LT Vol                     |      | 122   | 0     | 54    |      |      |
| Through Vol                |      | 0     | 14    | 3     |      |      |
| RT Vol                     |      | 24    | 5     | 0     |      |      |
| Lane Flow Rate             |      | 162   | 21    | 63    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.187 | 0.025 | 0.078 |      |      |
| Departure Headway (Hd)     |      | 4.148 | 4.216 | 4.425 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 860   | 854   | 798   |      |      |
| Service Time               |      | 2.202 | 2.216 | 2.516 |      |      |
| HCM Lane V/C Ratio         |      | 0.188 | 0.025 | 0.079 |      |      |
| HOM O LITTLE TO TAKE       |      | 0.100 | 0.020 | 0.010 |      |      |

8.2

Α

0.7

7.3

Α

0.1

7.9

Α

| Intersection              |     |     |     |     |     |     |     |     |     |     |     |     |
|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Intersection Delay, s/veh | 9.8 |     |     |     |     |     |     |     |     |     |     |     |
| Intersection LOS          | Α   |     |     |     |     |     |     |     |     |     |     |     |
|                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Movement                  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lano Configurations       |     |     |     |     |     | #   |     |     |     |     |     | A.  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 67   | 79   | 0    | 0    | 0    | 223  | 97   | 65   | 60   | 0    | 0    | 101  |
| Future Vol, veh/h          | 67   | 79   | 0    | 0    | 0    | 223  | 97   | 65   | 60   | 0    | 0    | 101  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 74   | 88   | 0    | 0    | 0    | 248  | 108  | 72   | 67   | 0    | 0    | 112  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 9.9  |      |      |      |      | 9.4  | 10.6 |      |      |      |      | 8.5  |
| HCM LOS                    | Α    |      |      |      |      | Α    | В    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 46%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 54%   | 0%    | 0%    |  |
| Vol Right, %             | 27%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 222   | 146   | 223   | 101   |  |
| LT Vol                   | 97    | 67    | 0     | 0     |  |
| Through Vol              | 65    | 79    | 0     | 0     |  |
| RT Vol                   | 60    | 0     | 223   | 101   |  |
| Lane Flow Rate           | 247   | 162   | 248   | 112   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.339 | 0.234 | 0.304 | 0.144 |  |
| Departure Headway (Hd)   | 4.943 | 5.183 | 4.417 | 4.619 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 720   | 685   | 805   | 765   |  |
| Service Time             | 3.028 | 3.272 | 2.496 | 2.717 |  |
| HCM Lane V/C Ratio       | 0.343 | 0.236 | 0.308 | 0.146 |  |
| HCM Control Delay, s/veh | 10.6  | 9.9   | 9.4   | 8.5   |  |
| HCM Lane LOS             | В     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 1.5   | 0.9   | 1.3   | 0.5   |  |

| Lane Configurations         ↑         ↑         ↑           Traffic Vol, veh/h         5         149         105         527           Future Vol, veh/h         5         149         105         527           Conflicting Peds, #/hr         0         0         178         0           Sign Control         Stop         Stop         Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | rsection                                |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|--------|
| Movement         EBL         EBR         NBL         NBT           Lane Configurations         ↑         ↑         ↑         ↑           Traffic Vol, veh/h         5         149         105         527           Future Vol, veh/h         5         149         105         527           Conflicting Peds, #/hr         0         0         178         0           Sign Control         Stop         Stop         Free         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Delay, s/veh 4.6                        |        |
| Lane Configurations         ↑         ↑         ↑           Traffic Vol, veh/h         5         149         105         527           Future Vol, veh/h         5         149         105         527           Conflicting Peds, #/hr         0         0         178         0           Sign Control         Stop         Stop         Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T CDT  | romant EDI EDD NDI NDT                  | T CDD  |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                         |        |
| Future Vol, veh/h Conflicting Peds, #/hr O Sign Control Stop Stop Stop Free Free Free Free Free Free Free Fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                         |        |
| Conflicting Peds, #/hr         0         0         178         0           Sign Control         Stop         Stop         Free         Free <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                         |        |
| Sign Control         Stop         Stop         Free         O           Grade         4         0         -         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | ,                                       |        |
| RT Channelized         - None         - None           Storage Length         - 0         0           Veh in Median Storage, # 0         0         - 0           Grade, %         0         0           Peak Hour Factor         90         90         90           Heavy Vehicles, %         3         3         3         3           Mwmt Flow         6         166         117         586           Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736          -         -           Stage 2         526          -         -           Critical Hdwy         6.645         6.245         4.145         -           Critical Hdwy Stg 1         5.445          -         -           Critical Hdwy Stg 2         5.845          -         -           Critical Hdwy Stg 2         5.845          -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                         |        |
| Storage Length         -         0         -         -         0           Veh in Median Storage, #         0         -         -         0           Grade, %         0         -         -         0           Peak Hour Factor         90         90         90         90           Heavy Vehicles, %         3         3         3         3           Mvmt Flow         6         166         117         586           Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736         -         -         -           Stage 2         526         -         -         -           Critical Hdwy         5645         6.245         4.145         -           Critical Hdwy Stg 1         5.445         -         -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416         838         -           Stage 2         556         -         -         -           Platoon blocked, %         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Free | Control Stop Stop Free Free             | e Free |
| Veh in Median Storage, #         0         -         -         0           Grade, %         0         -         -         0           Peak Hour Factor         90         90         90         90           Heavy Vehicles, %         3         3         3         3         3           Mwmt Flow         6         166         117         586           Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736         -         -         -           Stage 2         526         -         -         -           Critical Hdwy         6.645         6.245         4.145         -           Critical Hdwy Stg 2         5.845         -         -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416         838         -           Stage 1         470         -         -         -           Mov Cap-1 Maneuver         91         337         680         -           Mov Cap-2 Maneuver         91         - <td>е -</td> <td>Channelized - None - None</td> <td>- None</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | е -    | Channelized - None - None               | - None |
| Veh in Median Storage, #         0         -         -         0           Grade, %         0         -         -         0           Peak Hour Factor         90         90         90         90           Heavy Vehicles, %         3         3         3         3         3           Mwmt Flow         6         166         117         586           Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736         -         -         -           Stage 2         526         -         -         -           Critical Hdwy         6.645         6.245         4.145         -           Critical Hdwy Stg 2         5.845         -         -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416         838         -           Stage 2         556         -         -         -           Platoon blocked, %         -         -         -         -           Mov Cap-1 Maneuver         91         337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | age Length - 0                          |        |
| Grade, %         0         -         -         0           Peak Hour Factor         90         90         90         90           Heavy Vehicles, %         3         3         3         3           Mvmt Flow         6         166         117         586           Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736         -         -         -           Stage 2         526         -         -         -           Critical Hdwy         6.645         6.245         4.145         -           Critical Hdwy Stg 1         5.445         -         -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416         838         -           Stage 1         470         -         -         -           Stage 2         556         -         -         -           Platoon blocked, %         -         -         -         -         -           Mov Cap-1 Maneuver         91         337         680<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0    |                                         | 0 -    |
| Peak Hour Factor         90         90         90         90           Heavy Vehicles, %         3         3         3         3         3           Mvmt Flow         6         166         117         586           Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736         -         -         -           Stage 2         526         -         -         -           Critical Hdwy         6.645         6.245         4.145         -           Critical Hdwy Stg 1         5.445         -         -         -           Critical Hdwy Stg 2         5.845         -         -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416         838         -           Stage 1         470         -         -         -           Mov Cap-1 Maneuver         91         337         680         -           Mov Cap-2 Maneuver         91         -         -         -           Stage 1         303         - <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                         |        |
| Meavy Vehicles, %         3         3         3         3         3           Mvmt Flow         6         166         117         586           Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736         -         -         -           Stage 2         526         -         -         -           Critical Hdwy         6.645         6.245         4.145         -           Critical Hdwy Stg 1         5.445         -         -         -           Critical Hdwy Stg 2         5.845         -         -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416         838         -           Stage 1         470         -         -         -           Stage 2         556         -         -         -           Platoon blocked, %         -         -         -         -           Mov Cap-1 Maneuver         91         337         680         -           Stage 1         303         - <t< td=""><td></td><td>,</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | ,                                       |        |
| Momental Major/Minor         Minor Minor Major |        |                                         |        |
| Major/Minor         Minor2         Major1         Ma           Conflicting Flow All         1262         736         769         0           Stage 1         736         -         -         -           Stage 2         526         -         -         -           Critical Hdwy         6.645         6.245         4.145         -           Critical Hdwy Stg 1         5.445         -         -         -           Critical Hdwy Stg 2         5.845         -         -         -           Follow-up Hdwy         3.52853.32852.2285         -         -           Pot Cap-1 Maneuver         173         416         838         -           Stage 1         470         -         -         -           Stage 2         556         -         -         -           Platoon blocked, %         -         -         -         -           Mov Cap-1 Maneuver         91         337         680         -           Mov Cap-2 Maneuver         91         -         -         -           Stage 2         451         -         -         -           Approach         EB         NB         NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | · · · · · · · · · · · · · · · · · · ·   |        |
| Conflicting Flow All 1262 736 769 0  Stage 1 736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 520  | 0 100 117 300                           | .0     |
| Conflicting Flow All 1262 736 769 0  Stage 1 736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                         |        |
| Conflicting Flow All 1262 736 769 0  Stage 1 736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Major2 | or/Minor Minor2 <u>Major1</u> N         | r2     |
| Stage 1       736       -       -       -         Stage 2       526       -       -       -         Critical Hdwy       6.645       6.245       4.145       -         Critical Hdwy Stg 1       5.445       -       -       -         Critical Hdwy Stg 2       5.845       -       -       -         Follow-up Hdwy       3.52853.32852.2285       -       -         Pot Cap-1 Maneuver       173       416       838       -         Stage 1       470       -       -       -         Stage 2       556       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       91       337       680       -         Mov Cap-2 Maneuver       91       -       -       -         Stage 2       451       -       -       -         Approach       EB       NB         HCM Control Delay, s/25.53       3.28         HCM LOS       D       -       -         Minor Lane/Major Mvmt       NBL       NBT EBLn1       -         Capacity (veh/h)       569       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |        |
| Stage 2       526       -       -       -         Critical Hdwy       6.645       6.245       4.145       -       -         Critical Hdwy       5.445       -       -       -         Critical Hdwy       3.52853.32852.2285       -       -         Follow-up Hdwy       3.52853.32852.2285       -       -         Pot Cap-1 Maneuver       173       416       838       -         Stage 1       470       -       -       -         Stage 2       556       -       -       -         Mov Cap-1 Maneuver       91       337       680       -         Mov Cap-2 Maneuver       91       -       -       -         Stage 1       303       -       -       -         Approach       EB       NB         HCM Control Delay, s/25.53       3.28         HCM LOS         Minor Lane/Major Mvmt       NBL       NBTEBLn1       3         Capacity (veh/h)       569       -       337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | <del>-</del>                            |        |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | <u> </u>                                |        |
| Critical Hdwy Stg 1 5.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                         | _      |
| Critical Hdwy Stg 2 5.845 Follow-up Hdwy 3.52853.32852.2285 - Pot Cap-1 Maneuver 173 416 838 - Stage 1 470 Stage 2 556 Flatoon blocked, % - Mov Cap-1 Maneuver 91 337 680 - Mov Cap-2 Maneuver 91 Stage 1 303 Stage 2 451 Flatoon blocked Mov Cap-2 Maneuver 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | •                                       |        |
| Follow-up Hdwy 3.52853.32852.2285 - Pot Cap-1 Maneuver 173 416 838 - Stage 1 470 Stage 2 556 Platoon blocked, %  Mov Cap-1 Maneuver 91 337 680 - Mov Cap-2 Maneuver 91 Stage 1 303 Stage 2 451  Approach EB NB HCM Control Delay, s/25.53 3.28 HCM LOS D  Minor Lane/Major Mvmt NBL NBTEBLn1 3 Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                         |        |
| Pot Cap-1 Maneuver       173       416       838       -         Stage 1       470       -       -       -         Stage 2       556       -       -       -       -         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td></td><td>, ,</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | , ,                                     |        |
| Stage 1       470       -       -       -         Stage 2       556       -       -       -         Platoon blocked, %       -       -       -         Mov Cap-1 Maneuver       91       337       680       -         Mov Cap-2 Maneuver       91       -       -       -         Stage 1       303       -       -       -         Stage 2       451       -       -       -         Approach       EB       NB         HCM Control Delay, s/25.53       3.28         HCM LOS       D         Minor Lane/Major Mvmt       NBL       NBTEBLn1         Capacity (veh/h)       569       -       337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                         |        |
| Stage 2       556       -       -       -         Platoon blocked, %       -       -       -         Mov Cap-1 Maneuver       91       337       680       -         Mov Cap-2 Maneuver       91       -       -       -         Stage 1       303       -       -       -       -         Stage 2       451       -       -       -       -         Approach       EB       NB         HCM Control Delay, s/25.53       3.28         HCM LOS       D            Minor Lane/Major Mvmt       NBL       NBTEBLn1         Capacity (veh/h)       569       -       337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | •                                       |        |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                         |        |
| Mov Cap-1 Maneuver       91       337       680       -         Mov Cap-2 Maneuver       91       -       -       -         Stage 1       303       -       -       -         Stage 2       451       -       -       -         Approach       EB       NB         HCM Control Delay, s/25.53       3.28         HCM LOS       D         Minor Lane/Major Mvmt       NBL       NBTEBLn1         Capacity (veh/h)       569       -       337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                         |        |
| Mov Cap-2 Maneuver         91         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                         |        |
| Stage 1       303       -       -       -         Stage 2       451       -       -       -         Approach       EB       NB         HCM Control Delay, s/25.53       3.28         HCM LOS       D         Minor Lane/Major Mvmt       NBL       NBTEBLn1         Capacity (veh/h)       569       -       337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Cap-1 Maneuver 91 337 680 -             |        |
| Stage 1       303       -       -       -         Stage 2       451       -       -       -         Approach       EB       NB         HCM Control Delay, s/25.53       3.28         HCM LOS       D         Minor Lane/Major Mvmt       NBL       NBTEBLn1         Capacity (veh/h)       569       -       337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Cap-2 Maneuver 91                       |        |
| Stage 2         451         -         -         -           Approach         EB         NB           HCM Control Delay, s/25.53         3.28           HCM LOS         D           Minor Lane/Major Mvmt         NBL         NBTEBLn1           Capacity (veh/h)         569         -         337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | •                                       |        |
| Approach EB NB HCM Control Delay, s/25.53 3.28 HCM LOS D  Minor Lane/Major Mvmt NBL NBTEBLn1 3 Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | •                                       |        |
| HCM Control Delay, s/25.53 3.28 HCM LOS D  Minor Lane/Major Mvmt NBL NBTEBLn1 3 Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | <u>.</u>                                |        |
| HCM Control Delay, s/25.53 3.28 HCM LOS D  Minor Lane/Major Mvmt NBL NBTEBLn1 3 Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                         |        |
| HCM LOS D  Minor Lane/Major Mvmt NBL NBTEBLn1 S Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SB     | roach EB NB                             | В      |
| HCM LOS D  Minor Lane/Major Mvmt NBL NBTEBLn1 S Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0      | M Control Delay, s/25.53 3.28           | 0      |
| Minor Lane/Major Mvmt NBL NBTEBLn1 S<br>Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | <b>y</b> /                              |        |
| Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                         |        |
| Capacity (veh/h) 569 - 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 655  |                                         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | •                                       | T SBR  |
| 110141 1/10 D () 0 170 0 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                         |        |
| HCM Lane V/C Ratio 0.172 - 0.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 -    | M Lane V/C Ratio 0.172 - 0.491          |        |
| HCM Control Delay (s/veh) 11.4 1.7 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 -    | M Control Delay (s/veh) 11.4 1.7 25.5   |        |
| HCM Lane LOS B A D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                         |        |
| HCM 95th %tile Q(veh) 0.6 - 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |        |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | , , , , , , , , , , , , , , , , , , , , |        |

| Intersection           |         |        |         |               |              |      |
|------------------------|---------|--------|---------|---------------|--------------|------|
| Int Delay, s/veh       | 1       |        |         |               |              |      |
| Movement               | EBL     | EBR    | NBL     | NBT           | SBT          | SBR  |
| Lane Configurations    | LDL     | T T    | NDL     | <b>↑</b> ↑    | <u>361</u>   | אופט |
| Traffic Vol, veh/h     | 2       | 68     | 0       | <b>TT</b> 607 | <b>T</b> 626 | 1    |
| Future Vol, veh/h      | 2       | 68     |         | 607           | 626          | 1    |
|                        |         | 00     | 0       | 0             | 020          | 86   |
| Conflicting Peds, #/hr |         |        |         |               |              |      |
| Sign Control           | Stop    | Stop   | Free    | Free          | Free         | Free |
| RT Channelized         |         | None   |         | None          | -            | None |
| Storage Length         | -       | 0      | -       | -             | -            | -    |
| Veh in Median Storag   |         | -      | -       | 0             | 0            | -    |
| Grade, %               | 0       | -      | -       | 0             | 0            | -    |
| Peak Hour Factor       | 90      | 90     | 90      | 90            | 90           | 90   |
| Heavy Vehicles, %      | 3       | 3      | 3       | 3             | 3            | 3    |
| Mvmt Flow              | 2       | 76     | 0       | 674           | 696          | 1    |
|                        |         |        |         |               |              |      |
| Maior/Minor            | Minar   |        | 1-1-4   |               | 1-i0         |      |
|                        | Minor2  |        | /lajor1 |               | /lajor2      |      |
| Conflicting Flow All   | 1119    | 782    | -       | 0             | -            | 0    |
| Stage 1                | 782     | -      | -       | -             | -            | -    |
| Stage 2                | 337     | -      | -       | -             | -            | -    |
| Critical Hdwy          | 6.645   | 6.245  | -       | -             | -            | -    |
| Critical Hdwy Stg 1    | 5.445   | -      | -       | -             | -            | -    |
| Critical Hdwy Stg 2    | 5.845   | -      | -       | -             | -            | -    |
|                        | 3.52853 | 3.3285 | -       | -             | -            | -    |
| Pot Cap-1 Maneuver     | 213     | 391    | 0       | -             | -            | -    |
| Stage 1                | 448     | -      | 0       | _             | _            | _    |
| Stage 2                | 693     | _      | 0       | _             | _            | _    |
| Platoon blocked, %     | 093     | _      | U       | _             | _            | _    |
|                        | . 170   | 250    |         |               | -            |      |
| Mov Cap-1 Maneuve      |         | 356    | -       | -             | -            | -    |
| Mov Cap-2 Maneuve      |         | -      | -       | -             | -            | -    |
| Stage 1                | 407     | -      | -       | -             | -            | -    |
| Stage 2                | 630     | -      | -       | -             | -            | -    |
|                        |         |        |         |               |              |      |
| Annroach               | EB      |        | NB      |               | SB           |      |
| Approach               |         |        |         |               |              |      |
| HCM Control Delay, s   |         |        | 0       |               | 0            |      |
| HCM LOS                | С       |        |         |               |              |      |
|                        |         |        |         |               |              |      |
| Minor Lane/Major Mv    | mt      | NBTE   | RI n1   | SBT           | SBR          |      |
|                        | IIIL    |        |         |               | אמט          |      |
| Capacity (veh/h)       |         | -      |         | -             | -            |      |
| HCM Lane V/C Ratio     |         | -      | 0.212   | -             | -            |      |
| HCM Control Delay (s   | s/veh)  | -      |         | -             | -            |      |
| HCM Lane LOS           |         | -      | С       | -             | -            |      |
| HCM 95th %tile Q(ve    | h)      | -      | 0.8     | -             | -            |      |
|                        |         |        |         |               |              |      |

| Intersection                      |        |              |         |          |         |       |
|-----------------------------------|--------|--------------|---------|----------|---------|-------|
| Int Delay, s/veh                  | 5.8    |              |         |          |         |       |
| Movement                          | EBL    | EBR          | NBL     | NBT      | SBT     | SBR   |
| Lane Configurations               | W      |              |         | 4        | \$      |       |
| Traffic Vol, veh/h                | 84     | 132          | 69      | 125      | 65      | 57    |
| Future Vol, veh/h                 | 84     | 132          | 69      | 125      | 65      | 57    |
| Conflicting Peds, #/hr            |        | 0            | 0       | 0        | 0       | 0     |
| Sign Control                      | Stop   | Stop         | Free    | Free     | Free    | Free  |
| RT Channelized                    |        | None         |         | None     |         | None  |
| Storage Length                    | 0      | -            | _       | -        |         | NOILE |
| Veh in Median Storag              |        |              | -       | 0        | 0       | _     |
| Grade, %                          | 0      | -            | -       | 0        | 0       | _     |
|                                   |        | 90           | 90      | 90       |         | 90    |
| Peak Hour Factor                  | 90     |              |         |          | 90      |       |
| Heavy Vehicles, %                 | 0      | 0            | 0       | 0        | 0       | 0     |
| Mvmt Flow                         | 93     | 147          | 77      | 139      | 72      | 63    |
|                                   |        |              |         |          |         |       |
| Major/Minor                       | Minor2 | N            | /lajor1 | N        | /lajor2 |       |
| Conflicting Flow All              | 396    | 104          | 136     | 0        |         | 0     |
| Stage 1                           | 104    | -            | -       | -        | _       | -     |
| Stage 2                           | 292    | _            | _       | _        | _       | _     |
| Critical Hdwy                     | 6.4    | 6.2          | 4.1     |          |         | _     |
| Critical Hdwy Stg 1               | 5.4    | 0.2          | 7.1     | _        | _       | _     |
| Critical Hdwy Stg 2               | 5.4    |              |         | -        | _       |       |
|                                   | 3.5    | 3.3          | 2.2     | -        | -       | -     |
| Follow-up Hdwy                    |        | 956          |         | -        | -       |       |
| Pot Cap-1 Maneuver                | 613    | 950          | 1461    | -        | -       | -     |
| Stage 1                           | 925    | -            | -       | -        | -       | -     |
| Stage 2                           | 762    | -            | -       | -        | -       | -     |
| Platoon blocked, %                |        |              |         | -        | -       | -     |
| Mov Cap-1 Maneuver                |        | 956          | 1461    | -        | -       | -     |
| Mov Cap-2 Maneuver                |        | -            | -       | -        | -       | -     |
| Stage 1                           | 873    | -            | -       | -        | -       | -     |
| Stage 2                           | 762    | -            | -       | -        | -       | -     |
|                                   |        |              |         |          |         |       |
| Annragah                          | ED     |              | ND      |          | CD      |       |
| Approach                          | EB     |              | NB      |          | SB      |       |
| HCM Control Delay, s              |        |              | 2.7     |          | 0       |       |
| HCM LOS                           | В      |              |         |          |         |       |
|                                   |        |              |         |          |         |       |
| Minor Lane/Major Mvi              | nt     | NBL          | NRTE    | EBLn1    | SBT     | SBR   |
| Capacity (veh/h)                  | 110    | 640          | -       |          | 001     | ODIN  |
| HCM Lane V/C Ratio                |        |              |         | 0.315    | _       | -     |
| HCM Control Delay (s              | /vala) | 0.052<br>7.6 |         | 11.9     | -       | -     |
|                                   |        | / h          |         | 11.9     | -       | -     |
|                                   | /veii) |              |         |          |         |       |
| HCM Lane LOS HCM 95th %tile Q(vel |        | A<br>0.2     | A       | B<br>1.4 | -       | -     |

| Intersection           |        |      |         |                |         |          |
|------------------------|--------|------|---------|----------------|---------|----------|
| Int Delay, s/veh       | 1.9    |      |         |                |         |          |
| Movement               | WBL    | WBR  | NBT     | NBR            | SBL     | SBT      |
| Lane Configurations    |        | 7    | ħβ      |                |         | <b>^</b> |
| Traffic Vol, veh/h     | 7      | 156  | 452     | 19             | 0       | 578      |
| Future Vol, veh/h      | 7      | 156  | 452     | 19             | 0       | 578      |
| Conflicting Peds, #/hr | 0      | 0    | 0       | 100            | 0       | 0        |
| Sign Control           | Stop   | Stop | Free    | Free           | Free    | Free     |
| RT Channelized         | -      | None | -       | None           | -       | None     |
| Storage Length         | _      | 0    | _       | -              | _       | -        |
| Veh in Median Storage  |        | -    | 0       | _              | _       | 0        |
| Grade, %               | 0, # 0 | _    | 0       | -              |         | 0        |
| Peak Hour Factor       | 90     | 90   | 90      | 90             | 90      | 90       |
|                        |        | 0    | 2       | 90             | 2       | 2        |
| Heavy Vehicles, %      | 0      | 173  | 502     | 21             |         | 642      |
| Mvmt Flow              | 0      | 1/3  | 502     | 21             | 0       | 042      |
|                        |        |      |         |                |         |          |
| Major/Minor N          | Minor1 | ١    | /lajor1 | Λ              | /lajor2 |          |
| Conflicting Flow All   | 934    | 362  | 0       | 0              | -       | -        |
| Stage 1                | 613    | -    | -       | -              | -       | -        |
| Stage 2                | 321    | -    | -       | -              | -       | -        |
| Critical Hdwy          | 6.8    | 6.9  | -       | -              | -       | -        |
| Critical Hdwy Stg 1    | 5.8    | -    | -       | -              | -       | -        |
| Critical Hdwy Stg 2    | 5.8    | -    | -       | -              | -       | -        |
| Follow-up Hdwy         | 3.5    | 3.3  | -       | _              | -       | -        |
| Pot Cap-1 Maneuver     | 268    | 641  | -       | -              | 0       | -        |
| Stage 1                | 509    | _    | -       | -              | 0       | -        |
| Stage 2                | 714    | _    | -       | _              | 0       | -        |
| Platoon blocked, %     |        |      | _       | _              |         | _        |
| Mov Cap-1 Maneuver     | 240    | 573  | _       | _              | _       | _        |
| Mov Cap-2 Maneuver     |        | -    | _       | _              | _       | _        |
| Stage 1                | 455    | _    | _       | _              | _       | _        |
| Stage 2                | 714    | _    | _       | _              |         |          |
| Stage 2                | / 14   |      | -       |                | -       | -        |
|                        |        |      |         |                |         |          |
| Approach               | WB     |      | NB      |                | SB      |          |
| HCM Control Delay, sa  | /13.98 |      | 0       |                | 0       |          |
| HCM LOS                | В      |      |         |                |         |          |
|                        |        |      |         |                |         |          |
| Minor Lanc/Major Myr   | nt     | NDT  | NDDW    | VDI 51         | CPT     |          |
| Minor Lane/Major Mvr   | IIL    | NBT  | NRKV    | VBLn1          | SBT     |          |
| Capacity (veh/h)       |        | -    | -       | 573            | -       |          |
|                        |        | -    | -       | 0.302          | -       |          |
| HCM Lane V/C Ratio     | 1 .11  |      |         |                |         |          |
| HCM Control Delay (s   | /veh)  | -    | -       | 14             | -       |          |
|                        |        | -    | -       | 14<br>B<br>1.3 | -       |          |

| Intersection           |        |        |        |      |           |      |
|------------------------|--------|--------|--------|------|-----------|------|
| Int Delay, s/veh       | 3.2    |        |        |      |           |      |
| Movement               | EBT    | EBR    | WBL    | WBT  | NBL       | NBR  |
| Lane Configurations    | 7.     |        |        | 4    | 7/        |      |
| Traffic Vol, veh/h     | 141    | 145    | 5      | 100  | 83        | 5    |
| Future Vol, veh/h      | 141    | 145    | 5      | 100  | 83        | 5    |
| Conflicting Peds, #/hr | 0      | 100    | 100    | 0    | 100       | 100  |
| Sign Control           | Free   | Free   | Free   | Free | Stop      | Stop |
| RT Channelized         | -      |        | -      | None | olop<br>- | None |
| Storage Length         |        | -      |        | -    | 0         | -    |
| Veh in Median Storage  | # 0    | _      | _      | 0    | 0         |      |
| Grade, %               | , # 0  | -      | _      | 0    | 0         | -    |
|                        | -      |        |        |      |           |      |
| Peak Hour Factor       | 90     | 90     | 90     | 90   | 90        | 90   |
| Heavy Vehicles, %      | 2      | 2      | 2      | 2    | 2         | 2    |
| Mvmt Flow              | 157    | 161    | 6      | 111  | 92        | 6    |
|                        |        |        |        |      |           |      |
| Major/Minor N          | lajor1 | N      | Major2 | N    | /linor1   |      |
| Conflicting Flow All   | 0      | 0      | 418    | 0    | 559       | 437  |
| Stage 1                | -      | _      | -      | -    | 337       | -    |
| Stage 2                | _      | _      | _      | _    | 222       | _    |
| Critical Hdwy          | _      |        | 4.12   | _    | 6.42      | 6.22 |
| Critical Hdwy Stg 1    |        | -      | 4.12   | -    | 5.42      | 0.22 |
|                        | -      | -      |        |      |           |      |
| Critical Hdwy Stg 2    | -      | -      | -      | -    | 5.42      | -    |
| Follow-up Hdwy         | -      |        | 2.218  |      | 3.518     |      |
| Pot Cap-1 Maneuver     | -      | -      | 1141   | -    | 490       | 619  |
| Stage 1                | -      | -      | -      | -    | 723       | -    |
| Stage 2                | -      | -      | -      | -    | 815       | -    |
| Platoon blocked, %     | -      | -      |        | -    |           |      |
| Mov Cap-1 Maneuver     | -      | -      | 1020   | -    | 389       | 495  |
| Mov Cap-2 Maneuver     | -      | -      | -      | -    | 389       | -    |
| Stage 1                | -      | -      | -      | -    | 646       | -    |
| Stage 2                | -      | -      | -      | -    | 724       | -    |
|                        |        |        |        |      |           |      |
| Λ                      |        |        | 1645   |      | ND        |      |
| Approach               | EB     |        | WB     |      | NB        |      |
| HCM Control Delay, s/v | / 0    |        | 0.41   |      | 17.12     |      |
| HCM LOS                |        |        |        |      | С         |      |
|                        |        |        |        |      |           |      |
| Minor Long/Major My    | 4 N    | JDI 51 | EDT    | EDD  | WDI       | MDT  |
| Minor Lane/Major Mvm   | t I    | NBLn1  | EBT    | EDR  | WBL       | WBT  |
| Capacity (veh/h)       |        | 394    | -      | -    | 86        | -    |
| HCM Lane V/C Ratio     |        | 0.248  | -      | -    | 0.005     | -    |
| HCM Control Delay (s/  | veh)   | 17.1   | -      | -    | 8.5       | 0    |
| HCM Lane LOS           |        | С      | -      | -    | Α         | Α    |
| HCM 95th %tile Q(veh)  |        | 1      | -      | -    | 0         | -    |
|                        |        | •      |        |      |           |      |

| Intersection             |     |       |         |       |        |        |
|--------------------------|-----|-------|---------|-------|--------|--------|
|                          | 5.3 |       |         |       |        |        |
|                          |     |       | 14/5-   | 14/5- | 07:    | 055    |
|                          | BL  | EBT   | WBT     | WBR   | SBL    | SBR    |
| Lane Configurations      |     | 4     | ₽       |       | A      |        |
| Traffic Vol, veh/h       | 5   | 50    | 52      | 74    | 166    | 5      |
| Future Vol, veh/h        | 5   | 50    | 52      | 74    | 166    | 5      |
| Conflicting Peds, #/hr   | 0   | 0     | 0       | 0     | 0      | 0      |
| Sign Control Fr          | ee  | Free  | Free    | Free  | Stop   | Stop   |
| RT Channelized           | -   | None  | -       | None  | -      | None   |
| Storage Length           | -   | -     | -       | -     | 0      | -      |
| Veh in Median Storage, # | -   | 0     | 0       | -     | 0      | -      |
| Grade, %                 | -   | 0     | 0       | _     | 0      | _      |
|                          | 90  | 90    | 90      | 90    | 90     | 90     |
| Heavy Vehicles, %        | 2   | 2     | 2       | 2     | 2      | 2      |
| Mvmt Flow                | 6   | 56    | 58      | 82    | 184    | 6      |
| IVIVIIIL I IOW           | U   | 50    | 50      | 02    | 104    | U      |
|                          |     |       |         |       |        |        |
| Major/Minor Majo         | or1 | Λ     | /lajor2 |       | Minor2 |        |
|                          | 40  | 0     | -       | 0     | 166    | 99     |
| Stage 1                  | -   | -     | -       | _     | 99     | -      |
| Stage 2                  | -   | _     | _       | _     | 67     | _      |
|                          | .12 | _     | _       | _     | 6.42   | 6.22   |
| Critical Hdwy Stg 1      | -   | _     | _       | _     | 5.42   | -      |
| Critical Hdwy Stg 2      | _   |       |         |       | 5.42   | _      |
| Follow-up Hdwy 2.2       |     | _     | _       |       | 3.518  |        |
|                          |     |       | -       |       |        |        |
| •                        | 43  | -     | -       | -     | 825    | 957    |
| Stage 1                  | -   | -     | -       | -     | 925    | -      |
| Stage 2                  | -   | -     | -       | -     | 956    | -      |
| Platoon blocked, %       |     | -     | -       | -     |        | -      |
| Mov Cap-1 Maneuver 14    | 43  | -     | -       | -     | 822    | 957    |
| Mov Cap-2 Maneuver       | -   | -     | -       | -     | 822    | -      |
| Stage 1                  | -   | -     | -       | -     | 921    | -      |
| Stage 2                  | -   | -     | -       | -     | 956    | -      |
|                          |     |       |         |       |        |        |
| A I                      | -n  |       | MD      |       | 00     |        |
|                          | EB  |       | WB      |       | SB     |        |
| HCM Control Delay, s/v0. | .68 |       | 0       |       | 10.66  |        |
| HCM LOS                  |     |       |         |       | В      |        |
|                          |     |       |         |       |        |        |
| Minor Lane/Major Mvmt    |     | EBL   | EBT     | WBT   | WBRS   | SRI n1 |
|                          |     |       |         | VVDI  |        |        |
| Capacity (veh/h)         |     | 164   | -       | -     | -      | 825    |
| HCM Lane V/C Ratio       |     | 0.004 | -       | -     | -      | 0.23   |
| HCM Control Delay (s/ver | 1)  | 7.5   | 0       | -     |        |        |
| HCM Lane LOS             |     | Α     | Α       | -     | -      | В      |
| HCM 95th %tile Q(veh)    |     | 0     | -       | -     | -      | 0.9    |
|                          |     |       |         |       |        |        |

# **Existing scenario**

2022 Minor Event Ingress

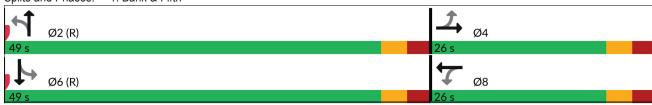
1: Bank & Fifth 08/01/2024

|                        | ۶     | <b>→</b> | <     | +     | 4     | †     | <b>/</b> | <b>↓</b> |  |
|------------------------|-------|----------|-------|-------|-------|-------|----------|----------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT   | NBL   | NBT   | SBL      | SBT      |  |
| Lane Configurations    |       | 4        | 7     | f)    |       | €િ    |          | €ि       |  |
| Traffic Volume (vph)   | 50    | 56       | 65    | 45    | 16    | 482   | 25       | 557      |  |
| Future Volume (vph)    | 50    | 56       | 65    | 45    | 16    | 482   | 25       | 557      |  |
| Lane Group Flow (vph)  | 0     | 154      | 72    | 84    | 0     | 585   | 0        | 673      |  |
| Turn Type              | Perm  | NA       | Perm  | NA    | Perm  | NA    | Perm     | NA       |  |
| Protected Phases       |       | 4        |       | 8     |       | 2     |          | 6        |  |
| Permitted Phases       | 4     |          | 8     |       | 2     |       | 6        |          |  |
| Detector Phase         | 4     | 4        | 8     | 8     | 2     | 2     | 6        | 6        |  |
| Switch Phase           |       |          |       |       |       |       |          |          |  |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0   | 4.0      | 4.0      |  |
| Minimum Split (s)      | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0  | 49.0     | 49.0     |  |
| Total Split (s)        | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0  | 49.0     | 49.0     |  |
| Total Split (%)        | 34.7% | 34.7%    | 34.7% | 34.7% | 65.3% | 65.3% | 65.3%    | 65.3%    |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      |  |
| All-Red Time (s)       | 2.5   | 2.5      | 2.5   | 2.5   | 2.5   | 2.5   | 2.5      | 2.5      |  |
| Lost Time Adjust (s)   |       | 0.0      | 0.0   | 0.0   |       | 0.0   |          | 0.0      |  |
| Total Lost Time (s)    |       | 5.5      | 5.5   | 5.5   |       | 5.5   |          | 5.5      |  |
| Lead/Lag               |       |          |       |       |       |       |          |          |  |
| Lead-Lag Optimize?     |       |          |       |       |       |       |          |          |  |
| Recall Mode            | None  | None     | None  | None  | C-Max | C-Max | C-Max    | C-Max    |  |
| Act Effct Green (s)    |       | 13.1     | 13.1  | 13.1  |       | 50.9  |          | 50.9     |  |
| Actuated g/C Ratio     |       | 0.17     | 0.17  | 0.17  |       | 0.68  |          | 0.68     |  |
| v/c Ratio              |       | 0.65     | 0.42  | 0.30  |       | 0.30  |          | 0.35     |  |
| Control Delay (s/veh)  |       | 36.9     | 33.3  | 19.0  |       | 10.0  |          | 6.3      |  |
| Queue Delay            |       | 0.0      | 0.0   | 0.0   |       | 0.0   |          | 0.0      |  |
| Total Delay (s/veh)    |       | 36.9     | 33.3  | 19.0  |       | 10.0  |          | 6.3      |  |
| LOS                    |       | D        | С     | В     |       | В     |          | Α        |  |
| Approach Delay (s/veh) |       | 36.9     |       | 25.6  |       | 10.0  |          | 6.3      |  |
| Approach LOS           |       | D        |       | С     |       | В     |          | Α        |  |
| Queue Length 50th (m)  |       | 17.7     | 9.2   | 6.1   |       | 17.3  |          | 17.4     |  |
| Queue Length 95th (m)  |       | 32.3     | 18.8  | 15.6  |       | 49.8  |          | 33.6     |  |
| Internal Link Dist (m) |       | 49.7     |       | 112.4 |       | 195.6 |          | 190.0    |  |
| Turn Bay Length (m)    |       |          | 45.0  |       |       |       |          |          |  |
| Base Capacity (vph)    |       | 361      | 270   | 423   |       | 1931  |          | 1925     |  |
| Starvation Cap Reductn |       | 0        | 0     | 0     |       | 0     |          | 0        |  |
| Spillback Cap Reductn  |       | 0        | 0     | 0     |       | 0     |          | 0        |  |
| Storage Cap Reductn    |       | 0        | 0     | 0     |       | 0     |          | 0        |  |
| Reduced v/c Ratio      |       | 0.43     | 0.27  | 0.20  |       | 0.30  |          | 0.35     |  |
| Intersection Summary   |       |          |       |       |       |       |          |          |  |
| Cycle Length: 75       |       |          |       |       |       |       |          |          |  |

Actuated Cycle Length: 75

Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65

Intersection Signal Delay (s/veh): 12.6 Intersection LOS: B
Intersection Capacity Utilization 61.9% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth



### 2: Bank & Holmwood

|                                   | <b>→</b>    | 1       | <b>†</b>  | 1         | Ţ           |              |
|-----------------------------------|-------------|---------|-----------|-----------|-------------|--------------|
| Lane Group                        | EBT         | NBL     | NBT       | SBL       | SBT         | Ø3           |
| Lane Configurations               | 4           |         | 414       |           | 414         |              |
| Traffic Volume (vph)              | 25          | 50      | 488       | 24        | 543         |              |
| Future Volume (vph)               | 25          | 50      | 488       | 24        | 543         |              |
| Lane Group Flow (vph)             | 114         | 0       | 682       | 0         | 667         |              |
| Turn Type                         | NA          | Perm    | NA        | Perm      | NA          |              |
| Protected Phases                  | 4           |         | 2         |           | 6           | 3            |
| Permitted Phases                  |             | 2       |           | 6         |             |              |
| Detector Phase                    | 4           | 2       | 2         | 6         | 6           |              |
| Switch Phase                      |             |         |           |           |             |              |
| Minimum Initial (s)               | 4.4         | 10.0    | 10.0      | 4.0       | 4.0         | 1.0          |
| Minimum Split (s)                 | 22.0        | 48.0    | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (s)                   | 22.0        | 48.0    | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (%)                   | 29.3%       | 64.0%   | 64.0%     | 64.0%     | 64.0%       | 7%           |
| Yellow Time (s)                   | 3.0         | 3.0     | 3.0       | 3.0       | 3.0         | 2.0          |
| All-Red Time (s)                  | 2.6         | 2.2     | 2.2       | 2.2       | 2.2         | 0.0          |
| Lost Time Adjust (s)              | 0.0         |         | 0.0       |           | 0.0         |              |
| Total Lost Time (s)               | 5.6         |         | 5.2       |           | 5.2         |              |
| Lead/Lag                          | Lag         |         |           |           |             | Lead         |
| Lead-Lag Optimize?                |             |         |           |           |             |              |
| Recall Mode                       | None        | C-Max   | C-Max     | C-Max     |             | None         |
| Act Effct Green (s)               | 11.4        |         | 56.3      |           | 56.3        |              |
| Actuated g/C Ratio                | 0.15        |         | 0.75      |           | 0.75        |              |
| v/c Ratio                         | 0.54        |         | 0.37      |           | 0.32        |              |
| Control Delay (s/veh)             | 38.1        |         | 2.9       |           | 4.8         |              |
| Queue Delay                       | 0.0         |         | 0.0       |           | 0.0         |              |
| Total Delay (s/veh)               | 38.1        |         | 2.9       |           | 4.8         |              |
| LOS                               | D           |         | Α         |           | Α           |              |
| Approach Delay (s/veh)            | 38.1        |         | 2.9       |           | 4.8         |              |
| Approach LOS                      | D           |         | А         |           | A           |              |
| Queue Length 50th (m)             | 15.1        |         | 6.3       |           | 25.1        |              |
| Queue Length 95th (m)             | 27.8        |         | 13.9      |           | 20.2        |              |
| Internal Link Dist (m)            | 39.8        |         | 31.5      |           | 195.6       |              |
| Turn Bay Length (m)               |             |         | 10-1      |           |             |              |
| Base Capacity (vph)               | 303         |         | 1858      |           | 2108        |              |
| Starvation Cap Reductn            | 0           |         | 0         |           | 0           |              |
| Spillback Cap Reductn             | 0           |         | 0         |           | 0           |              |
| Storage Cap Reductn               | 0           |         | 0         |           | 0           |              |
| Reduced v/c Ratio                 | 0.38        |         | 0.37      |           | 0.32        |              |
| Intersection Summary              |             |         |           |           |             |              |
| Cycle Length: 75                  |             |         |           |           |             |              |
| Actuated Cycle Length: 75         |             |         |           |           |             |              |
| Offset: 74 (99%), Reference       | ed to phas  | e 2:NBT | L and 6:5 | SBTL, Sta | art of Gree | en           |
| Natural Cycle: 75                 |             |         |           |           |             |              |
| Control Type: Actuated-Co         | ordinated   |         |           |           |             |              |
| Maximum v/c Ratio: 0.54           |             |         |           |           |             |              |
| Intersection Signal Delay (s      | s/veh): 6.5 |         |           | li        | ntersectio  | n LOS: A     |
| Intersection Capacity Utilization | ation 66.2  | %       |           | [(        | CU Level    | of Service C |
| Analysis Period (min) 15          |             |         |           |           |             |              |
|                                   |             |         |           |           |             |              |

Splits and Phases: 2: Bank & Holmwood



### 3: Bank & Exhibition

|                                  | €            | *            | <b>†</b>     | -            | <b>↓</b>      |           |            |  |
|----------------------------------|--------------|--------------|--------------|--------------|---------------|-----------|------------|--|
| Lane Group                       | WBL          | WBR          | NBT          | SBL          | SBT           | Ø1        | Ø7         |  |
| Lane Configurations              | ሻ            | 7            | <b>∱</b> }   | ሻ            | <b>†</b> †    |           |            |  |
| Traffic Volume (vph)             | 118          | 86           | 415          | 165          | 411           |           |            |  |
| Future Volume (vph)              | 118          | 86           | 415          | 165          | 411           |           |            |  |
| Lane Group Flow (vph)            | 131          | 96           | 668          | 183          | 457           |           |            |  |
| Turn Type                        | Prot         | Perm         | NA           | Perm         | NA            |           |            |  |
| Protected Phases                 | 8            |              | 2            |              | 6             | 1         | 7          |  |
| Permitted Phases                 | •            | 8            | 0            | 6            | •             |           |            |  |
| Detector Phase                   | 8            | 8            | 2            | 6            | 6             |           |            |  |
| Switch Phase                     | 40.0         | 40.0         | 40.0         | 40.0         | 40.0          | 4.0       | 4.0        |  |
| Minimum Initial (s)              | 10.0         | 10.0         | 10.0         | 10.0         | 10.0          | 1.0       | 1.0        |  |
| Minimum Split (s)                | 26.0<br>26.0 | 26.0<br>26.0 | 39.0<br>39.0 | 44.0<br>44.0 | 44.0          | 5.0       | 5.0<br>5.0 |  |
| Total Split (s)                  | 34.7%        | 34.7%        | 52.0%        | 58.7%        | 44.0<br>58.7% | 5.0<br>7% | 7%         |  |
| Total Split (%)                  | 34.7%        | 34.7%        | 3.0          | 3.0          | 3.0           | 2.0       | 3.5        |  |
| Yellow Time (s) All-Red Time (s) | 3.0          | 3.0          | 3.9          | 3.9          | 3.9           | 0.0       | 0.0        |  |
| Lost Time Adjust (s)             | 0.0          | 0.0          | 0.0          | 0.0          | 0.0           | 0.0       | 0.0        |  |
| Total Lost Time (s)              | 6.3          | 6.3          | 6.9          | 6.9          | 6.9           |           |            |  |
| Lead/Lag                         | Lag          | Lag          | Lag          | 0.9          | 0.9           | Lead      | Lead       |  |
| Lead-Lag Optimize?               | Lay          | Lay          | Yes          |              |               | Yes       | Yes        |  |
| Recall Mode                      | None         | None         | C-Max        | C-Max        | C-Max         | None      | None       |  |
| Act Effct Green (s)              | 12.1         | 12.1         | 54.4         | 54.4         | 54.4          | None      | INOTIC     |  |
| Actuated g/C Ratio               | 0.16         | 0.16         | 0.73         | 0.73         | 0.73          |           |            |  |
| v/c Ratio                        | 0.50         | 0.37         | 0.33         | 0.41         | 0.20          |           |            |  |
| Control Delay (s/veh)            | 35.1         | 10.5         | 4.9          | 7.4          | 3.1           |           |            |  |
| Queue Delay                      | 0.0          | 0.0          | 0.0          | 0.0          | 0.0           |           |            |  |
| Total Delay (s/veh)              | 35.1         | 10.5         | 4.9          | 7.4          | 3.1           |           |            |  |
| LOS                              | D            | В            | A            | Α            | Α             |           |            |  |
| Approach Delay (s/veh)           | 24.7         |              | 4.9          |              | 4.3           |           |            |  |
| Approach LOS                     | С            |              | Α            |              | A             |           |            |  |
| Queue Length 50th (m)            | 17.4         | 0.0          | 14.0         | 5.3          | 6.7           |           |            |  |
| Queue Length 95th (m)            | 30.8         | 11.2         | 26.6         | 10.5         | 8.8           |           |            |  |
| Internal Link Dist (m)           | 30.6         |              | 33.7         |              | 44.8          |           |            |  |
| Turn Bay Length (m)              |              |              |              | 40.0         |               |           |            |  |
| Base Capacity (vph)              | 429          | 366          | 2044         | 446          | 2300          |           |            |  |
| Starvation Cap Reductn           | 0            | 0            | 0            | 0            | 0             |           |            |  |
| Spillback Cap Reductn            | 0            | 0            | 0            | 0            | 0             |           |            |  |
| Storage Cap Reductn              | 0            | 0            | 0            | 0            | 0             |           |            |  |
| Reduced v/c Ratio                | 0.31         | 0.26         | 0.33         | 0.41         | 0.20          |           |            |  |
| Intersection Summary             |              |              |              |              |               |           |            |  |
| Cycle Length: 75                 |              |              |              |              |               |           |            |  |
| Actuated Cycle Length: 75        |              |              |              |              |               |           |            |  |
| Offset: 0 (0%), Referenced       | to phase     | 2:NBT ar     | nd 6:SBT     | L, Start o   | f Green       |           |            |  |
| Natural Cycle: 75                |              |              |              |              |               |           |            |  |
| Control Type: Actuated-Co        | ordinated    |              |              |              |               |           |            |  |

Maximum v/c Ratio: 0.50

Intersection Signal Delay (s/veh): 7.6 Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition



## 6: Bank & Aylmer

|                                                  | <b>*</b>    | 4        | <b>†</b>  | <b>+</b>    |                       |  |
|--------------------------------------------------|-------------|----------|-----------|-------------|-----------------------|--|
| Lane Group                                       | EBL         | NBL      | NBT       | SBT         | Ø3                    |  |
| Lane Configurations                              | W           |          | 414       | <b>†</b> 1> |                       |  |
| Traffic Volume (vph)                             | 70          | 18       | 675       | 499         |                       |  |
| Future Volume (vph)                              | 70          | 18       | 675       | 499         |                       |  |
| Lane Group Flow (vph)                            | 86          | 0        | 770       | 635         |                       |  |
| Turn Type                                        | Prot        | Perm     | NA        | NA          |                       |  |
| Protected Phases                                 | 4           | T CITII  | 2         | 6           | 3                     |  |
| Permitted Phases                                 | 4           | 2        |           | 6           | 0                     |  |
| Detector Phase                                   | 4           | 2        | 2         | 6           |                       |  |
| Switch Phase                                     | 7           | ۷        | 2         | U           |                       |  |
| Minimum Initial (s)                              | 10.0        | 30.0     | 30.0      | 30.0        | 1.0                   |  |
| ( )                                              | 22.0        | 63.0     | 63.0      | 63.0        | 5.0                   |  |
| Minimum Split (s)                                | 22.0        | 63.0     | 63.0      | 63.0        | 5.0                   |  |
| Total Split (s)                                  |             |          |           |             |                       |  |
| Total Split (%)                                  | 24.4%       | 70.0%    | 70.0%     | 70.0%       | 6%                    |  |
| Yellow Time (s)                                  | 3.3         | 3.0      | 3.0       | 3.0         | 2.0                   |  |
| All-Red Time (s)                                 | 2.2         | 2.2      | 2.2       | 2.2         | 1.0                   |  |
| Lost Time Adjust (s)                             | 0.0         |          | 0.0       | 0.0         |                       |  |
| Total Lost Time (s)                              | 5.5         |          | 5.2       | 5.2         |                       |  |
| Lead/Lag                                         | Lag         |          |           |             | Lead                  |  |
| Lead-Lag Optimize?                               |             |          |           |             |                       |  |
| Recall Mode                                      | Ped         | C-Max    | C-Max     | C-Max       | Max                   |  |
| Act Effct Green (s)                              | 14.0        |          | 60.3      | 60.3        |                       |  |
| Actuated g/C Ratio                               | 0.16        |          | 0.67      | 0.67        |                       |  |
| v/c Ratio                                        | 0.35        |          | 0.39      | 0.32        |                       |  |
| Control Delay (s/veh)                            | 36.4        |          | 5.4       | 6.4         |                       |  |
| Queue Delay                                      | 0.0         |          | 0.0       | 0.0         |                       |  |
| Total Delay (s/veh)                              | 36.4        |          | 5.4       | 6.4         |                       |  |
| LOS                                              | D           |          | Α         | Α           |                       |  |
| Approach Delay (s/veh)                           | 36.4        |          | 5.4       | 6.4         |                       |  |
| Approach LOS                                     | D           |          | Α         | А           |                       |  |
| Queue Length 50th (m)                            | 12.6        |          | 24.9      | 19.8        |                       |  |
| Queue Length 95th (m)                            | 26.1        |          | 23.6      | 28.0        |                       |  |
| Internal Link Dist (m)                           | 76.7        |          | 28.1      | 10.1        |                       |  |
| Turn Bay Length (m)                              |             |          |           |             |                       |  |
| Base Capacity (vph)                              | 288         |          | 1987      | 1980        |                       |  |
| Starvation Cap Reductn                           | 0           |          | 0         | 0           |                       |  |
| Spillback Cap Reductn                            | 0           |          | 0         | 0           |                       |  |
| Storage Cap Reductn                              | 0           |          | 0         | 0           |                       |  |
| Reduced v/c Ratio                                | 0.30        |          | 0.39      | 0.32        |                       |  |
| Intersection Summary                             |             |          |           |             |                       |  |
|                                                  |             |          |           |             |                       |  |
| Cycle Length: 90                                 |             |          |           |             |                       |  |
| Actuated Cycle Length: 90                        | 1. (        | - O NIDT | 1         | NDT OL (    | 10                    |  |
| Offset: 87 (97%), Reference<br>Natural Cycle: 90 | ed to phas  | se 2:NBT | L and 6:8 | SBT, Start  | of Green              |  |
| Control Type: Actuated-Coo                       | ordinated   |          |           |             |                       |  |
| Maximum v/c Ratio: 0.39                          | J. alliatou |          |           |             |                       |  |
| Intersection Signal Delay (s/                    | /veh\- 7.6  |          |           | In          | itersection LOS: A    |  |
| Intersection Capacity Utiliza                    | ,           |          |           |             | CU Level of Service A |  |
| Analysis Period (min) 15                         | นแบบ ขอ.ษ   | /0       |           | IC          | Level OI Selvice A    |  |
| randiyələ i Gildu (IIIIII) 10                    |             |          |           |             |                       |  |
| , ,                                              |             |          |           |             |                       |  |

Ø2 (R)

Ø3 s

Ø6 (R)

Ø Ø (R)

|                        | ۶     | <b>→</b> | •     | +     | 4     | <b>†</b> | -     | <b>↓</b> |      |      |   |
|------------------------|-------|----------|-------|-------|-------|----------|-------|----------|------|------|---|
| Lane Group             | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL   | SBT      | Ø3   | Ø7   |   |
| Lane Configurations    |       | 4        |       | 4     |       | 474      |       | 4TÞ      |      |      | _ |
| Traffic Volume (vph)   | 55    | 50       | 17    | 57    | 19    | 467      | 103   | 528      |      |      |   |
| Future Volume (vph)    | 55    | 50       | 17    | 57    | 19    | 467      | 103   | 528      |      |      |   |
| Lane Group Flow (vph)  | 0     | 146      | 0     | 258   | 0     | 559      | 0     | 772      |      |      |   |
| Turn Type              | Perm  | NA       | Perm  | NA    | Perm  | NA       | pm+pt | NA       |      |      |   |
| Protected Phases       |       | 4        |       | 8     |       | 2        | 1     | 6        | 3    | 7    |   |
| Permitted Phases       | 4     |          | 8     |       | 2     |          | 6     |          |      |      |   |
| Detector Phase         | 4     | 4        | 8     | 8     | 2     | 2        | 1     | 6        |      |      |   |
| Switch Phase           |       |          |       |       |       |          |       |          |      |      |   |
| Minimum Initial (s)    | 6.4   | 6.4      | 5.3   | 5.3   | 17.0  | 17.0     | 5.0   | 17.0     | 1.0  | 1.0  |   |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |   |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |   |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8% | 47.8% | 47.8%    | 18.9% | 66.7%    | 6%   | 6%   |   |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0      | 2.0  | 2.0  |   |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6   | 3.0   | 3.0      | 2.9   | 3.0      | 0.0  | 0.0  |   |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0   |       | 0.0      |       | 0.0      |      |      |   |
| Total Lost Time (s)    |       | 5.6      |       | 5.6   |       | 6.0      |       | 6.0      |      |      |   |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag   | Lag   | Lag      | Lead  |          | Lead | Lead |   |
| Lead-Lag Optimize?     |       |          | Yes   | Yes   | Yes   | Yes      | Yes   |          |      | Yes  |   |
| Recall Mode            | None  | None     | None  | None  | C-Max |          | None  | C-Max    | None | None |   |
| Act Effct Green (s)    |       | 20.1     |       | 20.1  |       | 58.3     |       | 58.3     |      |      |   |
| Actuated g/C Ratio     |       | 0.22     |       | 0.22  |       | 0.65     |       | 0.65     |      |      |   |
| v/c Ratio              |       | 0.73     |       | 0.76  |       | 0.30     |       | 0.53     |      |      |   |
| Control Delay (s/veh)  |       | 52.2     |       | 32.6  |       | 8.1      |       | 7.5      |      |      |   |
| Queue Delay            |       | 0.0      |       | 0.0   |       | 0.0      |       | 0.0      |      |      |   |
| Total Delay (s/veh)    |       | 52.2     |       | 32.6  |       | 8.1      |       | 7.5      |      |      |   |
| LOS                    |       | D        |       | С     |       | Α        |       | Α        |      |      |   |
| Approach Delay (s/veh) |       | 52.2     |       | 32.6  |       | 8.1      |       | 7.5      |      |      |   |
| Approach LOS           |       | D        |       | С     |       | Α        |       | Α        |      |      |   |
| Queue Length 50th (m)  |       | 22.9     |       | 23.5  |       | 20.9     |       | 17.6     |      |      |   |
| Queue Length 95th (m)  |       | #42.6    |       | 49.7  |       | 32.2     |       | 23.4     |      |      |   |
| Internal Link Dist (m) |       | 75.1     |       | 136.0 |       | 63.1     |       | 79.0     |      |      |   |
| Turn Bay Length (m)    |       |          |       |       |       |          |       |          |      |      |   |
| Base Capacity (vph)    |       | 219      |       | 361   |       | 1837     |       | 1449     |      |      |   |
| Starvation Cap Reductn |       | 0        |       | 0     |       | 0        |       | 0        |      |      |   |
| Spillback Cap Reductn  |       | 0        |       | 0     |       | 0        |       | 0        |      |      |   |
| Storage Cap Reductn    |       | 0        |       | 0     |       | 0        |       | 0        |      |      |   |
| Reduced v/c Ratio      |       | 0.67     |       | 0.71  |       | 0.30     |       | 0.53     |      |      |   |

#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 17 (19%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

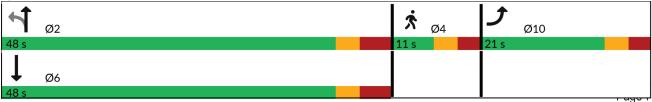
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.76

Intersection Signal Delay (s/veh): 15.2 Intersection LOS: B
Intersection Capacity Utilization 79.7% ICU Level of Service D

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

## 7: Bank & Sunnyside



|                                | ۶         | 1     | <b>†</b> | Į.      |               |       |
|--------------------------------|-----------|-------|----------|---------|---------------|-------|
| Lane Group                     | EBL       | NBL   | NBT      | SBT     | Ø4            |       |
| Lane Configurations            | W         |       | 4        | <u></u> |               |       |
| Traffic Volume (vph)           | 51        | 51    | 215      | 519     |               |       |
| Future Volume (vph)            | 51        | 51    | 215      | 519     |               |       |
| Lane Group Flow (vph)          | 97        | 0     | 296      | 670     |               |       |
| Turn Type                      | Prot      | Perm  | NA       | NA      |               |       |
| Protected Phases               | 10        |       | 2        | 6       | 4             |       |
| Permitted Phases               |           | 2     |          |         |               |       |
| Detector Phase                 | 10        | 2     | 2        | 6       |               |       |
| Switch Phase                   |           |       |          |         |               |       |
| Minimum Initial (s)            | 10.0      | 4.0   | 4.0      | 4.0     | 4.0           |       |
| Minimum Split (s)              | 21.0      | 48.0  | 48.0     | 48.0    | 11.0          |       |
| Total Split (s)                | 21.0      | 48.0  | 48.0     | 48.0    | 11.0          |       |
| Total Split (%)                | 26.3%     | 60.0% | 60.0%    | 60.0%   | 14%           |       |
| Yellow Time (s)                | 3.0       | 3.0   | 3.0      | 3.0     | 3.0           |       |
| All-Red Time (s)               | 2.7       | 3.8   | 3.8      | 3.8     | 2.7           |       |
| Lost Time Adjust (s)           | 0.0       |       | 0.0      | 0.0     |               |       |
| Total Lost Time (s)            | 5.7       |       | 6.8      | 6.8     |               |       |
| Lead/Lag                       |           |       |          |         |               |       |
| Lead-Lag Optimize?             |           |       |          |         |               |       |
| Recall Mode                    | Min       | None  | None     | Max     | None          |       |
| Act Effct Green (s)            | 10.7      |       | 41.2     | 41.2    |               |       |
| Actuated g/C Ratio             | 0.17      |       | 0.64     | 0.64    |               |       |
| v/c Ratio                      | 0.38      |       | 0.34     | 0.63    |               |       |
| Control Delay (s/veh)          | 28.6      |       | 6.8      | 10.7    |               |       |
| Queue Delay                    | 0.0       |       | 0.0      | 0.0     |               |       |
| Total Delay (s/veh)            | 28.6      |       | 6.8      | 10.7    |               |       |
| LOS                            | С         |       | Α        | В       |               |       |
| Approach Delay (s/veh)         | 28.6      |       | 6.8      | 10.7    |               |       |
| Approach LOS                   | C         |       | A        | В       |               |       |
| Queue Length 50th (m)          | 10.4      |       | 13.2     | 39.4    |               |       |
| Queue Length 95th (m)          | 22.4      |       | 27.9     | 78.2    |               |       |
| Internal Link Dist (m)         | 57.2      |       | 0.1      | 5.9     |               |       |
| Turn Bay Length (m)            | 00=       |       | 070      | 40=0    |               |       |
| Base Capacity (vph)            | 367       |       | 878      | 1058    |               |       |
| Starvation Cap Reductn         | 0         |       | 0        | 0       |               |       |
| Spillback Cap Reductn          | 0         |       | 0        | 0       |               |       |
| Storage Cap Reductn            | 0         |       | 0        | 0       |               |       |
| Reduced v/c Ratio              | 0.26      |       | 0.34     | 0.63    |               |       |
| Intersection Summary           |           |       |          |         |               |       |
| Cycle Length: 80               |           |       |          |         |               |       |
| Actuated Cycle Length: 64.4    |           |       |          |         |               |       |
| Natural Cycle: 80              |           |       |          |         |               |       |
| Control Type: Actuated-Unco    | oordinate | ed    |          |         |               |       |
| Maximum v/c Ratio: 0.63        |           |       |          |         |               |       |
| Intersection Signal Delay (s/  | veh): 11. | 2     |          | In      | ntersection L | OS: B |
| Intersection Capacity Utilizat |           |       |          |         | CU Level of S |       |
| Analysis Period (min) 15       |           |       |          |         |               |       |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



HCM 95th-tile Q

| Intersection               |      |       |          |       |      |      |
|----------------------------|------|-------|----------|-------|------|------|
| Intersection Delay, s/veh  | 8.4  |       |          |       |      |      |
| Intersection LOS           | Α    |       |          |       |      |      |
|                            |      |       |          |       |      |      |
| Movement                   | EBL  | EBT   | WBT      | WBR   | SBL  | SBR  |
| Lane Configurations        |      | 4     | <b>4</b> |       | N/   |      |
| Traffic Vol, veh/h         | 5    | 222   | 117      | 5     | 5    | 5    |
| Future Vol, veh/h          | 5    | 222   | 117      | 5     | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90     | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2        | 2     | 2    | 2    |
| Mvmt Flow                  | 6    | 247   | 130      | 6     | 6    | 6    |
| Number of Lanes            | 0    | 1     | 1        | 0     | 1    | 0    |
| Approach                   | EB   |       | WB       |       | SB   |      |
| Opposing Approach          | WB   |       | EB       |       | - 05 |      |
| Opposing Lanes             | 1    |       | 1        |       | 0    |      |
| Conflicting Approach Left  | SB   |       |          |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0        |       | 1    |      |
| Conflicting Approach Right | -    |       | SB       |       | EB   |      |
| Conflicting Lanes Right    | 0    |       | 1        |       | 1    |      |
| HCM Control Delay, s/veh   | 8.7  |       | 7.9      |       | 7.6  |      |
| HCM LOS                    | A    |       | A        |       | A    |      |
|                            |      |       |          |       |      |      |
| Lane                       |      | EBLn1 | WBLn1    | SBLn1 |      |      |
| Vol Left, %                |      | 2%    | 0%       | 50%   |      |      |
| Vol Thru, %                |      | 98%   | 96%      | 0%    |      |      |
| Vol Right, %               |      | 0%    | 4%       | 50%   |      |      |
| Sign Control               |      | Stop  | Stop     | Stop  |      |      |
| Traffic Vol by Lane        |      | 227   | 122      | 10    |      |      |
| LT Vol                     |      | 5     | 0        | 5     |      |      |
| Through Vol                |      | 222   | 117      | 0     |      |      |
| RT Vol                     |      | 0     | 5        | 5     |      |      |
| Lane Flow Rate             |      | 252   | 136      | 11    |      |      |
| Geometry Grp               |      | 1     | 1        | 1     |      |      |
| Degree of Util (X)         |      | 0.284 | 0.155    | 0.014 |      |      |
| Departure Headway (Hd)     |      | 4.059 | 4.117    | 4.56  |      |      |
| Convergence, Y/N           |      | Yes   | Yes      | Yes   |      |      |
| Cap                        |      | 883   | 865      | 790   |      |      |
| Service Time               |      | 2.096 | 2.175    | 2.56  |      |      |
| HCM Lane V/C Ratio         |      | 0.285 | 0.157    | 0.014 |      |      |
| HCM Control Delay, s/veh   |      | 8.7   | 7.9      | 7.6   |      |      |
| HCM Lane LOS               |      | Α     | Α        | Α     |      |      |
| LICM OF the tile O         |      | 4.0   | 0.5      | 0     |      |      |

1.2

HCM Control Delay, s/veh

HCM Lane LOS

HCM 95th-tile Q

| Intersection                               |          |       |       |       |      |      |
|--------------------------------------------|----------|-------|-------|-------|------|------|
|                                            | 7.2      |       |       |       |      |      |
| Intersection Delay, s/veh Intersection LOS | 7.Z<br>A |       |       |       |      |      |
| intersection LOS                           | А        |       |       |       |      |      |
|                                            |          |       |       |       |      |      |
| Movement                                   | EBT      | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations                        | ₽.       |       |       | 4     | W    |      |
| Traffic Vol, veh/h                         | 16       | 5     | 5     | 48    | 5    | 5    |
| Future Vol, veh/h                          | 16       | 5     | 5     | 48    | 5    | 5    |
| Peak Hour Factor                           | 0.90     | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %                          | 2        | 2     | 2     | 2     | 2    | 2    |
| Mymt Flow                                  | 18       | 6     | 6     | 53    | 6    | 6    |
| Number of Lanes                            | 10       | 0     | 0     | 1     | 1    | 0    |
| INUITING! UI LAHES                         | '        | 0     |       |       |      | 0    |
| Approach                                   | EB       |       | WB    |       | NB   |      |
| Opposing Approach                          | WB       |       | EB    |       |      |      |
| Opposing Lanes                             | 1        |       | 1     |       | 0    |      |
| Conflicting Approach Left                  |          |       | NB    |       | EB   |      |
| Conflicting Lanes Left                     | 0        |       | 1     |       | 1    |      |
| Conflicting Approach Right                 | NB       |       |       |       | WB   |      |
| Conflicting Lanes Right                    | 1        |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh                   | 7        |       | 7.3   |       | 7    |      |
| HCM LOS                                    | A        |       | A     |       | A    |      |
|                                            | , ,      |       |       |       | , ,  |      |
|                                            |          |       |       |       |      |      |
| Lane                                       |          | NBLn1 |       | WBLn1 |      |      |
| Vol Left, %                                |          | 50%   | 0%    | 9%    |      |      |
| Vol Thru, %                                |          | 0%    | 76%   | 91%   |      |      |
| Vol Right, %                               |          | 50%   | 24%   | 0%    |      |      |
| Sign Control                               |          | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane                        |          | 10    | 21    | 53    |      |      |
| LT Vol                                     |          | 5     | 0     | 5     |      |      |
| Through Vol                                |          | 0     | 16    | 48    |      |      |
| RT Vol                                     |          | 5     | 5     | 0     |      |      |
| Lane Flow Rate                             |          | 11    | 23    | 59    |      |      |
| Geometry Grp                               |          | 1     | 1     | 1     |      |      |
| Degree of Util (X)                         |          | 0.012 | 0.025 | 0.065 |      |      |
| Departure Headway (Hd)                     |          | 3.876 | 3.854 | 3.99  |      |      |
| Convergence, Y/N                           |          | Yes   | Yes   | Yes   |      |      |
| Cap                                        |          | 921   | 931   | 902   |      |      |
| Service Time                               |          | 1.908 | 1.869 | 1.997 |      |      |
| OCIVICE LITTE                              |          | 1.300 | 1.009 | 1.331 |      |      |
| HCM Lane V/C Ratio                         |          | 0.012 | 0.025 | 0.065 |      |      |

7.3

Α

0.2

Α

Α

HCM 95th-tile Q

| Intersection               |          |       |          |       |      |      |
|----------------------------|----------|-------|----------|-------|------|------|
| Intersection Delay, s/veh  | 9.4      |       |          |       |      |      |
| Intersection LOS           | Α        |       |          |       |      |      |
|                            |          |       |          |       |      |      |
| Movement                   | EBT      | EBR   | WBL      | WBT   | NBL  | NBR  |
| Lane Configurations        | <b>1</b> |       |          | 4     | 14   |      |
| Traffic Vol, veh/h         | 16       | 5     | 117      | 44    | 211  | 16   |
| Future Vol, veh/h          | 16       | 5     | 117      | 44    | 211  | 16   |
| Peak Hour Factor           | 0.90     | 0.90  | 0.90     | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2        | 2     | 2        | 2     | 2    | 2    |
| Mymt Flow                  | 18       | 6     | 130      | 49    | 234  | 18   |
| Number of Lanes            | 1        | 0     | 0        | 1     | 1    | 0    |
|                            | EB       |       | WB       |       | NB   |      |
| Approach                   |          |       | EB       |       | IND  |      |
| Opposing Approach          | WB<br>1  |       |          |       | 0    |      |
| Opposing Lanes             | T        |       | 1<br>ND  |       | 0    |      |
| Conflicting Approach Left  | 0        |       | NB       |       | EB   |      |
| Conflicting Lanes Left     | 0        |       | 1        |       | 1    |      |
| Conflicting Approach Right | NB       |       | ^        |       | WB   |      |
| Conflicting Lanes Right    | 1        |       | 0        |       | 1    |      |
| HCM Control Delay, s/veh   | 7.8      |       | 9.2<br>A |       | 9.7  |      |
| HCM LOS                    | Α        |       | А        |       | Α    |      |
|                            |          |       |          |       |      |      |
| Lane                       |          | NBLn1 | EBLn1    | WBLn1 |      |      |
| Vol Left, %                |          | 93%   | 0%       | 73%   |      |      |
| Vol Thru, %                |          | 0%    | 76%      | 27%   |      |      |
| Vol Right, %               |          | 7%    | 24%      | 0%    |      |      |
| Sign Control               |          | Stop  | Stop     | Stop  |      |      |
| Traffic Vol by Lane        |          | 227   | 21       | 161   |      |      |
| LT Vol                     |          | 211   | 0        | 117   |      |      |
| Through Vol                |          | 0     | 16       | 44    |      |      |
| RT Vol                     |          | 16    | 5        | 0     |      |      |
| Lane Flow Rate             |          | 252   | 23       | 179   |      |      |
| Geometry Grp               |          | 1     | 1        | 1     |      |      |
| Degree of Util (X)         |          | 0.32  | 0.03     | 0.234 |      |      |
| Departure Headway (Hd)     |          | 4.57  | 4.62     | 4.719 |      |      |
| Convergence, Y/N           |          | Yes   | Yes      | Yes   |      |      |
| Сар                        |          | 789   | 775      | 762   |      |      |
| Service Time               |          | 2.589 | 2.648    | 2.741 |      |      |
| HCM Lane V/C Ratio         |          | 0.319 | 0.03     | 0.235 |      |      |
| HCM Control Delay, s/veh   |          | 9.7   | 7.8      | 9.2   |      |      |
| HCM Lane LOS               |          | Α     | Α        | Α     |      |      |
|                            |          |       | 0.4      | 0.0   |      |      |

1.4

0.1

| Intersection              |     |  |  |
|---------------------------|-----|--|--|
| Intersection Delay, s/veh | 8.3 |  |  |
| Intersection LOS          | Α   |  |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | ની   |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 59   | 50   | 0    | 0    | 0    | 135  | 61   | 40   | 37   | 0    | 0    | 80   |
| Future Vol, veh/h          | 59   | 50   | 0    | 0    | 0    | 135  | 61   | 40   | 37   | 0    | 0    | 80   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 66   | 56   | 0    | 0    | 0    | 150  | 68   | 44   | 41   | 0    | 0    | 89   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.7  |      |      |      |      | 7.9  | 8.7  |      |      |      |      | 7.6  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 54%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 46%   | 0%    | 0%    |  |
| Vol Right, %             | 27%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 138   | 109   | 135   | 80    |  |
| LT Vol                   | 61    | 59    | 0     | 0     |  |
| Through Vol              | 40    | 50    | 0     | 0     |  |
| RT Vol                   | 37    | 0     | 135   | 80    |  |
| Lane Flow Rate           | 153   | 121   | 150   | 89    |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.194 | 0.16  | 0.168 | 0.102 |  |
| Departure Headway (Hd)   | 4.556 | 4.743 | 4.024 | 4.114 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Сар                      | 787   | 756   | 891   | 869   |  |
| Service Time             | 2.588 | 2.774 | 2.054 | 2.148 |  |
| HCM Lane V/C Ratio       | 0.194 | 0.16  | 0.168 | 0.102 |  |
| HCM Control Delay, s/veh | 8.7   | 8.7   | 7.9   | 7.6   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.7   | 0.6   | 0.6   | 0.3   |  |

| Intersection           |              |        |        |           |          |      |
|------------------------|--------------|--------|--------|-----------|----------|------|
| Int Delay, s/veh       | 10.9         |        |        |           |          |      |
| Movement               | EBL          | EBR    | NBL    | NBT       | SBT      | SBR  |
| Lane Configurations    |              | 7      | 1100   | 41        | <u>₽</u> | UDIK |
| Traffic Vol, veh/h     | 5            | 260    | 139    | 638       | 466      | 53   |
| Future Vol, veh/h      | 5            | 260    | 139    | 638       | 466      | 53   |
| Conflicting Peds, #/hr |              | 0      | 178    | 000       | 0        | 107  |
| Sign Control           | Stop         | Stop   | Free   | Free      | Free     | Free |
| RT Channelized         |              | None   |        | None      |          | None |
| Storage Length         |              | 0      | _      | None -    | _        | -    |
| Veh in Median Storag   |              | -      |        | 0         | 0        |      |
| Grade, %               | ge, # 0<br>0 |        |        | 0         | 0        |      |
|                        |              | -      | -      |           |          | -    |
| Peak Hour Factor       | 90           | 90     | 90     | 90        | 90       | 90   |
| Heavy Vehicles, %      | 3            | 3      | 3      | 3         | 3        | 3    |
| Mvmt Flow              | 6            | 289    | 154    | 709       | 518      | 59   |
|                        |              |        |        |           |          |      |
| Major/Minor            | Minor2       | ı      | Major1 | N         | /lajor2  |      |
| Conflicting Flow All   | 1389         | 725    | 755    | 0         | -        | 0    |
| Stage 1                | 725          | -      | -      | -         | _        | -    |
| Stage 2                | 663          | _      | _      | _         | _        | _    |
| Critical Hdwy          |              | 6.245  | 4 145  | _         | _        | _    |
| Critical Hdwy Stg 1    | 5.445        | J.27J  | T. 170 | _         |          | _    |
| Critical Hdwy Stg 2    | 5.845        |        |        |           | _        |      |
|                        | 3.52853      | 3 3385 | 2 2225 |           | -        | -    |
| Pot Cap-1 Maneuver     | 144          | 422    | 848    | -         | -        |      |
|                        | 476          | 422    | 040    | -         | -        | _    |
| Stage 1                |              | -      | -      | -         | -        |      |
| Stage 2                | 473          | -      | -      | -         | -        | -    |
| Platoon blocked, %     |              | 0.40   | 000    | -         | -        | -    |
| Mov Cap-1 Maneuve      |              | 342    | 688    | -         | -        | -    |
| Mov Cap-2 Maneuve      |              | -      | -      | -         | -        | -    |
| Stage 1                | 278          | -      | -      | -         | -        | -    |
| Stage 2                | 384          | -      | -      | -         | -        | -    |
|                        |              |        |        |           |          |      |
| Approach               | EB           |        | NB     |           | SB       |      |
| HCM Control Delay,     |              |        | 3.98   |           | 0        |      |
| •                      |              |        | 5.90   |           | U        |      |
| HCM LOS                | F            |        |        |           |          |      |
|                        |              |        |        |           |          |      |
| Minor Lane/Major Mv    | mt           | NBL    | NBTE   | EBLn1     | SBT      | SBR  |
| Capacity (veh/h)       |              | 553    | -      |           | _        | -    |
| HCM Lane V/C Ratio     |              | 0.224  |        | 0.844     | _        | _    |
| HCM Control Delay (    |              | 11.7   | 2.3    |           | _        | _    |
| HCM Lane LOS           | 5, 4011)     | В      | Α.     | 52.7<br>F | _        | _    |
| HCM 95th %tile Q(ve    | h)           | 0.9    | -      | 7.6       | -        |      |
|                        |              | 11.51  |        | 1.0       |          |      |

| Intersection           |         |       |         |            |         |      |
|------------------------|---------|-------|---------|------------|---------|------|
| Int Delay, s/veh       | 0.4     |       |         |            |         |      |
| Movement               | EBL     | EBR   | NBL     | NBT        | SBT     | SBR  |
|                        | LDL     |       | NDL     |            |         | אמט  |
| Lane Configurations    | 4       | 7     | ^       | <b>↑</b> ↑ | 724     | 0    |
| Traffic Vol, veh/h     | 4       | 36    | 0       | 762        | 734     | 0    |
| Future Vol, veh/h      | 4       | 36    | 0       | 762        | 734     | 0    |
| Conflicting Peds, #/hr |         | 0     | 0       | _ 0        | 0       | 86   |
| Sign Control           | Stop    | Stop  | Free    | Free       | Free    | Free |
| RT Channelized         | -       | None  | -       | None       | -       | None |
| Storage Length         | -       | 0     | -       | -          | -       | -    |
| Veh in Median Storage  | e, # 0  | -     | -       | 0          | 0       | -    |
| Grade, %               | 0       | -     | -       | 0          | 0       | -    |
| Peak Hour Factor       | 90      | 90    | 90      | 90         | 90      | 90   |
| Heavy Vehicles, %      | 3       | 3     | 3       | 3          | 3       | 3    |
| Mvmt Flow              | 4       | 40    | 0       | 847        | 816     | 0    |
|                        |         |       |         | •          |         |      |
|                        |         |       |         |            |         |      |
|                        | Minor2  |       | /lajor1 | Λ          | /lajor2 |      |
| Conflicting Flow All   | 1239    | 816   | -       | 0          | -       | 0    |
| Stage 1                | 816     | -     | -       | -          | -       | -    |
| Stage 2                | 423     | -     | -       | -          | -       | -    |
| Critical Hdwy          | 6.645   | 6.245 | -       | -          | -       | -    |
| Critical Hdwy Stg 1    | 5.445   | -     | -       | -          | -       | -    |
| Critical Hdwy Stg 2    | 5.845   | _     | _       | _          | _       | _    |
|                        | 3.52853 | 3285  | _       | _          | _       | _    |
| Pot Cap-1 Maneuver     | 179     | 374   | 0       | _          | _       | 0    |
| Stage 1                | 432     | -     | 0       | _          | _       | 0    |
| Stage 2                | 627     | _     | 0       | _          | _       | 0    |
| Platoon blocked, %     | 021     | _     | U       | _          | _       | U    |
|                        | 170     | 27/   |         |            |         |      |
| Mov Cap-1 Maneuver     |         | 374   | -       | -          | -       | -    |
| Mov Cap-2 Maneuver     |         | -     | -       | -          | -       | -    |
| Stage 1                | 432     | -     | -       | -          | -       | -    |
| Stage 2                | 627     | -     | -       | -          | -       | -    |
|                        |         |       |         |            |         |      |
| Annroach               | EB      |       | NB      |            | SB      |      |
| Approach               |         |       |         |            |         |      |
| HCM Control Delay, s   | /\\5.// |       | 0       |            | 0       |      |
| HCM LOS                | C       |       |         |            |         |      |
|                        |         |       |         |            |         |      |
| Minor Lane/Major Mvn   | nt      | NBTE  | RI n1   | SBT        |         |      |
| Capacity (veh/h)       | 110     | 11011 | 374     |            |         |      |
| HCM Lane V/C Ratio     |         | _     |         | -          |         |      |
|                        | / l. \  | -     | 0.107   | -          |         |      |
| HCM Control Delay (s.  | /ven)   | -     | 15.8    | -          |         |      |
| HCM Lane LOS           | \       | -     | С       | -          |         |      |
| HCM 95th %tile Q(veh   | 1)      | -     | 0.4     | -          |         |      |
|                        |         |       |         |            |         |      |

| Intersection                                              |                |                     |             |               |          |      |
|-----------------------------------------------------------|----------------|---------------------|-------------|---------------|----------|------|
| Int Delay, s/veh                                          | 3.4            |                     |             |               |          |      |
|                                                           | EBL            | EDD                 | NDI         | NBT           | SBT      | SBR  |
| Movement                                                  |                | EBR                 | NBL         |               |          | SBK  |
| Lane Configurations                                       | <b>\</b>       | <b>F</b> 0          | 140         | <b>4</b>      | <b>∱</b> | 0.45 |
| Traffic Vol, veh/h                                        | 58             | 52                  | 110         | 211           | 316      | 245  |
| Future Vol, veh/h                                         | 58             | 52                  | 110         | 211           | 316      | 245  |
| Conflicting Peds, #/hr                                    | 0              | 0                   | 0           | _ 0           | 0        | 0    |
| Sign Control                                              | Stop           | Stop                | Free        | Free          | Free     | Free |
| RT Channelized                                            | -              | None                | -           | None          | -        | None |
| Storage Length                                            | 0              | -                   | -           | -             | -        | -    |
| Veh in Median Storage                                     |                | -                   | -           | 0             | 0        | -    |
| Grade, %                                                  | 0              | -                   | -           | 0             | 0        | -    |
| Peak Hour Factor                                          | 90             | 90                  | 90          | 90            | 90       | 90   |
| Heavy Vehicles, %                                         | 0              | 0                   | 0           | 0             | 0        | 0    |
| Mvmt Flow                                                 | 64             | 58                  | 122         | 234           | 351      | 272  |
|                                                           |                |                     |             |               |          |      |
| N A . ' /N A'                                             | 1:             |                     | A           |               | 4.1.0    |      |
|                                                           | /linor2        |                     | /lajor1     |               | Major2   |      |
| Conflicting Flow All                                      | 966            | 487                 | 623         | 0             | -        | 0    |
| Stage 1                                                   | 487            | -                   | -           | -             | -        | -    |
| Stage 2                                                   | 479            | -                   | -           | -             | -        | -    |
| Critical Hdwy                                             | 6.4            | 6.2                 | 4.1         | -             | -        | -    |
| Critical Hdwy Stg 1                                       | 5.4            | -                   | -           | -             | -        | -    |
| Critical Hdwy Stg 2                                       | 5.4            | -                   | -           | -             | -        | -    |
| Follow-up Hdwy                                            | 3.5            | 3.3                 | 2.2         | -             | -        | -    |
| Pot Cap-1 Maneuver                                        | 285            | 584                 | 968         | _             | -        | _    |
| Stage 1                                                   | 622            | -                   | -           | _             | _        | _    |
| Stage 2                                                   | 627            | _                   | _           | _             | _        | _    |
| Platoon blocked, %                                        | 021            |                     |             | _             | _        | _    |
|                                                           | 243            | 584                 | 968         |               |          |      |
| Mov Cap-1 Maneuver                                        |                |                     | 900         | -             | -        | -    |
| Mov Cap-2 Maneuver                                        | 243            | -                   | -           | -             | -        | -    |
| Stage 1                                                   | 531            | -                   | -           | -             | -        | -    |
| Stage 2                                                   | 627            | -                   | -           | -             | -        | -    |
|                                                           |                |                     |             |               |          |      |
| Approach                                                  | EB             |                     | NB          |               | SB       |      |
|                                                           |                |                     | 3.17        |               | 0        |      |
| HCM Control Delay, s/                                     | <b>V</b> 21.71 |                     | 3.17        |               | U        |      |
| HCM LOS                                                   | C              |                     |             |               |          |      |
|                                                           |                |                     |             |               |          |      |
|                                                           |                | NBL                 | NBTE        | EBLn1         | SBT      | SBR  |
| Minor Lane/Major Mvm                                      | nt             | INDL                |             |               |          |      |
| Minor Lane/Major Mvm                                      | nt             |                     | _           | 336           | _        | -    |
| Capacity (veh/h)                                          | nt             | 617                 | -           | 336<br>0.364  | -        | -    |
| Capacity (veh/h) HCM Lane V/C Ratio                       |                | 617<br>0.126        | -           | 0.364         | -        | -    |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/ |                | 617<br>0.126<br>9.3 | -<br>-<br>0 | 0.364<br>21.7 | -        | -    |
| Capacity (veh/h) HCM Lane V/C Ratio                       | veh)           | 617<br>0.126        | -           | 0.364         | -        |      |

| Int Delay, s/veh  Movement  Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/r Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 | 0<br>0<br>0<br>Stop<br><br>age, # 0<br>0<br>90<br>0                                                                         | WBR  53  53  53  55  None  0  1  90  59  1  889  -  6.9                                                          | NBT  10 501 501 0 Free - 0 0 90 2 557  Major1 0                              | 0<br>-<br>-<br>-                                                | SBL  2 2 0 Free 90 2 2  Major2 678 - 4.14                           | SBT 560 560 0 Free None 0 90 2 622                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/t Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve                   | 0<br>0<br>0<br>0<br>Stop<br>-<br>-<br>gge, # 0<br>0<br>90<br>0<br>0<br>Minor1<br>-                                          | 53<br>53<br>53<br>0 Stop<br>None<br>0 O<br>1 O<br>1 None<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O | 501<br>501<br>0<br>Free<br>-<br>0<br>0<br>90<br>2<br>557<br>Major1<br>0<br>- | 19<br>19<br>100<br>Free<br>None<br>-<br>-<br>-<br>90<br>0<br>21 | 2<br>2<br>0<br>Free<br>-<br>-<br>90<br>2<br>2<br>Major2<br>678      | 560<br>560<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>2<br>622 |
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/t Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve                   | 0<br>0<br>0<br>0<br>Stop<br>-<br>-<br>gge, # 0<br>0<br>90<br>0<br>0<br>Minor1<br>-                                          | 53<br>53<br>53<br>0 Stop<br>None<br>0 O<br>1 O<br>1 None<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O<br>0 O | 501<br>501<br>0<br>Free<br>-<br>0<br>0<br>90<br>2<br>557<br>Major1<br>0<br>- | 19<br>19<br>100<br>Free<br>None<br>-<br>-<br>-<br>90<br>0<br>21 | 2<br>2<br>0<br>Free<br>-<br>-<br>90<br>2<br>2<br>Major2<br>678      | 560<br>560<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>2<br>622 |
| Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve                   | 0<br>0<br>0<br>0<br>0<br>Stop<br><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 53<br>53<br>53<br>53<br>53<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>59<br>59<br>68                           | 501<br>501<br>0<br>Free<br>-<br>0<br>0<br>90<br>2<br>557<br>Major1<br>0<br>- | 19<br>100<br>Free<br>None<br>-<br>-<br>-<br>90<br>0<br>21       | 2<br>0<br>Free<br>-<br>-<br>90<br>2<br>2<br>2<br>Major2<br>678<br>- | 560<br>560<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>2<br>622 |
| Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve                                      | 0 nr 0 Stop - sige, # 0 0 90 0  Minor1                                                                                      | 53<br>0 0<br>5 Stop<br>None<br>0 0<br>0 -<br>0 0<br>0 90<br>0 59<br>1 N<br>- 389<br><br>- 6.9                    | 501<br>0<br>Free<br>-<br>0<br>0<br>90<br>2<br>557<br>Major1<br>0<br>-        | 19<br>100<br>Free<br>None<br>-<br>-<br>-<br>90<br>0<br>21       | 2<br>0<br>Free<br>-<br>-<br>90<br>2<br>2<br>2<br>Major2<br>678<br>- | 560<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>2<br>622        |
| Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve                                                                            | or 0<br>Stop<br>                                                                                                            | 0 0 Stop - None - 0 0 - 0 90 0 59  1 89 - 389 6.9                                                                | 0<br>Free<br>-<br>0<br>0<br>90<br>2<br>557<br>Major1<br>-<br>-               | 100<br>Free<br>None<br>-<br>-<br>-<br>90<br>0<br>21             | 0<br>Free<br>-<br>-<br>90<br>2<br>2<br>2<br>Major2<br>678<br>-      | 0<br>Free<br>None<br>-<br>0<br>0<br>90<br>2<br>622               |
| Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                    | Stop                                                                                                                        | Stop None O O O O O O O O O O O O O O O O O O O                                                                  | Free 0 0 90 2 557  Major1                                                    | Free None 90 0 21 N                                             | Free 90 2 2 2 678                                                   | Free None - 0 0 90 2 622 - 0                                     |
| RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve                                                                                                               | Minor1                                                                                                                      | - None<br>- 0<br>0<br>0<br>- 0<br>90<br>0<br>0<br>59<br>1 N<br>- 389<br>6.9                                      | -<br>0<br>0<br>90<br>2<br>557<br>Major1<br>0<br>-                            | None 90 0 21                                                    | -<br>-<br>90<br>2<br>2<br>2<br>Major2<br>678                        | None                                                             |
| Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve                                                                                                                              |                                                                                                                             | - 0<br>0 -<br>0 90<br>0 0<br>0 59<br>1 N<br>- 389<br><br>- 6.9                                                   | 0<br>0<br>90<br>2<br>557<br>Major1<br>0<br>-                                 | -<br>-<br>90<br>0<br>21<br>-<br>-<br>-                          | 90<br>2<br>2<br>2<br>Major2<br>678                                  | 0<br>0<br>90<br>2<br>622                                         |
| Veh in Median Stora<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, %<br>Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                   | ge, # 0<br>0<br>90<br>0<br>                                                                                                 | ) -<br>) 90<br>) 0<br>) 59<br>1 N<br>- 389<br><br>- 6.9                                                          | 0<br>0<br>90<br>2<br>557<br>Major1<br>0<br>-                                 | -<br>90<br>0<br>21<br><u>N</u><br>0<br>-                        | -<br>90<br>2<br>2<br>2<br>Major2<br>678                             | 0<br>90<br>2<br>622                                              |
| Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                   | 0<br>90<br>0<br>0<br>Minor1                                                                                                 | ) -<br>) 90<br>) 0<br>59<br>1 N<br>- 389<br><br>- 6.9                                                            | 0<br>90<br>2<br>557<br>Major1<br>0<br>-                                      | 90<br>0<br>21<br>N<br>0<br>-                                    | 90<br>2<br>2<br>2<br>Major2<br>678                                  | 0<br>90<br>2<br>622                                              |
| Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                            | 90<br>0<br>0<br>Minor1                                                                                                      | 90<br>0 0<br>59<br>1 N<br>- 389<br><br>- 6.9                                                                     | 90<br>2<br>557<br>Major1<br>0<br>-                                           | 90<br>0<br>21<br>0<br>-<br>-                                    | 90<br>2<br>2<br>Major2<br>678<br>-                                  | 90<br>2<br>622<br>0<br>-                                         |
| Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                             | 0<br>0<br>Minor1<br>-<br>-                                                                                                  | 0 0<br>59<br>1 N<br>- 389<br><br>- 6.9                                                                           | 2<br>557<br>Major1<br>0<br>-                                                 | 0<br>21<br>0<br>0<br>-                                          | 2<br>2<br>Major2<br>678<br>-                                        | 2<br>622<br>0<br>-                                               |
| Movmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                              | 0<br>Minor1<br>-<br>-<br>-                                                                                                  | 59<br>1 N<br>- 389<br><br>- 6.9                                                                                  | 557 Major1 0                                                                 | 21<br>N<br>0<br>-<br>-                                          | 2<br>Major2<br>678<br>-                                             | 0 -                                                              |
| Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                          | Minor1                                                                                                                      | 1 N<br>- 389<br><br><br>- 6.9                                                                                    | Major1<br>0<br>-<br>-                                                        | 0<br>-<br>-                                                     | Major2<br>678<br>-                                                  | 0 -                                                              |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                      | -<br>-<br>-                                                                                                                 | - 389<br><br><br>- 6.9                                                                                           | 0<br>-<br>-                                                                  | 0<br>-<br>-<br>-                                                | 678<br>-<br>-                                                       | -                                                                |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                      | -<br>-<br>-                                                                                                                 | - 389<br><br><br>- 6.9                                                                                           | 0<br>-<br>-                                                                  | 0<br>-<br>-<br>-                                                | 678<br>-<br>-                                                       | -                                                                |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                      | -<br>-<br>-                                                                                                                 | - 389<br><br><br>- 6.9                                                                                           | 0<br>-<br>-                                                                  | 0<br>-<br>-<br>-                                                | 678<br>-<br>-                                                       | -                                                                |
| Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                           | -<br>-<br>-                                                                                                                 | <br><br>- 6.9                                                                                                    | -<br>-                                                                       | -<br>-                                                          | -                                                                   | -                                                                |
| Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                   | -                                                                                                                           | - 6.9                                                                                                            | -                                                                            | -                                                               | -                                                                   | -                                                                |
| Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                           | -                                                                                                                           | - 6.9                                                                                                            | -                                                                            | -                                                               |                                                                     |                                                                  |
| Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                                  |                                                                              |                                                                 | 4.14                                                                |                                                                  |
| Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |                                                                                                                  |                                                                              | _                                                               | _                                                                   | _                                                                |
| Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                                                                                  |                                                                              |                                                                 |                                                                     |                                                                  |
| Pot Cap-1 Maneuve<br>Stage 1<br>Stage 2<br>Platoon blocked, %<br>Mov Cap-1 Maneuve<br>Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                           |                                                                                                                  | -                                                                            | -                                                               | -                                                                   | -                                                                |
| Stage 1<br>Stage 2<br>Platoon blocked, %<br>Mov Cap-1 Maneuve<br>Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                           |                                                                                                                  | -                                                                            | -                                                               | 2.22                                                                | -                                                                |
| Stage 2<br>Platoon blocked, %<br>Mov Cap-1 Maneuve<br>Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                                                                                  | -                                                                            | -                                                               | 910                                                                 | -                                                                |
| Platoon blocked, %<br>Mov Cap-1 Maneuve<br>Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                           |                                                                                                                  | -                                                                            | -                                                               | -                                                                   | -                                                                |
| Mov Cap-1 Maneuve<br>Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                           | ) -                                                                                                              | -                                                                            | -                                                               | -                                                                   | -                                                                |
| Mov Cap-2 Maneuve                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                                  | -                                                                            | -                                                               |                                                                     | -                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             | - 550                                                                                                            | -                                                                            | -                                                               | 814                                                                 | -                                                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er -                                                                                                                        |                                                                                                                  | -                                                                            | -                                                               | -                                                                   | -                                                                |
| Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                           |                                                                                                                  | -                                                                            | -                                                               | -                                                                   | -                                                                |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                           |                                                                                                                  | -                                                                            | -                                                               | -                                                                   | -                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                                  |                                                                              |                                                                 |                                                                     |                                                                  |
| ۸                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WD                                                                                                                          | ,                                                                                                                | ND                                                                           |                                                                 | CD                                                                  |                                                                  |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                | WB                                                                                                                          |                                                                                                                  | NB                                                                           |                                                                 | SB                                                                  |                                                                  |
| HCM Control Delay,                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                  | 0                                                                            |                                                                 | 0.03                                                                |                                                                  |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                                                                                           | 3                                                                                                                |                                                                              |                                                                 |                                                                     |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                                  |                                                                              |                                                                 |                                                                     |                                                                  |
| Minor Lane/Major M                                                                                                                                                                                                                                                                                                                                                                                                                                      | vmt                                                                                                                         | NBT                                                                                                              | NBRV                                                                         | VBLn1                                                           | SBL                                                                 | SBT                                                              |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | -                                                                                                                |                                                                              | 550                                                             | 814                                                                 | -                                                                |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | _                                                                                                                |                                                                              | 0.107                                                           |                                                                     | _                                                                |
| HCM Control Delay                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                                                                                                                | -                                                                            | 12.3                                                            | 9.4                                                                 |                                                                  |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             | -                                                                                                                | -                                                                            | 12.3<br>B                                                       | 9.4<br>A                                                            |                                                                  |
| HCM 95th %tile Q(v                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | -                                                                                                                | -                                                                            | 0.4                                                             |                                                                     | -                                                                |
| HOW SOUL WILL Q(V                                                                                                                                                                                                                                                                                                                                                                                                                                       | (s/veh)                                                                                                                     |                                                                                                                  | -                                                                            | 0.4                                                             | 0                                                                   | -                                                                |

| Intersection            |           |       |        |      |         |      |
|-------------------------|-----------|-------|--------|------|---------|------|
| Int Delay, s/veh        | 3.3       |       |        |      |         |      |
| Movement E              | EBT       | EBR   | WBL    | WBT  | NBL     | NBR  |
| Lane Configurations     | <b>₽</b>  | רטוע  | TTDL   | 4    | W/      | אפא  |
|                         | 222       | 129   | 5      | 117  | 87      | 5    |
|                         | 222       | 129   | 5      | 117  | 87      | 5    |
| Conflicting Peds, #/hr  | 0         | 100   | 100    | 0    | 100     | 100  |
|                         | ree       | Free  | Free   | Free | Stop    | Stop |
| RT Channelized          | -         | None  | -      | None | -       | None |
| Storage Length          | _         | -     | _      | -    | 0       | -    |
| Veh in Median Storage,  | # N       | _     | _      | 0    | 0       | _    |
| Grade, %                | 0         | -     | _      | 0    | 0       | _    |
| Peak Hour Factor        | 90        | 90    | 90     | 90   | 90      | 90   |
|                         |           |       |        |      |         |      |
| Heavy Vehicles, %       | 2         | 2     | 2      | 2    | 2       | 2    |
| Mvmt Flow               | 247       | 143   | 6      | 130  | 97      | 6    |
|                         |           |       |        |      |         |      |
| Major/Minor Ma          | ijor1     |       | Major2 | N    | /linor1 |      |
| Conflicting Flow All    | 0         | 0     | 490    | 0    | 659     | 518  |
| Stage 1                 | -         | _     | -      | -    | 418     | -    |
| Stage 2                 | _         | _     | _      | _    | 241     | _    |
| Critical Hdwy           | _         |       | 4.12   | _    | 6.42    | 6.22 |
| Critical Hdwy Stg 1     | -         | _     | 4.12   | _    | 5.42    | 0.22 |
|                         |           | -     |        |      | 5.42    |      |
| Critical Hdwy Stg 2     | -         | -     | -      | -    |         | -    |
| Follow-up Hdwy          | -         | -     | 2.218  |      | 3.518   |      |
| Pot Cap-1 Maneuver      | -         | -     | 1073   | -    | 428     | 557  |
| Stage 1                 | -         | -     | -      | -    | 664     | -    |
| Stage 2                 | -         | -     | -      | -    | 799     | -    |
| Platoon blocked, %      | -         | -     |        | -    |         |      |
| Mov Cap-1 Maneuver      | -         | -     | 960    | -    | 340     | 446  |
| Mov Cap-2 Maneuver      | -         | -     | -      | -    | 340     | -    |
| Stage 1                 | -         | -     | -      | -    | 594     | -    |
| Stage 2                 | -         | -     | -      | -    | 710     | -    |
|                         |           |       |        |      |         |      |
| Α Ι                     | <b>ED</b> |       | MD     |      | ND      |      |
| Approach                | EB        |       | WB     |      | NB      |      |
| HCM Control Delay, s/v  | 0         |       | 0.36   |      | 19.79   |      |
| HCM LOS                 |           |       |        |      | С       |      |
|                         |           |       |        |      |         |      |
| Minor Lane/Major Mvmt   | N         | NBLn1 | EBT    | FRR  | WBL     | WBT  |
| Capacity (veh/h)        |           | 345   |        |      | 74      | **** |
|                         |           |       | -      | -    |         | -    |
| HCM Lane V/C Ratio      |           | 0.297 | -      |      | 0.006   | -    |
| HCM Control Delay (s/ve | en)       | 19.8  | -      | -    | 8.8     | 0    |
| HCM Lane LOS            |           | C     | -      | -    | A       | Α    |
| HCM 95th %tile Q(veh)   |           | 1.2   | -      | -    | 0       | -    |
|                         |           |       |        |      |         |      |

HCM Control Delay (s/veh)

HCM 95th %tile Q(veh)

HCM Lane LOS

8.1

Α

0

Α

| Intersection           |         |       |         |      |              |        |
|------------------------|---------|-------|---------|------|--------------|--------|
| Int Delay, s/veh       | 2.2     |       |         |      |              |        |
|                        |         |       | ==      |      |              | 0.5.5  |
| Movement               | EBL     | EBT   | WBT     | WBR  | SBL          | SBR    |
| Lane Configurations    |         | सी    | ₽       |      | - NA         |        |
| Traffic Vol, veh/h     | 5       | 27    | 156     | 199  | 83           | 5      |
| Future Vol, veh/h      | 5       | 27    | 156     | 199  | 83           | 5      |
| Conflicting Peds, #/hr | 0       | 0     | 0       | 0    | 0            | 0      |
| Sign Control           | Free    | Free  | Free    | Free | Stop         | Stop   |
| RT Channelized         | -       | None  | -       | None | -            | None   |
| Storage Length         | -       | -     | -       | -    | 0            | -      |
| Veh in Median Storag   | e,# -   | 0     | 0       | -    | 0            | -      |
| Grade, %               | -       | 0     | 0       | -    | 0            | -      |
| Peak Hour Factor       | 90      | 90    | 90      | 90   | 90           | 90     |
| Heavy Vehicles, %      | 2       | 2     | 2       | 2    | 2            | 2      |
| Mvmt Flow              | 6       | 30    | 173     | 221  | 92           | 6      |
|                        |         |       |         |      |              |        |
| N 4 (N 4)              |         |       | 4 : 0   |      | <i>I</i> : 0 |        |
|                        | Major1  |       | /lajor2 |      | /linor2      |        |
| Conflicting Flow All   | 394     | 0     | -       | 0    | 325          | 284    |
| Stage 1                | -       | -     | -       | -    | 284          | -      |
| Stage 2                | -       | -     | -       | -    | 41           | -      |
| Critical Hdwy          | 4.12    | -     | -       | -    | 6.42         | 6.22   |
| Critical Hdwy Stg 1    | -       | -     | -       | -    | 5.42         | -      |
| Critical Hdwy Stg 2    | -       | -     | -       | -    | 5.42         | -      |
| Follow-up Hdwy         | 2.218   | -     | -       | -    | 3.518        | 3.318  |
| Pot Cap-1 Maneuver     | 1164    | -     | -       | -    | 669          | 755    |
| Stage 1                | -       | -     | -       | -    | 764          | -      |
| Stage 2                | -       | -     | -       | -    | 981          | -      |
| Platoon blocked, %     |         | -     | -       | -    |              |        |
| Mov Cap-1 Maneuver     | 1164    | -     | -       | -    | 666          | 755    |
| Mov Cap-2 Maneuver     |         | -     | -       | -    | 666          | -      |
| Stage 1                | -       | -     | _       | -    | 761          | _      |
| Stage 2                | -       | -     | -       | -    | 981          | -      |
| J <b>J</b> .           |         |       |         |      |              |        |
|                        |         |       | 14/5    |      | 0.5          |        |
| Approach               | EB      |       | WB      |      | SB           |        |
| HCM Control Delay, s   | /v 1.27 |       | 0       |      | 11.29        |        |
| HCM LOS                |         |       |         |      | В            |        |
|                        |         |       |         |      |              |        |
| Minor Lane/Major Mvr   | nt      | EBL   | EBT     | WBT  | WBRS         | SRI n1 |
| Capacity (veh/h)       |         | 281   |         | -    | -            |        |
| HCM Lane V/C Ratio     |         | 0.005 |         |      |              | 0.146  |
| HOW Lake V/C Ratio     |         | CUU.U | -       | -    | -            | U. 140 |

В

# **Existing scenario**

2022 Minor Event Egress

1: Bank & Fifth 08/01/2024

|                        | ۶     | <b>→</b> | •     | •     | 4     | <b>†</b>    | -     | ļ     |  |
|------------------------|-------|----------|-------|-------|-------|-------------|-------|-------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT   | NBL   | NBT         | SBL   | SBT   |  |
| Lane Configurations    |       | 4        | Ť     | ĵ»    |       | <b>€</b> 1Ъ |       | 4îÞ   |  |
| Traffic Volume (vph)   | 41    | 9        | 47    | 24    | 16    | 457         | 20    | 344   |  |
| Future Volume (vph)    | 41    | 9        | 47    | 24    | 16    | 457         | 20    | 344   |  |
| Lane Group Flow (vph)  | 0     | 84       | 52    | 61    | 0     | 538         | 0     | 427   |  |
| Turn Type              | Perm  | NA       | Perm  | NA    | Perm  | NA          | Perm  | NA    |  |
| Protected Phases       |       | 4        |       | 8     |       | 2           |       | 6     |  |
| Permitted Phases       | 4     |          | 8     |       | 2     |             | 6     |       |  |
| Detector Phase         | 4     | 4        | 8     | 8     | 2     | 2           | 6     | 6     |  |
| Switch Phase           |       |          |       |       |       |             |       |       |  |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0         | 4.0   | 4.0   |  |
| Minimum Split (s)      | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0        | 49.0  | 49.0  |  |
| Total Split (s)        | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0        | 49.0  | 49.0  |  |
| Total Split (%)        | 34.7% | 34.7%    | 34.7% | 34.7% | 65.3% | 65.3%       | 65.3% | 65.3% |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0         | 3.0   | 3.0   |  |
| All-Red Time (s)       | 2.5   | 2.5      | 2.5   | 2.5   | 2.5   | 2.5         | 2.5   | 2.5   |  |
| _ost Time Adjust (s)   |       | 0.0      | 0.0   | 0.0   |       | 0.0         |       | 0.0   |  |
| Total Lost Time (s)    |       | 5.5      | 5.5   | 5.5   |       | 5.5         |       | 5.5   |  |
| _ead/Lag               |       |          |       |       |       |             |       |       |  |
| Lead-Lag Optimize?     |       |          |       |       |       |             |       |       |  |
| Recall Mode            | None  | None     | None  | None  | C-Max | C-Max       | C-Max | C-Max |  |
| Act Effct Green (s)    |       | 9.4      | 9.4   | 9.4   |       | 57.9        |       | 57.9  |  |
| Actuated g/C Ratio     |       | 0.13     | 0.13  | 0.13  |       | 0.77        |       | 0.77  |  |
| /c Ratio               |       | 0.51     | 0.34  | 0.30  |       | 0.24        |       | 0.20  |  |
| Control Delay (s/veh)  |       | 31.9     | 34.4  | 19.5  |       | 6.0         |       | 3.6   |  |
| Queue Delay            |       | 0.0      | 0.0   | 0.0   |       | 0.0         |       | 0.0   |  |
| otal Delay (s/veh)     |       | 31.9     | 34.4  | 19.5  |       | 6.0         |       | 3.6   |  |
| _OS                    |       | С        | С     | В     |       | A           |       | A     |  |
| Approach Delay (s/veh) |       | 31.9     |       | 26.4  |       | 6.0         |       | 3.6   |  |
| Approach LOS           |       | С        |       | С     |       | A           |       | A     |  |
| Queue Length 50th (m)  |       | 7.5      | 6.9   | 3.5   |       | 12.8        |       | 7.5   |  |
| Queue Length 95th (m)  |       | 18.8     | 15.5  | 12.6  |       | 34.2        |       | 15.6  |  |
| Internal Link Dist (m) |       | 49.7     |       | 112.4 |       | 195.6       |       | 190.0 |  |
| Turn Bay Length (m)    |       |          | 45.0  |       |       |             |       |       |  |
| Base Capacity (vph)    |       | 330      | 341   | 402   |       | 2251        |       | 2168  |  |
| Starvation Cap Reductn |       | 0        | 0     | 0     |       | 0           |       | 0     |  |
| Spillback Cap Reductn  |       | 0        | 0     | 0     |       | 0           |       | 0     |  |
| Storage Cap Reductn    |       | 0        | 0     | 0     |       | 0           |       | 0     |  |
| Reduced v/c Ratio      |       | 0.25     | 0.15  | 0.15  |       | 0.24        |       | 0.20  |  |
|                        |       |          |       |       |       |             |       |       |  |
| Intersection Summary   |       |          |       |       |       |             |       |       |  |
| Cycle Length: 75       |       |          |       |       |       |             |       |       |  |

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.51

Intersection Signal Delay (s/veh): 9.0
Intersection Capacity Utilization 51.9%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth



| Z. Barik & Florinik         | <b>→</b>   | •        | †         | <b>\</b>  | Ţ               |           |
|-----------------------------|------------|----------|-----------|-----------|-----------------|-----------|
| Lane Group                  | EBT        | NBL      | NBT       | SBL       | SBT             | Ø3        |
| Lane Configurations         | 4          | HUL      | 47>       | JDL       | 4T <del>}</del> |           |
| Traffic Volume (vph)        | 7          | 52       | 445       | 22        | 325             |           |
| Future Volume (vph)         | 7          | 52       | 445       | 22        | 325             |           |
| Lane Group Flow (vph)       | 84         | 0        | 579       | 0         | 424             |           |
| Turn Type                   | NA         | Perm     | NA        | Perm      | NA              |           |
| Protected Phases            | 4          | 1 01111  | 2         | . 0       | 6               | 3         |
| Permitted Phases            |            | 2        | _         | 6         |                 | Ū         |
| Detector Phase              | 4          | 2        | 2         | 6         | 6               |           |
| Switch Phase                | 7          |          |           | O .       | 0               |           |
| Minimum Initial (s)         | 4.4        | 10.0     | 10.0      | 4.0       | 4.0             | 1.0       |
| Minimum Split (s)           | 22.0       | 48.0     | 48.0      | 48.0      | 48.0            | 5.0       |
| Total Split (s)             | 22.0       | 48.0     | 48.0      | 48.0      | 48.0            | 5.0       |
| Total Split (%)             | 29.3%      | 64.0%    | 64.0%     | 64.0%     | 64.0%           | 7%        |
|                             | 3.0        | 3.0      | 3.0       | 3.0       | 3.0             | 2.0       |
| Yellow Time (s)             | 2.6        | 2.2      | 2.2       | 2.2       | 2.2             | 0.0       |
| All-Red Time (s)            |            | ۷.۷      |           | ۷.۷       |                 | 0.0       |
| Lost Time Adjust (s)        | 0.0        |          | 0.0       |           | 0.0             |           |
| Total Lost Time (s)         | 5.6        |          | 5.2       |           | 5.2             | اما       |
| Lead/Lag                    | Lag        |          |           |           |                 | Lead      |
| Lead-Lag Optimize?          | N1         | O M      | O 14      | O M       | O M             | Marra     |
| Recall Mode                 | None       | C-Max    | C-Max     | C-Max     |                 | None      |
| Act Effet Green (s)         | 9.9        |          | 57.5      |           | 57.5            |           |
| Actuated g/C Ratio          | 0.13       |          | 0.77      |           | 0.77            |           |
| v/c Ratio                   | 0.47       |          | 0.29      |           | 0.20            |           |
| Control Delay (s/veh)       | 37.7       |          | 3.7       |           | 4.4             |           |
| Queue Delay                 | 0.0        |          | 0.0       |           | 0.0             |           |
| Total Delay (s/veh)         | 37.7       |          | 3.7       |           | 4.4             |           |
| LOS                         | D          |          | Α         |           | Α               |           |
| Approach Delay (s/veh)      | 37.7       |          | 3.7       |           | 4.4             |           |
| Approach LOS                | D          |          | Α         |           | Α               |           |
| Queue Length 50th (m)       | 11.2       |          | 8.8       |           | 12.4            |           |
| Queue Length 95th (m)       | 22.3       |          | 22.1      |           | 24.4            |           |
| Internal Link Dist (m)      | 39.8       |          | 31.5      |           | 195.6           |           |
| Turn Bay Length (m)         |            |          |           |           |                 |           |
| Base Capacity (vph)         | 296        |          | 2029      |           | 2106            |           |
| Starvation Cap Reductn      | 0          |          | 0         |           | 0               |           |
| Spillback Cap Reductn       | 0          |          | 0         |           | 0               |           |
| Storage Cap Reductn         | 0          |          | 0         |           | 0               |           |
| Reduced v/c Ratio           | 0.28       |          | 0.29      |           | 0.20            |           |
| Intersection Summary        |            |          |           |           |                 |           |
| Cycle Length: 75            |            |          |           |           |                 |           |
| Actuated Cycle Length: 75   | 5          |          |           |           |                 |           |
| Offset: 74 (99%), Reference |            | se 2:NBT | L and 6:5 | SBTL, Sta | art of Gree     | en        |
| Natural Cycle: 75           |            |          |           |           |                 |           |
| Control Type: Actuated-Co   | oordinated |          |           |           |                 |           |
| Maximum v/c Ratio: 0.47     |            |          |           |           |                 |           |
| Intersection Const Delay    | (-/b). C C |          |           | 1.        | -1              | - I OC. A |

Splits and Phases: 2: Bank & Holmwood

Intersection Signal Delay (s/veh): 6.6 Intersection Capacity Utilization 57.2%

Analysis Period (min) 15



Intersection LOS: A

ICU Level of Service B

ignal Timing, I

|                              | •        | 4        | †          | <b>\</b>   | <b></b>  |      |      |
|------------------------------|----------|----------|------------|------------|----------|------|------|
| Lane Group                   | WBL      | WBR      | NBT        | SBL        | SBT      | Ø1   | Ø7   |
| Lane Configurations          | *        | 7        | <b>↑</b> ↑ | ሻ          | <b>^</b> | ~ .  | ~.   |
| Traffic Volume (vph)         | 187      | 213      | 187        | 111        | 253      |      |      |
| Future Volume (vph)          | 187      | 213      | 187        | 111        | 253      |      |      |
| Lane Group Flow (vph)        | 208      | 237      | 297        | 123        | 281      |      |      |
| Turn Type                    | Prot     | Perm     | NA         | Perm       | NA       |      |      |
| Protected Phases             | 8        |          | 2          |            | 6        | 1    | 7    |
| Permitted Phases             |          | 8        |            | 6          |          |      |      |
| Detector Phase               | 8        | 8        | 2          | 6          | 6        |      |      |
| Switch Phase                 |          |          |            |            |          |      |      |
| Minimum Initial (s)          | 10.0     | 10.0     | 10.0       | 10.0       | 10.0     | 1.0  | 1.0  |
| Minimum Split (s)            | 26.0     | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |
| Total Split (s)              | 26.0     | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |
| Total Split (%)              | 34.7%    | 34.7%    | 52.0%      | 58.7%      | 58.7%    | 7%   | 7%   |
| Yellow Time (s)              | 3.3      | 3.3      | 3.0        | 3.0        | 3.0      | 2.0  | 3.5  |
| All-Red Time (s)             | 3.0      | 3.0      | 3.9        | 3.9        | 3.9      | 0.0  | 0.0  |
| Lost Time Adjust (s)         | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |      |      |
| Total Lost Time (s)          | 6.3      | 6.3      | 6.9        | 6.9        | 6.9      |      |      |
| Lead/Lag                     | Lag      | Lag      | Lag        |            |          | Lead | Lead |
| Lead-Lag Optimize?           |          |          | Yes        |            |          | Yes  | Yes  |
| Recall Mode                  | None     | None     | C-Max      | C-Max      | C-Max    | None | None |
| Act Effct Green (s)          | 14.9     | 14.9     | 46.9       | 46.9       | 46.9     |      |      |
| Actuated g/C Ratio           | 0.20     | 0.20     | 0.63       | 0.63       | 0.63     |      |      |
| v/c Ratio                    | 0.64     | 0.57     | 0.17       | 0.25       | 0.14     |      |      |
| Control Delay (s/veh)        | 36.4     | 9.6      | 4.9        | 5.8        | 4.4      |      |      |
| Queue Delay                  | 0.0      | 0.0      | 0.0        | 0.0        | 0.0      |      |      |
| Total Delay (s/veh)          | 36.4     | 9.6      | 4.9        | 5.8        | 4.4      |      |      |
| LOS                          | D        | Α        | Α          | Α          | Α        |      |      |
| Approach Delay (s/veh)       | 22.1     |          | 4.9        |            | 4.8      |      |      |
| Approach LOS                 | С        |          | Α          |            | Α        |      |      |
| Queue Length 50th (m)        | 27.3     | 0.0      | 5.4        | 4.2        | 5.0      |      |      |
| Queue Length 95th (m)        | 43.5     | 16.2     | 12.4       | 8.8        | 7.6      |      |      |
| Internal Link Dist (m)       | 30.6     |          | 33.7       |            | 44.8     |      |      |
| Turn Bay Length (m)          |          |          |            | 40.0       |          |      |      |
| Base Capacity (vph)          | 431      | 471      | 1777       | 502        | 1985     |      |      |
| Starvation Cap Reductn       | 0        | 0        | 0          | 0          | 0        |      |      |
| Spillback Cap Reductn        | 0        | 0        | 0          | 0          | 0        |      |      |
| Storage Cap Reductn          | 0        | 0        | 0          | 0          | 0        |      |      |
| Reduced v/c Ratio            | 0.48     | 0.50     | 0.17       | 0.25       | 0.14     |      |      |
| Intersection Summary         |          |          |            |            |          |      |      |
| Cycle Length: 75             |          |          |            |            |          |      |      |
| Actuated Cycle Length: 75    |          |          |            |            |          |      |      |
| Offset: 0 (0%), Referenced t | o phase  | 2:NBT ar | nd 6:SBT   | L, Start o | f Green  |      |      |
| Natural Cycle: 75            |          |          |            |            |          |      |      |
| Control Type: Actuated-Coo   | rdinated |          |            |            |          |      |      |

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.64

Intersection Signal Delay (s/veh): 11.6 Intersection LOS: B
Intersection Capacity Utilization 57.6% ICU Level of Service B

Analysis Period (min) 15

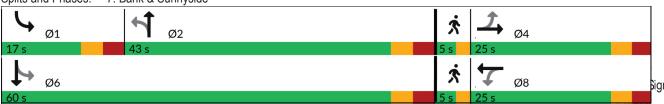
Splits and Phases: 3: Bank & Exhibition



ignal Timing, I

## 6: Bank & Aylmer

| Sontrol Delay (s/veh)   27.2   5.3   5.2     Solution Delay (s/veh)   26.3   6.0     Solution Delay (s/veh)   26.4   6.0     Solution Delay (s/veh)   27.2   5.3   5.2     Solution De   |                               | ۶           | •        | †         | <b>+</b>   |                       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|----------|-----------|------------|-----------------------|---|
| ane Configurations raffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lane Group                    | EBL         | NBL      | NBT       | SBT        | Ø3                    |   |
| raffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |             |          |           |            |                       |   |
| uture Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |             | 1        |           |            |                       |   |
| ane Group Flow (vph) 7 0 173 219  urn Type Prot Perm NA NA  rotected Phases 4 2 6 3  etector Phase 4 2 6 6  etector Phase 4 2 2 6  witch Phase  linimum Initial (s) 10.0 30.0 30.0 30.0 1.0  linimum Split (s) 22.0 63.0 63.0 63.0 5.0  otal Split (%) 24.4% 70.0% 70.0% 70.0% 6%  ellow Time (s) 3.3 3.0 3.0 3.0 2.0  Ill-Red Time (s) 2.2 2.2 2.2 2.2 1.0  oost Time Adjust (s) 0.0 0.0 0.0  otal Lost Time (s) 5.5 5.2 5.2  ead/Lag Lag Lag Lead  ead-Lag Optimize?  lecall Mode Ped C-Max C-Max C-Max Max  ct Effet Green (s) 14.0 60.3 60.3  ctuated g/C Ratio 0.16 0.67 0.67  fc Ratio 0.03 0.08 0.10  ontrol Delay (s/veh) 27.2 5.3 5.2  oost C A A A  pproach Delay (s/veh) 27.2 5.3 5.2  oos C A A A  pproach Delay (s/veh) 27.2 5.3 5.2  oos C A A A  pproach LOS C A A A  pproach LOS C A A A  lucue Length 95th (m) 0.6 4.8 6.0  lucue Length 95th (m) 0.6 4.8 6.0  lucue Length 50th (m) 0.6 0.0 0.0  lucue Length 50th (m) 0.6 0.0 0.0  lucue Length 50th (m) 0.6 0.0 0.0  lucue Length 90th (m) 0.0 0.0  lucue Length: 90  ctuated Cycle Length: 90  ctuated Cycle Length: 90  ctuated Cycle Length: 90  ctuated Cycle Length: 90  liffset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green  attural Cycle: 90  liftset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green  litersection Signal Delay (s/veh): 5.7 Intersection LOS: A                                                                                                                                                                                                                                    |                               |             |          |           |            |                       |   |
| urn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · ·                     |             |          |           |            |                       |   |
| rotected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |             |          |           |            |                       |   |
| ermitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |             |          |           |            | 3                     |   |
| telector Phase witch Phase linimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             | 2        | _         |            | •                     |   |
| witch Phase linimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |             |          | 2         |            |                       |   |
| Inimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | •           | _        | _         |            |                       |   |
| Ilinimum Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 10.0        | 30.0     | 30.0      | 30.0       | 1.0                   |   |
| otal Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |          |           |            |                       |   |
| otal Split (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |          |           |            |                       |   |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |          |           |            |                       |   |
| III-Red Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |          |           |            |                       |   |
| ost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \ ,                           |             |          |           |            |                       |   |
| otal Lost Time (s) 5.5 5.2 5.2   ead/Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ` ,                           |             |          |           |            | 1.0                   |   |
| Lead      |                               |             |          |           |            |                       |   |
| ead-Lag Optimize?  decall Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |          | 0.2       | 0.2        | Lead                  |   |
| C-Max   C-Max   C-Max   C-Max   Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                             | Lug         |          |           |            | _000                  |   |
| tct Effct Green (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | Ped         | C-Max    | C-Max     | C-Max      | Max                   |   |
| Control   Cont   |                               |             | Unida    |           |            | man                   |   |
| C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ,                           |             |          |           |            |                       |   |
| Sontrol Delay (s/veh)   27.2   5.3   5.2     Solution Delay (s/veh)   2.5   6.0        | v/c Ratio                     |             |          |           |            |                       |   |
| tueue Delay 0.0 0.0 0.0  otal Delay (s/veh) 27.2 5.3 5.2  OS C A A  pproach Delay (s/veh) 27.2 5.3 5.2  pproach LOS C A A  tueue Length 50th (m) 0.6 4.8 6.0  tueue Length 95th (m) 4.4 8.1 9.6  tueue Length Ust (m) 76.7 28.1 10.1  turn Bay Length (m)  ase Capacity (vph) 253 2043 2103  tarvation Cap Reductn 0 0 0  pillback Cap Reductn 0 0 0  torage Cap Reductn 0 0 0  teduced v/c Ratio 0.03 0.08 0.10  tersection Summary  sycle Length: 90  ctuated Cycle Length: 90  ffset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green  latural Cycle: 90  control Type: Actuated-Coordinated  laximum v/c Ratio: 0.10  tersection Signal Delay (s/veh): 5.7 Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |          |           |            |                       |   |
| otal Delay (s/veh) 27.2 5.3 5.2  OS C A A  pproach Delay (s/veh) 27.2 5.3 5.2  pproach LOS C A A  Queue Length 50th (m) 0.6 4.8 6.0  Queue Length 95th (m) 4.4 8.1 9.6  Queue Length (m) 76.7 28.1 10.1  Queue Length (m)  asse Capacity (vph) 253 2043 2103  tarvation Cap Reductn 0 0 0  pillback Cap Reductn 0 0 0  pillback Cap Reductn 0 0 0  pillback Cap Reductn 0 0 0  torage Cap Reductn 0 0 0  queduced v/c Ratio 0.03 0.08 0.10  Attersection Summary  Pycle Length: 90  cutuated Cycle Length: 90  cutuated Cycle Length: 90  control Type: Actuated-Coordinated  daximum v/c Ratio: 0.10  htersection Signal Delay (s/veh): 5.7 Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • ,                           |             |          |           |            |                       |   |
| OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |             |          |           |            |                       |   |
| pproach Delay (s/veh) 27.2 5.3 5.2  pproach LOS C A A A  queue Length 50th (m) 0.6 4.8 6.0  queue Length 95th (m) 4.4 8.1 9.6  queue Length (m) 76.7 28.1 10.1  queue Length (m)  ase Capacity (vph) 253 2043 2103  tarvation Cap Reductn 0 0 0  pillback Cap Reductn 0 0 0  torage Cap Reductn 0 0 0  teduced v/c Ratio 0.03 0.08 0.10  attersection Summary  cycle Length: 90  ctuated Cycle Length: 90  control Type: Actuated-Coordinated  daximum v/c Ratio: 0.10  attersection Signal Delay (s/veh): 5.7  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOS                           |             |          |           |            |                       |   |
| pproach LOS C A A A queue Length 50th (m) 0.6 4.8 6.0 queue Length 95th (m) 4.4 8.1 9.6 queue Length With ternal Link Dist (m) 76.7 28.1 10.1 queue Length (m) 253 2043 2103 queue Length (m) 254 2043 2103 queue Length  |                               |             |          |           |            |                       |   |
| Aueue Length 50th (m)  Aueue Length 95th (m)  |                               |             |          |           |            |                       |   |
| Aueueu Length 95th (m) 4.4 8.1 9.6 Internal Link Dist (m) 76.7 28.1 10.1 Iurn Bay Length (m) Iase Capacity (vph) 253 2043 2103 Itarvation Cap Reductn 0 0 0 Ipillback Cap Reductn 0 0 0 Interage Cap Reductn 0 0 0 Intersection Summary Intersection Summary Intersection Summary Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green Intersection Capacity (page 14.4 and 6:SBT, Start of Green In |                               |             |          |           |            |                       |   |
| Internal Link Dist (m) 76.7 28.1 10.1  Furn Bay Length (m) ase Capacity (vph) 253 2043 2103  Furn tarvation Cap Reductn 0 0 0  Fillback Cap Reductn 0 0 0  Forage Cap Reductn 0 0 0  Fillback Cap Redu |                               |             |          |           |            |                       |   |
| urn Bay Length (m)  ase Capacity (vph) 253 2043 2103  tarvation Cap Reductn 0 0 0  pillback Cap Reductn 0 0 0  torage Cap Reductn 0 0 0  deduced v/c Ratio 0.03 0.08 0.10  Intersection Summary  cycle Length: 90  ctuated Cycle Length: 90  offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green  latural Cycle: 90  control Type: Actuated-Coordinated  daximum v/c Ratio: 0.10  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |             |          |           |            |                       |   |
| ase Capacity (vph)  253  2043  2103  tarvation Cap Reductn  0  0  0  torage Cap Reductn  0  0  0  0  teduced v/c Ratio  0.03  0.08  0.10  ntersection Summary  cycle Length: 90  ctuated Cycle Length: 90  offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green  latural Cycle: 90  control Type: Actuated-Coordinated  daximum v/c Ratio: 0.10  ntersection Signal Delay (s/veh): 5.7  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>\</b> ,                    | 10.1        |          | 20.1      | 10.1       |                       |   |
| tarvation Cap Reductn 0 0 0 pillback Cap Reductn 0 0 0 torage Cap Reductn 0 0 0 teduced v/c Ratio 0.03 0.08 0.10  Attersection Summary Eycle Length: 90 ctuated Cycle Length: 90 Offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green latural Cycle: 90 Control Type: Actuated-Coordinated daximum v/c Ratio: 0.10 Attersection Signal Delay (s/veh): 5.7  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 253         |          | 2043      | 2103       |                       |   |
| pillback Cap Reductn 0 0 0 0 torage Cap Reductn 0 0 0 0 teduced v/c Ratio 0.03 0.08 0.10  Intersection Summary Eycle Length: 90 ctuated Cycle Length: 90 Iffset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green Intersection Type: Actuated-Coordinated Intersection Signal Delay (s/veh): 5.7  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |             |          |           |            |                       |   |
| torage Cap Reductn 0 0 0 0  deduced v/c Ratio 0.03 0.08 0.10  Intersection Summary  Eycle Length: 90  Cutuated Cycle Length: 90  Intersection Summary  Intersection Los: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |             |          |           |            |                       |   |
| ntersection Summary  Sycle Length: 90  ctuated Cycle Length: 90  offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green  latural Cycle: 90  control Type: Actuated-Coordinated  laximum v/c Ratio: 0.10  othersection Signal Delay (s/veh): 5.7  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                             |             |          |           |            |                       |   |
| Attersection Summary Expelse Length: 90 Actuated Cycle Length: 90 Affset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green Alatural Cycle: 90 Acontrol Type: Actuated-Coordinated Alaximum v/c Ratio: 0.10 Attersection Signal Delay (s/veh): 5.7  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                           |             |          |           |            |                       |   |
| ctuated Cycle Length: 90 ctuated Cycle Length: 90 offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green latural Cycle: 90 control Type: Actuated-Coordinated flaximum v/c Ratio: 0.10 offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green latural Cycle: 90 control Type: Actuated-Coordinated flaximum v/c Ratio: 0.10 offset: 10 (10 (10 (10 (10 (10 (10 (10 (10 (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 0.00        |          | 0.00      | 0.10       |                       |   |
| ctuated Cycle Length: 90  Offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green  Industrial Cycle: 90  Control Type: Actuated-Coordinated  Itaximum v/c Ratio: 0.10  Intersection Signal Delay (s/veh): 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intersection Summary          |             |          |           |            |                       |   |
| Offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green latural Cycle: 90 control Type: Actuated-Coordinated laximum v/c Ratio: 0.10 htersection Signal Delay (s/veh): 5.7 Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cycle Length: 90              |             |          |           |            |                       |   |
| latural Cycle: 90 control Type: Actuated-Coordinated laximum v/c Ratio: 0.10 ntersection Signal Delay (s/veh): 5.7 Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Actuated Cycle Length: 90     |             |          |           |            |                       |   |
| fontrol Type: Actuated-Coordinated  laximum v/c Ratio: 0.10  ntersection Signal Delay (s/veh): 5.7  Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | ed to phas  | se 2:NBT | L and 6:S | SBT, Start | of Green              |   |
| laximum v/c Ratio: 0.10 htersection Signal Delay (s/veh): 5.7 Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Natural Cycle: 90             |             |          |           |            |                       |   |
| laximum v/c Ratio: 0.10 htersection Signal Delay (s/veh): 5.7 Intersection LOS: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Control Type: Actuated-Coo    | ordinated   |          |           |            |                       |   |
| • , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum v/c Ratio: 0.10       |             |          |           |            |                       |   |
| ntersection Capacity Utilization 45.6% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intersection Signal Delay (s  | s/veh): 5.7 |          |           | In         | itersection LOS: A    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intersection Capacity Utiliza | ation 45.6° | %        |           | IC         | CU Level of Service A | 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis Period (min) 15      |             |          |           |            |                       |   |


Splits and Phases: 6: Bank & Aylmer



| 1. Dank & Sunnys           |              |               |       |       |       |             |       | _     |      |      | 00/01/2024 |
|----------------------------|--------------|---------------|-------|-------|-------|-------------|-------|-------|------|------|------------|
|                            | •            | $\rightarrow$ | •     | -     | 1     | <b>†</b>    | -     | Į.    |      |      |            |
| Lane Group                 | EBL          | EBT           | WBL   | WBT   | NBL   | NBT         | SBL   | SBT   | Ø3   | Ø7   |            |
| Lane Configurations        |              | 4             |       | 4     |       | <b>€1</b> } |       | 4î≽   |      |      |            |
| Traffic Volume (vph)       | 28           | 7             | 5     | 12    | 12    | 236         | 33    | 411   |      |      |            |
| Future Volume (vph)        | 28           | 7             | 5     | 12    | 12    | 236         | 33    | 411   |      |      |            |
| Lane Group Flow (vph)      | 0            | 60            | 0     | 55    | 0     | 281         | 0     | 541   |      |      |            |
| Turn Type                  | Perm         | NA            | Perm  | NA    | Perm  | NA          | pm+pt | NA    |      |      |            |
| Protected Phases           |              | 4             |       | 8     |       | 2           | 1     | 6     | 3    | 7    |            |
| Permitted Phases           | 4            |               | 8     |       | 2     |             | 6     |       |      |      |            |
| Detector Phase             | 4            | 4             | 8     | 8     | 2     | 2           | 1     | 6     |      |      |            |
| Switch Phase               |              |               |       |       |       |             |       |       |      |      |            |
| Minimum Initial (s)        | 6.4          | 6.4           | 5.3   | 5.3   | 17.0  | 17.0        | 5.0   | 17.0  | 1.0  | 1.0  |            |
| Minimum Split (s)          | 25.0         | 25.0          | 25.0  | 25.0  | 43.0  | 43.0        | 17.0  | 60.0  | 5.0  | 5.0  |            |
| Total Split (s)            | 25.0         | 25.0          | 25.0  | 25.0  | 43.0  | 43.0        | 17.0  | 60.0  | 5.0  | 5.0  |            |
| Total Split (%)            | 27.8%        | 27.8%         | 27.8% | 27.8% | 47.8% | 47.8%       | 18.9% | 66.7% | 6%   | 6%   |            |
| Yellow Time (s)            | 3.0          | 3.0           | 3.0   | 3.0   | 3.0   | 3.0         | 3.0   | 3.0   | 2.0  | 2.0  |            |
| All-Red Time (s)           | 2.6          | 2.6           | 2.6   | 2.6   | 3.0   | 3.0         | 2.9   | 3.0   | 0.0  | 0.0  |            |
| Lost Time Adjust (s)       |              | 0.0           |       | 0.0   |       | 0.0         |       | 0.0   |      |      |            |
| Total Lost Time (s)        |              | 5.6           |       | 5.6   |       | 6.0         |       | 6.0   |      |      |            |
| Lead/Lag                   | Lag          | Lag           | Lag   | Lag   | Lag   | Lag         | Lead  |       | Lead | Lead |            |
| Lead-Lag Optimize?         | <u> </u>     | <u> </u>      | Yes   | Yes   | Yes   | Yes         | Yes   |       |      | Yes  |            |
| Recall Mode                | None         | None          | None  | None  | Max   | Max         | None  | Max   | None | None |            |
| Act Effct Green (s)        |              | 10.1          |       | 9.5   |       | 65.1        |       | 65.1  |      |      |            |
| Actuated g/C Ratio         |              | 0.13          |       | 0.12  |       | 0.82        |       | 0.82  |      |      |            |
| v/c Ratio                  |              | 0.48          |       | 0.33  |       | 0.12        |       | 0.24  |      |      |            |
| Control Delay (s/veh)      |              | 44.4          |       | 20.8  |       | 3.2         |       | 3.5   |      |      |            |
| Queue Delay                |              | 0.0           |       | 0.0   |       | 0.0         |       | 0.0   |      |      |            |
| Total Delay (s/veh)        |              | 44.4          |       | 20.8  |       | 3.2         |       | 3.5   |      |      |            |
| LOS                        |              | D             |       | С     |       | Α           |       | Α     |      |      |            |
| Approach Delay (s/veh)     |              | 44.4          |       | 20.8  |       | 3.2         |       | 3.5   |      |      |            |
| Approach LOS               |              | D             |       | С     |       | Α           |       | Α     |      |      |            |
| Queue Length 50th (m)      |              | 9.3           |       | 2.8   |       | 5.4         |       | 11.3  |      |      |            |
| Queue Length 95th (m)      |              | 19.1          |       | 11.9  |       | 11.0        |       | 21.2  |      |      |            |
| Internal Link Dist (m)     |              | 75.1          |       | 136.0 |       | 63.1        |       | 79.0  |      |      |            |
| Turn Bay Length (m)        |              |               |       |       |       |             |       |       |      |      |            |
| Base Capacity (vph)        |              | 241           |       | 304   |       | 2387        |       | 2225  |      |      |            |
| Starvation Cap Reductn     |              | 0             |       | 0     |       | 0           |       | 0     |      |      |            |
| Spillback Cap Reductn      |              | 0             |       | 0     |       | 0           |       | 0     |      |      |            |
| Storage Cap Reductn        |              | 0             |       | 0     |       | 0           |       | 0     |      |      |            |
| Reduced v/c Ratio          |              | 0.25          |       | 0.18  |       | 0.12        |       | 0.24  |      |      |            |
| Intersection Summary       |              |               |       |       |       |             |       |       |      |      |            |
| Cycle Length: 90           |              |               |       |       |       |             |       |       |      |      |            |
| Actuated Cycle Length: 79  |              |               |       |       |       |             |       |       |      |      |            |
| Natural Cycle: 90          |              |               |       |       |       |             |       |       |      |      |            |
| Control Type: Actuated-Un  | coordinate   | ed            |       |       |       |             |       |       |      |      |            |
| Maximum v/c Ratio: 0.48    |              |               |       |       |       |             |       |       |      |      |            |
| Internation Clause Delevit | -/··-b\. 7 0 |               |       | 1     |       | - I OC. /   | ١     |       |      |      |            |

Splits and Phases: 7: Bank & Sunnyside

Intersection Signal Delay (s/veh): 7.0
Intersection Capacity Utilization 60.6%
Analysis Period (min) 15



Intersection LOS: A ICU Level of Service B

ignal Timing, I

|                                                           | ۶                                                        | 1       | †     | <del> </del> |      |           |  |
|-----------------------------------------------------------|----------------------------------------------------------|---------|-------|--------------|------|-----------|--|
| Lane Group                                                | EBL                                                      | NBL     | NBT   | SBT          | Ø4   |           |  |
| Lane Configurations                                       | ¥                                                        |         | 4     | 7            |      |           |  |
| Traffic Volume (vph)                                      | 64                                                       | 31      | 264   | 152          |      |           |  |
| Future Volume (vph)                                       | 64                                                       | 31      | 264   | 152          |      |           |  |
| Lane Group Flow (vph)                                     | 102                                                      | 0       | 327   | 206          |      |           |  |
| Turn Type                                                 | Prot                                                     | Perm    | NA    | NA           |      |           |  |
| Protected Phases                                          | 10                                                       |         | 2     | 6            | 4    |           |  |
| Permitted Phases                                          |                                                          | 2       |       |              |      |           |  |
| Detector Phase                                            | 10                                                       | 2       | 2     | 6            |      |           |  |
| Switch Phase                                              |                                                          |         |       |              |      |           |  |
| Minimum Initial (s)                                       | 10.0                                                     | 4.0     | 4.0   | 4.0          | 4.0  |           |  |
| Minimum Split (s)                                         | 21.0                                                     | 48.0    | 48.0  | 48.0         | 11.0 |           |  |
| Total Split (s)                                           | 21.0                                                     | 48.0    | 48.0  | 48.0         | 11.0 |           |  |
| Total Split (%)                                           | 26.3%                                                    | 60.0%   | 60.0% | 60.0%        | 14%  |           |  |
| Yellow Time (s)                                           | 3.0                                                      | 3.0     | 3.0   | 3.0          | 3.0  |           |  |
| All-Red Time (s)                                          | 2.7                                                      | 3.8     | 3.8   | 3.8          | 2.7  |           |  |
| Lost Time Adjust (s)                                      | 0.0                                                      | 0.0     | 0.0   | 0.0          |      |           |  |
| Total Lost Time (s)                                       | 5.7                                                      |         | 6.8   | 6.8          |      |           |  |
| Lead/Lag                                                  | 0.,                                                      |         | 0.0   | 0.0          |      |           |  |
| Lead-Lag Optimize?                                        |                                                          |         |       |              |      |           |  |
| Recall Mode                                               | Min                                                      | None    | None  | Max          | None |           |  |
| Act Effct Green (s)                                       | 10.8                                                     | . 10110 | 41.2  | 41.2         |      |           |  |
| Actuated g/C Ratio                                        | 0.17                                                     |         | 0.64  | 0.64         |      |           |  |
| v/c Ratio                                                 | 0.39                                                     |         | 0.32  | 0.20         |      |           |  |
| Control Delay (s/veh)                                     | 28.7                                                     |         | 6.5   | 5.6          |      |           |  |
| Queue Delay                                               | 0.0                                                      |         | 0.0   | 0.0          |      |           |  |
| Total Delay (s/veh)                                       | 28.7                                                     |         | 6.5   | 5.6          |      |           |  |
| LOS                                                       | 20.7<br>C                                                |         | Α     | A            |      |           |  |
| Approach Delay (s/veh)                                    | 28.7                                                     |         | 6.5   | 5.6          |      |           |  |
| Approach LOS                                              | C                                                        |         | Α     | Α            |      |           |  |
| Queue Length 50th (m)                                     | 11.0                                                     |         | 14.3  | 8.2          |      |           |  |
| Queue Length 95th (m)                                     | 23.4                                                     |         | 29.4  | 18.0         |      |           |  |
| Internal Link Dist (m)                                    | 57.2                                                     |         | 0.1   | 5.9          |      |           |  |
| Turn Bay Length (m)                                       | 01.2                                                     |         | 0.1   | 0.0          |      |           |  |
| Base Capacity (vph)                                       | 370                                                      |         | 1030  | 1051         |      |           |  |
| Starvation Cap Reductn                                    | 0                                                        |         | 0     | 0            |      |           |  |
| Spillback Cap Reductn                                     | 0                                                        |         | 0     | 0            |      |           |  |
| Storage Cap Reductn                                       | 0                                                        |         | 0     | 0            |      |           |  |
| Reduced v/c Ratio                                         | 0.28                                                     |         | 0.32  | 0.20         |      |           |  |
|                                                           | 0.20                                                     |         | 0.02  | 0.20         |      |           |  |
| Intersection Summary                                      |                                                          |         |       |              |      |           |  |
| Cycle Length: 80                                          |                                                          |         |       |              |      |           |  |
| Actuated Cycle Length: 64.5                               | 5                                                        |         |       |              |      |           |  |
| Natural Cycle: 80                                         |                                                          |         |       |              |      |           |  |
| Control Type: Actuated-Unc                                | oordinate                                                | ed      |       |              |      |           |  |
| Maximum v/c Ratio: 0.39                                   |                                                          |         |       |              |      |           |  |
|                                                           | tersection Signal Delay (s/veh): 9.8 Intersection LOS: A |         |       |              |      |           |  |
| Intersection Capacity Utilization 51.5% ICU Level of Serv |                                                          |         |       |              |      | Service A |  |
| Analysis Period (min) 15                                  |                                                          |         |       |              |      |           |  |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



HCM 95th-tile Q

| letere etier               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection               | 0.4  |       |       |       |      |      |
| Intersection Delay, s/veh  | 9.1  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBL  | EBT   | WBT   | WBR   | SBL  | SBR  |
| Lane Configurations        |      | 4     | f)    |       | 14   |      |
| Traffic Vol, veh/h         | 5    | 190   | 275   | 5     | 5    | 5    |
| Future Vol, veh/h          | 5    | 190   | 275   | 5     | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 6    | 211   | 306   | 6     | 6    | 6    |
| Number of Lanes            | 0    | 1     | 1     | 0     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | SB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  | SB   |       |       |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0     |       | 1    |      |
| Conflicting Approach Right |      |       | SB    |       | EB   |      |
| Conflicting Lanes Right    | 0    |       | 1     |       | 1    |      |
| HCM Control Delay, s/veh   | 8.7  |       | 9.4   |       | 7.9  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | EBLn1 | WBLn1 | SBLn1 |      |      |
| Vol Left, %                |      | 3%    | 0%    | 50%   |      |      |
| Vol Thru, %                |      | 97%   | 98%   | 0%    |      |      |
| Vol Right, %               |      | 0%    | 2%    | 50%   |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 195   | 280   | 10    |      |      |
| LT Vol                     |      | 5     | 0     | 5     |      |      |
| Through Vol                |      | 190   | 275   | 0     |      |      |
| RT Vol                     |      | 0     | 5     | 5     |      |      |
| Lane Flow Rate             |      | 217   | 311   | 11    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.252 | 0.355 | 0.015 |      |      |
| Departure Headway (Hd)     |      | 4.191 | 4.105 | 4.857 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Сар                        |      | 847   | 868   | 741   |      |      |
| Service Time               |      | 2.267 | 2.164 | 2.857 |      |      |
| HCM Lane V/C Ratio         |      | 0.256 | 0.358 | 0.015 |      |      |
| HCM Control Delay, s/veh   |      | 8.7   | 9.4   | 7.9   |      |      |
| HCM Lane LOS               |      | Α     | Α     | Α     |      |      |

1.6

HCM 95th-tile Q

| Intersection               |         |          |        |       |      |        |
|----------------------------|---------|----------|--------|-------|------|--------|
| Intersection Delay, s/veh  | 7.8     |          |        |       |      |        |
| Intersection LOS           | Α       |          |        |       |      |        |
|                            |         |          |        |       |      |        |
| Movement                   | EBT     | EBR      | WBL    | WBT   | NBL  | NBR    |
| Lane Configurations        | <u></u> | LDIT     | ,,,,,, | 4     | W    | TTDIT. |
| Traffic Vol, veh/h         | 24      | 5        | 5      | 144   | 5    | 5      |
| Future Vol, veh/h          | 24      | 5        | 5      | 144   | 5    | 5      |
| Peak Hour Factor           | 0.90    | 0.90     | 0.90   | 0.90  | 0.90 | 0.90   |
| Heavy Vehicles, %          | 2       | 2        | 2      | 2     | 2    | 2      |
| Mvmt Flow                  | 27      | 6        | 6      | 160   | 6    | 6      |
| Number of Lanes            | 1       | 0        | 0      | 1     | 1    | 0      |
|                            | •       | <u> </u> |        | '     | •    | 0      |
| Approach                   | EB      |          | WB     |       | NB   |        |
| Opposing Approach          | WB      |          | EB     |       |      |        |
| Opposing Lanes             | 1       |          | 1      |       | 0    |        |
| Conflicting Approach Left  |         |          | NB     |       | EB   |        |
| Conflicting Lanes Left     | 0       |          | 1      |       | 1    |        |
| Conflicting Approach Right | NB      |          |        |       | WB   |        |
| Conflicting Lanes Right    | 1       |          | 0      |       | 1    |        |
| HCM Control Delay, s/veh   | 7.2     |          | 7.9    |       | 7.2  |        |
| HCM LOS                    | Α       |          | Α      |       | Α    |        |
|                            |         |          |        |       |      |        |
| Lane                       |         | NBLn1    | EBLn1  | WBLn1 |      |        |
| Vol Left, %                |         | 50%      | 0%     | 3%    |      |        |
| Vol Thru, %                |         | 0%       | 83%    | 97%   |      |        |
| Vol Right, %               |         | 50%      | 17%    | 0%    |      |        |
| Sign Control               |         | Stop     | Stop   | Stop  |      |        |
| Traffic Vol by Lane        |         | 10       | 29     | 149   |      |        |
| LT Vol                     |         | 5        | 0      | 5     |      |        |
| Through Vol                |         | 0        | 24     | 144   |      |        |
| RT Vol                     |         | 5        | 5      | 0     |      |        |
| Lane Flow Rate             |         | 11       | 32     | 166   |      |        |
| Geometry Grp               |         | 1        | 1      | 1     |      |        |
| Degree of Util (X)         |         | 0.013    | 0.036  | 0.183 |      |        |
| Departure Headway (Hd)     |         | 4.074    | 3.973  | 3.985 |      |        |
| Convergence, Y/N           |         | Yes      | Yes    | Yes   |      |        |
| Cap                        |         | 866      | 898    | 904   |      |        |
| Service Time               |         | 2.157    | 2.009  | 1.997 |      |        |
| HCM Lane V/C Ratio         |         | 0.013    | 0.036  | 0.184 |      |        |
| HCM Control Delay, s/veh   |         | 7.2      | 7.2    | 7.9   |      |        |
| HCM Lane LOS               |         | Α        | Α      | Α     |      |        |

0.1

0.7

HCM 95th-tile Q

| L. C                       |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection               | 0.0  |       |       |       |      |      |
| Intersection Delay, s/veh  | 8.3  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | ĵ»   |       |       | ની    | N/A  |      |
| Traffic Vol, veh/h         | 24   | 5     | 73    | 5     | 129  | 66   |
| Future Vol, veh/h          | 24   | 5     | 73    | 5     | 129  | 66   |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 27   | 6     | 81    | 6     | 143  | 73   |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       | •     |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.6  |       | 8.2   |       | 8.5  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 66%   | 0%    | 94%   |      |      |
| Vol Thru, %                |      | 0%    | 83%   | 6%    |      |      |
| Vol Right, %               |      | 34%   | 17%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 195   | 29    | 78    |      |      |
| LT Vol                     |      | 129   | 0     | 73    |      |      |
| Through Vol                |      | 0     | 24    | 5     |      |      |
| RT Vol                     |      | 66    | 5     | 0     |      |      |
| Lane Flow Rate             |      | 217   | 32    | 87    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.245 | 0.04  | 0.112 |      |      |
| Departure Headway (Hd)     |      | 4.069 | 4.415 | 4.641 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 869   | 815   | 777   |      |      |
| Service Time               |      | 2.157 | 2.418 | 2.643 |      |      |
| HCM Lane V/C Ratio         |      | 0.25  | 0.039 | 0.112 |      |      |
| HCM Control Delay, s/veh   |      | 8.5   | 7.6   | 8.2   |      |      |
|                            |      |       |       |       |      |      |

0.1

0.4

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 7.3  |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h        | 10   | 43   | 0    | 0    | 0    | 64   | 10   | 10   | 49   | 0    | 0    | 94   |
| Future Vol, veh/h         | 10   | 43   | 0    | 0    | 0    | 64   | 10   | 10   | 49   | 0    | 0    | 94   |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                 | 11   | 48   | 0    | 0    | 0    | 71   | 11   | 11   | 54   | 0    | 0    | 104  |
| Number of Lanes           | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |

| Approach                   | EB  | WB  | NB  | SB  |
|----------------------------|-----|-----|-----|-----|
| Opposing Approach          | WB  | EB  | SB  | NB  |
| Opposing Lanes             | 1   | 1   | 1   | 1   |
| Conflicting Approach Left  | SB  | NB  | EB  | WB  |
| Conflicting Lanes Left     | 1   | 1   | 1   | 1   |
| Conflicting Approach Right | NB  | SB  | WB  | EB  |
| Conflicting Lanes Right    | 1   | 1   | 1   | 1   |
| HCM Control Delay, s/veh   | 7.7 | 7.1 | 7.3 | 7.1 |
| HCM LOS                    | Α   | A   | Α   | A   |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 14%   | 19%   | 0%    | 0%    |  |
| Vol Thru, %              | 14%   | 81%   | 0%    | 0%    |  |
| Vol Right, %             | 71%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 69    | 53    | 64    | 94    |  |
| LT Vol                   | 10    | 10    | 0     | 0     |  |
| Through Vol              | 10    | 43    | 0     | 0     |  |
| RT Vol                   | 49    | 0     | 64    | 94    |  |
| Lane Flow Rate           | 77    | 59    | 71    | 104   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.082 | 0.071 | 0.073 | 0.105 |  |
| Departure Headway (Hd)   | 3.841 | 4.34  | 3.691 | 3.616 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 922   | 819   | 959   | 979   |  |
| Service Time             | 1.909 | 2.4   | 1.758 | 1.685 |  |
| HCM Lane V/C Ratio       | 0.084 | 0.072 | 0.074 | 0.106 |  |
| HCM Control Delay, s/veh | 7.3   | 7.7   | 7.1   | 7.1   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.3   | 0.2   | 0.2   | 0.4   |  |

| or<br>, %                                | Stop                                                      | EBR 108 108 0 Stop None 0 90 3 120                               | NBL  46 46 178 Free 90 3 51                                      | NBT 276 276 0 Free None 0 90 3 307                                                          | SBT 389 389 0 Free - 0 0 90 3 432                                                                   | SBR  65 65 107 Free None 90 3 72                                                                                                 |
|------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| h<br>h<br>s, #/hr<br>Storag<br>or<br>, % | 2<br>2<br>5 0<br>Stop<br>-<br>-<br>-<br>0<br>90<br>3<br>2 | 108<br>108<br>0<br>Stop<br>None<br>0<br>-<br>-<br>90<br>3<br>120 | 46<br>46<br>178<br>Free<br>-<br>-<br>-<br>90<br>3<br>51          | 276<br>276<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3<br>307                            | 389<br>389<br>0<br>Free<br>-<br>0<br>0<br>90<br>3                                                   | 65<br>65<br>107<br>Free<br>None<br>-<br>-<br>-<br>90<br>3                                                                        |
| h<br>h<br>s, #/hr<br>Storag<br>or<br>, % | 2<br>2<br>5 0<br>Stop<br>-<br>-<br>-<br>0<br>90<br>3<br>2 | 108<br>108<br>0<br>Stop<br>None<br>0<br>-<br>-<br>90<br>3<br>120 | 46<br>46<br>178<br>Free<br>-<br>-<br>-<br>90<br>3<br>51          | 276<br>276<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3<br>307                            | 389<br>389<br>0<br>Free<br>-<br>0<br>0<br>90<br>3                                                   | 65<br>65<br>107<br>Free<br>None<br>-<br>-<br>-<br>90<br>3                                                                        |
| h<br>h<br>s, #/hr<br>Storag<br>or<br>, % | 2<br>Stop<br>                                             | 108<br>108<br>0<br>Stop<br>None<br>0<br>-<br>-<br>90<br>3<br>120 | 46<br>178<br>Free<br>-<br>-<br>-<br>90<br>3<br>51                | 276<br>276<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3<br>307                            | 389<br>389<br>0<br>Free<br>-<br>0<br>0<br>90<br>3                                                   | 65<br>107<br>Free<br>None<br>-<br>-<br>-<br>90<br>3                                                                              |
| h<br>s, #/hr<br>Storag<br>or<br>, %      | 2<br>Stop<br>                                             | 108<br>0<br>Stop<br>None<br>0<br>-<br>-<br>90<br>3<br>120        | 46<br>178<br>Free<br>-<br>-<br>-<br>90<br>3<br>51                | 276<br>0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3<br>307                                   | 389<br>0<br>Free<br>-<br>0<br>0<br>90<br>3                                                          | 65<br>107<br>Free<br>None<br>-<br>-<br>-<br>90<br>3                                                                              |
| s, #/hr                                  | Stop                                                      | 0<br>Stop<br>None<br>0<br>-<br>-<br>90<br>3<br>120               | 178 Free 90 3 51                                                 | 0<br>Free<br>None<br>-<br>0<br>0<br>90<br>3<br>307                                          | 0<br>Free<br>-<br>0<br>0<br>90<br>3                                                                 | 107<br>Free<br>None<br>-<br>-<br>-<br>90<br>3                                                                                    |
| l<br>or<br>, %                           | Stop                                                      | Stop<br>None<br>0<br>-<br>90<br>3<br>120                         | Free 90 3 51                                                     | Free None - 0 0 90 3 3 307                                                                  | Free - 0 0 0 90 3                                                                                   | Free<br>None<br>-<br>-<br>-<br>90<br>3                                                                                           |
| Storag<br>or<br>, %                      | Je, # 0<br>0<br>90<br>3<br>2<br>Minor2                    | None<br>0<br>-<br>-<br>90<br>3<br>120                            | 90<br>3<br>51                                                    | None<br>0<br>0<br>90<br>3<br>307                                                            | 0<br>0<br>0<br>90<br>3                                                                              | None<br>-<br>-<br>-<br>90<br>3                                                                                                   |
| Storag<br>or<br>, %                      | 90<br>3<br>2<br>Minor2                                    | 0<br>-<br>-<br>90<br>3<br>120                                    | 90<br>3<br>51                                                    | 0<br>0<br>90<br>3<br>307                                                                    | 0<br>0<br>0<br>90<br>3                                                                              | -<br>-<br>-<br>90<br>3                                                                                                           |
| or<br>, %                                | 0<br>90<br>3<br>2<br><u>Minor2</u><br>902                 | 90<br>3<br>120                                                   | 90<br>3<br>51                                                    | 0<br>90<br>3<br>307                                                                         | 90<br>3                                                                                             | 90<br>3                                                                                                                          |
| or<br>, %                                | 0<br>90<br>3<br>2<br><u>Minor2</u><br>902                 | 90<br>3<br>120                                                   | 90<br>3<br>51                                                    | 0<br>90<br>3<br>307                                                                         | 90<br>3                                                                                             | 90                                                                                                                               |
| %                                        | 90<br>3<br>2<br>Minor2<br>902                             | 90<br>3<br>120                                                   | 90<br>3<br>51                                                    | 90<br>3<br>307                                                                              | 90                                                                                                  | 90                                                                                                                               |
| %                                        | 3<br>2<br>Minor2<br>902                                   | 3<br>120<br>N                                                    | 3<br>51                                                          | 3<br>307                                                                                    | 3                                                                                                   | 3                                                                                                                                |
|                                          | 2<br>Minor2<br>902                                        | 120<br>N                                                         | 51                                                               | 307                                                                                         |                                                                                                     |                                                                                                                                  |
|                                          | Minor2<br>902                                             | N                                                                |                                                                  |                                                                                             | 432                                                                                                 | 72                                                                                                                               |
|                                          | 902                                                       |                                                                  | Maior1                                                           |                                                                                             |                                                                                                     |                                                                                                                                  |
|                                          | 902                                                       |                                                                  | Maior1                                                           |                                                                                             |                                                                                                     |                                                                                                                                  |
|                                          | 902                                                       |                                                                  |                                                                  | Λ                                                                                           | /lajor2                                                                                             |                                                                                                                                  |
| ΑII                                      |                                                           |                                                                  | 682                                                              | 0                                                                                           | -                                                                                                   | 0                                                                                                                                |
|                                          | 616                                                       | 040                                                              | 002                                                              | -                                                                                           | -                                                                                                   | -                                                                                                                                |
|                                          | 646                                                       |                                                                  | -                                                                |                                                                                             |                                                                                                     |                                                                                                                                  |
|                                          | 256                                                       | -                                                                | 4 4 4 5                                                          | -                                                                                           | -                                                                                                   | -                                                                                                                                |
|                                          |                                                           | 6.245                                                            | 4.145                                                            | -                                                                                           | -                                                                                                   | -                                                                                                                                |
| g 1                                      | 5.445                                                     | -                                                                | -                                                                | -                                                                                           | -                                                                                                   | -                                                                                                                                |
| g 2                                      | 5.845                                                     | -                                                                | -                                                                | -                                                                                           | -                                                                                                   | -                                                                                                                                |
|                                          | 3.52853                                                   |                                                                  |                                                                  | -                                                                                           | -                                                                                                   | -                                                                                                                                |
| euver                                    |                                                           | 468                                                              | 903                                                              | -                                                                                           | -                                                                                                   | -                                                                                                                                |
|                                          | 518                                                       | -                                                                | -                                                                | -                                                                                           | -                                                                                                   | -                                                                                                                                |
|                                          | 762                                                       | -                                                                | -                                                                | -                                                                                           | -                                                                                                   | -                                                                                                                                |
| , %                                      |                                                           |                                                                  |                                                                  | -                                                                                           | -                                                                                                   | -                                                                                                                                |
| euve                                     | r 177                                                     | 380                                                              | 733                                                              | -                                                                                           | _                                                                                                   | _                                                                                                                                |
|                                          |                                                           |                                                                  | .00                                                              |                                                                                             | _                                                                                                   | _                                                                                                                                |
| Suve                                     |                                                           |                                                                  |                                                                  |                                                                                             |                                                                                                     | <u>-</u>                                                                                                                         |
|                                          |                                                           | -                                                                | -                                                                | -                                                                                           | -                                                                                                   |                                                                                                                                  |
|                                          | 010                                                       | -                                                                | -                                                                | -                                                                                           | -                                                                                                   | -                                                                                                                                |
|                                          |                                                           |                                                                  |                                                                  |                                                                                             |                                                                                                     |                                                                                                                                  |
|                                          | EB                                                        |                                                                  | NB                                                               |                                                                                             | SB                                                                                                  |                                                                                                                                  |
| elav s                                   |                                                           |                                                                  |                                                                  |                                                                                             |                                                                                                     |                                                                                                                                  |
| nay, c                                   | _                                                         |                                                                  | 1.01                                                             |                                                                                             | 0                                                                                                   |                                                                                                                                  |
|                                          |                                                           |                                                                  |                                                                  |                                                                                             |                                                                                                     |                                                                                                                                  |
|                                          |                                                           |                                                                  |                                                                  |                                                                                             |                                                                                                     |                                                                                                                                  |
| or Mv                                    | mt                                                        | NBL                                                              | NBT                                                              | EBL <sub>n1</sub>                                                                           | SBT                                                                                                 | SBR                                                                                                                              |
| \                                        |                                                           | 514                                                              | -                                                                | 380                                                                                         | -                                                                                                   | -                                                                                                                                |
| )                                        |                                                           |                                                                  | _                                                                |                                                                                             | -                                                                                                   | _                                                                                                                                |
| )<br>Ratio                               | s/veh)                                                    |                                                                  |                                                                  |                                                                                             | _                                                                                                   | _                                                                                                                                |
| Ratio                                    |                                                           |                                                                  |                                                                  |                                                                                             |                                                                                                     | _                                                                                                                                |
| Ratio<br>elay (s                         |                                                           |                                                                  |                                                                  |                                                                                             | _                                                                                                   | _                                                                                                                                |
| Ratio<br>elay (s                         | h)                                                        | 0.2                                                              |                                                                  | 1.0                                                                                         |                                                                                                     |                                                                                                                                  |
| ela                                      | y, s                                                      | 388<br>618<br>EB<br>y, s/\dd.8.79<br>C                           | EB  Ny, s/\d8.79  C  Mvmt NBL  514  atio 0.07  y (s/veh) 10.3  B | EB NB  Ny, s/\(\frac{1}{4}\)8.79 C  Mvmt NBL NBTI  514 - atio 0.07 - y (s/veh) 10.3 0.6 B A | EB NB  Ny, s/18.79 C  Mvmt NBL NBTEBLn1  514 - 380 atio 0.07 - 0.316 by (s/veh) 10.3 0.6 18.8 B A C | EB NB SB  Ny, s/\forall 8.79 1.97 0  Mvmt NBL NBTEBLn1 SBT  514 - 380 -  atio 0.07 - 0.316 -  y (s/veh) 10.3 0.6 18.8 -  B A C - |

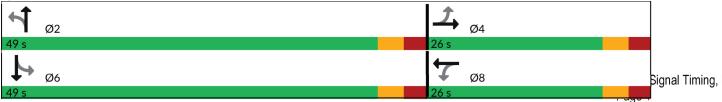
| Intersection           |                      |        |         |          |          |      |
|------------------------|----------------------|--------|---------|----------|----------|------|
| Int Delay, s/veh       | 0.2                  |        |         |          |          |      |
| Movement               | EBL                  | EBR    | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    |                      | 7      | 1100    | <b>†</b> | <u> </u> | UDIN |
| Traffic Vol, veh/h     | 2                    | 11     | 0       | 353      | 321      | 0    |
| Future Vol, veh/h      | 2                    | 11     | 0       | 353      | 321      | 0    |
| Conflicting Peds, #/hi |                      | 0      | 0       | 0        | 0        | 86   |
| Sign Control           | Stop                 |        | Free    | Free     | Free     | Free |
| RT Channelized         | - Otop               |        | -       |          | -        | None |
| Storage Length         | _                    | 0      | _       | -        |          | -    |
| Veh in Median Storag   |                      | -      | _       | 0        | 0        | _    |
| Grade, %               | η <del>ς</del> , # 0 |        | -       | 0        | 0        | _    |
| Peak Hour Factor       | 90                   | 90     | 90      | 90       | 90       | 90   |
|                        | 3                    | 3      | 3       | 3        | 3        | 3    |
| Heavy Vehicles, %      | 2                    | 12     |         | 392      | 357      |      |
| Mvmt Flow              | 2                    | 12     | 0       | 392      | 331      | 0    |
|                        |                      |        |         |          |          |      |
| Major/Minor            | Minor2               | N      | /lajor1 | N        | /lajor2  |      |
| Conflicting Flow All   | 553                  | 357    | -       | 0        | -        | 0    |
| Stage 1                | 357                  | -      | -       | -        | -        | -    |
| Stage 2                | 196                  | -      | -       | -        | -        | -    |
| Critical Hdwy          | 6.645                | 6.245  | -       | -        | -        | -    |
| Critical Hdwy Stg 1    | 5.445                | -      | -       | -        | -        | -    |
| Critical Hdwy Stg 2    | 5.845                | -      | _       | _        | _        | _    |
|                        | 3.5285               | 3.3285 | -       | -        | -        | -    |
| Pot Cap-1 Maneuver     |                      | 684    | 0       | _        | -        | 0    |
| Stage 1                | 705                  | -      | 0       | _        | _        | 0    |
| Stage 2                | 816                  | _      | 0       | _        | _        | 0    |
| Platoon blocked, %     | 010                  |        | v       | _        | _        | Ū    |
| Mov Cap-1 Maneuve      | r 476                | 684    | _       | _        | _        | _    |
| Mov Cap-1 Maneuve      |                      | -      | _       | _        | _        | _    |
| Stage 1                | 705                  | _      | _       | _        | _        | _    |
| Stage 2                | 816                  | _      | _       | _        |          | _    |
| Stage 2                | 010                  |        |         |          |          |      |
|                        |                      |        |         |          |          |      |
| Approach               | EB                   |        | NB      |          | SB       |      |
| HCM Control Delay,     | s/10.36              |        | 0       |          | 0        |      |
| HCM LOS                | В                    |        |         |          |          |      |
|                        |                      |        |         |          |          |      |
| Minor Lone/Major M     | not.                 | NDT    | DI 1    | CDT      |          |      |
| Minor Lane/Major Mv    | mt                   |        | BLn1    | SBT      |          |      |
| Capacity (veh/h)       |                      | -      | 684     | -        |          |      |
| HCM Lane V/C Ratio     |                      | -      | 0.018   | -        |          |      |
| HCM Control Delay (    | s/veh)               | -      | 10.4    | -        |          |      |
| HCM Lane LOS           |                      | -      | В       | -        |          |      |
| HCM 95th %tile Q(ve    | h)                   | -      | 0.1     | -        |          |      |
|                        |                      |        |         |          |          |      |

| Intersection           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |            |                 |      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|------------|-----------------|------|
| Int Delay, s/veh       | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |            |                 |      |
| Movement               | EBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EBR   | NBL     | NBT        | SBT             | SBR  |
| Lane Configurations    | THE STATE OF THE S | LDK   | NDL     | 4          |                 | אמט  |
| Traffic Vol, veh/h     | <b>'T'</b> 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 166   | 17      | <b>€</b> 1 | <b>Љ</b><br>121 | 61   |
| Future Vol, veh/h      | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 166   | 17      | 44         | 121             | 61   |
| Conflicting Peds, #/hr | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     | 0       | 0          | 0               | 0    |
| Sign Control           | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stop  | Free    | Free       | Free            | Free |
| RT Channelized         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None  |         |            |                 |      |
|                        | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | -       | None       | -               |      |
| Storage Length         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | -       | -          | -               | -    |
| Veh in Median Storage  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | -       | 0          | 0               | -    |
| Grade, %               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | -       | 0          | 0               | -    |
| Peak Hour Factor       | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90    | 90      | 90         | 90              | 90   |
| Heavy Vehicles, %      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | 0       | 0          | 0               | 0    |
| Mvmt Flow              | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 184   | 19      | 49         | 134             | 68   |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |            |                 |      |
| Major/Minor N          | linor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N     | //ajor1 | N          | /lajor2         |      |
| Conflicting Flow All   | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 168   | 202     | 0          | -               | 0    |
| Stage 1                | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | -       | -          | -               | -    |
| Stage 2                | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     | -       | -          | -               | -    |
| Critical Hdwy          | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2   | 4.1     | -          | -               | -    |
| Critical Hdwy Stg 1    | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | -       | _          | -               | _    |
| Critical Hdwy Stg 2    | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | _       | -          | _               | _    |
| Follow-up Hdwy         | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3   | 2.2     | _          | _               | _    |
| Pot Cap-1 Maneuver     | 738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 881   | 1382    | _          | _               | _    |
| Stage 1                | 866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | 1002    |            | _               | _    |
| Stage 2                | 942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _     | _       | _          | _               |      |
| Platoon blocked, %     | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | -       | -          | _               | -    |
| Mov Cap-1 Maneuver     | 728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 881   | 1382    | -          |                 |      |
| •                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1302    | -          | -               | -    |
| Mov Cap-2 Maneuver     | 728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | -       | -          | -               | -    |
| Stage 1                | 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | -       | -          | -               | -    |
| Stage 2                | 942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | -       | -          | -               | -    |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |            |                 |      |
| Approach               | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | NB      |            | SB              |      |
| HCM Control Delay, s/v |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 2.13    |            | 0               |      |
| HCM LOS                | 0.07<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 2.10    |            | U               |      |
| TIOWI LOO              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |            |                 |      |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |            |                 |      |
| Minor Lane/Major Mvm   | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NBL   | NBTE    | EBLn1      | SBT             | SBR  |
| Capacity (veh/h)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 502   | -       | 782        | -               | -    |
| HCM Lane V/C Ratio     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.014 | -       | 0.593      | -               | -    |
| HCM Control Delay (s/  | veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.6   | 0       | 16.1       | -               | -    |
| HCM Lane LOS           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A     | A       | С          | -               | -    |
| HCM 95th %tile Q(veh)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     | -       | 4          | -               | -    |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |            |                 |      |

| Intersection           |           |      |            |        |         |            |
|------------------------|-----------|------|------------|--------|---------|------------|
| Int Delay, s/veh       | 2.1       |      |            |        |         |            |
| Movement               | WBL       | WBR  | NBT        | NBR    | SBL     | SBT        |
| Lane Configurations    |           | 7    | <b>↑</b> ⊅ |        |         | <b>†</b> † |
| Traffic Vol, veh/h     | 5         | 144  | 409        | 29     | 0       | 356        |
| Future Vol, veh/h      | 5         | 144  | 409        | 29     | 0       | 356        |
| Conflicting Peds, #/hr | 0         | 0    | 0          | 100    | 0       | 0          |
| Sign Control           | Stop      | Stop | Free       | Free   | Free    | Free       |
| RT Channelized         | Stop<br>- | None | -          | None   | -       | None       |
| Storage Length         | _         | 0    | -          | None - | -       | None       |
|                        |           | -    | 0          |        |         | 0          |
| Veh in Median Storage  |           |      |            | -      | -       |            |
| Grade, %               | 0         | -    | 0          | -      | -       | 0          |
| Peak Hour Factor       | 90        | 90   | 90         | 90     | 90      | 90         |
| Heavy Vehicles, %      | 0         | 0    | 2          | 0      | 2       | 2          |
| Mvmt Flow              | 6         | 160  | 454        | 32     | 0       | 396        |
|                        |           |      |            |        |         |            |
| Major/Minor N          | /linor1   | N    | /lajor1    | N      | /lajor2 |            |
| Conflicting Flow All   | 768       | 343  | 0          | 0      |         | -          |
| Stage 1                | 571       | -    | _          | -      | _       | _          |
| Stage 2                | 198       | _    | _          | _      | _       | _          |
| Critical Hdwy          | 6.8       | 6.9  | _          | _      | _       | _          |
| Critical Hdwy Stg 1    | 5.8       | -    | _          | _      | _       | _          |
| Critical Hdwy Stg 2    | 5.8       | _    | _          | _      | _       | _          |
| Follow-up Hdwy         | 3.5       | 3.3  | _          | _      | _       |            |
| Pot Cap-1 Maneuver     | 342       | 658  | _          | _      | 0       | _          |
| Stage 1                | 534       | -    | _          | -      | 0       | -          |
|                        | 822       |      | -          | -      | 0       |            |
| Stage 2                | 022       | -    | -          |        | U       |            |
| Platoon blocked, %     | 200       | F00  | -          | -      |         | -          |
| Mov Cap-1 Maneuver     | 306       | 589  | -          | -      | -       | -          |
| Mov Cap-2 Maneuver     | 306       | -    | -          | -      | -       | -          |
| Stage 1                | 478       | -    | -          | -      | -       | -          |
| Stage 2                | 822       | -    | -          | -      | -       | -          |
|                        |           |      |            |        |         |            |
| Approach               | WB        |      | NB         |        | SB      |            |
| HCM Control Delay, s/  |           |      | 0          |        | 0       |            |
| HCM LOS                | В         |      | U          |        | U       |            |
|                        |           |      |            |        |         |            |
|                        |           |      |            |        |         |            |
| Minor Lane/Major Mvn   | nt        | NBT  | NBRV       | VBLn1  | SBT     |            |
| Capacity (veh/h)       |           | -    | -          | 589    | -       |            |
| HCM Lane V/C Ratio     |           | -    | -          | 0.272  | -       |            |
| HCM Control Delay (s/  | /veh)     | -    | -          | 13.4   | -       |            |
| HCM Lane LOS           |           | -    | -          | В      | -       |            |
| HCM 95th %tile Q(veh   | )         | -    | -          | 1.1    | -       |            |
|                        |           |      |            |        |         |            |

| Intersection            |          |       |        |           |         |      |
|-------------------------|----------|-------|--------|-----------|---------|------|
| Int Delay, s/veh        | 5.2      |       |        |           |         |      |
|                         | EBT      | EBR   | WBL    | WBT       | NBL     | NBR  |
| Lane Configurations     | 7        | LDIN  | WDL    | <u>₩Ы</u> | NDL NDL | אטוו |
| Traffic Vol, veh/h      | 190      | 1     | 0      | 280       | 120     | 5    |
| Future Vol, veh/h       | 190      | 1     | 0      | 280       | 120     | 5    |
| Conflicting Peds, #/hr  | 0        | 100   | 100    | 200       | 100     | 100  |
|                         | -ree     | Free  | Free   | Free      | Stop    | Stop |
| RT Channelized          |          |       |        |           |         | None |
|                         | -        |       | -      |           | -       | None |
| Storage Length          | <u> </u> | -     | -      | -         | 0       | -    |
| Veh in Median Storage,  |          | -     | -      | 0         | 0       | -    |
| Grade, %                | 0        | -     | -      | 0         | 0       | -    |
| Peak Hour Factor        | 90       | 90    | 90     | 90        | 90      | 90   |
| Heavy Vehicles, %       | 2        | 2     | 2      | 2         | 2       | 2    |
| Mvmt Flow               | 211      | 1     | 0      | 311       | 133     | 6    |
|                         |          |       |        |           |         |      |
| Major/Minor Ma          | ijor1    | N     | Major2 | N         | Minor1  |      |
| Conflicting Flow All    | 0        | 0     | 312    | 0         | 723     | 412  |
| Stage 1                 | -        | _     | -      | -         | 312     | - 12 |
| Stage 2                 | _        | _     | _      | _         | 411     | _    |
|                         |          |       | 4.12   |           | 6.42    | 6.22 |
| Critical Hdwy           | -        | -     | 4.12   | -         |         |      |
| Critical Hdwy Stg 1     | -        | -     | -      | -         | 5.42    | -    |
| Critical Hdwy Stg 2     | -        | -     | -      | -         | 5.42    | -    |
| Follow-up Hdwy          | -        | -     | 2.218  | -         | 3.518   |      |
| Pot Cap-1 Maneuver      | -        | -     | 1248   | -         | 393     | 640  |
| Stage 1                 | -        | -     | -      | -         | 742     | -    |
| Stage 2                 | -        | -     | -      | -         | 669     | -    |
| Platoon blocked, %      | -        | -     |        | -         |         |      |
| Mov Cap-1 Maneuver      | -        | -     | 1116   | -         | 314     | 512  |
| Mov Cap-2 Maneuver      | -        | _     | _      | _         | 314     | _    |
| Stage 1                 | _        | _     | -      | _         | 664     | _    |
| Stage 2                 | _        | _     | _      | _         | 598     | _    |
| Olage 2                 |          |       |        |           | 550     |      |
|                         |          |       |        |           |         |      |
| Approach                | EB       |       | WB     |           | NB      |      |
| HCM Control Delay, s/v  | 0        |       | 0      |           | 24.68   |      |
| HCM LOS                 |          |       |        |           | С       |      |
|                         |          |       |        |           |         |      |
| Minor Long/Maior M.     |          | NDL 4 | EDT    | EDD       | WDI     | MDT  |
| Minor Lane/Major Mvmt   |          | NBLn1 | EBT    | EBR       |         | WBT  |
| Capacity (veh/h)        |          | 319   | -      | -         | 1116    | -    |
| HCM Lane V/C Ratio      |          | 0.435 | -      | -         | -       | -    |
| HCM Control Delay (s/ve | eh)      | 24.7  | -      | -         | 0       | -    |
| HCM Lane LOS            |          | С     | -      | -         | Α       | -    |
| HCM 95th %tile Q(veh)   |          | 2.1   | -      | -         | 0       | -    |
|                         |          |       |        |           |         |      |

| 9.3<br>EBL<br>1<br>1 | EBT<br>♣1<br>70                                                             | WBT                                                                                                        | WBR                                                                | ODI                                                                               |                                                                                                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | 4                                                                           |                                                                                                            | WBR                                                                | ODI                                                                               |                                                                                                                                                                                                                                        |
| 1                    | 4                                                                           |                                                                                                            |                                                                    | SBL                                                                               | SBR                                                                                                                                                                                                                                    |
| 1                    |                                                                             |                                                                                                            |                                                                    | <b>Y</b>                                                                          | OBIN                                                                                                                                                                                                                                   |
| 1                    | 7 0                                                                         | 73                                                                                                         | 5                                                                  | 347                                                                               | 5                                                                                                                                                                                                                                      |
| -                    | 70                                                                          | 73                                                                                                         | 5                                                                  | 347                                                                               | 5                                                                                                                                                                                                                                      |
|                      | 0                                                                           | 0                                                                                                          | 0                                                                  | 0                                                                                 | 0                                                                                                                                                                                                                                      |
| Free                 | Free                                                                        | Free                                                                                                       | Free                                                               | Stop                                                                              | Stop                                                                                                                                                                                                                                   |
| -                    |                                                                             | -                                                                                                          |                                                                    | -                                                                                 | None                                                                                                                                                                                                                                   |
| _                    | -                                                                           | _                                                                                                          | -                                                                  | 0                                                                                 | -                                                                                                                                                                                                                                      |
| ge,# -               | 0                                                                           | 0                                                                                                          | -                                                                  | 0                                                                                 | _                                                                                                                                                                                                                                      |
| •                    |                                                                             |                                                                                                            |                                                                    |                                                                                   | _                                                                                                                                                                                                                                      |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   | 90                                                                                                                                                                                                                                     |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   | 2                                                                                                                                                                                                                                      |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   | 6                                                                                                                                                                                                                                      |
|                      | 10                                                                          | 01                                                                                                         | U                                                                  | 300                                                                               | U                                                                                                                                                                                                                                      |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   |                                                                                                                                                                                                                                        |
|                      |                                                                             | Major2                                                                                                     |                                                                    |                                                                                   |                                                                                                                                                                                                                                        |
| 87                   | 0                                                                           | -                                                                                                          | 0                                                                  |                                                                                   | 84                                                                                                                                                                                                                                     |
| -                    | -                                                                           | -                                                                                                          | -                                                                  |                                                                                   | -                                                                                                                                                                                                                                      |
| -                    | -                                                                           | -                                                                                                          | -                                                                  |                                                                                   | -                                                                                                                                                                                                                                      |
| 4.12                 | -                                                                           | -                                                                                                          | -                                                                  | 6.42                                                                              | 6.22                                                                                                                                                                                                                                   |
| -                    | -                                                                           | -                                                                                                          | -                                                                  | 5.42                                                                              | -                                                                                                                                                                                                                                      |
| -                    | -                                                                           | -                                                                                                          | -                                                                  | 5.42                                                                              | -                                                                                                                                                                                                                                      |
| 2.218                | -                                                                           | -                                                                                                          | -                                                                  | 3.518                                                                             | 3.318                                                                                                                                                                                                                                  |
| 1509                 | -                                                                           | -                                                                                                          | -                                                                  | 827                                                                               | 975                                                                                                                                                                                                                                    |
| -                    | -                                                                           | -                                                                                                          | -                                                                  | 939                                                                               | -                                                                                                                                                                                                                                      |
| -                    | -                                                                           | -                                                                                                          | -                                                                  | 943                                                                               | -                                                                                                                                                                                                                                      |
|                      | -                                                                           | -                                                                                                          | -                                                                  |                                                                                   |                                                                                                                                                                                                                                        |
| r 1509               | -                                                                           | -                                                                                                          | -                                                                  | 826                                                                               | 975                                                                                                                                                                                                                                    |
|                      | -                                                                           | -                                                                                                          | -                                                                  | 826                                                                               | -                                                                                                                                                                                                                                      |
| -                    | -                                                                           | -                                                                                                          | -                                                                  | 939                                                                               | -                                                                                                                                                                                                                                      |
| -                    | -                                                                           | -                                                                                                          | _                                                                  |                                                                                   | _                                                                                                                                                                                                                                      |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   |                                                                                                                                                                                                                                        |
| - FD                 |                                                                             | MA                                                                                                         |                                                                    | 0.0                                                                               |                                                                                                                                                                                                                                        |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   |                                                                                                                                                                                                                                        |
| s/v 0.1              |                                                                             | 0                                                                                                          |                                                                    |                                                                                   |                                                                                                                                                                                                                                        |
|                      |                                                                             |                                                                                                            |                                                                    | В                                                                                 |                                                                                                                                                                                                                                        |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   |                                                                                                                                                                                                                                        |
| /mt                  | EBL                                                                         | EBT                                                                                                        | WBT                                                                | WBRS                                                                              | SBLn1                                                                                                                                                                                                                                  |
|                      |                                                                             |                                                                                                            | -                                                                  |                                                                                   | 828                                                                                                                                                                                                                                    |
| )                    |                                                                             |                                                                                                            |                                                                    |                                                                                   | 0.472                                                                                                                                                                                                                                  |
|                      |                                                                             |                                                                                                            |                                                                    |                                                                                   | 13.2                                                                                                                                                                                                                                   |
| (3, 1311)            |                                                                             |                                                                                                            |                                                                    |                                                                                   | В                                                                                                                                                                                                                                      |
| eh)                  |                                                                             | -                                                                                                          | _                                                                  | _                                                                                 | 2.6                                                                                                                                                                                                                                    |
| )                    |                                                                             |                                                                                                            |                                                                    |                                                                                   | 0                                                                                                                                                                                                                                      |
|                      | 90<br>2<br>1<br>Major1<br>87<br>-<br>4.12<br>-<br>2.218<br>r 1509<br>-<br>- | - 0 90 90 2 2 1 78  Major1 N 87 0 4.12 2.218 - r 1509 er 1509 EB s/v 0.1  vmt EBL 25 0 0.001 (s/veh) 7.4 A | - 0 0 90 90 90 2 2 2 2 1 78 81  Major1 Major2 87 0 4.12 2.218 1509 | - 0 0 - 90 90 90 90 2 2 2 2 2 1 78 81 6  Major1 Major2 N 87 0 - 0 4.12 2.218 1509 | - 0 0 - 0 90 90 90 90 90 2 2 2 2 2 2 1 78 81 6 386  Major1 Major2 Minor2 87 0 - 0 164 84 80 4.12 6.42 5.42 2.218 5.42 2.218 3.518 r 1509 - 827 939 943 943 943 943 943 943 943 943 943 943 943 943 943 943 945 945 945 945 945 945 945 |


# **Existing scenario**

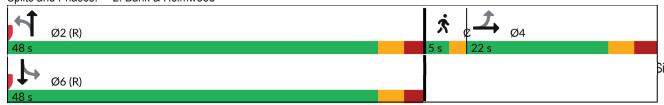
2022 Major Event Ingress

1: Bank & Fifth 08/01/2024

|                                | ۶         | <b>→</b> | •     | +     | •        | †          | <b>/</b> | Ţ     |  |
|--------------------------------|-----------|----------|-------|-------|----------|------------|----------|-------|--|
| Lane Group                     | EBL       | EBT      | WBL   | WBT   | NBL      | NBT        | SBL      | SBT   |  |
| Lane Configurations            |           | 4        | ሻ     | ĵ.    |          | 47>        |          | 4ी रे |  |
| Traffic Volume (vph)           | 60        | 53       | 71    | 61    | 23       | 453        | 31       | 599   |  |
| Future Volume (vph)            | 60        | 53       | 71    | 61    | 23       | 453        | 31       | 599   |  |
| Lane Group Flow (vph)          | 0         | 166      | 79    | 126   | 0        | 569        | 0        | 764   |  |
| Turn Type                      | Perm      | NA       | Perm  | NA    | Perm     | NA         | Perm     | NA    |  |
| Protected Phases               |           | 4        |       | 8     |          | 2          |          | 6     |  |
| Permitted Phases               | 4         |          | 8     |       | 2        |            | 6        |       |  |
| Detector Phase                 | 4         | 4        | 8     | 8     | 2        | 2          | 6        | 6     |  |
| Switch Phase                   |           |          |       |       |          |            |          |       |  |
| Minimum Initial (s)            | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0        | 4.0      | 4.0   |  |
| Minimum Split (s)              | 26.0      | 26.0     | 26.0  | 26.0  | 49.0     | 49.0       | 49.0     | 49.0  |  |
| Total Split (s)                | 26.0      | 26.0     | 26.0  | 26.0  | 49.0     | 49.0       | 49.0     | 49.0  |  |
| Total Split (%)                | 34.7%     | 34.7%    | 34.7% | 34.7% | 65.3%    | 65.3%      | 65.3%    | 65.3% |  |
| Yellow Time (s)                | 3.0       | 3.0      | 3.0   | 3.0   | 3.0      | 3.0        | 3.0      | 3.0   |  |
| All-Red Time (s)               | 2.5       | 2.5      | 2.5   | 2.5   | 2.5      | 2.5        | 2.5      | 2.5   |  |
| Lost Time Adjust (s)           | ,         | 0.0      | 0.0   | 0.0   | ,        | 0.0        | ,        | 0.0   |  |
| Total Lost Time (s)            |           | 5.5      | 5.5   | 5.5   |          | 5.5        |          | 5.5   |  |
| Lead/Lag                       |           | 5.5      |       | 5.5   |          |            |          |       |  |
| Lead-Lag Optimize?             |           |          |       |       |          |            |          |       |  |
| Recall Mode                    | None      | None     | None  | None  | Max      | Max        | Max      | Max   |  |
| Act Effct Green (s)            | 110110    | 13.5     | 13.5  | 13.5  | Max      | 46.4       | Max      | 46.4  |  |
| Actuated g/C Ratio             |           | 0.19     | 0.19  | 0.19  |          | 0.65       |          | 0.65  |  |
| v/c Ratio                      |           | 0.67     | 0.42  | 0.40  |          | 0.32       |          | 0.42  |  |
| Control Delay (s/veh)          |           | 35.8     | 30.3  | 17.4  |          | 6.5        |          | 7.4   |  |
| Queue Delay                    |           | 0.0      | 0.0   | 0.0   |          | 0.0        |          | 0.0   |  |
| Total Delay (s/veh)            |           | 35.8     | 30.3  | 17.4  |          | 6.5        |          | 7.4   |  |
| LOS                            |           | D        | С     | В     |          | A          |          | Α     |  |
| Approach Delay (s/veh)         |           | 35.8     |       | 22.4  |          | 6.5        |          | 7.4   |  |
| Approach LOS                   |           | D        |       | C     |          | A          |          | Α     |  |
| Queue Length 50th (m)          |           | 16.9     | 8.8   | 7.6   |          | 14.0       |          | 20.5  |  |
| Queue Length 95th (m)          |           | 34.5     | 19.8  | 20.3  |          | 28.7       |          | 41.4  |  |
| Internal Link Dist (m)         |           | 49.7     |       | 112.4 |          | 195.6      |          | 190.0 |  |
| Turn Bay Length (m)            |           | .311     | 45.0  |       |          |            |          |       |  |
| Base Capacity (vph)            |           | 366      | 289   | 454   |          | 1791       |          | 1803  |  |
| Starvation Cap Reductn         |           | 0        | 0     | 0     |          | 0          |          | 0     |  |
| Spillback Cap Reductn          |           | 0        | 0     | 0     |          | 0          |          | 0     |  |
| Storage Cap Reductn            |           | 0        | 0     | 0     |          | 0          |          | 0     |  |
| Reduced v/c Ratio              |           | 0.45     | 0.27  | 0.28  |          | 0.32       |          | 0.42  |  |
|                                |           |          |       |       |          |            |          |       |  |
| Intersection Summary           |           |          |       |       |          |            |          |       |  |
| Cycle Length: 75               |           |          |       |       |          |            |          |       |  |
| Actuated Cycle Length: 71      |           |          |       |       |          |            |          |       |  |
| Natural Cycle: 75              |           |          |       |       |          |            |          |       |  |
| Control Type: Actuated-Unco    | oordinate | ed       |       |       |          |            |          |       |  |
| Maximum v/c Ratio: 0.67        |           |          |       |       |          | 100        |          |       |  |
| Intersection Signal Delay (s/  |           |          |       |       |          | n LOS: E   |          |       |  |
| Intersection Capacity Utilizat | ion 68.9° | %        |       |       | CU Level | of Service | e C      |       |  |
| Analysis Period (min) 15       |           |          |       |       |          |            |          |       |  |

Splits and Phases: 1: Bank & Fifth




| Z. Barik a Homilio          | <b>→</b>    | •        | †         | <b>\</b>  | Ţ               |                  |
|-----------------------------|-------------|----------|-----------|-----------|-----------------|------------------|
| Lane Group                  | EBT         | NBL      | NBT       | SBL       | SBT             | Ø3               |
| Lane Configurations         | 4           | NDL      | 414       | JDL       | 4T <del>}</del> | <del>- 200</del> |
| Traffic Volume (vph)        | 37          | 67       | 479       | 53        | 554             |                  |
| Future Volume (vph)         | 37          | 67       | 479       | 53        | 554             |                  |
| Lane Group Flow (vph)       | 150         | 0        | 737       | 0         | 729             |                  |
| Turn Type                   | NA          | Perm     | NA        | Perm      | NA              |                  |
| Protected Phases            | 4           | 1 51111  | 2         | 1 51111   | 6               | 3                |
| Permitted Phases            | 7           | 2        | 2         | 6         | U               | J                |
| Detector Phase              | 4           | 2        | 2         | 6         | 6               |                  |
| Switch Phase                | 4           | 2        |           | U         | U               |                  |
|                             | 4.4         | 10.0     | 10.0      | 4.0       | 4.0             | 1.0              |
| Minimum Initial (s)         |             | 10.0     | 10.0      |           | 4.0             |                  |
| Minimum Split (s)           | 22.0        | 48.0     | 48.0      | 48.0      | 48.0            | 5.0              |
| Total Split (s)             | 22.0        | 48.0     | 48.0      | 48.0      | 48.0            | 5.0              |
| Total Split (%)             | 29.3%       | 64.0%    | 64.0%     | 64.0%     | 64.0%           | 7%               |
| Yellow Time (s)             | 3.0         | 3.0      | 3.0       | 3.0       | 3.0             | 2.0              |
| All-Red Time (s)            | 2.6         | 2.2      | 2.2       | 2.2       | 2.2             | 0.0              |
| Lost Time Adjust (s)        | 0.0         |          | 0.0       |           | 0.0             |                  |
| Total Lost Time (s)         | 5.6         |          | 5.2       |           | 5.2             |                  |
| Lead/Lag                    | Lag         |          |           |           |                 | Lead             |
| Lead-Lag Optimize?          |             |          |           |           |                 |                  |
| Recall Mode                 | None        | C-Max    | C-Max     | C-Max     |                 | None             |
| Act Effct Green (s)         | 13.2        |          | 51.0      |           | 51.0            |                  |
| Actuated g/C Ratio          | 0.18        |          | 0.68      |           | 0.68            |                  |
| v/c Ratio                   | 0.61        |          | 0.48      |           | 0.42            |                  |
| Control Delay (s/veh)       | 38.5        |          | 7.1       |           | 6.7             |                  |
| Queue Delay                 | 0.0         |          | 0.0       |           | 0.0             |                  |
| Total Delay (s/veh)         | 38.5        |          | 7.1       |           | 6.7             |                  |
| LOS                         | D           |          | Α         |           | Α               |                  |
| Approach Delay (s/veh)      | 38.5        |          | 7.1       |           | 6.7             |                  |
| Approach LOS                | D           |          | A         |           | A               |                  |
| Queue Length 50th (m)       | 19.8        |          | 19.7      |           | 19.7            |                  |
| Queue Length 95th (m)       | 34.1        |          | 38.8      |           | 37.4            |                  |
| Internal Link Dist (m)      | 39.8        |          | 31.5      |           | 195.6           |                  |
| Turn Bay Length (m)         | 00.0        |          | 01.0      |           | 133.0           |                  |
| Base Capacity (vph)         | 314         |          | 1547      |           | 1739            |                  |
| Starvation Cap Reductn      | 0           |          | 1547      |           | 0               |                  |
| Spillback Cap Reductin      |             |          | 0         |           | 0               |                  |
|                             | 0           |          | *         |           |                 |                  |
| Storage Cap Reductn         | 0 49        |          | 0 10      |           | 0 42            |                  |
| Reduced v/c Ratio           | 0.48        |          | 0.48      |           | 0.42            |                  |
| Intersection Summary        |             |          |           |           |                 |                  |
| Cycle Length: 75            |             |          |           |           |                 |                  |
| Actuated Cycle Length: 75   |             |          |           |           |                 |                  |
| Offset: 74 (99%), Reference | ed to phas  | se 2:NBT | L and 6:5 | SBTL. Sta | art of Gree     | en               |
| Natural Cycle: 75           | p           |          |           |           |                 | <del>_</del>     |
| Control Type: Actuated-Co   | ordinated   |          |           |           |                 |                  |
| Maximum v/c Ratio: 0.61     | J. dillatod |          |           |           |                 |                  |

Maximum v/c Ratio: 0.61

Intersection Signal Delay (s/veh): 9.8 Intersection Capacity Utilization 72.0% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service C

· · ·

Splits and Phases: 2: Bank & Holmwood



Bignal Timing,

|                               | <b>†</b>      | <b>↓</b>   |          |             |              |           |
|-------------------------------|---------------|------------|----------|-------------|--------------|-----------|
| Lane Group                    | NBT           | SBT        | Ø1       | Ø7          | Ø8           |           |
| Lane Configurations           | <b>1</b> 13-  | <b>*</b>   |          | ٠.          | ~~           |           |
| Traffic Volume (vph)          | 681           | 608        |          |             |              |           |
| Future Volume (vph)           | 681           | 608        |          |             |              |           |
| Lane Group Flow (vph)         | 757           | 676        |          |             |              |           |
| Turn Type                     | NA            | NA         |          |             |              |           |
| Protected Phases              | 2             | 6          | 1        | 7           | 8            |           |
| Permitted Phases              | _             |            | •        | •           |              |           |
| Detector Phase                | 2             | 6          |          |             |              |           |
| Switch Phase                  | _             |            |          |             |              |           |
| Minimum Initial (s)           | 10.0          | 10.0       | 1.0      | 1.0         | 10.0         |           |
| Minimum Split (s)             | 39.0          | 44.0       | 5.0      | 5.0         | 26.0         |           |
| Total Split (s)               | 39.0          | 44.0       | 5.0      | 5.0         | 26.0         |           |
| Total Split (%)               | 52.0%         | 58.7%      | 7%       | 7%          | 35%          |           |
| Yellow Time (s)               | 3.0           | 3.0        | 2.0      | 3.5         | 3.3          |           |
| All-Red Time (s)              | 3.9           | 3.9        | 0.0      | 0.0         | 3.0          |           |
| Lost Time Adjust (s)          | 0.0           | 0.0        | 0.0      | 0.0         | 0.0          |           |
| Total Lost Time (s)           | 6.9           | 6.9        |          |             |              |           |
| Lead/Lag                      | Lag           | 0.0        | Lead     | Lead        | Lag          |           |
| Lead-Lag Optimize?            | Yes           |            | Yes      | Yes         | Lug          |           |
| Recall Mode                   | C-Max         | C-Max      | None     | None        | None         |           |
| Act Effct Green (s)           | 75.0          | 75.0       | 110110   | 110110      | 110110       |           |
| Actuated g/C Ratio            | 1.00          | 1.00       |          |             |              |           |
| v/c Ratio                     | 0.24          | 0.21       |          |             |              |           |
| Control Delay (s/veh)         | 0.2           | 0.1        |          |             |              |           |
| Queue Delay                   | 0.0           | 0.0        |          |             |              |           |
| Total Delay (s/veh)           | 0.2           | 0.1        |          |             |              |           |
| LOS                           | A             | A          |          |             |              |           |
| Approach Delay (s/veh)        | 0.2           | 0.1        |          |             |              |           |
| Approach LOS                  | A             | A          |          |             |              |           |
| Queue Length 50th (m)         | 0.0           | 0.0        |          |             |              |           |
| Queue Length 95th (m)         | 0.0           | 0.0        |          |             |              |           |
| Internal Link Dist (m)        | 33.7          | 44.8       |          |             |              |           |
| Turn Bay Length (m)           |               |            |          |             |              |           |
| Base Capacity (vph)           | 3204          | 3173       |          |             |              |           |
| Starvation Cap Reductn        | 0             | 0          |          |             |              |           |
| Spillback Cap Reductn         | 0             | 0          |          |             |              |           |
| Storage Cap Reductn           | 0             | 0          |          |             |              |           |
| Reduced v/c Ratio             | 0.24          | 0.21       |          |             |              |           |
| Intersection Summary          | Ţ. <b>=</b> 1 | 0.21       |          |             |              |           |
| Cycle Length: 75              |               |            |          |             |              |           |
| Actuated Cycle Length: 75     |               |            |          |             |              |           |
| Offset: 0 (0%), Referenced    | to phase      | 2·NRT an   | 4 6.CBTI | Start of    | Green        |           |
| Natural Cycle: 75             | to phase      | z.indi ali | u v.obiL | ., Start Of | GIEEII       |           |
|                               | ordinated     |            |          |             |              |           |
| Control Type: Actuated-Co     | ordinated     |            |          |             |              |           |
| Maximum v/c Ratio: 0.24       | 2/40h). 0 0   |            |          | l           | torooctics ! | 100.1     |
| Intersection Signal Delay (s  |               |            |          |             | tersection l |           |
| Intersection Capacity Utiliza | alion 46./    | 70         |          | IC          | U Level of   | Service A |
| Analysis Period (min) 15      |               |            |          |             |              |           |





Signal Timing,

## 6: Bank & Aylmer

|                               | •          | •                                       | †         | <b>↓</b>    |                       |  |
|-------------------------------|------------|-----------------------------------------|-----------|-------------|-----------------------|--|
| Lane Group                    | EBL        | NBL                                     | NBT       | SBT         | Ø3                    |  |
| Lane Configurations           | W          | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 41        | <b>†</b>    |                       |  |
| Traffic Volume (vph)          | 88         | 13                                      | 714       | 745         |                       |  |
| Future Volume (vph)           | 88         | 13                                      | 714       | 745         |                       |  |
| Lane Group Flow (vph)         | 125        | 0                                       | 807       | 882         |                       |  |
| Turn Type                     | Prot       | Perm                                    | NA        | NA          |                       |  |
| Protected Phases              | 4          | . 51111                                 | 2         | 6           | 3                     |  |
| Permitted Phases              | 4          | 2                                       | _         | 6           | •                     |  |
| Detector Phase                | 4          | 2                                       | 2         | 6           |                       |  |
| Switch Phase                  | •          | _                                       | _         | · ·         |                       |  |
| Minimum Initial (s)           | 10.0       | 30.0                                    | 30.0      | 30.0        | 1.0                   |  |
| Minimum Split (s)             | 22.0       | 63.0                                    | 63.0      | 63.0        | 5.0                   |  |
| Total Split (s)               | 22.0       | 63.0                                    | 63.0      | 63.0        | 5.0                   |  |
| Total Split (%)               | 24.4%      | 70.0%                                   | 70.0%     | 70.0%       | 6%                    |  |
| Yellow Time (s)               | 3.3        | 3.0                                     | 3.0       | 3.0         | 2.0                   |  |
| All-Red Time (s)              | 2.2        | 2.2                                     | 2.2       | 2.2         | 1.0                   |  |
| Lost Time Adjust (s)          | 0.0        |                                         | 0.0       | 0.0         |                       |  |
| Total Lost Time (s)           | 5.5        |                                         | 5.2       | 5.2         |                       |  |
| Lead/Lag                      | Lag        |                                         | 3.2       | Ų. <u>L</u> | Lead                  |  |
| Lead-Lag Optimize?            | _~9        |                                         |           |             |                       |  |
| Recall Mode                   | Ped        | C-Max                                   | C-Max     | C-Max       | Max                   |  |
| Act Effct Green (s)           | 14.6       |                                         | 59.7      | 59.7        |                       |  |
| Actuated g/C Ratio            | 0.16       |                                         | 0.66      | 0.66        |                       |  |
| v/c Ratio                     | 0.50       |                                         | 0.41      | 0.43        |                       |  |
| Control Delay (s/veh)         | 38.1       |                                         | 7.8       | 7.9         |                       |  |
| Queue Delay                   | 0.0        |                                         | 0.0       | 0.0         |                       |  |
| Total Delay (s/veh)           | 38.1       |                                         | 7.8       | 7.9         |                       |  |
| LOS                           | D          |                                         | Α         | А           |                       |  |
| Approach Delay (s/veh)        | 38.1       |                                         | 7.8       | 7.9         |                       |  |
| Approach LOS                  | D          |                                         | Α         | А           |                       |  |
| Queue Length 50th (m)         | 17.9       |                                         | 29.1      | 31.8        |                       |  |
| Queue Length 95th (m)         | 33.9       |                                         | 43.3      | 47.0        |                       |  |
| Internal Link Dist (m)        | 76.7       |                                         | 28.1      | 10.1        |                       |  |
| Turn Bay Length (m)           |            |                                         |           |             |                       |  |
| Base Capacity (vph)           | 282        |                                         | 1985      | 2047        |                       |  |
| Starvation Cap Reductn        | 0          |                                         | 0         | 0           |                       |  |
| Spillback Cap Reductn         | 0          |                                         | 0         | 0           |                       |  |
| Storage Cap Reductn           | 0          |                                         | 0         | 0           |                       |  |
| Reduced v/c Ratio             | 0.44       |                                         | 0.41      | 0.43        |                       |  |
|                               |            |                                         |           |             |                       |  |
| Intersection Summary          |            |                                         |           |             |                       |  |
| Cycle Length: 90              |            |                                         |           |             |                       |  |
| Actuated Cycle Length: 90     |            | •                                       |           |             |                       |  |
| Offset: 87 (97%), Reference   | ed to phas | se 2:NBT                                | L and 6:S | BT, Start   | of Green              |  |
| Natural Cycle: 90             |            |                                         |           |             |                       |  |
| Control Type: Actuated-Coc    | rdinated   |                                         |           |             |                       |  |
| Maximum v/c Ratio: 0.50       |            |                                         |           |             |                       |  |
| Intersection Signal Delay (s. | •          |                                         |           |             | tersection LOS: A     |  |
| Intersection Capacity Utiliza | ition 51.2 | %                                       |           | IC          | CU Level of Service A |  |
| Analysis Period (min) 15      |            |                                         |           |             |                       |  |

Splits and Phases: 6: Bank & Aylmer



Signal Timing,

|                        | *     | -     | •     | •     |       | <b>†</b> | -     | <b>↓</b> |      |      |  |
|------------------------|-------|-------|-------|-------|-------|----------|-------|----------|------|------|--|
| Lane Group             | EBL   | EBT   | WBL   | WBT   | NBL   | NBT      | SBL   | SBT      | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4     |       | 44    |       | 475      |       | 474      |      |      |  |
| Traffic Volume (vph)   | 51    | 76    | 13    | 81    | 26    | 509      | 135   | 605      |      |      |  |
| Future Volume (vph)    | 51    | 76    | 13    | 81    | 26    | 509      | 135   | 605      |      |      |  |
| Lane Group Flow (vph)  | 0     | 181   | 0     | 273   | 0     | 625      | 0     | 912      |      |      |  |
| Turn Type              | Perm  | NA    | Perm  | NA    | Perm  | NA       | pm+pt | NA       |      |      |  |
| Protected Phases       |       | 4     |       | 8     |       | 2        | 1     | 6        | 3    | 7    |  |
| Permitted Phases       | 4     |       | 8     |       | 2     |          | 6     |          |      |      |  |
| Detector Phase         | 4     | 4     | 8     | 8     | 2     | 2        | 1     | 6        |      |      |  |
| Switch Phase           |       |       |       |       |       |          |       |          |      |      |  |
| Minimum Initial (s)    | 6.4   | 6.4   | 5.3   | 5.3   | 17.0  | 17.0     | 5.0   | 17.0     | 1.0  | 1.0  |  |
| Minimum Split (s)      | 25.0  | 25.0  | 25.0  | 25.0  | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0  | 25.0  | 25.0  | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8% | 27.8% | 27.8% | 47.8% | 47.8%    | 18.9% | 66.7%    | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0      | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6   | 2.6   | 2.6   | 3.0   | 3.0      | 2.9   | 3.0      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0   |       | 0.0   |       | 0.0      |       | 0.0      |      |      |  |
| Total Lost Time (s)    |       | 5.6   |       | 5.6   |       | 6.0      |       | 6.0      |      |      |  |
| Lead/Lag               | Lag   | Lag   | Lag   | Lag   | Lag   | Lag      | Lead  |          | Lead | Lead |  |
| Lead-Lag Optimize?     |       |       | Yes   | Yes   | Yes   | Yes      | Yes   |          |      | Yes  |  |
| Recall Mode            | None  | None  | None  | None  | Max   | Max      | None  | Max      | None | None |  |
| Act Effct Green (s)    |       | 18.7  |       | 18.7  |       | 54.0     |       | 54.0     |      |      |  |
| Actuated g/C Ratio     |       | 0.22  |       | 0.22  |       | 0.64     |       | 0.64     |      |      |  |
| v/c Ratio              |       | 0.84  |       | 0.82  |       | 0.36     |       | 0.68     |      |      |  |
| Control Delay (s/veh)  |       | 64.5  |       | 43.7  |       | 7.8      |       | 12.8     |      |      |  |
| Queue Delay            |       | 0.0   |       | 0.0   |       | 0.0      |       | 0.0      |      |      |  |
| Total Delay (s/veh)    |       | 64.5  |       | 43.7  |       | 7.8      |       | 12.8     |      |      |  |
| LOS                    |       | Е     |       | D     |       | Α        |       | В        |      |      |  |
| Approach Delay (s/veh) |       | 64.5  |       | 43.7  |       | 7.8      |       | 12.8     |      |      |  |
| Approach LOS           |       | Е     |       | D     |       | Α        |       | В        |      |      |  |
| Queue Length 50th (m)  |       | 28.0  |       | 29.6  |       | 22.2     |       | 43.8     |      |      |  |
| Queue Length 95th (m)  |       | #62.2 |       | #69.7 |       | 31.4     |       | 64.8     |      |      |  |
| Internal Link Dist (m) |       | 75.1  |       | 136.0 |       | 63.1     |       | 79.0     |      |      |  |
| Turn Bay Length (m)    |       |       |       |       |       |          |       |          |      |      |  |
| Base Capacity (vph)    |       | 224   |       | 340   |       | 1743     |       | 1339     |      |      |  |
| Starvation Cap Reductn |       | 0     |       | 0     |       | 0        |       | 0        |      |      |  |
| Spillback Cap Reductn  |       | 0     |       | 0     |       | 0        |       | 0        |      |      |  |
| Storage Cap Reductn    |       | 0     |       | 0     |       | 0        |       | 0        |      |      |  |
| Reduced v/c Ratio      |       | 0.81  |       | 0.80  |       | 0.36     |       | 0.68     |      |      |  |

#### Intersection Summary

Cycle Length: 90

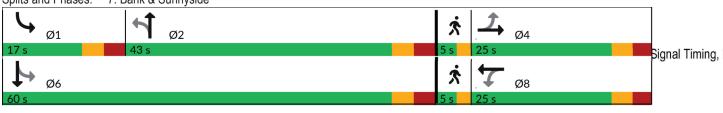
Actuated Cycle Length: 84.3

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.84

Intersection Signal Delay (s/veh): 20.2
Intersection Capacity Utilization 87.5%


Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Bank & Sunnyside



|                                                       | ۶           | 4         | <b>†</b> | ļ          |                    |   |
|-------------------------------------------------------|-------------|-----------|----------|------------|--------------------|---|
| Lane Group                                            | EBL         | NBL       | NBT      | SBT        | Ø4                 |   |
| Lane Configurations                                   | W           |           | 4        | 7          |                    |   |
| Traffic Volume (vph)                                  | 62          | 69        | 255      | 629        |                    |   |
| Future Volume (vph)                                   | 62          | 69        | 255      | 629        |                    |   |
| Lane Group Flow (vph)                                 | 166         | 0         | 360      | 836        |                    |   |
| Turn Type                                             | Prot        | Perm      | NA       | NA         |                    |   |
| Protected Phases                                      | 10          |           | 2        | 6          | 4                  |   |
| Permitted Phases                                      |             | 2         |          |            |                    |   |
| Detector Phase                                        | 10          | 2         | 2        | 6          |                    |   |
| Switch Phase                                          |             |           |          |            |                    |   |
| Minimum Initial (s)                                   | 10.0        | 4.0       | 4.0      | 4.0        | 4.0                |   |
| Minimum Split (s)                                     | 20.7        | 10.8      | 10.8     | 31.8       | 9.7                |   |
| Total Split (s)                                       | 21.0        | 48.0      | 48.0     | 48.0       | 11.0               |   |
| Total Split (%)                                       | 26.3%       | 60.0%     | 60.0%    | 60.0%      | 14%                |   |
| Yellow Time (s)                                       | 3.0         | 3.0       | 3.0      | 3.0        | 3.0                |   |
| All-Red Time (s)                                      | 2.7         | 3.8       | 3.8      | 3.8        | 2.7                |   |
| Lost Time Adjust (s)                                  | 0.0         |           | 0.0      | 0.0        |                    |   |
| Total Lost Time (s)                                   | 5.7         |           | 6.8      | 6.8        |                    |   |
| Lead/Lag                                              |             |           |          |            |                    |   |
| Lead-Lag Optimize?                                    |             |           |          |            |                    |   |
| Recall Mode                                           | Min         | None      | None     | Max        | None               |   |
| Act Effct Green (s)                                   | 12.4        |           | 41.3     | 41.3       |                    |   |
| Actuated g/C Ratio                                    | 0.19        |           | 0.62     | 0.62       |                    |   |
| v/c Ratio                                             | 0.58        |           | 0.56     | 0.81       |                    |   |
| Control Delay (s/veh)                                 | 33.3        |           | 11.9     | 18.9       |                    |   |
| Queue Delay                                           | 0.0         |           | 0.0      | 0.0        |                    |   |
| Total Delay (s/veh)                                   | 33.3        |           | 11.9     | 18.9       |                    |   |
| LOS                                                   | С           |           | В        | В          |                    |   |
| Approach Delay (s/veh)                                | 33.3        |           | 11.9     | 18.9       |                    |   |
| Approach LOS                                          | С           |           | В        | В          |                    |   |
| Queue Length 50th (m)                                 | 18.8        |           | 21.9     | 67.5       |                    |   |
| Queue Length 95th (m)                                 | 35.6        |           | 49.3     | #156.5     |                    |   |
| Internal Link Dist (m)                                | 57.2        |           | 0.1      | 5.9        |                    |   |
| Turn Bay Length (m)                                   |             |           |          |            |                    |   |
| Base Capacity (vph)                                   | 352         |           | 646      | 1027       |                    |   |
| Starvation Cap Reductn                                | 0           |           | 0        | 0          |                    |   |
| Spillback Cap Reductn                                 | 0           |           | 0        | 0          |                    |   |
| Storage Cap Reductn                                   | 0           |           | 0        | 0          |                    |   |
| Reduced v/c Ratio                                     | 0.47        |           | 0.56     | 0.81       |                    |   |
| Intersection Summary                                  |             |           |          |            |                    |   |
|                                                       |             |           |          |            |                    |   |
| Cycle Length: 80                                      | 2           |           |          |            |                    |   |
| Actuated Cycle Length: 66.                            |             |           |          |            |                    |   |
| Natural Cycle: 65                                     | oordinat-   | ad.       |          |            |                    |   |
| Control Type: Actuated-Uno<br>Maximum v/c Ratio: 0.81 | Loorumate   | u         |          |            |                    |   |
|                                                       | /vob\. 10   | Q         |          | l.         | ntersection LOS: B | ) |
| Intersection Signal Delay (s                          |             |           |          |            |                    |   |
| Intersection Capacity Utiliza                         | au011 00.4° | /0        |          | 10         | CU Level of Servic | E |
| Analysis Period (min) 15                              | oveode e    | anacity   | andro w  | av he len  | nor                |   |
| # 95th percentile volume                              |             |           |          | ay be long | ger.               |   |
| Queue shown is maximu                                 | ım after tv | vo cycles |          |            |                    |   |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth

**Å** Ø4 Ø10 Ø2 Signal Timing, Ø6

HCM Lane V/C Ratio

HCM Lane LOS

HCM 95th-tile Q

HCM Control Delay, s/veh

0

6.9

Ν

0

Ν

0

6.9

0

6.9

Ν

0

|                            |      |            |          |       |      |      | _ |
|----------------------------|------|------------|----------|-------|------|------|---|
| Intersection               |      |            |          |       |      |      |   |
| Intersection Delay, s/veh  | 0    |            |          |       |      |      |   |
| Intersection LOS           | -    |            |          |       |      |      |   |
|                            |      |            |          |       |      |      |   |
| Marrant                    | EDI  | CDT        | WDT      | WDD   | CDI  | CDD  |   |
| Movement                   | EBL  | EBT        | WBT      | WBR   | SBL  | SBR  |   |
| Lane Configurations        | ^    | <b>-</b> ₹ | <u>.</u> | •     | Å    | •    |   |
| Traffic Vol, veh/h         | 0    | 0          | 0        | 0     | 0    | 0    |   |
| Future Vol, veh/h          | 0    | 0          | 0        | 0     | 0    | 0    |   |
| Peak Hour Factor           | 0.90 | 0.90       | 0.90     | 0.90  | 0.90 | 0.90 |   |
| Heavy Vehicles, %          | 2    | 2          | 2        | 2     | 2    | 2    |   |
| Mvmt Flow                  | 0    | 0          | 0        | 0     | 0    | 0    |   |
| Number of Lanes            | 0    | 1          | 1        | 0     | 1    | 0    |   |
| Approach                   |      | EB         | WB       |       | SB   |      |   |
| Opposing Approach          |      | WB         | EB       |       |      |      |   |
| Opposing Lanes             |      | 1          | 1        |       | 0    |      |   |
| Conflicting Approach Left  |      | SB         |          |       | WB   |      |   |
| Conflicting Lanes Left     |      | 1          | 0        |       | 1    |      |   |
| Conflicting Approach Right |      |            | SB       |       | EB   |      |   |
| Conflicting Lanes Right    |      | 0          | 1        |       | 1    |      |   |
| HCM Control Delay, s/veh   |      | 0          | 0        |       | 0    |      |   |
| HCM LOS                    |      | -          |          |       | -    |      |   |
|                            |      |            |          |       |      |      |   |
| Lane                       | F    | BLn1       | WBLn1    | SBLn1 |      |      |   |
| Vol Left, %                |      | 0%         | 0%       | 0%    |      |      |   |
| Vol Thru, %                | 1    | 100%       | 100%     | 100%  |      |      |   |
| Vol Right, %               |      | 0%         | 0%       | 0%    |      |      |   |
| Sign Control               |      | Stop       | Stop     | Stop  |      |      |   |
| Traffic Vol by Lane        |      | Olop       | 3top     | 310p  |      |      |   |
| LT Vol                     |      | 0          | 0        | 0     |      |      |   |
| Through Vol                |      | 0          | 0        | 0     |      |      |   |
| RT Vol                     |      | 0          | 0        | 0     |      |      |   |
| Lane Flow Rate             |      | 0          | 0        | 0     |      |      |   |
| Geometry Grp               |      | 1          | 1        | 1     |      |      |   |
| Degree of Util (X)         |      | 0          | 0        | 0     |      |      |   |
|                            |      | 3.934      | 3.934    | 3.934 |      |      |   |
| Departure Headway (Hd)     |      |            | Yes      | Yes   |      |      |   |
| Convergence, Y/N           |      | Yes        |          |       |      |      |   |
| Cap                        |      | 0          | 0        | 0     |      |      |   |
| Service Time               |      | 1.934      | 1.934    | 1.934 |      |      |   |

HCM Lane LOS

HCM 95th-tile Q

Ν

Ν

Ν

HCM Lane LOS

HCM 95th-tile Q

Ν

Ν

Ν

| Intersection               |      |       |               |       |      |      |
|----------------------------|------|-------|---------------|-------|------|------|
| Intersection Delay, s/veh  | 0    |       |               |       |      |      |
| Intersection LOS           | -    |       |               |       |      |      |
| microsolion 200            |      |       |               |       |      |      |
|                            |      |       | 14:5          | 14/77 |      | NET  |
| Movement                   | EBT  | EBR   | WBL           | WBT   | NBL  | NBR  |
| Lane Configurations        | f)   |       |               | ની    | W    |      |
| Traffic Vol, veh/h         | 0    | 0     | 0             | 0     | 0    | 0    |
| Future Vol, veh/h          | 0    | 0     | 0             | 0     | 0    | 0    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90          | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2             | 2     | 2    | 2    |
| Mvmt Flow                  | 0    | 0     | 0             | 0     | 0    | 0    |
| Number of Lanes            | 1    | 0     | 0             | 1     | 1    | 0    |
| Approach                   | EB   |       |               | WB    | NB   |      |
| Opposing Approach          | WB   |       |               | EB    | 110  |      |
| Opposing Lanes             | 1    |       |               | 1     | 0    |      |
| Conflicting Approach Left  |      |       |               | NB    | EB   |      |
| Conflicting Lanes Left     | 0    |       |               | 1     | 1    |      |
| Conflicting Approach Right | NB   |       |               |       | WB   |      |
| Conflicting Lanes Right    | 1    |       |               | 0     | 1    |      |
| HCM Control Delay, s/veh   | 0    |       |               | 0     | 0    |      |
| HCM LOS                    | -    |       |               | -     | -    |      |
| HOW LOO                    |      |       |               |       |      |      |
|                            |      | ND. C | <b>ED</b> . ( | MDI ( |      |      |
| Lane                       |      | NBLn1 |               | WBLn1 |      |      |
| Vol Left, %                |      | 0%    | 0%            | 0%    |      |      |
| Vol Thru, %                |      | 100%  | 100%          | 100%  |      |      |
| Vol Right, %               |      | 0%    | 0%            | 0%    |      |      |
| Sign Control               |      | Stop  | Stop          | Stop  |      |      |
| Traffic Vol by Lane        |      | 0     | 0             | 0     |      |      |
| LT Vol                     |      | 0     | 0             | 0     |      |      |
| Through Vol                |      | 0     | 0             | 0     |      |      |
| RT Vol                     |      | 0     | 0             | 0     |      |      |
| Lane Flow Rate             |      | 0     | 0             | 0     |      |      |
| Geometry Grp               |      | 1     | 1             | 1     |      |      |
| Degree of Util (X)         |      | 0     | 0             | 0     |      |      |
| Departure Headway (Hd)     |      | 3.934 | 3.934         | 3.934 |      |      |
| Convergence, Y/N           |      | Yes   | Yes           | Yes   |      |      |
| Сар                        |      | 0     | 0             | 0     |      |      |
| Service Time               |      | 1.934 | 1.934         | 1.934 |      |      |
| HCM Lane V/C Ratio         |      | 0     | 0             | 0     |      |      |
| HCM Control Delay, s/veh   |      | 6.9   | 6.9           | 6.9   |      |      |

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 9.3  |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h        | 66   | 56   | 0    | 0    | 0    | 192  | 57   | 58   | 93   | 0    | 0    | 127  |
| Future Vol, veh/h         | 66   | 56   | 0    | 0    | 0    | 192  | 57   | 58   | 93   | 0    | 0    | 127  |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                 | 73   | 62   | 0    | 0    | 0    | 213  | 63   | 64   | 103  | 0    | 0    | 141  |
| Number of Lanes           | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |

| Approach                   | EB  | WB | NB  | SB  |
|----------------------------|-----|----|-----|-----|
| Opposing Approach          | WB  | EB | SB  | NB  |
| Opposing Lanes             | 1   | 1  | 1   | 1   |
| Conflicting Approach Left  | SB  | NB | EB  | WB  |
| Conflicting Lanes Left     | 1   | 1  | 1   | 1   |
| Conflicting Approach Right | NB  | SB | WB  | EB  |
| Conflicting Lanes Right    | 1   | 1  | 1   | 1   |
| HCM Control Delay, s/veh   | 9.5 | 9  | 9.8 | 8.5 |
| HCM LOS                    | Α   | A  | Α   | A   |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 27%   | 54%   | 0%    | 0%    |  |
| Vol Thru, %              | 28%   | 46%   | 0%    | 0%    |  |
| Vol Right, %             | 45%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 208   | 122   | 192   | 127   |  |
| LT Vol                   | 57    | 66    | 0     | 0     |  |
| Through Vol              | 58    | 56    | 0     | 0     |  |
| RT Vol                   | 93    | 0     | 192   | 127   |  |
| Lane Flow Rate           | 231   | 136   | 213   | 141   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.301 | 0.194 | 0.259 | 0.174 |  |
| Departure Headway (Hd)   | 4.693 | 5.147 | 4.369 | 4.433 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Сар                      | 760   | 691   | 815   | 802   |  |
| Service Time             | 2.76  | 3.221 | 2.434 | 2.506 |  |
| HCM Lane V/C Ratio       | 0.304 | 0.197 | 0.261 | 0.176 |  |
| HCM Control Delay, s/veh | 9.8   | 9.5   | 9     | 8.5   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 1.3   | 0.7   | 1     | 0.6   |  |

| Intersection           |           |         |         |       |          |      |
|------------------------|-----------|---------|---------|-------|----------|------|
| Int Delay, s/veh       | 14.4      |         |         |       |          |      |
| Movement               | EBL       | EBR     | NBL     | NBT   | SBT      | SBR  |
| Lane Configurations    |           | 7       | ,,,,,,  | 41    | <u>₽</u> | UDIN |
| Traffic Vol, veh/h     | 0         | 266     | 104     | 702   | 518      | 103  |
| Future Vol, veh/h      | 0         | 266     | 104     | 702   | 518      | 103  |
| Conflicting Peds, #/hr | 0         | 0       | 178     | 0     | 0        | 107  |
|                        | Stop      | Stop    | Free    | Free  | Free     | Free |
| RT Channelized         | Stop<br>- | None    |         | None  |          | None |
|                        | -         |         | -       | None  | -        |      |
| Storage Length         |           | 0       | -       | _     | -        | -    |
| Veh in Median Storage  |           | -       | -       | 0     | 0        | -    |
| Grade, %               | 0         | -       | -       | 0     | 0        | -    |
| Peak Hour Factor       | 90        | 90      | 90      | 90    | 90       | 90   |
| Heavy Vehicles, %      | 3         | 3       | 3       | 3     | 3        | 3    |
| Mvmt Flow              | 0         | 296     | 116     | 780   | 576      | 114  |
|                        |           |         |         |       |          |      |
| Major/Minor M          | inor2     | ı       | Major1  | ٨     | /lajor2  |      |
| Conflicting Flow All   | -         | 811     | 868     | 0     | -        | 0    |
| Stage 1                |           | 011     | 000     | -     | -        | -    |
|                        | -         | -       | _       | -     |          |      |
| Stage 2                | -         | - 045   | 4 4 4 5 | -     | -        | -    |
| Critical Hdwy          | -         | 6.245   | 4.145   | -     | -        | -    |
| Critical Hdwy Stg 1    | -         | -       | -       | -     | -        | -    |
| Critical Hdwy Stg 2    | -         | -       | -       | -     | -        | -    |
| Follow-up Hdwy         |           | 3.32852 |         | -     | -        | -    |
| Pot Cap-1 Maneuver     | 0         | 377     | 769     | -     | -        | -    |
| Stage 1                | 0         | -       | -       | -     | -        | -    |
| Stage 2                | 0         | -       | -       | -     | -        | -    |
| Platoon blocked, %     |           |         |         | -     | -        | -    |
| Mov Cap-1 Maneuver     | -         | 306     | 624     | -     | -        | -    |
| Mov Cap-2 Maneuver     | -         | -       | -       | -     | -        | -    |
| Stage 1                | _         | _       | _       | _     | _        | _    |
| Stage 2                | _         | _       | _       | _     | _        | _    |
|                        |           |         |         |       |          |      |
|                        |           |         |         |       |          |      |
| Approach               | EB        |         | NB      |       | SB       |      |
| HCM Control Delay, s/6 | 31.31     |         | 3.48    |       | 0        |      |
| HCM LOS                | F         |         |         |       |          |      |
|                        |           |         |         |       |          |      |
| Minor Long/Maior M     | 4         | NDI     | NDT     | TDI 4 | CDT      | CDD  |
| Minor Lane/Major Mvm   | ι         | NBL     |         | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)       |           | 465     | -       | 306   | -        | -    |
| HCM Lane V/C Ratio     |           | 0.185   |         | 0.967 | -        | -    |
| HCM Control Delay (s/\ | /eh)      | 12.1    | 2.2     |       | -        | -    |
| HCM Lane LOS           |           | В       | Α       | F     | -        | -    |
| HCM 95th %tile Q(veh)  |           | 0.7     | -       | 9.9   | -        | -    |
|                        |           |         |         |       |          |      |

| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                         | ntersection                             |         |        |         |            |         |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|--------|---------|------------|---------|------|
| Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                | nt Delay, s/veh                         | 0.8     |        |         |            |         |      |
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio | Movement .                              | EBL     | EBR    | NBL     | NBT        | SBT     | SBR  |
| Traffic Vol, veh/h Future Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                        |                                         | LDL     |        | INDL    |            |         | אמט  |
| Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                             |                                         | 0       | 70     | ^       | <b>↑</b> ↑ | 757     | 0    |
| Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                            |                                         | 0       | 72     | 0       | 784        | 757     | 0    |
| Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                   |                                         | 0       | 72     | 0       | 784        | 757     | 0    |
| RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                              |                                         |         | 0      | 0       | 0          | 0       | _ 86 |
| Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                |                                         | Stop    | Stop   | Free    | Free       | Free    | Free |
| Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                    |                                         | -       | None   | -       | None       | -       | None |
| Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                            |                                         | -       | 0      | -       | -          | -       | -    |
| Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                      |                                         | e,# 0   | -      | -       | 0          | 0       | -    |
| Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                    |                                         | 0       | -      | -       | 0          | 0       | -    |
| Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                             | Peak Hour Factor                        | 90      | 90     | 90      | 90         | 90      | 90   |
| Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                             | leavy Vehicles, %                       | 3       | 3      | 3       | 3          | 3       | 3    |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                         |                                         | 0       | 80     | 0       | 871        | 841     | 0    |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                         |                                         |         |        |         |            |         |      |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                         | /2.4:                                   | 4: 0    |        |         |            |         |      |
| Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                              | _                                       | Minor2  |        | /lajor1 |            | /lajor2 |      |
| Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                      |                                         | -       | 841    | -       | 0          | -       | 0    |
| Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                              |                                         | -       | -      | -       | -          | -       | -    |
| Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                           | Stage 2                                 | -       | -      | -       | -          | -       | -    |
| Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                               | Critical Hdwy                           | -       | 6.245  | -       | -          | -       | -    |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                   | Critical Hdwy Stg 1                     | -       | -      | -       | -          | -       | -    |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                   | Critical Hdwy Stg 2                     | -       | -      | -       | -          | -       | -    |
| Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | -3      | 3.3285 | -       | _          | -       | -    |
| Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 0       | 362    | 0       | _          | -       | 0    |
| Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 0       | -      | 0       | _          | _       | 0    |
| Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 0       | _      | 0       | _          | _       | 0    |
| Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Ū       |        |         | _          | _       |      |
| Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | _       | 362    | _       |            | _       | _    |
| Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |         | 302    |         | -          |         |      |
| Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |         | -      | -       | -          | -       | -    |
| Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | -       | -      | -       | -          | -       | -    |
| HCM Control Delay, s<br>HCM LOS<br>Minor Lane/Major Mvr<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stage 2                                 | -       | -      | -       | -          | -       | -    |
| HCM Control Delay, s<br>HCM LOS<br>Minor Lane/Major Mvr<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |         |        |         |            |         |      |
| HCM Control Delay, s<br>HCM LOS<br>Minor Lane/Major Mvr<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Approach                                | EB      |        | NB      |            | SB      |      |
| HCM LOS  Minor Lane/Major Mvr Capacity (veh/h)  HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • • • • • • • • • • • • • • • • • • • • |         |        | 0       |            | 0       |      |
| Minor Lane/Major Mvr<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | /W1.70  |        | U       |            | U       |      |
| Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ICIVI LOS                               | C       |        |         |            |         |      |
| Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |         |        |         |            |         |      |
| Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /linor Lane/Major Mvr                   | nt      | NBTE   | EBLn1   | SBT        |         |      |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |         | -      | 362     | -          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |         |        | 0.221   | _          |         |      |
| HCM Control Delay (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | /veh)   | _      | 17.8    | _          |         |      |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | , 1011) |        | C       | _          |         |      |
| HCM 95th %tile Q(vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 1)      |        | 0.8     |            |         |      |
| HOW SOUL WILL CALLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOWN 30th 70the Q(Ver                   | 1)      |        | 0.0     |            |         |      |

| Intersection                |        |       |         |       |            |      |
|-----------------------------|--------|-------|---------|-------|------------|------|
| Int Delay, s/veh            | 8.7    |       |         |       |            |      |
| Movement                    | EBL    | EBR   | NBL     | NBT   | SBT        | SBR  |
| Lane Configurations         | W      | בטול  | NDL     | 4     | <u>381</u> | אופט |
| Traffic Vol, veh/h          | 94     | 97    | 105     | 232   | 441        | 256  |
| Future Vol, veh/h           | 94     | 97    | 105     | 232   | 441        | 256  |
|                             | 94     | 0     | 0       | 232   | 0          | 200  |
| Conflicting Peds, #/hr      |        |       | Free    | Free  | Free       | Free |
| Sign Control RT Channelized | Stop   | Stop  |         |       |            |      |
|                             | -      | None  | -       | None  | -          | None |
| Storage Length              | 0      | -     | -       | -     | -          | -    |
| Veh in Median Storage       |        | -     | -       | 0     | 0          | -    |
| Grade, %                    | 0      | -     | -       | 0     | 0          | -    |
| Peak Hour Factor            | 90     | 90    | 90      | 90    | 90         | 90   |
| Heavy Vehicles, %           | 0      | 0     | 0       | 0     | 0          | 0    |
| Mvmt Flow                   | 104    | 108   | 117     | 258   | 490        | 284  |
|                             |        |       |         |       |            |      |
| Major/Minor N               | linor2 | _ \   | /lajor1 | N     | /lajor2    |      |
| Conflicting Flow All        | 1123   | 632   | 774     | 0     | -          | 0    |
| Stage 1                     | 632    | -     | -       | -     | _          | -    |
| Stage 2                     | 491    | _     | _       | _     | _          | _    |
| Critical Hdwy               | 6.4    | 6.2   | 4.1     | _     |            | _    |
| Critical Hdwy Stg 1         | 5.4    | 0.2   | 4.1     | _     |            | _    |
|                             |        |       |         |       | -          |      |
| Critical Hdwy Stg 2         | 5.4    | -     | -       | -     | -          | -    |
| Follow-up Hdwy              | 3.5    | 3.3   | 2.2     | -     | -          | -    |
| Pot Cap-1 Maneuver          | 229    | 484   | 850     | -     | -          | -    |
| Stage 1                     | 533    | -     | -       | -     | -          | -    |
| Stage 2                     | 619    | -     | -       | -     | -          | -    |
| Platoon blocked, %          |        |       |         | -     | -          | -    |
| Mov Cap-1 Maneuver          | 193    | 484   | 850     | -     | -          | -    |
| Mov Cap-2 Maneuver          | 193    | -     | -       | -     | -          | -    |
| Stage 1                     | 448    | -     | -       | -     | -          | -    |
| Stage 2                     | 619    | -     | -       | -     | -          | -    |
| - 1 J • -                   |        |       |         |       |            |      |
|                             |        |       | NE      |       | 0.5        |      |
| Approach                    | EB     |       | NB      |       | SB         |      |
| HCM Control Delay, s/v      |        |       | 3.09    |       | 0          |      |
| HCM LOS                     | F      |       |         |       |            |      |
|                             |        |       |         |       |            |      |
| Minor Lane/Major Mvm        | ıt.    | NBL   | NPT     | EBLn1 | SBT        | SBR  |
|                             | IL     |       |         |       |            | SDK  |
| Capacity (veh/h)            |        | 561   | -       | 278   | -          | -    |
| HCM Lane V/C Ratio          |        | 0.137 |         | 0.765 | -          | -    |
| HCM Control Delay (s/       | veh)   | 9.9   | 0       | 50.3  | -          | -    |
| HCM Lane LOS                |        | Α     | Α       | F     | -          | -    |
| HCM 95th %tile Q(veh)       | )      | 0.5   | -       | 5.7   | -          | -    |
|                             |        |       |         |       |            |      |

| Intersection                         |         |      |          |        |         |          |
|--------------------------------------|---------|------|----------|--------|---------|----------|
| Int Delay, s/veh                     | 0       |      |          |        |         |          |
| Movement                             | WBL     | WBR  | NBT      | NBR    | SBL     | SBT      |
| Lane Configurations                  | ,,,,,,  | 7    | <b>†</b> | TISIT  | ODL     | <b>^</b> |
| Traffic Vol, veh/h                   | 0       | 0    | 681      | 0      | 0       | 608      |
| Future Vol, veh/h                    | 0       | 0    | 681      | 0      | 0       | 608      |
| Conflicting Peds, #/hr               | 0       | 0    | 0        | 100    | 0       | 0        |
| Sign Control                         | Stop    | Stop | Free     | Free   | Free    | Free     |
| RT Channelized                       | -       |      |          | None   |         | None     |
| Storage Length                       | -       | 0    | -        | -      | -       | -        |
| Veh in Median Storage                | e # 0   | -    | 0        | _      | _       | 0        |
| Grade, %                             | 0       | _    | 0        | _      | _       | 0        |
| Peak Hour Factor                     | 90      | 90   | 90       | 90     | 90      | 90       |
| Heavy Vehicles, %                    | 0       | 0    | 2        | 0      | 2       | 2        |
| Mymt Flow                            | 0       | 0    | 757      | 0      | 0       | 676      |
| IVIVIIIL FIOW                        | U       | U    | 131      | U      | U       | 070      |
|                                      |         |      |          |        |         |          |
| Major/Minor N                        | /linor1 | Λ    | /lajor1  | N      | /lajor2 |          |
| Conflicting Flow All                 | -       | 478  | 0        | 0      | -       | -        |
| Stage 1                              | -       | -    | -        | -      | -       | -        |
| Stage 2                              | -       | -    | -        | -      | -       | -        |
| Critical Hdwy                        | -       | 6.9  | -        | -      | -       | -        |
| Critical Hdwy Stg 1                  | -       | -    | -        | -      | -       | -        |
| Critical Hdwy Stg 2                  | -       | -    | -        | -      | -       | -        |
| Follow-up Hdwy                       | _       | 3.3  | -        | _      | -       | _        |
| Pot Cap-1 Maneuver                   | 0       | 539  | _        | -      | 0       | _        |
| Stage 1                              | 0       | -    | -        | _      | 0       | -        |
| Stage 2                              | 0       | _    | _        | _      | 0       | _        |
| Platoon blocked, %                   |         |      | _        | _      |         | _        |
| Mov Cap-1 Maneuver                   | -       | 482  | _        | _      | _       | _        |
| Mov Cap-2 Maneuver                   | _       | -    | _        | _      | _       | _        |
| Stage 1                              | _       | _    | _        | _      | _       | _        |
| Stage 2                              | _       | _    | _        | _      | _       | _        |
| Stage 2                              | _       |      | _        |        | _       | _        |
|                                      |         |      |          |        |         |          |
| Approach                             | WB      |      | NB       |        | SB      |          |
| HCM Control Delay, s/                | /v 0    |      | 0        |        | 0       |          |
| HCM LOS                              | Α       |      |          |        |         |          |
|                                      |         |      |          |        |         |          |
| Minor Long (Maior M                  | -4      | NDT  | NDDV     | VDL 4  | CDT     |          |
| Minor Lane/Major Mvn                 | nt      | NBT  | MRKA     | VBLn1  | SBT     |          |
| Capacity (veh/h)                     |         | -    | -        | -      | -       |          |
| HCM Lane V/C Ratio                   | , , ,   | -    | -        | -      | -       |          |
| HCM Control Delay (s/                | /veh)   | -    | -        | 0      | -       |          |
|                                      | ,       |      |          |        |         |          |
| HCM Lane LOS<br>HCM 95th %tile Q(veh | ,       | -    | -        | A<br>- | -       |          |

| Intersection                                              |          |                  |        |      |         |       |
|-----------------------------------------------------------|----------|------------------|--------|------|---------|-------|
| Int Delay, s/veh                                          | 0        |                  |        |      |         |       |
| Movement                                                  | EBT      | EBR              | WBL    | WBT  | NBL     | NBR   |
|                                                           |          | EDI              | VVDL   |      |         | NDI   |
| Lane Configurations                                       | <b>₽</b> | ^                | 0      | र्च  | ¥       | 0     |
| Traffic Vol, veh/h                                        | 0        | 0                | 0      | 0    | 0       | 0     |
| Future Vol, veh/h                                         | 0        | 0                | 0      | 0    | 0       | 0     |
| Conflicting Peds, #/hr                                    | 0        | 100              | 100    | 0    | 100     | 100   |
| Sign Control                                              | Free     | Free             | Free   | Free | Stop    | Stop  |
| RT Channelized                                            | -        | None             | -      | None |         | None  |
| Storage Length                                            | -        | -                | -      | -    | 0       | -     |
| Veh in Median Storage                                     | e, # 0   | -                | -      | 0    | 0       | -     |
| Grade, %                                                  | 0        | -                | -      | 0    | 0       | -     |
| Peak Hour Factor                                          | 90       | 90               | 90     | 90   | 90      | 90    |
| Heavy Vehicles, %                                         | 2        | 2                | 2      | 2    | 2       | 2     |
| Mvmt Flow                                                 | 0        | 0                | 0      | 0    | 0       | 0     |
|                                                           |          |                  |        |      |         |       |
|                                                           |          |                  |        |      |         |       |
|                                                           | /lajor1  |                  | Major2 |      | /linor1 |       |
| Conflicting Flow All                                      | 0        | 0                | 101    | 0    | 202     | 201   |
| Stage 1                                                   | -        | -                | -      | -    | 101     | -     |
| Stage 2                                                   | -        | -                | -      | -    | 101     | -     |
| Critical Hdwy                                             | -        | -                | 4.12   | -    | 6.42    | 6.22  |
| Critical Hdwy Stg 1                                       | -        | -                | -      | -    | 5.42    | -     |
| Critical Hdwy Stg 2                                       | -        | -                | -      | -    | 5.42    | -     |
| Follow-up Hdwy                                            | _        | -                | 2.218  | -    | 3.518   | 3.318 |
| Pot Cap-1 Maneuver                                        | _        | -                | 1491   | _    | 786     | 840   |
| Stage 1                                                   | _        | _                | -      | _    | 923     | -     |
| Stage 2                                                   | _        | _                | _      | _    | 923     | _     |
| Platoon blocked, %                                        | _        | _                |        | _    | 320     |       |
| Mov Cap-1 Maneuver                                        |          |                  | 1333   |      | 629     | 671   |
|                                                           |          | _                |        | -    |         |       |
| Mov Cap-2 Maneuver                                        | -        | -                | -      | -    | 629     | -     |
| Stage 1                                                   | -        | -                | -      | -    | 825     | -     |
| Stage 2                                                   | -        | -                | -      | -    | 825     | -     |
|                                                           |          |                  |        |      |         |       |
| Approach                                                  | EB       |                  | WB     |      | NB      |       |
| HCM Control Delay, s/                                     |          |                  | 0      |      | 0       |       |
| · ·                                                       | V U      |                  | U      |      |         |       |
| HCM LOS                                                   |          |                  |        |      | Α       |       |
|                                                           |          |                  |        |      |         |       |
|                                                           | nt N     | NBLn1            | EBT    | EBR  | WBL     | WBT   |
| Minor Lane/Major Mvm                                      |          |                  |        |      | 1333    | -     |
|                                                           |          | _                | -      |      |         |       |
| Capacity (veh/h)                                          |          | -                |        | _    |         | _     |
| Capacity (veh/h) HCM Lane V/C Ratio                       |          | -<br>-<br>0      | -      |      | -       | -     |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/ |          | -<br>-<br>0<br>Д | -      | -    | 0       | -     |
| Capacity (veh/h) HCM Lane V/C Ratio                       | veh)     | -<br>0<br>A      | -      | -    | -       |       |

| Intersection Int Delay, s/veh  Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length | 0<br>EBL<br>0<br>0 | EBT<br>♣ | WBT    | WBR  |           |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------|------|-----------|--------|
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized                                                        | 0                  | र्स      |        | W/RR |           |        |
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized                                                        | 0                  | र्स      |        |      | SBL       | SBR    |
| Traffic Vol, veh/h<br>Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized                                                                |                    |          | ₽      | WDIX | ¥/        | ODIC   |
| Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized                                                                                      |                    | 0        | 0      | 0    | 0         | 0      |
| Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized                                                                                                           |                    | 0        | 0      | 0    | 0         | 0      |
| Sign Control<br>RT Channelized                                                                                                                                     | 0                  | 0        | 0      | 0    | 0         | 0      |
| RT Channelized                                                                                                                                                     | Free               | Free     | Free   | Free | Stop      | Stop   |
|                                                                                                                                                                    | riee<br>-          |          |        |      | Stop<br>- |        |
| Storage Length                                                                                                                                                     |                    |          | -      |      |           |        |
|                                                                                                                                                                    | <b>-</b><br>- ш    | -        | -      | -    | 0         | -      |
| Veh in Median Storag                                                                                                                                               |                    | 0        | 0      | -    | 0         | -      |
| Grade, %                                                                                                                                                           | -                  | 0        | 0      | -    | 0         | -      |
| Peak Hour Factor                                                                                                                                                   | 90                 | 90       | 90     | 90   | 90        | 90     |
| Heavy Vehicles, %                                                                                                                                                  | 2                  | 2        | 2      | 2    | 2         | 2      |
| Mvmt Flow                                                                                                                                                          | 0                  | 0        | 0      | 0    | 0         | 0      |
|                                                                                                                                                                    |                    |          |        |      |           |        |
| Major/Minor I                                                                                                                                                      | Major1             | N        | Major2 | N    | Minor2    |        |
| Conflicting Flow All                                                                                                                                               | 1                  | 0        | -      | 0    | 1         | 1      |
| Stage 1                                                                                                                                                            | -                  | -        | -      | -    | 1         |        |
| Stage 2                                                                                                                                                            | _                  | _        | _      | _    | 0         | _      |
| Critical Hdwy                                                                                                                                                      | 4.12               | _        | _      | _    | 6.42      | 6.22   |
|                                                                                                                                                                    |                    |          |        |      |           |        |
| Critical Hdwy Stg 1                                                                                                                                                | -                  | -        | -      | -    | 5.42      | -      |
| Critical Hdwy Stg 2                                                                                                                                                | -                  | -        | -      | -    | 5.42      | -      |
| Follow-up Hdwy                                                                                                                                                     | 2.218              | -        | -      | -    | 3.518     |        |
| Pot Cap-1 Maneuver                                                                                                                                                 | 1622               | -        | -      | -    | 1022      | 1083   |
| Stage 1                                                                                                                                                            | -                  | -        | -      | -    | 1022      | -      |
| Stage 2                                                                                                                                                            | -                  | -        | -      | -    | -         | -      |
| Platoon blocked, %                                                                                                                                                 |                    | -        | -      | -    |           |        |
| Mov Cap-1 Maneuver                                                                                                                                                 | 1622               | -        | -      | -    | 1022      | 1083   |
| Mov Cap-2 Maneuver                                                                                                                                                 |                    | -        | -      | -    | 1022      | -      |
| Stage 1                                                                                                                                                            | _                  | _        | -      | _    | 1022      | _      |
| Stage 2                                                                                                                                                            | _                  | _        | _      | _    | -         | _      |
| Olago Z                                                                                                                                                            |                    |          |        |      |           |        |
|                                                                                                                                                                    |                    |          |        |      |           |        |
| Approach                                                                                                                                                           | EB                 |          | WB     |      | SB        |        |
| HCM Control Delay, s                                                                                                                                               | /v 0               |          | 0      |      | 0         |        |
| HCM LOS                                                                                                                                                            |                    |          |        |      | Α         |        |
|                                                                                                                                                                    |                    |          |        |      |           |        |
| Minor Lane/Major Mvr                                                                                                                                               | nt                 | EBL      | EBT    | WRT  | WBRS      | SBI n1 |
| Capacity (veh/h)                                                                                                                                                   | iit.               | 1622     | LDI    | VVDI | WDICC     | JULITI |
| HCM Lane V/C Ratio                                                                                                                                                 |                    |          | -      | _    | _         | -      |
|                                                                                                                                                                    | 1 . 1. \           | -        | -      | -    | -         | -      |
| HCM Control Delay (s                                                                                                                                               | /ven)              | 0        | -      | -    | -         | 0      |
| HCM Lane LOS                                                                                                                                                       | . \                | A        | -      | -    | -         | Α      |
| HCM 95th %tile Q(veh                                                                                                                                               | 1)                 | 0        | -      | -    | -         | -      |

# **Existing scenario**

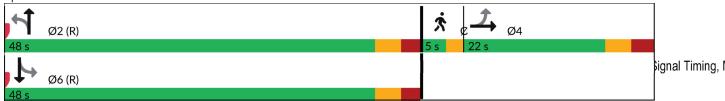
2022 Major Event Egress

1: Bank & Fifth 08/01/2024

|                                            | ۶          | <b>→</b> | •     | +         | •     | †        | <b>/</b> | <b>↓</b> |  |
|--------------------------------------------|------------|----------|-------|-----------|-------|----------|----------|----------|--|
| Lane Group                                 | EBL        | EBT      | WBL   | WBT       | NBL   | NBT      | SBL      | SBT      |  |
| Lane Configurations                        |            | 4        | 7     | ₽         |       | 47>      |          | €ि       |  |
| Traffic Volume (vph)                       | 74         | 32       | 39    | 68        | 21    | 308      | 19       | 340      |  |
| Future Volume (vph)                        | 74         | 32       | 39    | 68        | 21    | 308      | 19       | 340      |  |
| Lane Group Flow (vph)                      | 0          | 147      | 43    | 143       | 0     | 392      | 0        | 441      |  |
| Turn Type                                  | Perm       | NA       | Perm  | NA        | Perm  | NA       | Perm     | NA       |  |
| Protected Phases                           |            | 4        |       | 8         |       | 2        |          | 6        |  |
| Permitted Phases                           | 4          |          | 8     |           | 2     |          | 6        |          |  |
| Detector Phase                             | 4          | 4        | 8     | 8         | 2     | 2        | 6        | 6        |  |
| Switch Phase                               |            |          |       |           |       |          |          |          |  |
| Minimum Initial (s)                        | 4.0        | 4.0      | 4.0   | 4.0       | 4.0   | 4.0      | 4.0      | 4.0      |  |
| Minimum Split (s)                          | 26.0       | 26.0     | 26.0  | 26.0      | 49.0  | 49.0     | 49.0     | 49.0     |  |
| Total Split (s)                            | 26.0       | 26.0     | 26.0  | 26.0      | 49.0  | 49.0     | 49.0     | 49.0     |  |
| Total Split (%)                            | 34.7%      | 34.7%    | 34.7% | 34.7%     | 65.3% | 65.3%    | 65.3%    | 65.3%    |  |
| Yellow Time (s)                            | 3.0        | 3.0      | 3.0   | 3.0       | 3.0   | 3.0      | 3.0      | 3.0      |  |
| All-Red Time (s)                           | 2.5        | 2.5      | 2.5   | 2.5       | 2.5   | 2.5      | 2.5      | 2.5      |  |
| Lost Time Adjust (s)                       | ,          | 0.0      | 0.0   | 0.0       | 3     | 0.0      |          | 0.0      |  |
| Total Lost Time (s)                        |            | 5.5      | 5.5   | 5.5       |       | 5.5      |          | 5.5      |  |
| Lead/Lag                                   |            | 0.0      | 0.0   | 0.0       |       | 0.0      |          | 0.0      |  |
| Lead-Lag Optimize?                         |            |          |       |           |       |          |          |          |  |
| Recall Mode                                | None       | None     | None  | None      | Max   | Max      | Max      | Max      |  |
| Act Effct Green (s)                        | 110110     | 13.1     | 12.9  | 12.9      | Max   | 48.0     | Mich     | 48.0     |  |
| Actuated g/C Ratio                         |            | 0.19     | 0.19  | 0.19      |       | 0.70     |          | 0.70     |  |
| v/c Ratio                                  |            | 0.65     | 0.22  | 0.45      |       | 0.20     |          | 0.23     |  |
| Control Delay (s/veh)                      |            | 36.0     | 24.7  | 19.3      |       | 5.6      |          | 5.6      |  |
| Queue Delay                                |            | 0.0      | 0.0   | 0.0       |       | 0.0      |          | 0.0      |  |
| Total Delay (s/veh)                        |            | 36.0     | 24.7  | 19.3      |       | 5.6      |          | 5.6      |  |
| LOS                                        |            | D        | C     | В         |       | A        |          | A        |  |
| Approach Delay (s/veh)                     |            | 36.0     |       | 20.5      |       | 5.6      |          | 5.6      |  |
| Approach LOS                               |            | D        |       | 20.5<br>C |       | 3.0<br>A |          | A        |  |
| Queue Length 50th (m)                      |            | 15.3     | 4.6   | 9.3       |       | 8.7      |          | 9.8      |  |
| Queue Length 95th (m)                      |            | 31.8     | 12.1  | 23.1      |       | 18.9     |          | 21.1     |  |
| Internal Link Dist (m)                     |            | 49.7     | 14.1  | 112.4     |       | 195.6    |          | 190.0    |  |
| Turn Bay Length (m)                        |            | 70.7     | 45.0  | 112.7     |       | 100.0    |          | 130.0    |  |
| , , ,                                      |            | 345      | 320   | 469       |       | 1945     |          | 1954     |  |
| Base Capacity (vph) Starvation Cap Reductn |            | 0        | 0     | 409       |       | 1945     |          | 1934     |  |
| Spillback Cap Reductin                     |            | 0        | 0     | 0         |       | 0        |          | 0        |  |
| Storage Cap Reductin                       |            | 0        | 0     | 0         |       | 0        |          | 0        |  |
| Reduced v/c Ratio                          |            | 0.43     | 0.13  | 0.30      |       | 0.20     |          | 0.23     |  |
|                                            |            | 0.43     | 0.13  | 0.30      |       | 0.20     |          | 0.23     |  |
| Intersection Summary                       |            |          |       |           |       |          |          |          |  |
| Cycle Length: 75                           | 4          |          |       |           |       |          |          |          |  |
| Actuated Cycle Length: 68                  | .4         |          |       |           |       |          |          |          |  |
| Natural Cycle: 75                          |            |          |       |           |       |          |          |          |  |
| Control Type: Actuated-Un                  | coordinate | ed       |       |           |       |          |          |          |  |
| Maximum v/c Ratio: 0.65                    |            |          |       |           |       |          |          |          |  |

Maximum v/c Ratio: 0.65 Intersection Signal Delay (s/veh): 11.8 Intersection Capacity Utilization 71.9% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service C

Splits and Phases: 1: Bank & Fifth




|                            | <b>→</b>    | 1        | †         | <b>/</b>  | <del> </del> |           |
|----------------------------|-------------|----------|-----------|-----------|--------------|-----------|
| Lane Group                 | EBT         | NBL      | NBT       | SBL       | SBT          | Ø3        |
| Lane Configurations        | 4           |          | 414       |           | 414          |           |
| Traffic Volume (vph)       | 21          | 49       | 259       | 30        | 270          |           |
| Future Volume (vph)        | 21          | 49       | 259       | 30        | 270          |           |
| Lane Group Flow (vph)      | 143         | 0        | 405       | 0         | 401          |           |
| Turn Type                  | NA          | Perm     | NA        | Perm      | NA           |           |
| Protected Phases           | 4           |          | 2         |           | 6            | 3         |
| Permitted Phases           |             | 2        |           | 6         |              |           |
| Detector Phase             | 4           | 2        | 2         | 6         | 6            |           |
| Switch Phase               |             |          |           |           |              |           |
| Minimum Initial (s)        | 4.4         | 10.0     | 10.0      | 4.0       | 4.0          | 1.0       |
| Minimum Split (s)          | 22.0        | 48.0     | 48.0      | 48.0      | 48.0         | 5.0       |
| Total Split (s)            | 22.0        | 48.0     | 48.0      | 48.0      | 48.0         | 5.0       |
| Total Split (%)            | 29.3%       | 64.0%    | 64.0%     | 64.0%     | 64.0%        | 7%        |
| Yellow Time (s)            | 3.0         | 3.0      | 3.0       | 3.0       | 3.0          | 2.0       |
| All-Red Time (s)           | 2.6         | 2.2      | 2.2       | 2.2       | 2.2          | 0.0       |
| Lost Time Adjust (s)       | 0.0         | ۷.۷      | 0.0       | 2.2       | 0.0          | 0.0       |
| Total Lost Time (s)        | 5.6         |          | 5.2       |           | 5.2          |           |
| Lead/Lag                   | Lag         |          | ٥.۷       |           | ٥.۷          | Lead      |
| Lead-Lag Optimize?         | Lay         |          |           |           |              | Loau      |
| Recall Mode                | None        | C-Max    | C-Max     | C-Max     | C-Max        | None      |
| Act Effct Green (s)        | 13.1        | O-IVIAX  | 51.1      | O-IVIAX   | 51.1         | NOILE     |
| Actuated g/C Ratio         | 0.17        |          | 0.68      |           | 0.68         |           |
| v/c Ratio                  | 0.17        |          | 0.00      |           | 0.00         |           |
| Control Delay (s/veh)      | 38.7        |          | 5.0       |           | 4.8          |           |
| Queue Delay                | 0.0         |          | 0.0       |           | 0.0          |           |
|                            | 38.7        |          | 5.0       |           | 4.8          |           |
| Total Delay (s/veh)<br>LOS | 36.7<br>D   |          | 5.0<br>A  |           | 4.6<br>A     |           |
|                            |             |          |           |           |              |           |
| Approach LOS               | 38.7        |          | 5.0       |           | 4.8          |           |
| Approach LOS               | D           |          | Α         |           | A            |           |
| Queue Length 50th (m)      | 18.9        |          | 8.4       |           | 8.0          |           |
| Queue Length 95th (m)      | 32.8        |          | 17.4      |           | 16.6         |           |
| Internal Link Dist (m)     | 39.8        |          | 31.5      |           | 195.6        |           |
| Turn Bay Length (m)        | 20.4        |          | 1015      |           | 4770         |           |
| Base Capacity (vph)        | 304         |          | 1645      |           | 1778         |           |
| Starvation Cap Reductn     | 0           |          | 0         |           | 0            |           |
| Spillback Cap Reductn      | 0           |          | 0         |           | 0            |           |
| Storage Cap Reductn        | 0           |          | 0         |           | 0            |           |
| Reduced v/c Ratio          | 0.47        |          | 0.25      |           | 0.23         |           |
| Intersection Summary       |             |          |           |           |              |           |
| Cycle Length: 75           |             |          |           |           |              |           |
| Actuated Cycle Length: 75  | 5           |          |           |           |              |           |
| Offset: 74 (99%), Referen  |             | se 2:NBT | L and 6:5 | SBTL, Sta | art of Gree  | n         |
| Natural Cycle: 75          |             |          |           | ,         |              |           |
| Control Type: Actuated-C   | oordinated  |          |           |           |              |           |
| Maximum v/c Ratio: 0.61    |             |          |           |           |              |           |
| Intersection Signal Dolov  | (a/yah), 10 | ٥        |           | 1.        | ntorocotio   | n I OC: D |

Splits and Phases: 2: Bank & Holmwood

Intersection Signal Delay (s/veh): 10.0 Intersection Capacity Utilization 59.2%

Analysis Period (min) 15



Intersection LOS: B

ICU Level of Service B

|                                     | <b>†</b>    | ↓        |          |             |             |             |
|-------------------------------------|-------------|----------|----------|-------------|-------------|-------------|
| Lane Group                          | NBT         | SBT      | Ø1       | Ø7          | Ø8          |             |
| Lane Configurations                 | <b>↑</b> Ъ  | <b>*</b> | ~ !      | ~!          |             |             |
| Traffic Volume (vph)                | 350         | 333      |          |             |             |             |
| Future Volume (vph)                 | 350         | 333      |          |             |             |             |
| Lane Group Flow (vph)               | 389         | 370      |          |             |             |             |
| Turn Type                           | NA          | NA       |          |             |             |             |
| Protected Phases                    | 2           | 6        | 1        | 7           | 8           |             |
| Permitted Phases                    | _           | v        | •        | •           | v           |             |
| Detector Phase                      | 2           | 6        |          |             |             |             |
| Switch Phase                        | _           | v        |          |             |             |             |
| Minimum Initial (s)                 | 10.0        | 10.0     | 1.0      | 1.0         | 10.0        |             |
| Minimum Split (s)                   | 39.0        | 44.0     | 5.0      | 5.0         | 26.0        |             |
| Total Split (s)                     | 39.0        | 44.0     | 5.0      | 5.0         | 26.0        |             |
| Total Split (%)                     | 52.0%       | 58.7%    | 7%       | 7%          | 35%         |             |
| Yellow Time (s)                     | 3.0         | 3.0      | 2.0      | 3.5         | 3.3         |             |
| All-Red Time (s)                    | 3.9         | 3.9      | 0.0      | 0.0         | 3.0         |             |
| Lost Time Adjust (s)                | 0.0         | 0.0      | 0.0      | 0.0         | 5.0         |             |
| Total Lost Time (s)                 | 6.9         | 6.9      |          |             |             |             |
| Lead/Lag                            | Lag         | 0.5      | Lead     | Lead        | Lag         |             |
| Lead-Lag Optimize?                  | Yes         |          | Yes      | Yes         | Lay         |             |
| Recall Mode                         | C-Max       | C-Max    | None     | None        | None        |             |
| Act Effct Green (s)                 | 75.0        | 75.0     | NOHE     | NOHE        | None        |             |
| Actuated g/C Ratio                  | 1.00        | 1.00     |          |             |             |             |
| v/c Ratio                           | 0.12        | 0.12     |          |             |             |             |
| Control Delay (s/veh)               | 0.12        | 0.12     |          |             |             |             |
| Queue Delay                         | 0.1         | 0.1      |          |             |             |             |
| Total Delay (s/veh)                 | 0.0         | 0.0      |          |             |             |             |
| LOS                                 | 0.1<br>A    | 0.1<br>A |          |             |             |             |
|                                     | 0.1         | 0.1      |          |             |             |             |
| Approach LOS                        | 0.1<br>A    | 0.1<br>A |          |             |             |             |
| Approach LOS  Queue Length 50th (m) | 0.0         | 0.0      |          |             |             |             |
| Queue Length 95th (m)               | 0.0         | 0.0      |          |             |             |             |
| Internal Link Dist (m)              | 33.7        | 44.8     |          |             |             |             |
|                                     | 33.7        | 44.8     |          |             |             |             |
| Turn Bay Length (m)                 | 2204        | 2472     |          |             |             |             |
| Base Capacity (vph)                 | 3204        | 3173     |          |             |             |             |
| Starvation Cap Reductn              | 0           | 0        |          |             |             |             |
| Spillback Cap Reductn               | 0           | 0        |          |             |             |             |
| Storage Cap Reductn                 | 0 10        | 0        |          |             |             |             |
| Reduced v/c Ratio                   | 0.12        | 0.12     |          |             |             |             |
| Intersection Summary                |             |          |          |             |             |             |
| Cycle Length: 75                    |             |          |          |             |             |             |
| Actuated Cycle Length: 75           |             |          |          |             |             |             |
| Offset: 0 (0%), Referenced          | to phase    | 2:NBT an | d 6:SBTL | ., Start of | Green       |             |
| Natural Cycle: 75                   |             |          |          |             |             |             |
| Control Type: Actuated-Co           | ordinated   |          |          |             |             |             |
| Maximum v/c Ratio: 0.12             |             |          |          |             |             |             |
| Intersection Signal Delay (s        | s/veh): 0.1 |          |          | In          | tersection  | LOS: A      |
| Intersection Capacity Utiliza       | ation 43.5° | %        |          | IC          | CU Level of | f Service A |
| Analysis Period (min) 15            |             |          |          |             |             |             |

Splits and Phases: 3: Bank & Exhibition



## 6: Bank & Aylmer

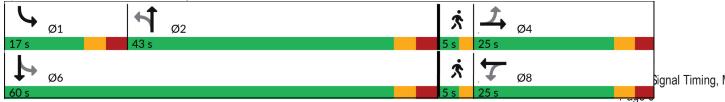
|                                                 | •           | •        | †         | <b></b>     |                        |   |
|-------------------------------------------------|-------------|----------|-----------|-------------|------------------------|---|
| Lane Group                                      | EBL         | NBL      | NBT       | SBT         | Ø3                     |   |
| Lane Configurations                             | W           |          | 414       | <b>†</b> 1> |                        |   |
| Traffic Volume (vph)                            | 18          | 16       | 323       | 288         |                        |   |
| Future Volume (vph)                             | 18          | 16       | 323       | 288         |                        |   |
| Lane Group Flow (vph)                           | 37          | 0        | 377       | 344         |                        |   |
| Turn Type                                       | Prot        | Perm     | NA        | NA          |                        |   |
| Protected Phases                                | 4           |          | 2         | 6           | 3                      |   |
| Permitted Phases                                | 4           | 2        | _         | 6           | •                      |   |
| Detector Phase                                  | 4           | 2        | 2         | 6           |                        |   |
| Switch Phase                                    |             | _        | _         |             |                        |   |
| Minimum Initial (s)                             | 10.0        | 30.0     | 30.0      | 30.0        | 1.0                    |   |
| Minimum Split (s)                               | 22.0        | 63.0     | 63.0      | 63.0        | 5.0                    |   |
| Total Split (s)                                 | 22.0        | 63.0     | 63.0      | 63.0        | 5.0                    |   |
| Fotal Split (%)                                 | 24.4%       | 70.0%    | 70.0%     | 70.0%       | 6%                     |   |
| Yellow Time (s)                                 | 3.3         | 3.0      | 3.0       | 3.0         | 2.0                    |   |
| All-Red Time (s)                                | 2.2         | 2.2      | 2.2       | 2.2         | 1.0                    |   |
| Lost Time Adjust (s)                            | 0.0         | ۷.۷      | 0.0       | 0.0         | 1.0                    |   |
| Total Lost Time (s)                             | 5.5         |          | 5.2       | 5.2         |                        |   |
| Lead/Lag                                        |             |          | 5.2       | 5.2         | Lead                   |   |
| · · · · · · · · · · · · · · · · · · ·           | Lag         |          |           |             | Leau                   |   |
| Lead-Lag Optimize?                              | Dod         | C May    | C May     | C May       | May                    |   |
| Recall Mode                                     | Ped         | C-Max    | C-Max     | C-Max       | Max                    |   |
| Act Effct Green (s)                             | 14.0        |          | 60.3      | 60.3        |                        |   |
| Actuated g/C Ratio                              | 0.16        |          | 0.67      | 0.67        |                        |   |
| v/c Ratio                                       | 0.17        |          | 0.19      | 0.17        |                        |   |
| Control Delay (s/veh)                           | 23.5        |          | 5.9       | 5.5         |                        |   |
| Queue Delay                                     | 0.0         |          | 0.0       | 0.0         |                        |   |
| Total Delay (s/veh)                             | 23.5        |          | 5.9       | 5.5         |                        |   |
| LOS                                             | С           |          | A         | Α           |                        |   |
| Approach Delay (s/veh)                          | 23.5        |          | 5.9       | 5.5         |                        |   |
| Approach LOS                                    | С           |          | Α         | Α           |                        |   |
| Queue Length 50th (m)                           | 3.0         |          | 11.3      | 9.6         |                        |   |
| Queue Length 95th (m)                           | 11.4        |          | 16.6      | 14.4        |                        |   |
| nternal Link Dist (m)                           | 76.7        |          | 28.1      | 10.1        |                        |   |
| Turn Bay Length (m)                             |             |          |           |             |                        |   |
| Base Capacity (vph)                             | 261         |          | 1971      | 2055        |                        |   |
| Starvation Cap Reductn                          | 0           |          | 0         | 0           |                        |   |
| Spillback Cap Reductn                           | 0           |          | 0         | 0           |                        |   |
| Storage Cap Reductn                             | 0           |          | 0         | 0           |                        |   |
| Reduced v/c Ratio                               | 0.14        |          | 0.19      | 0.17        |                        |   |
| Intersection Summary                            |             |          |           |             |                        |   |
| Cycle Length: 90                                |             |          |           |             |                        |   |
| Actuated Cycle Length: 90                       |             |          |           |             |                        |   |
| Offset: 87 (97%), Referenc<br>Natural Cycle: 90 | ed to phas  | se 2:NBT | L and 6:S | BT, Start   | of Green               |   |
| Control Type: Actuated-Co                       | ordinated   |          |           |             |                        |   |
| Maximum v/c Ratio: 0.19                         | o. amatou   |          |           |             |                        |   |
| ntersection Signal Delay (s                     | s/veh): 6.6 |          |           | In          | itersection LOS: A     |   |
| Intersection Capacity Utiliz                    | •           |          |           |             | CU Level of Service A  |   |
| Analysis Period (min) 15                        | udon 70.0   | 70       |           | IC          | 70 LOVE OF OUR PIOCE P | · |
|                                                 |             |          |           |             |                        |   |

Splits and Phases: 6: Bank & Aylmer



| 1. Dank & Ournings        | iuc         |       |       |          |       |             |       |          |      |      | 00/01/202 |
|---------------------------|-------------|-------|-------|----------|-------|-------------|-------|----------|------|------|-----------|
|                           | ۶           | -     | •     | <b>←</b> | 4     | <b>†</b>    | -     | <b>↓</b> |      |      |           |
| Lane Group                | EBL         | EBT   | WBL   | WBT      | NBL   | NBT         | SBL   | SBT      | Ø3   | Ø7   |           |
| Lane Configurations       |             | - 4→  |       | 4        |       | <b>€</b> 1Ъ |       | €î∌      |      |      |           |
| Traffic Volume (vph)      | 30          | 27    | 16    | 34       | 19    | 263         | 14    | 295      |      |      |           |
| Future Volume (vph)       | 30          | 27    | 16    | 34       | 19    | 263         | 14    | 295      |      |      |           |
| Lane Group Flow (vph)     | 0           | 87    | 0     | 96       | 0     | 321         | 0     | 376      |      |      |           |
| Turn Type                 | Perm        | NA    | Perm  | NA       | Perm  | NA          | pm+pt | NA       |      |      |           |
| Protected Phases          |             | 4     |       | 8        |       | 2           | 1     | 6        | 3    | 7    |           |
| Permitted Phases          | 4           |       | 8     |          | 2     |             | 6     |          |      |      |           |
| Detector Phase            | 4           | 4     | 8     | 8        | 2     | 2           | 1     | 6        |      |      |           |
| Switch Phase              |             |       |       |          |       |             |       |          |      |      |           |
| Minimum Initial (s)       | 6.4         | 6.4   | 5.3   | 5.3      | 17.0  | 17.0        | 5.0   | 17.0     | 1.0  | 1.0  |           |
| Minimum Split (s)         | 25.0        | 25.0  | 25.0  | 25.0     | 43.0  | 43.0        | 17.0  | 60.0     | 5.0  | 5.0  |           |
| Total Split (s)           | 25.0        | 25.0  | 25.0  | 25.0     | 43.0  | 43.0        | 17.0  | 60.0     | 5.0  | 5.0  |           |
| Total Split (%)           | 27.8%       | 27.8% | 27.8% | 27.8%    | 47.8% | 47.8%       | 18.9% | 66.7%    | 6%   | 6%   |           |
| Yellow Time (s)           | 3.0         | 3.0   | 3.0   | 3.0      | 3.0   | 3.0         | 3.0   | 3.0      | 2.0  | 2.0  |           |
| All-Red Time (s)          | 2.6         | 2.6   | 2.6   | 2.6      | 3.0   | 3.0         | 2.9   | 3.0      | 0.0  | 0.0  |           |
| Lost Time Adjust (s)      |             | 0.0   |       | 0.0      |       | 0.0         |       | 0.0      |      |      |           |
| Total Lost Time (s)       |             | 5.6   |       | 5.6      |       | 6.0         |       | 6.0      |      |      |           |
| Lead/Lag                  | Lag         | Lag   | Lag   | Lag      | Lag   | Lag         | Lead  |          | Lead | Lead |           |
| Lead-Lag Optimize?        |             |       | Yes   | Yes      | Yes   | Yes         | Yes   |          |      | Yes  |           |
| Recall Mode               | None        | None  | None  | None     | Max   | Max         | None  | Max      | None | None |           |
| Act Effct Green (s)       |             | 11.3  |       | 11.1     |       | 60.3        |       | 60.3     |      |      |           |
| Actuated g/C Ratio        |             | 0.14  |       | 0.14     |       | 0.76        |       | 0.76     |      |      |           |
| v/c Ratio                 |             | 0.53  |       | 0.48     |       | 0.15        |       | 0.18     |      |      |           |
| Control Delay (s/veh)     |             | 42.8  |       | 28.2     |       | 4.1         |       | 4.1      |      |      |           |
| Queue Delay               |             | 0.0   |       | 0.0      |       | 0.0         |       | 0.0      |      |      |           |
| Total Delay (s/veh)       |             | 42.8  |       | 28.2     |       | 4.1         |       | 4.1      |      |      |           |
| LOS                       |             | D     |       | С        |       | Α           |       | Α        |      |      |           |
| Approach Delay (s/veh)    |             | 42.8  |       | 28.2     |       | 4.1         |       | 4.1      |      |      |           |
| Approach LOS              |             | D     |       | С        |       | Α           |       | Α        |      |      |           |
| Queue Length 50th (m)     |             | 12.0  |       | 8.1      |       | 6.6         |       | 7.5      |      |      |           |
| Queue Length 95th (m)     |             | 24.9  |       | 21.2     |       | 13.6        |       | 15.4     |      |      |           |
| Internal Link Dist (m)    |             | 75.1  |       | 136.0    |       | 63.1        |       | 79.0     |      |      |           |
| Turn Bay Length (m)       |             |       |       |          |       |             |       |          |      |      |           |
| Base Capacity (vph)       |             | 283   |       | 327      |       | 2153        |       | 2117     |      |      |           |
| Starvation Cap Reductn    |             | 0     |       | 0        |       | 0           |       | 0        |      |      |           |
| Spillback Cap Reductn     |             | 0     |       | 0        |       | 0           |       | 0        |      |      |           |
| Storage Cap Reductn       |             | 0     |       | 0        |       | 0           |       | 0        |      |      |           |
| Reduced v/c Ratio         |             | 0.31  |       | 0.29     |       | 0.15        |       | 0.18     |      |      |           |
| Intersection Summary      |             |       |       |          |       |             |       |          |      |      |           |
| Cycle Length: 90          |             |       |       |          |       |             |       |          |      |      |           |
| Actuated Cycle Length: 79 | ).4         |       |       |          |       |             |       |          |      |      |           |
| Natural Cycle: 90         |             |       |       |          |       |             |       |          |      |      |           |
| Control Type: Actuated-Ur | ncoordinate | h     |       |          |       |             |       |          |      |      |           |

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.53

Intersection Signal Delay (s/veh): 10.6
Intersection Capacity Utilization 44.7%

Intersection LOS: B
ICU Level of Service A

Analysis Period (min) 15


Splits and Phases: 7: Bank & Sunnyside



|                               | ۶          | 4     | <b>†</b> | <b>↓</b> |                |           |
|-------------------------------|------------|-------|----------|----------|----------------|-----------|
| Lane Group                    | EBL        | NBL   | NBT      | SBT      | Ø4             |           |
| Lane Configurations           | W          |       | 4        | 1        |                |           |
| Traffic Volume (vph)          | 132        | 42    | 298      | 283      |                |           |
| Future Volume (vph)           | 132        | 42    | 298      | 283      |                |           |
| Lane Group Flow (vph)         | 214        | 0     | 378      | 388      |                |           |
| Turn Type                     | Prot       | Perm  | NA       | NA       |                |           |
| Protected Phases              | 10         |       | 2        | 6        | 4              |           |
| Permitted Phases              |            | 2     |          |          |                |           |
| Detector Phase                | 10         | 2     | 2        | 6        |                |           |
| Switch Phase                  |            |       |          |          |                |           |
| Minimum Initial (s)           | 10.0       | 4.0   | 4.0      | 4.0      | 4.0            |           |
| Minimum Split (s)             | 20.7       | 10.8  | 10.8     | 31.8     | 9.7            |           |
| Total Split (s)               | 21.0       | 48.0  | 48.0     | 48.0     | 11.0           |           |
| Total Split (%)               | 26.3%      | 60.0% | 60.0%    | 60.0%    | 14%            |           |
| Yellow Time (s)               | 3.0        | 3.0   | 3.0      | 3.0      | 3.0            |           |
| All-Red Time (s)              | 2.7        | 3.8   | 3.8      | 3.8      | 2.7            |           |
| _ost Time Adjust (s)          | 0.0        |       | 0.0      | 0.0      |                |           |
| Total Lost Time (s)           | 5.7        |       | 6.8      | 6.8      |                |           |
| Lead/Lag                      |            |       |          |          |                |           |
| Lead-Lag Optimize?            |            |       |          |          |                |           |
| Recall Mode                   | Min        | None  | None     | Max      | None           |           |
| Act Effct Green (s)           | 13.6       |       | 41.2     | 41.2     |                |           |
| Actuated g/C Ratio            | 0.20       |       | 0.61     | 0.61     |                |           |
| //c Ratio                     | 0.68       |       | 0.40     | 0.39     |                |           |
| Control Delay (s/veh)         | 36.7       |       | 8.6      | 8.4      |                |           |
| Queue Delay                   | 0.0        |       | 0.0      | 0.0      |                |           |
| Total Delay (s/veh)           | 36.7       |       | 8.6      | 8.4      |                |           |
| _OS                           | D          |       | Α        | Α        |                |           |
| Approach Delay (s/veh)        | 36.7       |       | 8.6      | 8.4      |                |           |
| Approach LOS                  | D          |       | Α        | Α        |                |           |
| Queue Length 50th (m)         | 25.0       |       | 22.7     | 23.2     |                |           |
| Queue Length 95th (m)         | #45.8      |       | 39.1     | 39.1     |                |           |
| Internal Link Dist (m)        | 57.2       |       | 0.1      | 5.9      |                |           |
| Turn Bay Length (m)           |            |       |          |          |                |           |
| Base Capacity (vph)           | 355        |       | 946      | 1005     |                |           |
| Starvation Cap Reductn        | 0          |       | 0        | 0        |                |           |
| Spillback Cap Reductn         | 0          |       | 0        | 0        |                |           |
| Storage Cap Reductn           | 0          |       | 0        | 0        |                |           |
| Reduced v/c Ratio             | 0.60       |       | 0.40     | 0.39     |                |           |
| Intersection Summary          |            |       |          |          |                |           |
| Cycle Length: 80              |            |       |          |          |                |           |
| Actuated Cycle Length: 67.3   | 3          |       |          |          |                |           |
| Natural Cycle: 65             |            |       |          |          |                |           |
| Control Type: Actuated-Unc    | coordinate | ed    |          |          |                |           |
| Maximum v/c Ratio: 0.68       |            |       |          |          |                |           |
| Intersection Signal Delay (s. | /veh): 14. | 6     |          | In       | ntersection L0 | DS: B     |
| Intersection Capacity Utiliza |            |       |          | IC       | CU Level of S  | Service C |
|                               |            |       |          |          |                |           |
| Analysis Period (min) 15      |            |       |          |          |                |           |

Queue shown is maximum after two cycles.

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



|                            |      |       |       |       |      |      | _ |
|----------------------------|------|-------|-------|-------|------|------|---|
| Intersection               |      |       |       |       |      |      |   |
| Intersection Delay, s/veh  | 0    |       |       |       |      |      |   |
| Intersection LOS           | -    |       |       |       |      |      |   |
|                            |      |       |       |       |      |      |   |
| Movement                   | EBL  | EBT   | WBT   | WBR   | SBL  | SBR  |   |
| Lane Configurations        |      | 4     | ĵ»    |       | W    |      |   |
| Traffic Vol, veh/h         | 0    | 0     | 0     | 0     | 0    | 0    |   |
| Future Vol, veh/h          | 0    | 0     | 0     | 0     | 0    | 0    |   |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |   |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |   |
| Mvmt Flow                  | 0    | 0     | 0     | 0     | 0    | 0    |   |
| Number of Lanes            | 0    | 1     | 1     | 0     | 1    | 0    |   |
| Approach                   |      | EB    | WB    |       | SB   |      |   |
| Opposing Approach          |      | WB    | EB    |       |      |      |   |
| Opposing Lanes             |      | 1     | 1     |       | 0    |      |   |
| Conflicting Approach Left  |      | SB    |       |       | WB   |      |   |
| Conflicting Lanes Left     |      | 1     | 0     |       | 1    |      |   |
| Conflicting Approach Right |      |       | SB    |       | EB   |      |   |
| Conflicting Lanes Right    |      | 0     | 1     |       | 1    |      |   |
| HCM Control Delay, s/veh   |      | 0     | 0     |       | 0    |      |   |
| HCM LOS                    |      | -     | -     |       | -    |      |   |
|                            |      |       |       |       |      |      |   |
| Lane                       |      | EBLn1 | WBLn1 | SBLn1 |      |      |   |
| Vol Left, %                |      | 0%    | 0%    | 0%    |      |      |   |
| Vol Thru, %                |      | 100%  | 100%  | 100%  |      |      |   |
| Vol Right, %               |      | 0%    | 0%    | 0%    |      |      |   |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |   |
| Traffic Vol by Lane        |      | 0     | 0     | 0     |      |      |   |
| I T Vol                    |      | 0     | 0     | 0     |      |      |   |

HCM Lane LOS

HCM 95th-tile Q

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 0    |       |       |       |      |      |
| Intersection LOS           | -    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Management                 | EDT  | EDD   | MO    | MOT   | ND   | NDD  |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | ₽    |       |       | र्स   | W    |      |
| Traffic Vol, veh/h         | 0    | 0     | 0     | 0     | 0    | 0    |
| Future Vol, veh/h          | 0    | 0     | 0     | 0     | 0    | 0    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 0    | 0     | 0     | 0     | 0    | 0    |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       |       | WB    | NB   |      |
|                            | WB   |       |       | EB    | IND  |      |
| Opposing Approach          | WB   |       |       | 1     | 0    |      |
| Opposing Lanes             | I    |       |       |       | EB   |      |
| Conflicting Approach Left  |      |       |       | NB    |      |      |
| Conflicting Lanes Left     | 0    |       |       | 1     | 1    |      |
| Conflicting Approach Right | NB   |       |       | 0     | WB   |      |
| Conflicting Lanes Right    | 1    |       |       | 0     | 1    |      |
| HCM Control Delay, s/veh   | 0    |       |       | 0     | 0    |      |
| HCM LOS                    | -    |       |       | -     | -    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 0%    | 0%    | 0%    |      |      |
| Vol Thru, %                |      | 100%  | 100%  | 100%  |      |      |
| Vol Right, %               |      | 0%    | 0%    | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 0     | 0     | 0     |      |      |
| LT Vol                     |      | 0     | 0     | 0     |      |      |
| Through Vol                |      | 0     | 0     | 0     |      |      |
| RT Vol                     |      | 0     | 0     | 0     |      |      |
| Lane Flow Rate             |      | 0     | 0     | 0     |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0     | 0     | 0     |      |      |
| Departure Headway (Hd)     |      | 3.934 | 3.934 | 3.934 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 0     | 0     | 0     |      |      |
| Service Time               |      | 1.934 | 1.934 | 1.934 |      |      |
| HCM Lane V/C Ratio         |      | 1.934 | 1.934 | 1.934 |      |      |
|                            |      |       |       |       |      |      |
| HCM Control Delay, s/veh   |      | 6.9   | 6.9   | 6.9   |      |      |

Ν

HCM Lane LOS

HCM 95th-tile Q

Ν

Ν

Ν

| Intersection               |      |       |        |       |      |      |
|----------------------------|------|-------|--------|-------|------|------|
| Intersection Delay, s/veh  | 0    |       |        |       |      |      |
| Intersection LOS           | -    |       |        |       |      |      |
| IIIOI360IIOII EOO          |      |       |        |       |      |      |
|                            |      |       |        |       |      |      |
| Movement                   | EBT  | EBR   | WBL    | WBT   | NBL  | NBR  |
| Lane Configurations        | f)   |       |        | ની    | ¥    |      |
| Traffic Vol, veh/h         | 0    | 0     | 0      | Ö     | 0    | 0    |
| Future Vol, veh/h          | 0    | 0     | 0      | 0     | 0    | 0    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90   | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2      | 2     | 2    | 2    |
| Mvmt Flow                  | 0    | 0     | 0      | 0     | 0    | 0    |
| Number of Lanes            | 1    | 0     | 0      | 1     | 1    | 0    |
|                            |      |       |        |       |      |      |
| Approach                   | EB   |       |        | WB    | NB   |      |
| Opposing Approach          | WB   |       |        | EB    |      |      |
| Opposing Lanes             | 1    |       |        | 1     | 0    |      |
| Conflicting Approach Left  |      |       |        | NB    | EB   |      |
| Conflicting Lanes Left     | 0    |       |        | 1     | 1    |      |
| Conflicting Approach Right | NB   |       |        |       | WB   |      |
| Conflicting Lanes Right    | 1    |       |        | 0     | 1    |      |
| HCM Control Delay, s/veh   | 0    |       |        | 0     | 0    |      |
| HCM LOS                    | -    |       |        | -     | -    |      |
|                            |      |       |        |       |      |      |
| Lano                       |      | NBLn1 | EDI n1 | WBLn1 |      |      |
| Lane                       |      |       | EBLn1  |       |      |      |
| Vol Left, %                |      | 0%    | 0%     | 0%    |      |      |
| Vol Thru, %                |      | 100%  | 100%   | 100%  |      |      |
| Vol Right, %               |      | 0%    | 0%     | 0%    |      |      |
| Sign Control               |      | Stop  | Stop   | Stop  |      |      |
| Traffic Vol by Lane        |      | 0     | 0      | 0     |      |      |
| LT Vol                     |      | 0     | 0      | 0     |      |      |
| Through Vol                |      | 0     | 0      | 0     |      |      |
| RT Vol                     |      | 0     | 0      | 0     |      |      |
| Lane Flow Rate             |      | 0     | 0      | 0     |      |      |
| Geometry Grp               |      | 1     | 1      | 1     |      |      |
| Degree of Util (X)         |      | 0     | 0      | 0     |      |      |
| Departure Headway (Hd)     |      | 3.934 | 3.934  | 3.934 |      |      |
| Convergence, Y/N           |      | Yes   | Yes    | Yes   |      |      |
| Сар                        |      | 0     | 0      | 0     |      |      |
| Service Time               |      | 1.934 | 1.934  | 1.934 |      |      |
| HCM Lane V/C Ratio         |      | 0     | 0      | 0     |      |      |
| HCM Control Delay, s/veh   |      | 6.9   | 6.9    | 6.9   |      |      |
| HCM Lang LOS               |      | NI    | NI.    | NI    |      |      |

| Intersection              |     |     |     |     |     |     |     |     |     |     |     |     |
|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Intersection Delay, s/veh | 10  |     |     |     |     |     |     |     |     |     |     |     |
| Intersection LOS          | Α   |     |     |     |     |     |     |     |     |     |     |     |
|                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Movement                  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations       |     | 4   |     |     |     | 7   |     | 4   |     |     |     | 7   |
| Traffic Vol, veh/h        | 24  | 51  | 0   | 0   | 0   | 109 | 114 | 97  | 141 | 0   | 0   | 53  |

| Lane Configurations        |      | - €  |      |      |      | 7    |      | - 4  |      |      |      | 7    |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h         | 24   | 51   | 0    | 0    | 0    | 109  | 114  | 97   | 141  | 0    | 0    | 53   |
| Future Vol, veh/h          | 24   | 51   | 0    | 0    | 0    | 109  | 114  | 97   | 141  | 0    | 0    | 53   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 27   | 57   | 0    | 0    | 0    | 121  | 127  | 108  | 157  | 0    | 0    | 59   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.9  |      |      |      |      | 8.3  | 11.1 |      |      |      |      | 7.6  |
| HCM LOS                    | Α    |      |      |      |      | Α    | В    |      |      |      |      | Α    |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 32%   | 32%   | 0%    | 0%    |  |
| Vol Thru, %              | 28%   | 68%   | 0%    | 0%    |  |
| Vol Right, %             | 40%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 352   | 75    | 109   | 53    |  |
| LT Vol                   | 114   | 24    | 0     | 0     |  |
| Through Vol              | 97    | 51    | 0     | 0     |  |
| RT Vol                   | 141   | 0     | 109   | 53    |  |
| Lane Flow Rate           | 391   | 83    | 121   | 59    |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.468 | 0.119 | 0.15  | 0.07  |  |
| Departure Headway (Hd)   | 4.307 | 5.145 | 4.444 | 4.249 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Сар                      | 837   | 694   | 803   | 839   |  |
| Service Time             | 2.34  | 3.196 | 2.491 | 2.296 |  |
| HCM Lane V/C Ratio       | 0.467 | 0.12  | 0.151 | 0.07  |  |
| HCM Control Delay, s/veh | 11.1  | 8.9   | 8.3   | 7.6   |  |
| HCM Lane LOS             | В     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 2.5   | 0.4   | 0.5   | 0.2   |  |

| Int Delay, s/veh  Movement  Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach | povement ne Configurations affic Vol, veh/h ture Vol, veh/h onflicting Peds, #/hr gn Control Channelized orage Length sh in Median Storag rade, % eak Hour Factor eavy Vehicles, % | 0.1<br>EBL<br>0<br>0<br>Stop<br>-<br>-<br>e, # 0<br>0<br>90<br>3<br>0 | 5 5 0 Stop None 0 90                        | 0<br>0<br>178<br>Free<br>-      | NBT<br>350<br>350<br>0<br>Free<br>None | \$BT<br>280<br>280<br>0<br>Free | SBR<br>66<br>66<br>107<br>Free |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|---------------------------------|--------------------------------|
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                            | ne Configurations affic Vol, veh/h ture Vol, veh/h onflicting Peds, #/hr gn Control Channelized orage Length th in Median Storag eade, % eak Hour Factor eavy Vehicles, %          | 0<br>0<br>0<br>Stop<br>-<br>-<br>e, # 0<br>0<br>90<br>3               | 5<br>5<br>0<br>Stop<br>None<br>0<br>-       | 0<br>0<br>178<br>Free<br>-<br>- | 350<br>350<br>0<br>Free                | 280<br>280<br>280<br>0<br>Free  | 66<br>66<br>107                |
| Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                            | ne Configurations affic Vol, veh/h ture Vol, veh/h onflicting Peds, #/hr gn Control Channelized orage Length th in Median Storag eade, % eak Hour Factor eavy Vehicles, %          | 0<br>0<br>0<br>Stop<br>-<br>-<br>e, # 0<br>0<br>90<br>3               | 5<br>5<br>0<br>Stop<br>None<br>0<br>-       | 0<br>0<br>178<br>Free<br>-<br>- | 350<br>350<br>0<br>Free                | 280<br>280<br>280<br>0<br>Free  | 66<br>66<br>107                |
| Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                          | affic Vol, veh/h ture Vol, veh/h onflicting Peds, #/hr gn Control Channelized orage Length th in Median Storag ade, % ak Hour Factor eavy Vehicles, %                              | 0<br>0<br>Stop<br>-<br>-<br>e, # 0<br>0<br>90<br>3                    | 5<br>5<br>0<br>Stop<br>None<br>0<br>-       | 0<br>178<br>Free<br>-<br>-      | 350<br>350<br>0<br>Free                | 280<br>280<br>0<br>Free         | 66<br>107                      |
| Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                             | ture Vol, veh/h conflicting Peds, #/hr gn Control Channelized corage Length ch in Median Storag ade, % eak Hour Factor eavy Vehicles, %                                            | 0<br>0<br>Stop<br>-<br>-<br>e, # 0<br>0<br>90<br>3                    | 5<br>0<br>Stop<br>None<br>0<br>-<br>-<br>90 | 0<br>178<br>Free<br>-<br>-      | 350<br>0<br>Free                       | 280<br>0<br>Free                | 66<br>107                      |
| Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                               | onflicting Peds, #/hr<br>gn Control<br>Channelized<br>orage Length<br>th in Median Storag<br>ade, %<br>tak Hour Factor<br>eavy Vehicles, %                                         | 0<br>Stop<br>-<br>e, # 0<br>0<br>90<br>3                              | 0<br>Stop<br>None<br>0<br>-                 | 178<br>Free<br>-<br>-           | 0<br>Free                              | 0<br>Free                       | 107                            |
| Sign Control RT Channelized Storage Length Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                        | gn Control Channelized orage Length In Median Storage ade, % Eak Hour Factor eavy Vehicles, %                                                                                      | Stop e, # 0 0 90 3                                                    | Stop<br>None<br>0<br>-<br>-<br>90           | Free<br>-<br>-                  | Free                                   | Free                            |                                |
| RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                        | Channelized<br>orage Length<br>th in Median Storag<br>rade, %<br>eak Hour Factor<br>eavy Vehicles, %                                                                               | e, # 0<br>0<br>90<br>3                                                | None<br>0<br>-<br>-<br>90                   | -                               |                                        |                                 | LIEE                           |
| Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                       | orage Length th in Median Storag ade, % tak Hour Factor eavy Vehicles, %                                                                                                           | e, # 0<br>0<br>90<br>3                                                | 0<br>-<br>-<br>90                           | -                               | -                                      | -                               | None                           |
| Veh in Median Storage Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                     | h in Median Storag<br>ade, %<br>ak Hour Factor<br>avy Vehicles, %                                                                                                                  | e,# 0<br>0<br>90<br>3                                                 | -<br>-<br>90                                | -                               | -                                      |                                 |                                |
| Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                           | ade, %<br>eak Hour Factor<br>eavy Vehicles, %                                                                                                                                      | 90<br>3                                                               | 90                                          |                                 | ^                                      | _                               | -                              |
| Peak Hour Factor Heavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                    | eak Hour Factor<br>eavy Vehicles, %                                                                                                                                                | 90                                                                    | 90                                          | -                               | 0                                      | 0                               | -                              |
| Meavy Vehicles, % Mvmt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                     | eavy Vehicles, %                                                                                                                                                                   | 3                                                                     |                                             |                                 | 0                                      | 0                               | -                              |
| Mymt Flow  Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                       | 2                                           | 90                              | 90                                     | 90                              | 90                             |
| Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                  | mt Flow                                                                                                                                                                            | 0                                                                     | 3                                           | 3                               | 3                                      | 3                               | 3                              |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                       | 6                                           | 0                               | 389                                    | 311                             | 73                             |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                       |                                             |                                 |                                        |                                 |                                |
| Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                              | aior/Minor                                                                                                                                                                         | Minor2                                                                | N                                           | Major1                          | I.                                     | /lajor2                         |                                |
| Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    | -                                                                     | 526                                         | 562                             | 0                                      | -                               | 0                              |
| Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    |                                                                       | 520                                         | 502                             | -                                      | -                               | -                              |
| Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    | -                                                                     | -                                           | -                               | -                                      | -                               | -                              |
| Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    | -                                                                     | 6.245                                       | 1115                            | -                                      | -                               | -                              |
| Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    | -                                                                     |                                             | 4.145                           |                                        |                                 |                                |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    | -                                                                     | -                                           | -                               | -                                      | -                               | -                              |
| Pot Cap-1 Maneuver<br>Stage 1<br>Stage 2<br>Platoon blocked, %<br>Mov Cap-1 Maneuve<br>Mov Cap-2 Maneuve<br>Stage 1<br>Stage 2                                                                                                                                                                                                                                                                                                                                                   | , ,                                                                                                                                                                                | -                                                                     | -                                           | -                               | -                                      | -                               | -                              |
| Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    |                                                                       | 3.32852                                     |                                 | -                                      | -                               | -                              |
| Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                    | 0                                                                     | 549                                         | 1001                            | -                                      | -                               | -                              |
| Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    | 0                                                                     | -                                           | -                               | -                                      | -                               | -                              |
| Mov Cap-1 Maneuve<br>Mov Cap-2 Maneuve<br>Stage 1<br>Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    | 0                                                                     | -                                           | -                               | -                                      | -                               | -                              |
| Mov Cap-2 Maneuve<br>Stage 1<br>Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                          | atoon blocked, %                                                                                                                                                                   |                                                                       |                                             |                                 | -                                      | -                               | -                              |
| Stage 1<br>Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    |                                                                       | 445                                         | 812                             | -                                      | -                               | -                              |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ov Cap-2 Maneuver                                                                                                                                                                  | -                                                                     | -                                           | -                               | -                                      | -                               | -                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 1                                                                                                                                                                            | -                                                                     | -                                           | -                               | -                                      | -                               | -                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    | -                                                                     | -                                           | -                               | -                                      | -                               | -                              |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ŭ                                                                                                                                                                                  |                                                                       |                                             |                                 |                                        |                                 |                                |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    | ED                                                                    |                                             | ND                              |                                        | 00                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    | EB                                                                    |                                             | NB                              |                                        | SB                              |                                |
| HCM Control Delay,                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    | /13.19                                                                |                                             | 0                               |                                        | 0                               |                                |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 I M                                                                                                                                                                             | В                                                                     |                                             |                                 |                                        |                                 |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JIVI LOG                                                                                                                                                                           |                                                                       |                                             |                                 |                                        |                                 |                                |
| Minor Lane/Major My                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JIVI LUG                                                                                                                                                                           | -4                                                                    | NBL                                         | NRTE                            | EBLn1                                  | SBT                             | SBR                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    | m                                                                     |                                             |                                 |                                        |                                 | אומט                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nor Lane/Major Mvi                                                                                                                                                                 | nt                                                                    | 812                                         | -                               | 445<br>0.012                           | -                               | -                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nor Lane/Major Mvi                                                                                                                                                                 | nt                                                                    | -                                           |                                 |                                        | -                               | -                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nor Lane/Major Mvi<br>apacity (veh/h)<br>CM Lane V/C Ratio                                                                                                                         |                                                                       |                                             | -                               | 13.2                                   | -                               | -                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nor Lane/Major My<br>apacity (veh/h)<br>CM Lane V/C Ratio<br>CM Control Delay (s                                                                                                   |                                                                       | 0                                           |                                 |                                        |                                 |                                |
| HCM 95th %tile Q(ve                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nor Lane/Major Mylapacity (veh/h)<br>CM Lane V/C Ratio<br>CM Control Delay (s<br>CM Lane LOS                                                                                       | /veh)                                                                 |                                             | -                               | B<br>0                                 | -                               | -                              |

| Intersection           |          |        |         |          |          |      |
|------------------------|----------|--------|---------|----------|----------|------|
| Int Delay, s/veh       | 0.5      |        |         |          |          |      |
| Movement               | EBL      | EBR    | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    |          | 7      |         | <b>†</b> | <u> </u> | JJIK |
| Traffic Vol, veh/h     | 0        | 32     | 0       | 350      | 290      | 0    |
| Future Vol, veh/h      | 0        | 32     | 0       | 350      | 290      | 0    |
| Conflicting Peds, #/hr |          | 0      | 0       | 0        | 0        | 86   |
| Sign Control           | Stop     | Stop   | Free    | Free     | Free     | Free |
| RT Channelized         | -        |        |         | None     |          | None |
| Storage Length         | _        | 0      | _       | -        | _        | -    |
| Veh in Median Storag   | e.# 0    | -      | _       | 0        | 0        | _    |
| Grade, %               | 0        | _      | _       | 0        | 0        | _    |
| Peak Hour Factor       | 90       | 90     | 90      | 90       | 90       | 90   |
| Heavy Vehicles, %      | 3        | 3      | 3       | 3        | 3        | 3    |
| Mvmt Flow              | 0        | 36     | 0       | 389      | 322      | 0    |
| IVIVIII( I IOW         | U        | 30     | U       | 303      | JZZ      | U    |
|                        |          |        |         |          |          |      |
| Major/Minor            | Minor2   | ١      | /lajor1 | Λ        | /lajor2  |      |
| Conflicting Flow All   | -        | 322    | -       | 0        | -        | 0    |
| Stage 1                | -        | -      | -       | -        | -        | -    |
| Stage 2                | -        | -      | -       | -        | -        | -    |
| Critical Hdwy          | -        | 6.245  | -       | -        | -        | -    |
| Critical Hdwy Stg 1    | -        | -      | -       | -        | -        | -    |
| Critical Hdwy Stg 2    | -        | -      | -       | -        | -        | -    |
| Follow-up Hdwy         | -3       | 3.3285 | -       | -        | -        | -    |
| Pot Cap-1 Maneuver     | 0        | 715    | 0       | -        | -        | 0    |
| Stage 1                | 0        | -      | 0       | -        | -        | 0    |
| Stage 2                | 0        | -      | 0       | -        | -        | 0    |
| Platoon blocked, %     |          |        |         | -        | -        |      |
| Mov Cap-1 Maneuver     |          | 715    | _       | _        | _        | _    |
| Mov Cap-2 Maneuver     |          | -      | _       | _        | _        | _    |
| Stage 1                | _        | _      | _       | _        | _        | _    |
| Stage 2                | _        | _      | _       | _        | _        | _    |
| Olage 2                |          |        |         |          |          |      |
|                        |          |        |         |          |          |      |
| Approach               | EB       |        | NB      |          | SB       |      |
| HCM Control Delay, s   | s/v 10.3 |        | 0       |          | 0        |      |
| HCM LOS                | В        |        |         |          |          |      |
|                        |          |        |         |          |          |      |
| NA: I /NA              |          | NET    | -DL 4   | OPT      |          |      |
| Minor Lane/Major Mvi   | mt       | NBTE   |         | SBT      |          |      |
| Capacity (veh/h)       |          | -      |         | -        |          |      |
| HCM Lane V/C Ratio     |          | -      | 0.05    | -        |          |      |
| HCM Control Delay (s   | s/veh)   | -      | 10.3    | -        |          |      |
| HCM Lane LOS           |          | -      | В       | -        |          |      |
| HCM 95th %tile Q(vel   | h)       | -      | 0.2     | -        |          |      |
|                        |          |        |         |          |          |      |

| Intersection                          |             |        |         |       |            |        |
|---------------------------------------|-------------|--------|---------|-------|------------|--------|
| Int Delay, s/veh                      | 19          |        |         |       |            |        |
| Movement                              | EBL         | EBR    | NBL     | NBT   | SBT        | SBR    |
| Lane Configurations                   | W           | LDI    | HDL     | 4     | <u>100</u> | אופט   |
| Traffic Vol, veh/h                    | 238         | 210    | 50      | 109   | 215        | 127    |
| Future Vol, veh/h                     | 238         | 210    | 50      | 109   | 215        | 127    |
| Conflicting Peds, #/hr                | 0           | 0      | 0       | 0     | 0          | 0      |
| Sign Control                          | Stop        | Stop   | Free    | Free  | Free       | Free   |
| RT Channelized                        | Stop<br>-   | None   | -       | None  | -          | None   |
| Storage Length                        | 0           | NOHE - | -       | -     | _          | NONE - |
| Veh in Median Storage                 |             | -      | -       | 0     | 0          |        |
| Grade, %                              | 0           | -      | -       | 0     | 0          | -      |
| Peak Hour Factor                      | 90          | 90     | 90      | 90    | 90         | 90     |
|                                       |             |        |         |       |            |        |
| Heavy Vehicles, %                     | 0           | 0      | 0       | 121   | 0          | 0      |
| Mvmt Flow                             | 264         | 233    | 56      | 121   | 239        | 141    |
|                                       |             |        |         |       |            |        |
| Major/Minor M                         | linor2      | N      | //ajor1 | N     | /lajor2    |        |
| Conflicting Flow All                  | 542         | 309    | 380     | 0     | -          | 0      |
| Stage 1                               | 309         | -      | -       | -     | -          | -      |
| Stage 2                               | 232         | -      | -       | -     | -          | -      |
| Critical Hdwy                         | 6.4         | 6.2    | 4.1     | -     | _          | -      |
| Critical Hdwy Stg 1                   | 5.4         | -      | -       | -     | -          | -      |
| Critical Hdwy Stg 2                   | 5.4         | _      | _       | _     | _          | _      |
| Follow-up Hdwy                        | 3.5         | 3.3    | 2.2     | _     | _          | _      |
| Pot Cap-1 Maneuver                    | 505         | 735    | 1190    | _     | _          | _      |
| Stage 1                               | 749         |        | - 100   | _     | _          | _      |
| Stage 2                               | 811         | _      | _       | _     | _          | _      |
| Platoon blocked, %                    | 011         | _      | _       | -     | _          | _      |
| · · · · · · · · · · · · · · · · · · · | 480         | 735    | 1190    |       |            |        |
| Mov Cap-1 Maneuver                    |             | 133    | 1190    | -     | -          | -      |
| Mov Cap-2 Maneuver                    | 480         | -      | -       | -     | -          | -      |
| Stage 1                               | 711         | -      | -       | -     | -          | -      |
| Stage 2                               | 811         | -      | -       | -     | -          | -      |
|                                       |             |        |         |       |            |        |
| Approach                              | EB          |        | NB      |       | SB         |        |
| HCM Control Delay, s/v                |             |        | 2.57    |       | 0          |        |
| HCM LOS                               | 7 55.4<br>E |        | 2.01    |       | - 0        |        |
|                                       |             |        |         |       |            |        |
|                                       |             |        |         |       |            |        |
| Minor Lane/Major Mvm                  | t           | NBL    | NBTE    | EBLn1 | SBT        | SBR    |
| Capacity (veh/h)                      |             | 566    | -       | 573   | -          | -      |
| HCM Lane V/C Ratio                    |             | 0.047  | -       | 0.868 | -          | -      |
| HCM Control Delay (s/                 | veh)        | 8.2    | 0       | 39.4  | -          | -      |
| HCM Lane LOS                          | ,           | Α      | A       | Е     | -          | -      |
| HCM 95th %tile Q(veh)                 |             | 0.1    | -       | 9.7   | _          | _      |
|                                       |             |        |         |       |            |        |

| Intersection                |          |       |            |        |         |          |
|-----------------------------|----------|-------|------------|--------|---------|----------|
| Int Delay, s/veh            | 0        |       |            |        |         |          |
| Movement                    | WBL      | WBR   | NBT        | NBR    | SBL     | SBT      |
| Lane Configurations         | VVDL     | VVDIX | <b>↑</b> ↑ | אטוי   | ODL     | <u>↑</u> |
| Traffic Vol, veh/h          | 0        | 0     | 350        | 0      | 0       | 333      |
| Future Vol, veh/h           | 0        | 0     | 350        | 0      | 0       | 333      |
| Conflicting Peds, #/hr      |          | 0     | 0          | 100    | 0       | 0        |
|                             |          |       | Free       | Free   | Free    | Free     |
| Sign Control RT Channelized | Stop     | Stop  |            |        |         |          |
|                             |          |       | -          | None   |         | None     |
| Storage Length              | <u>-</u> | 0     | -          | -      | -       | -        |
| Veh in Median Storag        |          | -     | 0          | -      | -       | 0        |
| Grade, %                    | 0        | -     | 0          | -      | -       | 0        |
| Peak Hour Factor            | 90       | 90    | 90         | 90     | 90      | 90       |
| Heavy Vehicles, %           | 0        | 0     | 2          | 0      | 2       | 2        |
| Mvmt Flow                   | 0        | 0     | 389        | 0      | 0       | 370      |
|                             |          |       |            |        |         |          |
| Major/Minor                 | Minor1   | N     | Major1     | ١      | /lajor2 |          |
| Conflicting Flow All        | -        | 294   | 0          | 0      | -       |          |
| Stage 1                     |          | 234   | -          | -      |         |          |
| Stage 2                     | _        | _     | _          | _      | _       | _        |
|                             |          | 6.9   |            |        |         |          |
| Critical Hdwy               | -        |       | -          | -      | -       | -        |
| Critical Hdwy Stg 1         | -        | -     | -          | -      | -       | -        |
| Critical Hdwy Stg 2         | -        | -     | -          | -      | -       | -        |
| Follow-up Hdwy              | -        | 3.3   | -          | -      | -       | -        |
| Pot Cap-1 Maneuver          | 0        | 708   | -          | -      | 0       | -        |
| Stage 1                     | 0        | -     | -          | -      | 0       | -        |
| Stage 2                     | 0        | -     | -          | -      | 0       | -        |
| Platoon blocked, %          |          |       | -          | -      |         | -        |
| Mov Cap-1 Maneuver          |          | 633   | -          | -      | -       | -        |
| Mov Cap-2 Maneuver          |          | -     | -          | -      | -       | -        |
| Stage 1                     | _        | _     | _          | _      | _       | _        |
| Stage 2                     | _        | _     | _          | _      | _       | _        |
| Olage 2                     |          |       |            |        |         |          |
|                             |          |       |            |        |         |          |
| Approach                    | WB       |       | NB         |        | SB      |          |
| HCM Control Delay, s        | s/v 0    |       | 0          |        | 0       |          |
| HCM LOS                     | Α        |       |            |        |         |          |
|                             |          |       |            |        |         |          |
| Minor Lano/Major My         | mt       | NBT   | NIDDM      | VBLn1  | SBT     |          |
| Minor Lane/Major Mvi        | IIIL     | INDI  | NDKV       | VDLIII |         |          |
| Capacity (veh/h)            |          | -     | -          | -      | -       |          |
| HCM Lane V/C Ratio          |          | -     | -          | -      | -       |          |
|                             | (hay)    | -     | -          | 0      | -       |          |
| HCM Control Delay (s        | o verij  |       |            |        |         |          |
| HCM Lane LOS                | ,        | -     | -          | Α      | -       |          |
|                             | ,        | -     | -          | A<br>- | -       |          |

| Intersection            |          |       |        |      |         |       |
|-------------------------|----------|-------|--------|------|---------|-------|
| Int Delay, s/veh        | 0        |       |        |      |         |       |
| Movement                | EBT      | EBR   | WBL    | WBT  | NBL     | NBR   |
| Lane Configurations     | <u>₽</u> | LDIX  | VVDL   | 4    | W       | NDIX  |
| Traffic Vol, veh/h      | 0        | 0     | 0      | 0    | 0       | 0     |
| Future Vol, veh/h       | 0        | 0     | 0      | 0    | 0       | 0     |
| <u> </u>                |          |       |        |      |         |       |
| Conflicting Peds, #/hr  | 0        | 100   | 100    | 0    | 100     | 100   |
| 0                       | Free     | Free  | Free   | Free | Stop    | Stop  |
| RT Channelized          |          | None  |        | None |         | None  |
| Storage Length          | -        | -     | -      | -    | 0       | -     |
| Veh in Median Storage,  |          | -     | -      | 0    | 0       | -     |
| Grade, %                | 0        | -     | -      | 0    | 0       | -     |
| Peak Hour Factor        | 90       | 90    | 90     | 90   | 90      | 90    |
| Heavy Vehicles, %       | 2        | 2     | 2      | 2    | 2       | 2     |
| Mvmt Flow               | 0        | 0     | 0      | 0    | 0       | 0     |
|                         |          |       |        |      |         |       |
| Major/Minor Ma          | ajor1    | N     | Major? | N    | /linor1 |       |
|                         |          |       | Major2 |      |         | 004   |
| Conflicting Flow All    | 0        | 0     | 101    | 0    | 202     | 201   |
| Stage 1                 | -        | -     | -      | -    | 101     | -     |
| Stage 2                 | -        | -     | -      | -    | 101     | -     |
| Critical Hdwy           | -        | -     | 4.12   | -    | 6.42    | 6.22  |
| Critical Hdwy Stg 1     | -        | -     | -      | -    | 5.42    | -     |
| Critical Hdwy Stg 2     | -        | -     | -      | -    | 5.42    | -     |
| Follow-up Hdwy          | -        | -     | 2.218  | -    | 3.518   | 3.318 |
| Pot Cap-1 Maneuver      | -        | -     | 1491   | -    | 786     | 840   |
| Stage 1                 | -        | -     | -      | -    | 923     | -     |
| Stage 2                 | -        | -     | -      | -    | 923     | -     |
| Platoon blocked, %      | -        | -     |        | -    |         |       |
| Mov Cap-1 Maneuver      | _        | -     | 1333   | _    | 629     | 671   |
| Mov Cap-2 Maneuver      | _        | _     | -      | _    | 629     | -     |
| Stage 1                 | _        | _     | _      | _    | 825     | _     |
| Stage 2                 | _        | _     | _      | _    | 825     | _     |
| Olago Z                 |          |       |        |      | 020     |       |
|                         |          |       |        |      |         |       |
| Approach                | EB       |       | WB     |      | NB      |       |
| HCM Control Delay, s/v  | 0        |       | 0      |      | 0       |       |
| HCM LOS                 |          |       |        |      | Α       |       |
|                         |          |       |        |      |         |       |
|                         |          | IDI 4 | FDT    | ED.5 | 14/51   | VAIDT |
| Minor Lane/Major Mvmt   | N        | IBLn1 | EBT    | EBR  | WBL     | WBT   |
| Capacity (veh/h)        |          | -     | -      | -    | 1333    | -     |
| HCM Lane V/C Ratio      |          | -     | -      | -    | -       | -     |
| HCM Control Delay (s/ve | eh)      | 0     | -      | -    | 0       | -     |
| HCM Lane LOS            |          | Α     | -      | -    | Α       | -     |
| HCM 95th %tile Q(veh)   |          | -     | -      | -    | 0       | -     |
|                         |          |       |        |      |         |       |

| Intersection                             |         |            |          |      |          |        |
|------------------------------------------|---------|------------|----------|------|----------|--------|
| Int Delay, s/veh                         | 0       |            |          |      |          |        |
| Movement                                 | EBL     | EBT        | WBT      | WBR  | SBL      | SBR    |
|                                          | LDL     |            |          | MDL  |          | חמט    |
| Lane Configurations                      | ٥       | <b>-</b> € | <b>₽</b> | ٥    | <b>Y</b> | ٥      |
| Traffic Vol, veh/h                       | 0       | 0          | 0        | 0    | 0        | 0      |
| Future Vol, veh/h                        | 0       | 0          | 0        | 0    | 0        | 0      |
| Conflicting Peds, #/hr                   | 0       | 0          | 0        | 0    | 0        | 0      |
| Sign Control                             | Free    | Free       | Free     | Free | Stop     | Stop   |
| RT Channelized                           |         | None       | -        | None | -        |        |
| Storage Length                           | -       | -          | -        | -    | 0        | -      |
| Veh in Median Storage                    |         | 0          | 0        | -    | 0        | -      |
| Grade, %                                 | -       | 0          | 0        | -    | 0        | -      |
| Peak Hour Factor                         | 90      | 90         | 90       | 90   | 90       | 90     |
| Heavy Vehicles, %                        | 2       | 2          | 2        | 2    | 2        | 2      |
| Mvmt Flow                                | 0       | 0          | 0        | 0    | 0        | 0      |
|                                          |         |            |          |      |          |        |
| Major/Minor N                            | /lajor1 | N          | //ajor2  | N    | Minor2   |        |
| Conflicting Flow All                     | 1       | 0          | -        | 0    | 1        | 1      |
| Stage 1                                  | -       | -          | _        | -    | 1        |        |
| Stage 2                                  | _       | _          | _        | _    | 0        | _      |
| Critical Hdwy                            | 4.12    |            |          |      | 6.42     | 6.22   |
| Critical Hdwy Stg 1                      | 4.12    | -          | -        | -    | 5.42     | 0.22   |
| Critical Hdwy Stg 2                      |         |            |          | -    | 5.42     |        |
|                                          | 2.218   | -          | -        |      | 3.518    |        |
|                                          |         |            |          |      |          |        |
| Pot Cap-1 Maneuver                       | 1622    | -          | -        | -    |          | 1083   |
| Stage 1                                  | -       | -          | -        | -    | 1022     | -      |
| Stage 2                                  | -       | -          | -        | -    | -        | -      |
| Platoon blocked, %                       | 1000    | -          | -        | -    | 1000     | 1000   |
| Mov Cap-1 Maneuver                       | 1622    | -          | -        | -    | 1022     | 1083   |
| Mov Cap-2 Maneuver                       | -       | -          | -        | -    | 1022     | -      |
| Stage 1                                  | -       | -          | -        | -    | 1022     | -      |
| Stage 2                                  | -       | -          | -        | -    | -        | -      |
|                                          |         |            |          |      |          |        |
| Approach                                 | EB      |            | WB       |      | SB       |        |
|                                          |         |            |          |      |          |        |
| HCM Control Delay, s/                    | v 0     |            | 0        |      | 0        |        |
| HCM LOS                                  |         |            |          |      | Α        |        |
|                                          |         |            |          |      |          |        |
| Minor Lane/Major Mvn                     | nt      | EBL        | EBT      | WBT  | WBR      | SBLn1  |
|                                          |         | 1622       | -        | -    | -        | -      |
| Capacity (veh/h)                         |         |            | -        | -    | -        | -      |
| Capacity (veh/h) HCM Lane V/C Ratio      |         | -          | -        |      |          |        |
| HCM Lane V/C Ratio                       | veh)    |            |          | _    | _        | 0      |
| HCM Lane V/C Ratio HCM Control Delay (s/ | veh)    | 0          |          | -    | -        | 0<br>A |
| HCM Lane V/C Ratio                       | ,       |            | -        |      |          | 0<br>A |

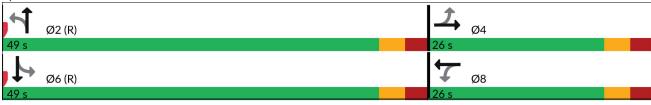
# 2028 Scenario

Weekday AM Peak Hour

1: Bank & Fifth 07/31/2024

|                        | ۶     | <b>→</b> | <b>1</b> | <b>—</b> | 1     | <u>†</u> | <b>/</b> | <del> </del> |  |
|------------------------|-------|----------|----------|----------|-------|----------|----------|--------------|--|
| Lane Group             | EBL   | EBT      | WBL      | WBT      | NBL   | NBT      | SBL      | SBT          |  |
| Lane Configurations    |       | 4        | 7        | f)       |       | 476      |          | 4Te          |  |
| Traffic Volume (vph)   | 38    | 59       | 50       | 50       | 9     | 551      | 20       | 420          |  |
| Future Volume (vph)    | 38    | 59       | 50       | 50       | 9     | 551      | 20       | 420          |  |
| Lane Group Flow (vph)  | 0     | 140      | 56       | 89       | 0     | 661      | 0        | 528          |  |
| Turn Type              | Perm  | NA       | Perm     | NA       | Perm  | NA       | Perm     | NA           |  |
| Protected Phases       |       | 4        |          | 8        |       | 2        |          | 6            |  |
| Permitted Phases       | 4     |          | 8        |          | 2     |          | 6        |              |  |
| Minimum Split (s)      | 26.0  | 26.0     | 26.0     | 26.0     | 49.0  | 49.0     | 49.0     | 49.0         |  |
| Total Split (s)        | 26.0  | 26.0     | 26.0     | 26.0     | 49.0  | 49.0     | 49.0     | 49.0         |  |
| Total Split (%)        | 34.7% | 34.7%    | 34.7%    | 34.7%    | 65.3% | 65.3%    | 65.3%    | 65.3%        |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0      | 3.0      | 3.0   | 3.0      | 3.0      | 3.0          |  |
| All-Red Time (s)       | 2.5   | 2.5      | 2.5      | 2.5      | 2.5   | 2.5      | 2.5      | 2.5          |  |
| Lost Time Adjust (s)   |       | 0.0      | 0.0      | 0.0      |       | 0.0      |          | 0.0          |  |
| Total Lost Time (s)    |       | 5.5      | 5.5      | 5.5      |       | 5.5      |          | 5.5          |  |
| Lead/Lag               |       |          |          |          |       |          |          |              |  |
| Lead-Lag Optimize?     |       |          |          |          |       |          |          |              |  |
| Act Effct Green (s)    |       | 20.5     | 20.5     | 20.5     |       | 43.5     |          | 43.5         |  |
| Actuated g/C Ratio     |       | 0.27     | 0.27     | 0.27     |       | 0.58     |          | 0.58         |  |
| v/c Ratio              |       | 0.37     | 0.20     | 0.21     |       | 0.40     |          | 0.33         |  |
| Control Delay (s/veh)  |       | 22.2     | 23.1     | 15.9     |       | 3.5      |          | 8.6          |  |
| Queue Delay            |       | 0.0      | 0.0      | 0.0      |       | 0.0      |          | 0.0          |  |
| Total Delay (s/veh)    |       | 22.2     | 23.1     | 15.9     |       | 3.5      |          | 8.6          |  |
| LOS                    |       | С        | С        | В        |       | Α        |          | Α            |  |
| Approach Delay (s/veh) |       | 22.2     |          | 18.7     |       | 3.5      |          | 8.6          |  |
| Approach LOS           |       | С        |          | В        |       | Α        |          | Α            |  |
| Queue Length 50th (m)  |       | 13.5     | 6.1      | 6.0      |       | 4.6      |          | 17.7         |  |
| Queue Length 95th (m)  |       | 28.4     | 14.8     | 16.4     |       | 5.3      |          | 26.4         |  |
| Internal Link Dist (m) |       | 49.7     |          | 112.4    |       | 195.6    |          | 190.0        |  |
| Turn Bay Length (m)    |       |          | 45.0     |          |       |          |          |              |  |
| Base Capacity (vph)    |       | 376      | 287      | 419      |       | 1647     |          | 1589         |  |
| Starvation Cap Reductn |       | 0        | 0        | 0        |       | 0        |          | 0            |  |
| Spillback Cap Reductn  |       | 0        | 0        | 0        |       | 0        |          | 0            |  |
| Storage Cap Reductn    |       | 0        | 0        | 0        |       | 0        |          | 0            |  |
| Reduced v/c Ratio      |       | 0.37     | 0.20     | 0.21     |       | 0.40     |          | 0.33         |  |
| Intersection Summary   |       |          |          |          |       |          |          |              |  |
| Cycle Length: 75       |       |          |          |          |       |          |          |              |  |
| A ( ( 10 I I I II II   |       |          |          |          |       |          |          |              |  |

Actuated Cycle Length: 75


Offset: 33 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75 Control Type: Pretimed Maximum v/c Ratio: 0.40

Intersection Signal Delay (s/veh): 8.6 Intersection LOS: A Intersection Capacity Utilization 54.7% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth



## 2: Bank & Holmwood

|                              | <b>→</b>     | 4       | <b>†</b>  | -         | ļ           |              |
|------------------------------|--------------|---------|-----------|-----------|-------------|--------------|
| Lane Group                   | EBT          | NBL     | NBT       | SBL       | SBT         | Ø3           |
| Lane Configurations          | 4            |         | 414       |           | 414         |              |
| Traffic Volume (vph)         | 22           | 16      | 542       | 11        | 376         |              |
| Future Volume (vph)          | 22           | 16      | 542       | 11        | 376         |              |
| Lane Group Flow (vph)        | 88           | 0       | 651       | 0         | 456         |              |
| Turn Type                    | NA           | Perm    | NA        | Perm      | NA          |              |
| Protected Phases             | 4            |         | 2         |           | 6           | 3            |
| Permitted Phases             |              | 2       |           | 6         |             |              |
| Detector Phase               | 4            | 2       | 2         | 6         | 6           |              |
| Switch Phase                 |              |         |           |           |             |              |
| Minimum Initial (s)          | 4.4          | 10.0    | 10.0      | 4.0       | 4.0         | 1.0          |
| Minimum Split (s)            | 22.0         | 48.0    | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (s)              | 22.0         | 48.0    | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (%)              | 29.3%        | 64.0%   | 64.0%     | 64.0%     | 64.0%       | 7%           |
| Yellow Time (s)              | 3.0          | 3.0     | 3.0       | 3.0       | 3.0         | 2.0          |
| All-Red Time (s)             | 2.6          | 2.2     | 2.2       | 2.2       | 2.2         | 0.0          |
| Lost Time Adjust (s)         | 0.0          |         | 0.0       |           | 0.0         |              |
| Total Lost Time (s)          | 5.6          |         | 5.2       |           | 5.2         |              |
| Lead/Lag                     | Lag          |         | 3.2       |           | 3.2         | Lead         |
| Lead-Lag Optimize?           |              |         |           |           |             |              |
| Recall Mode                  | None         | C-Max   | C-Max     | C-Max     | C-Max       | None         |
| Act Effct Green (s)          | 10.1         | 2       | 57.4      | J         | 57.4        |              |
| Actuated g/C Ratio           | 0.13         |         | 0.77      |           | 0.77        |              |
| v/c Ratio                    | 0.48         |         | 0.30      |           | 0.21        |              |
| Control Delay (s/veh)        | 37.8         |         | 2.2       |           | 3.1         |              |
| Queue Delay                  | 0.0          |         | 0.0       |           | 0.0         |              |
| Total Delay (s/veh)          | 37.8         |         | 2.2       |           | 3.1         |              |
| LOS                          | D            |         | A         |           | A           |              |
| Approach Delay (s/veh)       | 37.8         |         | 2.2       |           | 3.1         |              |
| Approach LOS                 | D            |         | Α.Δ       |           | A           |              |
| Queue Length 50th (m)        | 11.7         |         | 1.7       |           | 7.2         |              |
| Queue Length 95th (m)        | 23.3         |         | 4.4       |           | 13.6        |              |
| Internal Link Dist (m)       | 39.8         |         | 31.5      |           | 195.6       |              |
| Turn Bay Length (m)          | 00.0         |         | 01.0      |           | .00.0       |              |
| Base Capacity (vph)          | 298          |         | 2138      |           | 2147        |              |
| Starvation Cap Reductn       | 0            |         | 0         |           | 0           |              |
| Spillback Cap Reductn        | 0            |         | 0         |           | 0           |              |
| Storage Cap Reductn          | 0            |         | 0         |           | 0           |              |
| Reduced v/c Ratio            | 0.30         |         | 0.30      |           | 0.21        |              |
|                              | 0.00         |         | 0.00      |           | 0.21        |              |
| Intersection Summary         |              |         |           |           |             |              |
| Cycle Length: 75             |              |         |           |           |             |              |
| Actuated Cycle Length: 75    |              |         |           |           |             |              |
| Offset: 28 (37%), Reference  | ced to phas  | e 2:NBT | L and 6:5 | SBTL, Sta | art of Gree | en           |
| Natural Cycle: 75            |              |         |           |           |             |              |
| Control Type: Actuated-Co    | ordinated    |         |           |           |             |              |
| Maximum v/c Ratio: 0.48      |              |         |           |           |             |              |
| Intersection Signal Delay (  | s/veh): 5.2  |         |           |           | ntersectio  |              |
| Intersection Capacity Utiliz | cation 52.2° | %       |           | [(        | CU Level    | of Service A |
| Analysis Period (min) 15     |              |         |           |           |             |              |
|                              |              |         |           |           |             |              |

Splits and Phases: 2: Bank & Holmwood



### 3: Bank & Exhibition

|                        | •     | *     | <b>†</b>   | -     | ļ        |      |      |  |
|------------------------|-------|-------|------------|-------|----------|------|------|--|
| Lane Group             | WBL   | WBR   | NBT        | SBL   | SBT      | Ø1   | Ø7   |  |
| Lane Configurations    | *     | 7     | <b>∱</b> } | ች     | <b>^</b> |      |      |  |
| Traffic Volume (vph)   | 49    | 30    | 514        | 56    | 349      |      |      |  |
| Future Volume (vph)    | 49    | 30    | 514        | 56    | 349      |      |      |  |
| Lane Group Flow (vph)  | 54    | 33    | 674        | 62    | 388      |      |      |  |
| Turn Type              | Prot  | Perm  | NA         | pm+pt | NA       |      |      |  |
| Protected Phases       | 8     |       | 2          | 5     | 6        | 1    | 7    |  |
| Permitted Phases       |       | 8     |            | 6     |          |      |      |  |
| Detector Phase         | 8     | 8     | 2          | 5     | 6        |      |      |  |
| Switch Phase           |       |       |            |       |          |      |      |  |
| Minimum Initial (s)    | 10.0  | 10.0  | 10.0       | 1.0   | 10.0     | 1.0  | 1.0  |  |
| Minimum Split (s)      | 26.0  | 26.0  | 27.0       | 12.0  | 44.0     | 5.0  | 5.0  |  |
| Total Split (s)        | 26.0  | 26.0  | 27.0       | 12.0  | 44.0     | 5.0  | 5.0  |  |
| Total Split (%)        | 34.7% | 34.7% | 36.0%      | 16.0% | 58.7%    | 7%   | 7%   |  |
| Yellow Time (s)        | 3.3   | 3.3   | 3.0        | 3.0   | 3.0      | 2.0  | 3.5  |  |
| All-Red Time (s)       | 3.0   | 3.0   | 3.9        | 3.9   | 3.9      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   | 0.0   | 0.0   | 0.0        | 0.0   | 0.0      |      |      |  |
| Total Lost Time (s)    | 6.3   | 6.3   | 6.9        | 6.9   | 6.9      |      |      |  |
| Lead/Lag               | Lag   | Lag   | Lag        |       |          | Lead | Lead |  |
| Lead-Lag Optimize?     |       |       | Yes        |       |          | Yes  | Yes  |  |
| Recall Mode            | None  | None  | C-Max      | None  | C-Max    | None | None |  |
| Act Effct Green (s)    | 10.2  | 10.2  | 49.0       | 54.8  | 56.2     |      |      |  |
| Actuated g/C Ratio     | 0.14  | 0.14  | 0.65       | 0.73  | 0.75     |      |      |  |
| v/c Ratio              | 0.26  | 0.19  | 0.36       | 0.13  | 0.16     |      |      |  |
| Control Delay (s/veh)  | 32.4  | 13.5  | 9.1        | 8.1   | 6.6      |      |      |  |
| Queue Delay            | 0.0   | 0.0   | 0.0        | 0.0   | 0.0      |      |      |  |
| Total Delay (s/veh)    | 32.4  | 13.5  | 9.1        | 8.1   | 6.6      |      |      |  |
| LOS                    | С     | В     | Α          | Α     | Α        |      |      |  |
| Approach Delay (s/veh) | 25.2  |       | 9.1        |       | 6.8      |      |      |  |
| Approach LOS           | С     |       | A          |       | A        |      |      |  |
| Queue Length 50th (m)  | 7.0   | 0.0   | 27.3       | 4.4   | 15.5     |      |      |  |
| Queue Length 95th (m)  | 16.5  | 7.1   | 40.8       | 10.5  | 23.7     |      |      |  |
| Internal Link Dist (m) | 30.6  |       | 33.7       | 40.5  | 44.8     |      |      |  |
| Turn Bay Length (m)    |       | 211   | 100=       | 40.0  |          |      |      |  |
| Base Capacity (vph)    | 405   | 314   | 1867       | 488   | 2355     |      |      |  |
| Starvation Cap Reductn | 0     | 0     | 0          | 0     | 0        |      |      |  |
| Spillback Cap Reductn  | 0     | 0     | 0          | 0     | 0        |      |      |  |
| Storage Cap Reductn    | 0     | 0     | 0          | 0     | 0        |      |      |  |
| Reduced v/c Ratio      | 0.13  | 0.11  | 0.36       | 0.13  | 0.16     |      |      |  |
| Intersection Summary   |       |       |            |       |          |      |      |  |
| Cycle Length: 75       |       |       |            |       |          |      |      |  |
| A ( ( 10   1   1   75  |       |       |            |       |          |      |      |  |

Actuated Cycle Length: 75

Offset: 25 (33%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 75

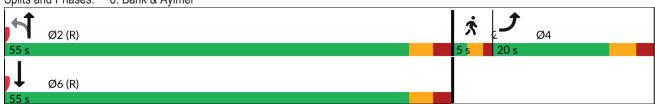

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.36

Intersection Signal Delay (s/veh): 9.4 Intersection Capacity Utilization 55.1% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition




## 6: Bank & Aylmer

|                              | ۶           | 1         | <b>†</b>  | Į.          |                     |   |
|------------------------------|-------------|-----------|-----------|-------------|---------------------|---|
| Lane Group                   | EBL         | NBL       | NBT       | SBT         | Ø3                  |   |
| Lane Configurations          | W           |           | 414       | <b>†</b> 1> |                     |   |
| Traffic Volume (vph)         | 64          | 15        | 711       | 529         |                     |   |
| Future Volume (vph)          | 64          | 15        | 711       | 529         |                     |   |
| Lane Group Flow (vph)        | 81          | 0         | 807       | 648         |                     |   |
| Turn Type                    | Prot        | Perm      | NA        | NA          |                     |   |
| Protected Phases             | 4           |           | 2         | 6           | 3                   |   |
| Permitted Phases             | 4           | 2         |           | 6           |                     |   |
| Detector Phase               | 4           | 2         | 2         | 6           |                     |   |
| Switch Phase                 |             |           |           |             |                     |   |
| Minimum Initial (s)          | 10.0        | 30.0      | 30.0      | 30.0        | 1.0                 |   |
| Minimum Split (s)            | 20.0        | 55.0      | 55.0      | 55.0        | 5.0                 |   |
| Total Split (s)              | 20.0        | 55.0      | 55.0      | 55.0        | 5.0                 |   |
| Total Split (%)              | 25.0%       | 68.8%     | 68.8%     | 68.8%       | 6%                  |   |
| Yellow Time (s)              | 3.3         | 3.0       | 3.0       | 3.0         | 2.0                 |   |
| All-Red Time (s)             | 2.2         | 2.2       | 2.2       | 2.2         | 1.0                 |   |
| Lost Time Adjust (s)         | 0.0         |           | 0.0       | 0.0         |                     |   |
| Total Lost Time (s)          | 5.5         |           | 5.2       | 5.2         |                     |   |
| Lead/Lag                     | Lag         |           |           |             | Lead                |   |
| Lead-Lag Optimize?           |             |           |           |             |                     |   |
| Recall Mode                  | Ped         | C-Max     | C-Max     | C-Max       | Max                 |   |
| Act Effct Green (s)          | 14.0        |           | 50.3      | 50.3        |                     |   |
| Actuated g/C Ratio           | 0.18        |           | 0.63      | 0.63        |                     |   |
| v/c Ratio                    | 0.30        |           | 0.44      | 0.35        |                     |   |
| Control Delay (s/veh)        | 29.6        |           | 3.5       | 7.4         |                     |   |
| Queue Delay                  | 0.0         |           | 0.0       | 0.0         |                     |   |
| Total Delay (s/veh)          | 29.6        |           | 3.5       | 7.4         |                     |   |
| LOS                          | С           |           | Α         | Α           |                     |   |
| Approach Delay (s/veh)       | 29.6        |           | 3.5       | 7.4         |                     |   |
| Approach LOS                 | С           |           | Α         | Α           |                     |   |
| Queue Length 50th (m)        | 9.7         |           | 13.6      | 20.7        |                     |   |
| Queue Length 95th (m)        | 21.8        |           | m15.2     | 29.5        |                     |   |
| Internal Link Dist (m)       | 76.7        |           | 28.1      | 10.1        |                     |   |
| Turn Bay Length (m)          |             |           |           |             |                     |   |
| Base Capacity (vph)          | 280         |           | 1844      | 1875        |                     |   |
| Starvation Cap Reductn       | 0           |           | 0         | 0           |                     |   |
| Spillback Cap Reductn        | 0           |           | 0         | 0           |                     |   |
| Storage Cap Reductn          | 0           |           | 0         | 0           |                     |   |
| Reduced v/c Ratio            | 0.29        |           | 0.44      | 0.35        |                     |   |
| Intersection Summary         |             |           |           |             |                     |   |
| Cycle Length: 80             |             |           |           |             |                     |   |
| Actuated Cycle Length: 80    |             |           |           |             |                     |   |
| Offset: 4 (5%), Referenced   | to phase    | 2:NBTL a  | and 6:SB  | Γ, Start of | Green               |   |
| Natural Cycle: 80            |             |           |           |             |                     |   |
| Control Type: Actuated-Co    | ordinated   |           |           |             |                     |   |
| Maximum v/c Ratio: 0.44      |             |           |           |             |                     |   |
| Intersection Signal Delay (  | ,           |           |           |             | itersection LOS: A  |   |
| Intersection Capacity Utiliz | ation 52.6° | %         |           | IC          | CU Level of Service | Α |
| Analysis Period (min) 15     |             |           |           |             |                     |   |
| m Volume for 95th perce      | ntile aueur | o is mata | rad hy un | etroam ei   | anal                |   |

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Bank & Aylmer



|                        | •     | -     | •     | <b>←</b> | $\blacktriangleleft$ | <b>†</b>    | -     | <b>↓</b> |      |      |  |
|------------------------|-------|-------|-------|----------|----------------------|-------------|-------|----------|------|------|--|
| Lane Group             | EBL   | EBT   | WBL   | WBT      | NBL                  | NBT         | SBL   | SBT      | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4     |       | 4        |                      | <b>4</b> 1₽ |       | €î∌      |      |      |  |
| Traffic Volume (vph)   | 58    | 60    | 19    | 60       | 23                   | 975         | 189   | 393      |      |      |  |
| Future Volume (vph)    | 58    | 60    | 19    | 60       | 23                   | 975         | 189   | 393      |      |      |  |
| Lane Group Flow (vph)  | 0     | 144   | 0     | 392      | 0                    | 1123        | 0     | 695      |      |      |  |
| Turn Type              | Perm  | NA    | Perm  | NA       | Perm                 | NA          | pm+pt | NA       |      |      |  |
| Protected Phases       |       | 4     |       | 8        |                      | 2           | 1     | 6        | 3    | 7    |  |
| Permitted Phases       | 4     |       | 8     |          | 2                    |             | 6     |          |      |      |  |
| Minimum Split (s)      | 26.0  | 26.0  | 26.0  | 26.0     | 38.0                 | 38.0        | 11.0  | 49.0     | 5.0  | 5.0  |  |
| Total Split (s)        | 26.0  | 26.0  | 26.0  | 26.0     | 38.0                 | 38.0        | 11.0  | 49.0     | 5.0  | 5.0  |  |
| Total Split (%)        | 32.5% | 32.5% | 32.5% | 32.5%    | 47.5%                | 47.5%       | 13.8% | 61.3%    | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0   | 3.0   | 3.0      | 3.0                  | 3.0         | 3.0   | 3.0      | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6   | 2.6   | 2.6      | 3.0                  | 3.0         | 2.9   | 3.0      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0   |       | 0.0      |                      | 0.0         |       | 0.0      |      |      |  |
| Total Lost Time (s)    |       | 5.6   |       | 5.6      |                      | 6.0         |       | 6.0      |      |      |  |
| Lead/Lag               | Lag   | Lag   | Lag   | Lag      | Lag                  | Lag         | Lead  |          | Lead | Lead |  |
| Lead-Lag Optimize?     |       |       | Yes   | Yes      | Yes                  | Yes         | Yes   |          |      | Yes  |  |
| Act Effct Green (s)    |       | 20.4  |       | 20.4     |                      | 32.0        |       | 43.0     |      |      |  |
| Actuated g/C Ratio     |       | 0.26  |       | 0.26     |                      | 0.40        |       | 0.54     |      |      |  |
| v/c Ratio              |       | 0.72  |       | 0.89     |                      | 0.96        |       | 1.14dl   |      |      |  |
| Control Delay (s/veh)  |       | 49.6  |       | 38.8     |                      | 43.1        |       | 16.2     |      |      |  |
| Queue Delay            |       | 0.0   |       | 0.0      |                      | 0.0         |       | 0.0      |      |      |  |
| Total Delay (s/veh)    |       | 49.6  |       | 38.8     |                      | 43.1        |       | 16.2     |      |      |  |
| LOS                    |       | D     |       | D        |                      | D           |       | В        |      |      |  |
| Approach Delay (s/veh) |       | 49.6  |       | 38.8     |                      | 43.1        |       | 16.2     |      |      |  |
| Approach LOS           |       | D     |       | D        |                      | D           |       | В        |      |      |  |
| Queue Length 50th (m)  |       | 19.9  |       | 28.0     |                      | 84.9        |       | 20.8     |      |      |  |
| Queue Length 95th (m)  |       | #47.3 |       | #80.4    |                      | #128.8      |       | 30.9     |      |      |  |
| Internal Link Dist (m) |       | 75.1  |       | 136.0    |                      | 63.1        |       | 79.0     |      |      |  |
| Turn Bay Length (m)    |       |       |       |          |                      |             |       |          |      |      |  |
| Base Capacity (vph)    |       | 201   |       | 439      |                      | 1170        |       | 962      |      |      |  |
| Starvation Cap Reductn |       | 0     |       | 0        |                      | 0           |       | 0        |      |      |  |
| Spillback Cap Reductn  |       | 0     |       | 0        |                      | 0           |       | 0        |      |      |  |
| Storage Cap Reductn    |       | 0     |       | 0        |                      | 0           |       | 0        |      |      |  |
| Reduced v/c Ratio      |       | 0.72  |       | 0.89     |                      | 0.96        |       | 0.72     |      |      |  |

#### Intersection Summary

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 10 (13%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.96

Intersection Signal Delay (s/veh): 34.9 Intersection LOS: C
Intersection Capacity Utilization 94.7% ICU Level of Service F

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 7: Bank & Sunnyside



|                               | •           | 1         | <b>†</b>   | ļ        |                        |      |     |  |
|-------------------------------|-------------|-----------|------------|----------|------------------------|------|-----|--|
| Lane Group                    | EBL         | NBL       | NBT        | SBT      | Ø4                     |      |     |  |
| Lane Configurations           | W           |           | 4          | <b>1</b> | <del></del>            |      |     |  |
| Traffic Volume (vph)          | 47          | 27        | 225        | 293      |                        |      |     |  |
| Future Volume (vph)           | 47          | 27        | 225        | 293      |                        |      |     |  |
| Lane Group Flow (vph)         | 82          | 0         | 280        | 379      |                        |      |     |  |
| Turn Type                     | Prot        | Perm      | NA         | NA       |                        |      |     |  |
| Protected Phases              | 10          |           | 2          | 6        | 4                      |      |     |  |
| Permitted Phases              |             | 2         |            |          |                        |      |     |  |
| Minimum Split (s)             | 22.0        | 32.0      | 32.0       | 32.0     | 16.0                   |      |     |  |
| Total Split (s)               | 22.0        | 32.0      | 32.0       | 32.0     | 16.0                   |      |     |  |
| Total Split (%)               | 31.4%       | 45.7%     | 45.7%      | 45.7%    | 23%                    |      |     |  |
| Yellow Time (s)               | 3.0         | 3.0       | 3.0        | 3.0      | 3.0                    |      |     |  |
| All-Red Time (s)              | 2.7         | 3.8       | 3.8        | 3.8      | 2.7                    |      |     |  |
| Lost Time Adjust (s)          | 0.0         |           | 0.0        | 0.0      |                        |      |     |  |
| Total Lost Time (s)           | 5.7         |           | 6.8        | 6.8      |                        |      |     |  |
| Lead/Lag                      |             |           |            |          |                        |      |     |  |
| Lead-Lag Optimize?            |             |           |            |          |                        |      |     |  |
| Act Effct Green (s)           | 16.3        |           | 25.2       | 25.2     |                        |      |     |  |
| Actuated g/C Ratio            | 0.23        |           | 0.36       | 0.36     |                        |      |     |  |
| v/c Ratio                     | 0.23        |           | 0.50       | 0.64     |                        |      |     |  |
| Control Delay (s/veh)         | 23.8        |           | 21.3       | 24.5     |                        |      |     |  |
| Queue Delay                   | 0.0         |           | 0.0        | 0.0      |                        |      |     |  |
| Total Delay (s/veh)           | 23.8        |           | 21.3       | 24.5     |                        |      |     |  |
| LOS                           | С           |           | С          | С        |                        |      |     |  |
| Approach Delay (s/veh)        | 23.8        |           | 21.3       | 24.5     |                        |      |     |  |
| Approach LOS                  | С           |           | С          | С        |                        |      |     |  |
| Queue Length 50th (m)         | 8.7         |           | 27.9       | 40.3     |                        |      |     |  |
| Queue Length 95th (m)         | 19.2        |           | 48.5       | 67.2     |                        |      |     |  |
| Internal Link Dist (m)        | 57.2        |           | 0.1        | 5.9      |                        |      |     |  |
| Turn Bay Length (m)           |             |           |            |          |                        |      |     |  |
| Base Capacity (vph)           | 361         |           | 562        | 595      |                        |      |     |  |
| Starvation Cap Reductn        | 0           |           | 0          | 0        |                        |      |     |  |
| Spillback Cap Reductn         | 0           |           | 0          | 0        |                        |      |     |  |
| Storage Cap Reductn           | 0           |           | 0          | 0        |                        |      |     |  |
| Reduced v/c Ratio             | 0.23        |           | 0.50       | 0.64     |                        |      |     |  |
| Intersection Summary          |             |           |            |          |                        |      |     |  |
| Cycle Length: 70              |             |           |            |          |                        |      |     |  |
| Actuated Cycle Length: 70     |             |           |            |          |                        |      |     |  |
| Offset: 0 (0%), Referenced    | to phase    | 6.SBT_S   | tart of Gr | een      |                        |      |     |  |
| Natural Cycle: 70             | to priase   | 0.001, 0  | tart or Or | CCII     |                        |      |     |  |
| Control Type: Pretimed        |             |           |            |          |                        |      |     |  |
| Maximum v/c Ratio: 0.64       |             |           |            |          |                        |      |     |  |
| Intersection Signal Delay (s  | s/veh): 23  | 2         |            | In       | tersection LOS: C      |      |     |  |
| Intersection Capacity Utiliza |             |           |            |          | CU Level of Service B  |      |     |  |
| Analysis Period (min) 15      | ulion 00.1  | 70        |            |          | 70 E0101 01 0011100 B  |      |     |  |
|                               | ueen Elizal | heth Driv | ۵ & Fifth  |          |                        |      |     |  |
| i' .                          | ACCIT LITZG | 5501 DIIV | - W 1 11U1 | 1        | •                      | 1 4  |     |  |
| M Ø2                          |             |           |            |          | <b>济</b> <sub>Ø4</sub> | 1    | Ø10 |  |
| 20 -                          |             |           |            |          |                        | 00   |     |  |
| 32 s<br>Ø6 (R)                |             |           |            | 10       | 6 s                    | 22 s |     |  |

| Intersection               |      |       |          |       |      |      |
|----------------------------|------|-------|----------|-------|------|------|
| Intersection Delay, s/veh  | 7.9  |       |          |       |      |      |
| Intersection LOS           | Α    |       |          |       |      |      |
|                            |      |       |          |       |      |      |
| Movement                   | EBL  | EBT   | WBT      | WBR   | SBL  | SBR  |
| Lane Configurations        |      | सी    | <b>1</b> |       | W    |      |
| Traffic Vol, veh/h         | 5    | 153   | 83       | 5     | 5    | 5    |
| Future Vol, veh/h          | 5    | 153   | 83       | 5     | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90     | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2        | 2     | 2    | 2    |
| Mymt Flow                  | 6    | 170   | 92       | 6     | 6    | 6    |
| Number of Lanes            | 0    | 1     | 1        | 0     | 1    | 0    |
|                            |      |       |          |       |      |      |
| Approach                   | EB   |       | WB       |       | SB   |      |
| Opposing Approach          | WB   |       | EB       |       |      |      |
| Opposing Lanes             | 1    |       | 1        |       | 0    |      |
| Conflicting Approach Left  | SB   |       |          |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0        |       | 1    |      |
| Conflicting Approach Right | _    |       | SB       |       | EB   |      |
| Conflicting Lanes Right    | 0    |       | 1        |       | _ 1  |      |
| HCM Control Delay, s/veh   | 8.1  |       | 7.6      |       | 7.4  |      |
| HCM LOS                    | Α    |       | А        |       | Α    |      |
|                            |      |       |          |       |      |      |
| Lane                       |      | EBLn1 | WBLn1    | SBLn1 |      |      |
| Vol Left, %                |      | 3%    | 0%       | 50%   |      |      |
| Vol Thru, %                |      | 97%   | 94%      | 0%    |      |      |
| Vol Right, %               |      | 0%    | 6%       | 50%   |      |      |
| Sign Control               |      | Stop  | Stop     | Stop  |      |      |
| Traffic Vol by Lane        |      | 158   | 88       | 10    |      |      |
| LT Vol                     |      | 5     | 0        | 5     |      |      |
| Through Vol                |      | 153   | 83       | 0     |      |      |
| RT Vol                     |      | 0     | 5        | 5     |      |      |
| Lane Flow Rate             |      | 176   | 98       | 11    |      |      |
| Geometry Grp               |      | 1     | 1        | 1     |      |      |
| Degree of Util (X)         |      | 0.197 | 0.11     | 0.013 |      |      |
| Departure Headway (Hd)     |      | 4.033 | 4.05     | 4.318 |      |      |
| Convergence, Y/N           |      | Yes   | Yes      | Yes   |      |      |
| Сар                        |      | 890   | 881      | 834   |      |      |
| Service Time               |      | 2.058 | 2.091    | 2.318 |      |      |
| HCM Lane V/C Ratio         |      | 0.198 | 0.111    | 0.013 |      |      |
| HCM Control Delay, s/veh   |      | 8.1   | 7.6      | 7.4   |      |      |
| HCM Lane LOS               |      | Α     | Α        | Α     |      |      |
|                            |      |       | 0.4      |       |      |      |

0.7

0.4

0

Service Time

HCM Lane LOS

HCM 95th-tile Q

HCM Lane V/C Ratio

HCM Control Delay, s/veh

2.055

0.012

7.1

Α

0

1.66

0.008

6.7

Α

0

1.972

0.156

7.7

Α

0.6

| Intersection               |      |        |       |       |       |      |
|----------------------------|------|--------|-------|-------|-------|------|
| Intersection Delay, s/veh  | 7.6  |        |       |       |       |      |
| Intersection LOS           | Α.   |        |       |       |       |      |
| Interested LOO             |      |        |       |       |       |      |
|                            |      |        |       |       |       |      |
| Movement                   | EBT  | EBR    | WBL   | WBT   | NBL   | NBR  |
| Lane Configurations        | ₽    |        |       | 4     | W     |      |
| Traffic Vol, veh/h         | 2    | 5      | 5     | 123   | 5     | 5    |
| Future Vol, veh/h          | 2    | 5      | 5     | 123   | 5     | 5    |
| Peak Hour Factor           | 0.90 | 0.90   | 0.90  | 0.90  | 0.90  | 0.90 |
| Heavy Vehicles, %          | 2    | 2      | 2     | 2     | 2     | 2    |
| Mvmt Flow                  | 2    | 6      | 6     | 137   | 6     | 6    |
| Number of Lanes            | 1    | 0      | 0     | 1     | 1     | 0    |
| Approach                   | EB   |        | WB    |       | NB    |      |
| Opposing Approach          | WB   |        | EB    |       | ND    |      |
| Opposing Lanes             | 1    |        | 1     |       | 0     |      |
| Conflicting Approach Left  |      |        | NB    |       | EB    |      |
| Conflicting Lanes Left     | 0    |        | 1     |       | 1     |      |
| Conflicting Approach Right | NB   |        |       |       | WB    |      |
| Conflicting Lanes Right    | 1    |        | 0     |       | 1     |      |
| HCM Control Delay, s/veh   | 6.7  |        | 7.7   |       | 7.1   |      |
| HCM LOS                    | Α.   |        | Α.    |       | Α.Τ   |      |
| 110 200                    | , (  |        | - / ( |       | - / \ |      |
| Laur                       |      | NIDL 4 | EDI4  | WDL 4 |       |      |
| Lane                       |      | NBLn1  | EBLn1 |       |       |      |
| Vol Left, %                |      | 50%    | 0%    | 4%    |       |      |
| Vol Thru, %                |      | 0%     | 29%   | 96%   |       |      |
| Vol Right, %               |      | 50%    | 71%   | 0%    |       |      |
| Sign Control               |      | Stop   | Stop  | Stop  |       |      |
| Traffic Vol by Lane        |      | 10     | 7     | 128   |       |      |
| LT Vol                     |      | 5      | 0     | 5     |       |      |
| Through Vol                |      | 0      | 2     | 123   |       |      |
| RT Vol                     |      | 5      | 5     | 0     |       |      |
| Lane Flow Rate             |      | 11     | 8     | 142   |       |      |
| Geometry Grp               |      | 1      | 1     | 1     |       |      |
| Degree of Util (X)         |      | 0.012  | 0.008 | 0.157 |       |      |
| Departure Headway (Hd)     |      | 3.993  | 3.63  | 3.967 |       |      |
| Convergence, Y/N           |      | Yes    | Yes   | Yes   |       |      |
| Cap                        |      | 888    | 984   | 909   |       |      |
| Comica Time                |      | 0.055  | 4.00  | 4.070 |       |      |

HCM Control Delay, s/veh

HCM Lane LOS

HCM 95th-tile Q

8.2

Α

8.0

7.1

Α

0

8.4

Α

0.6

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 8.3  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | Þ    |       |       | र्स   | W    |      |
| Traffic Vol, veh/h         | 2    | 5     | 67    | 57    | 87   | 87   |
| Future Vol, veh/h          | 2    | 5     | 67    | 57    | 87   | 87   |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 2    | 6     | 74    | 63    | 97   | 97   |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.1  |       | 8.4   |       | 8.2  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 50%   | 0%    | 54%   |      |      |
| Vol Thru, %                |      | 0%    | 29%   | 46%   |      |      |
| Vol Right, %               |      | 50%   | 71%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 174   | 7     | 124   |      |      |
| LT Vol                     |      | 87    | 0     | 67    |      |      |
| Through Vol                |      | 0     | 2     | 57    |      |      |
| RT Vol                     |      | 87    | 5     | 0     |      |      |
| Lane Flow Rate             |      | 193   | 8     | 138   |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.214 | 0.009 | 0.168 |      |      |
| Departure Headway (Hd)     |      | 3.985 | 4.08  | 4.388 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 885   | 882   | 807   |      |      |
| Service Time               |      | 2.078 | 2.08  | 2.473 |      |      |
| HCM Lane V/C Ratio         |      | 0.218 | 0.009 | 0.171 |      |      |
| HCM Control Dolov, alvah   |      | 0.210 | 7.4   | 0.171 |      |      |

| Intersection Delay, s/veh | 7.8 |  |  |  |  |
|---------------------------|-----|--|--|--|--|
| Intersection LOS          | Α   |  |  |  |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 67   | 41   | 0    | 0    | 0    | 72   | 19   | 32   | 24   | 0    | 0    | 108  |
| Future Vol, veh/h          | 67   | 41   | 0    | 0    | 0    | 72   | 19   | 32   | 24   | 0    | 0    | 108  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 74   | 46   | 0    | 0    | 0    | 80   | 21   | 36   | 27   | 0    | 0    | 120  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.4  |      |      |      |      | 7.3  | 7.9  |      |      |      |      | 7.5  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
|--------------------------|-------|-------|-------|-------|
| Vol Left, %              | 25%   | 62%   | 0%    | 0%    |
| Vol Thru, %              | 43%   | 38%   | 0%    | 0%    |
| Vol Right, %             | 32%   | 0%    | 100%  | 100%  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane      | 75    | 108   | 72    | 108   |
| LT Vol                   | 19    | 67    | 0     | 0     |
| Through Vol              | 32    | 41    | 0     | 0     |
| RT Vol                   | 24    | 0     | 72    | 108   |
| Lane Flow Rate           | 83    | 120   | 80    | 120   |
| Geometry Grp             | 1     | 1     | 1     | 1     |
| Degree of Util (X)       | 0.101 | 0.153 | 0.087 | 0.129 |
| Departure Headway (Hd)   | 4.358 | 4.583 | 3.9   | 3.872 |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |
| Сар                      | 824   | 787   | 920   | 928   |
| Service Time             | 2.376 | 2.583 | 1.917 | 1.888 |
| HCM Lane V/C Ratio       | 0.101 | 0.152 | 0.087 | 0.129 |
| HCM Control Delay, s/veh | 7.9   | 8.4   | 7.3   | 7.5   |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |
| HCM 95th-tile Q          | 0.3   | 0.5   | 0.3   | 0.4   |

| Intersection           |                  |       |        |        |            |      |
|------------------------|------------------|-------|--------|--------|------------|------|
| Int Delay, s/veh       | 5.3              |       |        |        |            |      |
| Movement               | EBL              | EBR   | NBL    | NBT    | SBT        | SBR  |
| Lane Configurations    |                  | T T   | HUL    | 44     | <u>100</u> | ODIN |
| Traffic Vol, veh/h     | 1                | 188   | 142    | 630    | 369        | 26   |
| Future Vol, veh/h      | 1                | 188   | 142    | 630    | 369        | 26   |
|                        |                  |       | 178    |        |            | 107  |
| Conflicting Peds, #/hr |                  | 0     |        | 0      | 0          |      |
| Sign Control           | Stop             | Stop  | Free   | Free   | Free       | Free |
| RT Channelized         | -                | None  | -      | None   | -          | None |
| Storage Length         | -                | 0     | -      | -      | -          | -    |
| Veh in Median Storag   |                  | -     | -      | 0      | 0          | -    |
| Grade, %               | 0                | -     | -      | 0      | 0          | -    |
| Peak Hour Factor       | 90               | 90    | 90     | 90     | 90         | 90   |
| Heavy Vehicles, %      | 5                | 5     | 5      | 5      | 5          | 5    |
| Mvmt Flow              | 1                | 209   | 158    | 700    | 410        | 29   |
|                        |                  |       |        |        |            |      |
| Major/Minor            | Minor2           | ı     | Major1 | N      | /lajor2    |      |
|                        |                  |       | Major1 |        |            | ^    |
| Conflicting Flow All   | 1268             | 602   | 617    | 0      | -          | 0    |
| Stage 1                | 602              | -     | -      | -      | -          | -    |
| Stage 2                | 666              | -     | -      | -      | -          | -    |
| Critical Hdwy          |                  | 6.275 | 4.175  | -      | -          | -    |
| Critical Hdwy Stg 1    | 5.475            | -     | -      | -      | -          | -    |
| Critical Hdwy Stg 2    | 5.875            | -     | -      | -      | -          | -    |
|                        | 3.54753          |       |        | -      | -          | -    |
| Pot Cap-1 Maneuver     |                  | 491   | 944    | -      | -          | -    |
| Stage 1                | 538              | -     | -      | -      | -          | -    |
| Stage 2                | 467              | -     | -      | -      | -          | -    |
| Platoon blocked, %     |                  |       |        | -      | -          | -    |
| Mov Cap-1 Maneuver     | r 83             | 399   | 766    | -      | -          | -    |
| Mov Cap-2 Maneuver     |                  | -     | -      | -      | -          | -    |
| Stage 1                | 325              | -     | -      | -      | -          | -    |
| Stage 2                | 379              | _     | _      | _      | _          | _    |
| 2.3.50 =               |                  |       |        |        |            |      |
|                        |                  |       |        |        |            |      |
| Approach               | EB               |       | NB     |        | SB         |      |
| HCM Control Delay, s   | s/ <b>2</b> 3.53 |       | 3.58   |        | 0          |      |
| HCM LOS                | С                |       |        |        |            |      |
|                        |                  |       |        |        |            |      |
| Minor Lang/Major My    | mt               | NDI   | NDTI   | EDI n1 | CPT        | CDD  |
| Minor Lane/Major Mv    | IIIL             | NBL   |        | EBLn1  | SBT        | SBR  |
| Capacity (veh/h)       |                  | 617   | -      |        | -          | -    |
| HCM Lane V/C Ratio     |                  | 0.206 |        | 0.524  | -          | -    |
| HCM Control Delay (s   | s/veh)           | 10.9  | 1.9    |        | -          | -    |
| HCM Lane LOS           |                  | В     | Α      | С      | -          | -    |
| HCM 95th %tile Q(ve    | h)               | 8.0   | -      | 2.9    | -          | -    |
|                        |                  |       |        |        |            |      |

| Int Delay, s/veh Movement                                   | 0.3        |        |         |            |              |      |
|-------------------------------------------------------------|------------|--------|---------|------------|--------------|------|
| Mayramant                                                   |            |        |         |            |              |      |
| IVIOVement                                                  | EBL        | EBR    | NBL     | NBT        | SBT          | SBR  |
| Lane Configurations                                         | LDL        | T T    | NDL     | <b>1</b>   | <u>001</u>   | ODIN |
| Traffic Vol, veh/h                                          | 0          | 27     | 0       | <b>717</b> | <b>T</b> 546 | 0    |
| Future Vol, veh/h                                           | 0          | 27     |         | 761        | 546          | 0    |
|                                                             |            |        | 0       |            |              |      |
| Conflicting Peds, #/hi                                      |            | 0      | 0       | 0          | 0            | 86   |
| Sign Control                                                | Stop       | Stop   | Free    | Free       | Free         | Free |
| RT Channelized                                              | -          | None   |         | None       |              | None |
| Storage Length                                              | -          | 0      | -       | -          | -            | -    |
| Veh in Median Storag                                        |            | -      | -       | 0          | 0            | -    |
| Grade, %                                                    | 0          | -      | -       | 0          | 0            | -    |
| Peak Hour Factor                                            | 90         | 90     | 90      | 90         | 90           | 90   |
| Heavy Vehicles, %                                           | 5          | 5      | 5       | 5          | 5            | 5    |
| Mvmt Flow                                                   | 0          | 30     | 0       | 846        | 607          | 0    |
|                                                             |            |        |         |            |              |      |
| M = : = =/N A:==                                            | N4: C      |        | 1-:- 4  |            | 1-i- C       |      |
|                                                             | Minor2     |        | /lajor1 |            | /lajor2      |      |
| Conflicting Flow All                                        | -          | 607    | -       | 0          | -            | 0    |
| Stage 1                                                     | -          | -      | -       | -          | -            | -    |
| Stage 2                                                     | -          | -      | -       | -          | -            | -    |
| Critical Hdwy                                               | -          | 6.275  | -       | -          | -            | -    |
| Critical Hdwy Stg 1                                         | -          | -      | -       | -          | -            | -    |
| Critical Hdwy Stg 2                                         | -          | -      | -       | -          | -            | -    |
| Follow-up Hdwy                                              | -3         | 3.3475 | -       | -          | -            | -    |
| Pot Cap-1 Maneuver                                          |            | 489    | 0       | -          | -            | 0    |
| Stage 1                                                     | 0          | -      | 0       | -          | -            | 0    |
| Stage 2                                                     | 0          | _      | 0       | -          | _            | 0    |
| Platoon blocked, %                                          |            |        |         | _          | _            |      |
| Mov Cap-1 Maneuve                                           | r -        | 489    | _       | _          | _            | _    |
| Mov Cap-1 Maneuve                                           |            | 403    | -       | -          | _            | -    |
|                                                             |            |        |         | -          |              | -    |
| Stage 1                                                     | -          | -      | -       | -          | -            | -    |
| Stage 2                                                     | -          | -      | -       | -          | -            | -    |
|                                                             |            |        |         |            |              |      |
| Approach                                                    | EB         |        | NB      |            | SB           |      |
| HCM Control Delay,                                          |            |        | 0       |            | 0            |      |
| HCM LOS                                                     | B          |        | U       |            | U            |      |
| I ICIVI LOS                                                 | Ь          |        |         |            |              |      |
|                                                             |            |        |         |            |              |      |
| Minor Lane/Major Mv                                         | mt         | NBTE   | BLn1    | SBT        |              |      |
| Capacity (veh/h)                                            |            | _      |         | -          |              |      |
| HCM Lane V/C Ratio                                          |            |        | 0.061   | _          |              |      |
|                                                             |            |        | 12.8    | _          |              |      |
| HUIVI CONTROLLIBLISM (                                      | U, V UII J |        |         |            |              |      |
| HCM Lane LOS                                                | ,          |        | D       |            |              |      |
| HCM Control Delay (S<br>HCM Lane LOS<br>HCM 95th %tile Q(ve | ,          | -      | 0.2     | -          |              |      |

| Intersection           |        |             |         |       |         |      |
|------------------------|--------|-------------|---------|-------|---------|------|
| Int Delay, s/veh       | 1.8    |             |         |       |         |      |
|                        |        |             |         |       |         |      |
| Movement               | EBL    | EBR         | NBL     | NBT   | SBT     | SBR  |
| Lane Configurations    | ¥      |             |         | 4     | ₽       |      |
| Traffic Vol, veh/h     | 25     | 25          | 70      | 248   | 277     | 85   |
| Future Vol, veh/h      | 25     | 25          | 70      | 248   | 277     | 85   |
| Conflicting Peds, #/hr | 0      | 0           | 0       | 0     | 0       | 0    |
| Sign Control           | Stop   | Stop        | Free    | Free  | Free    | Free |
| RT Channelized         | -      | None        | -       | None  | -       | None |
| Storage Length         | 0      | -           | -       | -     | -       | -    |
| Veh in Median Storage  |        | -           | -       | 0     | 0       | -    |
| Grade, %               | 0      | -           | -       | 0     | 0       | -    |
| Peak Hour Factor       | 90     | 90          | 90      | 90    | 90      | 90   |
| Heavy Vehicles, %      | 0      | 0           | 0       | 0     | 0       | 0    |
| Mvmt Flow              | 28     | 28          | 78      | 276   | 308     | 94   |
|                        |        |             |         |       |         |      |
| Major/Minor M          | linor2 | N           | /lajor1 | N     | /lajor2 |      |
| Conflicting Flow All   | 786    | 355         | 402     | 0     | -       | 0    |
| Stage 1                | 355    | -           | -       | -     | _       | -    |
| Stage 2                | 431    | _           | -       | -     | _       | _    |
| Critical Hdwy          | 6.4    | 6.2         | 4.1     | -     | _       | -    |
| Critical Hdwy Stg 1    | 5.4    | -           | -       | _     | _       | _    |
| Critical Hdwy Stg 2    | 5.4    | _           | -       | _     | _       | _    |
| Follow-up Hdwy         | 3.5    | 3.3         | 2.2     | -     | -       | _    |
| Pot Cap-1 Maneuver     | 364    | 693         | 1167    | -     | -       | _    |
| Stage 1                | 714    | -           | -       | -     | -       | -    |
| Stage 2                | 660    | -           | -       | -     | -       | -    |
| Platoon blocked, %     |        |             |         | -     | -       | -    |
| Mov Cap-1 Maneuver     | 335    | 693         | 1167    | -     | -       | -    |
| Mov Cap-2 Maneuver     | 335    | -           | -       | -     | -       | _    |
| Stage 1                | 658    | -           | -       | -     | -       | _    |
| Stage 2                | 660    | _           | _       | _     | _       | _    |
|                        |        |             |         |       |         |      |
| Δ                      |        |             | ND      |       | 0.5     |      |
| Approach               | EB     |             | NB      |       | SB      |      |
| HCM Control Delay, s/  |        |             | 1.83    |       | 0       |      |
| HCM LOS                | В      |             |         |       |         |      |
|                        |        |             |         |       |         |      |
| Minor Lane/Major Mvm   | nt     | NBL         | NBT     | EBLn1 | SBT     | SBR  |
| Capacity (veh/h)       |        | 396         | -       | 4=0   | -       | -    |
| HCM Lane V/C Ratio     |        | 0.067       |         | 0.123 | _       | _    |
| HCM Control Delay (s/  | veh)   | 8.3         | 0       | 14.1  | _       | -    |
| HCM Lane LOS           | 2.1)   | Α           | A       | В     | -       | _    |
| HCM 95th %tile Q(veh   | )      | 0.2         | -       | 0.4   | -       | _    |
| 123. 70 tilo Q(1011    |        | Ų. <u> </u> |         | V-1   |         |      |

| Intersection                                              |         |             |                 |               |        |          |
|-----------------------------------------------------------|---------|-------------|-----------------|---------------|--------|----------|
| Int Delay, s/veh                                          | 0.4     |             |                 |               |        |          |
| Movement                                                  | WBL     | WBR         | NBT             | NBR           | SBL    | SBT      |
| Lane Configurations                                       | TTDL    | ₩ T         | <b>↑</b> ⊅      | HUIT          | ODL    | <b>^</b> |
| Traffic Vol, veh/h                                        | 0       | 34          | <b>T</b> 1→ 548 | 7             | 0      | 409      |
| Future Vol, veh/h                                         | 0       | 34          | 548             | 7             | 0      | 409      |
| Conflicting Peds, #/hr                                    | 0       | 0           | 0               | 100           | 0      | 0        |
| Sign Control                                              | Stop    | Stop        | Free            | Free          | Free   | Free     |
| RT Channelized                                            | -       |             |                 | None          |        | None     |
| Storage Length                                            | _       | 0           | _               | -             | _      | -        |
| Veh in Median Storage                                     |         | -           | 0               |               |        | 0        |
| Grade, %                                                  | 9, # 0  | -           | 0               | -             | -      | 0        |
| Peak Hour Factor                                          | 90      | 90          | 90              | 90            | 90     | 90       |
|                                                           | 90      | 15          | 6               | 90            | 90     | 5        |
| Heavy Vehicles, %                                         |         |             |                 |               |        |          |
| Mvmt Flow                                                 | 0       | 38          | 609             | 8             | 0      | 454      |
|                                                           |         |             |                 |               |        |          |
| Major/Minor N                                             | /linor1 | N           | /lajor1         | N             | 1ajor2 |          |
| Conflicting Flow All                                      | -       | 408         | 0               | 0             | -      | -        |
| Stage 1                                                   | -       | -           | -               | -             | -      | -        |
| Stage 2                                                   | -       | -           | -               | -             | -      | -        |
| Critical Hdwy                                             | _       | 7.2         | -               | _             | _      | _        |
| Critical Hdwy Stg 1                                       | -       | _           | -               | _             | -      | _        |
| Critical Hdwy Stg 2                                       | _       | _           | _               | _             | _      | _        |
| Follow-up Hdwy                                            | _       | 3.45        | _               | _             | _      | _        |
| Pot Cap-1 Maneuver                                        | 0       | 557         | _               | _             | 0      | _        |
| Stage 1                                                   | 0       | -           | _               | _             | 0      | _        |
| Stage 2                                                   | 0       | _           | _               | _             | 0      | _        |
| Platoon blocked, %                                        | U       |             | _               | _             | U      | _        |
| Mov Cap-1 Maneuver                                        | _       | 498         | _               | _             | _      | _        |
| Mov Cap-1 Maneuver                                        | _       | 430         | _               | _             | _      | _        |
| Stage 1                                                   |         |             | -               |               |        |          |
| •                                                         |         | -           | _               | -             |        | -        |
| Stage 2                                                   | -       |             | -               | _             | _      | -        |
|                                                           |         |             |                 |               |        |          |
| Approach                                                  | WB      |             | NB              |               | SB     |          |
| HCM Control Delay, s/                                     | 12.82   |             | 0               |               | 0      |          |
| HCM LOS                                                   | В       |             |                 |               |        |          |
|                                                           |         |             |                 |               |        |          |
| NAI                                                       | -1      | NDT         | NDD             | VDL 4         | ODT    |          |
|                                                           | זר      | NBT         | NRK/            | VBLn1         | SBT    |          |
| Minor Lane/Major Mvm                                      |         |             |                 |               |        |          |
| Capacity (veh/h)                                          |         | -           | -               |               | -      |          |
| Capacity (veh/h) HCM Lane V/C Ratio                       |         | -           | -               | 0.076         | -      |          |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/ |         | -<br>-<br>- | -               | 0.076<br>12.8 | -      |          |
| Capacity (veh/h) HCM Lane V/C Ratio                       | /veh)   |             | -               | 0.076         | -      |          |

| Intersection           |        |      |          |      |         |        |
|------------------------|--------|------|----------|------|---------|--------|
| Int Delay, s/veh       | 2.2    |      |          |      |         |        |
| Movement               | EBL    | EBT  | WBT      | WBR  | SBL     | SBR    |
| Lane Configurations    |        | 4    | <b>f</b> |      | W       | 02.1   |
| Traffic Vol, veh/h     | 51     | 38   | 120      | 35   | 8       | 10     |
| Future Vol, veh/h      | 51     | 38   | 120      | 35   | 8       | 10     |
| Conflicting Peds, #/hr | 0      | 0    | 0        | 0    | 0       | 0      |
| Sign Control           | Free   | Free | Free     | Free | Stop    | Stop   |
| RT Channelized         | -      | None | -        | None | -       | None   |
| Storage Length         | -      | -    | -        | -    | 0       | -      |
| Veh in Median Storage  | e,# -  | 0    | 0        | -    | 0       | -      |
| Grade, %               | -      | 0    | 0        | -    | 0       | -      |
| Peak Hour Factor       | 90     | 90   | 90       | 90   | 90      | 90     |
| Heavy Vehicles, %      | 2      | 2    | 2        | 2    | 2       | 2      |
| Mvmt Flow              | 57     | 42   | 133      | 39   | 9       | 11     |
|                        |        |      |          |      |         |        |
| Major/Minor N          | Major1 | N    | /lajor2  | N    | /linor2 |        |
| Conflicting Flow All   | 172    | 0    | -<br>-   | 0    | 308     | 153    |
| Stage 1                | 112    | -    |          | -    | 153     | -      |
| Stage 2                |        | _    | _        | _    | 156     | _      |
| Critical Hdwy          | 4.12   |      |          | -    | 6.42    | 6.22   |
| Critical Hdwy Stg 1    | 4.12   | _    | _        | _    | 5.42    | 0.22   |
| Critical Hdwy Stg 2    |        |      |          | -    | 5.42    |        |
|                        | 2.218  |      | _        | _    | 3.518   |        |
| Pot Cap-1 Maneuver     | 1405   |      |          |      | 684     | 893    |
| Stage 1                | 1400   |      | _        | _    | 875     | 000    |
| Stage 2                |        |      |          |      | 873     | _      |
| Platoon blocked, %     | _      |      | _        | _    | 013     | _      |
| Mov Cap-1 Maneuver     | 1/105  |      |          | _    | 656     | 893    |
| Mov Cap-1 Maneuver     |        | _    |          | _    | 656     | -      |
| Stage 1                |        |      |          | _    | 839     |        |
| Stage 2                |        | _    | _        | _    | 873     | _      |
| Slage 2                |        |      |          | -    | 073     |        |
|                        |        |      |          |      |         |        |
| Approach               | EB     |      | WB       |      | SB      |        |
| HCM Control Delay, s/  | /v 4.4 |      | 0        |      | 9.8     |        |
| HCM LOS                |        |      |          |      | Α       |        |
|                        |        |      |          |      |         |        |
| Minor Lane/Major Mvn   | nt     | EBL  | EBT      | WBT  | WBRS    | SBL n1 |
| Capacity (veh/h)       |        | 1031 |          |      | -       | 769    |
| HCM Lane V/C Ratio     |        | 0.04 | _        | _    |         | 0.026  |
| HCM Control Delay (s   | /veh)  | 7.7  | 0        | _    | _       | 9.8    |
| HCM Lane LOS           |        | A    | A        | _    | _       | Α      |
| HCM 95th %tile Q(veh   | 1)     | 0.1  | -        | -    | -       | 0.1    |
| 1.5W 55W 76W &(VOI     | 7      | 0.1  |          |      |         | 0.1    |

# 2028 Scenario

Weekday PM Peak Hour

1: Bank & Fifth 07/31/2024

| 1: Bank & Fifth               |             |          |           |                                         |            |            |       |          |   | 07/31/2024 |
|-------------------------------|-------------|----------|-----------|-----------------------------------------|------------|------------|-------|----------|---|------------|
|                               | ۶           | <b>→</b> | •         | <b>←</b>                                | 4          | <b>†</b>   | -     | <b>↓</b> |   |            |
| Lane Group                    | EBL         | EBT      | WBL       | WBT                                     | NBL        | NBT        | SBL   | SBT      |   |            |
| Lane Configurations           |             | 4        | 7         | ef.                                     |            | €ि         |       | €î∌      |   |            |
| Traffic Volume (vph)          | 46          | 54       | 63        | 38                                      | 16         | 443        | 29    | 565      |   |            |
| Future Volume (vph)           | 46          | 54       | 63        | 38                                      | 16         | 443        | 29    | 565      |   |            |
| Lane Group Flow (vph)         | 0           | 162      | 70        | 81                                      | 0          | 554        | 0     | 701      |   |            |
| Turn Type                     | Perm        | NA       | Perm      | NA                                      | Perm       | NA         | Perm  | NA       |   |            |
| Protected Phases              |             | 4        |           | 8                                       |            | 2          |       | 6        |   |            |
| Permitted Phases              | 4           |          | 8         |                                         | 2          |            | 6     |          |   |            |
| Minimum Split (s)             | 26.0        | 26.0     | 26.0      | 26.0                                    | 49.0       | 49.0       | 49.0  | 49.0     |   |            |
| Total Split (s)               | 26.0        | 26.0     | 26.0      | 26.0                                    | 49.0       | 49.0       | 49.0  | 49.0     |   |            |
| Total Split (%)               | 34.7%       | 34.7%    | 34.7%     | 34.7%                                   | 65.3%      | 65.3%      | 65.3% | 65.3%    |   |            |
| Yellow Time (s)               | 3.0         | 3.0      | 3.0       | 3.0                                     | 3.0        | 3.0        | 3.0   | 3.0      |   |            |
| All-Red Time (s)              | 2.5         | 2.5      | 2.5       | 2.5                                     | 2.5        | 2.5        | 2.5   | 2.5      |   |            |
| Lost Time Adjust (s)          |             | 0.0      | 0.0       | 0.0                                     |            | 0.0        |       | 0.0      |   |            |
| Total Lost Time (s)           |             | 5.5      | 5.5       | 5.5                                     |            | 5.5        |       | 5.5      |   |            |
| Lead/Lag                      |             |          |           |                                         |            |            |       |          |   |            |
| Lead-Lag Optimize?            |             |          |           |                                         |            |            |       |          |   |            |
| Act Effct Green (s)           |             | 20.5     | 20.5      | 20.5                                    |            | 43.5       |       | 43.5     |   |            |
| Actuated g/C Ratio            |             | 0.27     | 0.27      | 0.27                                    |            | 0.58       |       | 0.58     |   |            |
| v/c Ratio                     |             | 0.44     | 0.26      | 0.20                                    |            | 0.35       |       | 0.44     |   |            |
| Control Delay (s/veh)         |             | 22.5     | 24.4      | 14.1                                    |            | 13.9       |       | 9.8      |   |            |
| Queue Delay                   |             | 0.0      | 0.0       | 0.0                                     |            | 0.0        |       | 0.0      |   |            |
| Total Delay (s/veh)           |             | 22.5     | 24.4      | 14.1                                    |            | 13.9       |       | 9.8      |   |            |
| LOS                           |             | С        | С         | В                                       |            | В          |       | Α        |   |            |
| Approach Delay (s/veh)        |             | 22.5     |           | 18.8                                    |            | 13.9       |       | 9.8      |   |            |
| Approach LOS                  |             | С        |           | В                                       |            | В          |       | Α        |   |            |
| Queue Length 50th (m)         |             | 15.1     | 7.7       | 4.4                                     |            | 23.5       |       | 26.1     |   |            |
| Queue Length 95th (m)         |             | 31.7     | 17.9      | 14.3                                    |            | 50.1       |       | 37.5     |   |            |
| Internal Link Dist (m)        |             | 49.7     |           | 112.4                                   |            | 195.6      |       | 190.0    |   |            |
| Turn Bay Length (m)           |             |          | 45.0      |                                         |            |            |       |          |   |            |
| Base Capacity (vph)           |             | 372      | 274       | 409                                     |            | 1588       |       | 1589     |   |            |
| Starvation Cap Reductn        |             | 0        | 0         | 0                                       |            | 0          |       | 0        |   |            |
| Spillback Cap Reductn         |             | 0        | 0         | 0                                       |            | 0          |       | 0        |   |            |
| Storage Cap Reductn           |             | 0        | 0         | 0                                       |            | 0          |       | 0        |   |            |
| Reduced v/c Ratio             |             | 0.44     | 0.26      | 0.20                                    |            | 0.35       |       | 0.44     |   |            |
| Intersection Summary          |             |          |           |                                         |            |            |       |          |   |            |
| Cycle Length: 75              |             |          |           |                                         |            |            |       |          |   |            |
| Actuated Cycle Length: 75     |             |          |           |                                         |            |            |       |          |   |            |
| Offset: 47 (63%), Reference   | ed to phas  | se 2:NBT | L and 6:5 | SBTL. Sta                               | art of Gre | en         |       |          |   |            |
| Natural Cycle: 75             | ou to pilo. |          |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            | •          |       |          |   |            |
| Control Type: Pretimed        |             |          |           |                                         |            |            |       |          |   |            |
| Maximum v/c Ratio: 0.44       |             |          |           |                                         |            |            |       |          |   |            |
| Intersection Signal Delay (s  | /veh): 13   | 4        |           | l l                                     | ntersectio | on LOS: E  | 3     |          |   |            |
| Intersection Capacity Utiliza |             |          |           |                                         |            | of Service |       |          |   |            |
| Analysis Period (min) 15      |             |          |           |                                         |            |            |       |          |   |            |
| Splits and Phases: 1: Ba      | nk & Fifth  |          |           |                                         |            |            |       |          |   |            |
| <b>1</b>                      | 🕶 1 11611   |          |           |                                         |            |            |       | Ť.       |   |            |
| Ø2 (R)                        |             |          |           |                                         |            |            | -     | → Ø4     | 4 |            |

2: Bank & Holmwood 07/31/2024

| Z. Darik & Holliwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ou         |          |           |           |             |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------|-----------|-------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>→</b>   | •        | <b>†</b>  | -         | ļ           |              |
| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EBT        | NBL      | NBT       | SBL       | SBT         | Ø3           |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4          |          | 414       |           | €Î∌         |              |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18         | 26       | 500       | 28        | 545         |              |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18         | 26       | 500       | 28        | 545         |              |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112        | 0        | 641       | 0         | 668         |              |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA         | Perm     | NA        | Perm      | NA          |              |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4          |          | 2         | 3         | 6           | 3            |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 2        |           | 6         |             | -            |
| Detector Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4          | 2        | 2         | 6         | 6           |              |
| Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •          |          |           |           |             |              |
| Minimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4        | 10.0     | 10.0      | 4.0       | 4.0         | 1.0          |
| Minimum Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.0       | 48.0     | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.0       | 48.0     | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.3%      | 64.0%    | 64.0%     | 64.0%     | 64.0%       | 7%           |
| Yellow Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0        | 3.0      | 3.0       | 3.0       | 3.0         | 2.0          |
| All-Red Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6        | 2.2      | 2.2       | 2.2       | 2.2         | 0.0          |
| Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0        |          | 0.0       |           | 0.0         |              |
| Total Lost Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.6        |          | 5.2       |           | 5.2         |              |
| Lead/Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lag        |          |           |           | V. <u>–</u> | Lead         |
| Lead-Lag Optimize?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _~3        |          |           |           |             |              |
| Recall Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | None       | C-Max    | C-Max     | C-Max     | C-Max       | None         |
| Act Effct Green (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6       |          | 56.0      |           | 56.0        |              |
| Actuated g/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15       |          | 0.75      |           | 0.75        |              |
| v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.55       |          | 0.33      |           | 0.33        |              |
| Control Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.8       |          | 1.9       |           | 3.4         |              |
| Queue Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0        |          | 0.0       |           | 0.0         |              |
| Total Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.8       |          | 1.9       |           | 3.4         |              |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D          |          | A         |           | A           |              |
| Approach Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.8       |          | 1.9       |           | 3.4         |              |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D          |          | A         |           | A           |              |
| Queue Length 50th (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.8       |          | 4.0       |           | 6.3         |              |
| Queue Length 95th (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.6       |          | 9.1       |           | 14.3        |              |
| Internal Link Dist (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.8       |          | 31.5      |           | 195.6       |              |
| Turn Bay Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00.0       |          | 01.0      |           | .00.0       |              |
| Base Capacity (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 287        |          | 1970      |           | 2033        |              |
| Starvation Cap Reductn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0          |          | 0         |           | 0           |              |
| Spillback Cap Reductn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0          |          | 0         |           | 0           |              |
| Storage Cap Reductn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0          |          | 0         |           | 0           |              |
| Reduced v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.39       |          | 0.33      |           | 0.33        |              |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |           |           |             |              |
| Cycle Length: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |           |           |             |              |
| Actuated Cycle Length: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |           |           |             |              |
| Offset: 74 (99%), Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed to phas | se 2:NBT | L and 6:5 | SBTL, Sta | art of Gree | en           |
| Natural Cycle: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |           |           | 2.30        |              |
| Control Type: Actuated-Coo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ordinated  |          |           |           |             |              |
| Maximum v/c Ratio: 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |           |           |             |              |
| Intersection Signal Delay (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /veh): 5.5 |          |           | li        | ntersectio  | n LOS: A     |
| Intersection Capacity Utiliza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          |           |           |             | of Service C |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |           |           |             |              |
| and the state of t |            |          |           |           |             |              |

Splits and Phases: 2: Bank & Holmwood



hing, 2028 Bac

| J. Darik & Exhibitio       | ••        |          |            |            |          |      |      |  |
|----------------------------|-----------|----------|------------|------------|----------|------|------|--|
|                            | •         | •        | 1          | -          | Į.       |      |      |  |
| Lane Group                 | WBL       | WBR      | NBT        | SBL        | SBT      | Ø1   | Ø7   |  |
| Lane Configurations        | 7         | 7        | <b>↑</b> ⊅ | 7          | <b>^</b> |      |      |  |
| Traffic Volume (vph)       | 114       | 56       | 469        | 97         | 498      |      |      |  |
| Future Volume (vph)        | 114       | 56       | 469        | 97         | 498      |      |      |  |
| Lane Group Flow (vph)      | 127       | 62       | 645        | 108        | 553      |      |      |  |
| Turn Type                  | Prot      | Perm     | NA         | Perm       | NA       |      |      |  |
| Protected Phases           | 8         |          | 2          |            | 6        | 1    | 7    |  |
| Permitted Phases           |           | 8        |            | 6          |          |      |      |  |
| Detector Phase             | 8         | 8        | 2          | 6          | 6        |      |      |  |
| Switch Phase               |           |          |            |            |          |      |      |  |
| Minimum Initial (s)        | 10.0      | 10.0     | 10.0       | 10.0       | 10.0     | 1.0  | 1.0  |  |
| Minimum Split (s)          | 26.0      | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |  |
| Total Split (s)            | 26.0      | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |  |
| Total Split (%)            | 34.7%     | 34.7%    | 52.0%      | 58.7%      | 58.7%    | 7%   | 7%   |  |
| Yellow Time (s)            | 3.3       | 3.3      | 3.0        | 3.0        | 3.0      | 2.0  | 3.5  |  |
| All-Red Time (s)           | 3.0       | 3.0      | 3.9        | 3.9        | 3.9      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)       | 0.0       | 0.0      | 0.0        | 0.0        | 0.0      |      |      |  |
| Total Lost Time (s)        | 6.3       | 6.3      | 6.9        | 6.9        | 6.9      |      |      |  |
| Lead/Lag                   | Lag       | Lag      | Lag        |            |          | Lead | Lead |  |
| Lead-Lag Optimize?         |           |          | Yes        |            |          | Yes  | Yes  |  |
| Recall Mode                | None      | None     | C-Max      | C-Max      | C-Max    | None | None |  |
| Act Effct Green (s)        | 12.2      | 12.2     | 54.2       | 54.2       | 54.2     |      |      |  |
| Actuated g/C Ratio         | 0.16      | 0.16     | 0.72       | 0.72       | 0.72     |      |      |  |
| v/c Ratio                  | 0.51      | 0.27     | 0.32       | 0.25       | 0.24     |      |      |  |
| Control Delay (s/veh)      | 35.4      | 10.6     | 5.5        | 4.7        | 3.1      |      |      |  |
| Queue Delay                | 0.0       | 0.0      | 0.0        | 0.0        | 0.0      |      |      |  |
| Total Delay (s/veh)        | 35.4      | 10.6     | 5.5        | 4.7        | 3.1      |      |      |  |
| LOS                        | D         | В        | Α          | Α          | Α        |      |      |  |
| Approach Delay (s/veh)     | 27.3      |          | 5.5        |            | 3.4      |      |      |  |
| Approach LOS               | С         |          | Α          |            | Α        |      |      |  |
| Queue Length 50th (m)      | 16.8      | 0.0      | 15.8       | 3.1        | 8.2      |      |      |  |
| Queue Length 95th (m)      | 30.2      | 9.0      | 29.0       | 5.8        | 10.2     |      |      |  |
| Internal Link Dist (m)     | 30.6      |          | 33.7       |            | 44.8     |      |      |  |
| Turn Bay Length (m)        |           |          |            | 40.0       |          |      |      |  |
| Base Capacity (vph)        | 405       | 335      | 2031       | 430        | 2271     |      |      |  |
| Starvation Cap Reductn     | 0         | 0        | 0          | 0          | 0        |      |      |  |
| Spillback Cap Reductn      | 0         | 0        | 0          | 0          | 0        |      |      |  |
| Storage Cap Reductn        | 0         | 0        | 0          | 0          | 0        |      |      |  |
| Reduced v/c Ratio          | 0.31      | 0.19     | 0.32       | 0.25       | 0.24     |      |      |  |
| Intersection Summary       |           |          |            |            |          |      |      |  |
| Cycle Length: 75           |           |          |            |            |          |      |      |  |
| Actuated Cycle Length: 75  |           |          |            |            |          |      |      |  |
| Offset: 0 (0%), Referenced | to phase  | 2:NBT ar | nd 6:SBT   | L, Start o | f Green  |      |      |  |
| Natural Cycle: 75          |           |          |            |            |          |      |      |  |
| Control Type: Actuated-Coo | ordinated |          |            |            |          |      |      |  |

Control Type: Actuated-Coordinated

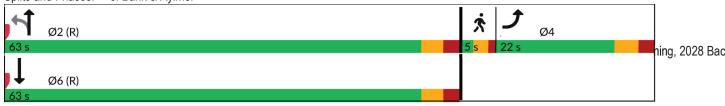
Maximum v/c Ratio: 0.51

Intersection Signal Delay (s/veh): 7.3 Intersection LOS: A Intersection Capacity Utilization 59.7% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition




ning, 2028 Bac

## 6: Bank & Aylmer

|                              | •           | 4        | <b>†</b>  | <del> </del> |                       |
|------------------------------|-------------|----------|-----------|--------------|-----------------------|
| Lane Group                   | EBL         | NBL      | NBT       | SBT          | Ø3                    |
| Lane Configurations          | W           | HUL      | 44        | <b>1</b>     | 20                    |
| Traffic Volume (vph)         | 56          | 21       | 685       | 747          |                       |
| Future Volume (vph)          | 56          | 21       | 685       | 747          |                       |
| Lane Group Flow (vph)        | 89          | 0        | 784       | 936          |                       |
| Turn Type                    | Prot        | Perm     | NA        | NA           |                       |
| Protected Phases             | 4           | . 51111  | 2         | 6            | 3                     |
| Permitted Phases             | 4           | 2        | _         | 6            |                       |
| Detector Phase               | 4           | 2        | 2         | 6            |                       |
| Switch Phase                 | •           | _        | _         |              |                       |
| Minimum Initial (s)          | 10.0        | 30.0     | 30.0      | 30.0         | 1.0                   |
| Minimum Split (s)            | 22.0        | 63.0     | 63.0      | 63.0         | 5.0                   |
| Total Split (s)              | 22.0        | 63.0     | 63.0      | 63.0         | 5.0                   |
| Total Split (%)              | 24.4%       | 70.0%    | 70.0%     | 70.0%        | 6%                    |
| Yellow Time (s)              | 3.3         | 3.0      | 3.0       | 3.0          | 2.0                   |
| All-Red Time (s)             | 2.2         | 2.2      | 2.2       | 2.2          | 1.0                   |
| Lost Time Adjust (s)         | 0.0         |          | 0.0       | 0.0          |                       |
| Total Lost Time (s)          | 5.5         |          | 5.2       | 5.2          |                       |
| Lead/Lag                     | Lag         |          | 0.2       | 0.2          | Lead                  |
| Lead-Lag Optimize?           | Lug         |          |           |              | _000                  |
| Recall Mode                  | Ped         | C-Max    | C-Max     | C-Max        | Max                   |
| Act Effct Green (s)          | 14.1        | J .7107  | 60.2      | 60.2         |                       |
| Actuated g/C Ratio           | 0.16        |          | 0.67      | 0.67         |                       |
| v/c Ratio                    | 0.37        |          | 0.41      | 0.48         |                       |
| Control Delay (s/veh)        | 31.5        |          | 4.3       | 8.0          |                       |
| Queue Delay                  | 0.0         |          | 0.0       | 0.0          |                       |
| Total Delay (s/veh)          | 31.5        |          | 4.3       | 8.0          |                       |
| LOS                          | C           |          | A         | A            |                       |
| Approach Delay (s/veh)       | 31.5        |          | 4.3       | 8.0          |                       |
| Approach LOS                 | C           |          | A         | A            |                       |
| Queue Length 50th (m)        | 10.6        |          | 12.9      | 34.8         |                       |
| Queue Length 95th (m)        | 24.2        |          | m14.2     | 47.8         |                       |
| Internal Link Dist (m)       | 76.7        |          | 28.1      | 10.1         |                       |
| Turn Bay Length (m)          | 10.1        |          | 20.1      | 10.1         |                       |
| Base Capacity (vph)          | 275         |          | 1910      | 1958         |                       |
| Starvation Cap Reductn       | 0           |          | 0         | 0            |                       |
| Spillback Cap Reductn        | 0           |          | 0         | 0            |                       |
| Storage Cap Reductn          | 0           |          | 0         | 0            |                       |
| Reduced v/c Ratio            | 0.32        |          | 0.41      | 0.48         |                       |
|                              | 0.02        |          | 0.71      | 0.70         |                       |
| Intersection Summary         |             |          |           |              |                       |
| Cycle Length: 90             |             |          |           |              |                       |
| Actuated Cycle Length: 90    |             |          |           |              |                       |
| Offset: 87 (97%), Reference  | ed to phas  | se 2:NBT | L and 6:8 | SBT, Start   | of Green              |
| Natural Cycle: 90            |             |          |           |              |                       |
| Control Type: Actuated-Co    | ordinated   |          |           |              |                       |
| Maximum v/c Ratio: 0.48      |             |          |           |              |                       |
| Intersection Signal Delay (s | s/veh): 7.6 |          |           | In           | tersection LOS: A     |
| Intersection Capacity Utiliz |             |          |           | IC           | CU Level of Service B |
| Analysis Period (min) 15     |             |          |           |              |                       |

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Bank & Aylmer



|                        | ۶     | <b>→</b> | •     | <b>←</b> | 4     | <b>†</b> | -     | <b>↓</b> |      |      |  |
|------------------------|-------|----------|-------|----------|-------|----------|-------|----------|------|------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBL   | SBT      | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4        |       | 4        |       | 414      |       | 47>      |      |      |  |
| Traffic Volume (vph)   | 52    | 80       | 16    | 82       | 14    | 424      | 206   | 744      |      |      |  |
| Future Volume (vph)    | 52    | 80       | 16    | 82       | 14    | 424      | 206   | 744      |      |      |  |
| Lane Group Flow (vph)  | 0     | 180      | 0     | 383      | 0     | 510      | 0     | 1159     |      |      |  |
| Turn Type              | Perm  | NA       | Perm  | NA       | Perm  | NA       | pm+pt | NA       |      |      |  |
| Protected Phases       |       | 4        |       | 8        |       | 2        | 1     | 6        | 3    | 7    |  |
| Permitted Phases       | 4     |          | 8     |          | 2     |          | 6     |          |      |      |  |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8%    | 47.8% | 47.8%    | 18.9% | 66.7%    | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6      | 3.0   | 3.0      | 2.9   | 3.0      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0      |       | 0.0      |       | 0.0      |      |      |  |
| Total Lost Time (s)    |       | 5.6      |       | 5.6      |       | 6.0      |       | 6.0      |      |      |  |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag      | Lag   | Lag      | Lead  |          | Lead | Lead |  |
| Lead-Lag Optimize?     |       |          | Yes   | Yes      | Yes   | Yes      | Yes   |          |      | Yes  |  |
| Act Effct Green (s)    |       | 19.4     |       | 19.4     |       | 37.0     |       | 54.0     |      |      |  |
| Actuated g/C Ratio     |       | 0.22     |       | 0.22     |       | 0.41     |       | 0.60     |      |      |  |
| v/c Ratio              |       | 1.15     |       | 1.10     |       | 0.45     |       | 0.91     |      |      |  |
| Control Delay (s/veh)  |       | 154.9    |       | 104.0    |       | 20.4     |       | 20.6     |      |      |  |
| Queue Delay            |       | 0.0      |       | 0.0      |       | 0.0      |       | 0.0      |      |      |  |
| Total Delay (s/veh)    |       | 154.9    |       | 104.0    |       | 20.4     |       | 20.6     |      |      |  |
| LOS                    |       | F        |       | F        |       | С        |       | С        |      |      |  |
| Approach Delay (s/veh) |       | 154.9    |       | 104.0    |       | 20.4     |       | 20.6     |      |      |  |
| Approach LOS           |       | F        |       | F        |       | С        |       | С        |      |      |  |
| Queue Length 50th (m)  |       | ~37.1    |       | ~57.3    |       | 32.2     |       | 22.6     |      |      |  |
| Queue Length 95th (m)  |       | #76.3    |       | #111.2   |       | 45.7     |       | #99.6    |      |      |  |
| Internal Link Dist (m) |       | 75.1     |       | 136.0    |       | 63.1     |       | 79.0     |      |      |  |
| Turn Bay Length (m)    |       |          |       |          |       |          |       |          |      |      |  |
| Base Capacity (vph)    |       | 156      |       | 347      |       | 1144     |       | 1278     |      |      |  |
| Starvation Cap Reductn |       | 0        |       | 0        |       | 0        |       | 0        |      |      |  |
| Spillback Cap Reductn  |       | 0        |       | 0        |       | 0        |       | 0        |      |      |  |
| Storage Cap Reductn    |       | 0        |       | 0        |       | 0        |       | 0        |      |      |  |
| Reduced v/c Ratio      |       | 1.15     |       | 1.10     |       | 0.45     |       | 0.91     |      |      |  |

#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 1.15

Intersection Signal Delay (s/veh): 45.7 Intersection Capacity Utilization 95.4% Intersection LOS: D
ICU Level of Service F

Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Bank & Sunnyside



ning, 2028 Bac

### 9: Queen Elizabeth Drive & Fifth

|                              | •           | 4         | <b>†</b>   | <b>↓</b> |                       |   |      |     |  |
|------------------------------|-------------|-----------|------------|----------|-----------------------|---|------|-----|--|
| Lane Group                   | EBL         | NBL       | NBT        | SBT      | Ø4                    |   |      |     |  |
| Lane Configurations          | W           |           | 4          | <b>†</b> |                       |   |      |     |  |
| Traffic Volume (vph)         | 35          | 45        | 198        | 527      |                       |   |      |     |  |
| Future Volume (vph)          | 35          | 45        | 198        | 527      |                       |   |      |     |  |
| Lane Group Flow (vph)        | 98          | 0         | 270        | 658      |                       |   |      |     |  |
| Turn Type                    | Prot        | Perm      | NA         | NA       |                       |   |      |     |  |
| Protected Phases             | 10          |           | 2          | 6        | 4                     |   |      |     |  |
| Permitted Phases             |             | 2         |            |          |                       |   |      |     |  |
| Minimum Split (s)            | 21.0        | 48.0      | 48.0       | 48.0     | 11.0                  |   |      |     |  |
| Total Split (s)              | 21.0        | 48.0      | 48.0       | 48.0     | 11.0                  |   |      |     |  |
| Total Split (%)              | 26.3%       | 60.0%     | 60.0%      | 60.0%    | 14%                   |   |      |     |  |
| Yellow Time (s)              | 3.0         | 3.0       | 3.0        | 3.0      | 3.0                   |   |      |     |  |
| All-Red Time (s)             | 2.7         | 3.8       | 3.8        | 3.8      | 2.7                   |   |      |     |  |
| Lost Time Adjust (s)         | 0.0         |           | 0.0        | 0.0      |                       |   |      |     |  |
| Total Lost Time (s)          | 5.7         |           | 6.8        | 6.8      |                       |   |      |     |  |
| Lead/Lag                     |             |           |            |          |                       |   |      |     |  |
| Lead-Lag Optimize?           |             |           |            |          |                       |   |      |     |  |
| Act Effct Green (s)          | 15.3        |           | 41.2       | 41.2     |                       |   |      |     |  |
| Actuated g/C Ratio           | 0.19        |           | 0.52       | 0.52     |                       |   |      |     |  |
| v/c Ratio                    | 0.34        |           | 0.44       | 0.77     |                       |   |      |     |  |
| Control Delay (s/veh)        | 31.8        |           | 15.0       | 23.2     |                       |   |      |     |  |
| Queue Delay                  | 0.0         |           | 0.0        | 0.0      |                       |   |      |     |  |
| Total Delay (s/veh)          | 31.8        |           | 15.0       | 23.2     |                       |   |      |     |  |
| LOS                          | С           |           | В          | С        |                       |   |      |     |  |
| Approach Delay (s/veh)       | 31.8        |           | 15.0       | 23.2     |                       |   |      |     |  |
| Approach LOS                 | С           |           | В          | С        |                       |   |      |     |  |
| Queue Length 50th (m)        | 13.0        |           | 24.2       | 75.5     |                       |   |      |     |  |
| Queue Length 95th (m)        | 26.3        |           | 42.6       | 119.7    |                       |   |      |     |  |
| Internal Link Dist (m)       | 57.2        |           | 0.1        | 5.9      |                       |   |      |     |  |
| Turn Bay Length (m)          |             |           |            |          |                       |   |      |     |  |
| Base Capacity (vph)          | 290         |           | 614        | 855      |                       |   |      |     |  |
| Starvation Cap Reductn       | 0           |           | 0          | 0        |                       |   |      |     |  |
| Spillback Cap Reductn        | 0           |           | 0          | 0        |                       |   |      |     |  |
| Storage Cap Reductn          | 0           |           | 0          | 0        |                       |   |      |     |  |
| Reduced v/c Ratio            | 0.34        |           | 0.44       | 0.77     |                       |   |      |     |  |
| Intersection Summary         |             |           |            |          |                       |   |      |     |  |
| Cycle Length: 80             |             |           |            |          |                       |   |      |     |  |
| Actuated Cycle Length: 80    |             |           |            |          |                       |   |      |     |  |
| Offset: 0 (0%), Referenced   |             | 6:SBT. S  | tart of Gr | een      |                       |   |      |     |  |
| Natural Cycle: 80            |             | , ,       |            |          |                       |   |      |     |  |
| Control Type: Pretimed       |             |           |            |          |                       |   |      |     |  |
| Maximum v/c Ratio: 0.77      |             |           |            |          |                       |   |      |     |  |
| Intersection Signal Delay (s | s/veh): 21. | 9         |            | In       | tersection LOS: C     |   |      |     |  |
| Intersection Capacity Utiliz |             |           |            | IC       | CU Level of Service C |   |      |     |  |
| Analysis Period (min) 15     |             |           |            |          |                       |   |      |     |  |
| Splits and Phases: 9: Qu     | ueen Eliza  | beth Driv | e & Fifth  |          |                       |   |      |     |  |
| 4                            |             |           |            |          |                       |   | 15   |     |  |
| Ø2<br>48 s                   |             |           |            |          | 11 s                  | × | 21 s | Ø10 |  |
|                              |             |           |            |          |                       |   |      |     |  |
| ◆ Ø6 (R)<br>48 s             |             |           |            |          |                       |   |      |     |  |
|                              |             |           |            |          |                       |   |      |     |  |

1.1

0.9

0

| Intersection                      |       |              |              |              |      |      |
|-----------------------------------|-------|--------------|--------------|--------------|------|------|
| Intersection Delay, s/veh         | 8.5   |              |              |              |      |      |
| Intersection LOS                  | А     |              |              |              |      |      |
|                                   |       |              |              |              |      |      |
| Mayamant                          | EDI   | EDT          | MOT          | WDD          | CDI  | CDD  |
| Movement                          | EBL   | EBT          | WBT          | WBR          | SBL  | SBR  |
| Lane Configurations               |       | 4            | <b>₽</b>     | _            | ¥    | _    |
| Traffic Vol, veh/h                | 5     | 210          | 174          | 5            | 5    | 5    |
| Future Vol, veh/h                 | 5     | 210          | 174          | 5            | 5    | 5    |
| Peak Hour Factor                  | 0.90  | 0.90         | 0.90         | 0.90         | 0.90 | 0.90 |
| Heavy Vehicles, %                 | 2     | 2            | 2            | 2            | 2    | 2    |
| Mvmt Flow                         | 6     | 233          | 193          | 6            | 6    | 6    |
| Number of Lanes                   | 0     | 1            | 1            | 0            | 1    | 0    |
| Approach                          | EB    |              | WB           |              | SB   |      |
| Opposing Approach                 | WB    |              | EB           |              |      |      |
| Opposing Lanes                    | 1     |              | 1            |              | 0    |      |
| Conflicting Approach Left         | SB    |              | · ·          |              | WB   |      |
| Conflicting Lanes Left            | 1     |              | 0            |              | 1    |      |
| Conflicting Approach Right        | •     |              | SB           |              | EB   |      |
| Conflicting Lanes Right           | 0     |              | 1            |              | 1    |      |
| HCM Control Delay, s/veh          | 8.7   |              | 8.4          |              | 7.7  |      |
| HCM LOS                           | Α     |              | Α.4          |              | Α    |      |
| 110.111 200                       | - / ( |              |              |              |      |      |
| Long                              |       | EBLn1        | WBLn1        | SBLn1        |      |      |
| Lane                              |       |              |              |              |      |      |
| Vol Left, %                       |       | 2%           | 0%           | 50%          |      |      |
| Vol Thru, %                       |       | 98%          | 97%          | 0%           |      |      |
| Vol Right, %                      |       | 0%           | 3%           | 50%          |      |      |
| Sign Control                      |       | Stop         | Stop         | Stop         |      |      |
| Traffic Vol by Lane               |       | 215          | 179          | 10           |      |      |
| LT Vol                            |       | 5            | 0            | 5            |      |      |
| Through Vol                       |       | 210          | 174          | 0            |      |      |
| RT Vol                            |       | 0            | 5            | 5            |      |      |
| Lane Flow Rate                    |       | 239          | 199          | 11           |      |      |
| Geometry Grp                      |       | 1            | 1            | 1            |      |      |
| Degree of Util (X)                |       | 0.273        | 0.227        | 0.014        |      |      |
| Donartura Haadway (Hd)            |       | 4.107        | 4.114        | 4.667        |      |      |
| Departure Headway (Hd)            |       |              |              | Yes          |      |      |
| Convergence, Y/N                  |       | Yes          | Yes          |              |      |      |
| Convergence, Y/N<br>Cap           |       | 870          | 865          | 772          |      |      |
| Convergence, Y/N Cap Service Time |       | 870<br>2.157 | 865<br>2.174 | 772<br>2.667 |      |      |
| Convergence, Y/N<br>Cap           |       | 870          | 865          | 772          |      |      |
| Convergence, Y/N Cap Service Time |       | 870<br>2.157 | 865<br>2.174 | 772<br>2.667 |      |      |

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 6.9  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | 1→   |       |       | 4     | W    |      |
| Traffic Vol, veh/h         | 3    | 5     | 5     | 5     | 5    | 5    |
| Future Vol, veh/h          | 3    | 5     | 5     | 5     | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mymt Flow                  | 3    | 6     | 6     | 6     | 6    | 6    |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
|                            |      | J     |       | '     | •    |      |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 6.6  |       | 7.1   |       | 6.8  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 50%   | 0%    | 50%   |      |      |
| Vol Thru, %                |      | 0%    | 38%   | 50%   |      |      |
| Vol Right, %               |      | 50%   | 63%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 10    | 8     | 10    |      |      |
| LT Vol                     |      | 5     | 0     | 5     |      |      |
| Through Vol                |      | 0     | 3     | 5     |      |      |
| RT Vol                     |      | 5     | 5     | 0     |      |      |
| Lane Flow Rate             |      | 11    | 9     | 11    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.012 | 0.009 | 0.013 |      |      |
| Departure Headway (Hd)     |      | 3.769 | 3.587 | 4.06  |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 953   | 1002  | 886   |      |      |
| Service Time               |      | 1.777 | 1.593 | 2.065 |      |      |
| HCM Lane V/C Ratio         |      | 0.012 | 0.009 | 0.012 |      |      |
| HCM Control Delay, s/veh   |      | 6.8   | 6.6   | 7.1   |      |      |
| HCM Lane LOS               |      | Α     | A     | A     |      |      |
| LICM OF the tile O         |      | ^     | ^     | ^     |      |      |

1.3

0.8

| La Caraca d'Ara            |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection               | ^ -  |       |       |       |      |      |
| Intersection Delay, s/veh  | 8.7  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | - ↑  |       |       | 4     | M    |      |
| Traffic Vol, veh/h         | 3    | 5     | 140   | 5     | 39   | 210  |
| Future Vol, veh/h          | 3    | 5     | 140   | 5     | 39   | 210  |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 3    | 6     | 156   | 6     | 43   | 233  |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.4  |       | 9     |       | 8.5  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 16%   | 0%    | 97%   |      |      |
| Vol Thru, %                |      | 0%    | 38%   | 3%    |      |      |
| Vol Right, %               |      | 84%   | 63%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 249   | 8     | 145   |      |      |
| LT Vol                     |      | 39    | 0     | 140   |      |      |
| Through Vol                |      | 0     | 3     | 5     |      |      |
| RT Vol                     |      | 210   | 5     | 0     |      |      |
| Lane Flow Rate             |      | 277   | 9     | 161   |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.298 | 0.011 | 0.212 |      |      |
| Departure Headway (Hd)     |      | 3.88  | 4.322 | 4.727 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Сар                        |      | 930   | 828   | 764   |      |      |
| Service Time               |      | 1.892 | 2.347 | 2.727 |      |      |
| COLVICO LILIO              |      | 1.032 | 2.071 |       |      |      |
| HCM Lane V/C Ratio         |      | 0.298 | 0.011 | 0.211 |      |      |
|                            |      |       |       |       |      |      |

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 8    |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h        | 74   | 39   | 0    | 0    | 0    | 103  | 40   | 27   | 30   | 0    | 0    | 93   |
| Future Vol, veh/h         | 74   | 39   | 0    | 0    | 0    | 103  | 40   | 27   | 30   | 0    | 0    | 93   |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                 | 82   | 43   | 0    | 0    | 0    | 114  | 44   | 30   | 33   | 0    | 0    | 103  |
| Number of Lanes           | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |

| Approach                   | EB  | WB  | NB  | SB  |
|----------------------------|-----|-----|-----|-----|
| Opposing Approach          | WB  | EB  | SB  | NB  |
| Opposing Lanes             | 1   | 1   | 1   | 1   |
| Conflicting Approach Left  | SB  | NB  | EB  | WB  |
| Conflicting Lanes Left     | 1   | 1   | 1   | 1   |
| Conflicting Approach Right | NB  | SB  | WB  | EB  |
| Conflicting Lanes Right    | 1   | 1   | 1   | 1   |
| HCM Control Delay, s/veh   | 8.6 | 7.5 | 8.2 | 7.5 |
| HCM LOS                    | Α   | A   | Α   | A   |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 41%   | 65%   | 0%    | 0%    |  |
| Vol Thru, %              | 28%   | 35%   | 0%    | 0%    |  |
| Vol Right, %             | 31%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 97    | 113   | 103   | 93    |  |
| LT Vol                   | 40    | 74    | 0     | 0     |  |
| Through Vol              | 27    | 39    | 0     | 0     |  |
| RT Vol                   | 30    | 0     | 103   | 93    |  |
| Lane Flow Rate           | 108   | 126   | 114   | 103   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.134 | 0.162 | 0.125 | 0.115 |  |
| Departure Headway (Hd)   | 4.471 | 4.641 | 3.942 | 3.991 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 803   | 773   | 910   | 899   |  |
| Service Time             | 2.491 | 2.663 | 1.963 | 2.01  |  |
| HCM Lane V/C Ratio       | 0.134 | 0.163 | 0.125 | 0.115 |  |
| HCM Control Delay, s/veh | 8.2   | 8.6   | 7.5   | 7.5   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.5   | 0.6   | 0.4   | 0.4   |  |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |               |        |       |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|--------|-------|----------|------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.9    |               |        |       |          |      |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL     | EBR           | NBL    | NBT   | SBT      | SBR  |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LDL     | EBK           | NDL    | 4∱    | 3B1<br>♣ | אומט |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2       |               | 242    |       |          | 49   |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3       | 233           | 213    | 558   | 570      |      |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | 233           | 213    | 558   | 570      | 49   |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0             | 178    | _ 0   | _ 0      | 107  |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stop    | Stop          | Free   | Free  | Free     | Free |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       |               | -      | None  | -        | None |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       | 0             | -      | -     | -        | -    |
| Veh in Median Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | je,# 0  | -             | -      | 0     | 0        | -    |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | -             | -      | 0     | 0        | -    |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90      | 90            | 90     | 90    | 90       | 90   |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5       | 5             | 5      | 5     | 5        | 5    |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3       | 259           | 237    | 620   | 633      | 54   |
| in the contract of the contrac |         | 200           | 201    | 020   | 000      | 0.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |        |       |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minor2  |               | Major1 | Λ     | /lajor2  |      |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1622    | 839           | 866    | 0     | -        | 0    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 839     | -             | -      | -     | -        | -    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 783     | -             | -      | -     | -        | -    |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.675   | 6.275         | 4.175  | _     | _        | -    |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.475   | -             | -      | -     | -        | _    |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.875   | _             | _      | _     | _        | _    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.54753 | 3 34752       | 2475   | _     | _        | _    |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100     | 359           | 760    | _     | _        | _    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 417     | -             | 700    | _     | _        | _    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 406     | _             |        |       | _        | _    |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400     | _             | _      | -     | -        | _    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r 36    | 291           | 617    | -     |          | -    |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |               | 017    | -     | -        | -    |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | -             |        | -     | -        | -    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181     | -             | -      | -     | -        | -    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 329     | -             | -      | -     | -        | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |        |       |          |      |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EB      |               | NB     |       | SB       |      |
| ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |               | 6.73   |       | 0        |      |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               | 0.73   |       | U        |      |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F       |               |        |       |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |        |       |          |      |
| Minor Lane/Major Mvi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mt      | NBL           | NBTE   | EBLn1 | SBT      | SBR  |
| IVIII IOI Lane/IVIajoi IVIV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 510           | -      |       | _        | _    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |        |       |          | _    |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |               | _      | በ ጸጸጸ | _        |      |
| Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 0.384         |        | 0.888 | -        |      |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 0.384<br>14.4 | 3.8    | 66.9  | -        | -    |
| Capacity (veh/h) HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s/veh)  | 0.384         |        |       |          |      |

| 0.3    |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EBL    | EBR                                                                                                | NBL                                                                                                                         | NBT                                                                                                                                       | SBT                                                                                                                                                                                                                                   | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 7                                                                                                  |                                                                                                                             | <b>^</b>                                                                                                                                  | <u> </u>                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0      |                                                                                                    | 0                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _      |                                                                                                    |                                                                                                                             |                                                                                                                                           | _                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ie # 0 |                                                                                                    |                                                                                                                             |                                                                                                                                           | 0                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -      |                                                                                                    |                                                                                                                             |                                                                                                                                           | -                                                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| U      | 21                                                                                                 | U                                                                                                                           | 001                                                                                                                                       | 302                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Minor2 | Λ                                                                                                  | /lajor1                                                                                                                     | Λ                                                                                                                                         | /lajor2                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -      | 989                                                                                                | -                                                                                                                           | 0                                                                                                                                         | -                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -      | -                                                                                                  | -                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -      | -                                                                                                  | -                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -      | 6.275                                                                                              | -                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -      | -                                                                                                  | -                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -      | -                                                                                                  | -                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -3     | 3.3475                                                                                             | -                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0      | 293                                                                                                | 0                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0      | -                                                                                                  | 0                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0      | -                                                                                                  | 0                                                                                                                           | -                                                                                                                                         | -                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    |                                                                                                                             | -                                                                                                                                         | -                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| r -    | 267                                                                                                | _                                                                                                                           | _                                                                                                                                         | _                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    | _                                                                                                                           | _                                                                                                                                         | _                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _      | _                                                                                                  | _                                                                                                                           | _                                                                                                                                         | _                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _      | _                                                                                                  | _                                                                                                                           | _                                                                                                                                         | _                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| s/v 20 |                                                                                                    | 0                                                                                                                           |                                                                                                                                           | 0                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| С      |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mt     | NDTE                                                                                               | ERI n1                                                                                                                      | CDT                                                                                                                                       | CDD                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| III    |                                                                                                    |                                                                                                                             | ומט                                                                                                                                       | אמט                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                                    |                                                                                                                             | -                                                                                                                                         | -                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| i/ven) |                                                                                                    |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| h)     | -                                                                                                  | 0.3                                                                                                                         |                                                                                                                                           | -                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                                    | 11 3                                                                                                                        | _                                                                                                                                         | -                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Ge, # 0<br>90<br>5<br>0<br>Minor2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0 24 0 0 0 Stop Stop - None - 0 0 ge, # 0 - 90 90 5 5 0 27  Minor2 N - 989 6.275 3.3475 0 293 0 - 0 - r - 267 r EB s/v 20 C | 0 24 0 Stop Stop Free - None 0 - ge, # 0 90 90 90 5 5 5 0 27 0  Minor2 Major1 - 989 6.275 3.3475 - 0 293 0 0 - 0 0 - 0 0 - 0  T - 267 - T | 0 24 0 780 0 24 0 780 0 24 0 780 0 0 0 0 0 Stop Stop Free Free - None - None - None - O O 9e, # O O 90 90 90 90 5 5 5 5 5 0 27 0 867  Minor2 Major1 N - 989 - O 6.275 3.3475 3.3475 O 0 293 0 - O - O - O - O - O - O - O - O - O - O | 0         24         0         780         812           0         24         0         780         812           0         0         0         0         0           Stop         Stop         Free         Free         Free           -         None         -         -         -           -         0         -         -         0         0           9e, # 0         -         -         0         0         0         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90 |

| 3.3    |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL    | EBR                                                                           | NBL                                                                                                                                                                 | NBT                                                                                                                                                                                                                                          | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 63     | 59                                                                            | 56                                                                                                                                                                  | 257                                                                                                                                                                                                                                          | 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 59                                                                            | 56                                                                                                                                                                  | 257                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0      | 0                                                                             | 0                                                                                                                                                                   | 0                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | Stop                                                                          | Free                                                                                                                                                                | Free                                                                                                                                                                                                                                         | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -      | None                                                                          | -                                                                                                                                                                   | None                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0      | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e, # 0 | -                                                                             | -                                                                                                                                                                   | 0                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0      | _                                                                             | -                                                                                                                                                                   | 0                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 90     | 90                                                                            | 90                                                                                                                                                                  | 90                                                                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0      | 0                                                                             | 0                                                                                                                                                                   | 0                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 70     | 66                                                                            | 62                                                                                                                                                                  | 286                                                                                                                                                                                                                                          | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . 0    | 33                                                                            | 7_                                                                                                                                                                  |                                                                                                                                                                                                                                              | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4:     |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                               |                                                                                                                                                                     | 0                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.4    | 6.2                                                                           | 4.1                                                                                                                                                                 | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.4    | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.4    | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.5    | 3.3                                                                           | 2.2                                                                                                                                                                 | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 267    | 502                                                                           | 940                                                                                                                                                                 | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 550    | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 674    | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                               |                                                                                                                                                                     | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 246    | 502                                                                           | 940                                                                                                                                                                 | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 246    | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 506    | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 674    | -                                                                             | -                                                                                                                                                                   | -                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ,. ,   |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                               | A I P                                                                                                                                                               |                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                               | 1.63                                                                                                                                                                |                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С      |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                              | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nt     | NBI                                                                           | NBTF                                                                                                                                                                | -BLn1                                                                                                                                                                                                                                        | OLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nt     | NBL<br>322                                                                    | NBT E                                                                                                                                                               |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nt     | 322                                                                           | -                                                                                                                                                                   | 326                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 322<br>0.066                                                                  | -                                                                                                                                                                   | 326<br>0.415                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| veh)   | 322<br>0.066<br>9.1                                                           | -<br>-<br>0                                                                                                                                                         | 326<br>0.415<br>23.7                                                                                                                                                                                                                         | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 322<br>0.066                                                                  | -                                                                                                                                                                   | 326<br>0.415                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 63 63 0 Stop 0 90 0 70  1014 604 410 6.4 5.4 5.4 3.5 267 550 674  246 246 506 | EBL EBR  63 59 63 59 0 0 0 Stop Stop - None 0 90 90 0 0 90 90 0 0 70 66  610014 604 604 410 6.4 6.2 5.4 5.4 3.5 3.3 267 502 550 674  246 502 246 506 674  EB  23.65 | EBL EBR NBL  63 59 56 63 59 56 0 0 0 0 Stop Stop Free - None - 0 9, # 0 90 90 90 0 0 0 70 66 62  Minor2 Major1  1014 604 658 604 410 6.4 6.2 4.1 5.4 5.4 5.4 5.4 3.5 3.3 2.2 267 502 940 550 674  246 502 940 246 506 674  EB NB  23.65 1.63 | EBL EBR NBL NBT  63 59 56 257  63 59 56 257  0 0 0 0 0  Stop Stop Free Free  - None  0 0  90 90 90 90  0 0 0 0  70 66 62 286  Minor2 Major1 N  1014 604 658 0  604  410  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5.4  5. | EBL         EBR         NBL         NBT         SBT           63         59         56         257         495           0         0         0         0         0           0         0         0         0         0           Stop         Stop         Free         Free         Free         Free           - None         -         -         -         -           0         -         -         0         0           90         90         90         90         90           90         90         90         90         90           70         66         62         286         550           Minor2         Major1         Major2           1014         604         658         0         -           604         -         -         -         -           410         -         -         -         -           5.4         -         -         -         -           5.4         -         -         -         -           5.4         -         -         -         -           550 |

| Intersection           |         |      |            |       |         |          |
|------------------------|---------|------|------------|-------|---------|----------|
| Int Delay, s/veh       | 0.9     |      |            |       |         |          |
| Movement               | WBL     | WBR  | NBT        | NBR   | SBL     | SBT      |
|                        | VVDL    |      |            | INDK  | SDL     |          |
| Lane Configurations    | _       | 74   | <b>↑</b> } | 7     | 4       | <b>^</b> |
| Traffic Vol, veh/h     | 5       | 74   | 542        | 7     | 1       | 597      |
| Future Vol, veh/h      | 5       | 74   | 542        | 7     | 1       | 597      |
| Conflicting Peds, #/hr | 0       | 0    | _ 0        | 100   | _ 0     | _ 0      |
| Sign Control           | Stop    | Stop | Free       | Free  | Free    | Free     |
| RT Channelized         | -       |      | -          | None  | -       | None     |
| Storage Length         | -       | 0    | -          | -     | -       | -        |
| Veh in Median Storage  |         | -    | 0          | -     | -       | 0        |
| Grade, %               | 0       | -    | 0          | -     | -       | 0        |
| Peak Hour Factor       | 90      | 90   | 90         | 90    | 90      | 90       |
| Heavy Vehicles, %      | 0       | 15   | 6          | 0     | 0       | 5        |
| Mvmt Flow              | 6       | 82   | 602        | 8     | 1       | 663      |
|                        |         |      |            |       |         |          |
| Major/Minor N          | /linor1 | N    | /lajor1    | , A   | /lajor2 |          |
|                        |         |      |            |       |         | ^        |
| Conflicting Flow All   | 1040    | 405  | 0          | 0     | 710     | 0        |
| Stage 1                | 706     | -    | -          | -     | -       | -        |
| Stage 2                | 334     | -    | -          | -     | -       | -        |
| Critical Hdwy          | 6.8     | 7.2  | -          | -     | 4.1     | -        |
| Critical Hdwy Stg 1    | 5.8     | -    | -          | -     | -       | -        |
| Critical Hdwy Stg 2    | 5.8     | -    | -          | -     | -       | -        |
| Follow-up Hdwy         | 3.5     | 3.45 | -          | -     | 2.2     | -        |
| Pot Cap-1 Maneuver     | 229     | 560  | -          | -     | 899     | -        |
| Stage 1                | 456     | -    | -          | -     | -       | -        |
| Stage 2                | 703     | -    | -          | -     | -       | -        |
| Platoon blocked, %     |         |      | -          | -     |         | _        |
| Mov Cap-1 Maneuver     | 205     | 501  | _          | _     | 803     | _        |
| Mov Cap-2 Maneuver     | 205     | -    | _          | _     | -       | _        |
| Stage 1                | 408     | _    | _          | _     | _       | _        |
| •                      | 702     | -    | -          | -     | _       | _        |
| Stage 2                | 102     | -    | -          | -     | -       | -        |
|                        |         |      |            |       |         |          |
| Approach               | WB      |      | NB         |       | SB      |          |
| HCM Control Delay, s/  | 13.59   |      | 0          |       | 0.02    |          |
| HCM LOS                | В       |      |            |       |         |          |
|                        |         |      |            |       |         |          |
|                        |         | NE   | NES        | VD1 4 | 0.51    | 05-      |
| Minor Lane/Major Mvm   | nt      | NBT  | NBRV       | VBLn1 | SBL     | SBT      |
| Capacity (veh/h)       |         | -    | -          | 501   | 803     | -        |
| HCM Lane V/C Ratio     |         | -    | -          | 0.164 |         | -        |
| HCM Control Delay (s/  | veh)    | -    | -          | 13.6  | 9.5     | -        |
| HCM Lane LOS           |         | -    | -          | В     | Α       | -        |
| HCM 95th %tile Q(veh   | )       | -    | -          | 0.6   | 0       | -        |
|                        |         |      |            |       |         |          |

| Intersection           |       |       |         |      |            |       |
|------------------------|-------|-------|---------|------|------------|-------|
| Int Delay, s/veh       | 4.7   |       |         |      |            |       |
|                        |       |       |         |      |            |       |
| Movement               | EBL   | EBT   | WBT     | WBR  | SBL        | SBR   |
| Lane Configurations    |       | - 4   | - 1≽    |      | - M        |       |
| Traffic Vol, veh/h     | 94    | 58    | 24      | 129  | 65         | 39    |
| Future Vol, veh/h      | 94    | 58    | 24      | 129  | 65         | 39    |
| Conflicting Peds, #/hr | 0     | 0     | 0       | 0    | 0          | 0     |
| •                      | Free  | Free  | Free    | Free | Stop       | Stop  |
| RT Channelized         | -     | None  | -       | None | -          | None  |
| Storage Length         | -     | -     | -       | -    | 0          | -     |
| Veh in Median Storage, | # -   | 0     | 0       | -    | 0          | -     |
| Grade, %               | -     | 0     | 0       | -    | 0          | _     |
| Peak Hour Factor       | 90    | 90    | 90      | 90   | 90         | 90    |
| Heavy Vehicles, %      | 2     | 2     | 2       | 2    | 2          | 2     |
| Mvmt Flow              | 104   | 64    | 27      | 143  | 72         | 43    |
| WINTER TOWN            | 104   | 07    | LI      | 170  | 12         | 70    |
|                        |       |       |         |      |            |       |
| Major/Minor Ma         | ajor1 | ١     | //ajor2 | ١    | /linor2    |       |
| Conflicting Flow All   | 170   | 0     | -       | 0    | 372        | 98    |
| Stage 1                | -     | -     | -       | -    | 98         | -     |
| Stage 2                | -     | -     | -       | -    | 273        | -     |
|                        | 4.12  | -     | -       | -    | 6.42       | 6.22  |
| Critical Hdwy Stg 1    | _     | _     | -       | _    | 5.42       | _     |
| Critical Hdwy Stg 2    | _     | _     | _       | _    | 5.42       | _     |
|                        | 2.218 | _     | _       | _    | 3.518      | 3 318 |
| Pot Cap-1 Maneuver     |       | _     | _       | _    | 629        | 958   |
| Stage 1                | - 107 | _     | _       | _    | 926        | -     |
| Stage 2                |       |       | _       | _    | 773        | _     |
| Platoon blocked, %     | _     | _     | _       | _    | 113        | _     |
|                        | 1407  |       |         |      | E01        | 958   |
| Mov Cap-1 Maneuver     |       | -     | -       | -    | 581        |       |
| Mov Cap-2 Maneuver     | -     | -     | -       | -    | 581        | -     |
| Stage 1                | -     | -     | -       | -    | 854        | -     |
| Stage 2                | -     | -     | -       | -    | 773        | -     |
|                        |       |       |         |      |            |       |
| Approach               | EB    |       | WB      |      | SB         |       |
| HCM Control Delay, s/v |       |       | 0       |      | 11.36      |       |
| HCM LOS                | 4.0   |       | U       |      | 11.30<br>B |       |
| HOWI LOS               |       |       |         |      | D          |       |
|                        |       |       |         |      |            |       |
| Minor Lane/Major Mvmt  | t     | EBL   | EBT     | WBT  | WBR        | SBLn1 |
| Capacity (veh/h)       |       | 1113  | _       | _    | _          | 681   |
| HCM Lane V/C Ratio     |       | 0.074 | _       | _    | _          | 0.17  |
| HCM Control Delay (s/v | ιeh)  | 7.8   | 0       | _    |            | 11.4  |
| HCM Lane LOS           | 511)  | Α.    | A       | _    | -          | В     |
| HCM 95th %tile Q(veh)  |       | 0.2   | -       | _    |            | 0.6   |
| HOW JOHN JOHNE Q(VEII) |       | 0.2   | _       | _    | _          | 0.0   |
|                        |       |       |         |      |            |       |

## 2028 Scenario

Saturday Peak Hour

1: Bank & Fifth 07/31/2024

| 1: Bank & Filth              | _             |          |           |           |            |             |       |       |
|------------------------------|---------------|----------|-----------|-----------|------------|-------------|-------|-------|
|                              | •             | -        | •         | +         | 1          | 1           | -     | ¥     |
| Lane Group                   | EBL           | EBT      | WBL       | WBT       | NBL        | NBT         | SBL   | SBT   |
| Lane Configurations          |               | 4        | ሻ         | <b>₽</b>  |            | <b>€1</b> } |       | 41∌   |
| Traffic Volume (vph)         | 45            | 40       | 72        | 44        | 21         | 466         | 20    | 515   |
| Future Volume (vph)          | 45            | 40       | 72        | 44        | 21         | 466         | 20    | 515   |
| Lane Group Flow (vph)        | 0             | 141      | 80        | 105       | 0          | 578         | 0     | 624   |
| Turn Type                    | Perm          | NA       | Perm      | NA        | Perm       | NA          | Perm  | NA    |
| Protected Phases             |               | 4        |           | 8         |            | 2           |       | 6     |
| Permitted Phases             | 4             |          | 8         |           | 2          |             | 6     |       |
| Minimum Split (s)            | 26.0          | 26.0     | 26.0      | 26.0      | 49.0       | 49.0        | 49.0  | 49.0  |
| Total Split (s)              | 26.0          | 26.0     | 26.0      | 26.0      | 49.0       | 49.0        | 49.0  | 49.0  |
| Total Split (%)              | 34.7%         | 34.7%    | 34.7%     | 34.7%     | 65.3%      | 65.3%       | 65.3% | 65.3% |
| Yellow Time (s)              | 3.0           | 3.0      | 3.0       | 3.0       | 3.0        | 3.0         | 3.0   | 3.0   |
| All-Red Time (s)             | 2.5           | 2.5      | 2.5       | 2.5       | 2.5        | 2.5         | 2.5   | 2.5   |
| Lost Time Adjust (s)         |               | 0.0      | 0.0       | 0.0       |            | 0.0         |       | 0.0   |
| Total Lost Time (s)          |               | 5.5      | 5.5       | 5.5       |            | 5.5         |       | 5.5   |
| Lead/Lag                     |               |          |           |           |            |             |       |       |
| Lead-Lag Optimize?           |               |          |           |           |            |             |       |       |
| Act Effct Green (s)          |               | 20.5     | 20.5      | 20.5      |            | 43.5        |       | 43.5  |
| Actuated g/C Ratio           |               | 0.27     | 0.27      | 0.27      |            | 0.58        |       | 0.58  |
| v/c Ratio                    |               | 0.39     | 0.28      | 0.25      |            | 0.36        |       | 0.38  |
| Control Delay (s/veh)        |               | 20.6     | 24.7      | 13.2      |            | 12.9        |       | 9.2   |
| Queue Delay                  |               | 0.0      | 0.0       | 0.0       |            | 0.0         |       | 0.0   |
| Total Delay (s/veh)          |               | 20.6     | 24.7      | 13.2      |            | 12.9        |       | 9.2   |
| LOS                          |               | С        | С         | В         |            | В           |       | Α     |
| Approach Delay (s/veh)       |               | 20.6     |           | 18.2      |            | 12.9        |       | 9.2   |
| Approach LOS                 |               | С        |           | В         |            | В           |       | Α     |
| Queue Length 50th (m)        |               | 12.1     | 8.9       | 5.2       |            | 19.9        |       | 22.2  |
| Queue Length 95th (m)        |               | 27.0     | 19.9      | 16.5      |            | 51.0        |       | 32.2  |
| Internal Link Dist (m)       |               | 49.7     |           | 112.4     |            | 195.6       |       | 190.0 |
| Turn Bay Length (m)          |               |          | 45.0      |           |            |             |       |       |
| Base Capacity (vph)          |               | 363      | 287       | 414       |            | 1589        |       | 1624  |
| Starvation Cap Reductn       |               | 0        | 0         | 0         |            | 0           |       | 0     |
| Spillback Cap Reductn        |               | 0        | 0         | 0         |            | 0           |       | 0     |
| Storage Cap Reductn          |               | 0        | 0         | 0         |            | 0           |       | 0     |
| Reduced v/c Ratio            |               | 0.39     | 0.28      | 0.25      |            | 0.36        |       | 0.38  |
| Intersection Summary         |               |          |           |           |            |             |       |       |
| Cycle Length: 75             |               |          |           |           |            |             |       |       |
| Actuated Cycle Length: 75    |               |          |           |           |            |             |       |       |
| Offset: 47 (63%), Reference  | ed to phas    | se 2:NBT | L and 6:5 | SBTL, Sta | art of Gre | en          |       |       |
| Natural Cycle: 75            |               |          |           |           |            |             |       |       |
| Control Type: Pretimed       |               |          |           |           |            |             |       |       |
| Maximum v/c Ratio: 0.39      |               |          |           |           |            |             |       |       |
| Intersection Signal Delay (  |               |          |           |           |            | on LOS: E   |       |       |
| Intersection Capacity Utiliz | ation 56.9    | %        |           | I         | CU Level   | of Service  | e B   |       |
| Analysis Period (min) 15     |               |          |           |           |            |             |       |       |
| Splits and Phases: 1: Ba     | ank & Fifth   |          |           |           |            |             |       |       |
|                              | מווג מ רוונוו |          |           |           |            |             | -     | •     |

 Spills and Phases:
 1: Bank & Filth

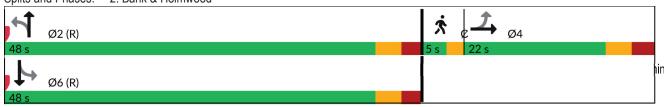
 ✓ Ø2 (R)
 ✓ Ø4

 49 s
 26 s

 ✓ Ø8
 ✓ Ø8

 49 s
 26 s

2: Bank & Holmwood 07/31/2024


|                             | <b>→</b>   | •        | †         | <b>\</b>  | <del> </del> |         |
|-----------------------------|------------|----------|-----------|-----------|--------------|---------|
| Lane Group                  | EBT        | NBL      | NBT       | SBL       | SBT          | Ø3      |
| Lane Configurations         | 4          |          | 414       |           | 414          |         |
| Traffic Volume (vph)        | 9          | 28       | 483       | 30        | 533          |         |
| Future Volume (vph)         | 9          | 28       | 483       | 30        | 533          |         |
| Lane Group Flow (vph)       | 110        | 0        | 617       | 0         | 651          |         |
| Turn Type                   | NA         | Perm     | NA        | Perm      | NA           |         |
| Protected Phases            | 4          |          | 2         | . 0       | 6            | 3       |
| Permitted Phases            | •          | 2        | _         | 6         |              | Ū       |
| Detector Phase              | 4          | 2        | 2         | 6         | 6            |         |
| Switch Phase                | •          | _        | _         | •         |              |         |
| Minimum Initial (s)         | 4.4        | 10.0     | 10.0      | 4.0       | 4.0          | 1.0     |
| Minimum Split (s)           | 22.0       | 48.0     | 48.0      | 48.0      | 48.0         | 5.0     |
| Total Split (s)             | 22.0       | 48.0     | 48.0      | 48.0      | 48.0         | 5.0     |
| Total Split (%)             | 29.3%      | 64.0%    | 64.0%     | 64.0%     | 64.0%        | 7%      |
| Yellow Time (s)             | 3.0        | 3.0      | 3.0       | 3.0       | 3.0          | 2.0     |
| All-Red Time (s)            | 2.6        | 2.2      | 2.2       | 2.2       | 2.2          | 0.0     |
| Lost Time Adjust (s)        | 0.0        | 2.2      | 0.0       | 2.2       | 0.0          | 0.0     |
| Total Lost Time (s)         | 5.6        |          | 5.2       |           | 5.2          |         |
| Lead/Lag                    | Lag        |          | 0.2       |           | 0.2          | Lead    |
| Lead-Lag Optimize?          | Lug        |          |           |           |              | Load    |
| Recall Mode                 | None       | C-Max    | C-Max     | C-Max     | C-Max        | None    |
| Act Effct Green (s)         | 11.6       | O Max    | 56.1      | O Max     | 56.1         | 1 10110 |
| Actuated g/C Ratio          | 0.15       |          | 0.75      |           | 0.75         |         |
| v/c Ratio                   | 0.15       |          | 0.73      |           | 0.73         |         |
| Control Delay (s/veh)       | 38.8       |          | 2.3       |           | 3.9          |         |
| Queue Delay                 | 0.0        |          | 0.0       |           | 0.0          |         |
| Total Delay (s/veh)         | 38.8       |          | 2.3       |           | 3.9          |         |
| LOS                         | D          |          | 2.5<br>A  |           | 3.9<br>A     |         |
| Approach Delay (s/veh)      | 38.8       |          | 2.3       |           | 3.9          |         |
| Approach LOS                | D          |          | 2.5<br>A  |           | 3.9<br>A     |         |
| Queue Length 50th (m)       | 14.6       |          | 3.8       |           | 6.9          |         |
| Queue Length 95th (m)       | 27.2       |          | 9.0       |           | 22.0         |         |
| Internal Link Dist (m)      | 39.8       |          | 31.5      |           | 195.6        |         |
| Turn Bay Length (m)         | 00.0       |          | 01.0      |           | 133.0        |         |
| Base Capacity (vph)         | 284        |          | 1968      |           | 2031         |         |
| Starvation Cap Reductn      | 0          |          | 0         |           | 0            |         |
| Spillback Cap Reductn       | 0          |          | 0         |           | 0            |         |
| Storage Cap Reductn         | 0          |          | 0         |           | 0            |         |
| Reduced v/c Ratio           | 0.39       |          | 0.31      |           | 0.32         |         |
|                             | 5.00       |          | 0.01      |           | 0.02         |         |
| Intersection Summary        |            |          |           |           |              |         |
| Cycle Length: 75            |            |          |           |           |              |         |
| Actuated Cycle Length: 75   |            |          |           |           |              |         |
| Offset: 74 (99%), Reference | ed to phas | se 2:NBT | L and 6:8 | SBTL, Sta | art of Gree  | en      |
| Natural Cycle: 75           |            |          |           |           |              |         |
| Control Type: Actuated-Cod  | ordinated  |          |           |           |              |         |

Maximum v/c Ratio: 0.55

Intersection Signal Delay (s/veh): 6.0 Intersection LOS: A Intersection Capacity Utilization 63.9% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: Bank & Holmwood



ling, 2028 Back

| O. Darik & Exhibition                 | <b>*</b> | 4         | †          | <b>\</b>   | <b>+</b> |        |        |  |
|---------------------------------------|----------|-----------|------------|------------|----------|--------|--------|--|
| Lane Group                            | WBL      | WBR       | NBT        | SBL        | SBT      | Ø1     | Ø7     |  |
| Lane Configurations                   | ሻ        | 7         | <b>ተ</b> ኈ | ሻ          | <b>^</b> |        |        |  |
| Traffic Volume (vph)                  | 75       | 59        | 444        | 104        | 474      |        |        |  |
| Future Volume (vph)                   | 75       | 59        | 444        | 104        | 474      |        |        |  |
| Lane Group Flow (vph)                 | 83       | 66        | 603        | 116        | 527      |        |        |  |
| Turn Type                             | Prot     | Perm      | NA         | Perm       | NA       |        |        |  |
| Protected Phases                      | 8        |           | 2          |            | 6        | 1      | 7      |  |
| Permitted Phases                      |          | 8         |            | 6          |          |        |        |  |
| Detector Phase                        | 8        | 8         | 2          | 6          | 6        |        |        |  |
| Switch Phase                          |          |           |            |            |          |        |        |  |
| Minimum Initial (s)                   | 10.0     | 10.0      | 10.0       | 10.0       | 10.0     | 1.0    | 1.0    |  |
| Minimum Split (s)                     | 26.0     | 26.0      | 39.0       | 44.0       | 44.0     | 5.0    | 5.0    |  |
| Total Split (s)                       | 26.0     | 26.0      | 39.0       | 44.0       | 44.0     | 5.0    | 5.0    |  |
| Total Split (%)                       | 34.7%    | 34.7%     | 52.0%      | 58.7%      | 58.7%    | 7%     | 7%     |  |
| Yellow Time (s)                       | 3.3      | 3.3       | 3.0        | 3.0        | 3.0      | 2.0    | 3.5    |  |
| All-Red Time (s)                      | 3.0      | 3.0       | 3.9        | 3.9        | 3.9      | 0.0    | 0.0    |  |
| Lost Time Adjust (s)                  | 0.0      | 0.0       | 0.0        | 0.0        | 0.0      | 0.0    | 0.0    |  |
| Total Lost Time (s)                   | 6.3      | 6.3       | 6.9        | 6.9        | 6.9      |        |        |  |
| _ead/Lag                              | Lag      | Lag       | Lag        | 0.0        | 0.0      | Lead   | Lead   |  |
| _ead-Lag Optimize?                    | Lag      | Lag       | Yes        |            |          | Yes    | Yes    |  |
| Recall Mode                           | None     | None      | C-Max      | C-Max      | C-Max    | None   | None   |  |
| Act Effct Green (s)                   | 10.8     | 10.8      | 55.6       | 55.6       | 55.6     | 110110 | 110110 |  |
| Actuated g/C Ratio                    | 0.14     | 0.14      | 0.74       | 0.74       | 0.74     |        |        |  |
| /c Ratio                              | 0.37     | 0.31      | 0.29       | 0.25       | 0.23     |        |        |  |
| Control Delay (s/veh)                 | 33.9     | 12.0      | 4.6        | 4.1        | 2.7      |        |        |  |
| Queue Delay                           | 0.0      | 0.0       | 0.0        | 0.0        | 0.0      |        |        |  |
| Fotal Delay (s/veh)                   | 33.9     | 12.0      | 4.6        | 4.1        | 2.7      |        |        |  |
| OS                                    | C        | В         | Α.         | A          | Α        |        |        |  |
| Approach Delay (s/veh)                | 24.2     |           | 4.6        |            | 3.0      |        |        |  |
| Approach LOS                          | C C      |           | Α.         |            | Α        |        |        |  |
| Queue Length 50th (m)                 | 10.9     | 0.0       | 13.3       | 2.7        | 6.2      |        |        |  |
| Queue Length 95th (m)                 | 22.2     | 9.7       | 23.3       | 5.5        | 9.5      |        |        |  |
| Internal Link Dist (m)                | 30.6     | 5.1       | 33.7       | 0.0        | 44.8     |        |        |  |
| Turn Bay Length (m)                   | 50.0     |           | 00.1       | 40.0       | тт.0     |        |        |  |
| Base Capacity (vph)                   | 405      | 338       | 2092       | 456        | 2330     |        |        |  |
| Starvation Cap Reductn                | 0        | 0         | 0          | 0          | 0        |        |        |  |
| Spillback Cap Reductn                 | 0        | 0         | 0          | 0          | 0        |        |        |  |
| Storage Cap Reductn                   | 0        | 0         | 0          | 0          | 0        |        |        |  |
| Reduced v/c Ratio                     | 0.20     | 0.20      | 0.29       | 0.25       | 0.23     |        |        |  |
|                                       | 0.20     | 0.20      | 0.23       | 0.23       | 0.23     |        |        |  |
| Intersection Summary Cycle Length: 75 |          |           |            |            |          |        |        |  |
| Actuated Cycle Length: 75             |          |           |            |            |          |        |        |  |
| Offset: 0 (0%), Referenced t          | n nhasa  | 2·NRT ar  | nd 6.SRT   | Start      | f Green  |        |        |  |
| Natural Cycle: 75                     | o priase | ב.ואטו מו | IU 0.0D11  | L, Glait U | Olecii   |        |        |  |
| Control Type: Astroted Con            |          |           |            |            |          |        |        |  |

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.37

Intersection LOS: A Intersection Signal Delay (s/veh): 5.9 Intersection Capacity Utilization 58.5% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition



hing, 2028 Bacl

## 6: Bank & Aylmer

|                               | ۶                 | •        | <b>†</b>  | Ţ           |                     |     |
|-------------------------------|-------------------|----------|-----------|-------------|---------------------|-----|
| Lane Group                    | EBL               | NBL      | NBT       | SBT         | Ø3                  |     |
| Lane Configurations           | W                 |          | 414       | <b>∱</b> %  |                     |     |
| Traffic Volume (vph)          | 38                | 18       | 667       | 705         |                     |     |
| Future Volume (vph)           | 38                | 18       | 667       | 705         |                     |     |
| Lane Group Flow (vph)         | 54                | 0        | 761       | 850         |                     |     |
| Turn Type                     | Prot              | Perm     | NA        | NA          |                     |     |
| Protected Phases              | 4                 |          | 2         | 6           | 3                   |     |
| Permitted Phases              | 4                 | 2        |           | 6           |                     |     |
| Detector Phase                | 4                 | 2        | 2         | 6           |                     |     |
| Switch Phase                  |                   |          |           |             |                     |     |
| Minimum Initial (s)           | 10.0              | 30.0     | 30.0      | 30.0        | 1.0                 |     |
| Minimum Split (s)             | 22.0              | 63.0     | 63.0      | 63.0        | 5.0                 |     |
| Total Split (s)               | 22.0              | 63.0     | 63.0      | 63.0        | 5.0                 |     |
| Total Split (%)               | 24.4%             | 70.0%    | 70.0%     | 70.0%       | 6%                  |     |
| Yellow Time (s)               | 3.3               | 3.0      | 3.0       | 3.0         | 2.0                 |     |
| All-Red Time (s)              | 2.2               | 2.2      | 2.2       | 2.2         | 1.0                 |     |
| Lost Time Adjust (s)          | 0.0               |          | 0.0       | 0.0         |                     |     |
| Total Lost Time (s)           | 5.5               |          | 5.2       | 5.2         |                     |     |
| Lead/Lag                      | Lag               |          | 0.2       | 0.2         | Lead                |     |
| Lead-Lag Optimize?            | Lug               |          |           |             | Loud                |     |
| Recall Mode                   | Ped               | C-Max    | C-Max     | C-Max       | Max                 |     |
| Act Effct Green (s)           | 14.0              | O-IVIAX  | 60.3      | 60.3        | IVICA               |     |
| Actuated g/C Ratio            | 0.16              |          | 0.67      | 0.67        |                     |     |
| v/c Ratio                     | 0.10              |          | 0.39      | 0.42        |                     |     |
| Control Delay (s/veh)         | 30.2              |          | 5.8       | 7.4         |                     |     |
| Queue Delay                   | 0.0               |          | 0.0       | 0.0         |                     |     |
| Total Delay (s/veh)           | 30.2              |          | 5.8       | 7.4         |                     |     |
| LOS                           | C                 |          | A         | A           |                     |     |
| Approach Delay (s/veh)        | 30.2              |          | 5.8       | 7.4         |                     |     |
| Approach LOS                  | C                 |          | A         | Α           |                     |     |
| Queue Length 50th (m)         | 6.4               |          | 14.8      | 30.3        |                     |     |
| Queue Length 95th (m)         | 16.7              |          | 28.2      | 41.0        |                     |     |
| Internal Link Dist (m)        | 76.7              |          | 28.1      | 10.1        |                     |     |
| Turn Bay Length (m)           |                   |          |           |             |                     |     |
| Base Capacity (vph)           | 276               |          | 1934      | 2003        |                     |     |
| Starvation Cap Reductn        | 0                 |          | 0         | 0           |                     |     |
| Spillback Cap Reductn         | 0                 |          | 0         | 0           |                     |     |
| Storage Cap Reductn           | 0                 |          | 0         | 0           |                     |     |
| Reduced v/c Ratio             | 0.20              |          | 0.39      | 0.42        |                     |     |
| Intersection Summary          |                   |          |           |             |                     |     |
| Cycle Length: 90              |                   |          |           |             |                     |     |
| Actuated Cycle Length: 90     |                   |          |           |             |                     |     |
| Offset: 87 (97%), Reference   | ed to phas        | se 2·NRT | l and 6.9 | SBT Start   | of Green            |     |
| Natural Cycle: 90             | ou to pride       | 2 E.HUT  | _ and o.c | Jo I, Olaii | 0.0001              |     |
| Control Type: Actuated-Coo    | ordinated         |          |           |             |                     |     |
| Maximum v/c Ratio: 0.42       | orumateu          |          |           |             |                     |     |
| Intersection Signal Delay (s  | s/veh)· 7.4       |          |           | lr          | ntersection LOS: A  |     |
| Intersection Capacity Utiliza |                   |          |           |             | CU Level of Service | Δ   |
| Analysis Period (min) 15      | ฉแบบ ออ. <i>โ</i> | /0       |           | 10          | DO LEVEL OF SELVICE | · ^ |
| Analysis i Gilou (IIIIII) 15  |                   |          |           |             |                     |     |

Splits and Phases: 6: Bank & Aylmer



ing, 2028 Bacl

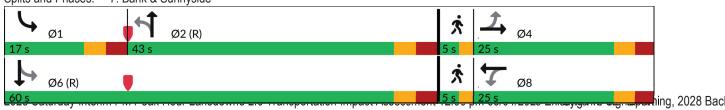
|                        | *     | <b>→</b> | •     | •     |       | <b>†</b> | -     | <b>↓</b> |      |      |  |
|------------------------|-------|----------|-------|-------|-------|----------|-------|----------|------|------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL   | SBT      | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4        |       | - 4   |       | 4T»      |       | €ि       |      |      |  |
| Traffic Volume (vph)   | 41    | 37       | 20    | 57    | 29    | 481      | 82    | 537      |      |      |  |
| Future Volume (vph)    | 41    | 37       | 20    | 57    | 29    | 481      | 82    | 537      |      |      |  |
| Lane Group Flow (vph)  | 0     | 135      | 0     | 195   | 0     | 602      | 0     | 749      |      |      |  |
| Turn Type              | Perm  | NA       | Perm  | NA    | Perm  | NA       | pm+pt | NA       |      |      |  |
| Protected Phases       |       | 4        |       | 8     |       | 2        | 1     | 6        | 3    | 7    |  |
| Permitted Phases       | 4     |          | 8     |       | 2     |          | 6     |          |      |      |  |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0     | 17.0  | 60.0     | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8% | 47.8% | 47.8%    | 18.9% | 66.7%    | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0      | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6   | 3.0   | 3.0      | 2.9   | 3.0      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0   |       | 0.0      |       | 0.0      |      |      |  |
| Total Lost Time (s)    |       | 5.6      |       | 5.6   |       | 6.0      |       | 6.0      |      |      |  |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag   | Lag   | Lag      | Lead  |          | Lead | Lead |  |
| Lead-Lag Optimize?     |       |          | Yes   | Yes   | Yes   | Yes      | Yes   |          |      | Yes  |  |
| Act Effct Green (s)    |       | 19.4     |       | 19.4  |       | 37.0     |       | 54.0     |      |      |  |
| Actuated g/C Ratio     |       | 0.22     |       | 0.22  |       | 0.41     |       | 0.60     |      |      |  |
| v/c Ratio              |       | 0.59     |       | 0.63  |       | 0.55     |       | 0.53     |      |      |  |
| Control Delay (s/veh)  |       | 43.8     |       | 31.3  |       | 22.1     |       | 4.6      |      |      |  |
| Queue Delay            |       | 0.0      |       | 0.0   |       | 0.0      |       | 0.0      |      |      |  |
| Total Delay (s/veh)    |       | 43.8     |       | 31.3  |       | 22.1     |       | 4.6      |      |      |  |
| LOS                    |       | D        |       | С     |       | С        |       | Α        |      |      |  |
| Approach Delay (s/veh) |       | 43.8     |       | 31.3  |       | 22.1     |       | 4.6      |      |      |  |
| Approach LOS           |       | D        |       | С     |       | С        |       | Α        |      |      |  |
| Queue Length 50th (m)  |       | 21.1     |       | 20.0  |       | 39.8     |       | 7.7      |      |      |  |
| Queue Length 95th (m)  |       | #40.4    |       | 42.9  |       | 55.8     |       | 9.7      |      |      |  |
| Internal Link Dist (m) |       | 75.1     |       | 136.0 |       | 63.1     |       | 79.0     |      |      |  |
| Turn Bay Length (m)    |       |          |       |       |       |          |       |          |      |      |  |
| Base Capacity (vph)    |       | 228      |       | 308   |       | 1103     |       | 1425     |      |      |  |
| Starvation Cap Reductn |       | 0        |       | 0     |       | 0        |       | 0        |      |      |  |
| Spillback Cap Reductn  |       | 0        |       | 0     |       | 0        |       | 0        |      |      |  |
| Storage Cap Reductn    |       | 0        |       | 0     |       | 0        |       | 0        |      |      |  |
| Reduced v/c Ratio      |       | 0.59     |       | 0.63  |       | 0.55     |       | 0.53     |      |      |  |

#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.63

Intersection Signal Delay (s/veh): 17.1 Intersection LOS: B
Intersection Capacity Utilization 71.0% ICU Level of Service C

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 7: Bank & Sunnyside



Page 5

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

|                              | ۶           | •         | <u></u>    | Ţ           |                |             |   |                 |  |
|------------------------------|-------------|-----------|------------|-------------|----------------|-------------|---|-----------------|--|
| Lane Group                   | EBL         | NBL       | NBT        | SBT         | Ø4             |             |   |                 |  |
| Lane Configurations          | ¥,#         |           | 4          | 1>          |                |             |   |                 |  |
| Traffic Volume (vph)         | 54          | 52        | 248        | 358         |                |             |   |                 |  |
| Future Volume (vph)          | 54          | 52        | 248        | 358         |                |             |   |                 |  |
| Lane Group Flow (vph)        | 113         | 0         | 334        | 456         |                |             |   |                 |  |
| Turn Type                    | Prot        | Perm      | NA         | NA          |                |             |   |                 |  |
| Protected Phases             | 10          | I GIIII   | 2          | 6           | 4              |             |   |                 |  |
| Permitted Phases             | 10          | 2         | 2          | U           | 7              |             |   |                 |  |
| Minimum Split (s)            | 21.0        | 48.0      | 48.0       | 48.0        | 11.0           |             |   |                 |  |
| Total Split (s)              | 21.0        | 48.0      | 48.0       | 48.0        | 11.0           |             |   |                 |  |
| Total Split (%)              | 26.3%       | 60.0%     | 60.0%      | 60.0%       | 14%            |             |   |                 |  |
| Yellow Time (s)              | 3.0         | 3.0       | 3.0        | 3.0         | 3.0            |             |   |                 |  |
| All-Red Time (s)             | 2.7         | 3.8       | 3.8        | 3.8         | 2.7            |             |   |                 |  |
| Lost Time Adjust (s)         | 0.0         | 5.0       | 0.0        | 0.0         | 2.1            |             |   |                 |  |
| Total Lost Time (s)          | 5.7         |           | 6.8        | 6.8         |                |             |   |                 |  |
| Lead/Lag                     | 5.7         |           | 0.0        | 0.0         |                |             |   |                 |  |
|                              |             |           |            |             |                |             |   |                 |  |
| Lead-Lag Optimize?           | 15.3        |           | 41.2       | 41.2        |                |             |   |                 |  |
| Act Effct Green (s)          | 0.19        |           | 0.52       | 0.52        |                |             |   |                 |  |
| Actuated g/C Ratio v/c Ratio |             |           |            |             |                |             |   |                 |  |
|                              | 0.38        |           | 0.45       | 0.53        |                |             |   |                 |  |
| Control Delay (s/veh)        | 0.0         |           | 14.6       | 15.9<br>0.0 |                |             |   |                 |  |
| Queue Delay                  | 32.7        |           | 0.0        | 15.9        |                |             |   |                 |  |
| Total Delay (s/veh)<br>LOS   | 32.7<br>C   |           | 14.6       | 15.9<br>B   |                |             |   |                 |  |
|                              |             |           | 14.G       |             |                |             |   |                 |  |
| Approach Delay (s/veh)       | 32.7        |           | 14.6       | 15.9<br>B   |                |             |   |                 |  |
| Approach LOS                 | C           |           | В          |             |                |             |   |                 |  |
| Queue Length 50th (m)        | 15.1        |           | 30.0       | 43.6        |                |             |   |                 |  |
| Queue Length 95th (m)        | 29.7        |           | 49.9       | 69.1        |                |             |   |                 |  |
| Internal Link Dist (m)       | 57.2        |           | 0.1        | 5.9         |                |             |   |                 |  |
| Turn Bay Length (m)          | 294         |           | 748        | 853         |                |             |   |                 |  |
| Base Capacity (vph)          |             |           |            | 000         |                |             |   |                 |  |
| Starvation Cap Reductn       | 0           |           | 0          |             |                |             |   |                 |  |
| Spillback Cap Reductn        | 0           |           | 0          | 0           |                |             |   |                 |  |
| Storage Cap Reductn          | 0           |           | 0 45       | 0.53        |                |             |   |                 |  |
| Reduced v/c Ratio            | 0.38        |           | 0.45       | 0.53        |                |             |   |                 |  |
| Intersection Summary         |             |           |            |             |                |             |   |                 |  |
| Cycle Length: 80             |             |           |            |             |                |             |   |                 |  |
| Actuated Cycle Length: 80    |             |           |            |             |                |             |   |                 |  |
| Offset: 0 (0%), Referenced   |             | 6:SBT, S  | tart of Gr | een         |                |             |   |                 |  |
| Natural Cycle: 80            | •           | ,         |            |             |                |             |   |                 |  |
| Control Type: Pretimed       |             |           |            |             |                |             |   |                 |  |
| Maximum v/c Ratio: 0.53      |             |           |            |             |                |             |   |                 |  |
| Intersection Signal Delay (  | s/veh): 17. | 5         |            | In          | tersection LOS | S: B        |   |                 |  |
| Intersection Capacity Utiliz |             |           |            |             | U Level of Sei |             |   |                 |  |
| Analysis Period (min) 15     |             |           |            |             |                |             |   |                 |  |
|                              | ueen Eliza  | beth Driv | e & Fifth  |             |                |             |   |                 |  |
| 4                            |             |           |            |             |                | 1 .         |   | I +             |  |
| Ø2                           |             |           |            |             |                | <b>ਨ</b> Ø2 | 1 | Ø <sub>10</sub> |  |
| 40.5                         |             |           |            |             |                | 115         |   | 215             |  |
| Ø6 (R)                       |             |           |            |             |                |             |   |                 |  |
| 48 s                         |             |           |            |             |                |             |   | I               |  |

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 8    |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h        | 40   | 48   | 0    | 0    | 0    | 93   | 58   | 39   | 36   | 0    | 0    | 104  |
| Future Vol, veh/h         | 40   | 48   | 0    | 0    | 0    | 93   | 58   | 39   | 36   | 0    | 0    | 104  |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                 | 44   | 53   | 0    | 0    | 0    | 103  | 64   | 43   | 40   | 0    | 0    | 116  |
| Number of Lanes           | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |

| Approach                   | EB  | WB  | NB  | SB  |
|----------------------------|-----|-----|-----|-----|
| Opposing Approach          | WB  | EB  | SB  | NB  |
| Opposing Lanes             | 1   | 1   | 1   | 1   |
| Conflicting Approach Left  | SB  | NB  | EB  | WB  |
| Conflicting Lanes Left     | 1   | 1   | 1   | 1   |
| Conflicting Approach Right | NB  | SB  | WB  | EB  |
| Conflicting Lanes Right    | 1   | 1   | 1   | 1   |
| HCM Control Delay, s/veh   | 8.4 | 7.6 | 8.4 | 7.5 |
| HCM LOS                    | Α   | A   | Α   | A   |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 45%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 55%   | 0%    | 0%    |  |
| Vol Right, %             | 27%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 133   | 88    | 93    | 104   |  |
| LT Vol                   | 58    | 40    | 0     | 0     |  |
| Through Vol              | 39    | 48    | 0     | 0     |  |
| RT Vol                   | 36    | 0     | 93    | 104   |  |
| Lane Flow Rate           | 148   | 98    | 103   | 116   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.182 | 0.128 | 0.115 | 0.127 |  |
| Departure Headway (Hd)   | 4.425 | 4.704 | 4.022 | 3.949 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 811   | 763   | 891   | 908   |  |
| Service Time             | 2.446 | 2.729 | 2.047 | 1.97  |  |
| HCM Lane V/C Ratio       | 0.182 | 0.128 | 0.116 | 0.128 |  |
| HCM Control Delay, s/veh | 8.4   | 8.4   | 7.6   | 7.5   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.7   | 0.4   | 0.4   | 0.4   |  |

1.1

0.7

0

| letere etier               |      |              |              |              |      |      |
|----------------------------|------|--------------|--------------|--------------|------|------|
| Intersection               | 0.4  |              |              |              |      |      |
| Intersection Delay, s/veh  | 8.4  |              |              |              |      |      |
| Intersection LOS           | Α    |              |              |              |      |      |
|                            |      |              |              |              |      |      |
| Movement                   | EBL  | EBT          | WBT          | WBR          | SBL  | SBR  |
| Lane Configurations        |      | 4            | f)           |              | W    |      |
| Traffic Vol, veh/h         | 5    | 205          | 137          | 5            | 5    | 5    |
| Future Vol, veh/h          | 5    | 205          | 137          | 5            | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90         | 0.90         | 0.90         | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2            | 2            | 2            | 2    | 2    |
| Mvmt Flow                  | 6    | 228          | 152          | 6            | 6    | 6    |
| Number of Lanes            | 0    | 1            | 1            | 0            | 1    | 0    |
| Approach                   | EB   |              | WB           |              | SB   |      |
| Opposing Approach          | WB   |              | EB           |              |      |      |
| Opposing Lanes             | 1    |              | 1            |              | 0    |      |
| Conflicting Approach Left  | SB   |              |              |              | WB   |      |
| Conflicting Lanes Left     | 1    |              | 0            |              | 1    |      |
| Conflicting Approach Right |      |              | SB           |              | EB   |      |
| Conflicting Lanes Right    | 0    |              | 1            |              | 1    |      |
| HCM Control Delay, s/veh   | 8.6  |              | 8.1          |              | 7.6  |      |
| HCM LOS                    | Α    |              | Α            |              | Α    |      |
|                            |      |              |              |              |      |      |
| Lane                       |      | EBLn1        | WBLn1        | SBLn1        |      |      |
| Vol Left, %                |      | 2%           | 0%           | 50%          |      |      |
| Vol Thru, %                |      | 98%          | 96%          | 0%           |      |      |
| Vol Right, %               |      | 0%           | 4%           | 50%          |      |      |
| Sign Control               |      | Stop         | Stop         | Stop         |      |      |
| Traffic Vol by Lane        |      | 210          | 142          | 10           |      |      |
| LT Vol                     |      | 5            | 0            | 5            |      |      |
| Through Vol                |      | 205          | 137          | 0            |      |      |
| RT Vol                     |      | 0            | 5            | 5            |      |      |
| Lane Flow Rate             |      | 233          | 158          | 11           |      |      |
| Geometry Grp               |      | 1            | 1            | 1            |      |      |
| Degree of Util (X)         |      | 0.264        | 0.18         | 0.014        |      |      |
| Departure Headway (Hd)     |      | 4.076        | 4.106        | 4.568        |      |      |
|                            |      | Yes          | Yes          | Yes          |      |      |
| Convergence, Y/N           |      | 103          |              |              |      |      |
| Convergence, Y/N Cap       |      | 877          |              | 788          |      |      |
| Cap Service Time           |      |              | 868<br>2.162 | 788<br>2.568 |      |      |
| Сар                        |      | 877          | 868          |              |      |      |
| Cap<br>Service Time        |      | 877<br>2.117 | 868<br>2.162 | 2.568        |      |      |

| Intersection               |       |              |              |              |      |      |
|----------------------------|-------|--------------|--------------|--------------|------|------|
| Intersection Delay, s/veh  | 7.3   |              |              |              |      |      |
| Intersection LOS           | Α     |              |              |              |      |      |
|                            |       |              |              |              |      |      |
| M                          | EDT   | EDD          | WDI          | WDT          | NDI  | NDD  |
| Movement                   | EBT   | EBR          | WBL          | WBT          | NBL  | NBR  |
| Lane Configurations        | ĵ»    | _            | _            | र्स          | W    |      |
| Traffic Vol, veh/h         | 15    | 5            | 5            | 72           | 5    | 5    |
| Future Vol, veh/h          | 15    | 5            | 5            | 72           | 5    | 5    |
| Peak Hour Factor           | 0.90  | 0.90         | 0.90         | 0.90         | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2     | 2            | 2            | 2            | 2    | 2    |
| Mvmt Flow                  | 17    | 6            | 6            | 80           | 6    | 6    |
| Number of Lanes            | 1     | 0            | 0            | 1            | 1    | 0    |
| Approach                   | EB    |              | WB           |              | NB   |      |
| Opposing Approach          | WB    |              | EB           |              |      |      |
| Opposing Lanes             | 1     |              | 1            |              | 0    |      |
| Conflicting Approach Left  |       |              | NB           |              | EB   |      |
| Conflicting Lanes Left     | 0     |              | 1            |              | 1    |      |
| Conflicting Approach Right | NB    |              |              |              | WB   |      |
| Conflicting Lanes Right    | 1     |              | 0            |              | 1    |      |
| HCM Control Delay, s/veh   | 7     |              | 7.4          |              | 7    |      |
| HCM LOS                    | A     |              | Α.Τ          |              | A    |      |
| HOM EOO                    | - / \ |              |              |              |      |      |
| Long                       |       | NDI 1        | EDL-4        | M/DL1        |      |      |
| Lane                       |       | NBLn1        | EBLn1        | WBLn1        |      |      |
| Vol Left, %                |       | 50%          | 0%           | 6%           |      |      |
| Vol Thru, %                |       | 0%           | 75%          | 94%          |      |      |
| Vol Right, %               |       | 50%          | 25%          | 0%           |      |      |
| Sign Control               |       | Stop         | Stop         | Stop         |      |      |
| Traffic Vol by Lane        |       | 10           | 20           | 77           |      |      |
| LT Vol                     |       | 5            | 0            | 5            |      |      |
| Through Vol                |       | 0            | 15           | 72           |      |      |
| RT Vol                     |       | 5            | 5            | 0            |      |      |
| Lane Flow Rate             |       | 11           | 22           | 86           |      |      |
| Geometry Grp               |       | 1            | 1            | 1            |      |      |
| Degree of Util (X)         |       | 0.012        | 0.024        | 0.095        |      |      |
| Departure Headway (Hd)     |       | 3.92         | 3.867        | 3.983        |      |      |
| Convergence, Y/N           |       | Yes          | Yes          | Yes          |      |      |
|                            |       | . 00         |              |              |      |      |
| Cap                        |       | 908          |              | 903          |      |      |
| Cap<br>Service Time        |       |              | 926          | 903<br>1.991 |      |      |
| Service Time               |       | 908<br>1.965 | 926<br>1.887 | 1.991        |      |      |
|                            |       | 908          | 926          |              |      |      |

0.1

1.5

0.1

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 9    |       |       |       |      |      |
| Intersection LOS           | A    |       |       |       |      |      |
| into location 200          | 71   |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | ₽    |       |       | ની    | W    |      |
| Traffic Vol, veh/h         | 15   | 5     | 86    | 5     | 155  | 106  |
| Future Vol, veh/h          | 15   | 5     | 86    | 5     | 155  | 106  |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 17   | 6     | 96    | 6     | 172  | 118  |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Annragah                   | ED   |       | MD    |       | ND   |      |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.7  |       | 8.6   |       | 9.2  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 59%   | 0%    | 95%   |      |      |
| Vol Thru, %                |      | 0%    | 75%   | 5%    |      |      |
| Vol Right, %               |      | 41%   | 25%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 261   | 20    | 91    |      |      |
| LT Vol                     |      | 155   | 0     | 86    |      |      |
|                            |      | 155   | 15    | 5     |      |      |
| Through Vol<br>RT Vol      |      |       | 5     | 0     |      |      |
|                            |      | 106   |       |       |      |      |
| Lane Flow Rate             |      | 290   | 22    | 101   |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.332 | 0.028 | 0.135 |      |      |
| Departure Headway (Hd)     |      | 4.125 | 4.549 | 4.79  |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 876   | 788   | 750   |      |      |
| Service Time               |      | 2.125 | 2.569 | 2.807 |      |      |
| HCM Lane V/C Ratio         |      | 0.331 | 0.028 | 0.135 |      |      |
| HCM Control Delay, s/veh   |      | 9.2   | 7.7   | 8.6   |      |      |
| HCM Lane LOS               |      | Α     | Α     | Α     |      |      |

| Int Delay, s/veh  Movement  Lane Configurations  Traffic Vol, veh/h  Future Vol, veh/h  Conflicting Peds, #/r  Sign Control  RT Channelized |           | EBR     | NBL    |                |            |      |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|----------------|------------|------|
| Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control                                        |           |         | NRI    |                |            |      |
| Lane Configurations<br>Traffic Vol, veh/h<br>Future Vol, veh/h<br>Conflicting Peds, #/h<br>Sign Control                                     |           |         |        | NBT            | SBT        | SBR  |
| Traffic Vol, veh/h<br>Future Vol, veh/h<br>Conflicting Peds, #/h<br>Sign Control                                                            |           | 7       | INDL   | 44             | <u>361</u> | ODIN |
| Future Vol, veh/h<br>Conflicting Peds, #/h<br>Sign Control                                                                                  | •         | 177     | 116    | <b>4 T</b> 557 | 513        | 55   |
| Conflicting Peds, #/h<br>Sign Control                                                                                                       | 3         |         | 116    |                | 513        | 55   |
| Sign Control                                                                                                                                |           | 177     |        | 557            |            |      |
|                                                                                                                                             |           | 0       | 178    | 0              | 0          | 107  |
| RT Channelized                                                                                                                              | Stop      | Stop    | Free   | Free           | Free       | Free |
|                                                                                                                                             | -         |         | -      | None           | -          | None |
| Storage Length                                                                                                                              | -         | 0       | -      | -              | -          | -    |
| Veh in Median Stora                                                                                                                         | ge, # 0   | -       | -      | 0              | 0          | -    |
| Grade, %                                                                                                                                    | 0         | -       | -      | 0              | 0          | -    |
| Peak Hour Factor                                                                                                                            | 90        | 90      | 90     | 90             | 90         | 90   |
| Heavy Vehicles, %                                                                                                                           | 5         | 5       | 5      | 5              | 5          | 5    |
| Mvmt Flow                                                                                                                                   | 3         | 197     | 129    | 619            | 570        | 61   |
|                                                                                                                                             |           |         |        |                |            |      |
|                                                                                                                                             |           |         |        | -              |            |      |
| Major/Minor                                                                                                                                 | Minor2    |         | Major1 |                | /lajor2    |      |
| Conflicting Flow All                                                                                                                        | 1346      | 779     | 809    | 0              | -          | 0    |
| Stage 1                                                                                                                                     | 779       | -       | -      | -              | -          | -    |
| Stage 2                                                                                                                                     | 567       | -       | -      | -              | -          | -    |
| Critical Hdwy                                                                                                                               | 6.675     | 6.275   | 4.175  | -              | -          | -    |
| Critical Hdwy Stg 1                                                                                                                         | 5.475     | -       | -      | -              | -          | -    |
| Critical Hdwy Stg 2                                                                                                                         | 5.875     | -       | -      | -              | -          | -    |
| Follow-up Hdwy                                                                                                                              | 3.54753   | 3.34752 | .2475  | -              | -          | -    |
| Pot Cap-1 Maneuve                                                                                                                           |           | 389     | 798    | _              | _          | _    |
| Stage 1                                                                                                                                     | 445       | -       | -      | _              | _          | _    |
| Stage 2                                                                                                                                     | 525       | _       |        | _              | _          | _    |
| Platoon blocked, %                                                                                                                          | 020       |         |        | _              | _          |      |
| Mov Cap-1 Maneuve                                                                                                                           | er 76     | 316     | 648    |                |            |      |
|                                                                                                                                             |           |         | 040    | -              |            | -    |
| Mov Cap-2 Maneuve                                                                                                                           |           | -       | _      | -              | -          | -    |
| Stage 1                                                                                                                                     | 274       | -       | -      | -              | -          | -    |
| Stage 2                                                                                                                                     | 426       | -       |        | -              | -          | -    |
|                                                                                                                                             |           |         |        |                |            |      |
| Approach                                                                                                                                    | EB        |         | NB     |                | SB         |      |
| HCM Control Delay,                                                                                                                          |           |         | 3.73   |                | 0          |      |
| HCM LOS                                                                                                                                     |           |         | 3.73   |                | U          |      |
| HCIVI LOS                                                                                                                                   | D         |         |        |                |            |      |
|                                                                                                                                             |           |         |        |                |            |      |
| Minor Lane/Major M                                                                                                                          | vmt       | NBL     | NBTE   | EBLn1          | SBT        | SBR  |
| Capacity (veh/h)                                                                                                                            |           | 537     | -      |                | -          | -    |
| HCM Lane V/C Ratio                                                                                                                          | 0         | 0.199   |        | 0.623          | _          | _    |
| HCM Control Delay                                                                                                                           |           | 11.9    | 2      |                | _          | _    |
| HCM Lane LOS                                                                                                                                | (G/ VOII) | В       | A      | D              | _          | _    |
| HCM 95th %tile Q(v                                                                                                                          | eh)       | 0.7     | -      | 3.9            | _          |      |
| HI W USID VAID / W                                                                                                                          | 511)      | 0.7     |        | 5.5            |            | _    |

| Intersection              |         |      |        |          |        |      |
|---------------------------|---------|------|--------|----------|--------|------|
| Int Delay, s/veh          | 0.4     |      |        |          |        |      |
| Movement                  | EBL     | EBR  | NBL    | NBT      | SBT    | SBR  |
|                           | LDL     |      | INDL   |          |        | אופט |
| Lane Configurations       | 1       |      | 0      | <b>^</b> | 602    | 0    |
| Traffic Vol, veh/h        | 1       | 32   | 0      | 662      | 682    | 0    |
| Future Vol, veh/h         | 1       | 32   | 0      | 662      | 682    | 0    |
| Conflicting Peds, #/hr    |         | 0    | 0      | 0        | 0      | 86   |
| Sign Control              | Stop    | Stop | Free   | Free     | Free   | Free |
| RT Channelized            | -       | None | -      | None     | -      | None |
| Storage Length            | -       | 0    | -      | -        | -      | -    |
| Veh in Median Storag      | je, # 0 | -    | -      | 0        | 0      | -    |
| Grade, %                  | 0       | -    | -      | 0        | 0      | -    |
| Peak Hour Factor          | 90      | 90   | 90     | 90       | 90     | 90   |
| Heavy Vehicles, %         | 5       | 5    | 5      | 5        | 5      | 5    |
| Mvmt Flow                 | 1       | 36   | 0      | 736      | 758    | 0    |
| INIVIIIL LIOM             |         | 30   | U      | 130      | 100    | U    |
|                           |         |      |        |          |        |      |
| Major/Minor               | Minor2  | N    | Major1 | N        | Major2 |      |
| Conflicting Flow All      | 1126    | 758  |        | 0        | -      | 0    |
| Stage 1                   | 758     | -    | _      | -        | _      | -    |
| Stage 2                   | 368     | -    | -      | -        |        | _    |
|                           | 6.675   |      |        | _        |        |      |
| Critical Hdwy             |         |      | -      | -        | -      | -    |
| Critical Hdwy Stg 1       | 5.475   | -    | -      | -        | -      | -    |
| Critical Hdwy Stg 2       | 5.875   | -    | -      | -        | -      | -    |
|                           | 3.54753 |      | -      | -        | -      | -    |
| Pot Cap-1 Maneuver        | 208     | 400  | 0      | -        | -      | 0    |
| Stage 1                   | 455     | -    | 0      | -        | -      | 0    |
| Stage 2                   | 664     | _    | 0      | _        | _      | 0    |
| Platoon blocked, %        |         |      |        | _        | -      |      |
| Mov Cap-1 Maneuver        | r 208   | 400  | _      | _        | _      | _    |
| Mov Cap-2 Maneuver        |         | -    | _      | _        | _      | _    |
| •                         | 455     |      | -      | _        |        | _    |
| Stage 1                   |         | -    | -      | -        | -      | -    |
| Stage 2                   | 664     | -    | -      | -        | -      | -    |
|                           |         |      |        |          |        |      |
| Approach                  | EB      |      | NB     |          | SB     |      |
| HCM Control Delay, s      |         |      | 0      |          | 0      |      |
| •                         |         |      | U      |          | U      |      |
| HCM LOS                   | В       |      |        |          |        |      |
|                           |         |      |        |          |        |      |
| Minor Lane/Major Mvi      | mt      | NRTF | EBLn1  | SBT      |        |      |
|                           |         | -    | 400    |          |        |      |
| Capacity (veh/h)          |         |      |        | -        |        |      |
| HCM Lane V/C Ratio        |         |      | 0.089  | -        |        |      |
| HCM Control Delay (s      | s/veh)  | -    | 14.9   | -        |        |      |
| HCM Lane LOS              |         | -    | В      | -        |        |      |
| LICM OF THE OVER THE OVER |         |      | 0 0    |          |        |      |
| HCM 95th %tile Q(vel      | h)      | -    | 0.3    | -        |        |      |

| 3.8    |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRI    | FRR                                                                                                                                                                                        | NRI                                                                                                                                                                    | NRT                                                                                                                                                                                                                                      | SRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | בטול                                                                                                                                                                                       | HUL                                                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OBIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 61                                                                                                                                                                                         | 65                                                                                                                                                                     |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -      |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | -                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 94     | 68                                                                                                                                                                                         | 72                                                                                                                                                                     | 233                                                                                                                                                                                                                                      | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| linor2 | N                                                                                                                                                                                          | /lajor1                                                                                                                                                                | N                                                                                                                                                                                                                                        | /lajor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 744    | 366                                                                                                                                                                                        | 452                                                                                                                                                                    | 0                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 366    | -                                                                                                                                                                                          | -                                                                                                                                                                      | -                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 378    | -                                                                                                                                                                                          | -                                                                                                                                                                      | -                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 6.2                                                                                                                                                                                        | 4.1                                                                                                                                                                    | _                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | -                                                                                                                                                                                          | -                                                                                                                                                                      | -                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            | -                                                                                                                                                                      | _                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            |                                                                                                                                                                        | _                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | _                                                                                                                                                                                          | _                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 031    | -                                                                                                                                                                                          | -                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 256    | 604                                                                                                                                                                                        | 1110                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 684                                                                                                                                                                                        | 1119                                                                                                                                                                   |                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | -                                                                                                                                                                                          | -                                                                                                                                                                      | -                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | -                                                                                                                                                                                          | -                                                                                                                                                                      | -                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 697    | -                                                                                                                                                                                          | -                                                                                                                                                                      | -                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FB     |                                                                                                                                                                                            | NB                                                                                                                                                                     |                                                                                                                                                                                                                                          | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                                                            | 1.33                                                                                                                                                                   |                                                                                                                                                                                                                                          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\sim$ |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С      |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С      |                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C      | NBL                                                                                                                                                                                        | NBTE                                                                                                                                                                   | EBLn1                                                                                                                                                                                                                                    | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                                            | NBTE                                                                                                                                                                   |                                                                                                                                                                                                                                          | SBT<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SBR<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 425                                                                                                                                                                                        | -                                                                                                                                                                      | 446                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ıt     | 425<br>0.065                                                                                                                                                                               | -                                                                                                                                                                      | 446<br>0.364                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 425<br>0.065<br>8.4                                                                                                                                                                        | -<br>-<br>0                                                                                                                                                            | 446<br>0.364<br>17.6                                                                                                                                                                                                                     | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ıt     | 425<br>0.065                                                                                                                                                                               | -                                                                                                                                                                      | 446<br>0.364                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 85<br>85<br>0<br>Stop<br>0<br>90<br>0<br>94<br>Stip<br>0<br>90<br>0<br>94<br>Stop<br>0<br>94<br>Stop<br>0<br>95<br>64<br>5.4<br>3.5<br>3.5<br>3.5<br>706<br>697<br>356<br>654<br>697<br>EB | BBL BR  85 61 85 61 0 0 Stop Stop - None 0 - 90 90 0 0 - 94 68  Stinor2 N  744 366 366 - 378 - 6.4 6.2 5.4 - 5.4 - 3.5 3.3 385 684 706 - 697 - 356 684 356 - 697 -  EB | BBL BBR NBL  85 61 65 85 61 65 0 0 0 0 Stop Stop Free - None - 0 90 90 90 0 0 90 90 90 0 0 0 94 68 72  Stop Major1  744 366 452 366 378 6.4 6.2 4.1 5.4 5.4 5.4 3.5 3.3 2.2 385 684 1119 706 697 356 684 1119 356 697  EB NB  17.63 1.99 | BBL BBR NBL NBT  85 61 65 210  85 61 65 210  0 0 0 0 0  Stop Stop Free Free  - None - None  0 0  90 90 90 90 90  0 0 0 0 0  94 68 72 233   Sinor2 Major1 N  744 366 452 0  366 378  5.4  5.4  5.4  5.4  5.4  3.5 3.3 2.2 -  385 684 1119 -  706  697  356 684 1119 -  356  356 684 1119 -  356  356 684 1119 -  356  697  356 684 1119 -  356  697  356 684 1119 -  356  356 684 1119 -  356  357  358 684 1119 -  359  350 684 1119 -  350  351 33 3 2.2 -  351 333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | EBL EBR NBL NBT SBT  85 61 65 210 252  85 61 65 210 252  0 0 0 0 0 0 0  Stop Stop Free Free Free - None - None - 0 0 0 0 0 0 0  90 90 90 90 90 90 0 0 0 0 0 0  94 68 72 233 280  Sinor2 Major1 Major2  744 366 452 0 - 366 378 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 |

| Intersection                      |               |      |            |          |         |          |
|-----------------------------------|---------------|------|------------|----------|---------|----------|
| Int Delay, s/veh                  | 0.9           |      |            |          |         |          |
| Movement                          | WBL           | WBR  | NBT        | NBR      | SBL     | SBT      |
| Lane Configurations               | ,,,,,,        | 7    | <b>↑</b> ⊅ | TISIT    | UDL     | <b>†</b> |
| Traffic Vol, veh/h                | 6             | 71   | 494        | 19       | 2       | 577      |
| Future Vol, veh/h                 | 6             | 71   | 494        | 19       | 2       | 577      |
| Conflicting Peds, #/hr            | 0             | 0    | 0          | 100      | 0       | 0        |
| Sign Control                      | Stop          | Stop | Free       | Free     | Free    | Free     |
| RT Channelized                    | Stop<br>-     | None |            | None     |         | None     |
|                                   | -             |      | -          |          | -       | None     |
| Storage Length                    |               | 0    | -          | -        | -       | -        |
| Veh in Median Storage             |               | -    | 0          | -        | -       | 0        |
| Grade, %                          | 0             | -    | 0          | -        | -       | 0        |
| Peak Hour Factor                  | 90            | 90   | 90         | 90       | 90      | 90       |
| Heavy Vehicles, %                 | 0             | 15   | 6          | 0        | 0       | 5        |
| Mvmt Flow                         | 7             | 79   | 549        | 21       | 2       | 641      |
|                                   |               |      |            |          |         |          |
| Major/Minor N                     | /linor1       | N    | /lajor1    | ٨        | /lajor2 |          |
| Conflicting Flow All              | 984           | 385  | 0          | 0        | 670     | 0        |
| Stage 1                           | 659           | 300  | -          | -        | -       | -        |
| Stage 2                           | 325           | -    | -          | -        | _       | -        |
|                                   | 6.8           | 7.2  | -          | -        | 4.1     | -        |
| Critical Hdwy                     |               |      |            |          |         |          |
| Critical Hdwy Stg 1               | 5.8           | -    | -          | -        | -       | -        |
| Critical Hdwy Stg 2               | 5.8           | -    | -          | -        | -       | -        |
| Follow-up Hdwy                    | 3.5           | 3.45 | -          | -        | 2.2     | -        |
| Pot Cap-1 Maneuver                | 249           | 578  | -          | -        | 930     | -        |
| Stage 1                           | 482           | -    | -          | -        | -       | -        |
| Stage 2                           | 711           | -    | -          | -        | -       | -        |
| Platoon blocked, %                |               |      | -          | -        |         | -        |
| Mov Cap-1 Maneuver                | 222           | 517  | -          | -        | 831     | -        |
| Mov Cap-2 Maneuver                | 222           | -    | -          | -        | -       | -        |
| Stage 1                           | 431           | -    | -          | -        | -       | -        |
| Stage 2                           | 708           | -    | -          | -        | -       | -        |
| Ŭ                                 |               |      |            |          |         |          |
| A I                               | MD            |      | ND         |          | 0.0     |          |
| Approach                          | WB            |      | NB         |          | SB      |          |
| HCM Control Delay, s/             | <b>1</b> 3.22 |      | 0          |          | 0.03    |          |
| HCM LOS                           | В             |      |            |          |         |          |
|                                   |               |      |            |          |         |          |
| Minor Lane/Major Mvn              | nt            | NBT  | NBRV       | VBLn1    | SBL     | SBT      |
| Capacity (veh/h)                  |               | ופוו | אוטוי      | 517      | 831     | -        |
| HCM Lane V/C Ratio                |               | -    | -          | 0.153    |         |          |
| HCM Control Delay (s/             | /vob          | -    |            |          |         | -        |
|                                   |               | -    | -          | 13.2     | 9.3     | -        |
|                                   | (VCII)        |      |            | D        | ٨       |          |
| HCM Lane LOS HCM 95th %tile Q(veh |               | -    | -          | B<br>0.5 | A<br>0  | -        |

| Intersection           |           |        |        |        |          |       |
|------------------------|-----------|--------|--------|--------|----------|-------|
| Int Delay, s/veh       | 6.2       |        |        |        |          |       |
| Movement               | EBL       | EBT    | WBT    | WBR    | SBL      | SBR   |
| Lane Configurations    |           | 4      | 7+     | 11511  | <b>W</b> | UDIN  |
| Traffic Vol, veh/h     | 91        | 31     | 74     | 146    | 123      | 72    |
| Future Vol, veh/h      | 91        | 31     | 74     | 146    | 123      | 72    |
| Conflicting Peds, #/hr | 0         | 0      | 0      | 0      | 0        | 0     |
| Sign Control           | Free      | Free   | Free   | Free   | Stop     | Stop  |
| RT Channelized         |           | None   |        | None   |          | None  |
|                        | _         | NONE - | -      | None - | 0        | None  |
| Storage Length         |           |        | 0      |        | 0        |       |
| Veh in Median Storage  | 9,# -     | 0      |        | -      |          |       |
| Grade, %               | -         | 0      | 0      | -      | 0        | -     |
| Peak Hour Factor       | 90        | 90     | 90     | 90     | 90       | 90    |
| Heavy Vehicles, %      | 2         | 2      | 2      | 2      | 2        | 2     |
| Mvmt Flow              | 101       | 34     | 82     | 162    | 137      | 80    |
|                        |           |        |        |        |          |       |
| Major/Minor N          | 1ajor1    | N      | Major2 | N      | /linor2  |       |
| Conflicting Flow All   | 244       | 0      |        | 0      | 400      | 163   |
| Stage 1                |           | _      | -      | -      | 163      | -     |
| Stage 2                | _         | _      | _      | _      | 237      | _     |
| Critical Hdwy          | 4.12      | _      | _      | _      | 6.42     | 6.22  |
| Critical Hdwy Stg 1    | -         | _      | _      | _      | 5.42     | -     |
| Critical Hdwy Stg 2    | _         | _      | _      | _      | 5.42     | _     |
|                        | 2.218     | _      | _      | _      | 3.518    |       |
| Pot Cap-1 Maneuver     | 1322      |        |        | _      | 606      | 881   |
| Stage 1                | 1022      | _      | _      | _      | 866      | 001   |
| Stage 2                |           |        |        |        | 803      |       |
| Platoon blocked, %     | _         | _      | _      |        | 003      | -     |
|                        | 1222      | -      | -      | -      | 559      | 881   |
| Mov Cap-1 Maneuver     |           | -      | -      | -      | 559      |       |
| Mov Cap-2 Maneuver     | -         | -      | -      | -      |          | -     |
| Stage 1                | -         | -      | -      | -      | 798      | -     |
| Stage 2                | -         | -      | -      | -      | 803      | -     |
|                        |           |        |        |        |          |       |
| Approach               | EB        |        | WB     |        | SB       |       |
| HCM Control Delay, s/  | v 5.93    |        | 0      |        | 13.36    |       |
| HCM LOS                |           |        |        |        | В        |       |
|                        |           |        |        |        |          |       |
|                        |           |        |        |        |          |       |
| Minor Lane/Major Mvm   | <u>it</u> | EBL    | EBT    | WBT    | WBR      |       |
| Capacity (veh/h)       |           | 1296   | -      | -      | -        | 646   |
| HCM Lane V/C Ratio     |           | 0.076  | -      | -      |          | 0.335 |
| HCM Control Delay (s/  | veh)      | 7.9    | 0      | -      | -        | 13.4  |
| HCM Lane LOS           |           | Α      | Α      | -      | -        | В     |
| HCM 95th %tile Q(veh)  | )         | 0.2    | -      | -      | -        | 1.5   |
| HCM 95th %tile Q(veh)  | )         | 0.2    |        |        |          | 1.5   |

# 2028 Scenario

Sunday Peak Hour

1: Bank & Fifth 07/31/2024

| Lane Group  Lane Configurations  Traffic Volume (vph)  Future Volume (vph)  Lane Group Flow (vph)  Turn Type  Protected Phases  Permitted Phases  Minimum Split (s)  Total Split (%)  Yellow Time (s)  Lost Time (s)  Lost Time Adjust (s)  Total Lost Time (s)  Lead/Lag  Lead-Lag Optimize?  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay (s/veh)  LOS  Approach Delay (s/veh) | 53<br>53<br>0<br>Perm<br>4<br>26.0<br>26.0<br>34.7%<br>3.0<br>2.5 | EBT  37 37 129 NA 4 26.0 26.0 34.7%                 | 127<br>127<br>141<br>Perm<br>8<br>26.0 | WBT<br>65<br>65<br>114<br>NA<br>8 | 15<br>15<br>0<br>Perm | NBT<br>466<br>466<br>577<br>NA | 22<br>22<br>20<br>0 | SBT<br>481<br>481 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|-----------------------------------|-----------------------|--------------------------------|---------------------|-------------------|--|
| Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                         | 53<br>0<br>Perm<br>4<br>26.0<br>26.0<br>34.7%<br>3.0              | 37<br>37<br>129<br>NA<br>4<br>26.0<br>26.0<br>34.7% | 127<br>127<br>141<br>Perm<br>8<br>26.0 | 65<br>65<br>114<br>NA             | 15<br>0               | 466<br>466<br>577              | 22                  | 481<br>481        |  |
| Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                                              | 53<br>0<br>Perm<br>4<br>26.0<br>26.0<br>34.7%<br>3.0              | 37<br>37<br>129<br>NA<br>4<br>26.0<br>26.0<br>34.7% | 127<br>141<br>Perm<br>8<br>26.0        | 65<br>65<br>114<br>NA             | 15<br>0               | 466<br>466<br>577              | 22                  | 481<br>481        |  |
| Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                                              | 0<br>Perm<br>4<br>26.0<br>26.0<br>34.7%<br>3.0                    | 129<br>NA<br>4<br>26.0<br>26.0<br>34.7%             | 141<br>Perm<br>8<br>26.0               | 114<br>NA                         | 0                     | 577                            |                     |                   |  |
| Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                                                                                        | Perm 4 26.0 26.0 34.7% 3.0                                        | NA<br>4<br>26.0<br>26.0<br>34.7%                    | Perm<br>8<br>26.0                      | NA                                |                       |                                | 0                   |                   |  |
| Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                                                                                        | 4<br>26.0<br>26.0<br>34.7%<br>3.0                                 | 26.0<br>26.0<br>34.7%                               | 8<br>26.0                              |                                   | Perm                  | NΙΛ                            | U                   | 604               |  |
| Permitted Phases Minimum Split (s) Fotal Split (s) Fotal Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio V/C Ratio Control Delay (s/veh) Queue Delay Fotal Delay (s/veh) LOS                                                                                                                   | 26.0<br>26.0<br>34.7%<br>3.0                                      | 26.0<br>26.0<br>34.7%                               | 26.0                                   | 8                                 |                       | INA                            | Perm                | NA                |  |
| Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                                                                                                                                    | 26.0<br>26.0<br>34.7%<br>3.0                                      | 26.0<br>34.7%                                       | 26.0                                   |                                   |                       | 2                              |                     | 6                 |  |
| Total Split (s)  Total Split (%)  Yellow Time (s)  All-Red Time (s)  Lost Time Adjust (s)  Total Lost Time (s)  Lead/Lag  Lead-Lag Optimize?  Act Effct Green (s)  Actuated g/C Ratio  I/C Ratio  Control Delay (s/veh)  Queue Delay  Total Delay (s/veh)  LOS                                                                                                                                        | 26.0<br>34.7%<br>3.0                                              | 26.0<br>34.7%                                       |                                        |                                   | 2                     |                                | 6                   |                   |  |
| Fotal Split (s) Fotal Split (%) Fotal Split (%) Fotal Split (%) Fotal Split (%) Fotal Lost Time (s) Fotal Control Delay (s/veh) Fotal Delay (s/veh) Fotal Delay (s/veh) Fotal Delay (s/veh)                       | 26.0<br>34.7%<br>3.0                                              | 26.0<br>34.7%                                       |                                        | 26.0                              | 49.0                  | 49.0                           | 49.0                | 49.0              |  |
| Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio I/C Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                                                                                                                                                                      | 3.0                                                               |                                                     | 26.0                                   | 26.0                              | 49.0                  | 49.0                           | 49.0                | 49.0              |  |
| Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio V/C Ratio Control Delay (s/veh) Queue Delay Fotal Delay (s/veh) LOS                                                                                                                                                                                      | 3.0                                                               |                                                     | 34.7%                                  | 34.7%                             | 65.3%                 | 65.3%                          | 65.3%               | 65.3%             |  |
| All-Red Time (s) Lost Time Adjust (s) Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio Location Control Delay (s/veh) Queue Delay Fotal Delay (s/veh) LOS                                                                                                                                                                                                       |                                                                   | 3.0                                                 | 3.0                                    | 3.0                               | 3.0                   | 3.0                            | 3.0                 | 3.0               |  |
| Lost Time Adjust (s)  Total Lost Time (s)  Lead/Lag  Lead-Lag Optimize?  Act Effet Green (s)  Actuated g/C Ratio  Locotrol Delay (s/veh)  Queue Delay  Total Delay (s/veh)  LOS                                                                                                                                                                                                                       |                                                                   | 2.5                                                 | 2.5                                    | 2.5                               | 2.5                   | 2.5                            | 2.5                 | 2.5               |  |
| Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Lot Effct Green (s) Lotuated g/C Ratio Lot Ratio Control Delay (s/veh) Lotal Delay Lotal Delay (s/veh) Los                                                                                                                                                                                                                                            |                                                                   | 0.0                                                 | 0.0                                    | 0.0                               |                       | 0.0                            |                     | 0.0               |  |
| Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio I/C Ratio Control Delay (s/veh) Queue Delay Fotal Delay (s/veh) LOS                                                                                                                                                                                                                                                                |                                                                   | 5.5                                                 | 5.5                                    | 5.5                               |                       | 5.5                            |                     | 5.5               |  |
| Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay (s/veh) Queue Delay Fotal Delay (s/veh) LOS                                                                                                                                                                                                                                                                         |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) LOS                                                                                                                                                                                                                                                                                            |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| Actuated g/C Ratio r/c Ratio Control Delay (s/veh) Queue Delay Total Delay (s/veh) OS                                                                                                                                                                                                                                                                                                                 |                                                                   | 20.5                                                | 20.5                                   | 20.5                              |                       | 43.5                           |                     | 43.5              |  |
| v/c Ratio Control Delay (s/veh) Queue Delay Fotal Delay (s/veh) LOS                                                                                                                                                                                                                                                                                                                                   |                                                                   | 0.27                                                | 0.27                                   | 0.27                              |                       | 0.58                           |                     | 0.58              |  |
| Control Delay (s/veh)<br>Queue Delay<br>Fotal Delay (s/veh)<br>OS                                                                                                                                                                                                                                                                                                                                     |                                                                   | 0.38                                                | 0.48                                   | 0.27                              |                       | 0.36                           |                     | 0.38              |  |
| Queue Delay<br>Fotal Delay (s/veh)<br>.OS                                                                                                                                                                                                                                                                                                                                                             |                                                                   | 22.6                                                | 29.3                                   | 16.6                              |                       | 10.4                           |                     | 9.0               |  |
| Fotal Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 0.0                                                 | 0.0                                    | 0.0                               |                       | 0.0                            |                     | 0.0               |  |
| .OS                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 22.6                                                | 29.3                                   | 16.6                              |                       | 10.4                           |                     | 9.0               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | C                                                   | C                                      | В                                 |                       | В                              |                     | A                 |  |
| Annroach Helay (S/Ven)                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | 22.6                                                | 0                                      | 23.6                              |                       | 10.4                           |                     | 9.0               |  |
| pproach LOS                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   | C                                                   |                                        | C                                 |                       | В                              |                     | Α                 |  |
| Queue Length 50th (m)                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 12.4                                                | 16.6                                   | 8.1                               |                       | 31.2                           |                     | 21.1              |  |
| Queue Length 95th (m)                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 26.8                                                | 33.0                                   | 20.2                              |                       | 48.2                           |                     | 30.9              |  |
| nternal Link Dist (m)                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 49.7                                                | 55.0                                   | 112.4                             |                       | 195.6                          |                     | 190.0             |  |
| Furn Bay Length (m)                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 43.1                                                | 45.0                                   | 112.7                             |                       | 133.0                          |                     | 130.0             |  |
| Base Capacity (vph)                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 341                                                 | 294                                    | 424                               |                       | 1606                           |                     | 1594              |  |
| Starvation Cap Reductn                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | 0                                                   | 294                                    | 0                                 |                       | 0                              |                     | 1594              |  |
| Spillback Cap Reductn                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | 0                                                   | 0                                      | 0                                 |                       | 0                              |                     | 0                 |  |
| Storage Cap Reductin                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   | 0                                                   | 0                                      | 0                                 |                       | 0                              |                     | 0                 |  |
| Reduced v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   | 0.38                                                | 0.48                                   | 0.27                              |                       | 0.36                           |                     | 0.38              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | 0.00                                                | 0.40                                   | 0.21                              |                       | 0.50                           |                     | 0.50              |  |
| ntersection Summary Cycle Length: 75                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| Actuated Cycle Length: 75                                                                                                                                                                                                                                                                                                                                                                             | d to phoc                                                         | o O NDT                                             | l and G.C                              | DTI C+                            | rt of Cro             | on                             |                     |                   |  |
| Offset: 42 (56%), Reference                                                                                                                                                                                                                                                                                                                                                                           | d to phas                                                         | se Zinbi                                            | L and bis                              | BIL, Sta                          | art of Gre            | en                             |                     |                   |  |
| Natural Cycle: 75                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| Control Type: Pretimed                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| Maximum v/c Ratio: 0.48                                                                                                                                                                                                                                                                                                                                                                               | (vob), 40                                                         | ٥                                                   |                                        | 1.                                | otoro-sti-            | n I OO. F                      | )                   |                   |  |
| ntersection Signal Delay (s/                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |                                                     |                                        |                                   |                       | on LOS: E                      |                     |                   |  |
| Intersection Capacity Utiliza                                                                                                                                                                                                                                                                                                                                                                         | นดก 58.2                                                          | 70                                                  |                                        | 10                                | ou Level              | of Service                     | e B                 |                   |  |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| Splits and Phases: 1: Ban                                                                                                                                                                                                                                                                                                                                                                             | nk & Fifth                                                        |                                                     |                                        |                                   |                       |                                |                     |                   |  |
| Ø2 (R)                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                     |                                        |                                   |                       |                                |                     |                   |  |

| Z. Bank & Honnie                  |       | +     | •      | †       | <u> </u> | 1     |      |  |
|-----------------------------------|-------|-------|--------|---------|----------|-------|------|--|
| Lane Group                        | EBT   | WBT   | NBL    | NBT     | SBL      | SBT   | Ø3   |  |
| Lane Configurations               | 4     | VVDI  | INDL   | 47>     | ODL      | 414   |      |  |
| Traffic Volume (vph)              | 17    | 0     | 32     | 504     | 22       | 522   |      |  |
| Future Volume (vph)               | 17    | 0     | 32     | 504     | 22       | 522   |      |  |
|                                   | 109   | 2     | 0      | 685     | 0        | 643   |      |  |
| Lane Group Flow (vph)             | NA    | Z     | Perm   | NA      | Perm     | NA    |      |  |
| Turn Type                         |       |       | Pellii | NA<br>2 | Pellii   |       | 3    |  |
| Protected Phases Permitted Phases | 4     |       | 2      | 2       | C        | 6     | S    |  |
|                                   | 4     |       | 2      | 0       | 6        | 0     |      |  |
| Detector Phase                    | 4     |       | 2      | 2       | 6        | 6     |      |  |
| Switch Phase                      | 4.4   |       | 40.0   | 40.0    | 4.0      | 4.0   | 4.0  |  |
| Minimum Initial (s)               | 4.4   |       | 10.0   | 10.0    | 4.0      | 4.0   | 1.0  |  |
| Minimum Split (s)                 | 23.0  |       | 47.0   | 47.0    | 47.0     | 47.0  | 5.0  |  |
| Total Split (s)                   | 23.0  |       | 47.0   | 47.0    | 47.0     | 47.0  | 5.0  |  |
| Total Split (%)                   | 30.7% |       | 62.7%  | 62.7%   | 62.7%    | 62.7% | 7%   |  |
| Yellow Time (s)                   | 3.0   |       | 3.0    | 3.0     | 3.0      | 3.0   | 2.0  |  |
| All-Red Time (s)                  | 2.6   |       | 2.2    | 2.2     | 2.2      | 2.2   | 0.0  |  |
| Lost Time Adjust (s)              | 0.0   |       |        | 0.0     |          | 0.0   |      |  |
| Total Lost Time (s)               | 5.6   |       |        | 5.2     |          | 5.2   |      |  |
| Lead/Lag                          | Lag   |       |        |         |          |       | Lead |  |
| Lead-Lag Optimize?                |       |       |        |         |          |       |      |  |
| Recall Mode                       | None  |       | C-Max  | C-Max   | C-Max    | C-Max | None |  |
| Act Effct Green (s)               | 11.5  | 0.0   |        | 56.1    |          | 56.1  |      |  |
| Actuated g/C Ratio                | 0.15  | 0.00  |        | 0.75    |          | 0.75  |      |  |
| v/c Ratio                         | 0.55  | 0.01  |        | 0.36    |          | 0.31  |      |  |
| Control Delay (s/veh)             | 38.5  | 0.0   |        | 2.4     |          | 9.3   |      |  |
| Queue Delay                       | 0.0   | 0.0   |        | 0.0     |          | 0.0   |      |  |
| Total Delay (s/veh)               | 38.5  | 0.0   |        | 2.4     |          | 9.3   |      |  |
| LOS                               | D     | Α     |        | Α       |          | Α     |      |  |
| Approach Delay (s/veh)            | 38.5  |       |        | 2.4     |          | 9.3   |      |  |
| Approach LOS                      | D     |       |        | Α       |          | Α     |      |  |
| Queue Length 50th (m)             | 14.4  | 0.0   |        | 4.9     |          | 28.3  |      |  |
| Queue Length 95th (m)             | 26.9  | 0.0   |        | 11.1    |          | 44.5  |      |  |
| Internal Link Dist (m)            | 39.8  | 116.8 |        | 31.5    |          | 195.6 |      |  |
| Turn Bay Length (m)               | 00.0  |       |        | •       |          |       |      |  |
| Base Capacity (vph)               | 304   | 143   |        | 1895    |          | 2052  |      |  |
| Starvation Cap Reductn            | 0     | 0     |        | 0       |          | 0     |      |  |
| Spillback Cap Reductn             | 0     | 0     |        | 0       |          | 0     |      |  |
| Storage Cap Reductn               | 0     | 0     |        | 0       |          | 0     |      |  |
| Reduced v/c Ratio                 | 0.36  | 0.01  |        | 0.36    |          | 0.31  |      |  |
|                                   | 0.50  | 0.01  |        | 0.00    |          | 0.01  |      |  |
| Intersection Summary              |       |       |        |         |          |       |      |  |
| Cycle Length: 75                  |       |       |        |         |          |       |      |  |

Actuated Cycle Length: 75

Offset: 16 (21%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.55

Intersection Signal Delay (s/veh): 8.2 Intersection Capacity Utilization Err% ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 2: Bank & Holmwood



|                        | •     | •     | <b>†</b>   | <b>\</b> | <b>↓</b> |      |       |      |  |
|------------------------|-------|-------|------------|----------|----------|------|-------|------|--|
| Lane Group             | WBL   | WBR   | NBT        | SBL      | SBT      | Ø3   | Ø6    | Ø7   |  |
| Lane Configurations    | 7     | 7     | <b>↑</b> ↑ | 7        | <b>^</b> |      |       |      |  |
| Traffic Volume (vph)   | 109   | 51    | 407        | 151      | 440      |      |       |      |  |
| Future Volume (vph)    | 109   | 51    | 407        | 151      | 440      |      |       |      |  |
| Lane Group Flow (vph)  | 121   | 57    | 559        | 168      | 489      |      |       |      |  |
| Turn Type              | Perm  | Perm  |            | custom   | NA       |      |       |      |  |
| Protected Phases       |       |       | 2          | 1        | 16       | 3    | 6     | 7    |  |
| Permitted Phases       | 8     | 8     |            | 6        |          |      |       |      |  |
| Detector Phase         | 8     | 8     | 2          | 1        | 16       |      |       |      |  |
| Switch Phase           |       |       |            |          |          |      |       |      |  |
| Minimum Initial (s)    | 4.0   | 4.0   | 10.0       | 4.0      |          | 1.0  | 5.1   | 3.0  |  |
| Minimum Split (s)      | 26.0  | 26.0  | 27.0       | 12.0     |          | 5.0  | 27.0  | 5.0  |  |
| Total Split (s)        | 26.0  | 26.0  | 27.0       | 12.0     |          | 5.0  | 27.0  | 5.0  |  |
| Total Split (%)        | 34.7% | 34.7% | 36.0%      | 16.0%    |          | 7%   | 36%   | 7%   |  |
| Yellow Time (s)        | 3.3   | 3.3   | 3.0        | 3.0      |          | 2.0  | 3.0   | 2.0  |  |
| All-Red Time (s)       | 3.0   | 3.0   | 3.9        | 3.9      |          | 0.0  | 3.9   | 0.0  |  |
| Lost Time Adjust (s)   | 0.0   | 0.0   | 0.0        | 0.0      |          |      |       |      |  |
| Total Lost Time (s)    | 6.3   | 6.3   | 6.9        | 6.9      |          |      |       |      |  |
| Lead/Lag               |       |       |            | Lead     |          | Lag  |       |      |  |
| Lead-Lag Optimize?     |       |       |            | Yes      |          | Yes  |       |      |  |
| Recall Mode            | None  | None  | C-Max      | None     |          | None | C-Max | None |  |
| Act Effct Green (s)    | 11.7  | 11.7  | 40.7       | 45.8     | 54.1     |      |       |      |  |
| Actuated g/C Ratio     | 0.16  | 0.16  | 0.54       | 0.61     | 0.72     |      |       |      |  |
| v/c Ratio              | 0.55  | 0.27  | 0.36       | 0.38     | 0.22     |      |       |      |  |
| Control Delay (s/veh)  | 37.9  | 11.0  | 11.5       | 8.4      | 4.2      |      |       |      |  |
| Queue Delay            | 0.0   | 0.0   | 0.0        | 0.0      | 0.0      |      |       |      |  |
| Total Delay (s/veh)    | 37.9  | 11.0  | 11.5       | 8.4      | 4.2      |      |       |      |  |
| LOS                    | D     | В     | В          | Α        | Α        |      |       |      |  |
| Approach Delay (s/veh) | 29.3  |       | 11.5       |          | 5.3      |      |       |      |  |
| Approach LOS           | С     |       | В          |          | Α        |      |       |      |  |
| Queue Length 50th (m)  | 16.0  | 0.0   | 22.0       | 5.5      | 8.3      |      |       |      |  |
| Queue Length 95th (m)  | 28.9  | 8.5   | 38.1       | 11.1     | 12.3     |      |       |      |  |
| Internal Link Dist (m) | 30.6  |       | 33.7       |          | 44.8     |      |       |      |  |
| Turn Bay Length (m)    |       |       |            | 40.0     |          |      |       |      |  |
| Base Capacity (vph)    | 371   | 317   | 1532       | 445      | 2266     |      |       |      |  |
| Starvation Cap Reductn | 0     | 0     | 0          | 0        | 0        |      |       |      |  |
| Spillback Cap Reductn  | 0     | 0     | 0          | 0        | 0        |      |       |      |  |
| Storage Cap Reductn    | 0     | 0     | 0          | 0        | 0        |      |       |      |  |
| Reduced v/c Ratio      | 0.33  | 0.18  | 0.36       | 0.38     | 0.22     |      |       |      |  |
| Intersection Summary   |       |       |            |          |          |      |       |      |  |

#### Intersection Summary

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 15 (20%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.55

Intersection Signal Delay (s/veh): 10.8 Intersection LOS: B
Intersection Capacity Utilization 55.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition



## 6: Bank & Aylmer

|                                                           | ۶            | 4       | †          | Į.           |                     |   |
|-----------------------------------------------------------|--------------|---------|------------|--------------|---------------------|---|
| Lane Group                                                | EBL          | NBL     | NBT        | SBT          | Ø3                  |   |
| Lane Configurations                                       | W            |         | 414        | <b>†</b>     |                     |   |
| Traffic Volume (vph)                                      | 53           | 16      | 584        | 643          |                     |   |
| Future Volume (vph)                                       | 53           | 16      | 584        | 643          |                     |   |
| Lane Group Flow (vph)                                     | 81           | 0       | 667        | 776          |                     |   |
| Turn Type                                                 | Prot         | Perm    | NA         | NA           |                     |   |
| Protected Phases                                          | 4            |         | 2          | 6            | 3                   |   |
| Permitted Phases                                          | 4            | 2       | _          | 6            | · ·                 |   |
| Detector Phase                                            | 4            | 2       | 2          | 6            |                     |   |
| Switch Phase                                              | •            | _       | _          |              |                     |   |
| Minimum Initial (s)                                       | 10.0         | 30.0    | 30.0       | 30.0         | 1.0                 |   |
| Minimum Split (s)                                         | 22.0         | 63.0    | 63.0       | 63.0         | 5.0                 |   |
| Fotal Split (s)                                           | 22.0         | 63.0    | 63.0       | 63.0         | 5.0                 |   |
| Total Split (%)                                           | 24.4%        | 70.0%   | 70.0%      | 70.0%        | 6%                  |   |
| Yellow Time (s)                                           | 3.3          | 3.0     | 3.0        | 3.0          | 2.0                 |   |
| All-Red Time (s)                                          | 2.2          | 2.2     | 2.2        | 2.2          | 1.0                 |   |
| Lost Time Adjust (s)                                      | 0.0          | ۷.۷     | 0.0        | 0.0          | 1.0                 |   |
| Total Lost Time (s)                                       | 5.5          |         | 5.2        | 5.2          |                     |   |
| ` ,                                                       |              |         | 5.2        | 5.2          | Load                |   |
| Lead/Lag                                                  | Lag          |         |            |              | Lead                |   |
| _ead-Lag Optimize?                                        | NI           | 0.14    | 0.14       | 0.14         | Maria               |   |
| Recall Mode                                               | None         | C-Max   | C-Max      | C-Max        | None                |   |
| Act Effct Green (s)                                       | 11.0         |         | 72.4       | 72.4         |                     |   |
| Actuated g/C Ratio                                        | 0.12         |         | 0.80       | 0.80         |                     |   |
| v/c Ratio                                                 | 0.43         |         | 0.29       | 0.32         |                     |   |
| Control Delay (s/veh)                                     | 36.0         |         | 2.6        | 3.6          |                     |   |
| Queue Delay                                               | 0.0          |         | 0.0        | 0.0          |                     |   |
| Total Delay (s/veh)                                       | 36.0         |         | 2.6        | 3.6          |                     |   |
| _OS                                                       | D            |         | Α          | Α            |                     |   |
| Approach Delay (s/veh)                                    | 36.0         |         | 2.6        | 3.6          |                     |   |
| Approach LOS                                              | D            |         | Α          | Α            |                     |   |
| Queue Length 50th (m)                                     | 10.3         |         | 11.2       | 16.5         |                     |   |
| Queue Length 95th (m)                                     | 23.1         |         | 15.0       | 28.4         |                     |   |
| nternal Link Dist (m)                                     | 76.7         |         | 28.1       | 10.1         |                     |   |
| Turn Bay Length (m)                                       |              |         |            |              |                     |   |
| Base Capacity (vph)                                       | 276          |         | 2334       | 2401         |                     |   |
| Starvation Cap Reductn                                    | 0            |         | 0          | 0            |                     |   |
| Spillback Cap Reductn                                     | 0            |         | 0          | 0            |                     |   |
| Storage Cap Reductn                                       | 0            |         | 0          | 0            |                     |   |
| Reduced v/c Ratio                                         | 0.29         |         | 0.29       | 0.32         |                     |   |
| ntersection Summary                                       |              |         |            |              |                     |   |
| Cycle Length: 90                                          |              |         |            |              |                     |   |
| Actuated Cycle Length: 90                                 |              |         |            |              |                     |   |
| Actuated Cycle Length: 90<br>Offset: 87 (97%), Reference  | ad to phas   | o 2.NDT | l and G.C  | ODT Ctort    | of Groon            |   |
|                                                           | eu to prias  | e Z.NBT | L allu bis | ו מסו, Start | or Green            |   |
| Natural Cycle: 90                                         | - u-di t - 1 |         |            |              |                     |   |
| Control Type: Actuated-Coo                                | ordinated    |         |            |              |                     |   |
| Maximum v/c Ratio: 0.43                                   | / 12 4.0     |         |            |              | 1                   |   |
| ntersection Signal Delay (s                               | •            |         |            |              | ntersection LOS: A  |   |
|                                                           |              |         |            |              |                     |   |
| Intersection Capacity Utiliza<br>Analysis Period (min) 15 | ation 49.7   | %       |            | IC           | CU Level of Service | Α |

Splits and Phases: 6: Bank & Aylmer



|                           | •     | <b>→</b> | <     | +     | 4     | †     | <b>/</b> | <b>+</b> |      |       |      |  |
|---------------------------|-------|----------|-------|-------|-------|-------|----------|----------|------|-------|------|--|
| Lane Group                | EBL   | EBT      | WBL   | WBT   | NBL   | NBT   | SBL      | SBT      | Ø3   | Ø6    | Ø7   |  |
| Lane Configurations       |       | 4        |       | 4     |       | 47>   |          | €ि       |      |       |      |  |
| Traffic Volume (vph)      | 42    | 33       | 15    | 50    | 18    | 460   | 115      | 497      |      |       |      |  |
| Future Volume (vph)       | 42    | 33       | 15    | 50    | 18    | 460   | 115      | 497      |      |       |      |  |
| Lane Group Flow (vph)     | 0     | 117      | 0     | 190   | 0     | 543   | 0        | 771      |      |       |      |  |
| Turn Type                 | Perm  | NA       | Perm  | NA    | Perm  | NA    | custom   | NA       |      |       |      |  |
| Protected Phases          |       | 4        |       | 8     |       | 2     | 1        | 16       | 3    | 6     | 7    |  |
| Permitted Phases          | 4     |          | 8     |       | 2     |       | 6        |          |      |       |      |  |
| Detector Phase            | 4     | 4        | 8     | 8     | 2     | 2     | 1        | 16       |      |       |      |  |
| Switch Phase              |       |          |       |       |       |       |          |          |      |       |      |  |
| Minimum Initial (s)       | 6.4   | 6.4      | 5.3   | 5.3   | 17.0  | 17.0  | 5.0      |          | 1.0  | 17.0  | 1.0  |  |
| Minimum Split (s)         | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0  | 17.0     |          | 5.0  | 43.0  | 5.0  |  |
| Total Split (s)           | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0  | 17.0     |          | 5.0  | 43.0  | 5.0  |  |
| Total Split (%)           | 27.8% | 27.8%    | 27.8% | 27.8% | 47.8% | 47.8% | 18.9%    |          | 6%   | 48%   | 6%   |  |
| Yellow Time (s)           | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      |          | 2.0  | 3.0   | 2.0  |  |
| All-Red Time (s)          | 2.6   | 2.6      | 2.6   | 2.6   | 3.0   | 3.0   | 2.9      |          | 0.0  | 3.0   | 0.0  |  |
| Lost Time Adjust (s)      |       | 0.0      |       | 0.0   |       | 0.0   |          |          |      |       |      |  |
| Total Lost Time (s)       |       | 5.6      |       | 5.6   |       | 6.0   |          |          |      |       |      |  |
| Lead/Lag                  | Lag   | Lag      | Lag   | Lag   |       |       |          |          | Lead |       | Lead |  |
| Lead-Lag Optimize?        |       |          | Yes   | Yes   |       |       |          |          |      |       | Yes  |  |
| Recall Mode               | None  | None     | None  | None  | C-Max | C-Max | None     |          | None | C-Max | None |  |
| Act Effct Green (s)       |       | 15.2     |       | 15.2  |       | 44.0  |          | 57.4     |      |       |      |  |
| Actuated g/C Ratio        |       | 0.17     |       | 0.17  |       | 0.49  |          | 0.64     |      |       |      |  |
| v/c Ratio                 |       | 0.77     |       | 0.71  |       | 0.39  |          | 0.51     |      |       |      |  |
| Control Delay (s/veh)     |       | 65.0     |       | 34.0  |       | 17.0  |          | 5.2      |      |       |      |  |
| Queue Delay               |       | 0.0      |       | 0.0   |       | 0.0   |          | 0.0      |      |       |      |  |
| Total Delay (s/veh)       |       | 65.0     |       | 34.0  |       | 17.0  |          | 5.2      |      |       |      |  |
| LOS                       |       | Е        |       | С     |       | В     |          | Α        |      |       |      |  |
| Approach Delay (s/veh)    |       | 65.0     |       | 34.0  |       | 17.0  |          | 5.2      |      |       |      |  |
| Approach LOS              |       | Е        |       | С     |       | В     |          | Α        |      |       |      |  |
| Queue Length 50th (m)     |       | 19.5     |       | 17.5  |       | 30.4  |          | 9.1      |      |       |      |  |
| Queue Length 95th (m)     |       | 34.8     |       | 36.5  |       | 48.7  |          | 11.8     |      |       |      |  |
| Internal Link Dist (m)    |       | 75.1     |       | 136.0 |       | 63.1  |          | 79.0     |      |       |      |  |
| Turn Bay Length (m)       |       |          |       |       |       |       |          |          |      |       |      |  |
| Base Capacity (vph)       |       | 201      |       | 325   |       | 1399  |          | 1520     |      |       |      |  |
| Starvation Cap Reductn    |       | 0        |       | 0     |       | 0     |          | 0        |      |       |      |  |
| Spillback Cap Reductn     |       | 0        |       | 0     |       | 0     |          | 0        |      |       |      |  |
| Storage Cap Reductn       |       | 0        |       | 0     |       | 0     |          | 0        |      |       |      |  |
| Reduced v/c Ratio         |       | 0.58     |       | 0.58  |       | 0.39  |          | 0.51     |      |       |      |  |
| Intersection Summary      |       |          |       |       |       |       |          |          |      |       |      |  |
| Cycle Length: 90          |       |          |       |       |       |       |          |          |      |       |      |  |
| Actuated Cyala Langth: 00 |       |          |       |       |       |       |          |          |      |       |      |  |

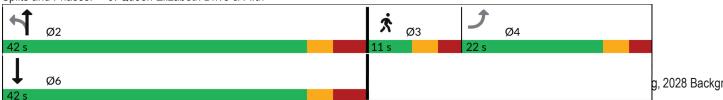
Actuated Cycle Length: 90

Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77


Intersection Signal Delay (s/veh): 16.8 Intersection LOS: B
Intersection Capacity Utilization 73.3% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 7: Bank & Sunnyside



Splits and Phases: 9: Queen Elizabeth Drive & Fifth



1.4

0.8

0

| Intersection               |          |       |          |               |          |      |
|----------------------------|----------|-------|----------|---------------|----------|------|
| Intersection Delay, s/veh  | 8.8      |       |          |               |          |      |
| Intersection LOS           | A        |       |          |               |          |      |
|                            |          |       |          |               |          |      |
| Marramant                  | EDI      | CDT   | MOT      | WDD           | CDI      | ODD  |
| Movement                   | EBL      | EBT   | WBT      | WBR           | SBL      | SBR  |
| Lane Configurations        |          | 4     | <b>₽</b> | _             | ¥        | _    |
| Traffic Vol, veh/h         | 5        | 250   | 164      | 5             | 5        | 5    |
| Future Vol, veh/h          | 5        | 250   | 164      | 5             | 5        | 5    |
| Peak Hour Factor           | 0.90     | 0.90  | 0.90     | 0.90          | 0.90     | 0.90 |
| Heavy Vehicles, %          | 2        | 2     | 2        | 2             | 2        | 2    |
| Mvmt Flow                  | 6        | 278   | 182      | 6             | 6        | 6    |
| Number of Lanes            | 0        | 1     | 1        | 0             | 1        | 0    |
| Approach                   | EB       |       | WB       |               | SB       |      |
| Opposing Approach          | WB       |       | EB       |               |          |      |
| Opposing Lanes             | 1        |       | 1        |               | 0        |      |
| Conflicting Approach Left  | SB       |       |          |               | WB       |      |
| Conflicting Lanes Left     | 1        |       | 0        |               | 1        |      |
| Conflicting Approach Right | 1        |       | SB       |               | EB       |      |
| Conflicting Lanes Right    | 0        |       | 1        |               | 1        |      |
| HCM Control Delay, s/veh   | 9.1      |       | 8.4      |               | 7.8      |      |
| HCM LOS                    | 9.1<br>A |       | Α        |               | 7.0<br>A |      |
| HOW LOO                    | - 71     |       |          |               |          |      |
|                            |          |       |          |               |          |      |
| Lane                       |          | EBLn1 | WBLn1    | SBLn1         |          |      |
| Vol Left, %                |          | 2%    | 0%       | 50%           |          |      |
| Vol Thru, %                |          | 98%   | 97%      | 0%            |          |      |
| Vol Right, %               |          | 0%    | 3%       | 50%           |          |      |
| Sign Control               |          | Stop  | Stop     | Stop          |          |      |
| Traffic Vol by Lane        |          | 255   | 169      | 10            |          |      |
| LT Vol                     |          | 5     | 0        | 5             |          |      |
| Through Vol                |          | 250   | 164      | 0             |          |      |
| RT Vol                     |          | 0     | 5        | 5             |          |      |
| Lane Flow Rate             |          | 283   | 188      | 11            |          |      |
| Geometry Grp               |          | 1     | 1        | 1             |          |      |
| Degree of Util (X)         |          | 0.322 | 0.216    | 0.015         |          |      |
| Departure Headway (Hd)     |          | 4.097 | 4.147    | 4.736         |          |      |
| Convergence, Y/N           |          | Yes   | Yes      | Yes           |          |      |
| Cap                        |          | 873   | 856      | 760           |          |      |
| Service Time               |          | 2.149 | 2.216    | 2.736         |          |      |
| HCM Lane V/C Ratio         |          | 0.324 | 0.22     | 0.014         |          |      |
| HCM Control Delay, s/veh   |          | 9.1   | 8.4      | 7.8           |          |      |
| HCM Lane LOS               |          | А     | Α        | А             |          |      |
| HOW LANG LOS               |          |       |          | $\overline{}$ |          |      |

| La Caraca Caraca           |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection               | 7.0  |       |       |       |      |      |
| Intersection Delay, s/veh  | 7.9  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | ĵ»   |       |       | 4     | W    |      |
| Traffic Vol, veh/h         | 14   | 5     | 5     | 163   | 5    | 5    |
| Future Vol, veh/h          | 14   | 5     | 5     | 163   | 5    | 5    |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 16   | 6     | 6     | 181   | 6    | 6    |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  |      |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.1  |       | 8     |       | 7.2  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |      | 50%   | 0%    | 3%    |      |      |
| Vol Thru, %                |      | 0%    | 74%   | 97%   |      |      |
| Vol Right, %               |      | 50%   | 26%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 10    | 19    | 168   |      |      |
| LT Vol                     |      | 5     | 0     | 5     |      |      |
| Through Vol                |      | 0     | 14    | 163   |      |      |
| RT Vol                     |      | 5     | 5     | 0     |      |      |
| Lane Flow Rate             |      | 11    | 21    | 187   |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.013 | 0.023 | 0.206 |      |      |
| Departure Headway (Hd)     |      | 4.093 | 3.934 | 3.976 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Сар                        |      | 862   | 906   | 905   |      |      |
| Service Time               |      | 2.177 | 1.974 | 1.985 |      |      |
| HCM Lane V/C Ratio         |      | 0.013 | 0.023 | 0.207 |      |      |
| HCM Control Delay, s/veh   |      | 7.2   | 7.1   | 8     |      |      |
| HCM Lane LOS               |      | Α     | Α     | Α     |      |      |

0.1

1.9

0.1

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 9.3  |       |       |       |      |      |
| Intersection LOS           | A    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Mayamant                   | EDT  | EDD   | WDI   | WDT   | NDI  | NDD  |
| Movement                   | EBT  | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | ĵ.   | -     | 50    | र्न   | 100  | 400  |
| Traffic Vol, veh/h         | 14   | 5     | 56    | 3     | 188  | 130  |
| Future Vol, veh/h          | 14   | 5     | 56    | 3     | 188  | 130  |
| Peak Hour Factor           | 0.90 | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 16   | 6     | 62    | 3     | 209  | 144  |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       | WB    |       | NB   |      |
| Opposing Approach          | WB   |       | EB    |       |      |      |
| Opposing Lanes             | 1    |       | 1     |       | 0    |      |
| Conflicting Approach Left  | •    |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB   |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1    |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7.8  |       | 8.4   |       | 9.6  |      |
| HCM LOS                    | Α.   |       | Α     |       | Α    |      |
|                            |      |       |       |       | - 71 |      |
| Lano                       |      | NBLn1 | EBLn1 | WBLn1 |      |      |
| Lane                       |      |       |       |       |      |      |
| Vol Left, %                |      | 59%   | 0%    | 95%   |      |      |
| Vol Thru, %                |      | 0%    | 74%   | 5%    |      |      |
| Vol Right, %               |      | 41%   | 26%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 318   | 19    | 59    |      |      |
| LT Vol                     |      | 188   | 0     | 56    |      |      |
| Through Vol                |      | 0     | 14    | 3     |      |      |
| RT Vol                     |      | 130   | 5     | 0     |      |      |
| Lane Flow Rate             |      | 353   | 21    | 66    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.388 | 0.027 | 0.09  |      |      |
| Departure Headway (Hd)     |      | 3.956 | 4.627 | 4.917 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 897   | 778   | 733   |      |      |
| Service Time               |      | 2.034 | 2.63  | 2.918 |      |      |
| HCM Lane V/C Ratio         |      | 0.394 | 0.027 | 0.09  |      |      |
| HCM Control Delay, s/veh   |      | 9.6   | 7.8   | 8.4   |      |      |
| HCM Lane LOS               |      | Α     | Α     | Α     |      |      |

| Intersection               |      |      |      |      |      |      |      |      |      |      |      |      |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh  | 9.9  |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS           | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 68   | 81   | 0    | 0    | 0    | 227  | 99   | 66   | 61   | 0    | 0    | 103  |
| Future Vol, veh/h          | 68   | 81   | 0    | 0    | 0    | 227  | 99   | 66   | 61   | 0    | 0    | 103  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 76   | 90   | 0    | 0    | 0    | 252  | 110  | 73   | 68   | 0    | 0    | 114  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 10   |      |      |      |      | 9.6  | 10.7 |      |      |      |      | 8.6  |
| HCM LOS                    | Α    |      |      |      |      | Α    | В    |      |      |      |      | Α    |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 46%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 54%   | 0%    | 0%    |  |
| Vol Right, %             | 27%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 226   | 149   | 227   | 103   |  |
| LT Vol                   | 99    | 68    | 0     | 0     |  |
| Through Vol              | 66    | 81    | 0     | 0     |  |
| RT Vol                   | 61    | 0     | 227   | 103   |  |
| Lane Flow Rate           | 251   | 166   | 252   | 114   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.346 | 0.24  | 0.311 | 0.151 |  |
| Departure Headway (Hd)   | 4.967 | 5.209 | 4.442 | 4.751 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Сар                      | 716   | 680   | 800   | 760   |  |
| Service Time             | 3.06  | 3.307 | 2.53  | 2.751 |  |
| HCM Lane V/C Ratio       | 0.351 | 0.244 | 0.315 | 0.15  |  |
| HCM Control Delay, s/veh | 10.7  | 10    | 9.6   | 8.6   |  |
| HCM Lane LOS             | В     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 1.5   | 0.9   | 1.3   | 0.5   |  |

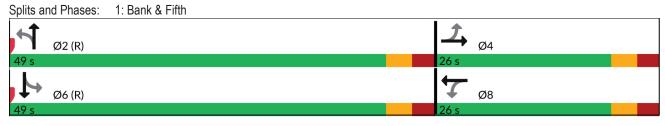
| Intersection           |                |       |        |       |                 |      |
|------------------------|----------------|-------|--------|-------|-----------------|------|
| Int Delay, s/veh       | 4.8            |       |        |       |                 |      |
| Movement               | EBL            | EBR   | NBL    | NBT   | SBT             | SBR  |
| Lane Configurations    | LDL            | TOIX  | HUL    | 41    | - 1 <u>00</u> 1 | אופט |
| Traffic Vol, veh/h     | 5              | 152   | 107    | 540   | 491             | 60   |
| Future Vol, veh/h      | 5              | 152   | 107    | 540   | 491             | 60   |
| Conflicting Peds, #/h  |                | 0     | 178    | 0     | 0               | 107  |
| Sign Control           | Stop           | Stop  | Free   | Free  | Free            | Free |
| RT Channelized         |                | None  |        |       |                 | None |
|                        | -              |       | -      |       | -               | None |
| Storage Length         | - 4 0          | 0     | -      | -     | -               | -    |
| Veh in Median Stora    |                | -     | -      | 0     | 0               | -    |
| Grade, %               | 0              | -     | -      | 0     | 0               | -    |
| Peak Hour Factor       | 90             | 90    | 90     | 90    | 90              | 90   |
| Heavy Vehicles, %      | 5              | 5     | 5      | 5     | 5               | 5    |
| Mvmt Flow              | 6              | 169   | 119    | 600   | 546             | 67   |
|                        |                |       |        |       |                 |      |
| Major/Minor            | Minor2         | ı     | Major1 | N     | lajor2          |      |
| Conflicting Flow All   | 1295           | 757   | 790    | 0     | _               | 0    |
| Stage 1                | 757            | -     | -      | -     | _               | -    |
| Stage 2                | 538            | _     | _      | _     | _               | _    |
| Critical Hdwy          |                | 6.275 |        | _     | _               | _    |
| Critical Hdwy Stg 1    | 5.475          | 0.270 | T.175  | _     | _               | _    |
| Critical Hdwy Stg 2    | 5.875          | _     |        | _     | _               | _    |
| Follow-up Hdwy         | 3.54753        |       | 2 2475 | -     | _               | _    |
|                        |                | 400   | 812    | -     |                 |      |
| Pot Cap-1 Maneuver     |                | 400   | 012    | -     | -               | -    |
| Stage 1                | 455            | -     | -      | -     | -               | -    |
| Stage 2                | 544            | -     | -      | -     | -               | -    |
| Platoon blocked, %     | 0.4            | 005   | 050    | -     | -               | -    |
| Mov Cap-1 Maneuve      |                | 325   | 659    | -     | -               | -    |
| Mov Cap-2 Maneuve      |                | -     | -      | -     | -               | -    |
| Stage 1                | 290            | -     | -      | -     | -               | -    |
| Stage 2                | 441            | -     | -      | -     | -               | -    |
|                        |                |       |        |       |                 |      |
| Approach               | EB             |       | NB     |       | SB              |      |
| HCM Control Delay,     |                |       | 3.44   |       | 0               |      |
| HCM LOS                | 5/12/1.40<br>D |       | 3.44   |       | U               |      |
| TICIVI LOS             | D              |       |        |       |                 |      |
|                        |                |       |        |       |                 |      |
| Minor Lane/Major Mv    | /mt            | NBL   | NBTE   | EBLn1 | SBT             | SBR  |
| Capacity (veh/h)       |                | 549   | -      | 325   | -               | _    |
| HCM Lane V/C Ratio     | )              | 0.18  | -      |       | -               | -    |
| HCM Control Delay (    |                | 11.7  | 1.8    | 27.5  | -               | -    |
| HCM Lane LOS           | ,              | В     | Α      | D     | -               | _    |
| HCM 95th %tile Q(ve    | h)             | 0.7   | _      | 2.8   | -               | -    |
| TIOIVI JOHI JUHIC QIVE |                |       |        |       |                 |      |

| Intersection                      |             |       |          |          |          |      |
|-----------------------------------|-------------|-------|----------|----------|----------|------|
| Int Delay, s/veh                  | 1           |       |          |          |          |      |
| Movement                          | EBL         | EBR   | NBL      | NBT      | SBT      | SBR  |
|                                   | LDL         |       | NDL      |          |          | אמט  |
| Lane Configurations               | 0           | 7     | 0        | <b>^</b> | <b>^</b> | 4    |
| Traffic Vol, veh/h                | 2           | 69    | 0        | 621      | 647      | 1    |
| Future Vol, veh/h                 | 2           | 69    | 0        | 621      | 647      | 1    |
| Conflicting Peds, #/hr            |             | 0     | _ 0      | 0        | _ 0      | 86   |
| Sign Control                      | Stop        | Stop  | Free     | Free     | Free     | Free |
| RT Channelized                    | -           | None  | -        | None     | -        | None |
| Storage Length                    | -           | 0     | -        | -        | -        | -    |
| Veh in Median Storag              | e,# 0       | -     | -        | 0        | 0        | -    |
| Grade, %                          | 0           | -     | -        | 0        | 0        | -    |
| Peak Hour Factor                  | 90          | 90    | 90       | 90       | 90       | 90   |
| Heavy Vehicles, %                 | 5           | 5     | 5        | 5        | 5        | 5    |
| Mvmt Flow                         | 2           | 77    | 0        | 690      | 719      | 1    |
| IVIVIII( I IOW                    |             | - 11  | U        | 030      | 113      |      |
|                                   |             |       |          |          |          |      |
| Major/Minor                       | Minor2      | N     | //ajor1  | I.       | Major2   |      |
| Conflicting Flow All              | 1150        | 805   |          | 0        |          | 0    |
| Stage 1                           | 805         | _     | _        | _        | -        | _    |
| Stage 2                           | 345         | _     | _        | -        | _        | _    |
| Critical Hdwy                     | 6.675       |       |          | _        | _        |      |
| Critical Hdwy Stg 1               | 5.475       | 0.275 |          |          | _        |      |
|                                   | 5.875       |       |          | -        |          | _    |
| Critical Hdwy Stg 2               |             |       | -        | -        | -        | -    |
|                                   | 3.54753     |       | -        |          | -        |      |
| Pot Cap-1 Maneuver                | 201         | 375   | 0        | -        | -        | -    |
| Stage 1                           | 432         | -     | 0        | -        | -        | -    |
| Stage 2                           | 682         | -     | 0        | -        | -        | -    |
| Platoon blocked, %                |             |       |          | -        | -        | -    |
| Mov Cap-1 Maneuver                | 166         | 341   | -        | -        | -        | -    |
| Mov Cap-2 Maneuver                | 166         | -     | -        | -        | -        | -    |
| Stage 1                           | 393         | _     | _        | _        | _        | -    |
| Stage 2                           | 620         | _     | _        | _        | _        | _    |
| Olago 2                           | 020         |       |          |          |          |      |
|                                   |             |       |          |          |          |      |
| Approach                          | EB          |       | NB       |          | SB       |      |
| HCM Control Delay, s              | /18.59      |       | 0        |          | 0        |      |
| HCM LOS                           | С           |       |          |          |          |      |
|                                   |             |       |          |          |          |      |
|                                   |             |       |          |          |          |      |
| Minor Lane/Major Mvi              | mt          | NBTE  | EBLn1    | SBT      | SBR      |      |
| Capacity (veh/h)                  |             | -     | 341      | -        | -        |      |
| HCM Lane V/C Ratio                |             | -     | 0.225    | -        | _        |      |
| HCM Control Delay (s              |             | _     | 18.6     | _        | _        |      |
| LICHVI COLLINOL DEIGVIS           | , , , , , , |       |          | _        | _        |      |
|                                   |             | _     | ι.       |          |          |      |
| HCM Lane LOS HCM 95th %tile Q(vel | 2)          | -     | C<br>0.8 |          | _        |      |

| Intersection           |             |          |        |       |          |      |
|------------------------|-------------|----------|--------|-------|----------|------|
| Int Delay, s/veh       | 6.4         |          |        |       |          |      |
|                        | EBL         | EDD      | NDI    | NBT   | SBT      | SBR  |
| Movement               |             | EBR      | NBL    |       |          | SBK  |
| Lane Configurations    | 100         | 111      | 00     | 400   | <b>₽</b> | 00   |
| Traffic Vol, veh/h     | 106         | 141      | 82     | 128   | 66       | 92   |
| Future Vol, veh/h      | 106         | 141      | 82     | 128   | 66       | 92   |
| Conflicting Peds, #/hr | 0           | 0        | 0      | _ 0   | 0        | 0    |
| Sign Control           | Stop        | Stop     | Free   | Free  | Free     | Free |
| RT Channelized         | -           | None     | -      | None  | -        | None |
| Storage Length         | 0           | -        | -      | -     | -        | -    |
| Veh in Median Storage  |             | -        | -      | 0     | 0        | -    |
| Grade, %               | 0           | -        | -      | 0     | 0        | -    |
| Peak Hour Factor       | 90          | 90       | 90     | 90    | 90       | 90   |
| Heavy Vehicles, %      | 0           | 0        | 0      | 0     | 0        | 0    |
| Mvmt Flow              | 118         | 157      | 91     | 142   | 73       | 102  |
|                        |             |          |        |       |          |      |
| NA . ' . /NA'          | 4:          |          | 4.1.4  |       | 4.1.0    |      |
|                        | linor2      |          | Major1 |       | //ajor2  |      |
| Conflicting Flow All   | 449         | 124      | 176    | 0     | -        | 0    |
| Stage 1                | 124         | -        | -      | -     | -        | -    |
| Stage 2                | 324         | -        | -      | -     | -        | -    |
| Critical Hdwy          | 6.4         | 6.2      | 4.1    | -     | -        | -    |
| Critical Hdwy Stg 1    | 5.4         | -        | -      | -     | -        | -    |
| Critical Hdwy Stg 2    | 5.4         | -        | -      | -     | -        | -    |
| Follow-up Hdwy         | 3.5         | 3.3      | 2.2    | -     | -        | -    |
| Pot Cap-1 Maneuver     | 571         | 932      | 1413   | -     | -        | -    |
| Stage 1                | 906         | -        | _      | -     | -        | _    |
| Stage 2                | 737         | _        | _      | -     | _        | _    |
| Platoon blocked, %     | . 01        |          |        | _     | _        | _    |
| Mov Cap-1 Maneuver     | 531         | 932      | 1413   | _     | _        | _    |
| Mov Cap-1 Maneuver     | 531         | 932      | 1713   | -     | _        | _    |
|                        | 843         |          | -      |       |          |      |
| Stage 1                |             | -        | -      | -     | -        | -    |
| Stage 2                | 737         | -        | -      | -     | -        | -    |
|                        |             |          |        |       |          |      |
| Approach               | EB          |          | NB     |       | SB       |      |
| HCM Control Delay, s/  |             |          | 3.02   |       | 0        |      |
| HCM LOS                | и 3.34<br>В |          | 0.02   |       | U        |      |
| I IOIVI LOO            | D           |          |        |       |          |      |
|                        |             |          |        |       |          |      |
| Minor Lane/Major Mvm   | nt          | NBL      | NBTE   | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)       |             | 703      | -      | 704   | -        | -    |
| HCM Lane V/C Ratio     |             | 0.064    | -      | 0.39  | -        | -    |
| v / O i \uli           | veh)        | 7.7      | 0      | 13.3  | _        | _    |
|                        |             | 1.1      | J      |       |          |      |
| HCM Control Delay (s/  | von         | Δ        | Δ      | R     | _        | _    |
|                        | ,           | A<br>0.2 | A      | 1.9   | -        | -    |

| Intersection           |        |      |            |        |         |          |
|------------------------|--------|------|------------|--------|---------|----------|
| Int Delay, s/veh       | 2      |      |            |        |         |          |
| Movement               | WBL    | WBR  | NBT        | NBR    | SBL     | SBT      |
| Lane Configurations    |        | 7    | <b>∱</b> } |        | 022     | <b>^</b> |
| Traffic Vol, veh/h     | 7      | 159  | 461        | 19     | 0       | 582      |
| Future Vol, veh/h      | 7      | 159  | 461        | 19     | 0       | 582      |
| Conflicting Peds, #/hr | 0      | 0    | 0          | 100    | 0       | 0        |
| Sign Control           | Stop   | Stop | Free       | Free   | Free    | Free     |
| RT Channelized         | _      | None | _          |        | -       | None     |
| Storage Length         | -      | 0    | -          | -      | -       | -        |
| Veh in Median Storage  | e,# 0  | -    | 0          | _      | -       | 0        |
| Grade, %               | 0      | -    | 0          | -      | -       | 0        |
| Peak Hour Factor       | 90     | 90   | 90         | 90     | 90      | 90       |
| Heavy Vehicles, %      | 0      | 15   | 6          | 0      | 0       | 5        |
| Mvmt Flow              | 8      | 177  | 512        | 21     | 0       | 647      |
|                        |        |      | 012        |        |         | 011      |
|                        |        |      |            |        |         |          |
|                        | Minor1 |      | /lajor1    |        | /lajor2 |          |
| Conflicting Flow All   | 946    | 367  | 0          | 0      | -       | -        |
| Stage 1                | 623    | -    | -          | -      | -       | -        |
| Stage 2                | 323    | -    | -          | -      | -       | -        |
| Critical Hdwy          | 6.8    | 7.2  | -          | -      | -       | -        |
| Critical Hdwy Stg 1    | 5.8    | -    | -          | -      | -       | -        |
| Critical Hdwy Stg 2    | 5.8    | -    | -          | -      | -       | -        |
| Follow-up Hdwy         | 3.5    | 3.45 | -          | -      | -       | -        |
| Pot Cap-1 Maneuver     | 263    | 594  | -          | -      | 0       | -        |
| Stage 1                | 503    | -    | -          | -      | 0       | -        |
| Stage 2                | 712    | -    | -          | -      | 0       | -        |
| Platoon blocked, %     |        |      | -          | -      |         | -        |
| Mov Cap-1 Maneuver     | 236    | 531  | -          | -      | -       | -        |
| Mov Cap-2 Maneuver     | 236    | -    | -          | -      | -       | -        |
| Stage 1                | 450    | -    | _          | -      | _       | _        |
| Stage 2                | 712    | _    | _          | _      | _       | _        |
| 010.90 =               |        |      |            |        |         |          |
|                        |        |      |            |        |         |          |
| Approach               | WB     |      | NB         |        | SB      |          |
| HCM Control Delay, s   | /15.11 |      | 0          |        | 0       |          |
| HCM LOS                | С      |      |            |        |         |          |
|                        |        |      |            |        |         |          |
| Minor Lane/Major Mvr   | nt     | NBT  | NBRV       | VRI n1 | SBT     |          |
|                        | IIL    |      | INDIN      |        |         |          |
| Capacity (veh/h)       |        | -    | -          | 531    | -       |          |
| HCM Cantral Dalay (    | / l. \ | -    |            | 0.332  | -       |          |
| HCM Control Delay (s   | /ven)  | -    | -          |        | -       |          |
| HCM Lane LOS           | .\     | -    | -          | C      | -       |          |
| HCM 95th %tile Q(veh   | 1)     | -    | -          | 1.4    | -       |          |
|                        |        |      |            |        |         |          |

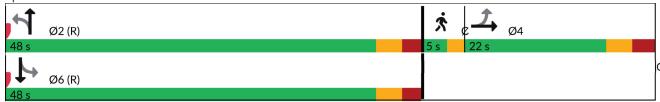
| Intersection                |         |                |           |        |          |        |
|-----------------------------|---------|----------------|-----------|--------|----------|--------|
| Int Delay, s/veh            | 8.9     |                |           |        |          |        |
| Movement                    | EBL     | EBT            | WBT       | WBR    | SBL      | SBR    |
| Lane Configurations         | LDL     | <u>€</u>       | ₩D1       | WDR    | SDL<br>W | אפט    |
| Traffic Vol, veh/h          | 110     | <b>€</b><br>51 | 54        | 121    | 198      | 67     |
| Future Vol, veh/h           | 110     | 51             | 54        | 121    | 198      | 67     |
| Conflicting Peds, #/hr      |         | 0              | 0         | 0      | 190      | 0      |
|                             | Free    | Free           | Free      | Free   | Stop     | Stop   |
| Sign Control RT Channelized |         |                | riee<br>- |        |          |        |
|                             | -       | None -         |           | None - | -        | None - |
| Storage Length              | - 4     |                | -         |        | 0        |        |
| Veh in Median Storag        |         | 0              | 0         | -      | 0        | -      |
| Grade, %                    | -       | 0              | 0         | -      | 0        | -      |
| Peak Hour Factor            | 90      | 90             | 90        | 90     | 90       | 90     |
| Heavy Vehicles, %           | 2       | 2              | 2         | 2      | 2        | 2      |
| Mvmt Flow                   | 122     | 57             | 60        | 134    | 220      | 74     |
|                             |         |                |           |        |          |        |
| Major/Minor I               | Major1  | ١              | /lajor2   | I      | Minor2   |        |
| Conflicting Flow All        | 194     | 0              | -         | 0      | 428      | 127    |
| Stage 1                     | -       | -              | -         | -      | 127      | -      |
| Stage 2                     | -       | -              | -         | -      | 301      | -      |
| Critical Hdwy               | 4.12    | -              | _         | _      | 6.42     | 6.22   |
| Critical Hdwy Stg 1         | -       | _              | -         | -      | 5.42     | _      |
| Critical Hdwy Stg 2         | -       | _              | -         | -      | 5.42     | _      |
| Follow-up Hdwy              | 2.218   | -              | _         | _      | 3.518    | 3.318  |
| Pot Cap-1 Maneuver          | 1379    | _              | _         | _      | 583      | 923    |
| Stage 1                     | -       | _              | _         | _      | 899      | -      |
| Stage 2                     | _       | -              | _         | _      | 751      | _      |
| Platoon blocked, %          |         | _              | _         | _      | 701      |        |
| Mov Cap-1 Maneuver          | 1379    | _              | _         | _      | 530      | 923    |
| Mov Cap 1 Maneuver          |         | _              | _         | _      | 530      | -      |
| Stage 1                     | _       | _              | _         | _      | 816      | _      |
| Stage 2                     | _       | _              | _         | _      | 751      | _      |
| Olago Z                     |         |                |           |        | 701      |        |
|                             |         |                |           |        |          |        |
| Approach                    | EB      |                | WB        |        | SB       |        |
| HCM Control Delay, s        | /v 5.37 |                | 0         |        | 16.87    |        |
| HCM LOS                     |         |                |           |        | С        |        |
|                             |         |                |           |        |          |        |
|                             |         |                |           |        |          |        |


| Minor Lane/Major Mvmt     | EBL   | EBT | WBT | WBR SBLn1 |
|---------------------------|-------|-----|-----|-----------|
| Capacity (veh/h)          | 1230  | -   | -   | - 594     |
| HCM Lane V/C Ratio        | 0.089 | -   | -   | - 0.496   |
| HCM Control Delay (s/veh) | 7.9   | 0   | -   | - 16.9    |
| HCM Lane LOS              | Α     | Α   | -   | - C       |
| HCM 95th %tile Q(veh)     | 0.3   | -   | -   | - 2.7     |

# 2028 Scenario

Minor Event Ingress

1: Bank & Fifth 07/31/2024


| 1: Bank & Fifth               |           |          |           |          |            |            |       |             |  |
|-------------------------------|-----------|----------|-----------|----------|------------|------------|-------|-------------|--|
|                               | ۶         | <b>→</b> | •         | <b>←</b> | 1          | 1          | -     | ļ           |  |
| Lane Group                    | EBL       | EBT      | WBL       | WBT      | NBL        | NBT        | SBL   | SBT         |  |
| Lane Configurations           |           | 4        | ሻ         | f)       |            | 4T÷        |       | <b>€1</b> } |  |
| Traffic Volume (vph)          | 52        | 58       | 74        | 46       | 16         | 479        | 26    | 548         |  |
| Future Volume (vph)           | 52        | 58       | 74        | 46       | 16         | 479        | 26    | 548         |  |
| Lane Group Flow (vph)         | 0         | 159      | 82        | 119      | 0          | 593        | 0     | 665         |  |
| Turn Type                     | Perm      | NA       | Perm      | NA       | Perm       | NA         | Perm  | NA          |  |
| Protected Phases              |           | 4        |           | 8        |            | 2          |       | 6           |  |
| Permitted Phases              | 4         |          | 8         |          | 2          |            | 6     |             |  |
| Minimum Split (s)             | 26.0      | 26.0     | 26.0      | 26.0     | 49.0       | 49.0       | 49.0  | 49.0        |  |
| Total Split (s)               | 26.0      | 26.0     | 26.0      | 26.0     | 49.0       | 49.0       | 49.0  | 49.0        |  |
| Total Split (%)               | 34.7%     | 34.7%    | 34.7%     | 34.7%    | 65.3%      | 65.3%      | 65.3% | 65.3%       |  |
| Yellow Time (s)               | 3.0       | 3.0      | 3.0       | 3.0      | 3.0        | 3.0        | 3.0   | 3.0         |  |
| All-Red Time (s)              | 2.5       | 2.5      | 2.5       | 2.5      | 2.5        | 2.5        | 2.5   | 2.5         |  |
| Lost Time Adjust (s)          |           | 0.0      | 0.0       | 0.0      |            | 0.0        |       | 0.0         |  |
| Total Lost Time (s)           |           | 5.5      | 5.5       | 5.5      |            | 5.5        |       | 5.5         |  |
| Lead/Lag                      |           |          |           |          |            |            |       |             |  |
| Lead-Lag Optimize?            |           |          |           |          |            |            |       |             |  |
| Act Effct Green (s)           |           | 20.5     | 20.5      | 20.5     |            | 43.5       |       | 43.5        |  |
| Actuated g/C Ratio            |           | 0.27     | 0.27      | 0.27     |            | 0.58       |       | 0.58        |  |
| v/c Ratio                     |           | 0.45     | 0.30      | 0.28     |            | 0.37       |       | 0.41        |  |
| Control Delay (s/veh)         |           | 24.4     | 25.1      | 12.7     |            | 13.5       |       | 9.5         |  |
| Queue Delay                   |           | 0.0      | 0.0       | 0.0      |            | 0.0        |       | 0.0         |  |
| Total Delay (s/veh)           |           | 24.4     | 25.1      | 12.7     |            | 13.5       |       | 9.5         |  |
| LOS                           |           | С        | С         | В        |            | В          |       | Α           |  |
| Approach Delay (s/veh)        |           | 24.4     |           | 17.8     |            | 13.5       |       | 9.5         |  |
| Approach LOS                  |           | С        |           | В        |            | В          |       | Α           |  |
| Queue Length 50th (m)         |           | 16.0     | 9.1       | 5.4      |            | 22.8       |       | 24.3        |  |
| Queue Length 95th (m)         |           | 32.8     | 20.5      | 17.4     |            | 53.4       |       | 35.1        |  |
| Internal Link Dist (m)        |           | 49.7     |           | 112.4    |            | 195.6      |       | 190.0       |  |
| Turn Bay Length (m)           |           |          | 45.0      |          |            |            |       |             |  |
| Base Capacity (vph)           |           | 356      | 277       | 418      |            | 1601       |       | 1606        |  |
| Starvation Cap Reductn        |           | 0        | 0         | 0        |            | 0          |       | 0           |  |
| Spillback Cap Reductn         |           | 0        | 0         | 0        |            | 0          |       | 0           |  |
| Storage Cap Reductn           |           | 0        | 0         | 0        |            | 0          |       | 0           |  |
| Reduced v/c Ratio             |           | 0.45     | 0.30      | 0.28     |            | 0.37       |       | 0.41        |  |
| Intersection Summary          |           |          |           |          |            |            |       |             |  |
| Cycle Length: 75              |           |          |           |          |            |            |       |             |  |
| Actuated Cycle Length: 75     |           |          |           |          |            |            |       |             |  |
| Offset: 47 (63%), Reference   | d to phas | se 2:NBT | L and 6:5 | BTL. Sta | art of Gre | en         |       |             |  |
| Natural Cycle: 75             | р         |          |           | ,        |            |            |       |             |  |
| Control Type: Pretimed        |           |          |           |          |            |            |       |             |  |
| Maximum v/c Ratio: 0.45       |           |          |           |          |            |            |       |             |  |
| Intersection Signal Delay (s/ | veh): 13. | 5        |           | lı İ     | ntersectio | n LOS: E   | 3     |             |  |
| Intersection Capacity Utiliza | ,         |          |           |          |            | of Service |       |             |  |
| Analysis Period (min) 15      |           |          |           |          |            |            | -     |             |  |
| ,,                            |           |          |           |          |            |            |       |             |  |
| ) I'C I DI                    | 1 0 E:01  |          |           |          |            |            |       |             |  |



| Z. Darik & Holliliw         | 55 <b>u</b>  |          |           |           |             |           |
|-----------------------------|--------------|----------|-----------|-----------|-------------|-----------|
|                             | <b>→</b>     | 4        | <b>†</b>  | -         | ļ           |           |
| Lane Group                  | EBT          | NBL      | NBT       | SBL       | SBT         | Ø3        |
| Lane Configurations         | 4            |          | 475       |           | 414         |           |
| Traffic Volume (vph)        | 26           | 52       | 490       | 24        | 544         |           |
| Future Volume (vph)         | 26           | 52       | 490       | 24        | 544         |           |
| Lane Group Flow (vph)       | 117          | 0        | 686       | 0         | 669         |           |
| Turn Type                   | NA           | Perm     | NA        | Perm      | NA          |           |
| Protected Phases            | 4            |          | 2         |           | 6           | 3         |
| Permitted Phases            |              | 2        |           | 6         |             |           |
| Detector Phase              | 4            | 2        | 2         | 6         | 6           |           |
| Switch Phase                |              |          |           |           |             |           |
| Minimum Initial (s)         | 4.4          | 10.0     | 10.0      | 4.0       | 4.0         | 1.0       |
| Minimum Split (s)           | 22.0         | 48.0     | 48.0      | 48.0      | 48.0        | 5.0       |
| Total Split (s)             | 22.0         | 48.0     | 48.0      | 48.0      | 48.0        | 5.0       |
| Total Split (%)             | 29.3%        | 64.0%    | 64.0%     | 64.0%     | 64.0%       | 7%        |
| Yellow Time (s)             | 3.0          | 3.0      | 3.0       | 3.0       | 3.0         | 2.0       |
| All-Red Time (s)            | 2.6          | 2.2      | 2.2       | 2.2       | 2.2         | 0.0       |
| Lost Time Adjust (s)        | 0.0          | ۷.۷      | 0.0       | ۷.۷       | 0.0         | 0.0       |
| Total Lost Time (s)         | 5.6          |          | 5.2       |           | 5.2         |           |
| Lead/Lag                    | Lag          |          | J.Z       |           | J.Z         | Lead      |
| Lead-Lag Optimize?          | Lag          |          |           |           |             | Loau      |
| Recall Mode                 | None         | C-Max    | C-Max     | C-Max     | C-Max       | None      |
| Act Effct Green (s)         | 11.7         | O-IVIAX  | 56.0      | O-IVIAX   | 56.0        | NOHE      |
| Actuated g/C Ratio          | 0.16         |          | 0.75      |           | 0.75        |           |
| v/c Ratio                   | 0.16         |          | 0.73      |           | 0.73        |           |
| Control Delay (s/veh)       | 38.5         |          | 3.0       |           | 3.6         |           |
| Queue Delay                 | 0.0          |          | 0.0       |           | 0.0         |           |
| Total Delay (s/veh)         | 38.5         |          | 3.0       |           | 3.6         |           |
| LOS                         | 30.3<br>D    |          | 3.0<br>A  |           | 3.0<br>A    |           |
|                             | 38.5         |          | 3.0       |           | 3.6         |           |
| Approach LOS                | 36.5<br>D    |          |           |           |             |           |
| Approach LOS                |              |          | A         |           | A<br>6.3    |           |
| Queue Length 50th (m)       | 15.5         |          | 6.0       |           |             |           |
| Queue Length 95th (m)       | 28.3         |          | 13.0      |           | 9.7         |           |
| Internal Link Dist (m)      | 39.8         |          | 31.5      |           | 195.6       |           |
| Turn Bay Length (m)         | 200          |          | 1707      |           | 2020        |           |
| Base Capacity (vph)         | 296          |          | 1787      |           | 2036        |           |
| Starvation Cap Reductn      | 0            |          | 0         |           | 0           |           |
| Spillback Cap Reductn       | 0            |          | 0         |           | 0           |           |
| Storage Cap Reductn         | 0            |          | 0         |           | 0           |           |
| Reduced v/c Ratio           | 0.40         |          | 0.38      |           | 0.33        |           |
| Intersection Summary        |              |          |           |           |             |           |
| Cycle Length: 75            |              |          |           |           |             |           |
| Actuated Cycle Length: 75   | 5            |          |           |           |             |           |
| Offset: 74 (99%), Reference |              | se 2:NBT | L and 6:5 | SBTL, Sta | art of Gree | en        |
| Natural Cycle: 75           |              |          |           | ,         |             |           |
| Control Type: Actuated-Co   | oordinated   |          |           |           |             |           |
| Maximum v/c Ratio: 0.56     |              |          |           |           |             |           |
| Intersection Signal Delay   | (a/vah): 6.1 |          |           | I.        | ntoropotio  | n I OC: A |

Splits and Phases: 2: Bank & Holmwood

Intersection Signal Delay (s/veh): 6.1 Intersection Capacity Utilization 66.5% Analysis Period (min) 15



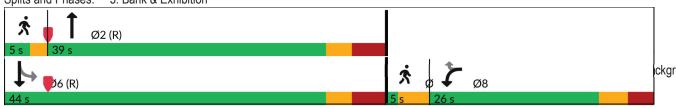
Intersection LOS: A

ICU Level of Service C

ckground Volu

3: Bank & Exhibition 07/31/2024

|                               | <b>1</b> | 4        | †           | <u> </u>   | <del> </del> |      |      |
|-------------------------------|----------|----------|-------------|------------|--------------|------|------|
| Lane Group                    | WBL      | WBR      | NBT         | SBL        | SBT          | Ø1   | Ø7   |
| Lane Configurations           | 75       | 7        | <b>†</b> 1> | 75         | <b>^</b>     |      |      |
| Traffic Volume (vph)          | 104      | 72       | 425         | 145        | 423          |      |      |
| Future Volume (vph)           | 104      | 72       | 425         | 145        | 423          |      |      |
| Lane Group Flow (vph)         | 116      | 80       | 656         | 161        | 470          |      |      |
| Turn Type                     | Prot     | Perm     | NA          | Perm       | NA           |      |      |
| Protected Phases              | 8        |          | 2           |            | 6            | 1    | 7    |
| Permitted Phases              |          | 8        |             | 6          |              |      |      |
| Detector Phase                | 8        | 8        | 2           | 6          | 6            |      |      |
| Switch Phase                  |          |          |             |            |              |      |      |
| Minimum Initial (s)           | 10.0     | 10.0     | 10.0        | 10.0       | 10.0         | 1.0  | 1.0  |
| Minimum Split (s)             | 26.0     | 26.0     | 39.0        | 44.0       | 44.0         | 5.0  | 5.0  |
| Total Split (s)               | 26.0     | 26.0     | 39.0        | 44.0       | 44.0         | 5.0  | 5.0  |
| Total Split (%)               | 34.7%    | 34.7%    | 52.0%       | 58.7%      | 58.7%        | 7%   | 7%   |
| Yellow Time (s)               | 3.3      | 3.3      | 3.0         | 3.0        | 3.0          | 2.0  | 3.5  |
| All-Red Time (s)              | 3.0      | 3.0      | 3.9         | 3.9        | 3.9          | 0.0  | 0.0  |
| Lost Time Adjust (s)          | 0.0      | 0.0      | 0.0         | 0.0        | 0.0          |      |      |
| Total Lost Time (s)           | 6.3      | 6.3      | 6.9         | 6.9        | 6.9          |      |      |
| Lead/Lag                      | Lag      | Lag      | Lag         |            |              | Lead | Lead |
| Lead-Lag Optimize?            |          |          | Yes         |            |              | Yes  | Yes  |
| Recall Mode                   | None     | None     | C-Max       | C-Max      | C-Max        | None | None |
| Act Effct Green (s)           | 11.8     | 11.8     | 54.6        | 54.6       | 54.6         |      |      |
| Actuated g/C Ratio            | 0.16     | 0.16     | 0.73        | 0.73       | 0.73         |      |      |
| v/c Ratio                     | 0.48     | 0.33     | 0.33        | 0.38       | 0.21         |      |      |
| Control Delay (s/veh)         | 35.1     | 10.9     | 5.0         | 6.5        | 3.0          |      |      |
| Queue Delay                   | 0.0      | 0.0      | 0.0         | 0.0        | 0.0          |      |      |
| Total Delay (s/veh)           | 35.1     | 10.9     | 5.0         | 6.5        | 3.0          |      |      |
| LOS                           | D        | В        | Α           | Α          | Α            |      |      |
| Approach Delay (s/veh)        | 25.2     |          | 5.0         |            | 3.9          |      |      |
| Approach LOS                  | С        |          | Α           |            | Α            |      |      |
| Queue Length 50th (m)         | 15.4     | 0.0      | 14.2        | 4.6        | 6.4          |      |      |
| Queue Length 95th (m)         | 28.2     | 10.3     | 27.1        | 8.1        | 8.7          |      |      |
| Internal Link Dist (m)        | 30.6     |          | 33.7        |            | 44.8         |      |      |
| Turn Bay Length (m)           |          |          |             | 40.0       |              |      |      |
| Base Capacity (vph)           | 405      | 348      | 1972        | 429        | 2287         |      |      |
| Starvation Cap Reductn        | 0        | 0        | 0           | 0          | 0            |      |      |
| Spillback Cap Reductn         | 0        | 0        | 0           | 0          | 0            |      |      |
| Storage Cap Reductn           | 0        | 0        | 0           | 0          | 0            |      |      |
| Reduced v/c Ratio             | 0.29     | 0.23     | 0.33        | 0.38       | 0.21         |      |      |
| Intersection Summary          |          |          |             |            |              |      |      |
| Cycle Length: 75              |          |          |             |            |              |      |      |
| Actuated Cycle Length: 75     |          |          |             |            |              |      |      |
| Offset: 0 (0%), Referenced to | to phase | 2:NBT ar | nd 6:SBT    | L, Start o | f Green      |      |      |
| Natural Cycle: 75             |          |          |             |            |              |      |      |
| Control Type: Actuated Con    | rdinated |          |             |            |              |      |      |


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay (s/veh): 7.2 Intersection LOS: A Intersection Capacity Utilization 61.1% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition




ckground Volu

### 6: Bank & Aylmer

|                               | ۶                  | 1        | 1         | <b>↓</b>  |                      |  |
|-------------------------------|--------------------|----------|-----------|-----------|----------------------|--|
| Lane Group                    | EBL                | NBL      | NBT       | SBT       | Ø3                   |  |
| Lane Configurations           | W                  |          | 414       | <b>†</b>  |                      |  |
| Traffic Volume (vph)          | 72                 | 19       | 687       | 511       |                      |  |
| Future Volume (vph)           | 72                 | 19       | 687       | 511       |                      |  |
| Lane Group Flow (vph)         | 88                 | 0        | 784       | 651       |                      |  |
| Turn Type                     | Prot               | Perm     | NA        | NA        |                      |  |
| Protected Phases              | 4                  |          | 2         | 6         | 3                    |  |
| Permitted Phases              | 4                  | 2        |           | 6         |                      |  |
| Detector Phase                | 4                  | 2        | 2         | 6         |                      |  |
| Switch Phase                  |                    |          |           |           |                      |  |
| Minimum Initial (s)           | 10.0               | 30.0     | 30.0      | 30.0      | 1.0                  |  |
| Minimum Split (s)             | 22.0               | 63.0     | 63.0      | 63.0      | 5.0                  |  |
| Total Split (s)               | 22.0               | 63.0     | 63.0      | 63.0      | 5.0                  |  |
| Total Split (%)               | 24.4%              | 70.0%    | 70.0%     | 70.0%     | 6%                   |  |
| Yellow Time (s)               | 3.3                | 3.0      | 3.0       | 3.0       | 2.0                  |  |
| All-Red Time (s)              | 2.2                | 2.2      | 2.2       | 2.2       | 1.0                  |  |
| Lost Time Adjust (s)          | 0.0                |          | 0.0       | 0.0       |                      |  |
| Total Lost Time (s)           | 5.5                |          | 5.2       | 5.2       |                      |  |
| Lead/Lag                      | Lag                |          |           |           | Lead                 |  |
| Lead-Lag Optimize?            |                    |          |           |           |                      |  |
| Recall Mode                   | Ped                | C-Max    | C-Max     | C-Max     | Max                  |  |
| Act Effct Green (s)           | 14.1               |          | 60.2      | 60.2      |                      |  |
| Actuated g/C Ratio            | 0.16               |          | 0.67      | 0.67      |                      |  |
| v/c Ratio                     | 0.36               |          | 0.40      | 0.34      |                      |  |
| Control Delay (s/veh)         | 36.7               |          | 5.0       | 6.5       |                      |  |
| Queue Delay                   | 0.0                |          | 0.0       | 0.0       |                      |  |
| Total Delay (s/veh)           | 36.7               |          | 5.0       | 6.5       |                      |  |
| LOS                           | D                  |          | Α         | Α         |                      |  |
| Approach Delay (s/veh)        | 36.7               |          | 5.0       | 6.5       |                      |  |
| Approach LOS                  | D                  |          | Α         | Α         |                      |  |
| Queue Length 50th (m)         | 13.0               |          | 14.0      | 20.6      |                      |  |
| Queue Length 95th (m)         | 26.6               |          | 20.7      | 29.5      |                      |  |
| Internal Link Dist (m)        | 76.7               |          | 28.1      | 10.1      |                      |  |
| Turn Bay Length (m)           |                    |          |           |           |                      |  |
| Base Capacity (vph)           | 283                |          | 1947      | 1940      |                      |  |
| Starvation Cap Reductn        | 0                  |          | 0         | 0         |                      |  |
| Spillback Cap Reductn         | 0                  |          | 0         | 0         |                      |  |
| Storage Cap Reductn           | 0                  |          | 0         | 0         |                      |  |
| Reduced v/c Ratio             | 0.31               |          | 0.40      | 0.34      |                      |  |
|                               |                    |          |           |           |                      |  |
| Intersection Summary          |                    |          |           |           |                      |  |
| Cycle Length: 90              |                    |          |           |           |                      |  |
| Actuated Cycle Length: 90     | . 1 (              | 0.115=   |           | NDT Ct    |                      |  |
| Offset: 87 (97%), Reference   | ed to phas         | se 2:NBT | L and 6:S | BI, Start | or Green             |  |
| Natural Cycle: 90             | р                  |          |           |           |                      |  |
| Control Type: Actuated-Coo    | ordinated          |          |           |           |                      |  |
| Maximum v/c Ratio: 0.40       | / . I \ <b>-</b> - |          |           |           |                      |  |
| Intersection Signal Delay (s  | •                  |          |           |           | tersection LOS: A    |  |
| Intersection Capacity Utiliza | ation 55.1°        | <b>%</b> |           | IC        | U Level of Service B |  |
| Analysis Period (min) 15      |                    |          |           |           |                      |  |

Splits and Phases: 6: Bank & Aylmer



|                        | *     | <b>→</b> | •     | <b>←</b> | 4     | <b>†</b> | -     | Ţ     |      |      |  |
|------------------------|-------|----------|-------|----------|-------|----------|-------|-------|------|------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBL   | SBT   | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4        |       | 4        |       | 474      |       | 414   |      |      |  |
| Traffic Volume (vph)   | 57    | 52       | 18    | 59       | 20    | 473      | 106   | 540   |      |      |  |
| Future Volume (vph)    | 57    | 52       | 18    | 59       | 20    | 473      | 106   | 540   |      |      |  |
| Lane Group Flow (vph)  | 0     | 151      | 0     | 267      | 0     | 568      | 0     | 791   |      |      |  |
| Turn Type              | Perm  | NA       | Perm  | NA       | Perm  | NA       | pm+pt | NA    |      |      |  |
| Protected Phases       |       | 4        |       | 8        |       | 2        | 1     | 6     | 3    | 7    |  |
| Permitted Phases       | 4     |          | 8     |          | 2     |          | 6     |       |      |      |  |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0  | 60.0  | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0  | 60.0  | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8%    | 47.8% | 47.8%    | 18.9% | 66.7% | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0   | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6      | 3.0   | 3.0      | 2.9   | 3.0   | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0      |       | 0.0      |       | 0.0   |      |      |  |
| Total Lost Time (s)    |       | 5.6      |       | 5.6      |       | 6.0      |       | 6.0   |      |      |  |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag      | Lag   | Lag      | Lead  |       | Lead | Lead |  |
| Lead-Lag Optimize?     |       |          | Yes   | Yes      | Yes   | Yes      | Yes   |       |      | Yes  |  |
| Act Effct Green (s)    |       | 19.4     |       | 19.4     |       | 37.0     |       | 54.0  |      |      |  |
| Actuated g/C Ratio     |       | 0.22     |       | 0.22     |       | 0.41     |       | 0.60  |      |      |  |
| v/c Ratio              |       | 0.78     |       | 0.81     |       | 0.49     |       | 0.59  |      |      |  |
| Control Delay (s/veh)  |       | 62.2     |       | 40.2     |       | 21.2     |       | 7.5   |      |      |  |
| Queue Delay            |       | 0.0      |       | 0.0      |       | 0.0      |       | 0.0   |      |      |  |
| Total Delay (s/veh)    |       | 62.2     |       | 40.2     |       | 21.2     |       | 7.5   |      |      |  |
| LOS                    |       | Е        |       | D        |       | С        |       | Α     |      |      |  |
| Approach Delay (s/veh) |       | 62.2     |       | 40.2     |       | 21.2     |       | 7.5   |      |      |  |
| Approach LOS           |       | Е        |       | D        |       | С        |       | Α     |      |      |  |
| Queue Length 50th (m)  |       | 24.8     |       | 26.7     |       | 36.7     |       | 14.5  |      |      |  |
| Queue Length 95th (m)  |       | #56.1    |       | #67.2    |       | 51.4     |       | 18.1  |      |      |  |
| Internal Link Dist (m) |       | 75.1     |       | 136.0    |       | 63.1     |       | 79.0  |      |      |  |
| Turn Bay Length (m)    |       |          |       |          |       |          |       |       |      |      |  |
| Base Capacity (vph)    |       | 193      |       | 331      |       | 1158     |       | 1337  |      |      |  |
| Starvation Cap Reductn |       | 0        |       | 0        |       | 0        |       | 0     |      |      |  |
| Spillback Cap Reductn  |       | 0        |       | 0        |       | 0        |       | 0     |      |      |  |
| Storage Cap Reductn    |       | 0        |       | 0        |       | 0        |       | 0     |      |      |  |
| Reduced v/c Ratio      |       | 0.78     |       | 0.81     |       | 0.49     |       | 0.59  |      |      |  |

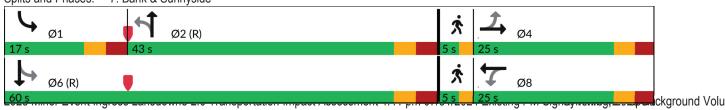
#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

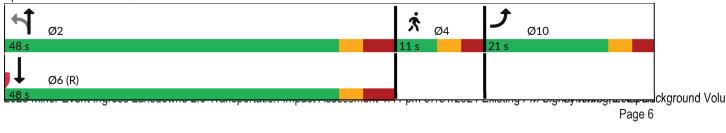
Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.81


Intersection Signal Delay (s/veh): 21.4 Intersection LOS: C
Intersection Capacity Utilization 80.9% ICU Level of Service D

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


Splits and Phases: 7: Bank & Sunnyside



Page 5

|                              | ۶           | 4         | 1          | <b>+</b>    |                        |   |
|------------------------------|-------------|-----------|------------|-------------|------------------------|---|
| Lane Group                   | EBL         | NBL       | NBT        | SBT         | Ø4                     |   |
| Lane Configurations          | W           |           | 4          | <b>-</b>    |                        |   |
| Traffic Volume (vph)         | 51          | 66        | 227        | 537         |                        |   |
| Future Volume (vph)          | 51          | 66        | 227        | 537         |                        |   |
| Lane Group Flow (vph)        | 120         | 0         | 325        | 694         |                        |   |
| Turn Type                    | Prot        | Perm      | NA         | NA          |                        |   |
| Protected Phases             | 10          |           | 2          | 6           | 4                      |   |
| Permitted Phases             |             | 2         |            |             |                        |   |
| Minimum Split (s)            | 21.0        | 48.0      | 48.0       | 48.0        | 11.0                   |   |
| Total Split (s)              | 21.0        | 48.0      | 48.0       | 48.0        | 11.0                   |   |
| Total Split (%)              | 26.3%       | 60.0%     | 60.0%      | 60.0%       | 14%                    |   |
| Yellow Time (s)              | 3.0         | 3.0       | 3.0        | 3.0         | 3.0                    |   |
| All-Red Time (s)             | 2.7         | 3.8       | 3.8        | 3.8         | 2.7                    |   |
| Lost Time Adjust (s)         | 0.0         |           | 0.0        | 0.0         |                        |   |
| Total Lost Time (s)          | 5.7         |           | 6.8        | 6.8         |                        |   |
| Lead/Lag                     |             |           |            |             |                        |   |
| Lead-Lag Optimize?           |             |           |            |             |                        |   |
| Act Effct Green (s)          | 15.3        |           | 41.2       | 41.2        |                        |   |
| Actuated g/C Ratio           | 0.19        |           | 0.52       | 0.52        |                        |   |
| v/c Ratio                    | 0.41        |           | 0.67       | 0.82        |                        |   |
| Control Delay (s/veh)        | 33.4        |           | 23.0       | 26.1        |                        |   |
| Queue Delay                  | 0.0         |           | 0.0        | 0.0         |                        |   |
| Total Delay (s/veh)          | 33.4        |           | 23.0       | 26.1        |                        |   |
| LOS                          | С           |           | С          | С           |                        |   |
| Approach Delay (s/veh)       | 33.4        |           | 23.0       | 26.1        |                        |   |
| Approach LOS                 | С           |           | С          | С           |                        |   |
| Queue Length 50th (m)        | 16.2        |           | 34.5       | 82.9        |                        |   |
| Queue Length 95th (m)        | 31.3        |           | 65.8       | #148.1      |                        |   |
| Internal Link Dist (m)       | 57.2        |           | 0.1        | 5.9         |                        |   |
| Turn Bay Length (m)          |             |           |            |             |                        |   |
| Base Capacity (vph)          | 292         |           | 483        | 851         |                        |   |
| Starvation Cap Reductn       | 0           |           | 0          | 0           |                        |   |
| Spillback Cap Reductn        | 0           |           | 0          | 0           |                        |   |
| Storage Cap Reductn          | 0           |           | 0          | 0           |                        |   |
| Reduced v/c Ratio            | 0.41        |           | 0.67       | 0.82        |                        |   |
| Intersection Summary         |             |           |            |             |                        |   |
| Cycle Length: 80             |             |           |            |             |                        |   |
| Actuated Cycle Length: 80    |             |           |            |             |                        |   |
| Offset: 0 (0%), Referenced   |             | 6:SBT. S  | tart of Gr | een         |                        |   |
| Natural Cycle: 80            | 10          | 0.02., 0  |            |             |                        |   |
| Control Type: Pretimed       |             |           |            |             |                        |   |
| Maximum v/c Ratio: 0.82      |             |           |            |             |                        |   |
| Intersection Signal Delay (  | s/veh): 26  | 0         |            | Ir          | ntersection LOS: C     |   |
| Intersection Capacity Utiliz | ,           |           |            |             | CU Level of Service [  | D |
| Analysis Period (min) 15     |             | , ,       |            | T.          | 20 20101 01 001 1100 1 |   |
| # 95th percentile volume     | exceeds o   | anacity   | Ullelle m  | av he lone  | ner                    |   |
| Queue shown is maxim         |             |           |            | ay be lolly | yoı.                   |   |
| Queue Shown is maxim         | um aller lv | vo cycles | •          |             |                        |   |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



| Intersection                                                        |
|---------------------------------------------------------------------|
| Intersection Delay, s/veh 9.6                                       |
| Intersection LOS A                                                  |
|                                                                     |
| M I EDI EDT WOT WOD ON COD                                          |
| Movement EBL EBT WBT WBR SBL SBR                                    |
| Lane Configurations 4 1                                             |
| Traffic Vol, veh/h 5 323 185 5 5                                    |
| Future Vol, veh/h 5 323 185 5 5                                     |
| Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90                      |
| Heavy Vehicles, % 2 2 2 2 2 2                                       |
| Mvmt Flow 6 359 206 6 6 6                                           |
| Number of Lanes 0 1 1 0 1 0                                         |
| Approach EB WB SB                                                   |
| Opposing Approach WB EB                                             |
| Opposing Lanes 1 1 0                                                |
| Conflicting Approach Left SB WB                                     |
| Conflicting Lanes Left 1 0 1                                        |
| Conflicting Approach Right SB EB                                    |
| Conflicting Lanes Right 0 1 1                                       |
| HCM Control Delay, s/veh 10.1 8.7 8                                 |
| HCM LOS B A A                                                       |
|                                                                     |
| EDI 4 MDI 4 ODI 4                                                   |
| Lane EBLn1 WBLn1 SBLn1                                              |
| Vol Left, % 2% 0% 50%                                               |
| Vol Thru, % 98% 97% 0%                                              |
| Vol Right, % 0% 3% 50%                                              |
| Sign Control Stop Stop Stop                                         |
| Traffic Vol by Lane 328 190 10                                      |
| LT Vol 5 0 5                                                        |
| Through Vol 323 185 0                                               |
| RT Vol 0 5 5                                                        |
| Lane Flow Rate 364 211 11                                           |
| Geometry Grp 1 1 1                                                  |
| Degree of Util (X) 0.416 0.247 0.015                                |
| Departure Headway (Hd) 4.114 4.209 4.957                            |
| Convergence, Y/N Yes Yes Yes                                        |
| Cap 867 840 726                                                     |
| 0 1 7                                                               |
| Service Time 2.174 2.297 2.957                                      |
| Service Time 2.174 2.297 2.957  HCM Lane V/C Ratio 0.42 0.251 0.015 |
|                                                                     |
| HCM Lane V/C Ratio 0.42 0.251 0.015                                 |

| Intersection               |          |       |       |       |      |      |
|----------------------------|----------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.2      |       |       |       |      |      |
| Intersection LOS           | Α        |       |       |       |      |      |
|                            |          |       |       |       |      |      |
| Movement                   | EBT      | EBR   | WBL   | WBT   | NBL  | NBR  |
| Lane Configurations        | <b>^</b> |       |       | 4     | W    |      |
| Traffic Vol, veh/h         | 16       | 5     | 5     | 49    | 5    | 5    |
| Future Vol, veh/h          | 16       | 5     | 5     | 49    | 5    | 5    |
| Peak Hour Factor           | 0.90     | 0.90  | 0.90  | 0.90  | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2        | 2     | 2     | 2     | 2    | 2    |
| Mvmt Flow                  | 18       | 6     | 6     | 54    | 6    | 6    |
| Number of Lanes            | 1        | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB       |       | WB    |       | NB   |      |
| Opposing Approach          | WB       |       | EB    |       |      |      |
| Opposing Lanes             | 1        |       | 1     |       | 0    |      |
| Conflicting Approach Left  | •        |       | NB    |       | EB   |      |
| Conflicting Lanes Left     | 0        |       | 1     |       | 1    |      |
| Conflicting Approach Right | NB       |       |       |       | WB   |      |
| Conflicting Lanes Right    | 1        |       | 0     |       | 1    |      |
| HCM Control Delay, s/veh   | 7        |       | 7.3   |       | 7    |      |
| HCM LOS                    | A        |       | Α     |       | A    |      |
|                            |          |       |       |       |      |      |
| Lane                       |          | NBLn1 | EBLn1 | WBLn1 |      |      |
| Vol Left, %                |          | 50%   | 0%    | 9%    |      |      |
| Vol Thru, %                |          | 0%    | 76%   | 91%   |      |      |
| Vol Right, %               |          | 50%   | 24%   | 0%    |      |      |
| Sign Control               |          | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |          | 10    | 21    | 54    |      |      |
| LT Vol                     |          | 5     | 0     | 5     |      |      |
| Through Vol                |          | 0     | 16    | 49    |      |      |
| RT Vol                     |          | 5     | 5     | 0     |      |      |
| Lane Flow Rate             |          | 11    | 23    | 60    |      |      |
| Geometry Grp               |          | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |          | 0.012 | 0.025 | 0.067 |      |      |
| Departure Headway (Hd)     |          | 3.878 | 3.855 | 3.99  |      |      |
| Convergence, Y/N           |          | Yes   | Yes   | Yes   |      |      |
| Cap                        |          | 920   | 930   | 902   |      |      |
| Service Time               |          | 1.912 | 1.871 | 1.997 |      |      |
| HCM Lane V/C Ratio         |          | 0.012 | 0.025 | 0.067 |      |      |
| HCM Control Delay, s/veh   |          | 7     | 7     | 7.3   |      |      |
| HCM Lane LOS               |          | Α     | Α     | Α     |      |      |
| LICM OF the tile O         |          | 0     | 0.4   | 0.0   |      |      |

0.1

3.3

0.1

| La Caraca Cara                          |      |                     |                     |                    |      |      |
|-----------------------------------------|------|---------------------|---------------------|--------------------|------|------|
| Intersection                            | 447  |                     |                     |                    |      |      |
| Intersection Delay, s/veh               | 11.7 |                     |                     |                    |      |      |
| Intersection LOS                        | В    |                     |                     |                    |      |      |
|                                         |      |                     |                     |                    |      |      |
| Movement                                | EBT  | EBR                 | WBL                 | WBT                | NBL  | NBR  |
| Lane Configurations                     | f)   |                     |                     | 4                  | W    |      |
| Traffic Vol, veh/h                      | 16   | 5                   | 121                 | 45                 | 282  | 110  |
| Future Vol, veh/h                       | 16   | 5                   | 121                 | 45                 | 282  | 110  |
| Peak Hour Factor                        | 0.90 | 0.90                | 0.90                | 0.90               | 0.90 | 0.90 |
| Heavy Vehicles, %                       | 2    | 2                   | 2                   | 2                  | 2    | 2    |
| Mvmt Flow                               | 18   | 6                   | 134                 | 50                 | 313  | 122  |
| Number of Lanes                         | 1    | 0                   | 0                   | 1                  | 1    | 0    |
| Approach                                | EB   |                     | WB                  |                    | NB   |      |
| Opposing Approach                       | WB   |                     | EB                  |                    |      |      |
| Opposing Lanes                          | 1    |                     | 1                   |                    | 0    |      |
| Conflicting Approach Left               | •    |                     | NB                  |                    | EB   |      |
| Conflicting Lanes Left                  | 0    |                     | 1                   |                    | 1    |      |
| Conflicting Approach Right              | NB   |                     |                     |                    | WB   |      |
| Conflicting Lanes Right                 | 1    |                     | 0                   |                    | 1    |      |
| HCM Control Delay, s/veh                | 8.3  |                     | 10                  |                    | 12.6 |      |
| HCM LOS                                 | А    |                     | Α                   |                    | В    |      |
|                                         |      |                     |                     |                    |      |      |
| Lane                                    |      | NBLn1               | EBLn1               | WBLn1              |      |      |
| Vol Left, %                             |      | 72%                 | 0%                  | 73%                |      |      |
| Vol Thru, %                             |      | 0%                  | 76%                 | 27%                |      |      |
| Vol Right, %                            |      | 28%                 | 24%                 | 0%                 |      |      |
| Sign Control                            |      | Stop                | Stop                | Stop               |      |      |
| Traffic Vol by Lane                     |      | 392                 | 21                  | 166                |      |      |
| LT Vol                                  |      | 282                 | 0                   | 121                |      |      |
| Through Vol                             |      | 0                   | 16                  | 45                 |      |      |
| RT Vol                                  |      | 110                 | 5                   | 0                  |      |      |
| Lane Flow Rate                          |      | 436                 | 23                  | 184                |      |      |
| Geometry Grp                            |      | 1                   | 1                   | 1                  |      |      |
| Degree of Util (X)                      |      | 0.539               | 0.033               | 0.263              |      |      |
| • ,                                     |      |                     |                     | 5.132              |      |      |
| Departure Headway (Hd)                  |      | 4.451               | 5.07                | J. 132             |      |      |
| Departure Headway (Hd) Convergence, Y/N |      | 4.451<br>Yes        | 5.07<br>Yes         |                    |      |      |
| Convergence, Y/N                        |      | Yes                 | Yes                 | Yes                |      |      |
|                                         |      | Yes<br>810          | Yes<br>702          | Yes<br>697         |      |      |
| Convergence, Y/N Cap Service Time       |      | Yes<br>810<br>2.482 | Yes<br>702<br>3.132 | Yes<br>697<br>3.18 |      |      |
| Convergence, Y/N Cap                    |      | Yes<br>810          | Yes<br>702          | Yes<br>697         |      |      |

| Intersection              |     |     |     |      |     |      |     |     |     |     |     |     |
|---------------------------|-----|-----|-----|------|-----|------|-----|-----|-----|-----|-----|-----|
| Intersection Delay, s/veh | 8.3 |     |     |      |     |      |     |     |     |     |     |     |
| Intersection LOS          | Α   |     |     |      |     |      |     |     |     |     |     |     |
|                           |     |     |     |      |     |      |     |     |     |     |     |     |
| Movement                  | ERI | ERT | ERD | W/RI | WRT | \MRD | NRI | NRT | NRD | CRI | CRT | CRD |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 61   | 51   | 0    | 0    | 0    | 139  | 61   | 42   | 37   | 0    | 0    | 82   |
| Future Vol, veh/h          | 61   | 51   | 0    | 0    | 0    | 139  | 61   | 42   | 37   | 0    | 0    | 82   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 68   | 57   | 0    | 0    | 0    | 154  | 68   | 47   | 41   | 0    | 0    | 91   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.7  |      |      |      |      | 7.9  | 8.7  |      |      |      |      | 7.7  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

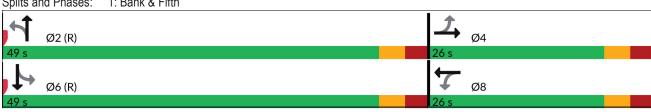
| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 54%   | 0%    | 0%    |  |
| Vol Thru, %              | 30%   | 46%   | 0%    | 0%    |  |
| Vol Right, %             | 26%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 140   | 112   | 139   | 82    |  |
| LT Vol                   | 61    | 61    | 0     | 0     |  |
| Through Vol              | 42    | 51    | 0     | 0     |  |
| RT Vol                   | 37    | 0     | 139   | 82    |  |
| Lane Flow Rate           | 156   | 124   | 154   | 91    |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.198 | 0.165 | 0.173 | 0.105 |  |
| Departure Headway (Hd)   | 4.579 | 4.762 | 4.043 | 4.137 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 782   | 753   | 887   | 865   |  |
| Service Time             | 2.611 | 2.794 | 2.072 | 2.172 |  |
| HCM Lane V/C Ratio       | 0.199 | 0.165 | 0.174 | 0.105 |  |
| HCM Control Delay, s/veh | 8.7   | 8.7   | 7.9   | 7.7   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.7   | 0.6   | 0.6   | 0.4   |  |

| Intersection           |         |         |        |       |            |      |
|------------------------|---------|---------|--------|-------|------------|------|
| Int Delay, s/veh       | 12.7    |         |        |       |            |      |
| Movement               | EBL     | EBR     | NBL    | NBT   | SBT        | SBR  |
| Lane Configurations    | LDL     | 7       | HUL    | 44    | <u>100</u> | OBIN |
| Traffic Vol, veh/h     | 5       | 268     | 143    | 649   | 477        | 55   |
| Future Vol, veh/h      | 5       | 268     | 143    | 649   | 477        | 55   |
|                        |         |         |        |       |            | 107  |
| Conflicting Peds, #/hr |         | 0       | 178    | 0     | 0          |      |
| Sign Control           | Stop    | Stop    | Free   | Free  | Free       | Free |
| RT Channelized         | -       | None    | -      | None  | -          | None |
| Storage Length         | -       | 0       | -      | -     | -          | -    |
| Veh in Median Storag   |         | -       | -      | 0     | 0          | -    |
| Grade, %               | 0       | -       | -      | 0     | 0          | -    |
| Peak Hour Factor       | 90      | 90      | 90     | 90    | 90         | 90   |
| Heavy Vehicles, %      | 5       | 5       | 5      | 5     | 5          | 5    |
| Mvmt Flow              | 6       | 298     | 159    | 721   | 530        | 61   |
|                        |         |         |        |       |            |      |
| Major/Minor            | Minor   | N       | Major1 | N     | 10ior0     |      |
|                        | Minor2  |         | Major1 |       | /lajor2    |      |
| Conflicting Flow All   | 1417    | 739     | 769    | 0     | -          | 0    |
| Stage 1                | 739     | -       | -      | -     | -          | -    |
| Stage 2                | 678     | -       | -      | -     | -          | -    |
| Critical Hdwy          |         | 6.275   | 4.175  | -     | -          | -    |
| Critical Hdwy Stg 1    | 5.475   | -       | -      | -     | -          | -    |
| Critical Hdwy Stg 2    | 5.875   | -       | -      | -     | -          | -    |
| Follow-up Hdwy         | 3.54753 | 3.34752 | 2.2475 | -     | -          | -    |
| Pot Cap-1 Maneuver     | 136     | 410     | 827    | -     | -          | -    |
| Stage 1                | 465     | -       | -      | -     | -          | -    |
| Stage 2                | 460     | _       | -      | _     | _          | _    |
| Platoon blocked, %     |         |         |        | _     | _          | _    |
| Mov Cap-1 Maneuver     | 63      | 333     | 671    | _     | _          | _    |
| Mov Cap-2 Maneuver     |         | -       | -      | _     | _          | _    |
| Stage 1                | 265     | _       | _      | _     | _          | _    |
| Stage 2                | 373     | _       | _      | _     |            | _    |
| Stage 2                | 3/3     | -       |        | -     | -          | -    |
|                        |         |         |        |       |            |      |
| Approach               | EB      |         | NB     |       | SB         |      |
| HCM Control Delay, s   | /62.12  |         | 4.2    |       | 0          |      |
| HCM LOS                | F       |         |        |       |            |      |
| 110111200              | •       |         |        |       |            |      |
|                        |         |         |        |       |            |      |
| Minor Lane/Major Mvr   | mt      | NBL     | NBTE   | EBLn1 | SBT        | SBR  |
| Capacity (veh/h)       |         | 537     | -      | 333   | -          | -    |
| HCM Lane V/C Ratio     |         | 0.237   | -      | 0.894 | -          | -    |
| HCM Control Delay (s   | s/veh)  | 12      | 2.5    |       | -          | -    |
| HCM Lane LOS           |         | В       | Α      | F     | -          | -    |
| HCM 95th %tile Q(veh   | h)      | 0.9     | -      | 8.6   | _          | -    |
|                        | /       |         |        |       |            |      |

| Intersection           |         |       |         |          |          |      |
|------------------------|---------|-------|---------|----------|----------|------|
| Int Delay, s/veh       | 0.4     |       |         |          |          |      |
| Movement               | EBL     | EBR   | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    | LDL     | T T   | HDL     | <b>†</b> | <u>0</u> | OBIN |
| Traffic Vol, veh/h     | 4       | 37    | 0       | 777      | 753      | 0    |
| Future Vol, veh/h      | 4       | 37    | 0       | 777      | 753      | 0    |
| Conflicting Peds, #/hr |         | 0     | 0       | 0        | 0        | 86   |
| Sign Control           | Stop    | Stop  | Free    | Free     | Free     | Free |
| RT Channelized         | -<br>-  |       |         | None     |          | None |
| Storage Length         | -       | 0     | _       | -        | -        | -    |
| Veh in Median Storag   |         | -     | _       | 0        | 0        |      |
| Grade, %               | 0       | _     |         | 0        | 0        | _    |
| Peak Hour Factor       | 90      | 90    | 90      | 90       | 90       | 90   |
|                        | 5       | 5     | 5       | 5        | 5        | 5    |
| Heavy Vehicles, %      | 4       | 41    |         | 863      | 837      |      |
| Mvmt Flow              | 4       | 41    | 0       | 003      | 031      | 0    |
|                        |         |       |         |          |          |      |
| Major/Minor            | Minor2  | N     | /lajor1 | N        | /lajor2  |      |
| Conflicting Flow All   | 1268    | 837   | -       | 0        | -        | 0    |
| Stage 1                | 837     | -     | -       | -        | -        | -    |
| Stage 2                | 432     | -     | -       | -        | -        | -    |
| Critical Hdwy          | 6.675   | 6.275 | -       | -        | _        | -    |
| Critical Hdwy Stg 1    | 5.475   | -     | -       | -        | -        | -    |
| Critical Hdwy Stg 2    | 5.875   | _     | _       | _        | _        | _    |
|                        | 3.54753 | 3475  | _       | _        | _        | _    |
| Pot Cap-1 Maneuver     | 169     | 360   | 0       | _        | _        | 0    |
| Stage 1                | 417     | -     | 0       | _        | _        | 0    |
| Stage 2                | 616     | _     | 0       | _        | _        | 0    |
| Platoon blocked, %     | 010     |       | U       | _        | _        | U    |
| Mov Cap-1 Maneuver     | r 169   | 360   | _       |          | _        | _    |
| Mov Cap-1 Maneuver     |         | -     | _       | _        | -        | _    |
| Stage 1                | 417     | _     | -       | -        | -        |      |
|                        | 616     |       | -       | _        |          | -    |
| Stage 2                | 010     | -     | -       | -        | -        | -    |
|                        |         |       |         |          |          |      |
| Approach               | EB      |       | NB      |          | SB       |      |
| HCM Control Delay, s   |         |       | 0       |          | 0        |      |
| HCM LOS                | С       |       |         |          |          |      |
|                        |         |       |         |          |          |      |
|                        |         |       |         |          |          |      |
| Minor Lane/Major Mvi   | mt      | NBTE  |         | SBT      |          |      |
| Capacity (veh/h)       |         | -     |         | -        |          |      |
| HCM Lane V/C Ratio     |         | -     | 0.114   | -        |          |      |
| HCM Control Delay (s   | s/veh)  | -     | 16.3    | -        |          |      |
| HCM Lane LOS           |         | -     | С       | -        |          |      |
| HCM 95th %tile Q(vel   | h)      | -     | 0.4     | -        |          |      |
| •                      |         |       |         |          |          |      |

| Intersection           |               |           |         |          |          |      |
|------------------------|---------------|-----------|---------|----------|----------|------|
| Int Delay, s/veh       | 4.8           |           |         |          |          |      |
|                        | EBL           | EDD       | NDI     | NBT      | SBT      | SBR  |
| Movement               |               | EBR       | NBL     |          |          | SBK  |
| Lane Configurations    | 70            | <b>50</b> | 400     | <b>€</b> | <b>∱</b> | 075  |
| Traffic Vol, veh/h     | 79            | 59        | 120     | 217      | 326      | 275  |
| Future Vol, veh/h      | 79            | 59        | 120     | 217      | 326      | 275  |
| Conflicting Peds, #/hr | 0             | 0         | _ 0     | _ 0      | _ 0      | _ 0  |
| Sign Control           | Stop          | Stop      | Free    | Free     | Free     | Free |
| RT Channelized         | -             |           | -       | None     | -        | None |
| Storage Length         | 0             | -         | -       | -        | -        | -    |
| Veh in Median Storage  |               | -         | -       | 0        | 0        | -    |
| Grade, %               | 0             | -         | -       | 0        | 0        | -    |
| Peak Hour Factor       | 90            | 90        | 90      | 90       | 90       | 90   |
| Heavy Vehicles, %      | 0             | 0         | 0       | 0        | 0        | 0    |
| Mvmt Flow              | 88            | 66        | 133     | 241      | 362      | 306  |
|                        |               |           |         |          |          |      |
| Major/Minor            | line 2        |           | lais=1  |          | lais=0   |      |
|                        | linor2        |           | /lajor1 |          | /lajor2  |      |
| Conflicting Flow All   | 1023          | 515       | 668     | 0        | -        | 0    |
| Stage 1                | 515           | -         | -       | -        | -        | -    |
| Stage 2                | 508           | -         | -       | -        | -        | -    |
| Critical Hdwy          | 6.4           | 6.2       | 4.1     | -        | -        | -    |
| Critical Hdwy Stg 1    | 5.4           | -         | -       | -        | -        | -    |
| Critical Hdwy Stg 2    | 5.4           | -         | -       | -        | -        | -    |
| Follow-up Hdwy         | 3.5           | 3.3       | 2.2     | -        | -        | -    |
| Pot Cap-1 Maneuver     | 263           | 564       | 932     | -        | -        | -    |
| Stage 1                | 604           | -         | -       | -        | -        | -    |
| Stage 2                | 608           | -         | -       | -        | -        | _    |
| Platoon blocked, %     |               |           |         | _        | _        | _    |
| Mov Cap-1 Maneuver     | 220           | 564       | 932     | _        | _        | _    |
| Mov Cap-1 Maneuver     | 220           | -         | 332     | _        | _        | _    |
|                        | 504           |           |         |          |          |      |
| Stage 1                |               | -         | -       | -        | -        | -    |
| Stage 2                | 608           | -         | -       | -        | -        | -    |
|                        |               |           |         |          |          |      |
| Approach               | EB            |           | NB      |          | SB       |      |
| HCM Control Delay, s/  |               |           | 3.39    |          | 0        |      |
| HCM LOS                | <b>2</b> 9.29 |           | 0.00    |          | U        |      |
| I IOIVI LOO            | U             |           |         |          |          |      |
|                        |               |           |         |          |          |      |
| Minor Lane/Major Mvm   | nt            | NBL       | NBTE    | EBLn1    | SBT      | SBR  |
| Capacity (veh/h)       |               | 641       | -       | 298      | _        | _    |
| HCM Lane V/C Ratio     |               | 0.143     | -       | 0.515    | -        | -    |
| HCM Control Delay (s/  | veh)          | 9.5       | 0       | 29.3     | -        | _    |
| HCM Lane LOS           |               | Α         | A       | D        | -        | -    |
| HCM 95th %tile Q(veh)  | )             | 0.5       | -       | 2.8      | _        | _    |
|                        | ,             | 3.0       |         | 0        |          |      |

| Intersection           |           |            |            |       |         |          |
|------------------------|-----------|------------|------------|-------|---------|----------|
| Int Delay, s/veh       | 0.6       |            |            |       |         |          |
| Movement               | WBL       | WBR        | NBT        | NBR   | SBL     | SBT      |
| Lane Configurations    | TTDL      | VVDIX      | <b>↑</b> ⊅ | אטוי  | ODL     | <b>1</b> |
| Traffic Vol, veh/h     | 0         | 53         | 508        | 19    | 2       | 559      |
| Future Vol, veh/h      | 0         | 53         | 508        | 19    | 2       | 559      |
| Conflicting Peds, #/hr | 0         | 0          | 0          | 100   | 0       | 0        |
| Sign Control           | Stop      | Stop       | Free       | Free  | Free    | Free     |
| RT Channelized         | Stop<br>- |            |            | None  |         | None     |
|                        | _         | 0          | -          |       | -       | None     |
| Storage Length         |           | -          | 0          | -     | -       | 0        |
| Veh in Median Storage  | -         |            |            | -     |         |          |
| Grade, %               | 0         | -          | 0          | -     | -       | 0        |
| Peak Hour Factor       | 90        | 90         | 90         | 90    | 90      | 90       |
| Heavy Vehicles, %      | 0         | 15         | 6          | 0     | 0       | 5        |
| Mvmt Flow              | 0         | 59         | 564        | 21    | 2       | 621      |
|                        |           |            |            |       |         |          |
| Major/Minor N          | Minor1    | N          | /lajor1    | ١     | /lajor2 |          |
| Conflicting Flow All   |           | 393        | 0          | 0     | 686     | 0        |
| Stage 1                | -         | -          | -          | -     | -       | -        |
| Stage 2                | _         | _          | _          | _     | _       | _        |
| Critical Hdwy          | _         | 7.2        | _          | _     | 4.1     | _        |
| Critical Hdwy Stg 1    | _         | - 1.2      | _          | _     | -       | _        |
| Critical Hdwy Stg 2    |           | _          |            |       | _       | _        |
| Follow-up Hdwy         | _         | 3.45       | -          |       | 2.2     | _        |
| Pot Cap-1 Maneuver     | 0         | 571        |            | _     | 917     |          |
|                        | 0         | 371        | _          | -     | 311     | -        |
| Stage 1                | 0         | -          | -          | -     | -       | -        |
| Stage 2                | U         | -          | -          | -     | -       | -        |
| Platoon blocked, %     |           | <b>540</b> | -          | -     | 000     | -        |
| Mov Cap-1 Maneuver     |           | 510        | -          | -     | 820     | -        |
| Mov Cap-2 Maneuver     | -         | -          | -          | -     | -       | -        |
| Stage 1                | -         | -          | -          | -     | -       | -        |
| Stage 2                | -         | -          | -          | -     | -       | -        |
|                        |           |            |            |       |         |          |
| Approach               | WB        |            | NB         |       | SB      |          |
| HCM Control Delay, sa  |           |            | 0          |       | 0.03    |          |
| HCM LOS                | В         |            | U          |       | 0.00    |          |
| TIOWI LOO              | U         |            |            |       |         |          |
|                        |           |            |            |       |         |          |
| Minor Lane/Major Mvn   | nt        | NBT        | NBRV       | VBLn1 | SBL     | SBT      |
| Capacity (veh/h)       |           | -          | -          | 510   | 820     | -        |
| HCM Lane V/C Ratio     |           | -          | -          | 0.115 | 0.003   | -        |
| HCM Control Delay (s.  | /veh)     | -          | -          | 13    | 9.4     | -        |
| HCM Lane LOS           |           | -          | -          | В     | Α       | -        |
| HCM 95th %tile Q(veh   | 1)        | -          | -          | 0.4   | 0       | -        |
|                        |           |            |            |       |         |          |


| Intersection           |         |                 |         |      |         |          |
|------------------------|---------|-----------------|---------|------|---------|----------|
|                        | 4.8     |                 |         |      |         |          |
| Int Delay, s/veh       | 4.0     |                 |         |      |         |          |
| Movement               | EBL     | EBT             | WBT     | WBR  | SBL     | SBR      |
| Lane Configurations    |         | र्न             | - î∌    |      | W       |          |
| Traffic Vol, veh/h     | 99      | 28              | 161     | 245  | 113     | 33       |
| Future Vol, veh/h      | 99      | 28              | 161     | 245  | 113     | 33       |
| Conflicting Peds, #/hr | 0       | 0               | 0       | 0    | 0       | 0        |
| Sign Control           | Free    | Free            | Free    | Free | Stop    | Stop     |
| RT Channelized         | -       |                 | -       | None | -       | None     |
| Storage Length         | -       | -               | _       | -    | 0       | -        |
| Veh in Median Storage  | - # -   | 0               | 0       | _    | 0       | _        |
| Grade, %               | σ, π -  | 0               | 0       | _    | 0       | _        |
| Peak Hour Factor       | 90      | 90              | 90      | 90   | 90      | 90       |
|                        |         |                 |         |      |         |          |
| Heavy Vehicles, %      | 2       | 2               | 2       | 2    | 2       | 2        |
| Mvmt Flow              | 110     | 31              | 179     | 272  | 126     | 37       |
|                        |         |                 |         |      |         |          |
| Major/Minor N          | //ajor1 | N               | /lajor2 | N    | /linor2 |          |
| Conflicting Flow All   | 451     | 0               | -       | 0    | 566     | 315      |
| Stage 1                | -       | -               | _       | -    | 315     | -        |
| Stage 2                | _       | _               | _       | _    | 251     | _        |
|                        |         | _               |         |      |         | 6.22     |
| Critical Hdwy          | 4.12    | -               | -       | -    | 6.42    |          |
| Critical Hdwy Stg 1    | -       | -               | -       | -    | 5.42    | -        |
| Critical Hdwy Stg 2    | -       | -               | -       | -    | 5.42    | -        |
| . ,                    | 2.218   | -               | -       | -    | 3.518   |          |
| Pot Cap-1 Maneuver     | 1109    | -               | -       | -    | 485     | 725      |
| Stage 1                | -       | -               | -       | -    | 740     | -        |
| Stage 2                | -       | -               | -       | -    | 791     | -        |
| Platoon blocked, %     |         | -               | -       | -    |         |          |
| Mov Cap-1 Maneuver     | 1109    | _               | _       | _    | 436     | 725      |
| Mov Cap-2 Maneuver     | -       | _               | _       | _    | 436     | -        |
| Stage 1                | _       | _               | _       | _    | 665     | _        |
| Stage 2                |         | _               |         | _    | 791     | _        |
| Slaye 2                | _       | _               |         |      | 191     | _        |
|                        |         |                 |         |      |         |          |
| Approach               | EB      |                 | WB      |      | SB      |          |
| HCM Control Delay, s/  | /v671   |                 | 0       |      | 16.29   |          |
| HCM LOS                | V 0.7 1 |                 | U       |      | C       |          |
| TIOW EGG               |         |                 |         |      |         |          |
|                        |         |                 |         |      |         |          |
| Minor Lane/Major Mvn   | nt      | EBL             | EBT     | WBT  | WBR     | SBLn1    |
| Capacity (veh/h)       |         | 1090            | -       | -    | -       | 480      |
|                        |         | 0.099           | -       | -    | -       | 0.338    |
| HCM Lane V/C Ratio     |         |                 | 0       | -    | _       | 16.3     |
|                        | /veh)   | შ.ნ             | U       |      |         |          |
| HCM Control Delay (sa  | /veh)   | 8.6<br>A        |         | _    | -       | С        |
|                        |         | 8.6<br>A<br>0.3 | A<br>-  |      | -       | C<br>1.5 |

# 2028 Scenario

Minor Event Egress

1: Bank & Fifth 07/31/2024

| 1: Bank & Fifth              |             |          |           |          |            |            |       |          |  |
|------------------------------|-------------|----------|-----------|----------|------------|------------|-------|----------|--|
|                              | •           | <b>→</b> | •         | <b>—</b> | 4          | <b>†</b>   | -     | <b>↓</b> |  |
| Lane Group                   | EBL         | EBT      | WBL       | WBT      | NBL        | NBT        | SBL   | SBT      |  |
| Lane Configurations          |             | 4        | ሻ         | ef.      |            | ન î}       |       | सी∌      |  |
| Traffic Volume (vph)         | 42          | 9        | 58        | 25       | 16         | 441        | 21    | 350      |  |
| Future Volume (vph)          | 42          | 9        | 58        | 25       | 16         | 441        | 21    | 350      |  |
| Lane Group Flow (vph)        | 0           | 86       | 64        | 64       | 0          | 520        | 0     | 436      |  |
| Turn Type                    | Perm        | NA       | Perm      | NA       | Perm       | NA         | Perm  | NA       |  |
| Protected Phases             |             | 4        |           | 8        |            | 2          |       | 6        |  |
| Permitted Phases             | 4           |          | 8         |          | 2          |            | 6     |          |  |
| Minimum Split (s)            | 26.0        | 26.0     | 26.0      | 26.0     | 49.0       | 49.0       | 49.0  | 49.0     |  |
| Total Split (s)              | 26.0        | 26.0     | 26.0      | 26.0     | 49.0       | 49.0       | 49.0  | 49.0     |  |
| Total Split (%)              | 34.7%       | 34.7%    | 34.7%     | 34.7%    | 65.3%      | 65.3%      | 65.3% | 65.3%    |  |
| Yellow Time (s)              | 3.0         | 3.0      | 3.0       | 3.0      | 3.0        | 3.0        | 3.0   | 3.0      |  |
| All-Red Time (s)             | 2.5         | 2.5      | 2.5       | 2.5      | 2.5        | 2.5        | 2.5   | 2.5      |  |
| Lost Time Adjust (s)         |             | 0.0      | 0.0       | 0.0      |            | 0.0        |       | 0.0      |  |
| Total Lost Time (s)          |             | 5.5      | 5.5       | 5.5      |            | 5.5        |       | 5.5      |  |
| Lead/Lag                     |             |          |           |          |            |            |       |          |  |
| Lead-Lag Optimize?           |             |          |           |          |            |            |       |          |  |
| Act Effct Green (s)          |             | 20.5     | 20.5      | 20.5     |            | 43.5       |       | 43.5     |  |
| Actuated g/C Ratio           |             | 0.27     | 0.27      | 0.27     |            | 0.58       |       | 0.58     |  |
| v/c Ratio                    |             | 0.25     | 0.22      | 0.16     |            | 0.31       |       | 0.27     |  |
| Control Delay (s/veh)        |             | 17.5     | 23.6      | 12.7     |            | 11.4       |       | 8.2      |  |
| Queue Delay                  |             | 0.0      | 0.0       | 0.0      |            | 0.0        |       | 0.0      |  |
| Total Delay (s/veh)          |             | 17.5     | 23.6      | 12.7     |            | 11.4       |       | 8.2      |  |
| _OS                          |             | В        | С         | В        |            | В          |       | Α        |  |
| Approach Delay (s/veh)       |             | 17.5     |           | 18.1     |            | 11.4       |       | 8.2      |  |
| Approach LOS                 |             | В        |           | В        |            | В          |       | Α        |  |
| Queue Length 50th (m)        |             | 6.1      | 7.0       | 2.9      |            | 19.1       |       | 14.1     |  |
| Queue Length 95th (m)        |             | 16.9     | 16.6      | 11.6     |            | 39.7       |       | 21.5     |  |
| Internal Link Dist (m)       |             | 49.7     |           | 112.4    |            | 195.6      |       | 190.0    |  |
| Turn Bay Length (m)          |             |          | 45.0      |          |            |            |       |          |  |
| Base Capacity (vph)          |             | 338      | 289       | 396      |            | 1658       |       | 1595     |  |
| Starvation Cap Reductn       |             | 0        | 0         | 0        |            | 0          |       | 0        |  |
| Spillback Cap Reductn        |             | 0        | 0         | 0        |            | 0          |       | 0        |  |
| Storage Cap Reductn          |             | 0        | 0         | 0        |            | 0          |       | 0        |  |
| Reduced v/c Ratio            |             | 0.25     | 0.22      | 0.16     |            | 0.31       |       | 0.27     |  |
| ntersection Summary          |             |          |           |          |            |            |       |          |  |
| Cycle Length: 75             |             |          |           |          |            |            |       |          |  |
| Actuated Cycle Length: 75    |             |          |           |          |            |            |       |          |  |
| Offset: 47 (63%), Reference  |             | se 2:NBT | L and 6:5 | BTL. Sta | art of Gre | en         |       |          |  |
| Natural Cycle: 75            | ou to pinon |          |           | ,        |            |            |       |          |  |
| Control Type: Pretimed       |             |          |           |          |            |            |       |          |  |
| Maximum v/c Ratio: 0.31      |             |          |           |          |            |            |       |          |  |
| Intersection Signal Delay (  | s/veh): 11. | 4        |           | li li    | ntersectio | n LOS: F   | 3     |          |  |
| Intersection Capacity Utiliz |             |          |           |          | CU Level   |            |       |          |  |
| Analysis Period (min) 15     |             | . •      |           |          |            | J. 501 VIC |       |          |  |
| , , ,                        |             |          |           |          |            |            |       |          |  |
| Splits and Phases: 1: Ba     | ank & Fifth |          |           |          |            |            | 1=1   |          |  |
| <b>A</b>                     |             |          |           |          |            |            |       |          |  |



2: Bank & Holmwood 07/31/2024

|                             | <b>→</b>    | •        | †         | <b>\</b>  | <del> </del>    |       |
|-----------------------------|-------------|----------|-----------|-----------|-----------------|-------|
| Lane Group                  | EBT         | NBL      | NBT       | SBL       | SBT             | Ø3    |
| Lane Configurations         | 4           | HUL      | 47>       | JDL       | 4T <del>}</del> | 20    |
| Traffic Volume (vph)        | 7           | 54       | 439       | 22        | 321             |       |
| Future Volume (vph)         | 7           | 54       | 439       | 22        | 321             |       |
| Lane Group Flow (vph)       | 86          | 0        | 575       | 0         | 421             |       |
| Turn Type                   | NA          | Perm     | NA        | Perm      | NA              |       |
| Protected Phases            | 4           | 1 01111  | 2         | 1 01111   | 6               | 3     |
| Permitted Phases            | •           | 2        | _         | 6         |                 | Ū     |
| Detector Phase              | 4           | 2        | 2         | 6         | 6               |       |
| Switch Phase                | 7           |          |           | U         | 0               |       |
| Minimum Initial (s)         | 4.4         | 10.0     | 10.0      | 4.0       | 4.0             | 1.0   |
| Minimum Split (s)           | 22.0        | 48.0     | 48.0      | 48.0      | 48.0            | 5.0   |
| Total Split (s)             | 22.0        | 48.0     | 48.0      | 48.0      | 48.0            | 5.0   |
| Total Split (%)             | 29.3%       | 64.0%    | 64.0%     | 64.0%     | 64.0%           | 7%    |
| Yellow Time (s)             | 3.0         | 3.0      | 3.0       | 3.0       | 3.0             | 2.0   |
| All-Red Time (s)            | 2.6         | 2.2      | 2.2       | 2.2       | 2.2             | 0.0   |
| \ /                         |             | ۷.۷      |           | ۷.۷       | 0.0             | 0.0   |
| Lost Time Adjust (s)        | 0.0         |          | 0.0       |           |                 |       |
| Total Lost Time (s)         | 5.6         |          | 5.2       |           | 5.2             | ا مما |
| Lead/Lag                    | Lag         |          |           |           |                 | Lead  |
| Lead-Lag Optimize?          | N1          | O M      | O M       | O M       | O M             | Menn  |
| Recall Mode                 | None        | C-Max    |           | C-Max     |                 | None  |
| Act Effct Green (s)         | 10.2        |          | 57.3      |           | 57.3            |       |
| Actuated g/C Ratio          | 0.14        |          | 0.76      |           | 0.76            |       |
| v/c Ratio                   | 0.48        |          | 0.29      |           | 0.21            |       |
| Control Delay (s/veh)       | 38.1        |          | 3.8       |           | 2.6             |       |
| Queue Delay                 | 0.0         |          | 0.0       |           | 0.0             |       |
| Total Delay (s/veh)         | 38.1        |          | 3.8       |           | 2.6             |       |
| LOS                         | D           |          | A         |           | Α               |       |
| Approach Delay (s/veh)      | 38.1        |          | 3.8       |           | 2.6             |       |
| Approach LOS                | D           |          | Α         |           | Α               |       |
| Queue Length 50th (m)       | 11.4        |          | 8.8       |           | 3.5             |       |
| Queue Length 95th (m)       | 22.9        |          | 22.0      |           | 7.0             |       |
| Internal Link Dist (m)      | 39.8        |          | 31.5      |           | 195.6           |       |
| Turn Bay Length (m)         |             |          |           |           |                 |       |
| Base Capacity (vph)         | 287         |          | 1963      |           | 2036            |       |
| Starvation Cap Reductn      | 0           |          | 0         |           | 0               |       |
| Spillback Cap Reductn       | 0           |          | 0         |           | 0               |       |
| Storage Cap Reductn         | 0           |          | 0         |           | 0               |       |
| Reduced v/c Ratio           | 0.30        |          | 0.29      |           | 0.21            |       |
| Intersection Summary        |             |          |           |           |                 |       |
| Cycle Length: 75            |             |          |           |           |                 |       |
| Actuated Cycle Length: 75   |             |          |           |           |                 |       |
| Offset: 74 (99%), Reference |             | se 2·NRT | l and 6:9 | SBTL Sta  | art of Gree     | en    |
| Natural Cycle: 75           | ou to priat | 70 Z.NDT | L and 0.0 | ום, טוני, | art or oret     | 211   |
| Control Type: Actuated-Co   | ordinated   |          |           |           |                 |       |
| Control Type. Actuated-Co   | orumateu    |          |           |           |                 |       |

Maximum v/c Ratio: 0.48

Intersection Signal Delay (s/veh): 6.1 Intersection LOS: A Intersection Capacity Utilization 57.3% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: Bank & Holmwood



|                                            | <b>√</b>  | 4          | †          | <b>\</b>   | <del> </del> |      |      |
|--------------------------------------------|-----------|------------|------------|------------|--------------|------|------|
| Lane Group                                 | WBL       | WBR        | NBT        | SBL        | SBT          | Ø1   | Ø7   |
| Lane Configurations                        | ሻ         | 7          | <b>†</b> ‡ | 7          | <b>^</b>     |      |      |
| Traffic Volume (vph)                       | 168       | 194        | 191        | 111        | 261          |      |      |
| Future Volume (vph)                        | 168       | 194        | 191        | 111        | 261          |      |      |
| Lane Group Flow (vph)                      | 187       | 216        | 301        | 123        | 290          |      |      |
| Turn Type                                  | Prot      | Perm       | NA         | Perm       | NA           |      |      |
| Protected Phases                           | 8         |            | 2          |            | 6            | 1    | 7    |
| Permitted Phases                           |           | 8          |            | 6          |              |      |      |
| Detector Phase                             | 8         | 8          | 2          | 6          | 6            |      |      |
| Switch Phase                               |           |            |            |            |              |      |      |
| Minimum Initial (s)                        | 10.0      | 10.0       | 10.0       | 10.0       | 10.0         | 1.0  | 1.0  |
| Minimum Split (s)                          | 26.0      | 26.0       | 39.0       | 44.0       | 44.0         | 5.0  | 5.0  |
| Total Split (s)                            | 26.0      | 26.0       | 39.0       | 44.0       | 44.0         | 5.0  | 5.0  |
| Total Split (%)                            | 34.7%     | 34.7%      | 52.0%      | 58.7%      | 58.7%        | 7%   | 7%   |
| Yellow Time (s)                            | 3.3       | 3.3        | 3.0        | 3.0        | 3.0          | 2.0  | 3.5  |
| All-Red Time (s)                           | 3.0       | 3.0        | 3.9        | 3.9        | 3.9          | 0.0  | 0.0  |
| Lost Time Adjust (s)                       | 0.0       | 0.0        | 0.0        | 0.0        | 0.0          |      |      |
| Total Lost Time (s)                        | 6.3       | 6.3        | 6.9        | 6.9        | 6.9          |      |      |
| Lead/Lag                                   | Lag       | Lag        | Lag        |            |              | Lead | Lead |
| Lead-Lag Optimize?                         |           |            | Yes        |            |              | Yes  | Yes  |
| Recall Mode                                | None      | None       | C-Max      | C-Max      | C-Max        | None | None |
| Act Effct Green (s)                        | 14.5      | 14.5       | 47.3       | 47.3       | 47.3         |      |      |
| Actuated g/C Ratio                         | 0.19      | 0.19       | 0.63       | 0.63       | 0.63         |      |      |
| v/c Ratio                                  | 0.63      | 0.56       | 0.18       | 0.26       | 0.15         |      |      |
| Control Delay (s/veh)                      | 36.7      | 9.8        | 4.8        | 5.8        | 4.1          |      |      |
| Queue Delay                                | 0.0       | 0.0        | 0.0        | 0.0        | 0.0          |      |      |
| Total Delay (s/veh)                        | 36.7      | 9.8        | 4.8        | 5.8        | 4.1          |      |      |
| LOS                                        | D         | Α          | Α          | Α          | Α            |      |      |
| Approach Delay (s/veh)                     | 22.3      |            | 4.8        |            | 4.6          |      |      |
| Approach LOS                               | С         |            | Α          |            | Α            |      |      |
| Queue Length 50th (m)                      | 24.6      | 0.0        | 5.5        | 4.0        | 4.8          |      |      |
| Queue Length 95th (m)                      | 40.2      | 15.5       | 12.5       | 8.7        | 7.7          |      |      |
| Internal Link Dist (m)                     | 30.6      |            | 33.7       |            | 44.8         |      |      |
| Turn Bay Length (m)                        |           |            |            | 40.0       |              |      |      |
| Base Capacity (vph)                        | 405       | 448        | 1706       | 480        | 1980         |      |      |
| Starvation Cap Reductn                     | 0         | 0          | 0          | 0          | 0            |      |      |
| Spillback Cap Reductn                      | 0         | 0          | 0          | 0          | 0            |      |      |
| Storage Cap Reductn                        | 0         | 0          | 0          | 0          | 0            |      |      |
| Reduced v/c Ratio                          | 0.46      | 0.48       | 0.18       | 0.26       | 0.15         |      |      |
| Intersection Summary                       |           |            |            |            |              |      |      |
|                                            |           |            |            |            |              |      |      |
| Cycle Length: 75 Actuated Cycle Length: 75 |           |            |            |            |              |      |      |
| Offset: 0 (0%), Referenced                 | to phase  | 2·NIPT or  | N 6.CDT    | Start a    | f Green      |      |      |
| Natural Cycle: 75                          | to priase | z.ind i ai | IU 0.3511  | L, Start 0 | Gleen        |      |      |
|                                            | ordinated |            |            |            |              |      |      |
| Control Type: Actuated-Coo                 | nainated  |            |            |            |              |      |      |

Maximum v/c Ratio: 0.63

Intersection LOS: B Intersection Signal Delay (s/veh): 11.0 Intersection Capacity Utilization 57.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition



ckground Volui

### 6: Bank & Aylmer

|                                   | ۶           | 1         | <b>†</b>  | <b>↓</b>           |                        |   |
|-----------------------------------|-------------|-----------|-----------|--------------------|------------------------|---|
| Lane Group                        | EBL         | NBL       | NBT       | SBT                | Ø3                     |   |
| Lane Configurations               | W           |           | 414       | <b>↑</b> ↑         |                        |   |
| Traffic Volume (vph)              | 4           | 1         | 156       | 192                |                        |   |
| Future Volume (vph)               | 4           | 1         | 156       | 192                |                        |   |
| Lane Group Flow (vph)             | 7           | 0         | 174       | 220                |                        |   |
| Turn Type                         | Prot        | Perm      | NA        | NA                 |                        |   |
| Protected Phases                  | 4           |           | 2         | 6                  | 3                      |   |
| Permitted Phases                  | 4           | 2         |           | 6                  |                        |   |
| Detector Phase                    | 4           | 2         | 2         | 6                  |                        |   |
| Switch Phase                      |             |           |           |                    |                        |   |
| Minimum Initial (s)               | 10.0        | 30.0      | 30.0      | 30.0               | 1.0                    |   |
| Minimum Split (s)                 | 22.0        | 63.0      | 63.0      | 63.0               | 5.0                    |   |
| Total Split (s)                   | 22.0        | 63.0      | 63.0      | 63.0               | 5.0                    |   |
| Total Split (%)                   | 24.4%       | 70.0%     | 70.0%     | 70.0%              | 6%                     |   |
| Yellow Time (s)                   | 3.3         | 3.0       | 3.0       | 3.0                | 2.0                    |   |
| All-Red Time (s)                  | 2.2         | 2.2       | 2.2       | 2.2                | 1.0                    |   |
| Lost Time Adjust (s)              | 0.0         |           | 0.0       | 0.0                |                        |   |
| Total Lost Time (s)               | 5.5         |           | 5.2       | 5.2                |                        |   |
| Lead/Lag                          | Lag         |           |           |                    | Lead                   |   |
| Lead-Lag Optimize?                |             |           |           |                    |                        |   |
| Recall Mode                       | Ped         | C-Max     | C-Max     | C-Max              | Max                    |   |
| Act Effct Green (s)               | 14.0        |           | 60.3      | 60.3               |                        |   |
| Actuated g/C Ratio                | 0.16        |           | 0.67      | 0.67               |                        |   |
| v/c Ratio                         | 0.03        |           | 0.09      | 0.11               |                        |   |
| Control Delay (s/veh)             | 27.2        |           | 4.0       | 5.3                |                        |   |
| Queue Delay                       | 0.0         |           | 0.0       | 0.0                |                        |   |
| Total Delay (s/veh)               | 27.2        |           | 4.0       | 5.3                |                        |   |
| LOS                               | С           |           | Α         | Α                  |                        |   |
| Approach Delay (s/veh)            | 27.2        |           | 4.0       | 5.3                |                        |   |
| Approach LOS                      | С           |           | Α         | Α                  |                        |   |
| Queue Length 50th (m)             | 0.6         |           | 3.3       | 6.0                |                        |   |
| Queue Length 95th (m)             | 4.4         |           | 5.0       | 9.7                |                        |   |
| Internal Link Dist (m)            | 76.7        |           | 28.1      | 10.1               |                        |   |
| Turn Bay Length (m)               |             |           |           |                    |                        |   |
| Base Capacity (vph)               | 248         |           | 2006      | 2063               |                        |   |
| Starvation Cap Reductn            | 0           |           | 0         | 0                  |                        |   |
| Spillback Cap Reductn             | 0           |           | 0         | 0                  |                        |   |
| Storage Cap Reductn               | 0           |           | 0         | 0                  |                        |   |
| Reduced v/c Ratio                 | 0.03        |           | 0.09      | 0.11               |                        |   |
| Intersection Summary              |             |           |           |                    |                        |   |
| Cycle Length: 90                  |             |           |           |                    |                        |   |
| Actuated Cycle Length: 90         |             |           |           |                    |                        |   |
| Offset: 87 (97%), Reference       |             | e 2·NRT   | l and 6.0 | RT Start           | of Green               |   |
| Natural Cycle: 90                 | ou to pride | 70 Z.INDT | L and 0.c | ו פי, טומון, Utari | , or order             |   |
| Control Type: Actuated-Co         | ordinated   |           |           |                    |                        |   |
| Maximum v/c Ratio: 0.11           | o. amateu   |           |           |                    |                        |   |
| Intersection Signal Delay (s      | s/veh): 5.1 |           |           | In                 | itersection LOS: A     |   |
| Intersection Capacity Utilization | ,           | %         |           |                    | CU Level of Service A  | 1 |
| Analysis Period (min) 15          | GUO11 70.0  | , ,       |           | 10                 | CO LOVOI OI OOI VIOC P |   |
| ranaryolo i onou (iiiii) lo       |             |           |           |                    |                        |   |

Splits and Phases: 6: Bank & Aylmer



### 7: Bank & Sunnyside

| 7. Darik & Surinysic                  | <u> </u>      | <b>→</b> | •         | -         | 1             | †          | <b>\</b>   | ļ            |             |      | 011011/202- |
|---------------------------------------|---------------|----------|-----------|-----------|---------------|------------|------------|--------------|-------------|------|-------------|
| Lane Group                            | EBL           | EBT      | WBL       | WBT       | NBL           | NBT        | SBL        | SBT          | Ø3          | Ø7   |             |
| Lane Configurations                   |               | 4        |           | 4         |               | 414        |            | 414          |             |      |             |
| Traffic Volume (vph)                  | 29            | 7        | 5         | 12        | 12            | 239        | 34         | 418          |             |      |             |
| Future Volume (vph)                   | 29            | 7        | 5         | 12        | 12            | 239        | 34         | 418          |             |      |             |
| Lane Group Flow (vph)                 | 0             | 62       | 0         | 56        | 0             | 285        | 0          | 550          |             |      |             |
| Turn Type                             | Perm          | NA       | Perm      | NA        | Perm          | NA         | pm+pt      | NA           |             |      |             |
| Protected Phases                      |               | 4        |           | 8         |               | 2          | <u>'</u> 1 | 6            | 3           | 7    |             |
| Permitted Phases                      | 4             |          | 8         |           | 2             |            | 6          |              |             |      |             |
| Minimum Split (s)                     | 25.0          | 25.0     | 25.0      | 25.0      | 43.0          | 43.0       | 17.0       | 60.0         | 5.0         | 5.0  |             |
| Total Split (s)                       | 25.0          | 25.0     | 25.0      | 25.0      | 43.0          | 43.0       | 17.0       | 60.0         | 5.0         | 5.0  |             |
| Total Split (%)                       | 27.8%         | 27.8%    | 27.8%     | 27.8%     | 47.8%         | 47.8%      | 18.9%      | 66.7%        | 6%          | 6%   |             |
| Yellow Time (s)                       | 3.0           | 3.0      | 3.0       | 3.0       | 3.0           | 3.0        | 3.0        | 3.0          | 2.0         | 2.0  |             |
| All-Red Time (s)                      | 2.6           | 2.6      | 2.6       | 2.6       | 3.0           | 3.0        | 2.9        | 3.0          | 0.0         | 0.0  |             |
| Lost Time Adjust (s)                  |               | 0.0      |           | 0.0       |               | 0.0        |            | 0.0          |             |      |             |
| Total Lost Time (s)                   |               | 5.6      |           | 5.6       |               | 6.0        |            | 6.0          |             |      |             |
| Lead/Lag                              | Lag           | Lag      | Lag       | Lag       | Lag           | Lag        | Lead       |              | Lead        | Lead |             |
| Lead-Lag Optimize?                    | 3             | 9        | Yes       | Yes       | Yes           | Yes        | Yes        |              |             | Yes  |             |
| Act Effct Green (s)                   |               | 19.4     |           | 19.4      |               | 37.0       |            | 54.0         |             |      |             |
| Actuated g/C Ratio                    |               | 0.22     |           | 0.22      |               | 0.41       |            | 0.60         |             |      |             |
| v/c Ratio                             |               | 0.26     |           | 0.20      |               | 0.24       |            | 0.33         |             |      |             |
| Control Delay (s/veh)                 |               | 32.8     |           | 16.3      |               | 17.8       |            | 7.1          |             |      |             |
| Queue Delay                           |               | 0.0      |           | 0.0       |               | 0.0        |            | 0.0          |             |      |             |
| Total Delay (s/veh)                   |               | 32.8     |           | 16.3      |               | 17.8       |            | 7.1          |             |      |             |
| LOS                                   |               | C        |           | В         |               | В          |            | Α            |             |      |             |
| Approach Delay (s/veh)                |               | 32.8     |           | 16.3      |               | 17.8       |            | 7.1          |             |      |             |
| Approach LOS                          |               | С        |           | В         |               | В          |            | Α            |             |      |             |
| Queue Length 50th (m)                 |               | 9.0      |           | 2.7       |               | 16.3       |            | 14.3         |             |      |             |
| Queue Length 95th (m)                 |               | 20.1     |           | 12.4      |               | 25.1       |            | 19.4         |             |      |             |
| Internal Link Dist (m)                |               | 75.1     |           | 136.0     |               | 63.1       |            | 79.0         |             |      |             |
| Turn Bay Length (m)                   |               |          |           |           |               |            |            |              |             |      |             |
| Base Capacity (vph)                   |               | 240      |           | 276       |               | 1189       |            | 1664         |             |      |             |
| Starvation Cap Reductn                |               | 0        |           | 0         |               | 0          |            | 0            |             |      |             |
| Spillback Cap Reductn                 |               | 0        |           | 0         |               | 0          |            | 0            |             |      |             |
| Storage Cap Reductn                   |               | 0        |           | 0         |               | 0          |            | 0            |             |      |             |
| Reduced v/c Ratio                     |               | 0.26     |           | 0.20      |               | 0.24       |            | 0.33         |             |      |             |
| Internation Comment                   |               |          |           |           |               |            |            |              |             |      |             |
| Intersection Summary                  |               |          |           |           |               |            |            |              |             |      |             |
| Cycle Length: 90                      |               |          |           |           |               |            |            |              |             |      |             |
| Actuated Cycle Length: 90             | al 4 a la a . | O.NDT    | l l C.C   | ODTI OL   | -4 -4 O       |            |            |              |             |      |             |
| Offset: 23 (26%), Reference           | ed to phas    | se 2:NBT | L and 6:8 | SBIL, Sta | art of Gree   | en         |            |              |             |      |             |
| Natural Cycle: 90                     |               |          |           |           |               |            |            |              |             |      |             |
| Control Type: Pretimed                |               |          |           |           |               |            |            |              |             |      |             |
| Maximum v/c Ratio: 0.33               | /l.\ .40      | Г        |           |           | - <b>t</b> (' | - 100 5    | ,          |              |             |      |             |
| Intersection Signal Delay (s          | ,             |          |           |           | ntersectio    |            |            |              |             |      |             |
| Intersection Capacity Utiliza         | tion 60.8     | %        |           | 10        | CU Level      | of Service | e B        |              |             |      |             |
| Analysis Period (min) 15              |               |          |           |           |               |            |            |              |             |      |             |
| Splits and Phases: 7: Bar             | nk & Sunr     | nyside   |           |           |               |            |            |              |             |      |             |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | <b>f</b> ~    | J (D)    |           |           |               |            |            | <i>☆</i>   - | <b>1</b> Ø4 |      |             |
| Ø1<br>17 s 4                          | ■ Ø2<br>3 s   | 2 (R)    |           |           |               |            |            |              | <b>y</b>    |      |             |
| L.                                    |               |          |           |           |               |            |            | 京            |             |      |             |
| Ø6 (R)                                |               |          |           |           |               |            |            | 7            | <b>4</b> Ø8 |      |             |

| 9. Queen Elizabeti                        | Dilve       | Q I III   | 1          |          |               |              |      |     | 01/01/2024 |
|-------------------------------------------|-------------|-----------|------------|----------|---------------|--------------|------|-----|------------|
|                                           | •           | 1         | <b>†</b>   | <b>↓</b> |               |              |      |     |            |
| Lane Group                                | EBL         | NBL       | NBT        | SBT      | Ø4            |              |      |     |            |
| Lane Configurations                       | W           |           | 4          | ₽        |               |              |      |     |            |
| Traffic Volume (vph)                      | 64          | 51        | 274        | 155      |               |              |      |     |            |
| Future Volume (vph)                       | 64          | 51        | 274        | 155      |               |              |      |     |            |
| Lane Group Flow (vph)                     | 103         | 0         | 361        | 210      |               |              |      |     |            |
| Turn Type                                 | Prot        | Perm      | NA         | NA       |               |              |      |     |            |
| Protected Phases                          | 10          |           | 2          | 6        | 4             |              |      |     |            |
| Permitted Phases                          |             | 2         |            |          |               |              |      |     |            |
| Minimum Split (s)                         | 21.0        | 48.0      | 48.0       | 48.0     | 11.0          |              |      |     |            |
| Total Split (s)                           | 21.0        | 48.0      | 48.0       | 48.0     | 11.0          |              |      |     |            |
| Total Split (%)                           | 26.3%       | 60.0%     | 60.0%      | 60.0%    | 14%           |              |      |     |            |
| Yellow Time (s)                           | 3.0         | 3.0       | 3.0        | 3.0      | 3.0           |              |      |     |            |
| All-Red Time (s)                          | 2.7         | 3.8       | 3.8        | 3.8      | 2.7           |              |      |     |            |
| Lost Time Adjust (s)                      | 0.0         |           | 0.0        | 0.0      |               |              |      |     |            |
| Total Lost Time (s)                       | 5.7         |           | 6.8        | 6.8      |               |              |      |     |            |
| Lead/Lag                                  |             |           |            |          |               |              |      |     |            |
| Lead-Lag Optimize?                        |             |           |            |          |               |              |      |     |            |
| Act Effct Green (s)                       | 15.3        |           | 41.2       | 41.2     |               |              |      |     |            |
| Actuated g/C Ratio                        | 0.19        |           | 0.52       | 0.52     |               |              |      |     |            |
| v/c Ratio                                 | 0.35        |           | 0.45       | 0.25     |               |              |      |     |            |
| Control Delay (s/veh)                     | 31.8        |           | 14.6       | 11.8     |               |              |      |     |            |
| Queue Delay                               | 0.0         |           | 0.0        | 0.0      |               |              |      |     |            |
| Total Delay (s/veh)                       | 31.8        |           | 14.6       | 11.8     |               |              |      |     |            |
| LOS                                       | С           |           | В          | В        |               |              |      |     |            |
| Approach Delay (s/veh)                    | 31.8        |           | 14.6       | 11.8     |               |              |      |     |            |
| Approach LOS                              | C           |           | В          | В        |               |              |      |     |            |
| Queue Length 50th (m)                     | 13.7        |           | 32.6       | 16.7     |               |              |      |     |            |
| Queue Length 95th (m)                     | 27.5        |           | 53.2       | 28.9     |               |              |      |     |            |
| Internal Link Dist (m)                    | 57.2        |           | 0.1        | 5.9      |               |              |      |     |            |
| Turn Bay Length (m)                       | 200         |           | 700        | 0.47     |               |              |      |     |            |
| Base Capacity (vph)                       | 298         |           | 798        | 847      |               |              |      |     |            |
| Starvation Cap Reductn                    | 0           |           | 0          | 0        |               |              |      |     |            |
| Spillback Cap Reductn Storage Cap Reductn | 0           |           | 0          | 0        |               |              |      |     |            |
| Reduced v/c Ratio                         | 0.35        |           | 0.45       | 0.25     |               |              |      |     |            |
| Reduced V/C Rallo                         | 0.55        |           | 0.43       | 0.25     |               |              |      |     |            |
| Intersection Summary                      |             |           |            |          |               |              |      |     |            |
| Cycle Length: 80                          |             |           |            |          |               |              |      |     |            |
| Actuated Cycle Length: 80                 |             |           |            |          |               |              |      |     |            |
| Offset: 0 (0%), Referenced                | to phase    | 6:SBT, S  | tart of Gr | een      |               |              |      |     |            |
| Natural Cycle: 80                         |             |           |            |          |               |              |      |     |            |
| Control Type: Pretimed                    |             |           |            |          |               |              |      |     |            |
| Maximum v/c Ratio: 0.45                   |             |           |            |          |               |              |      |     |            |
| Intersection Signal Delay (s              |             |           |            |          | tersection L  |              |      |     |            |
| Intersection Capacity Utiliz              | ation 53.4  | %         |            | IC       | CU Level of S | Service A    |      |     |            |
| Analysis Period (min) 15                  |             |           |            |          |               |              |      |     |            |
| Splits and Phases: 9: Qu                  | ueen Elizal | beth Driv | e & Fifth  |          |               |              |      |     |            |
| <b>←</b> Ø2                               |             |           |            |          |               | <b>i i</b> Ø |      | Ø10 |            |
| 48 s                                      |             |           |            |          |               | 11 s         | 21 9 |     |            |
|                                           |             |           |            |          |               | 113          | 21 : |     |            |
| Ø6 (R)                                    |             |           |            |          |               |              |      |     |            |
| 48 s                                      |             |           |            |          |               |              |      |     |            |

1.1

2.6

0

| Intersection                                                                                                               | 40.0 |                                                                    |                                                                    |                                                                       |      |      |
|----------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|------|------|
| Intersection Delay, s/veh                                                                                                  | 10.2 |                                                                    |                                                                    |                                                                       |      |      |
| Intersection LOS                                                                                                           | В    |                                                                    |                                                                    |                                                                       |      |      |
|                                                                                                                            |      |                                                                    |                                                                    |                                                                       |      |      |
| Movement                                                                                                                   | EBL  | EBT                                                                | WBT                                                                | WBR                                                                   | SBL  | SBR  |
| Lane Configurations                                                                                                        |      | सी                                                                 | - ↑                                                                |                                                                       | W    |      |
| Traffic Vol, veh/h                                                                                                         | 5    | 196                                                                | 371                                                                | 5                                                                     | 5    | 5    |
| Future Vol, veh/h                                                                                                          | 5    | 196                                                                | 371                                                                | 5                                                                     | 5    | 5    |
| Peak Hour Factor                                                                                                           | 0.90 | 0.90                                                               | 0.90                                                               | 0.90                                                                  | 0.90 | 0.90 |
| Heavy Vehicles, %                                                                                                          | 2    | 2                                                                  | 2                                                                  | 2                                                                     | 2    | 2    |
| Mvmt Flow                                                                                                                  | 6    | 218                                                                | 412                                                                | 6                                                                     | 6    | 6    |
| Number of Lanes                                                                                                            | 0    | 1                                                                  | 1                                                                  | 0                                                                     | 1    | 0    |
| Approach                                                                                                                   | EB   |                                                                    | WB                                                                 |                                                                       | SB   |      |
| Opposing Approach                                                                                                          | WB   |                                                                    | EB                                                                 |                                                                       |      |      |
| Opposing Lanes                                                                                                             | 1    |                                                                    | 1                                                                  |                                                                       | 0    |      |
| Conflicting Approach Left                                                                                                  | SB   |                                                                    |                                                                    |                                                                       | WB   |      |
| Conflicting Lanes Left                                                                                                     | 1    |                                                                    | 0                                                                  |                                                                       | 1    |      |
| Conflicting Approach Right                                                                                                 |      |                                                                    | SB                                                                 |                                                                       | EB   |      |
| Conflicting Lanes Right                                                                                                    | 0    |                                                                    | 1                                                                  |                                                                       | 1    |      |
| HCM Control Delay, s/veh                                                                                                   | 9    |                                                                    | 10.9                                                               |                                                                       | 8.2  |      |
| HCM LOS                                                                                                                    | Α    |                                                                    | В                                                                  |                                                                       | Α    |      |
|                                                                                                                            |      |                                                                    |                                                                    |                                                                       |      |      |
| Lane                                                                                                                       |      | EBLn1                                                              | WBLn1                                                              | SBLn1                                                                 |      |      |
| Vol Left, %                                                                                                                |      | 2%                                                                 | 0%                                                                 | 50%                                                                   |      |      |
| Vol Thru, %                                                                                                                |      | 98%                                                                | 99%                                                                | 0%                                                                    |      |      |
| Vol Right, %                                                                                                               |      | 0%                                                                 | 1%                                                                 | 50%                                                                   |      |      |
| Sign Control                                                                                                               |      | Stop                                                               | Stop                                                               | Stop                                                                  |      |      |
| Traffic Vol by Lane                                                                                                        |      |                                                                    |                                                                    |                                                                       |      |      |
|                                                                                                                            |      | 201                                                                | 376                                                                | 10                                                                    |      |      |
| LT Vol                                                                                                                     |      | 201                                                                | 376<br>0                                                           |                                                                       |      |      |
|                                                                                                                            |      |                                                                    |                                                                    | 10                                                                    |      |      |
| Through Vol<br>RT Vol                                                                                                      |      | 5                                                                  | 0                                                                  | 10<br>5                                                               |      |      |
| Through Vol                                                                                                                |      | 5<br>196                                                           | 0<br>371                                                           | 10<br>5<br>0                                                          |      |      |
| Through Vol<br>RT Vol                                                                                                      |      | 5<br>196<br>0                                                      | 0<br>371<br>5                                                      | 10<br>5<br>0<br>5                                                     |      |      |
| Through Vol<br>RT Vol<br>Lane Flow Rate                                                                                    |      | 5<br>196<br>0<br>223                                               | 0<br>371<br>5<br>418                                               | 10<br>5<br>0<br>5<br>11                                               |      |      |
| Through Vol<br>RT Vol<br>Lane Flow Rate<br>Geometry Grp<br>Degree of Util (X)                                              |      | 5<br>196<br>0<br>223<br>1                                          | 0<br>371<br>5<br>418<br>1                                          | 10<br>5<br>0<br>5<br>11                                               |      |      |
| Through Vol<br>RT Vol<br>Lane Flow Rate<br>Geometry Grp                                                                    |      | 5<br>196<br>0<br>223<br>1<br>0.271                                 | 0<br>371<br>5<br>418<br>1<br>0.477                                 | 10<br>5<br>0<br>5<br>11<br>1<br>0.016                                 |      |      |
| Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)                                   |      | 5<br>196<br>0<br>223<br>1<br>0.271<br>4.371                        | 0<br>371<br>5<br>418<br>1<br>0.477<br>4.112                        | 10<br>5<br>0<br>5<br>11<br>1<br>0.016<br>5.095                        |      |      |
| Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N                  |      | 5<br>196<br>0<br>223<br>1<br>0.271<br>4.371<br>Yes                 | 0<br>371<br>5<br>418<br>1<br>0.477<br>4.112<br>Yes                 | 10<br>5<br>0<br>5<br>11<br>1<br>0.016<br>5.095<br>Yes                 |      |      |
| Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap              |      | 5<br>196<br>0<br>223<br>1<br>0.271<br>4.371<br>Yes<br>826          | 0<br>371<br>5<br>418<br>1<br>0.477<br>4.112<br>Yes<br>865          | 10<br>5<br>0<br>5<br>11<br>1<br>0.016<br>5.095<br>Yes<br>705          |      |      |
| Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time |      | 5<br>196<br>0<br>223<br>1<br>0.271<br>4.371<br>Yes<br>826<br>2.371 | 0<br>371<br>5<br>418<br>1<br>0.477<br>4.112<br>Yes<br>865<br>2.185 | 10<br>5<br>0<br>5<br>11<br>1<br>0.016<br>5.095<br>Yes<br>705<br>3.105 |      |      |

| Intersection                                                                |              |                              |                             |                     |      |      |
|-----------------------------------------------------------------------------|--------------|------------------------------|-----------------------------|---------------------|------|------|
| Intersection Delay, s/veh                                                   | 7.8          |                              |                             |                     |      |      |
| Intersection LOS                                                            | A            |                              |                             |                     |      |      |
|                                                                             |              |                              |                             |                     |      |      |
| Mayamant                                                                    | FDT          | EDD                          | WDI                         | WDT                 | NDL  | NDD  |
| Movement                                                                    | EBT          | EBR                          | WBL                         | WBT                 | NBL  | NBR  |
| Lane Configurations                                                         | <b>^}</b>    | -                            | -                           | <u>स</u>            | Y    | _    |
| Traffic Vol, veh/h                                                          | 25           | 5                            | 5                           | 148                 | 5    | 5    |
| Future Vol, veh/h                                                           | 25           | 5                            | 5                           | 148                 | 5    | 5    |
| Peak Hour Factor                                                            | 0.90         | 0.90                         | 0.90                        | 0.90                | 0.90 | 0.90 |
| Heavy Vehicles, %                                                           | 2            | 2                            | 2                           | 2                   | 2    | 2    |
| Mvmt Flow                                                                   | 28           | 6                            | 6                           | 164                 | 6    | 6    |
| Number of Lanes                                                             | 1            | 0                            | 0                           | 1                   | 1    | 0    |
| Approach                                                                    | EB           |                              | WB                          |                     | NB   |      |
| Opposing Approach                                                           | WB           |                              | EB                          |                     |      |      |
| Opposing Lanes                                                              | 1            |                              | 1                           |                     | 0    |      |
| Conflicting Approach Left                                                   | <del>-</del> |                              | NB                          |                     | EB   |      |
| Conflicting Lanes Left                                                      | 0            |                              | 1                           |                     | 1    |      |
| Conflicting Approach Right                                                  | NB           |                              |                             |                     | WB   |      |
| Conflicting Lanes Right                                                     | 1            |                              | 0                           |                     | 1    |      |
| HCM Control Delay, s/veh                                                    | 7.2          |                              | 7.9                         |                     | 7.2  |      |
| HCM LOS                                                                     | A            |                              | Α.5                         |                     | Α.Δ  |      |
| HOM EOO                                                                     | - / (        |                              | - / (                       |                     | 7.   |      |
| Long                                                                        |              | NDI1                         | EDL4                        | WDL -1              |      |      |
| Lane                                                                        |              | NBLn1                        | EBLn1                       | WBLn1               |      |      |
| Vol Left, %                                                                 |              | 50%                          | 0%                          | 3%                  |      |      |
| Vol Thru, %                                                                 |              | 0%                           | 83%                         | 97%                 |      |      |
| Vol Right, %                                                                |              | 50%                          | 17%                         | 0%                  |      |      |
| Sign Control                                                                |              | Stop                         | Stop                        | Stop                |      |      |
| Traffic Vol by Lane                                                         |              | 10                           | 30                          | 153                 |      |      |
| LT Vol                                                                      |              | 5                            | 0                           | 5                   |      |      |
| Through Vol                                                                 |              | 0                            | 25                          | 148                 |      |      |
| RT Vol                                                                      |              | 5                            | 5                           | 0                   |      |      |
| Lane Flow Rate                                                              |              | 11                           | 33                          | 170                 |      |      |
| Geometry Grp                                                                |              | 1                            | 1                           | 1                   |      |      |
|                                                                             |              | 0.013                        | 0.037                       | 0.188               |      |      |
| Degree of Util (X)                                                          |              | 0.0.0                        |                             |                     |      |      |
| Degree of Util (X)                                                          |              | 4.084                        | 3.98                        | 3.985               |      |      |
|                                                                             |              |                              |                             | 3.985<br>Yes        |      |      |
| Degree of Util (X) Departure Headway (Hd) Convergence, Y/N                  |              | 4.084                        | 3.98                        | Yes                 |      |      |
| Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap              |              | 4.084<br>Yes<br>864          | 3.98<br>Yes<br>897          | Yes<br>903          |      |      |
| Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time |              | 4.084<br>Yes<br>864<br>2.168 | 3.98<br>Yes<br>897<br>2.017 | Yes<br>903<br>1.997 |      |      |
| Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap              |              | 4.084<br>Yes<br>864          | 3.98<br>Yes<br>897          | Yes<br>903          |      |      |

0.1

1.8

0.1

| Intersection                                                                                                                                                                                                   |      |                                                                 |                                                                                                            |                                                                                          |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|------|
|                                                                                                                                                                                                                |      |                                                                 |                                                                                                            |                                                                                          |      |      |
| Intersection Delay, s/veh                                                                                                                                                                                      | 9.4  |                                                                 |                                                                                                            |                                                                                          |      |      |
| Intersection LOS                                                                                                                                                                                               | A    |                                                                 |                                                                                                            |                                                                                          |      |      |
|                                                                                                                                                                                                                |      |                                                                 |                                                                                                            |                                                                                          |      |      |
|                                                                                                                                                                                                                |      |                                                                 | MD:                                                                                                        | WDT                                                                                      | NBI  | NDE  |
| Movement                                                                                                                                                                                                       | EBT  | EBR                                                             | WBL                                                                                                        | WBT                                                                                      | NBL  | NBR  |
| Lane Configurations                                                                                                                                                                                            | ₽    |                                                                 |                                                                                                            | सी                                                                                       | A    |      |
| Traffic Vol, veh/h                                                                                                                                                                                             | 25   | 5                                                               | 75                                                                                                         | 5                                                                                        | 220  | 69   |
| Future Vol, veh/h                                                                                                                                                                                              | 25   | 5                                                               | 75                                                                                                         | 5                                                                                        | 220  | 69   |
| Peak Hour Factor                                                                                                                                                                                               | 0.90 | 0.90                                                            | 0.90                                                                                                       | 0.90                                                                                     | 0.90 | 0.90 |
| Heavy Vehicles, %                                                                                                                                                                                              | 2    | 2                                                               | 2                                                                                                          | 2                                                                                        | 2    | 2    |
| Mvmt Flow                                                                                                                                                                                                      | 28   | 6                                                               | 83                                                                                                         | 6                                                                                        | 244  | 77   |
| Number of Lanes                                                                                                                                                                                                | 1    | 0                                                               | 0                                                                                                          | 1                                                                                        | 1    | 0    |
| Approach                                                                                                                                                                                                       | EB   |                                                                 | \\/D                                                                                                       |                                                                                          | ND   |      |
| Approach                                                                                                                                                                                                       |      |                                                                 | WB                                                                                                         |                                                                                          | NB   |      |
| Opposing Approach                                                                                                                                                                                              | WB   |                                                                 | EB                                                                                                         |                                                                                          | •    |      |
| Opposing Lanes                                                                                                                                                                                                 | 1    |                                                                 | 1                                                                                                          |                                                                                          | 0    |      |
| Conflicting Approach Left                                                                                                                                                                                      |      |                                                                 | NB                                                                                                         |                                                                                          | EB   |      |
| Conflicting Lanes Left                                                                                                                                                                                         | 0    |                                                                 | 1                                                                                                          |                                                                                          | 1    |      |
| Conflicting Approach Right                                                                                                                                                                                     | NB   |                                                                 | _                                                                                                          |                                                                                          | WB   |      |
| Conflicting Lanes Right                                                                                                                                                                                        | 1    |                                                                 | 0                                                                                                          |                                                                                          | 1    |      |
| HCM Control Delay, s/veh                                                                                                                                                                                       | 7.9  |                                                                 | 8.6                                                                                                        |                                                                                          | 9.8  |      |
| HCM LOS                                                                                                                                                                                                        | Α    |                                                                 | Α                                                                                                          |                                                                                          | Α    |      |
|                                                                                                                                                                                                                |      |                                                                 |                                                                                                            |                                                                                          |      |      |
| Lane                                                                                                                                                                                                           |      | NBLn1                                                           | EBLn1                                                                                                      | WBLn1                                                                                    |      |      |
|                                                                                                                                                                                                                |      | INDEILL                                                         |                                                                                                            |                                                                                          |      |      |
| Vol Left, %                                                                                                                                                                                                    |      | 76%                                                             | 0%                                                                                                         | 94%                                                                                      |      |      |
| Vol Left, %<br>Vol Thru, %                                                                                                                                                                                     |      | 76%                                                             | 0%                                                                                                         | 94%                                                                                      |      |      |
| Vol Thru, %                                                                                                                                                                                                    |      | 76%<br>0%                                                       | 0%<br>83%                                                                                                  | 94%<br>6%                                                                                |      |      |
| Vol Thru, %<br>Vol Right, %                                                                                                                                                                                    |      | 76%<br>0%<br>24%                                                | 0%<br>83%<br>17%                                                                                           | 94%<br>6%<br>0%                                                                          |      |      |
| Vol Thru, %<br>Vol Right, %<br>Sign Control                                                                                                                                                                    |      | 76%<br>0%<br>24%<br>Stop                                        | 0%<br>83%<br>17%<br>Stop                                                                                   | 94%<br>6%<br>0%<br>Stop                                                                  |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane                                                                                                                                                      |      | 76%<br>0%<br>24%<br>Stop<br>289                                 | 0%<br>83%<br>17%<br>Stop<br>30                                                                             | 94%<br>6%<br>0%<br>Stop<br>80                                                            |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol                                                                                                                                               |      | 76%<br>0%<br>24%<br>Stop<br>289<br>220                          | 0%<br>83%<br>17%<br>Stop<br>30                                                                             | 94%<br>6%<br>0%<br>Stop<br>80<br>75                                                      |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol                                                                                                                                   |      | 76%<br>0%<br>24%<br>Stop<br>289<br>220                          | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25                                                                  | 94%<br>6%<br>0%<br>Stop<br>80<br>75                                                      |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol                                                                                                                            |      | 76%<br>0%<br>24%<br>Stop<br>289<br>220<br>0                     | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25                                                                  | 94%<br>6%<br>0%<br>Stop<br>80<br>75<br>5                                                 |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate                                                                                                             |      | 76%<br>0%<br>24%<br>Stop<br>289<br>220<br>0<br>69<br>321        | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5                                                             | 94%<br>6%<br>0%<br>Stop<br>80<br>75<br>5<br>0                                            |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp                                                                                                |      | 76%<br>0%<br>24%<br>Stop<br>289<br>220<br>0<br>69<br>321        | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33                                                       | 94%<br>6%<br>0%<br>Stop<br>80<br>75<br>5<br>0<br>89                                      |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)                                                                             |      | 76% 0% 24% Stop 289 220 0 69 321 1 0.38                         | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33<br>1                                                  | 94%<br>6%<br>0%<br>Stop<br>80<br>75<br>5<br>0<br>89<br>1                                 |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)                                                      |      | 76% 0% 24% Stop 289 220 0 69 321 1 0.38 4.26                    | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33<br>1<br>0.043<br>4.68                                 | 94%<br>6%<br>0%<br>Stop<br>80<br>75<br>5<br>0<br>89<br>1<br>0.121<br>4.896               |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N                                     |      | 76% 0% 24% Stop 289 220 0 69 321 1 0.38 4.26 Yes                | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33<br>1<br>0.043<br>4.68<br>Yes                          | 94% 6% 0% Stop 80 75 5 0 89 1 0.121 4.896 Yes                                            |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap                                 |      | 76% 0% 24% Stop 289 220 0 69 321 1 0.38 4.26 Yes 851            | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33<br>1<br>0.043<br>4.68<br>Yes<br>766                   | 94%<br>6%<br>0%<br>Stop<br>80<br>75<br>5<br>0<br>89<br>1<br>0.121<br>4.896<br>Yes<br>734 |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time                    |      | 76% 0% 24% Stop 289 220 0 69 321 1 0.38 4.26 Yes 851 2.26       | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33<br>1<br>0.043<br>4.68<br>Yes<br>766<br>2.703          | 94% 6% 0% Stop 80 75 5 0 89 1 0.121 4.896 Yes 734 2.915                                  |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio |      | 76% 0% 24% Stop 289 220 0 69 321 1 0.38 4.26 Yes 851 2.26 0.377 | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33<br>1<br>0.043<br>4.68<br>Yes<br>766<br>2.703<br>0.043 | 94% 6% 0% Stop 80 75 5 0 89 1 0.121 4.896 Yes 734 2.915 0.121                            |      |      |
| Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time                    |      | 76% 0% 24% Stop 289 220 0 69 321 1 0.38 4.26 Yes 851 2.26       | 0%<br>83%<br>17%<br>Stop<br>30<br>0<br>25<br>5<br>33<br>1<br>0.043<br>4.68<br>Yes<br>766<br>2.703          | 94% 6% 0% Stop 80 75 5 0 89 1 0.121 4.896 Yes 734 2.915                                  |      |      |

| Intersection              |     |     |     |     |     |     |     |     |     |     |     |     |
|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Intersection Delay, s/veh | 7.3 |     |     |     |     |     |     |     |     |     |     |     |
| Intersection LOS          | Α   |     |     |     |     |     |     |     |     |     |     |     |
|                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Mayramant                 | EDI | EDT | EDD | WDI | WDT | WDD | NDI | NDT | NDD | CDI | CDT | CDD |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 10   | 44   | 0    | 0    | 0    | 66   | 10   | 10   | 49   | 0    | 0    | 97   |
| Future Vol, veh/h          | 10   | 44   | 0    | 0    | 0    | 66   | 10   | 10   | 49   | 0    | 0    | 97   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 11   | 49   | 0    | 0    | 0    | 73   | 11   | 11   | 54   | 0    | 0    | 108  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 7.7  |      |      |      |      | 7.1  | 7.3  |      |      |      |      | 7.1  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
|--------------------------|-------|-------|-------|-------|
| Vol Left, %              | 14%   | 19%   | 0%    | 0%    |
| Vol Thru, %              | 14%   | 81%   | 0%    | 0%    |
| Vol Right, %             | 71%   | 0%    | 100%  | 100%  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane      | 69    | 54    | 66    | 97    |
| LT Vol                   | 10    | 10    | 0     | 0     |
| Through Vol              | 10    | 44    | 0     | 0     |
| RT Vol                   | 49    | 0     | 66    | 97    |
| Lane Flow Rate           | 77    | 60    | 73    | 108   |
| Geometry Grp             | 1     | 1     | 1     | 1     |
| Degree of Util (X)       | 0.082 | 0.072 | 0.075 | 0.108 |
| Departure Headway (Hd)   | 3.85  | 4.347 | 3.697 | 3.622 |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |
| Cap                      | 920   | 818   | 957   | 978   |
| Service Time             | 1.917 | 2.407 | 1.765 | 1.69  |
| HCM Lane V/C Ratio       | 0.084 | 0.073 | 0.076 | 0.11  |
| HCM Control Delay, s/veh | 7.3   | 7.7   | 7.1   | 7.1   |
| HCM Lane LOS             | А     | Α     | Α     | Α     |
| HCM 95th-tile Q          | 0.3   | 0.2   | 0.2   | 0.4   |

| Intersection                        |          |       |        |           |            |      |
|-------------------------------------|----------|-------|--------|-----------|------------|------|
| Int Delay, s/veh                    | 3.2      |       |        |           |            |      |
| Movement                            | EBL      | EBR   | NBL    | NBT       | SBT        | SBR  |
| Lane Configurations                 |          | T T   | HUL    | 41        | <u>100</u> | ODIN |
| Traffic Vol, veh/h                  | 2        | 111   | 47     | 280       | 395        | 67   |
| Future Vol, veh/h                   | 2        | 111   | 47     | 280       | 395        | 67   |
| Conflicting Peds, #/hr              |          | 0     | 178    | 0         | 0          | 107  |
|                                     |          | Stop  | Free   | Free      | Free       | Free |
| Sign Control                        | Stop     |       |        |           |            |      |
| RT Channelized                      | -        | None  | -      | None      | -          | None |
| Storage Length                      | - 41 0   | 0     | -      | -         | -          | -    |
| Veh in Median Storag                |          | -     | -      | 0         | 0          | -    |
| Grade, %                            | 0        | -     | -      | 0         | 0          | -    |
| Peak Hour Factor                    | 90       | 90    | 90     | 90        | 90         | 90   |
| Heavy Vehicles, %                   | 5        | 5     | 5      | 5         | 5          | 5    |
| Mvmt Flow                           | 2        | 123   | 52     | 311       | 439        | 74   |
|                                     |          |       |        |           |            |      |
| Major/Minor                         | Minor2   | ı     | Major1 | N         | /lajor2    |      |
| Conflicting Flow All                | 914      | 654   | 691    | 0         | -          | 0    |
| Stage 1                             | 654      | -     | 091    | -         | _          | -    |
| Stage 1                             | 260      | -     | -      | -         | _          |      |
|                                     |          | 6 275 | 1 175  | -         | -          |      |
| Critical Hdwy                       |          | 6.275 | 4.175  | -         |            | -    |
| Critical Hdwy Stg 1                 | 5.475    | -     | -      | -         | -          | -    |
| Critical Hdwy Stg 2                 | 5.875    | -     | -      | -         | -          | -    |
|                                     | 3.54753  |       |        |           | -          | -    |
| Pot Cap-1 Maneuver                  |          | 459   | 885    | -         | -          | -    |
| Stage 1                             | 509      | -     | -      | -         | -          | -    |
| Stage 2                             | 753      | -     | -      | -         | -          | -    |
| Platoon blocked, %                  |          |       |        | -         | -          | -    |
| Mov Cap-1 Maneuver                  |          | 373   | 718    | -         | -          | -    |
| Mov Cap-2 Maneuver                  |          | -     | -      | -         | -          | -    |
| Stage 1                             | 380      | -     | -      | -         | -          | -    |
| Stage 2                             | 611      | -     | -      | -         | -          | -    |
|                                     |          |       |        |           |            |      |
| Annragah                            | ΓD       |       | ND     |           | CD         |      |
| Approach                            | EB       |       | NB     |           | SB         |      |
| HCM Control Delay, s                | _        |       | 2.03   |           | 0          |      |
| HCM LOS                             | C        |       |        |           |            |      |
|                                     |          |       |        |           |            |      |
| Minor Lane/Major Mv                 | mt       | NBL   | NBTF   | EBLn1     | SBT        | SBR  |
| Capacity (veh/h)                    |          | 517   | -      |           |            |      |
| HCM Lane V/C Ratio                  |          | 0.073 |        | 0.331     |            |      |
| HCM Control Delay (s                |          | 10.4  | 0.6    | 19.4      | -          | _    |
|                                     | Si Vell) |       |        | 19.4<br>C |            | -    |
| HCM Lane LOS                        |          | R     |        |           |            |      |
| HCM Lane LOS<br>HCM 95th %tile Q(ve | h)       | 0.2   | A<br>- | 1.4       | _          | _    |

| Intersection                                            |         |        |         |          |          |      |
|---------------------------------------------------------|---------|--------|---------|----------|----------|------|
| Int Delay, s/veh                                        | 0.2     |        |         |          |          |      |
| Movement                                                | EBL     | EBR    | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations                                     |         | 7      | 1100    | <b>†</b> | <u> </u> | USIN |
| Traffic Vol, veh/h                                      | 2       | 11     | 0       | 360      | 325      | 0    |
| Future Vol, veh/h                                       | 2       | 11     | 0       | 360      | 325      | 0    |
| Conflicting Peds, #/h                                   |         | 0      | 0       | 0        | 0        | 86   |
| Sign Control                                            | Stop    | Stop   | Free    | Free     | Free     | Free |
| RT Channelized                                          | -       |        |         | None     |          | None |
| Storage Length                                          | _       | 0      | _       | -        | _        | -    |
| Veh in Median Stora                                     | ae # 0  | -      | _       | 0        | 0        | _    |
| Grade, %                                                | 0       | _      | _       | 0        | 0        | _    |
| Peak Hour Factor                                        | 90      | 90     | 90      | 90       | 90       | 90   |
| Heavy Vehicles, %                                       | 5       | 5      | 5       | 5        | 5        | 5    |
| Mvmt Flow                                               | 2       | 12     | 0       | 400      | 361      | 0    |
| IVIVIII( I IOW                                          | 2       | 12     | U       | 400      | 301      | U    |
|                                                         |         |        |         |          |          |      |
| Major/Minor                                             | Minor2  | Λ      | /lajor1 | Λ        | /lajor2  |      |
| Conflicting Flow All                                    | 561     | 361    | -       | 0        | -        | 0    |
| Stage 1                                                 | 361     | -      | -       | -        | -        | -    |
| Stage 2                                                 | 200     | -      | -       | -        | -        | -    |
| Critical Hdwy                                           | 6.675   | 6.275  | -       | -        | -        | -    |
| Critical Hdwy Stg 1                                     | 5.475   | -      | -       | -        | -        | -    |
| Critical Hdwy Stg 2                                     | 5.875   | -      | -       | -        | -        | -    |
| Follow-up Hdwy                                          | 3.54753 | 3.3475 | -       | -        | -        | -    |
| Pot Cap-1 Maneuver                                      | 467     | 675    | 0       | -        | -        | 0    |
| Stage 1                                                 | 696     | -      | 0       | -        | -        | 0    |
| Stage 2                                                 | 807     | -      | 0       | -        | -        | 0    |
| Platoon blocked, %                                      |         |        |         | -        | -        |      |
| Mov Cap-1 Maneuve                                       | er 467  | 675    | _       | _        | _        | _    |
| Mov Cap-2 Maneuve                                       |         | -      | -       | -        | -        | _    |
| Stage 1                                                 | 696     | _      | _       | _        | _        | _    |
| Stage 2                                                 | 807     | _      | _       | _        | _        | _    |
| Clago 2                                                 | 001     |        |         |          |          |      |
|                                                         |         |        |         |          |          |      |
| Approach                                                | EB      |        | NB      |          | SB       |      |
| HCM Control Delay,                                      | s/10.43 |        | 0       |          | 0        |      |
| HCM LOS                                                 | В       |        |         |          |          |      |
|                                                         |         |        |         |          |          |      |
| Minor Lane/Major My                                     | ımt     | MRTE   | EBLn1   | SBT      |          |      |
| IVITION LANGUISION IVIV                                 |         | INDI   |         |          |          |      |
|                                                         | /1111   |        | C7.E    |          |          |      |
| Capacity (veh/h)                                        |         | -      |         | -        |          |      |
| Capacity (veh/h) HCM Lane V/C Ratio                     | )       | -      | 0.018   | -        |          |      |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay ( | )       | -      | 0.018   | -        |          |      |
| Capacity (veh/h) HCM Lane V/C Ratio                     | s/veh)  | -      | 0.018   | -        |          |      |

| Intersection           |        |       |         |       |          |      |
|------------------------|--------|-------|---------|-------|----------|------|
| Int Delay, s/veh       | 11.8   |       |         |       |          |      |
|                        |        |       |         |       |          |      |
| Movement               | EBL    | EBR   | NBL     | NBT   | SBT      | SBR  |
| Lane Configurations    | ¥      |       |         | 4     | ₽        |      |
| Traffic Vol, veh/h     | 279    | 175   | 17      | 45    | 125      | 61   |
| Future Vol, veh/h      | 279    | 175   | 17      | 45    | 125      | 61   |
| Conflicting Peds, #/hr | 0      | 0     | 0       | 0     | 0        | 0    |
| Sign Control           | Stop   | Stop  | Free    | Free  | Free     | Free |
| RT Channelized         | -      | None  | -       | None  | -        | None |
| Storage Length         | 0      | -     | -       | -     | -        | -    |
| Veh in Median Storage  |        | -     | -       | 0     | 0        | -    |
| Grade, %               | 0      | -     | -       | 0     | 0        | -    |
| Peak Hour Factor       | 90     | 90    | 90      | 90    | 90       | 90   |
| Heavy Vehicles, %      | 0      | 0     | 0       | 0     | 0        | 0    |
| Mvmt Flow              | 310    | 194   | 19      | 50    | 139      | 68   |
|                        |        |       |         |       |          |      |
| Major/Minor N          | 1inor2 | N     | /lajor1 | N     | /lajor2  |      |
| Conflicting Flow All   | 261    | 173   | 207     | 0     | - najoiz | 0    |
| Stage 1                | 173    | -     | 201     | -     | _        | -    |
| Stage 2                | 88     | _     | _       | _     |          | _    |
| Critical Hdwy          | 6.4    | 6.2   | 4.1     |       |          |      |
| Critical Hdwy Stg 1    | 5.4    | 0.2   | 4.1     | _     | _        | _    |
| Critical Hdwy Stg 2    | 5.4    |       | _       |       |          |      |
| Follow-up Hdwy         | 3.5    | 3.3   | 2.2     | -     | -        | _    |
| Pot Cap-1 Maneuver     | 733    | 876   | 1377    |       | -        | -    |
| Stage 1                | 862    | - 070 | 1011    | _     | -        | _    |
| Stage 2                | 941    | -     | -       |       | -        | -    |
| Platoon blocked, %     | 34 I   | -     | -       | _     | -        | _    |
| Mov Cap-1 Maneuver     | 722    | 876   | 1377    | -     | -        | _    |
| Mov Cap-1 Maneuver     | 722    | 0/0   | 13//    | -     | -        | _    |
|                        | 850    | _     |         |       | -        |      |
| Stage 1                | 941    | -     | -       | -     | -        | -    |
| Stage 2                | 94 1   | -     | -       | -     | -        | -    |
|                        |        |       |         |       |          |      |
| Approach               | EB     |       | NB      |       | SB       |      |
| HCM Control Delay, s/  | 17.89  |       | 2.1     |       | 0        |      |
| HCM LOS                | С      |       |         |       |          |      |
|                        |        |       |         |       |          |      |
| NA1 1 /NA 1 - P.4      |        | NDI   | NET     | -DI 4 | ODT      | 000  |
| Minor Lane/Major Mvm   | nt     | NBL   |         | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)       |        | 494   | -       |       | -        | -    |
| HCM Lane V/C Ratio     |        | 0.014 |         | 0.651 | -        | -    |
| HCM Control Delay (s/  | veh)   | 7.7   | 0       | 17.9  | -        | -    |
| HCM Lane LOS           |        | Α     | Α       | С     | -        | -    |
| HCM 95th %tile Q(veh   | )      | 0     | -       | 4.9   | -        | -    |
|                        |        |       |         |       |          |      |

| Intersection           |           |       |            |       |         |          |
|------------------------|-----------|-------|------------|-------|---------|----------|
| Int Delay, s/veh       | 2.2       |       |            |       |         |          |
| Movement               | WBL       | WBR   | NBT        | NBR   | SBL     | SBT      |
| Lane Configurations    | WDL       | 7     | <b>↑</b> ⊅ | NUN   | ODL     | <b>^</b> |
| Traffic Vol, veh/h     | 5         | 144   | 396        | 29    | 0       | 373      |
| Future Vol, veh/h      | 5         | 144   | 396        | 29    | 0       | 373      |
| Conflicting Peds, #/hr | 0         | 0     | 0          | 100   | 0       | 0        |
| Sign Control           | Stop      | Stop  | Free       | Free  | Free    | Free     |
| RT Channelized         | Stop<br>- |       |            | None  |         | None     |
|                        |           | 0     |            |       |         | None     |
| Storage Length         | - 4 0     |       | -          | -     | -       | -        |
| Veh in Median Storage  |           | -     | 0          | -     | -       | 0        |
| Grade, %               | 0         | -     | 0          | -     | -       | 0        |
| Peak Hour Factor       | 90        | 90    | 90         | 90    | 90      | 90       |
| Heavy Vehicles, %      | 0         | 15    | 6          | 0     | 0       | 5        |
| Mvmt Flow              | 6         | 160   | 440        | 32    | 0       | 414      |
|                        |           |       |            |       |         |          |
| Major/Minor N          | Minor1    | N     | /lajor1    | ١     | /lajor2 |          |
| Conflicting Flow All   | 763       | 336   | 0          | 0     | -       | _        |
| Stage 1                | 556       | -     | _          | -     | _       | _        |
| Stage 2                | 207       | _     | _          | _     | _       | _        |
| Critical Hdwy          | 6.8       | 7.2   | _          | _     | _       | _        |
| Critical Hdwy Stg 1    | 5.8       | - 1.2 | _          | _     | _       | _        |
| Critical Hdwy Stg 2    | 5.8       | _     | _          | _     | _       | _        |
| Follow-up Hdwy         | 3.5       | 3.45  |            | _     | _       | _        |
| Pot Cap-1 Maneuver     | 345       | 623   | _          |       | 0       | _        |
| Stage 1                | 544       | 023   | _          | _     | 0       | _        |
| Stage 2                | 813       | _     |            |       | 0       |          |
| Platoon blocked, %     | 013       | -     |            | -     | U       | _        |
|                        | 308       | 557   | -          |       |         |          |
| Mov Cap-1 Maneuver     |           | 557   | -          | -     | -       | -        |
| Mov Cap-2 Maneuver     | 308       | -     | -          | -     | -       | -        |
| Stage 1                | 486       | -     | -          | -     | -       | -        |
| Stage 2                | 813       | -     | -          | -     | -       | -        |
|                        |           |       |            |       |         |          |
| Approach               | WB        |       | NB         |       | SB      |          |
| HCM Control Delay, sa  |           |       | 0          |       | 0       |          |
| HCM LOS                | В         |       |            |       |         |          |
|                        |           |       |            |       |         |          |
|                        |           |       |            |       |         |          |
| Minor Lane/Major Mvn   | nt        | NBT   | NBRV       | VBLn1 | SBT     |          |
| Capacity (veh/h)       |           | -     | -          |       | -       |          |
| HCM Lane V/C Ratio     |           | -     | -          | 0.287 | -       |          |
| HCM Control Delay (s.  | /veh)     | -     | -          |       | -       |          |
| HCM Lane LOS           |           | -     | -          | В     | -       |          |
| HCM 95th %tile Q(veh   | 1)        | -     | -          | 1.2   | -       |          |
|                        |           |       |            |       |         |          |

### 17: Princess Patricia/Princess Patricia Way & Garage

| Intersection                                              |        |              |           |              |           |               |
|-----------------------------------------------------------|--------|--------------|-----------|--------------|-----------|---------------|
| Int Delay, s/veh                                          | 11.3   |              |           |              |           |               |
|                                                           |        | EDT          | WDT       | WDD          | CDI       | CDD           |
| Movement                                                  | EBL    | EBT          | WBT       | WBR          | SBL       | SBR           |
| Lane Configurations                                       | 0      | <b>€</b>     | <b>∱</b>  | Г            | 205       | 42            |
| Traffic Vol, veh/h                                        | 2      | 72           | 75<br>75  | 5            | 395       | 43            |
| Future Vol, veh/h                                         | 2      | 72           | 75        | 5            | 395       | 43            |
| Conflicting Peds, #/hr                                    |        | 0<br>Eroo    | 0<br>Eroo | 0<br>Eroo    | 0<br>Stop | O Stop        |
| Sign Control RT Channelized                               | Free   | Free<br>None | Free      | Free<br>None | Stop      | Stop          |
| Storage Length                                            |        | None -       | -         |              | 0         | None -        |
| Veh in Median Storage                                     | - #    | 0            | 0         | -            | 0         | -             |
| •                                                         |        | 0            | 0         |              | 0         | -             |
| Grade, % Peak Hour Factor                                 | 90     | 90           | 90        | 90           | 90        | 90            |
|                                                           | 2      | 2            | 2         | 2            | 2         | 2             |
| Heavy Vehicles, %                                         | 2      | 80           | 83        | 6            |           | 48            |
| Mvmt Flow                                                 | 2      | δU           | 03        | 0            | 439       | 46            |
|                                                           |        |              |           |              |           |               |
|                                                           | Major1 |              | Major2    | 1            | Minor2    |               |
| Conflicting Flow All                                      | 89     | 0            | -         | 0            | 171       | 86            |
| Stage 1                                                   | -      | -            | -         | -            | 86        | -             |
| Stage 2                                                   | -      | -            | -         | -            | 84        | -             |
| Critical Hdwy                                             | 4.12   | -            | -         | -            | 6.42      | 6.22          |
| Critical Hdwy Stg 1                                       | -      | -            | -         | -            | 5.42      | -             |
| Critical Hdwy Stg 2                                       | -      | -            | -         | -            | 5.42      | -             |
|                                                           | 2.218  | -            | -         | -            | 3.518     | 3.318         |
| Pot Cap-1 Maneuver                                        | 1507   | -            | -         | -            | 820       | 973           |
| Stage 1                                                   | -      | -            | -         | -            | 937       | -             |
| Stage 2                                                   | -      | -            | -         | -            | 939       | -             |
| Platoon blocked, %                                        |        | -            | -         | -            |           |               |
| Mov Cap-1 Maneuver                                        | 1507   | -            | -         | -            | 818       | 973           |
| Mov Cap-2 Maneuver                                        |        | -            | -         | -            | 818       | -             |
| Stage 1                                                   | -      | -            | -         | -            | 936       | -             |
| Stage 2                                                   | -      | -            | -         | -            | 939       | -             |
| , and the second                                          |        |              |           |              |           |               |
| Annroach                                                  | EB     |              | WB        |              | SB        |               |
| Approach                                                  |        |              |           |              |           |               |
| HCM Control Delay, s                                      | /V U.2 |              | 0         |              | 15.26     |               |
| HCM LOS                                                   |        |              |           |              | С         |               |
|                                                           |        |              |           |              | ==        |               |
|                                                           | nt     | EBL          | EBT       | WBT          | WBR       |               |
| Minor Lane/Major Mvn                                      |        |              |           |              | _         | 831           |
| Capacity (veh/h)                                          |        | 49           | -         | -            |           |               |
| Capacity (veh/h) HCM Lane V/C Ratio                       |        | 0.001        | -         | -            |           | 0.585         |
| Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s. |        | 0.001<br>7.4 | 0         | -            |           | 0.585<br>15.3 |
| Capacity (veh/h) HCM Lane V/C Ratio                       | /veh)  | 0.001        |           |              | -         | 0.585         |

## 2033 Scenario

Weekday PM Peak Hour

**Future Volumes** 

1: Bank & Fifth 07/31/2024

| 1: Bank & Fifth               |              |             |            |          |            |            |          |             | 07/31/2024 |
|-------------------------------|--------------|-------------|------------|----------|------------|------------|----------|-------------|------------|
|                               | ۶            | <b>→</b>    | •          | •        | 1          | <b>†</b>   | <b>/</b> | ļ           |            |
| Lane Group                    | EBL          | EBT         | WBL        | WBT      | NBL        | NBT        | SBL      | SBT         |            |
| Lane Configurations           |              | 4           |            | ĵ.       |            | 414        |          | 414         |            |
| Traffic Volume (vph)          | 48           | 55          | 61         | 39       | 17         | 476        | 30       | 626         |            |
| Future Volume (vph)           | 48           | 55          | 61         | 39       | 17         | 476        | 30       | 626         |            |
| Lane Group Flow (vph)         | 0            | 167         | 68         | 87       | 0          | 584        | 0        | 771         |            |
| Turn Type                     | Perm         | NA          | Perm       | NA       | Perm       | NA         | Perm     | NA          |            |
| Protected Phases              |              | 4           |            | 8        |            | 2          |          | 6           |            |
| Permitted Phases              | 4            |             | 8          |          | 2          |            | 6        |             |            |
| Minimum Split (s)             | 26.0         | 26.0        | 26.0       | 26.0     | 49.0       | 49.0       | 49.0     | 49.0        |            |
| Total Split (s)               | 26.0         | 26.0        | 26.0       | 26.0     | 49.0       | 49.0       | 49.0     | 49.0        |            |
| Total Split (%)               | 34.7%        | 34.7%       | 34.7%      | 34.7%    | 65.3%      | 65.3%      | 65.3%    | 65.3%       |            |
| Yellow Time (s)               | 3.0          | 3.0         | 3.0        | 3.0      | 3.0        | 3.0        | 3.0      | 3.0         |            |
| All-Red Time (s)              | 2.5          | 2.5         | 2.5        | 2.5      | 2.5        | 2.5        | 2.5      | 2.5         |            |
| Lost Time Adjust (s)          |              | 0.0         | 0.0        | 0.0      |            | 0.0        |          | 0.0         |            |
| Total Lost Time (s)           |              | 5.5         | 5.5        | 5.5      |            | 5.5        |          | 5.5         |            |
| Lead/Lag                      |              |             |            |          |            |            |          |             |            |
| Lead-Lag Optimize?            |              |             |            |          |            |            |          |             |            |
| Act Effct Green (s)           |              | 20.5        | 20.5       | 20.5     |            | 43.5       |          | 43.5        |            |
| Actuated g/C Ratio            |              | 0.27        | 0.27       | 0.27     |            | 0.58       |          | 0.58        |            |
| v/c Ratio                     |              | 0.45        | 0.25       | 0.21     |            | 0.37       |          | 0.48        |            |
| Control Delay (s/veh)         |              | 22.8        | 24.3       | 13.7     |            | 15.1       |          | 10.3        |            |
| Queue Delay                   |              | 0.0         | 0.0        | 0.0      |            | 0.0        |          | 0.0         |            |
| Total Delay (s/veh)           |              | 22.8        | 24.3       | 13.7     |            | 15.1       |          | 10.3        |            |
| LOS                           |              | С           | С          | В        |            | В          |          | В           |            |
| Approach Delay (s/veh)        |              | 22.8        |            | 18.3     |            | 15.1       |          | 10.3        |            |
| Approach LOS                  |              | С           |            | В        |            | В          |          | В           |            |
| Queue Length 50th (m)         |              | 15.6        | 7.5        | 4.6      |            | 28.5       |          | 29.8        |            |
| Queue Length 95th (m)         |              | 32.7        | 17.5       | 14.7     |            | 53.9       |          | 42.4        |            |
| Internal Link Dist (m)        |              | 49.7        |            | 112.4    |            | 195.6      |          | 190.0       |            |
| Turn Bay Length (m)           |              |             | 45.0       |          |            |            |          |             |            |
| Base Capacity (vph)           |              | 371         | 272        | 409      |            | 1598       |          | 1592        |            |
| Starvation Cap Reductn        |              | 0           | 0          | 0        |            | 0          |          | 0           |            |
| Spillback Cap Reductn         |              | 0           | 0          | 0        |            | 0          |          | 0           |            |
| Storage Cap Reductn           |              | 0           | 0          | 0        |            | 0          |          | 0           |            |
| Reduced v/c Ratio             |              | 0.45        | 0.25       | 0.21     |            | 0.37       |          | 0.48        |            |
| Intersection Summary          |              |             |            |          |            |            |          |             |            |
| Cycle Length: 75              |              |             |            |          |            |            |          |             |            |
| Actuated Cycle Length: 75     |              |             |            |          |            |            |          |             |            |
| Offset: 47 (63%), Reference   | ed to phas   | e 2·NRTI    | and 6:5    | SRTI Sta | art of Gre | en         |          |             |            |
| Natural Cycle: 75             | ca to priac  | 00 2.110 11 | L dild o.c | DIL, Old | 11 01 010  | OII        |          |             |            |
| Control Type: Pretimed        |              |             |            |          |            |            |          |             |            |
| Maximum v/c Ratio: 0.48       |              |             |            |          |            |            |          |             |            |
| Intersection Signal Delay (s  | s/veh): 14 ( | 0           |            | lr       | ntersectio | n LOS: E   | }        |             |            |
| Intersection Capacity Utiliza | ,            |             |            |          |            | of Service |          |             |            |
| Analysis Period (min) 15      | 2.3011 00.T  |             |            | '        | 2.5 20101  | 5. 50i vio |          |             |            |
|                               | nk & Fifth   |             |            |          |            |            |          |             |            |
| 4                             |              |             |            |          |            |            | I        | <b>†</b>    |            |
| Ø2 (R)                        |              |             |            |          |            |            | -        | <b>→</b> ø4 | 1          |
| 49 s                          |              |             |            |          |            |            | 2/       | 5 s         |            |
| 1                             |              |             |            |          |            |            | 4        |             |            |
| Ø6 (R)                        |              |             |            |          |            |            | - 17     | <b>7</b> øs | 1          |
| 20 (11)                       |              |             |            |          |            |            |          | . ,50       |            |

| Z. Darik & Holliwo            | Ju          |             |             |             |             |              |
|-------------------------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                               | -           | 4           | <b>†</b>    | <b>&gt;</b> | ţ           |              |
| Lane Group                    | EBT         | NBL         | NBT         | SBL         | SBT         | Ø3           |
| Lane Configurations           | 4           |             | 414         |             | 479         |              |
| Traffic Volume (vph)          | 18          | 26          | 524         | 34          | 596         |              |
| Future Volume (vph)           | 18          | 26          | 524         | 34          | 596         |              |
| Lane Group Flow (vph)         | 114         | 0           | 675         | 0           | 732         |              |
| Turn Type                     | NA          | Perm        | NA          | Perm        | NA          |              |
| Protected Phases              | 4           |             | 2           |             | 6           | 3            |
| Permitted Phases              |             | 2           |             | 6           |             |              |
| Detector Phase                | 4           | 2           | 2           | 6           | 6           |              |
| Switch Phase                  |             |             |             |             |             |              |
| Minimum Initial (s)           | 4.4         | 10.0        | 10.0        | 4.0         | 4.0         | 1.0          |
| Minimum Split (s)             | 22.0        | 48.0        | 48.0        | 48.0        | 48.0        | 5.0          |
| Total Split (s)               | 22.0        | 48.0        | 48.0        | 48.0        | 48.0        | 5.0          |
| Total Split (%)               | 29.3%       | 64.0%       | 64.0%       | 64.0%       | 64.0%       | 7%           |
| Yellow Time (s)               | 3.0         | 3.0         | 3.0         | 3.0         | 3.0         | 2.0          |
| All-Red Time (s)              | 2.6         | 2.2         | 2.2         | 2.2         | 2.2         | 0.0          |
| Lost Time Adjust (s)          | 0.0         |             | 0.0         |             | 0.0         |              |
| Total Lost Time (s)           | 5.6         |             | 5.2         |             | 5.2         |              |
| Lead/Lag                      | Lag         |             | J. <u>_</u> |             |             | Lead         |
| Lead-Lag Optimize?            | _~g         |             |             |             |             | _,_,         |
| Recall Mode                   | None        | C-Max       | C-Max       | C-Max       | C-Max       | None         |
| Act Effct Green (s)           | 11.7        | <b>u</b> /\ | 55.9        |             | 55.9        |              |
| Actuated g/C Ratio            | 0.16        |             | 0.75        |             | 0.75        |              |
| v/c Ratio                     | 0.56        |             | 0.35        |             | 0.37        |              |
| Control Delay (s/veh)         | 38.8        |             | 2.1         |             | 3.4         |              |
| Queue Delay                   | 0.0         |             | 0.0         |             | 0.0         |              |
| Total Delay (s/veh)           | 38.8        |             | 2.1         |             | 3.4         |              |
| LOS                           | D           |             | Α           |             | A           |              |
| Approach Delay (s/veh)        | 38.8        |             | 2.1         |             | 3.4         |              |
| Approach LOS                  | D           |             | Α           |             | A           |              |
| Queue Length 50th (m)         | 15.1        |             | 4.6         |             | 6.4         |              |
| Queue Length 95th (m)         | 27.8        |             | 10.4        |             | 16.1        |              |
| Internal Link Dist (m)        | 39.8        |             | 31.5        |             | 195.6       |              |
| Turn Bay Length (m)           | 30.0        |             | 31.3        |             |             |              |
| Base Capacity (vph)           | 288         |             | 1950        |             | 2001        |              |
| Starvation Cap Reductn        | 0           |             | 0           |             | 0           |              |
| Spillback Cap Reductn         | 0           |             | 0           |             | 0           |              |
| Storage Cap Reductn           | 0           |             | 0           |             | 0           |              |
| Reduced v/c Ratio             | 0.40        |             | 0.35        |             | 0.37        |              |
| Intersection Summary          |             |             |             |             |             |              |
| Cycle Length: 75              |             |             |             |             |             |              |
| Actuated Cycle Length: 75     |             |             |             |             |             |              |
| Offset: 74 (99%), Reference   | ed to phas  | se 2:NBT    | L and 6:5   | SBTL, Sta   | art of Gree | en           |
| Natural Cycle: 75             |             |             |             |             |             |              |
| Control Type: Actuated-Co     | ordinated   |             |             |             |             |              |
| Maximum v/c Ratio: 0.56       |             |             |             |             |             |              |
| Intersection Signal Delay (s  | s/veh): 5.5 |             |             | li          | ntersectio  | n LOS: A     |
| Intersection Capacity Utiliza | ation 68.19 | %           |             | I           | CU Level    | of Service C |
| Analysis Period (min) 15      |             |             |             |             |             |              |
|                               |             |             |             |             |             |              |

Splits and Phases: 2: Bank & Holmwood



al Timing, 202

| O. Darik & Exhibition      | <u>√</u>   | •        | †          | <b>\</b>   | <b>↓</b> |      |      | _ |
|----------------------------|------------|----------|------------|------------|----------|------|------|---|
| Lane Group                 | WBL        | WBR      | NBT        | SBL        | SBT      | Ø1   | Ø7   |   |
| Lane Configurations        | ሻ          | 7        | <b>↑</b> ↑ | *          | <b>^</b> |      |      |   |
| Traffic Volume (vph)       | 139        | 71       | 488        | 141        | 511      |      |      |   |
| Future Volume (vph)        | 139        | 71       | 488        | 141        | 511      |      |      |   |
| Lane Group Flow (vph)      | 154        | 79       | 714        | 157        | 568      |      |      |   |
| Turn Type                  | Prot       | Perm     | NA         | Perm       | NA       |      |      |   |
| Protected Phases           | 8          |          | 2          |            | 6        | 1    | 7    |   |
| Permitted Phases           |            | 8        |            | 6          |          |      |      |   |
| Detector Phase             | 8          | 8        | 2          | 6          | 6        |      |      |   |
| Switch Phase               |            |          |            |            |          |      |      |   |
| Minimum Initial (s)        | 10.0       | 10.0     | 10.0       | 10.0       | 10.0     | 1.0  | 1.0  |   |
| Minimum Split (s)          | 26.0       | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |   |
| Total Split (s)            | 26.0       | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |   |
| Total Split (%)            | 34.7%      | 34.7%    | 52.0%      | 58.7%      | 58.7%    | 7%   | 7%   |   |
| Yellow Time (s)            | 3.3        | 3.3      | 3.0        | 3.0        | 3.0      | 2.0  | 3.5  |   |
| All-Red Time (s)           | 3.0        | 3.0      | 3.9        | 3.9        | 3.9      | 0.0  | 0.0  |   |
| Lost Time Adjust (s)       | 0.0        | 0.0      | 0.0        | 0.0        | 0.0      |      |      |   |
| Total Lost Time (s)        | 6.3        | 6.3      | 6.9        | 6.9        | 6.9      |      |      |   |
| Lead/Lag                   | Lag        | Lag      | Lag        |            |          | Lead | Lead |   |
| Lead-Lag Optimize?         |            |          | Yes        |            |          | Yes  | Yes  |   |
| Recall Mode                | None       | None     | C-Max      | C-Max      | C-Max    | None | None |   |
| Act Effct Green (s)        | 13.2       | 13.2     | 48.6       | 48.6       | 48.6     |      |      |   |
| Actuated g/C Ratio         | 0.18       | 0.18     | 0.65       | 0.65       | 0.65     |      |      |   |
| v/c Ratio                  | 0.57       | 0.31     | 0.40       | 0.43       | 0.28     |      |      |   |
| Control Delay (s/veh)      | 36.1       | 9.7      | 6.8        | 8.0        | 3.9      |      |      |   |
| Queue Delay                | 0.0        | 0.0      | 0.0        | 0.0        | 0.0      |      |      |   |
| Total Delay (s/veh)        | 36.1       | 9.7      | 6.8        | 8.0        | 3.9      |      |      |   |
| LOS                        | D          | Α        | Α          | Α          | Α        |      |      |   |
| Approach Delay (s/veh)     | 27.1       |          | 6.8        |            | 4.8      |      |      |   |
| Approach LOS               | С          |          | Α          |            | Α        |      |      |   |
| Queue Length 50th (m)      | 20.3       | 0.0      | 18.6       | 4.5        | 8.4      |      |      |   |
| Queue Length 95th (m)      | 34.7       | 9.7      | 34.8       | 9.5        | 11.4     |      |      |   |
| Internal Link Dist (m)     | 30.6       |          | 33.7       |            | 44.8     |      |      |   |
| Turn Bay Length (m)        |            |          |            | 40.0       |          |      |      |   |
| Base Capacity (vph)        | 405        | 347      | 1790       | 365        | 2035     |      |      |   |
| Starvation Cap Reductn     | 0          | 0        | 0          | 0          | 0        |      |      |   |
| Spillback Cap Reductn      | 0          | 0        | 0          | 0          | 0        |      |      |   |
| Storage Cap Reductn        | 0          | 0        | 0          | 0          | 0        |      |      |   |
| Reduced v/c Ratio          | 0.38       | 0.23     | 0.40       | 0.43       | 0.28     |      |      |   |
| Intersection Summary       |            |          |            |            |          |      |      |   |
| Cycle Length: 75           |            |          |            |            |          |      |      |   |
| Actuated Cycle Length: 75  |            |          |            |            |          |      |      |   |
| Offset: 0 (0%), Referenced | I to phase | 2:NBT ar | nd 6:SBT   | L, Start o | f Green  |      |      |   |
| Natural Cycle: 75          |            |          |            |            |          |      |      |   |
| Control Type: Actuated-Co  | ordinated  |          |            |            |          |      |      |   |

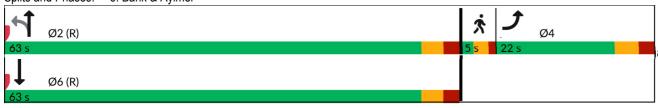
Maximum v/c Ratio: 0.57

Intersection LOS: A Intersection Signal Delay (s/veh): 8.8 Intersection Capacity Utilization 62.1% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition




al Timing, 202

### 6: Bank & Aylmer

|                                         | •            | 1        | <b>†</b>  | ţ          |                    |     |
|-----------------------------------------|--------------|----------|-----------|------------|--------------------|-----|
| Lane Group                              | EBL          | NBL      | NBT       | SBT        | Ø3                 |     |
| Lane Configurations                     | ¥            | HUL      | 41        | <b>↑</b> ⊅ |                    |     |
| Traffic Volume (vph)                    | 57           | 21       | 730       | 780        |                    |     |
| Future Volume (vph)                     | 57           | 21       | 730       | 780        |                    |     |
| Lane Group Flow (vph)                   | 90           | 0        | 834       | 975        |                    |     |
| Turn Type                               | Prot         | Perm     | NA        | NA         |                    |     |
| Protected Phases                        | 4            |          | 2         | 6          | 3                  |     |
| Permitted Phases                        | 4            | 2        | _         | 6          | Ū                  |     |
| Detector Phase                          | 4            | 2        | 2         | 6          |                    |     |
| Switch Phase                            | •            | _        | _         |            |                    |     |
| Minimum Initial (s)                     | 10.0         | 30.0     | 30.0      | 30.0       | 1.0                |     |
| Minimum Split (s)                       | 22.0         | 63.0     | 63.0      | 63.0       | 5.0                |     |
| Total Split (s)                         | 22.0         | 63.0     | 63.0      | 63.0       | 5.0                |     |
| Total Split (%)                         | 24.4%        | 70.0%    | 70.0%     | 70.0%      | 6%                 |     |
| Yellow Time (s)                         | 3.3          | 3.0      | 3.0       | 3.0        | 2.0                |     |
| All-Red Time (s)                        | 2.2          | 2.2      | 2.2       | 2.2        | 1.0                |     |
| Lost Time Adjust (s)                    | 0.0          | £.£      | 0.0       | 0.0        | 1.0                |     |
| Total Lost Time (s)                     | 5.5          |          | 5.2       | 5.2        |                    |     |
| Lead/Lag                                | Lag          |          | 0.2       | 0.2        | Lead               |     |
| Lead-Lag Optimize?                      | Lag          |          |           |            | Loud               |     |
| Recall Mode                             | Ped          | C-Max    | C-Max     | C-Max      | Max                |     |
| Act Effct Green (s)                     | 14.1         | Univida  | 60.2      | 60.2       | IVIUA              |     |
| Actuated g/C Ratio                      | 0.16         |          | 0.67      | 0.67       |                    |     |
| v/c Ratio                               | 0.10         |          | 0.07      | 0.50       |                    |     |
| Control Delay (s/veh)                   | 31.6         |          | 4.7       | 8.2        |                    |     |
| Queue Delay                             | 0.0          |          | 0.0       | 0.2        |                    |     |
|                                         | 31.6         |          | 4.7       | 8.2        |                    |     |
| Total Delay (s/veh)<br>LOS              | 31.0<br>C    |          | 4.7<br>A  | 0.2<br>A   |                    |     |
|                                         | 31.6         |          | 4.7       | 8.2        |                    |     |
| Approach Delay (s/veh) Approach LOS     | 31.6<br>C    |          | 4.7<br>A  | 8.2<br>A   |                    |     |
| Queue Length 50th (m)                   | 10.7         |          | 13.8      | 37.1       |                    |     |
| • • • • • • • • • • • • • • • • • • • • |              |          |           |            |                    |     |
| Queue Length 95th (m)                   | 24.5<br>76.7 |          | m17.4     | 51.0       |                    |     |
| Internal Link Dist (m)                  | 10.1         |          | 28.1      | 10.1       |                    |     |
| Turn Bay Length (m)                     | 075          |          | 1010      | 1050       |                    |     |
| Base Capacity (vph)                     | 275          |          | 1910      | 1959       |                    |     |
| Starvation Cap Reductn                  | 0            |          | 0         | 0          |                    |     |
| Spillback Cap Reductn                   | 0            |          | 0         | 0          |                    |     |
| Storage Cap Reductn                     | 0            |          | 0         | 0          |                    |     |
| Reduced v/c Ratio                       | 0.33         |          | 0.44      | 0.50       |                    |     |
| Intersection Summary                    |              |          |           |            |                    |     |
| Cycle Length: 90                        |              |          |           |            |                    |     |
| Actuated Cycle Length: 90               |              |          |           |            |                    |     |
| Offset: 87 (97%), Reference             | ed to phas   | se 2:NBT | L and 6:8 | SBT, Start | of Green           |     |
| Natural Cycle: 90                       |              |          |           |            |                    |     |
| Control Type: Actuated-Co               | ordinated    |          |           |            |                    |     |
| Maximum v/c Ratio: 0.50                 |              |          |           |            |                    |     |
| Intersection Signal Delay (s            | s/veh): 7.8  |          |           | In         | itersection LOS: A | ١   |
| Intersection Capacity Utiliz            | ation 57.9   | %        |           | IC         | CU Level of Servic | e B |
| Analysis Period (min) 15                |              |          |           |            |                    |     |

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Bank & Aylmer



al Timing, 202

|                        | ۶     | -     | •     | •      | •     | <b>†</b> | <b>&gt;</b> | <b>↓</b> |      |      |  |
|------------------------|-------|-------|-------|--------|-------|----------|-------------|----------|------|------|--|
| Lane Group             | EBL   | EBT   | WBL   | WBT    | NBL   | NBT      | SBL         | SBT      | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4     |       | 4      |       | 474      |             | 4Te      |      |      |  |
| Traffic Volume (vph)   | 53    | 82    | 17    | 85     | 15    | 463      | 211         | 777      |      |      |  |
| Future Volume (vph)    | 53    | 82    | 17    | 85     | 15    | 463      | 211         | 777      |      |      |  |
| Lane Group Flow (vph)  | 0     | 184   | 0     | 395    | 0     | 554      | 0           | 1203     |      |      |  |
| Turn Type              | Perm  | NA    | Perm  | NA     | Perm  | NA       | pm+pt       | NA       |      |      |  |
| Protected Phases       |       | 4     |       | 8      |       | 2        | 1           | 6        | 3    | 7    |  |
| Permitted Phases       | 4     |       | 8     |        | 2     |          | 6           |          |      |      |  |
| Minimum Split (s)      | 25.0  | 25.0  | 25.0  | 25.0   | 43.0  | 43.0     | 17.0        | 60.0     | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0  | 25.0  | 25.0   | 43.0  | 43.0     | 17.0        | 60.0     | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8% | 27.8% | 27.8%  | 47.8% | 47.8%    | 18.9%       | 66.7%    | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0   | 3.0   | 3.0    | 3.0   | 3.0      | 3.0         | 3.0      | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6   | 2.6   | 2.6    | 3.0   | 3.0      | 2.9         | 3.0      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0   |       | 0.0    |       | 0.0      |             | 0.0      |      |      |  |
| Total Lost Time (s)    |       | 5.6   |       | 5.6    |       | 6.0      |             | 6.0      |      |      |  |
| Lead/Lag               | Lag   | Lag   | Lag   | Lag    | Lag   | Lag      | Lead        |          | Lead | Lead |  |
| Lead-Lag Optimize?     |       |       | Yes   | Yes    | Yes   | Yes      | Yes         |          |      | Yes  |  |
| Act Effct Green (s)    |       | 19.4  |       | 19.4   |       | 37.0     |             | 54.0     |      |      |  |
| Actuated g/C Ratio     |       | 0.22  |       | 0.22   |       | 0.41     |             | 0.60     |      |      |  |
| v/c Ratio              |       | 1.23  |       | 1.14   |       | 0.48     |             | 0.95     |      |      |  |
| Control Delay (s/veh)  |       | 184.2 |       | 116.2  |       | 21.0     |             | 27.0     |      |      |  |
| Queue Delay            |       | 0.0   |       | 0.0    |       | 0.0      |             | 0.0      |      |      |  |
| Total Delay (s/veh)    |       | 184.2 |       | 116.2  |       | 21.0     |             | 27.0     |      |      |  |
| LOS                    |       | F     |       | F      |       | С        |             | С        |      |      |  |
| Approach Delay (s/veh) |       | 184.2 |       | 116.2  |       | 21.0     |             | 27.0     |      |      |  |
| Approach LOS           |       | F     |       | F      |       | С        |             | С        |      |      |  |
| Queue Length 50th (m)  |       | ~39.6 |       | ~61.9  |       | 35.6     |             | 23.3     |      |      |  |
| Queue Length 95th (m)  |       | #79.2 |       | #116.6 |       | 50.2     |             | #117.3   |      |      |  |
| Internal Link Dist (m) |       | 75.1  |       | 136.0  |       | 63.1     |             | 79.0     |      |      |  |
| Turn Bay Length (m)    |       |       |       |        |       |          |             |          |      |      |  |
| Base Capacity (vph)    |       | 149   |       | 347    |       | 1143     |             | 1262     |      |      |  |
| Starvation Cap Reductn |       | 0     |       | 0      |       | 0        |             | 0        |      |      |  |
| Spillback Cap Reductn  |       | 0     |       | 0      |       | 0        |             | 0        |      |      |  |
| Storage Cap Reductn    |       | 0     |       | 0      |       | 0        |             | 0        |      |      |  |
| Reduced v/c Ratio      |       | 1.23  |       | 1.14   |       | 0.48     |             | 0.95     |      |      |  |

#### Intersection Summary

Cycle Length: 90

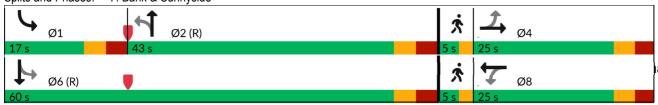
Actuated Cycle Length: 90

Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100 Control Type: Pretimed Maximum v/c Ratio: 1.23

Intersection Signal Delay (s/veh): 53.0 Intersection LOS: D
Intersection Capacity Utilization 96.8% ICU Level of Service F

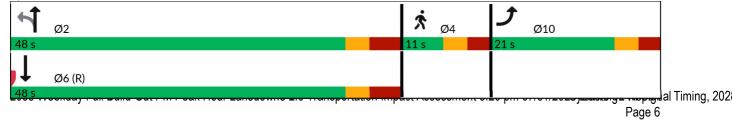
Analysis Period (min) 15


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


Splits and Phases: 7: Bank & Sunnyside



al Timing, 202

|                               | ۶           | 1         | <b>†</b>   | Ţ          |                       |
|-------------------------------|-------------|-----------|------------|------------|-----------------------|
| Lane Group                    | EBL         | NBL       | NBT        | SBT        | Ø4                    |
| Lane Configurations           | W           |           | 4          | 4          |                       |
| Traffic Volume (vph)          | 40          | 39        | 207        | 542        |                       |
| Future Volume (vph)           | 40          | 39        | 207        | 542        |                       |
| Lane Group Flow (vph)         | 83          | 0         | 273        | 676        |                       |
| Turn Type                     | Prot        | Perm      | NA         | NA         |                       |
| Protected Phases              | 10          |           | 2          | 6          | 4                     |
| Permitted Phases              |             | 2         |            |            |                       |
| Minimum Split (s)             | 21.0        | 48.0      | 48.0       | 48.0       | 11.0                  |
| Total Split (s)               | 21.0        | 48.0      | 48.0       | 48.0       | 11.0                  |
| Total Split (%)               | 26.3%       | 60.0%     | 60.0%      | 60.0%      | 14%                   |
| Yellow Time (s)               | 3.0         | 3.0       | 3.0        | 3.0        | 3.0                   |
| All-Red Time (s)              | 2.7         | 3.8       | 3.8        | 3.8        | 2.7                   |
| Lost Time Adjust (s)          | 0.0         |           | 0.0        | 0.0        |                       |
| Total Lost Time (s)           | 5.7         |           | 6.8        | 6.8        |                       |
| Lead/Lag                      |             |           |            |            |                       |
| Lead-Lag Optimize?            |             |           |            |            |                       |
| Act Effct Green (s)           | 15.3        |           | 41.2       | 41.2       |                       |
| Actuated g/C Ratio            | 0.19        |           | 0.52       | 0.52       |                       |
| v/c Ratio                     | 0.28        |           | 0.43       | 0.79       |                       |
| Control Delay (s/veh)         | 30.7        |           | 14.7       | 24.5       |                       |
| Queue Delay                   | 0.0         |           | 0.0        | 0.0        |                       |
| Total Delay (s/veh)           | 30.7        |           | 14.7       | 24.5       |                       |
| LOS                           | С           |           | В          | С          |                       |
| Approach Delay (s/veh)        | 30.7        |           | 14.7       | 24.5       |                       |
| Approach LOS                  | С           |           | В          | С          |                       |
| Queue Length 50th (m)         | 10.9        |           | 24.2       | 79.0       |                       |
| Queue Length 95th (m)         | 23.1        |           |            | #129.4     |                       |
| Internal Link Dist (m)        | 57.2        |           | 0.1        | 5.9        |                       |
| Turn Bay Length (m)           |             |           |            |            |                       |
| Base Capacity (vph)           | 294         |           | 641        | 855        |                       |
| Starvation Cap Reductn        | 0           |           | 0          | 0          |                       |
| Spillback Cap Reductn         | 0           |           | 0          | 0          |                       |
| Storage Cap Reductn           | 0           |           | 0          | 0          |                       |
| Reduced v/c Ratio             | 0.28        |           | 0.43       | 0.79       |                       |
| Intersection Summary          |             |           |            |            |                       |
| Cycle Length: 80              |             |           |            |            |                       |
| Actuated Cycle Length: 80     |             |           |            |            |                       |
| Offset: 0 (0%), Referenced    | to phase    | 6:SBT. S  | tart of Gr | een        |                       |
| Natural Cycle: 80             | , p. 10.00  | .,, 0     |            |            |                       |
| Control Type: Pretimed        |             |           |            |            |                       |
| Maximum v/c Ratio: 0.79       |             |           |            |            |                       |
| Intersection Signal Delay (s  | s/veh): 22  | 4         |            | lr         | ntersection LOS: C    |
| Intersection Capacity Utiliza | •           |           |            |            | CU Level of Service C |
| Analysis Period (min) 15      |             | , ,       |            |            | 22 2010: 01 00:1100 0 |
| # 95th percentile volume      | exceeds o   | apacity   | dilelle m  | av he lon  | ner                   |
| Queue shown is maximu         |             |           |            | ay bo long | yo                    |
| Queue showir is maximi        | um aller lv | vo cycles |            |            |                       |





| Intersection              |   |  |
|---------------------------|---|--|
| Intersection Delay, s/veh | 8 |  |
| Intersection LOS          | Α |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 76   | 40   | 0    | 0    | 0    | 106  | 45   | 27   | 34   | 0    | 0    | 95   |
| Future Vol, veh/h          | 76   | 40   | 0    | 0    | 0    | 106  | 45   | 27   | 34   | 0    | 0    | 95   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 84   | 44   | 0    | 0    | 0    | 118  | 50   | 30   | 38   | 0    | 0    | 106  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.6  |      |      |      |      | 7.6  | 8.3  |      |      |      |      | 7.6  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 42%   | 66%   | 0%    | 0%    |  |
| Vol Thru, %              | 25%   | 34%   | 0%    | 0%    |  |
| Vol Right, %             | 32%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 106   | 116   | 106   | 95    |  |
| LT Vol                   | 45    | 76    | 0     | 0     |  |
| Through Vol              | 27    | 40    | 0     | 0     |  |
| RT Vol                   | 34    | 0     | 106   | 95    |  |
| Lane Flow Rate           | 118   | 129   | 118   | 106   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.147 | 0.167 | 0.13  | 0.118 |  |
| Departure Headway (Hd)   | 4.487 | 4.675 | 3.976 | 4.02  |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Сар                      | 800   | 768   | 902   | 892   |  |
| Service Time             | 2.509 | 2.699 | 1.999 | 2.042 |  |
| HCM Lane V/C Ratio       | 0.148 | 0.168 | 0.131 | 0.119 |  |
| HCM Control Delay, s/veh | 8.3   | 8.6   | 7.6   | 7.6   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.5   | 0.6   | 0.4   | 0.4   |  |

| Int Delay, s/veh  Movement                             | 15.1     |       |              |                  |          |      |
|--------------------------------------------------------|----------|-------|--------------|------------------|----------|------|
|                                                        |          |       |              |                  |          |      |
|                                                        | EBL      | EBR   | NBL          | NBT              | SBT      | SBR  |
| Lane Configurations                                    |          | 7     |              | 41               | - ↑      |      |
| Traffic Vol, veh/h                                     | 3        | 239   | 219          | 600              | 598      | 51   |
| Future Vol, veh/h                                      | 3        | 239   | 219          | 600              | 598      | 51   |
| Conflicting Peds, #/h                                  |          | 0     | 178          | 0                | 0        | 107  |
| Sign Control                                           | Stop     | Stop  | Free         | Free             | Free     | Free |
| RT Channelized                                         | -        |       | -            | None             | -        | None |
| Storage Length                                         | _        | 0     | _            | -                | _        | -    |
| Veh in Median Stora                                    |          | -     | _            | 0                | 0        | _    |
| Grade, %                                               | 19c, # 0 | _     | _            | 0                | 0        | _    |
| Peak Hour Factor                                       | 90       | 90    | 90           | 90               | 90       | 90   |
|                                                        | 5        | 5     | 5            | 5                | 5        | 5    |
| Heavy Vehicles, %                                      | 3        |       |              |                  |          |      |
| Mvmt Flow                                              | 3        | 266   | 243          | 667              | 664      | 57   |
|                                                        |          |       |              |                  |          |      |
| Major/Minor                                            | Minor2   | N     | Major1       | N                | /lajor2  |      |
| Conflicting Flow All                                   | 1691     | 871   | 899          | 0                |          | 0    |
| Stage 1                                                | 871      | -     | -            | _                | _        | _    |
| Stage 2                                                | 820      | _     | _            | _                | _        | _    |
| Critical Hdwy                                          |          | 6.275 | <b>4</b> 175 | _                | _        | _    |
| Critical Hdwy Stg 1                                    | 5.475    | -     | -            | _                | _        | _    |
| Critical Hdwy Stg 2                                    | 5.875    | _     |              | _                | _        | _    |
| Follow-up Hdwy                                         | 3.54753  |       | 2/75         | _                | _        | -    |
| Pot Cap-1 Maneuve                                      |          | 344   | 738          | -                | -        | _    |
|                                                        | 402      | 344   | 130          | -                | _        | _    |
| Stage 1                                                | 388      |       | -            | -                |          |      |
| Stage 2                                                | 300      | -     | -            | -                | -        | -    |
| Platoon blocked, %                                     |          | 070   | F00          | -                | -        | -    |
| Mov Cap-1 Maneuve                                      |          | 279   | 599          | -                | -        | -    |
| Mov Cap-2 Maneuve                                      |          | -     | -            | -                | -        | -    |
| Stage 1                                                | 164      | -     | -            | -                | -        | -    |
| Stage 2                                                | 315      | -     | -            | -                | -        | -    |
|                                                        |          |       |              |                  |          |      |
| Approach                                               | EB       |       | NB           |                  | SB       |      |
|                                                        |          |       |              |                  |          |      |
| HCM Control Delay,                                     | _        |       | 7.21         |                  | 0        |      |
| HCM LOS                                                | F        |       |              |                  |          |      |
|                                                        |          |       |              |                  |          |      |
| Minor Lane/Major M                                     | vmt      | NBL   | NBTE         | EBLn1            | SBT      | SBR  |
| TYTELOT EUTIC/TYTATOL IVI                              |          | 488   |              | 279              |          |      |
|                                                        |          | 0.406 | _            | 0.951            | _        | _    |
| Capacity (veh/h)                                       | Λ        |       |              |                  |          |      |
| Capacity (veh/h) HCM Lane V/C Ratio                    |          |       | <b>43</b>    | 82.1             |          |      |
| Capacity (veh/h) HCM Lane V/C Ration HCM Control Delay |          | 15.1  | 4.3<br>Δ     |                  | <u>-</u> | -    |
| Capacity (veh/h) HCM Lane V/C Ratio                    | (s/veh)  |       | 4.3<br>A     | 82.1<br>F<br>9.2 | -        | -    |

| Intersection           |         |        |           |          |            |      |
|------------------------|---------|--------|-----------|----------|------------|------|
| Int Delay, s/veh       | 0.3     |        |           |          |            |      |
| Movement               | EBL     | EBR    | NBL       | NBT      | SBT        | SBR  |
| Lane Configurations    | LDL     | ZDK    | NDL       | <u>↑</u> | <u>361</u> | ODIX |
| Traffic Vol, veh/h     | 0       | 24     | 0         | 827      | 846        | 2    |
| Future Vol, veh/h      | 0       | 24     | 0         | 827      | 846        | 2    |
| Conflicting Peds, #/hr | 0       | 0      | 0         | 021      | 040        | 86   |
| Sign Control           | Stop    | Stop   | Free      | Free     | Free       | Free |
| RT Channelized         | -<br>-  | None   | -         |          | -          | None |
| Storage Length         | _       | 0      |           | -        |            | -    |
| Veh in Median Storage  |         | -      | _         | 0        | 0          |      |
| Grade, %               | 0       | _      | _         | 0        | 0          | _    |
| Peak Hour Factor       | 90      | 90     | 90        | 90       | 90         | 90   |
| Heavy Vehicles, %      | 5       | 5      | 5         | 5        | 5          | 5    |
| Mvmt Flow              | 0       | 27     | 0         | 919      | 940        | 2    |
| IVIVIIIL I IOW         | U       | ۷1     | U         | 313      | 340        | 2    |
|                        |         |        |           |          |            |      |
|                        | /linor2 |        | //ajor1   | N        | /lajor2    |      |
| Conflicting Flow All   | -       | 1027   | -         | 0        | -          | 0    |
| Stage 1                | -       | -      | -         | -        | -          | -    |
| Stage 2                | -       | -      | -         | -        | -          | -    |
| Critical Hdwy          | -       | 6.275  | -         | -        | -          | -    |
| Critical Hdwy Stg 1    | -       | -      | -         | -        | -          | -    |
| Critical Hdwy Stg 2    | -       | -      | -         | -        | -          | -    |
| Follow-up Hdwy         | -3      | 3.3475 | -         | -        | -          | -    |
| Pot Cap-1 Maneuver     | 0       | 279    | 0         | -        | -          | -    |
| Stage 1                | 0       | -      | 0         | -        | -          | -    |
| Stage 2                | 0       | -      | 0         | -        | -          | -    |
| Platoon blocked, %     |         |        |           | -        | -          | -    |
| Mov Cap-1 Maneuver     | -       | 253    | -         | -        | -          | -    |
| Mov Cap-2 Maneuver     | -       | -      | -         | -        | -          | -    |
| Stage 1                | _       | _      | -         | -        | _          | -    |
| Stage 2                | -       | _      | _         | _        | _          | -    |
| olago _                |         |        |           |          |            |      |
|                        |         |        |           |          |            |      |
| Approach               | EB      |        | NB        |          | SB         |      |
| HCM Control Delay, s/  |         |        | 0         |          | 0          |      |
| HCM LOS                | С       |        |           |          |            |      |
|                        |         |        |           |          |            |      |
| Minor Lane/Major Mvn   | nt      | NRTF   | EBLn1     | SBT      | SBR        |      |
| Capacity (veh/h)       |         | -      | 253       | -        | -          |      |
| HCM Lane V/C Ratio     |         |        | 0.105     | <u> </u> |            |      |
| HCM Control Delay (s/  | (veh)   | _      | 20.9      | _        | _          |      |
| HCM Lane LOS           | voii)   | _      | 20.9<br>C | <u> </u> |            |      |
| LIGHT LUNG LOO         |         |        |           |          |            |      |
| HCM 95th %tile Q(veh   | 1       | _      | 0.3       | _        | _          |      |

| Intersection           |         |          |          |       |         |      |
|------------------------|---------|----------|----------|-------|---------|------|
| Int Delay, s/veh       | 3.5     |          |          |       |         |      |
|                        |         |          |          |       |         |      |
| Movement               | EBL     | EBR      | NBL      | NBT   | SBT     | SBR  |
| Lane Configurations    | Y       |          |          | 4     | ĵ.      |      |
| Traffic Vol, veh/h     | 62      | 65       | 59       | 263   | 507     | 82   |
| Future Vol, veh/h      | 62      | 65       | 59       | 263   | 507     | 82   |
| Conflicting Peds, #/hr | 0       | 0        | _ 0      | _ 0   | 0       | 0    |
| Sign Control           | Stop    | Stop     | Free     | Free  | Free    | Free |
| RT Channelized         | -       | None     | -        | None  | -       | None |
| Storage Length         | 0       | -        | -        | -     | -       | -    |
| Veh in Median Storage  |         | -        | -        | 0     | 0       | -    |
| Grade, %               | 0       | -        | -        | 0     | 0       | -    |
| Peak Hour Factor       | 90      | 90       | 90       | 90    | 90      | 90   |
| Heavy Vehicles, %      | 0       | 0        | 0        | 0     | 0       | 0    |
| Mvmt Flow              | 69      | 72       | 66       | 292   | 563     | 91   |
|                        |         |          |          |       |         |      |
| Major/Minor N          | /linor2 | N        | /lajor1  | ٨     | /lajor2 |      |
| Conflicting Flow All   | 1032    | 609      | 654      | 0     | -       | 0    |
| Stage 1                | 609     | -        | -        | -     | _       | -    |
| Stage 2                | 423     | _        | _        | _     | _       | _    |
| Critical Hdwy          | 6.4     | 6.2      | 4.1      | _     | _       | _    |
| Critical Hdwy Stg 1    | 5.4     | - 0.2    | -        | _     | _       | _    |
| Critical Hdwy Stg 2    | 5.4     | _        | _        | _     | _       | _    |
| Follow-up Hdwy         | 3.5     | 3.3      | 2.2      | _     | _       | _    |
| Pot Cap-1 Maneuver     | 260     | 499      | 942      | _     | _       | _    |
| Stage 1                | 547     | -        | J7Z<br>- | _     | _       | _    |
| Stage 2                | 665     |          |          | _     | _       | _    |
| Platoon blocked, %     | 000     |          |          | _     | _       | _    |
| Mov Cap-1 Maneuver     | 238     | 499      | 942      | _     | -       |      |
| Mov Cap-1 Maneuver     | 238     | 499      | 342      | _     | _       | _    |
| Stage 1                | 501     | <u>-</u> | -        | -     |         |      |
|                        | 665     | -        | -        | -     | -       | -    |
| Stage 2                | 000     | -        | _        | -     | _       | -    |
|                        |         |          |          |       |         |      |
| Approach               | EB      |          | NB       |       | SB      |      |
| HCM Control Delay, s/  | 24.27   |          | 1.67     |       | 0       |      |
| HCM LOS                | С       |          |          |       |         |      |
|                        |         |          |          |       |         |      |
| Minard and Maria 34    | -1      | NDI      | NET      | -DL 4 | ODT     | ODD  |
| Minor Lane/Major Mvn   | nt      | NBL      |          | EBLn1 | SBT     | SBR  |
| Capacity (veh/h)       |         | 330      | -        |       | -       | -    |
| HCM Lane V/C Ratio     | , , ,   | 0.07     |          | 0.434 | -       | -    |
| HCM Control Delay (sa  | /veh)   | 9.1      | 0        |       | -       | -    |
| HCM Lane LOS           | ,       | A        | Α        | С     | -       | -    |
| HCM 95th %tile Q(veh   | 1)      | 0.2      | -        | 2.1   | -       | -    |
|                        |         |          |          |       |         |      |

| Intersection           |         |      |          |       |         |          |
|------------------------|---------|------|----------|-------|---------|----------|
| Int Delay, s/veh       | 1       |      |          |       |         |          |
| Movement               | WBL     | WBR  | NBT      | NBR   | SBL     | SBT      |
| Lane Configurations    |         | 7    | <b>†</b> |       |         | <b>^</b> |
| Traffic Vol, veh/h     | 5       | 84   | 566      | 9     | 1       | 650      |
| Future Vol, veh/h      | 5       | 84   | 566      | 9     | 1       | 650      |
| Conflicting Peds, #/hr | 0       | 0    | 0        | 100   | 0       | 0        |
| Sign Control           | Stop    | Stop | Free     | Free  | Free    | Free     |
| RT Channelized         | -       | None | -        | None  | -       | None     |
| Storage Length         | -       | 0    | -        | -     | -       | -        |
| Veh in Median Storage  |         | -    | 0        | -     | _       | 0        |
| Grade, %               | 0       | _    | 0        | -     | _       | 0        |
| Peak Hour Factor       | 90      | 90   | 90       | 90    | 90      | 90       |
| Heavy Vehicles, %      | 0       | 15   | 6        | 0     | 0       | 5        |
| Mymt Flow              | 6       | 93   | 629      | 10    | 1       | 722      |
| IVIVIIIL I IOVV        | - 0     | 30   | 023      | 10    |         | 122      |
|                        |         | _    |          |       |         |          |
|                        | /linor1 |      | /lajor1  |       | //ajor2 |          |
| Conflicting Flow All   | 1097    | 419  | 0        | 0     | 739     | 0        |
| Stage 1                | 734     | -    | -        | -     | -       | -        |
| Stage 2                | 363     | -    | -        | -     | -       | -        |
| Critical Hdwy          | 6.8     | 7.2  | -        | -     | 4.1     | -        |
| Critical Hdwy Stg 1    | 5.8     | -    | -        | -     | -       | -        |
| Critical Hdwy Stg 2    | 5.8     | -    | -        | -     | -       | -        |
| Follow-up Hdwy         | 3.5     | 3.45 | -        | -     | 2.2     | -        |
| Pot Cap-1 Maneuver     | 211     | 548  | -        | -     | 877     | -        |
| Stage 1                | 441     | -    | -        | -     | -       | -        |
| Stage 2                | 680     | -    | -        | -     | -       | -        |
| Platoon blocked, %     |         |      | -        | -     |         | -        |
| Mov Cap-1 Maneuver     | 188     | 490  | -        | -     | 784     | -        |
| Mov Cap-2 Maneuver     | 188     | -    | -        | -     | -       | -        |
| Stage 1                | 394     | -    | -        | -     | -       | -        |
| Stage 2                | 679     | -    | -        | -     | -       | -        |
|                        |         |      |          |       |         |          |
| A                      | WD      |      | ND       |       | O.D.    |          |
| Approach               | WB      |      | NB       |       | SB      |          |
| HCM Control Delay, s/  |         |      | 0        |       | 0.01    |          |
| HCM LOS                | В       |      |          |       |         |          |
|                        |         |      |          |       |         |          |
| Minor Lane/Major Mvm   | nt      | NBT  | NBRV     | VBLn1 | SBL     | SBT      |
| Capacity (veh/h)       |         | _    | _        |       | 784     | _        |
| HCM Lane V/C Ratio     |         | _    | _        | 0.191 |         | _        |
| HCM Control Delay (s/  | veh)    | -    | _        |       | 9.6     | -        |
| HCM Lane LOS           | ,       | _    | _        | В     | A       | _        |
| HCM 95th %tile Q(veh   | )       | -    | _        | 0.7   | 0       | _        |
| 1                      | ,       |      |          |       |         |          |

## 2033 Scenario

Saturday Peak Hour

**Background Volumes** 

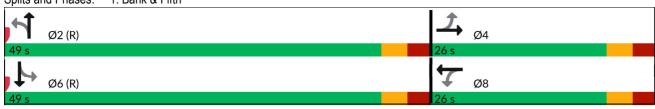
1: Bank & Fifth 08/01/2024

|                                 | •     | <b>→</b> | •     | •     | 4     | <b>†</b> | <b>\</b> | ļ           |  |
|---------------------------------|-------|----------|-------|-------|-------|----------|----------|-------------|--|
| Lane Group                      | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL      | SBT         |  |
| Lane Configurations             |       | ₩        | ¥     | -î    |       | र्सी के  |          | <b>€1</b> } |  |
| Traffic Volume (vph)            | 46    | 41       | 69    | 45    | 21    | 489      | 20       | 547         |  |
| Future Volume (vph)             | 46    | 41       | 69    | 45    | 21    | 489      | 20       | 547         |  |
| Lane Group Flow (vph)           | 0     | 145      | 77    | 108   | 0     | 593      | 0        | 660         |  |
| Turn Type                       | Perm  | NA       | Perm  | NA    | Perm  | NA       | Perm     | NA          |  |
| Protected Phases                |       | 4        |       | 8     |       | 2        |          | 6           |  |
| Permitted Phases                | 4     |          | 8     |       | 2     |          | 6        |             |  |
| Detector Phase                  | 4     | 4        | 8     | 8     | 2     | 2        | 6        | 6           |  |
| Switch Phase                    |       |          |       |       |       |          |          |             |  |
| Minimum Initial (s)             | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0      | 4.0      | 4.0         |  |
| Minimum Split (s)               | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0        |  |
| Total Split (s)                 | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0        |  |
| Total Split (%)                 | 34.7% | 34.7%    | 34.7% | 34.7% | 65.3% | 65.3%    | 65.3%    | 65.3%       |  |
| Yellow Time (s)                 | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0         |  |
| All-Red Time (s)                | 2.5   | 2.5      | 2.5   | 2.5   | 2.5   | 2.5      | 2.5      | 2.5         |  |
| Lost Time Adjust (s)            |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0         |  |
| Total Lost Time (s)             |       | 5.5      | 5.5   | 5.5   |       | 5.5      |          | 5.5         |  |
| Lead/Lag                        |       |          |       |       |       |          |          |             |  |
| Lead-Lag Optimize?              |       |          |       |       |       |          |          |             |  |
| Recall Mode                     | None  | None     | None  | None  | C-Max | C-Max    | C-Max    | C-Max       |  |
| Act Effct Green (s)             |       | 12.2     | 12.2  | 12.2  |       | 51.8     |          | 51.8        |  |
| Actuated g/C Ratio              |       | 0.16     | 0.16  | 0.16  |       | 0.69     |          | 0.69        |  |
| v/c Ratio                       |       | 0.65     | 0.48  | 0.40  |       | 0.31     |          | 0.34        |  |
| Control Delay (s/veh)           |       | 35.0     | 37.0  | 18.0  |       | 9.8      |          | 5.9         |  |
| Queue Delay                     |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0         |  |
| Total Delay (s/veh)             |       | 35.0     | 37.0  | 18.0  |       | 9.8      |          | 5.9         |  |
| LOS                             |       | С        | D     | В     |       | Α        |          | Α           |  |
| Approach Delay (s/veh)          |       | 35.0     |       | 25.9  |       | 9.8      |          | 5.9         |  |
| Approach LOS                    |       | С        |       | С     |       | Α        |          | Α           |  |
| Queue Length 50th (m)           |       | 14.8     | 10.0  | 6.2   |       | 15.3     |          | 16.2        |  |
| Queue Length 95th (m)           |       | 29.3     | 20.2  | 17.3  |       | 51.5     |          | 31.8        |  |
| Internal Link Dist (m)          |       | 49.7     |       | 112.4 |       | 195.6    |          | 190.0       |  |
| Turn Bay Length (m)             |       |          | 45.0  |       |       |          |          |             |  |
| Base Capacity (vph)             |       | 354      | 269   | 415   |       | 1915     |          | 1939        |  |
| Starvation Cap Reductn          |       | 0        | 0     | 0     |       | 0        |          | 0           |  |
| Spillback Cap Reductn           |       | 0        | 0     | 0     |       | 0        |          | 0           |  |
| Storage Cap Reductn             |       | 0        | 0     | 0     |       | 0        |          | 0           |  |
| Reduced v/c Ratio               |       | 0.41     | 0.29  | 0.26  |       | 0.31     |          | 0.34        |  |
| Intersection Summary            |       |          |       |       |       |          |          |             |  |
| Cycle Length: 75                |       |          |       |       |       |          |          |             |  |
| Astrophysical Cycle Langitte 75 |       |          |       |       |       |          |          |             |  |

Actuated Cycle Length: 75

Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65

Intersection Signal Delay (s/veh): 12.4 Intersection Capacity Utilization 57.9% Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth



|                                         | <b>→</b>    | 1       | <b>†</b>  | <b>/</b>  | ţ           |              |
|-----------------------------------------|-------------|---------|-----------|-----------|-------------|--------------|
| Lane Group                              | EBT         | NBL     | NBT       | SBL       | SBT         | Ø3           |
| Lane Configurations                     | 4           |         | 414       |           | 414         |              |
| Traffic Volume (vph)                    | 10          | 29      | 497       | 31        | 559         |              |
| Future Volume (vph)                     | 10          | 29      | 497       | 31        | 559         |              |
| Lane Group Flow (vph)                   | 113         | 0       | 634       | 0         | 681         |              |
| Turn Type                               | NA          | Perm    | NA        | Perm      | NA          |              |
| Protected Phases                        | 4           |         | 2         |           | 6           | 3            |
| Permitted Phases                        |             | 2       |           | 6         |             | -            |
| Detector Phase                          | 4           | 2       | 2         | 6         | 6           |              |
| Switch Phase                            |             | _       | _         | -         | •           |              |
| Minimum Initial (s)                     | 4.4         | 10.0    | 10.0      | 4.0       | 4.0         | 1.0          |
| Minimum Split (s)                       | 22.0        | 48.0    | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (s)                         | 22.0        | 48.0    | 48.0      | 48.0      | 48.0        | 5.0          |
| Total Split (%)                         | 29.3%       | 64.0%   | 64.0%     | 64.0%     | 64.0%       | 7%           |
| Yellow Time (s)                         | 3.0         | 3.0     | 3.0       | 3.0       | 3.0         | 2.0          |
| All-Red Time (s)                        | 2.6         | 2.2     | 2.2       | 2.2       | 2.2         | 0.0          |
| Lost Time Adjust (s)                    | 0.0         |         | 0.0       |           | 0.0         | 0.0          |
| Total Lost Time (s)                     | 5.6         |         | 5.2       |           | 5.2         |              |
| Lead/Lag                                | Lag         |         | 0.2       |           | 0.2         | Lead         |
| Lead-Lag Optimize?                      | Lug         |         |           |           |             | Loud         |
| Recall Mode                             | None        | C-Max   | C-Max     | C-Max     | C-Max       | None         |
| Act Effct Green (s)                     | 11.7        | 5 Max   | 55.9      | O IVIUX   | 55.9        | 140110       |
| Actuated g/C Ratio                      | 0.16        |         | 0.75      |           | 0.75        |              |
| v/c Ratio                               | 0.56        |         | 0.32      |           | 0.34        |              |
| Control Delay (s/veh)                   | 38.9        |         | 2.3       |           | 5.9         |              |
| Queue Delay                             | 0.0         |         | 0.0       |           | 0.0         |              |
| Total Delay (s/veh)                     | 38.9        |         | 2.3       |           | 5.9         |              |
| LOS                                     | D           |         | 2.5<br>A  |           | A           |              |
| Approach Delay (s/veh)                  | 38.9        |         | 2.3       |           | 5.9         |              |
| Approach LOS                            | 50.9<br>D   |         | 2.5<br>A  |           | 3.9<br>A    |              |
| Queue Length 50th (m)                   | 14.9        |         | 4.1       |           | 27.2        |              |
| Queue Length 95th (m)                   | 27.7        |         | 9.7       |           | 46.1        |              |
| Internal Link Dist (m)                  | 39.8        |         | 31.5      |           | 195.6       |              |
| Turn Bay Length (m)                     | 00.0        |         | 01.0      |           | 100.0       |              |
| Base Capacity (vph)                     | 285         |         | 1958      |           | 2023        |              |
| Starvation Cap Reductn                  | 203         |         | 1930      |           | 0           |              |
| Spillback Cap Reductin                  | 0           |         | 0         |           | 0           |              |
| Storage Cap Reductn                     | 0           |         | 0         |           | 0           |              |
| Reduced v/c Ratio                       | 0.40        |         | 0.32      |           | 0.34        |              |
| Intersection Summary                    |             |         |           |           |             |              |
| Cycle Length: 75                        |             |         |           |           |             |              |
| Actuated Cycle Length: 75               |             |         |           |           |             |              |
| Offset: 74 (99%), Referenc              | ed to phas  | e 2:NBT | L and 6:5 | SBTL, Sta | art of Gree | en           |
| Natural Cycle: 75                       |             |         |           |           |             |              |
| Control Type: Actuated-Co               | ordinated   |         |           |           |             |              |
| Maximum v/c Ratio: 0.56                 |             |         |           |           |             |              |
| Intersection Signal Delay (s            | s/veh): 6.9 |         |           |           | ntersectio  | n LOS: A     |
| Intersection Capacity Utiliza           | •           |         |           |           |             | of Service C |
| Analysis Period (min) 15                |             |         |           | ·         |             |              |
| , , , , , , , , , , , , , , , , , , , , |             |         |           |           |             |              |

Splits and Phases: 2: Bank & Holmwood



|                            | •         | •        | †          | <b>/</b>   | <del> </del> |      |      |
|----------------------------|-----------|----------|------------|------------|--------------|------|------|
| Lane Group                 | WBL       | WBR      | NBT        | SBL        | SBT          | Ø1   | Ø7   |
| Lane Configurations        | ች         | 7        | <b>ተ</b> ኈ | ሻ          | <b>^</b>     |      |      |
| Traffic Volume (vph)       | 88        | 72       | 455        | 126        | 485          |      |      |
| Future Volume (vph)        | 88        | 72       | 455        | 126        | 485          |      |      |
| Lane Group Flow (vph)      | 98        | 80       | 639        | 140        | 539          |      |      |
| Turn Type                  | Prot      | Perm     | NA         | Perm       | NA           |      |      |
| Protected Phases           | 8         |          | 2          |            | 6            | 1    | 7    |
| Permitted Phases           |           | 8        |            | 6          |              |      |      |
| Detector Phase             | 8         | 8        | 2          | 6          | 6            |      |      |
| Switch Phase               |           |          |            |            |              |      |      |
| Minimum Initial (s)        | 10.0      | 10.0     | 10.0       | 10.0       | 10.0         | 1.0  | 1.0  |
| Minimum Split (s)          | 26.0      | 26.0     | 39.0       | 44.0       | 44.0         | 5.0  | 5.0  |
| Total Split (s)            | 26.0      | 26.0     | 39.0       | 44.0       | 44.0         | 5.0  | 5.0  |
| Total Split (%)            | 34.7%     | 34.7%    | 52.0%      | 58.7%      | 58.7%        | 7%   | 7%   |
| Yellow Time (s)            | 3.3       | 3.3      | 3.0        | 3.0        | 3.0          | 2.0  | 3.5  |
| All-Red Time (s)           | 3.0       | 3.0      | 3.9        | 3.9        | 3.9          | 0.0  | 0.0  |
| Lost Time Adjust (s)       | 0.0       | 0.0      | 0.0        | 0.0        | 0.0          |      |      |
| Total Lost Time (s)        | 6.3       | 6.3      | 6.9        | 6.9        | 6.9          |      |      |
| Lead/Lag                   | Lag       | Lag      | Lag        |            |              | Lead | Lead |
| Lead-Lag Optimize?         |           |          | Yes        |            |              | Yes  | Yes  |
| Recall Mode                | None      | None     | C-Max      | C-Max      | C-Max        | None | None |
| Act Effct Green (s)        | 11.2      | 11.2     | 55.2       | 55.2       | 55.2         |      |      |
| Actuated g/C Ratio         | 0.15      | 0.15     | 0.74       | 0.74       | 0.74         |      |      |
| v/c Ratio                  | 0.43      | 0.34     | 0.31       | 0.32       | 0.23         |      |      |
| Control Delay (s/veh)      | 34.6      | 11.6     | 4.9        | 5.1        | 2.8          |      |      |
| Queue Delay                | 0.0       | 0.0      | 0.0        | 0.0        | 0.0          |      |      |
| Total Delay (s/veh)        | 34.6      | 11.6     | 4.9        | 5.1        | 2.8          |      |      |
| LOS                        | С         | В        | Α          | Α          | Α            |      |      |
| Approach Delay (s/veh)     | 24.3      |          | 4.9        |            | 3.3          |      |      |
| Approach LOS               | С         |          | Α          |            | Α            |      |      |
| Queue Length 50th (m)      | 13.0      | 0.0      | 14.1       | 3.8        | 6.4          |      |      |
| Queue Length 95th (m)      | 25.1      | 10.5     | 26.1       | 6.6        | 9.6          |      |      |
| Internal Link Dist (m)     | 30.6      |          | 33.7       |            | 44.8         |      |      |
| Turn Bay Length (m)        |           |          |            | 40.0       |              |      |      |
| Base Capacity (vph)        | 405       | 348      | 2055       | 440        | 2314         |      |      |
| Starvation Cap Reductn     | 0         | 0        | 0          | 0          | 0            |      |      |
| Spillback Cap Reductn      | 0         | 0        | 0          | 0          | 0            |      |      |
| Storage Cap Reductn        | 0         | 0        | 0          | 0          | 0            |      |      |
| Reduced v/c Ratio          | 0.24      | 0.23     | 0.31       | 0.32       | 0.23         |      |      |
| Intersection Summary       |           |          |            |            |              |      |      |
| Cycle Length: 75           |           |          |            |            |              |      |      |
| Actuated Cycle Length: 75  |           | 0.115=   | 100=       |            |              |      |      |
| Offset: 0 (0%), Referenced | to phase  | 2:NBT ar | nd 6:SBT   | L, Start o | t Green      |      |      |
| Natural Cycle: 75          |           |          |            |            |              |      |      |
| Control Type: Actuated-Co  | ordinated |          |            |            |              |      |      |

#### Control Type. Actuated-Coordinated

Maximum v/c Ratio: 0.43

Intersection Signal Delay (s/veh): 6.5 Intersection LOS: A Intersection Capacity Utilization 59.7% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition



## 6: Bank & Aylmer

|                               | ۶           | 1       | <b>†</b>  | Ţ          |                       |  |
|-------------------------------|-------------|---------|-----------|------------|-----------------------|--|
| Lane Group                    | EBL         | NBL     | NBT       | SBT        | Ø3                    |  |
| Lane Configurations           | ¥           | HUL     | 41        | <b>†</b>   |                       |  |
| Traffic Volume (vph)          | 39          | 19      | 683       | 722        |                       |  |
| Future Volume (vph)           | 39          | 19      | 683       | 722        |                       |  |
| Lane Group Flow (vph)         | 56          | 0       | 780       | 870        |                       |  |
| Turn Type                     | Prot        | Perm    | NA        | NA         |                       |  |
| Protected Phases              | 4           | . 51111 | 2         | 6          | 3                     |  |
| Permitted Phases              | 4           | 2       | _         | 6          | <u> </u>              |  |
| Detector Phase                | 4           | 2       | 2         | 6          |                       |  |
| Switch Phase                  |             |         | _         |            |                       |  |
| Minimum Initial (s)           | 10.0        | 30.0    | 30.0      | 30.0       | 1.0                   |  |
| Minimum Split (s)             | 22.0        | 63.0    | 63.0      | 63.0       | 5.0                   |  |
| Total Split (s)               | 22.0        | 63.0    | 63.0      | 63.0       | 5.0                   |  |
| Total Split (%)               | 24.4%       | 70.0%   | 70.0%     | 70.0%      | 6%                    |  |
| Yellow Time (s)               | 3.3         | 3.0     | 3.0       | 3.0        | 2.0                   |  |
| All-Red Time (s)              | 2.2         | 2.2     | 2.2       | 2.2        | 1.0                   |  |
| Lost Time Adjust (s)          | 0.0         | ۷.۷     | 0.0       | 0.0        | 1.0                   |  |
| Total Lost Time (s)           | 5.5         |         | 5.2       | 5.2        |                       |  |
| Lead/Lag                      | Lag         |         | ٥.٢       | 0.2        | Lead                  |  |
| Lead-Lag Optimize?            | Lug         |         |           |            | Loud                  |  |
| Recall Mode                   | Ped         | C-Max   | C-Max     | C-Max      | Max                   |  |
| Act Effct Green (s)           | 14.0        | JIVIUA  | 60.3      | 60.3       | WILL                  |  |
| Actuated g/C Ratio            | 0.16        |         | 0.67      | 0.67       |                       |  |
| v/c Ratio                     | 0.10        |         | 0.40      | 0.43       |                       |  |
| Control Delay (s/veh)         | 30.0        |         | 6.1       | 7.5        |                       |  |
| Queue Delay                   | 0.0         |         | 0.0       | 0.0        |                       |  |
| Total Delay (s/veh)           | 30.0        |         | 6.1       | 7.5        |                       |  |
| LOS                           | 30.0<br>C   |         | Α         | 7.5<br>A   |                       |  |
| Approach Delay (s/veh)        | 30.0        |         | 6.1       | 7.5        |                       |  |
| Approach LOS                  | 30.0<br>C   |         | Α         | 7.5<br>A   |                       |  |
| Queue Length 50th (m)         | 6.6         |         | 15.2      | 31.5       |                       |  |
| Queue Length 95th (m)         | 17.3        |         | 30.8      | 42.3       |                       |  |
| Internal Link Dist (m)        | 76.7        |         | 28.1      | 10.1       |                       |  |
| Turn Bay Length (m)           | 10.1        |         | 20.1      | 10.1       |                       |  |
| Base Capacity (vph)           | 276         |         | 1930      | 2004       |                       |  |
| Starvation Cap Reductn        | 0           |         | 0         | 0          |                       |  |
| Spillback Cap Reductn         | 0           |         | 0         | 0          |                       |  |
| Storage Cap Reductn           | 0           |         | 0         | 0          |                       |  |
| Reduced v/c Ratio             | 0.20        |         | 0.40      | 0.43       |                       |  |
|                               | 0.20        |         | 0.40      | 0.40       |                       |  |
| Intersection Summary          |             |         |           |            |                       |  |
| Cycle Length: 90              |             |         |           |            |                       |  |
| Actuated Cycle Length: 90     |             |         |           |            |                       |  |
| Offset: 87 (97%), Reference   | ed to phas  | e 2:NBT | L and 6:5 | SBT, Start | of Green              |  |
| Natural Cycle: 90             |             |         |           |            |                       |  |
| Control Type: Actuated-Co     | ordinated   |         |           |            |                       |  |
| Maximum v/c Ratio: 0.43       |             |         |           |            |                       |  |
| Intersection Signal Delay (s  |             |         |           |            | tersection LOS: A     |  |
| Intersection Capacity Utiliza | ation 55.0° | %       |           | IC         | CU Level of Service A |  |
| Analysis Period (min) 15      |             |         |           |            |                       |  |
|                               |             |         |           |            |                       |  |

Splits and Phases: 6: Bank & Aylmer



|                        | ၨ     | <b>→</b> | •     | <b>←</b> | 4     | <b>†</b> | <b>&gt;</b> | ļ     |      |      |  |
|------------------------|-------|----------|-------|----------|-------|----------|-------------|-------|------|------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBL         | SBT   | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4        |       | 4        |       | 414      |             | 414   |      |      |  |
| Traffic Volume (vph)   | 42    | 38       | 20    | 58       | 30    | 493      | 85          | 550   |      |      |  |
| Future Volume (vph)    | 42    | 38       | 20    | 58       | 30    | 493      | 85          | 550   |      |      |  |
| Lane Group Flow (vph)  | 0     | 138      | 0     | 198      | 0     | 618      | 0           | 767   |      |      |  |
| Turn Type              | Perm  | NA       | Perm  | NA       | Perm  | NA       | pm+pt       | NA    |      |      |  |
| Protected Phases       |       | 4        |       | 8        |       | 2        | 1           | 6     | 3    | 7    |  |
| Permitted Phases       | 4     |          | 8     |          | 2     |          | 6           |       |      |      |  |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0        | 60.0  | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0        | 60.0  | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8%    | 47.8% | 47.8%    | 18.9%       | 66.7% | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         | 3.0   | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6      | 3.0   | 3.0      | 2.9         | 3.0   | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0      |       | 0.0      |             | 0.0   |      |      |  |
| Total Lost Time (s)    |       | 5.6      |       | 5.6      |       | 6.0      |             | 6.0   |      |      |  |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag      | Lag   | Lag      | Lead        |       | Lead | Lead |  |
| Lead-Lag Optimize?     |       |          | Yes   | Yes      | Yes   | Yes      | Yes         |       |      | Yes  |  |
| Act Effct Green (s)    |       | 19.4     |       | 19.4     |       | 37.0     |             | 54.0  |      |      |  |
| Actuated g/C Ratio     |       | 0.22     |       | 0.22     |       | 0.41     |             | 0.60  |      |      |  |
| v/c Ratio              |       | 0.61     |       | 0.64     |       | 0.56     |             | 0.54  |      |      |  |
| Control Delay (s/veh)  |       | 44.9     |       | 32.0     |       | 22.4     |             | 4.7   |      |      |  |
| Queue Delay            |       | 0.0      |       | 0.0      |       | 0.0      |             | 0.0   |      |      |  |
| Total Delay (s/veh)    |       | 44.9     |       | 32.0     |       | 22.4     |             | 4.7   |      |      |  |
| LOS                    |       | D        |       | С        |       | С        |             | Α     |      |      |  |
| Approach Delay (s/veh) |       | 44.9     |       | 32.0     |       | 22.4     |             | 4.7   |      |      |  |
| Approach LOS           |       | D        |       | С        |       | С        |             | Α     |      |      |  |
| Queue Length 50th (m)  |       | 21.7     |       | 20.6     |       | 41.3     |             | 8.0   |      |      |  |
| Queue Length 95th (m)  |       | #43.8    |       | #44.2    |       | 57.8     |             | 10.0  |      |      |  |
| Internal Link Dist (m) |       | 75.1     |       | 136.0    |       | 63.1     |             | 79.0  |      |      |  |
| Turn Bay Length (m)    |       |          |       |          |       |          |             |       |      |      |  |
| Base Capacity (vph)    |       | 226      |       | 308      |       | 1100     |             | 1409  |      |      |  |
| Starvation Cap Reductn |       | 0        |       | 0        |       | 0        |             | 0     |      |      |  |
| Spillback Cap Reductn  |       | 0        |       | 0        |       | 0        |             | 0     |      |      |  |
| Storage Cap Reductn    |       | 0        |       | 0        |       | 0        |             | 0     |      |      |  |
| Reduced v/c Ratio      |       | 0.61     |       | 0.64     |       | 0.56     |             | 0.54  |      |      |  |

### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.64

Intersection Signal Delay (s/veh): 17.4 Intersection Capacity Utilization 72.3% Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Bank & Sunnyside




Timing, 2031

Page 5

|                              | •           | •        | <b>†</b>   | <b>↓</b> |               |        |
|------------------------------|-------------|----------|------------|----------|---------------|--------|
| Lane Group                   | EBL         | NBL      | NBT        | SBT      | Ø4            |        |
| Lane Configurations          | ¥           |          | र्स        | 1>       |               |        |
| Traffic Volume (vph)         | 55          | 42       | 248        | 358      |               |        |
| Future Volume (vph)          | 55          | 42       | 248        | 358      |               |        |
| Lane Group Flow (vph)        | 95          | 0        | 323        | 457      |               |        |
| Turn Type                    | Prot        | Perm     | NA         | NA       |               |        |
| Protected Phases             | 10          |          | 2          | 6        | 4             |        |
| Permitted Phases             |             | 2        |            | •        |               |        |
| Detector Phase               | 10          | 2        | 2          | 6        |               |        |
| Switch Phase                 |             | _        | _          | •        |               |        |
| Minimum Initial (s)          | 10.0        | 4.0      | 4.0        | 4.0      | 4.0           |        |
| Minimum Split (s)            | 21.0        | 48.0     | 48.0       | 48.0     | 11.0          |        |
| Total Split (s)              | 21.0        | 48.0     | 48.0       | 48.0     | 11.0          |        |
| Total Split (%)              | 26.3%       | 60.0%    | 60.0%      | 60.0%    | 14%           |        |
| Yellow Time (s)              | 3.0         | 3.0      | 3.0        | 3.0      | 3.0           |        |
| All-Red Time (s)             | 2.7         | 3.8      | 3.8        | 3.8      | 2.7           |        |
| Lost Time Adjust (s)         | 0.0         | 3.0      | 0.0        | 0.0      |               |        |
| Total Lost Time (s)          | 5.7         |          | 6.8        | 6.8      |               |        |
| Lead/Lag                     | 0.1         |          | 0.0        | 0.0      |               |        |
| Lead-Lag Optimize?           |             |          |            |          |               |        |
| Recall Mode                  | Min         | None     | None       | C-Max    | None          |        |
| Act Effct Green (s)          | 11.3        | TTOTIC   | 56.2       | 56.2     | IVOITO        |        |
| Actuated g/C Ratio           | 0.14        |          | 0.70       | 0.70     |               |        |
| v/c Ratio                    | 0.43        |          | 0.30       | 0.39     |               |        |
| Control Delay (s/veh)        | 37.5        |          | 5.7        | 6.3      |               |        |
| Queue Delay                  | 0.0         |          | 0.0        | 0.0      |               |        |
| Total Delay (s/veh)          | 37.5        |          | 5.7        | 6.3      |               |        |
| LOS                          | D           |          | A          | A        |               |        |
| Approach Delay (s/veh)       | 37.5        |          | 5.7        | 6.3      |               |        |
| Approach LOS                 | D           |          | A          | A        |               |        |
| Queue Length 50th (m)        | 13.6        |          | 14.5       | 22.3     |               |        |
| Queue Length 95th (m)        | 26.1        |          | 29.9       | 44.1     |               |        |
| Internal Link Dist (m)       | 57.2        |          | 0.1        | 5.9      |               |        |
| Turn Bay Length (m)          | 01.2        |          | 0.1        | 0.0      |               |        |
| Base Capacity (vph)          | 297         |          | 1060       | 1165     |               |        |
| Starvation Cap Reductn       | 0           |          | 0          | 0        |               |        |
| Spillback Cap Reductn        | 0           |          | 0          | 0        |               |        |
| Storage Cap Reductn          | 0           |          | 0          | 0        |               |        |
| Reduced v/c Ratio            | 0.32        |          | 0.30       | 0.39     |               |        |
| Intersection Summary         |             |          |            |          |               |        |
| Cycle Length: 80             |             |          |            |          |               |        |
| Actuated Cycle Length: 80    |             |          |            |          |               |        |
| Offset: 0 (0%), Referenced   |             | 6:SBT. S | tart of Gr | een      |               |        |
| Natural Cycle: 80            | p. 10.00    | .,, 0    | 5. 5.      |          |               |        |
| Control Type: Actuated-Co    | ordinated   |          |            |          |               |        |
| Maximum v/c Ratio: 0.43      |             |          |            |          |               |        |
| Intersection Signal Delay (  | s/veh): 9.5 |          |            | lr       | ntersection L | LOS: A |
| Intersection Capacity Utiliz |             |          |            |          | CU Level of   |        |
| Analysis Period (min) 15     |             | . •      |            |          | 2 2010101     |        |
|                              |             |          |            |          |               |        |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 41   | 49   | 0    | 0    | 0    | 95   | 60   | 40   | 37   | 0    | 0    | 107  |
| Future Vol, veh/h          | 41   | 49   | 0    | 0    | 0    | 95   | 60   | 40   | 37   | 0    | 0    | 107  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 46   | 54   | 0    | 0    | 0    | 106  | 67   | 44   | 41   | 0    | 0    | 119  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.5  |      |      |      |      | 7.6  | 8.5  |      |      |      |      | 7.6  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 46%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 54%   | 0%    | 0%    |  |
| Vol Right, %             | 27%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 137   | 90    | 95    | 107   |  |
| LT Vol                   | 60    | 41    | 0     | 0     |  |
| Through Vol              | 40    | 49    | 0     | 0     |  |
| RT Vol                   | 37    | 0     | 95    | 107   |  |
| Lane Flow Rate           | 152   | 100   | 106   | 119   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.188 | 0.131 | 0.119 | 0.131 |  |
| Departure Headway (Hd)   | 4.442 | 4.726 | 4.044 | 3.966 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Сар                      | 808   | 759   | 887   | 904   |  |
| Service Time             | 2.464 | 2.753 | 2.069 | 1.99  |  |
| HCM Lane V/C Ratio       | 0.188 | 0.132 | 0.12  | 0.132 |  |
| HCM Control Delay, s/veh | 8.5   | 8.5   | 7.6   | 7.6   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.7   | 0.4   | 0.4   | 0.5   |  |

| Intersection           |         |         |        |          |           |      |
|------------------------|---------|---------|--------|----------|-----------|------|
| Int Delay, s/veh       | 6.4     |         |        |          |           |      |
| Movement               | EBL     | EBR     | NBL    | NBT      | SBT       | SBR  |
| Lane Configurations    |         | 7       |        | 41       | <u>\$</u> |      |
| Traffic Vol, veh/h     | 3       | 182     | 119    | 571      | 526       | 56   |
| Future Vol, veh/h      | 3       | 182     | 119    | 571      | 526       | 56   |
| Conflicting Peds, #/hi |         | 0       | 178    | 0        | 0         | 107  |
| Sign Control           | Stop    | Stop    | Free   | Free     | Free      | Free |
| RT Channelized         | -<br>-  |         |        | None     |           | None |
| Storage Length         | _       | 0       | _      | -        | _         | -    |
| Veh in Median Storag   | ne # 0  | -       | _      | 0        | 0         | _    |
| Grade, %               | 0       | _       | -      | 0        | 0         | _    |
| Peak Hour Factor       | 90      | 90      | 90     | 90       | 90        | 90   |
| Heavy Vehicles, %      | 5       | 5       | 5      | 5        | 5         | 5    |
| Mvmt Flow              | 3       | 202     | 132    | 634      | 584       | 62   |
| INIVITIL FIOW          | 3       | 202     | 132    | 034      | 304       | 02   |
|                        |         |         |        |          |           |      |
| Major/Minor            | Minor2  | ļ       | Major1 | N        | /lajor2   |      |
| Conflicting Flow All   | 1375    | 794     | 825    | 0        | -         | 0    |
| Stage 1                | 794     | -       | -      | -        | -         | -    |
| Stage 2                | 582     | -       | -      | -        | -         | -    |
| Critical Hdwy          |         | 6.275   | 4.175  | -        | -         | -    |
| Critical Hdwy Stg 1    | 5.475   | -       | -      | _        | -         | -    |
| Critical Hdwy Stg 2    | 5.875   | -       | -      | -        | _         | _    |
|                        | 3.54753 | 3.34752 | 2.2475 | _        | -         | _    |
| Pot Cap-1 Maneuver     |         | 381     | 788    | _        | _         | _    |
| Stage 1                | 438     | -       | -      | _        | _         | _    |
| Stage 2                | 516     | _       | _      | _        | _         | _    |
| Platoon blocked, %     | 010     |         |        | <u>_</u> | _         | _    |
| Mov Cap-1 Maneuve      | r 71    | 309     | 639    | _        | _         | _    |
| Mov Cap-1 Maneuve      |         | -       | 009    | _        | _         | -    |
| Stage 1                | 266     |         | -      | _        | -         |      |
|                        |         |         | -      | -        | -         | -    |
| Stage 2                | 419     | -       | -      | -        | -         | -    |
|                        |         |         |        |          |           |      |
| Approach               | EB      |         | NB     |          | SB        |      |
| HCM Control Delay,     | s/86.13 |         | 3.86   |          | 0         |      |
| HCM LOS                | E       |         | 0.00   |          |           |      |
|                        | _       |         |        |          |           |      |
|                        |         |         |        |          |           |      |
| Minor Lane/Major Mv    | mt      | NBL     | NBT    | EBLn1    | SBT       | SBR  |
| Capacity (veh/h)       |         | 527     | -      |          | -         | -    |
| HCM Lane V/C Ratio     |         | 0.207   | -      | 0.653    | -         | -    |
| HCM Control Delay (    | s/veh)  | 12.1    | 2.1    |          | -         | -    |
| HCM Lane LOS           |         | В       | Α      | Е        | -         | -    |
| HCM 95th %tile Q(ve    | h)      | 0.8     | -      | 4.3      | -         | -    |
|                        |         |         |        |          |           |      |

| 0.4                 |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EBL                 |                                       | NBL                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                       | 0                                             |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| r 0                 |                                       | 0                                             | 0                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Stop                | Stop                                  | Free                                          | Free                                                                                                                                                                                                                                                                                                            | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                   | None                                  | -                                             | None                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                   | 0                                     | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ge,# 0              | -                                     | -                                             | 0                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                   | -                                     | -                                             | 0                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 90                  | 90                                    | 90                                            | 90                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5                   | 5                                     | 5                                             | 5                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | <b>.</b>                              |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                       | /lajor1                                       |                                                                                                                                                                                                                                                                                                                 | /lajor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | 777                                   | -                                             | 0                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | -                                     | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 377                 | -                                     | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.675               | 6.275                                 | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.475               | -                                     | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.875               | -                                     | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.54753             | 3.3475                                | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       | 0                                             | -                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | -                                     |                                               | _                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | _                                     |                                               | _                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       |                                               | _                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r 200               | 390                                   | _                                             | _                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       | _                                             | _                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 057                 | -                                     | -                                             | -                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EB                  |                                       | NB                                            |                                                                                                                                                                                                                                                                                                                 | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                       | NB<br>0                                       |                                                                                                                                                                                                                                                                                                                 | SB<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s/15.19             |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s/\$5.19<br>C       | Marrie                                | 0                                             |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s/15.19             | NBTE                                  | 0<br>EBLn1                                    | SBT                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s/15.19<br>C<br>/mt | -                                     | 0<br>EBLn1<br>390                             | SBT<br>-                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s/15.19<br>C        | -                                     | 0<br>EBLn1<br>390<br>0.094                    |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s/15.19<br>C<br>/mt | -                                     | 0<br>EBLn1<br>390<br>0.094<br>15.2            | -                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s/15.19<br>C        | -                                     | 0<br>EBLn1<br>390<br>0.094                    | -                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | EBL EBR  1 33 1 33 1 33 1 33 1 33 1 33 1 33 1 | EBL EBR NBL  1 33 0 1 33 0 1 33 0 1 33 0 1 33 0 1 33 0 1 0 0 0 0 Stop Stop Free - None - 0 - 19e,# 0 - 90 90 90 5 5 5 5 1 37 0  Minor2 Major1  1154 777 - 777 - 777 - 377 - 6.675 6.275 - 5.475 - 5.475 - 5.875 - 5.875 - 1 354753.3475 - 1 200 390 0 446 - 0 657 - 0  er 200 390 - er 200 390 - er 200 - 446 - | EBL EBR NBL NBT  1 33 0 679 1 33 0 679 1 33 0 679 1 33 0 679 1 33 0 679 1 0 0 0 0 Stop Stop Free Free - None - None - 0 0 19e,# 0 0 90 90 90 90 5 5 5 5 1 37 0 754  Minor2 Major1 N 1154 777 - 0 777 377 6.675 6.275 5.475 5.875 5.875 3.54753.3475 1 200 390 0 1 200 390 1 200 390 1 200 390 1 200 390 1 200 390 1 200 390 1 200 390 1 200 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 1 300 390 390 1 300 390 390 390 390 390 390 390 390 390 | EBL         EBR         NBL         NBT         SBT           I         33         0         679         699           1         33         0         679         699           nr         0         0         0         0         0           Stop         Stop         Free         Free         Free         Free           -         None         -         -         -         0         0           1         0         -         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |

| Intersection                          |        |            |           |          |         |      |
|---------------------------------------|--------|------------|-----------|----------|---------|------|
| Int Delay, s/veh                      | 3.2    |            |           |          |         |      |
|                                       |        | EDD        | NDI       | NDT      | CDT     | CDD  |
| Movement                              | EBL    | EBR        | NBL       | NBT      | SBT     | SBR  |
| Lane Configurations                   | 74     | <b>-</b> 7 | <i></i> 7 | <b>€</b> | 250     | 104  |
| Traffic Vol, veh/h                    | 71     | 57         | 57        | 216      | 259     | 131  |
| Future Vol, veh/h                     | 71     | 57         | 57        | 216      | 259     | 131  |
| Conflicting Peds, #/hr                | 0      | 0          | _ 0       | _ 0      | _ 0     | 0    |
| Sign Control                          | Stop   | Stop       | Free      | Free     | Free    | Free |
| RT Channelized                        | -      | None       | -         | None     | -       |      |
| Storage Length                        | 0      | -          | -         | -        | -       | -    |
| Veh in Median Storage                 |        | -          | -         | 0        | 0       | -    |
| Grade, %                              | 0      | -          | -         | 0        | 0       | -    |
| Peak Hour Factor                      | 90     | 90         | 90        | 90       | 90      | 90   |
| Heavy Vehicles, %                     | 0      | 0          | 0         | 0        | 0       | 0    |
| Mvmt Flow                             | 79     | 63         | 63        | 240      | 288     | 146  |
|                                       |        |            |           |          |         |      |
| Major/Minor                           | linar? |            | laior1    | , A      | /oior0  |      |
|                                       | linor2 |            | Major1    |          | /lajor2 |      |
| Conflicting Flow All                  | 727    | 361        | 433       | 0        | -       | 0    |
| Stage 1                               | 361    | -          | -         | -        | -       | -    |
| Stage 2                               | 367    | -          | -         | -        | -       | -    |
| Critical Hdwy                         | 6.4    | 6.2        | 4.1       | -        | -       | -    |
| Critical Hdwy Stg 1                   | 5.4    | -          | -         | -        | -       | -    |
| Critical Hdwy Stg 2                   | 5.4    | -          | -         | -        | -       | -    |
| Follow-up Hdwy                        | 3.5    | 3.3        | 2.2       | -        | -       | -    |
| Pot Cap-1 Maneuver                    | 394    | 689        | 1137      | -        | -       | -    |
| Stage 1                               | 710    | -          | -         | -        | -       | -    |
| Stage 2                               | 705    | -          | -         | -        | -       | -    |
| Platoon blocked, %                    |        |            |           | -        | -       | -    |
| Mov Cap-1 Maneuver                    | 368    | 689        | 1137      | -        | -       | -    |
| Mov Cap-2 Maneuver                    | 368    | -          | -         | -        | -       | -    |
| Stage 1                               | 664    | -          | -         | -        | -       | -    |
| Stage 2                               | 705    | _          | _         | _        | _       | _    |
| 2.0.30 2                              | . 00   |            |           |          |         |      |
|                                       |        |            |           |          |         |      |
| Approach                              | EB     |            | NB        |          | SB      |      |
| HCM Control Delay, s/v                | 16.13  |            | 1.74      |          | 0       |      |
| HCM LOS                               | С      |            |           |          |         |      |
|                                       |        |            |           |          |         |      |
| Minor Lane/Major Mvm                  | ıt     | NBL        | NRTI      | EBLn1    | SBT     | SBR  |
| Capacity (veh/h)                      |        | 376        | -         |          |         | ODIN |
| HCM Lane V/C Ratio                    |        | 0.056      |           | 0.306    | -       | _    |
|                                       | vob)   | 8.4        |           | 16.1     |         |      |
| HCM Long LOS                          | veii)  |            | 0         |          | -       | -    |
| HCM Lane LOS<br>HCM 95th %tile Q(veh) | \      | A          | Α         | C        | -       | -    |
| HOW SOUL WILLE Q(Ven)                 | )      | 0.2        | -         | 1.3      | -       | -    |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       |                  |       |        |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------------|-------|--------|---------------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9      |       |                  |       |        |               |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WBL      | WBR   | NBT              | NBR   | SBL    | SBT           |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VVDL     | VVDIX |                  | NON   | JDL    | <b>1</b>      |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6        | 73    | <b>↑↑</b><br>508 | 19    | 2      | <b>TT</b> 605 |
| The state of the s | 6        |       | 508              | 19    |        |               |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 73    |                  |       | 2      | 605           |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0        | 0     | 0                | 100   | 0      | 0             |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stop     | Stop  | Free             | Free  | Free   | Free          |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        | None  | -                |       | -      | None          |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        | 0     | -                | -     | -      | -             |
| Veh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | -     | 0                | -     | -      | 0             |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0        | -     | 0                | -     | -      | 0             |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90       | 90    | 90               | 90    | 90     | 90            |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0        | 15    | 6                | 0     | 0      | 5             |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7        | 81    | 564              | 21    | 2      | 672           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                  |       |        |               |
| Major/Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | linar1   | ,     | loior1           | N.    | laier? |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /linor1  |       | //ajor1          |       | Major2 | ^             |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1016     | 393   | 0                | 0     | 686    | 0             |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 675      | -     | -                | -     | -      | -             |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 341      | -     | -                | -     | -      | -             |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.8      | 7.2   | -                | -     | 4.1    | -             |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8      | -     | -                | -     | -      | -             |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8      | -     | -                | -     | -      | -             |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5      | 3.45  | -                | -     | 2.2    | -             |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 238      | 571   | -                | _     | 917    | -             |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 473      | -     | -                | -     | _      | -             |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 698      | _     | _                | _     | _      | _             |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000      |       | _                | _     |        | _             |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 212      | 510   | _                | _     | 820    | _             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 212      | -     |                  | _     |        |               |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       | -                | _     | -      | -             |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 423      | -     | -                | -     | -      | -             |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 696      | -     | -                | -     | -      | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                  |       |        |               |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WB       |       | NB               |       | SB     |               |
| HCM Control Delay, s/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | 0                |       | 0.03   |               |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>В</b> |       | U                |       | 0.00   |               |
| I IOIVI LOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U        |       |                  |       |        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                  |       |        |               |
| Minor Lane/Major Mvm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt       | NBT   | NBRV             | VBLn1 | SBL    | SBT           |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -     | -                | 510   | 820    | -             |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | -     | _                | 0.159 |        | -             |
| HCM Control Delay (s/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | veh)     | -     | _                |       | 9.4    | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                  |       |        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _     | -                | В     | A      | -             |
| HCM Lane LOS HCM 95th %tile Q(veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )        | -     | -                | 0.6   | A<br>0 | -             |

# 2033 Scenario

Saturday Peak Hour

**Future Volumes** 

1: Bank & Fifth 07/31/2024

| 1: Bank & Filin             | <u> </u>    |          |           | -        | -           | •           |       | 1           | 0//31/ |
|-----------------------------|-------------|----------|-----------|----------|-------------|-------------|-------|-------------|--------|
|                             |             |          | - €       | _        | -7          |             | *     | +           |        |
| Lane Group                  | EBL         | EBT      | WBL       | WBT      | NBL         | NBT         | SBL   | SBT         |        |
| Lane Configurations         |             | 4        | ች         |          |             | <b>€1</b> } |       | <b>€</b> 1Ъ |        |
| Traffic Volume (vph)        | 46          | 41       | 69        | 45       | 21          | 513         | 20    | 578         |        |
| Future Volume (vph)         | 46          | 41       | 69        | 45       | 21          | 513         | 20    | 578         |        |
| _ane Group Flow (vph)       | 0           | 145      | 77        | 114      | 0           | 620         | 0     | 694         |        |
| Turn Type                   | Perm        | NA       | Perm      | NA       | Perm        | NA          | Perm  | NA          |        |
| Protected Phases            |             | 4        |           | 8        |             | 2           |       | 6           |        |
| Permitted Phases            | 4           |          | 8         |          | 2           |             | 6     |             |        |
| Minimum Split (s)           | 26.0        | 26.0     | 26.0      | 26.0     | 49.0        | 49.0        | 49.0  | 49.0        |        |
| otal Split (s)              | 26.0        | 26.0     | 26.0      | 26.0     | 49.0        | 49.0        | 49.0  | 49.0        |        |
| otal Split (%)              | 34.7%       | 34.7%    | 34.7%     | 34.7%    | 65.3%       | 65.3%       | 65.3% | 65.3%       |        |
| 'ellow Time (s)             | 3.0         | 3.0      | 3.0       | 3.0      | 3.0         | 3.0         | 3.0   | 3.0         |        |
| All-Red Time (s)            | 2.5         | 2.5      | 2.5       | 2.5      | 2.5         | 2.5         | 2.5   | 2.5         |        |
| ost Time Adjust (s)         |             | 0.0      | 0.0       | 0.0      |             | 0.0         |       | 0.0         |        |
| otal Lost Time (s)          |             | 5.5      | 5.5       | 5.5      |             | 5.5         |       | 5.5         |        |
| .ead/Lag                    |             |          |           |          |             |             |       |             |        |
| ead-Lag Optimize?           |             |          |           |          |             |             |       |             |        |
| Act Effct Green (s)         |             | 20.5     | 20.5      | 20.5     |             | 43.5        |       | 43.5        |        |
| Actuated g/C Ratio          |             | 0.27     | 0.27      | 0.27     |             | 0.58        |       | 0.58        |        |
| /c Ratio                    |             | 0.40     | 0.27      | 0.27     |             | 0.39        |       | 0.43        |        |
| Control Delay (s/veh)       |             | 20.9     | 24.6      | 12.8     |             | 14.3        |       | 9.6         |        |
| Queue Delay                 |             | 0.0      | 0.0       | 0.0      |             | 0.0         |       | 0.0         |        |
| Total Delay (s/veh)         |             | 20.9     | 24.6      | 12.8     |             | 14.3        |       | 9.6         |        |
| OS                          |             | C        | C         | В        |             | В           |       | A           |        |
| Approach Delay (s/veh)      |             | 20.9     |           | 17.5     |             | 14.3        |       | 9.6         |        |
| Approach LOS                |             | C        |           | В        |             | В           |       | A           |        |
| Queue Length 50th (m)       |             | 12.6     | 8.5       | 5.3      |             | 26.6        |       | 25.7        |        |
| Queue Length 95th (m)       |             | 28.0     | 19.2      | 17.0     |             | 56.9        |       | 36.6        |        |
| nternal Link Dist (m)       |             | 49.7     | 10.2      | 112.4    |             | 195.6       |       | 190.0       |        |
| urn Bay Length (m)          |             | 70.7     | 45.0      | 112.7    |             | 100.0       |       | 100.0       |        |
| Base Capacity (vph)         |             | 362      | 285       | 416      |             | 1606        |       | 1631        |        |
| Starvation Cap Reductn      |             | 0        | 0         | 0        |             | 0           |       | 0           |        |
| Spillback Cap Reductn       |             | 0        | 0         | 0        |             | 0           |       | 0           |        |
| Storage Cap Reductn         |             | 0        | 0         | 0        |             | 0           |       | 0           |        |
| Reduced v/c Ratio           |             | 0.40     | 0.27      | 0.27     |             | 0.39        |       | 0.43        |        |
|                             |             | 0.40     | 0.27      | 0.27     |             | 0.39        |       | 0.43        |        |
| ntersection Summary         |             |          |           |          |             |             |       |             |        |
| Cycle Length: 75            |             |          |           |          |             |             |       |             |        |
| Actuated Cycle Length: 75   |             | O.NDT    | ll C.C    | DTI OL   |             |             |       |             |        |
| Offset: 47 (63%), Reference | ed to phas  | se 2:NBT | L and 6:8 | BIL, Sta | art of Gre  | en          |       |             |        |
| Natural Cycle: 75           |             |          |           |          |             |             |       |             |        |
| Control Type: Pretimed      |             |          |           |          |             |             |       |             |        |
| Maximum v/c Ratio: 0.43     |             | _        |           |          |             |             |       |             |        |
| ntersection Signal Delay (  |             |          |           |          | ntersection |             |       |             |        |
| ntersection Capacity Utiliz | ation 58.8  | %        |           | I        | CU Level    | of Service  | e B   |             |        |
| Analysis Period (min) 15    |             |          |           |          |             |             |       |             |        |
| Splits and Phases: 1: Ba    | ank & Fifth |          |           |          |             |             |       |             |        |
| 4                           |             |          |           |          |             |             |       | Ĵ.          |        |
| Ø2 (R)                      |             |          |           |          |             |             |       | → ø∠        | 1      |
| 49 s                        |             |          |           |          |             |             | 2     | 6 s         |        |

2: Bank & Holmwood 07/31/2024

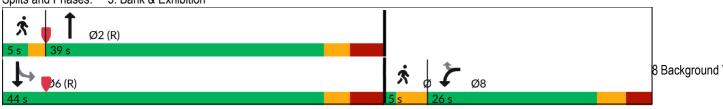
|                               | _           | •        | †            | <u> </u>  | 1           |               |
|-------------------------------|-------------|----------|--------------|-----------|-------------|---------------|
| Lana Craun                    | ГОТ         | NDI      | NDT          | CDI       | CDT         | αa            |
| Lane Group                    | EBT         | NBL      | NBT          | SBL       | SBT         | Ø3            |
| Lane Configurations           | 4           | 00       | <b>€</b> 1}• | 07        | 414         |               |
| Traffic Volume (vph)          | 10          | 29       | 522          | 37        | 584         |               |
| Future Volume (vph)           | 10          | 29       | 522          | 37        | 584         |               |
| Lane Group Flow (vph)         | 113         | 0        | 670          | 0         | 716         |               |
| Turn Type                     | NA          | Perm     | NA           | Perm      | NA          |               |
| Protected Phases              | 4           | _        | 2            |           | 6           | 3             |
| Permitted Phases              |             | 2        |              | 6         |             |               |
| Detector Phase                | 4           | 2        | 2            | 6         | 6           |               |
| Switch Phase                  |             | 40.5     | 10.5         |           |             | 4.0           |
| Minimum Initial (s)           | 4.4         | 10.0     | 10.0         | 4.0       | 4.0         | 1.0           |
| Minimum Split (s)             | 22.0        | 48.0     | 48.0         | 48.0      | 48.0        | 5.0           |
| Total Split (s)               | 22.0        | 48.0     | 48.0         | 48.0      | 48.0        | 5.0           |
| Total Split (%)               | 29.3%       | 64.0%    | 64.0%        | 64.0%     | 64.0%       | 7%            |
| Yellow Time (s)               | 3.0         | 3.0      | 3.0          | 3.0       | 3.0         | 2.0           |
| All-Red Time (s)              | 2.6         | 2.2      | 2.2          | 2.2       | 2.2         | 0.0           |
| Lost Time Adjust (s)          | 0.0         |          | 0.0          |           | 0.0         |               |
| Total Lost Time (s)           | 5.6         |          | 5.2          |           | 5.2         |               |
| Lead/Lag                      | Lag         |          |              |           |             | Lead          |
| Lead-Lag Optimize?            |             |          |              |           |             |               |
| Recall Mode                   | None        | C-Max    | C-Max        | C-Max     | C-Max       | None          |
| Act Effct Green (s)           | 11.7        |          | 55.9         |           | 55.9        |               |
| Actuated g/C Ratio            | 0.16        |          | 0.75         |           | 0.75        |               |
| v/c Ratio                     | 0.56        |          | 0.34         |           | 0.36        |               |
| Control Delay (s/veh)         | 38.9        |          | 2.3          |           | 3.9         |               |
| Queue Delay                   | 0.0         |          | 0.0          |           | 0.0         |               |
| Total Delay (s/veh)           | 38.9        |          | 2.3          |           | 3.9         |               |
| LOS                           | D           |          | Α            |           | Α           |               |
| Approach Delay (s/veh)        | 38.9        |          | 2.3          |           | 3.9         |               |
| Approach LOS                  | D           |          | A            |           | A           |               |
| Queue Length 50th (m)         | 14.9        |          | 4.8          |           | 6.8         |               |
| Queue Length 95th (m)         | 27.7        |          | 11.2         |           | 28.4        |               |
| Internal Link Dist (m)        | 39.8        |          | 31.5         |           | 195.6       |               |
| Turn Bay Length (m)           | - 55.0      |          | 01.0         |           | .00.0       |               |
| Base Capacity (vph)           | 285         |          | 1946         |           | 1991        |               |
| Starvation Cap Reductn        | 0           |          | 0            |           | 0           |               |
| Spillback Cap Reductn         | 0           |          | 0            |           | 0           |               |
| Storage Cap Reductn           | 0           |          | 0            |           | 0           |               |
| Reduced v/c Ratio             | 0.40        |          | 0.34         |           | 0.36        |               |
| Nouvoed V/C Natio             | 0.40        |          | 0.54         |           | 0.50        |               |
| Intersection Summary          |             |          |              |           |             |               |
| Cycle Length: 75              |             |          |              |           |             |               |
| Actuated Cycle Length: 75     |             |          |              |           |             |               |
| Offset: 74 (99%), Reference   | ed to phas  | se 2:NBT | L and 6:5    | SBTL, Sta | art of Gree | en            |
| Natural Cycle: 75             | -           |          |              |           |             |               |
| Control Type: Actuated-Cod    | ordinated   |          |              |           |             |               |
| Maximum v/c Ratio: 0.56       |             |          |              |           |             |               |
| Intersection Signal Delay (s  | s/veh): 5.8 |          |              | lı        | ntersectio  | n LOS: A      |
| Intersection Capacity Utiliza | •           |          |              |           |             | of Service (  |
| Analysis Pariod (min) 15      |             | , ,      |              | .,        | 20 20101    | 2. 20/ VIOO ( |

Splits and Phases: 2: Bank & Holmwood

Analysis Period (min) 15



Background


| 5. Darik & Exhibition             | J11       |           |          |            |          |          |        |  |
|-----------------------------------|-----------|-----------|----------|------------|----------|----------|--------|--|
|                                   | •         | •         | Ť        | -          | ¥        |          |        |  |
| Lane Group                        | WBL       | WBR       | NBT      | SBL        | SBT      | Ø1       | Ø7     |  |
| Lane Configurations               | ሻ         | 7         | ħβ       | ሻ          | <b>^</b> |          |        |  |
| Traffic Volume (vph)              | 112       | 84        | 463      | 150        | 485      |          |        |  |
| Future Volume (vph)               | 112       | 84        | 463      | 150        | 485      |          |        |  |
| Lane Group Flow (vph)             | 124       | 93        | 674      | 167        | 539      |          |        |  |
| Turn Type                         | Prot      | Perm      | NA       | Perm       | NA       |          |        |  |
| Protected Phases                  | 8         |           | 2        |            | 6        | 1        | 7      |  |
| Permitted Phases                  |           | 8         |          | 6          |          |          |        |  |
| Detector Phase                    | 8         | 8         | 2        | 6          | 6        |          |        |  |
| Switch Phase                      |           |           |          |            |          |          |        |  |
| Minimum Initial (s)               | 10.0      | 10.0      | 10.0     | 10.0       | 10.0     | 1.0      | 1.0    |  |
| Minimum Split (s)                 | 26.0      | 26.0      | 39.0     | 44.0       | 44.0     | 5.0      | 5.0    |  |
| Total Split (s)                   | 26.0      | 26.0      | 39.0     | 44.0       | 44.0     | 5.0      | 5.0    |  |
| Total Split (%)                   | 34.7%     | 34.7%     | 52.0%    | 58.7%      | 58.7%    | 7%       | 7%     |  |
| Yellow Time (s)                   | 3.3       | 3.3       | 3.0      | 3.0        | 3.0      | 2.0      | 3.5    |  |
| All-Red Time (s)                  | 3.0       | 3.0       | 3.9      | 3.9        | 3.9      | 0.0      | 0.0    |  |
| Lost Time Adjust (s)              | 0.0       | 0.0       | 0.0      | 0.0        | 0.0      | 3.0      | 3.0    |  |
| Total Lost Time (s)               | 6.3       | 6.3       | 6.9      | 6.9        | 6.9      |          |        |  |
| Lead/Lag                          | Lag       | Lag       | Lag      | 0.0        | 0.0      | Lead     | Lead   |  |
| _ead-Lag Optimize?                | Lug       | Lug       | Yes      |            |          | Yes      | Yes    |  |
| Recall Mode                       | None      | None      | C-Max    | C-Max      | C-Max    | None     | None   |  |
| ct Effct Green (s)                | 12.1      | 12.1      | 54.3     | 54.3       | 54.3     | 140110   | 140110 |  |
| ctuated g/C Ratio                 | 0.16      | 0.16      | 0.72     | 0.72       | 0.72     |          |        |  |
| /c Ratio                          | 0.10      | 0.10      | 0.72     | 0.72       | 0.72     |          |        |  |
| Control Delay (s/veh)             | 35.3      | 10.6      | 5.4      | 7.0        | 3.1      |          |        |  |
| Queue Delay                       | 0.0       | 0.0       | 0.0      | 0.0        | 0.0      |          |        |  |
| •                                 | 35.3      | 10.6      | 5.4      | 7.0        | 3.1      |          |        |  |
| otal Delay (s/veh)<br>OS          | 35.3<br>D | 10.6<br>B | 5.4<br>A | 7.0<br>A   | 3.1<br>A |          |        |  |
|                                   | 24.7      | Б         | 5.4      | А          | 4.0      |          |        |  |
| pproach Delay (s/veh) pproach LOS | 24.7<br>C |           | 5.4<br>A |            | 4.0<br>A |          |        |  |
|                                   | 16.4      | 0.0       | 16.0     | 4.8        | 8.0      |          |        |  |
| Queue Length 50th (m)             | 29.7      |           | 29.8     |            | 9.9      |          |        |  |
| Queue Length 95th (m)             |           | 11.0      |          | 9.9        |          |          |        |  |
| nternal Link Dist (m)             | 30.6      |           | 33.7     | 40.0       | 44.8     |          |        |  |
| Furn Bay Length (m)               | 405       | 250       | 1000     | 40.0       | 2075     |          |        |  |
| Base Capacity (vph)               | 405       | 358       | 1996     | 421        | 2275     |          |        |  |
| Starvation Cap Reductn            | 0         | 0         | 0        | 0          | 0        |          |        |  |
| Spillback Cap Reductn             | 0         | 0         | 0        | 0          | 0        |          |        |  |
| Storage Cap Reductn               | 0         | 0         | 0        | 0 40       | 0        |          |        |  |
| Reduced v/c Ratio                 | 0.31      | 0.26      | 0.34     | 0.40       | 0.24     |          |        |  |
| ntersection Summary               |           |           |          |            |          |          |        |  |
| Cycle Length: 75                  |           |           |          |            |          |          |        |  |
| Actuated Cycle Length: 75         |           |           |          |            |          |          |        |  |
| Offset: 0 (0%), Referenced        |           | 2:NBT ar  | nd 6:SBT | L, Start o | f Green  |          |        |  |
| Natural Cycle: 75                 |           |           |          |            |          |          |        |  |
| Control Type: Actuated-Co         | ordinated |           |          |            |          |          |        |  |
| Maximum v/c Ratio: 0.50           |           |           |          |            |          |          |        |  |
| stancetion Cinnel Delevit         | -/        |           |          | 1.         |          | - LOC: A |        |  |

Splits and Phases: 3: Bank & Exhibition

Intersection Signal Delay (s/veh): 7.4

Intersection Capacity Utilization 61.4%

Analysis Period (min) 15



Intersection LOS: A

ICU Level of Service B

## 6: Bank & Aylmer

|                                                       | ۶           | •        | <b>†</b>  | ţ            |                                            |  |
|-------------------------------------------------------|-------------|----------|-----------|--------------|--------------------------------------------|--|
| Lane Group                                            | EBL         | NBL      | NBT       | SBT          | Ø3                                         |  |
| Lane Configurations                                   | ¥           | 1100     | 414       | <b>†</b> ‡   | ~~                                         |  |
| Traffic Volume (vph)                                  | 39          | 19       | 715       | 747          |                                            |  |
| Future Volume (vph)                                   | 39          | 19       | 715       | 747          |                                            |  |
| Lane Group Flow (vph)                                 | 56          | 0        | 815       | 898          |                                            |  |
| Turn Type                                             | Prot        | Perm     | NA        | NA           |                                            |  |
| Protected Phases                                      | 4           | . 51111  | 2         | 6            | 3                                          |  |
| Permitted Phases                                      | 4           | 2        | _         | 6            |                                            |  |
| Detector Phase                                        | 4           | 2        | 2         | 6            |                                            |  |
| Switch Phase                                          | •           |          |           |              |                                            |  |
| Minimum Initial (s)                                   | 10.0        | 30.0     | 30.0      | 30.0         | 1.0                                        |  |
| Minimum Split (s)                                     | 22.0        | 63.0     | 63.0      | 63.0         | 5.0                                        |  |
| Total Split (s)                                       | 22.0        | 63.0     | 63.0      | 63.0         | 5.0                                        |  |
| Total Split (%)                                       | 24.4%       | 70.0%    | 70.0%     | 70.0%        | 6%                                         |  |
| Yellow Time (s)                                       | 3.3         | 3.0      | 3.0       | 3.0          | 2.0                                        |  |
| All-Red Time (s)                                      | 2.2         | 2.2      | 2.2       | 2.2          | 1.0                                        |  |
| Lost Time Adjust (s)                                  | 0.0         |          | 0.0       | 0.0          |                                            |  |
| Total Lost Time (s)                                   | 5.5         |          | 5.2       | 5.2          |                                            |  |
| Lead/Lag                                              | Lag         |          |           |              | Lead                                       |  |
| Lead-Lag Optimize?                                    |             |          |           |              |                                            |  |
| Recall Mode                                           | Ped         | C-Max    | C-Max     | C-Max        | Max                                        |  |
| Act Effct Green (s)                                   | 14.0        |          | 60.3      | 60.3         |                                            |  |
| Actuated g/C Ratio                                    | 0.16        |          | 0.67      | 0.67         |                                            |  |
| v/c Ratio                                             | 0.24        |          | 0.42      | 0.45         |                                            |  |
| Control Delay (s/veh)                                 | 30.0        |          | 6.6       | 7.7          |                                            |  |
| Queue Delay                                           | 0.0         |          | 0.0       | 0.0          |                                            |  |
| Total Delay (s/veh)                                   | 30.0        |          | 6.6       | 7.7          |                                            |  |
| LOS                                                   | С           |          | Α         | Α            |                                            |  |
| Approach Delay (s/veh)                                | 30.0        |          | 6.6       | 7.7          |                                            |  |
| Approach LOS                                          | С           |          | Α         | Α            |                                            |  |
| Queue Length 50th (m)                                 | 6.6         |          | 16.0      | 32.9         |                                            |  |
| Queue Length 95th (m)                                 | 17.3        |          | 35.6      | 44.2         |                                            |  |
| Internal Link Dist (m)                                | 76.7        |          | 28.1      | 10.1         |                                            |  |
| Turn Bay Length (m)                                   |             |          |           |              |                                            |  |
| Base Capacity (vph)                                   | 276         |          | 1930      | 2008         |                                            |  |
| Starvation Cap Reductn                                | 0           |          | 0         | 0            |                                            |  |
| Spillback Cap Reductn                                 | 0           |          | 0         | 0            |                                            |  |
| Storage Cap Reductn                                   | 0           |          | 0         | 0            |                                            |  |
| Reduced v/c Ratio                                     | 0.20        |          | 0.42      | 0.45         |                                            |  |
| Intersection Summary                                  |             |          |           |              |                                            |  |
|                                                       |             |          |           |              |                                            |  |
| Cycle Length: 90                                      |             |          |           |              |                                            |  |
| Actuated Cycle Length: 90                             | d to she    | o O'NIDT | l and G.C | DT Ctart     | of Croon                                   |  |
| Offset: 87 (97%), Reference                           | eu to prias | e Z.NBT  | L and bis | od i , Start | oi Gleen                                   |  |
| Natural Cycle: 90                                     | rdinatad    |          |           |              |                                            |  |
| Control Type: Actuated-Coo<br>Maximum v/c Ratio: 0.45 | numated     |          |           |              |                                            |  |
|                                                       | (vob): 7.0  |          |           | ما           | torgantian LOC: A                          |  |
| Intersection Signal Delay (s                          |             |          |           |              | tersection LOS: A<br>CU Level of Service B |  |
| Intersection Capacity Utiliza                         | 111011 55.9 | 70       |           | IC           | O revel of Selvice B                       |  |
| Analysis Period (min) 15                              |             |          |           |              |                                            |  |

Splits and Phases: 6: Bank & Aylmer



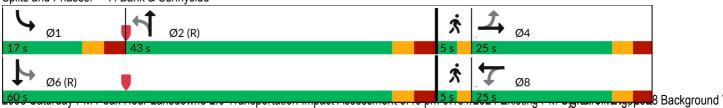
8 Background

|                        | ၨ     | <b>→</b> | •     | <b>←</b> | 4     | <b>†</b> | <b>&gt;</b> | ļ     |      |      |  |
|------------------------|-------|----------|-------|----------|-------|----------|-------------|-------|------|------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBL         | SBT   | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4        |       | 4        |       | 414      |             | 414   |      |      |  |
| Traffic Volume (vph)   | 42    | 38       | 20    | 58       | 30    | 524      | 85          | 574   |      |      |  |
| Future Volume (vph)    | 42    | 38       | 20    | 58       | 30    | 524      | 85          | 574   |      |      |  |
| Lane Group Flow (vph)  | 0     | 138      | 0     | 198      | 0     | 652      | 0           | 794   |      |      |  |
| Turn Type              | Perm  | NA       | Perm  | NA       | Perm  | NA       | pm+pt       | NA    |      |      |  |
| Protected Phases       |       | 4        |       | 8        |       | 2        | 1           | 6     | 3    | 7    |  |
| Permitted Phases       | 4     |          | 8     |          | 2     |          | 6           |       |      |      |  |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0        | 60.0  | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0     | 17.0        | 60.0  | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8%    | 47.8% | 47.8%    | 18.9%       | 66.7% | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         | 3.0   | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6      | 3.0   | 3.0      | 2.9         | 3.0   | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0      |       | 0.0      |             | 0.0   |      |      |  |
| Total Lost Time (s)    |       | 5.6      |       | 5.6      |       | 6.0      |             | 6.0   |      |      |  |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag      | Lag   | Lag      | Lead        |       | Lead | Lead |  |
| Lead-Lag Optimize?     |       |          | Yes   | Yes      | Yes   | Yes      | Yes         |       |      | Yes  |  |
| Act Effct Green (s)    |       | 19.4     |       | 19.4     |       | 37.0     |             | 54.0  |      |      |  |
| Actuated g/C Ratio     |       | 0.22     |       | 0.22     |       | 0.41     |             | 0.60  |      |      |  |
| v/c Ratio              |       | 0.61     |       | 0.64     |       | 0.59     |             | 0.57  |      |      |  |
| Control Delay (s/veh)  |       | 45.0     |       | 32.0     |       | 23.1     |             | 4.9   |      |      |  |
| Queue Delay            |       | 0.0      |       | 0.0      |       | 0.0      |             | 0.0   |      |      |  |
| Total Delay (s/veh)    |       | 45.0     |       | 32.0     |       | 23.1     |             | 4.9   |      |      |  |
| LOS                    |       | D        |       | С        |       | С        |             | Α     |      |      |  |
| Approach Delay (s/veh) |       | 45.0     |       | 32.0     |       | 23.1     |             | 4.9   |      |      |  |
| Approach LOS           |       | D        |       | С        |       | С        |             | Α     |      |      |  |
| Queue Length 50th (m)  |       | 21.7     |       | 20.6     |       | 44.4     |             | 8.3   |      |      |  |
| Queue Length 95th (m)  |       | #43.8    |       | #44.2    |       | 61.7     |             | 10.3  |      |      |  |
| Internal Link Dist (m) |       | 75.1     |       | 136.0    |       | 63.1     |             | 79.0  |      |      |  |
| Turn Bay Length (m)    |       |          |       |          |       |          |             |       |      |      |  |
| Base Capacity (vph)    |       | 226      |       | 308      |       | 1103     |             | 1399  |      |      |  |
| Starvation Cap Reductn |       | 0        |       | 0        |       | 0        |             | 0     |      |      |  |
| Spillback Cap Reductn  |       | 0        |       | 0        |       | 0        |             | 0     |      |      |  |
| Storage Cap Reductn    |       | 0        |       | 0        |       | 0        |             | 0     |      |      |  |
| Reduced v/c Ratio      |       | 0.61     |       | 0.64     |       | 0.59     |             | 0.57  |      |      |  |

### Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 90

Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.64

Intersection Signal Delay (s/veh): 17.7 Intersection LOS: B Intersection Capacity Utilization 73.9% ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 7: Bank & Sunnyside



Page 5

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

### 9: Queen Elizabeth Drive & Fifth

|                               | •                                       | •         | †          | <b>+</b>   |                |         |    |          |            |  |
|-------------------------------|-----------------------------------------|-----------|------------|------------|----------------|---------|----|----------|------------|--|
| Lane Group                    | EBL                                     | NBL       | NBT        | SBT        | Ø4             |         |    |          |            |  |
| Lane Configurations           | ¥                                       |           | सी         | <b>1</b> > |                |         |    |          |            |  |
| Traffic Volume (vph)          | 62                                      | 42        | 259        | 371        |                |         |    |          |            |  |
| Future Volume (vph)           | 62                                      | 42        | 259        | 371        |                |         |    |          |            |  |
| Lane Group Flow (vph)         | 103                                     | 0         | 335        | 471        |                |         |    |          |            |  |
| Turn Type                     | Prot                                    | Perm      | NA         | NA         |                |         |    |          |            |  |
| Protected Phases              | 10                                      |           | 2          | 6          | 4              |         |    |          |            |  |
| Permitted Phases              |                                         | 2         | _          |            | •              |         |    |          |            |  |
| Minimum Split (s)             | 21.0                                    | 48.0      | 48.0       | 48.0       | 11.0           |         |    |          |            |  |
| Total Split (s)               | 21.0                                    | 48.0      | 48.0       | 48.0       | 11.0           |         |    |          |            |  |
| Total Split (%)               | 26.3%                                   | 60.0%     | 60.0%      | 60.0%      | 14%            |         |    |          |            |  |
| Yellow Time (s)               | 3.0                                     | 3.0       | 3.0        | 3.0        | 3.0            |         |    |          |            |  |
| All-Red Time (s)              | 2.7                                     | 3.8       | 3.8        | 3.8        | 2.7            |         |    |          |            |  |
| Lost Time Adjust (s)          | 0.0                                     |           | 0.0        | 0.0        |                |         |    |          |            |  |
| Total Lost Time (s)           | 5.7                                     |           | 6.8        | 6.8        |                |         |    |          |            |  |
| Lead/Lag                      | • • • • • • • • • • • • • • • • • • • • |           |            |            |                |         |    |          |            |  |
| Lead-Lag Optimize?            |                                         |           |            |            |                |         |    |          |            |  |
| Act Effct Green (s)           | 15.3                                    |           | 41.2       | 41.2       |                |         |    |          |            |  |
| Actuated g/C Ratio            | 0.19                                    |           | 0.52       | 0.52       |                |         |    |          |            |  |
| v/c Ratio                     | 0.35                                    |           | 0.43       | 0.55       |                |         |    |          |            |  |
| Control Delay (s/veh)         | 31.9                                    |           | 14.4       | 16.3       |                |         |    |          |            |  |
| Queue Delay                   | 0.0                                     |           | 0.0        | 0.0        |                |         |    |          |            |  |
| Total Delay (s/veh)           | 31.9                                    |           | 14.4       | 16.3       |                |         |    |          |            |  |
| LOS                           | С                                       |           | В          | В          |                |         |    |          |            |  |
| Approach Delay (s/veh)        | 31.9                                    |           | 14.4       | 16.3       |                |         |    |          |            |  |
| Approach LOS                  | С                                       |           | В          | В          |                |         |    |          |            |  |
| Queue Length 50th (m)         | 13.7                                    |           | 29.9       | 45.6       |                |         |    |          |            |  |
| Queue Length 95th (m)         | 27.5                                    |           | 49.4       | 72.1       |                |         |    |          |            |  |
| Internal Link Dist (m)        | 57.2                                    |           | 0.1        | 5.9        |                |         |    |          |            |  |
| Turn Bay Length (m)           |                                         |           |            |            |                |         |    |          |            |  |
| Base Capacity (vph)           | 298                                     |           | 771        | 853        |                |         |    |          |            |  |
| Starvation Cap Reductn        | 0                                       |           | 0          | 0          |                |         |    |          |            |  |
| Spillback Cap Reductn         | 0                                       |           | 0          | 0          |                |         |    |          |            |  |
| Storage Cap Reductn           | 0                                       |           | 0          | 0          |                |         |    |          |            |  |
| Reduced v/c Ratio             | 0.35                                    |           | 0.43       | 0.55       |                |         |    |          |            |  |
| Intersection Summary          |                                         |           |            |            |                |         |    |          |            |  |
| Cycle Length: 80              |                                         |           |            |            |                |         |    |          |            |  |
| Actuated Cycle Length: 80     |                                         |           |            |            |                |         |    |          |            |  |
| Offset: 0 (0%), Referenced    | to phase                                | 6·SBT_S   | tart of Gr | een        |                |         |    |          |            |  |
| Natural Cycle: 80             | to pridoo                               | 0.021, 0  | tart or or | 0011       |                |         |    |          |            |  |
| Control Type: Pretimed        |                                         |           |            |            |                |         |    |          |            |  |
| Maximum v/c Ratio: 0.55       |                                         |           |            |            |                |         |    |          |            |  |
| Intersection Signal Delay (s  | s/veh): 17                              | 3         |            | ln         | tersection LOS | S· B    |    |          |            |  |
| Intersection Capacity Utiliza |                                         |           |            |            | U Level of Se  |         |    |          |            |  |
| Analysis Period (min) 15      |                                         | 70        |            |            | 201010101      | 11.00 0 |    |          |            |  |
| Splits and Phases: 9: Qu      | ıeen Elizal                             | beth Driv | e & Fifth  |            |                |         |    |          |            |  |
| 4                             |                                         |           |            |            |                | 汶       |    | <b>J</b> |            |  |
| Ø2<br>48 s                    |                                         |           |            |            |                | 11 s    | Ø4 | 21 s     | <b>Ø10</b> |  |
|                               |                                         |           |            |            |                |         |    |          |            |  |
| <b>↓</b> Ø6 (R)               |                                         |           |            |            |                |         |    |          |            |  |
| 48 s                          |                                         |           |            |            |                |         |    | <u> </u> |            |  |

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 8.1  |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h        | 41   | 49   | 0    | 0    | 0    | 95   | 66   | 40   | 43   | 0    | 0    | 107  |
| Future Vol, veh/h         | 41   | 49   | 0    | 0    | 0    | 95   | 66   | 40   | 43   | 0    | 0    | 107  |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                 | 46   | 54   | 0    | 0    | 0    | 106  | 73   | 44   | 48   | 0    | 0    | 119  |
| Number of Lanes           | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                  | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Onnaging Approach         | \\/D |      |      |      |      | ED   | CD   |      |      |      |      | NID  |

| NB  |
|-----|
| 1   |
| WB  |
| 1   |
| EB  |
| 1   |
| 7.6 |
| Α   |
|     |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
|--------------------------|-------|-------|-------|-------|
| Vol Left, %              | 44%   | 46%   | 0%    | 0%    |
| Vol Thru, %              | 27%   | 54%   | 0%    | 0%    |
| Vol Right, %             | 29%   | 0%    | 100%  | 100%  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane      | 149   | 90    | 95    | 107   |
| LT Vol                   | 66    | 41    | 0     | 0     |
| Through Vol              | 40    | 49    | 0     | 0     |
| RT Vol                   | 43    | 0     | 95    | 107   |
| Lane Flow Rate           | 166   | 100   | 106   | 119   |
| Geometry Grp             | 1     | 1     | 1     | 1     |
| Degree of Util (X)       | 0.204 | 0.132 | 0.12  | 0.132 |
| Departure Headway (Hd)   | 4.433 | 4.758 | 4.076 | 3.983 |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |
| Cap                      | 810   | 754   | 879   | 900   |
| Service Time             | 2.459 | 2.787 | 2.103 | 2.009 |
| HCM Lane V/C Ratio       | 0.205 | 0.133 | 0.121 | 0.132 |
| HCM Control Delay, s/veh | 8.6   | 8.5   | 7.7   | 7.6   |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |
| HCM 95th-tile Q          | 0.8   | 0.5   | 0.4   | 0.5   |

| Intersection              |     |           |          |       |          |      |
|---------------------------|-----|-----------|----------|-------|----------|------|
| Int Delay, s/veh 6        | .7  |           |          |       |          |      |
| Movement EB               | ( I | EBR       | NBL      | NBT   | SBT      | SBR  |
|                           |     |           | INDL     |       |          | אמט  |
| Lane Configurations       | 2   | 400       | 140      | 41    | <b>₽</b> | F0   |
| Traffic Vol, veh/h        | 3   | 182       | 119      | 602   | 550      | 56   |
| Future Vol, veh/h         | 3   | 182       | 119      | 602   | 550      | 56   |
| Conflicting Peds, #/hr    | 0   | 0         | 178      | 0     | 0        | 107  |
| Sign Control Sto          |     | Stop      | Free     | Free  | Free     | Free |
| RT Channelized            | - N | None      | -        | None  | -        | None |
| Storage Length            | -   | 0         | -        | -     | -        | -    |
| Veh in Median Storage, #  | 0   | -         | -        | 0     | 0        | -    |
| Grade, %                  | 0   | -         | -        | 0     | 0        | -    |
| •                         | 0   | 90        | 90       | 90    | 90       | 90   |
| Heavy Vehicles, %         | 5   | 5         | 5        | 5     | 5        | 5    |
| Mvmt Flow                 |     | 202       | 132      | 669   | 611      | 62   |
| WWIIIL FIOW               | J   | 202       | 132      | 009   | 011      | 02   |
|                           |     |           |          |       |          |      |
| Major/Minor Minor         | 2   | N         | Major1   | ٨     | /lajor2  |      |
| Conflicting Flow All 141  | 9   | 820       | 851      | 0     |          | 0    |
| Stage 1 82                |     |           | _        | _     | _        | _    |
| Stage 2 59                |     | _         | _        | _     | _        | _    |
|                           |     |           | 4.175    | _     | _        | _    |
| Critical Hdwy Stg 1 5.47  |     | -         | 4.173    | _     | _        | _    |
| , ,                       |     |           | _        | _     | -        | _    |
| Critical Hdwy Stg 2 5.87  |     | -         | -        | -     | -        | -    |
|                           |     |           | 2.2475   | -     | -        | -    |
| Pot Cap-1 Maneuver 13     |     | 368       | 769      | -     | -        | -    |
| Stage 1 42                |     | -         | -        | -     | -        | -    |
| Stage 2 50                | 16  | -         | -        | -     | -        | -    |
| Platoon blocked, %        |     |           |          | -     | -        | -    |
| Mov Cap-1 Maneuver 6      | 6   | 299       | 624      | _     | -        | _    |
|                           | 6   | -         | _        | _     | -        | _    |
| Stage 1 25                |     | _         | _        | _     | _        | _    |
| Stage 2 41                |     | _         | _        | _     | _        | _    |
| Stage 2 41                | U   | _         |          |       | _        |      |
|                           |     |           |          |       |          |      |
| Approach E                | В   |           | NB       |       | SB       |      |
| HCM Control Delay, s/89.0 | )1  |           | 3.95     |       | 0        |      |
| HCM LOS                   | E   |           | 0.00     |       |          |      |
| 110W 200                  | _   |           |          |       |          |      |
|                           |     |           |          |       |          |      |
| Minor Lane/Major Mvmt     | I   | NBL       | NBTE     | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)          |     | 508       | _        | 299   | -        | _    |
| HCM Lane V/C Ratio        |     | ).212     |          | 0.677 | _        | _    |
| HCM Control Delay (s/veh) |     | 12.3      | 2.3      | 39    | _        | _    |
| HCM Lane LOS              |     | 12.3<br>B | 2.5<br>A | E     | _        | _    |
| HCM 95th %tile Q(veh)     |     | 0.8       | -        | 4.6   |          | _    |
|                           |     | 0.0       | -        | 4.0   | -        | -    |
|                           |     |           |          |       |          |      |

| Intersection           |         |        |         |          |          |      |
|------------------------|---------|--------|---------|----------|----------|------|
| Int Delay, s/veh       | 0.4     |        |         |          |          |      |
| Movement               | EBL     | EBR    | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    |         | 7      |         | <b>^</b> | <u> </u> |      |
| Traffic Vol, veh/h     | 1       | 33     | 0       | 710      | 723      | 0    |
| Future Vol, veh/h      | 1       | 33     | 0       | 710      | 723      | 0    |
| Conflicting Peds, #/hr |         | 0      | 0       | 0        | 0        | 86   |
| Sign Control           | Stop    | Stop   | Free    | Free     | Free     | Free |
| RT Channelized         | -       |        | -       | None     | -        | None |
| Storage Length         | _       | 0      | _       | -        | _        | -    |
| Veh in Median Storag   | ne # 0  | -      | _       | 0        | 0        | _    |
| Grade, %               | 0       | _      | _       | 0        | 0        | _    |
| Peak Hour Factor       | 90      | 90     | 90      | 90       | 90       | 90   |
| Heavy Vehicles, %      | 5       | 5      | 5       | 5        | 5        | 5    |
| Mvmt Flow              | 1       | 37     | 0       | 789      | 803      | 0    |
| MINITIL FIOW           | I       | 31     | U       | 109      | 003      | U    |
|                        |         |        |         |          |          |      |
| Major/Minor            | Minor2  | ٨      | /lajor1 | N        | /lajor2  |      |
| Conflicting Flow All   | 1198    | 803    | -       | 0        | -        | 0    |
| Stage 1                | 803     | -      | -       | -        | -        | -    |
| Stage 2                | 394     | -      | -       | -        | -        | -    |
| Critical Hdwy          | 6.675   | 6.275  | -       | -        | -        | -    |
| Critical Hdwy Stg 1    | 5.475   | _      | -       | _        | -        | -    |
| Critical Hdwy Stg 2    | 5.875   | -      | _       | -        | _        | -    |
|                        | 3.54753 | 3.3475 | -       | _        | -        | _    |
| Pot Cap-1 Maneuver     |         | 376    | 0       | _        | _        | 0    |
| Stage 1                | 433     | -      | 0       | _        | _        | 0    |
| Stage 2                | 643     | _      | 0       | _        | _        | 0    |
| Platoon blocked, %     | 010     |        | · ·     | _        | _        | •    |
| Mov Cap-1 Maneuve      | r 188   | 376    | _       | _        | _        | _    |
| Mov Cap-1 Maneuve      |         | -      | _       | <u>-</u> | _        | _    |
| Stage 1                | 433     | _      |         |          | _        | _    |
| _                      | 643     | _      |         | _        | _        | _    |
| Stage 2                | 043     | -      | -       | -        | -        | -    |
|                        |         |        |         |          |          |      |
| Approach               | EB      |        | NB      |          | SB       |      |
| HCM Control Delay, s   | s/15.59 |        | 0       |          | 0        |      |
| HCM LOS                | С       |        | _       |          |          |      |
| , <u>-</u>             |         |        |         |          |          |      |
|                        |         |        |         |          |          |      |
| Minor Lane/Major Mv    | mt      | NBTE   |         | SBT      |          |      |
| Capacity (veh/h)       |         | -      | 376     | -        |          |      |
| HCM Lane V/C Ratio     |         | -      | 0.097   | -        |          |      |
| HCM Control Delay (s   | s/veh)  | -      | 15.6    | -        |          |      |
| HCM Lane LOS           |         | -      | С       | -        |          |      |
| HCM 95th %tile Q(ve    | h)      | -      | 0.3     | -        |          |      |
|                        |         |        |         |          |          |      |

| Intersection                                                                                                       |                |                     |             |                      |             |      |
|--------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-------------|----------------------|-------------|------|
| Int Delay, s/veh                                                                                                   | 3.9            |                     |             |                      |             |      |
|                                                                                                                    |                | EDD                 | NDI         | NDT                  | CDT         | CDD  |
| Movement                                                                                                           | EBL            | EBR                 | NBL         | NBT                  | SBT         | SBR  |
| Lane Configurations                                                                                                | 94             | 00                  | 70          | <b>€</b>             | <b>∱</b>    | 111  |
| Traffic Vol, veh/h                                                                                                 | 81             | 68                  | 70          | 216                  | 259         | 144  |
| Future Vol, veh/h                                                                                                  | 81             | 68                  | 70          | 216                  | 259         | 144  |
| Conflicting Peds, #/hr                                                                                             | 0              | 0                   | 0           | 0                    | 0           | 0    |
| Sign Control                                                                                                       | Stop           | Stop                | Free        | Free                 | Free        | Free |
| RT Channelized                                                                                                     | -              | None                | -           | None                 | -           | None |
| Storage Length                                                                                                     | 0              | -                   | -           | -                    | -           | -    |
| Veh in Median Storage                                                                                              |                | -                   | -           | 0                    | 0           | -    |
| Grade, %                                                                                                           | 0              | -                   | -           | 0                    | 0           | -    |
| Peak Hour Factor                                                                                                   | 90             | 90                  | 90          | 90                   | 90          | 90   |
| Heavy Vehicles, %                                                                                                  | 0              | 0                   | 0           | 0                    | 0           | 0    |
| Mvmt Flow                                                                                                          | 90             | 76                  | 78          | 240                  | 288         | 160  |
|                                                                                                                    |                |                     |             |                      |             |      |
| Major/Minor N                                                                                                      | linor2         | A                   | /lajor1     | A                    | /lajor2     |      |
|                                                                                                                    | 763            | 368                 | 448         |                      |             | 0    |
| Conflicting Flow All                                                                                               |                |                     |             | 0                    | -           |      |
| Stage 1                                                                                                            | 368            | -                   | -           | -                    | -           | -    |
| Stage 2                                                                                                            | 396            | -                   | -           | -                    | -           | -    |
| Critical Hdwy                                                                                                      | 6.4            | 6.2                 | 4.1         | -                    | -           | -    |
| Critical Hdwy Stg 1                                                                                                | 5.4            | -                   | -           | -                    | -           | -    |
| Critical Hdwy Stg 2                                                                                                | 5.4            | -                   | -           | -                    | -           | -    |
| Follow-up Hdwy                                                                                                     | 3.5            | 3.3                 | 2.2         | -                    | -           | -    |
| Pot Cap-1 Maneuver                                                                                                 | 375            | 682                 | 1123        | -                    | -           | -    |
| Stage 1                                                                                                            | 705            | -                   | -           | -                    | -           | -    |
| Stage 2                                                                                                            | 685            | -                   | -           | -                    | -           | -    |
| Platoon blocked, %                                                                                                 |                |                     |             | -                    | -           | -    |
| Mov Cap-1 Maneuver                                                                                                 | 345            | 682                 | 1123        | -                    | -           | -    |
| Mov Cap-2 Maneuver                                                                                                 | 345            | -                   | -           | -                    | -           | -    |
| Stage 1                                                                                                            | 648            | -                   | -           | -                    | -           | -    |
| Stage 2                                                                                                            | 685            | -                   | -           | -                    | -           | -    |
| <del> </del>                                                                                                       |                |                     |             |                      |             |      |
| Δ                                                                                                                  |                |                     | , LIE       |                      | 0.5         |      |
| Approach                                                                                                           | EB             |                     | NB          |                      | SB          |      |
|                                                                                                                    | 17 78          |                     | 2.07        |                      | 0           |      |
| HCM Control Delay, s/v                                                                                             |                |                     |             |                      |             |      |
|                                                                                                                    | C              |                     |             |                      |             |      |
| HCM Control Delay, s/v                                                                                             |                |                     |             |                      |             |      |
| HCM Control Delay, s/v<br>HCM LOS                                                                                  | С              | NRI                 | NRTI        | -RI n1               | SRT         | SRR  |
| HCM Control Delay, s/v<br>HCM LOS<br>Minor Lane/Major Mvm                                                          | С              | NBL<br>441          |             | EBLn1                | SBT         | SBR  |
| HCM Control Delay, s/v<br>HCM LOS<br>Minor Lane/Major Mvm<br>Capacity (veh/h)                                      | С              | 441                 | -           | 446                  | -           | -    |
| HCM Control Delay, s/v<br>HCM LOS<br>Minor Lane/Major Mvm<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                | C<br>t         | 441<br>0.069        | -<br>-      | 446<br>0.372         | -           | -    |
| HCM Control Delay, s/v<br>HCM LOS  Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/v | C<br>t         | 441<br>0.069<br>8.4 | -<br>-<br>0 | 446<br>0.372<br>17.8 | -<br>-<br>- | -    |
| HCM Control Delay, s/v<br>HCM LOS<br>Minor Lane/Major Mvm<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                | C<br>t<br>veh) | 441<br>0.069        | -<br>-      | 446<br>0.372         | -           | -    |

| Intersection                           |         |       |            |       |        |          |
|----------------------------------------|---------|-------|------------|-------|--------|----------|
| Int Delay, s/veh                       | 1       |       |            |       |        |          |
| Movement                               | WBL     | WBR   | NBT        | NBR   | SBL    | SBT      |
|                                        | VVDL    | T T   |            | INDIX | ODL    |          |
| Lane Configurations Traffic Vol, veh/h | 6       |       | <b>↑</b> ↑ | 20    | 2      | <b>^</b> |
| •                                      | 6       | 85    | 527        |       | 2      | 629      |
| Future Vol, veh/h                      | 6       | 85    | 527        | 20    | 2      | 629      |
| Conflicting Peds, #/hr                 |         | 0     | _ 0        | 100   | _ 0    | _ 0      |
| Sign Control                           | Stop    | Stop  | Free       | Free  | Free   | Free     |
| RT Channelized                         | -       | None  | -          | None  | -      | None     |
| Storage Length                         | -       | 0     | -          | -     | -      | -        |
| Veh in Median Storage                  | e,# 0   | -     | 0          | -     | -      | 0        |
| Grade, %                               | 0       | -     | 0          | -     | -      | 0        |
| Peak Hour Factor                       | 90      | 90    | 90         | 90    | 90     | 90       |
| Heavy Vehicles, %                      | 0       | 15    | 6          | 0     | 0      | 5        |
| Mvmt Flow                              | 7       | 94    | 586        | 22    | 2      | 699      |
| WWW.CT IOW                             | •       | O.    | 000        |       | _      | 000      |
|                                        |         |       |            |       |        |          |
| Major/Minor N                          | Minor1  | N     | Major1     | N     | Major2 |          |
| Conflicting Flow All                   | 1051    | 404   | 0          | 0     | 708    | 0        |
| Stage 1                                | 697     | -     | _          | -     | -      | -        |
| Stage 2                                | 354     | _     | _          | _     | -      | _        |
| Critical Hdwy                          | 6.8     | 7.2   | _          | _     | 4.1    | _        |
| Critical Hdwy Stg 1                    | 5.8     | - 1.2 | _          | _     | T. I   | _        |
| Critical Hdwy Stg 2                    | 5.8     | _     | _          | _     | _      | _        |
|                                        |         |       | _          | -     |        | _        |
| Follow-up Hdwy                         | 3.5     | 3.45  | -          | -     | 2.2    | -        |
| Pot Cap-1 Maneuver                     | 226     | 561   | -          | -     | 900    | -        |
| Stage 1                                | 461     | -     | -          | -     | -      | -        |
| Stage 2                                | 687     | -     | -          | -     | -      | -        |
| Platoon blocked, %                     |         |       | -          | -     |        | -        |
| Mov Cap-1 Maneuver                     | 201     | 502   | _          | -     | 805    | -        |
| Mov Cap-2 Maneuver                     |         | _     | _          | _     | _      | _        |
| Stage 1                                | 412     | _     | _          | _     | _      | _        |
| Stage 2                                | 685     | _     | _          | _     | _      | _        |
| Olage 2                                | 000     |       |            |       |        |          |
|                                        |         |       |            |       |        |          |
| Approach                               | WB      |       | NB         |       | SB     |          |
| HCM Control Delay, s                   | /13 83  |       | 0          |       | 0.03   |          |
| HCM LOS                                | В       |       | J          |       | 0.00   |          |
| TIOW LOO                               |         |       |            |       |        |          |
|                                        |         |       |            |       |        |          |
| Minor Lane/Major Mvr                   | nt      | NBT   | NBRW       | VBLn1 | SBL    | SBT      |
| Capacity (veh/h)                       |         | _     | _          | 502   | 805    | -        |
| HCM Lane V/C Ratio                     |         | _     | _          | 0.188 |        | _        |
| HCM Control Delay (s                   | /veh)   | _     | _          | 13.8  | 9.5    | _        |
| HCM Lane LOS                           | , 70.1) | _     | _          | В     | Α.     | _        |
|                                        |         |       |            | U     | /\     |          |
| HCM 95th %tile Q(veh                   | ١١      |       |            | 0.7   | 0      | _        |

# 2033 Scenario

Sunday Peak Hour

**Background Volumes** 

1: Bank & Fifth 08/06/2024

|                        | •     | <b>→</b> | •     | •     | •     | <b>†</b> | <b>\</b> | ļ     |  |
|------------------------|-------|----------|-------|-------|-------|----------|----------|-------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL      | SBT   |  |
| Lane Configurations    |       | - 4→     | 7     | -î    |       | 413-     |          | सीके  |  |
| Traffic Volume (vph)   | 54    | 38       | 123   | 67    | 16    | 491      | 23       | 516   |  |
| Future Volume (vph)    | 54    | 38       | 123   | 67    | 16    | 491      | 23       | 516   |  |
| Lane Group Flow (vph)  | 0     | 131      | 137   | 117   | 0     | 594      | 0        | 646   |  |
| Turn Type              | Perm  | NA       | Perm  | NA    | Perm  | NA       | Perm     | NA    |  |
| Protected Phases       |       | 4        |       | 8     |       | 2        |          | 6     |  |
| Permitted Phases       | 4     |          | 8     |       | 2     |          | 6        |       |  |
| Detector Phase         | 4     | 4        | 8     | 8     | 2     | 2        | 6        | 6     |  |
| Switch Phase           |       |          |       |       |       |          |          |       |  |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0      | 4.0      | 4.0   |  |
| Minimum Split (s)      | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0  |  |
| Total Split (s)        | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0  |  |
| Total Split (%)        | 34.7% | 34.7%    | 34.7% | 34.7% | 65.3% | 65.3%    | 65.3%    | 65.3% |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |  |
| All-Red Time (s)       | 2.5   | 2.5      | 2.5   | 2.5   | 2.5   | 2.5      | 2.5      | 2.5   |  |
| Lost Time Adjust (s)   |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0   |  |
| Total Lost Time (s)    |       | 5.5      | 5.5   | 5.5   |       | 5.5      |          | 5.5   |  |
| Lead/Lag               |       |          |       |       |       |          |          |       |  |
| Lead-Lag Optimize?     |       |          |       |       |       |          |          |       |  |
| Recall Mode            | None  | None     | None  | None  | C-Max | C-Max    | C-Max    | C-Max |  |
| Act Effct Green (s)    |       | 14.5     | 14.5  | 14.5  |       | 49.5     |          | 49.5  |  |
| Actuated g/C Ratio     |       | 0.19     | 0.19  | 0.19  |       | 0.66     |          | 0.66  |  |
| v/c Ratio              |       | 0.55     | 0.67  | 0.38  |       | 0.32     |          | 0.36  |  |
| Control Delay (s/veh)  |       | 30.6     | 43.3  | 20.4  |       | 7.3      |          | 6.9   |  |
| Queue Delay            |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0   |  |
| Total Delay (s/veh)    |       | 30.6     | 43.3  | 20.4  |       | 7.3      |          | 6.9   |  |
| LOS                    |       | С        | D     | С     |       | Α        |          | Α     |  |
| Approach Delay (s/veh) |       | 30.6     |       | 32.7  |       | 7.3      |          | 6.9   |  |
| Approach LOS           |       | С        |       | С     |       | Α        |          | Α     |  |
| Queue Length 50th (m)  |       | 14.2     | 18.0  | 9.6   |       | 28.2     |          | 17.9  |  |
| Queue Length 95th (m)  |       | 27.4     | 32.3  | 20.9  |       | 50.0     |          | 33.6  |  |
| Internal Link Dist (m) |       | 49.7     |       | 112.4 |       | 195.6    |          | 190.0 |  |
| Turn Bay Length (m)    |       |          | 45.0  |       |       |          |          |       |  |
| Base Capacity (vph)    |       | 332      | 288   | 423   |       | 1845     |          | 1810  |  |
| Starvation Cap Reductn |       | 0        | 0     | 0     |       | 0        |          | 0     |  |
| Spillback Cap Reductn  |       | 0        | 0     | 0     |       | 0        |          | 0     |  |
| Storage Cap Reductn    |       | 0        | 0     | 0     |       | 0        |          | 0     |  |
| Reduced v/c Ratio      |       | 0.39     | 0.48  | 0.28  |       | 0.32     |          | 0.36  |  |
| Intersection Summary   |       |          |       |       |       |          |          |       |  |
| Cycle Length: 75       |       |          |       |       |       |          |          |       |  |
| A. ( . ( . ( . ) . (   |       |          |       |       |       |          |          |       |  |

Actuated Cycle Length: 75

Offset: 42 (56%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67

Intersection Signal Delay (s/veh): 13.0
Intersection Capacity Utilization 60.0%
Analysis Period (min) 15


Intersection LOS: B
ICU Level of Service B



iming, 2031 F

|                                                     | <b>→</b>   | 4        | <b>†</b>  | <b>&gt;</b> | ļ            |      |
|-----------------------------------------------------|------------|----------|-----------|-------------|--------------|------|
| Lane Group                                          | EBT        | NBL      | NBT       | SBL         | SBT          | Ø3   |
| Lane Configurations                                 | 4          |          | 414       |             | 414          |      |
| Traffic Volume (vph)                                | 18         | 32       | 519       | 23          | 551          |      |
| Future Volume (vph)                                 | 18         | 32       | 519       | 23          | 551          |      |
| Lane Group Flow (vph)                               | 111        | 0        | 704       | 0           | 678          |      |
| Turn Type                                           | NA         | Perm     | NA        | Perm        | NA           |      |
| Protected Phases                                    | 4          |          | 2         |             | 6            | 3    |
| Permitted Phases                                    |            | 2        |           | 6           |              |      |
| Detector Phase                                      | 4          | 2        | 2         | 6           | 6            |      |
| Switch Phase                                        |            |          |           |             |              |      |
| Minimum Initial (s)                                 | 4.4        | 10.0     | 10.0      | 4.0         | 4.0          | 1.0  |
| Minimum Split (s)                                   | 23.0       | 47.0     | 47.0      | 47.0        | 47.0         | 5.0  |
| Total Split (s)                                     | 23.0       | 47.0     | 47.0      | 47.0        | 47.0         | 5.0  |
| Total Split (%)                                     | 30.7%      | 62.7%    | 62.7%     | 62.7%       | 62.7%        | 7%   |
| Yellow Time (s)                                     | 3.0        | 3.0      | 3.0       | 3.0         | 3.0          | 2.0  |
| All-Red Time (s)                                    | 2.6        | 2.2      | 2.2       | 2.2         | 2.2          | 0.0  |
| Lost Time Adjust (s)                                | 0.0        |          | 0.0       |             | 0.0          |      |
| Total Lost Time (s)                                 | 5.6        |          | 5.2       |             | 5.2          |      |
| Lead/Lag                                            | Lag        |          |           |             |              | Lead |
| Lead-Lag Optimize?                                  |            |          |           |             |              |      |
| Recall Mode                                         | None       | C-Max    | C-Max     | C-Max       | C-Max        | None |
| Act Effct Green (s)                                 | 11.6       |          | 56.1      |             | 56.1         |      |
| Actuated g/C Ratio                                  | 0.15       |          | 0.75      |             | 0.75         |      |
| v/c Ratio                                           | 0.55       |          | 0.37      |             | 0.33         |      |
| Control Delay (s/veh)                               | 38.6       |          | 2.4       |             | 8.9          |      |
| Queue Delay                                         | 0.0        |          | 0.0       |             | 0.0          |      |
| Total Delay (s/veh)                                 | 38.6       |          | 2.4       |             | 8.9          |      |
| LOS                                                 | D          |          | Α         |             | Α            |      |
| Approach Delay (s/veh)                              | 38.6       |          | 2.4       |             | 8.9          |      |
| Approach LOS                                        | D          |          | Α         |             | Α            |      |
| Queue Length 50th (m)                               | 14.7       |          | 5.3       |             | 24.5         |      |
| Queue Length 95th (m)                               | 27.3       |          | 12.1      |             | 48.9         |      |
| Internal Link Dist (m)                              | 39.8       |          | 31.5      |             | 195.6        |      |
| Turn Bay Length (m)                                 |            |          |           |             |              |      |
| Base Capacity (vph)                                 | 304        |          | 1890      |             | 2043         |      |
| Starvation Cap Reductn                              | 0          |          | 0         |             | 0            |      |
| Spillback Cap Reductn                               | 0          |          | 0         |             | 0            |      |
| Storage Cap Reductn                                 | 0          |          | 0         |             | 0            |      |
| Reduced v/c Ratio                                   | 0.37       |          | 0.37      |             | 0.33         |      |
| Intersection Summary                                |            |          |           |             |              |      |
| Cycle Length: 75                                    |            |          |           |             |              |      |
| Actuated Cycle Length: 75                           |            |          |           |             |              |      |
| Offset: 16 (21%), Reference                         | ed to phas | se 2:NBT | L and 6:S | SBTL, Sta   | art of Gree  | en   |
| Natural Cycle: 75                                   |            |          |           |             |              |      |
| Control Type: Actuated-Co                           | ordinated  |          |           |             |              |      |
| Maximum v/c Ratio: 0.55                             |            |          |           |             |              |      |
| Intersection Signal Delay (s/veh): 8.1 Intersection |            |          |           |             |              |      |
| Intersection Capacity Utilization                   | %          |          | I         | CU Level    | of Service C |      |
| Analysis Period (min) 15                            |            |          |           |             |              |      |

Splits and Phases: 2: Bank & Holmwood



iming, 2031 F

|                        | •     | *     | <b>†</b>   | -      | ļ        |      |       |      |  |
|------------------------|-------|-------|------------|--------|----------|------|-------|------|--|
| Lane Group             | WBL   | WBR   | NBT        | SBL    | SBT      | Ø3   | Ø6    | Ø7   |  |
| Lane Configurations    | 7     | 7     | <b>↑</b> ↑ | 7      | <b>^</b> |      |       |      |  |
| Traffic Volume (vph)   | 126   | 66    | 417        | 178    | 450      |      |       |      |  |
| Future Volume (vph)    | 126   | 66    | 417        | 178    | 450      |      |       |      |  |
| Lane Group Flow (vph)  | 140   | 73    | 597        | 198    | 500      |      |       |      |  |
| Turn Type              | Perm  | Perm  | NA         | custom | NA       |      |       |      |  |
| Protected Phases       |       |       | 2          | 1      | 16       | 3    | 6     | 7    |  |
| Permitted Phases       | 8     | 8     |            | 6      |          |      |       |      |  |
| Detector Phase         | 8     | 8     | 2          | 1      | 16       |      |       |      |  |
| Switch Phase           |       |       |            |        |          |      |       |      |  |
| Minimum Initial (s)    | 10.0  | 10.0  | 10.0       | 4.0    |          | 1.0  | 10.0  | 1.0  |  |
| Minimum Split (s)      | 26.0  | 26.0  | 27.0       | 10.9   |          | 5.0  | 27.0  | 5.0  |  |
| Total Split (s)        | 26.0  | 26.0  | 27.0       | 12.0   |          | 5.0  | 27.0  | 5.0  |  |
| Total Split (%)        | 34.7% | 34.7% | 36.0%      | 16.0%  |          | 7%   | 36%   | 7%   |  |
| Yellow Time (s)        | 3.3   | 3.3   | 3.0        | 3.0    |          | 2.0  | 3.0   | 2.0  |  |
| All-Red Time (s)       | 3.0   | 3.0   | 3.9        | 3.9    |          | 0.0  | 3.9   | 0.0  |  |
| Lost Time Adjust (s)   | 0.0   | 0.0   | 0.0        | 0.0    |          |      |       |      |  |
| Total Lost Time (s)    | 6.3   | 6.3   | 6.9        | 6.9    |          |      |       |      |  |
| Lead/Lag               |       |       |            | Lead   |          | Lag  |       |      |  |
| Lead-Lag Optimize?     |       |       |            | Yes    |          | Yes  |       |      |  |
| Recall Mode            | None  | None  | C-Max      | None   |          | None | C-Max | None |  |
| Act Effct Green (s)    | 13.1  | 13.1  | 40.0       | 45.1   | 53.4     |      |       |      |  |
| Actuated g/C Ratio     | 0.17  | 0.17  | 0.53       | 0.60   | 0.71     |      |       |      |  |
| v/c Ratio              | 0.56  | 0.29  | 0.40       | 0.47   | 0.22     |      |       |      |  |
| Control Delay (s/veh)  | 36.6  | 9.8   | 12.2       | 11.4   | 4.7      |      |       |      |  |
| Queue Delay            | 0.0   | 0.0   | 0.0        | 0.0    | 0.0      |      |       |      |  |
| Total Delay (s/veh)    | 36.6  | 9.8   | 12.2       | 11.4   | 4.7      |      |       |      |  |
| LOS                    | D     | Α     | В          | В      | Α        |      |       |      |  |
| Approach Delay (s/veh) | 27.4  |       | 12.2       |        | 6.6      |      |       |      |  |
| Approach LOS           | С     |       | В          |        | Α        |      |       |      |  |
| Queue Length 50th (m)  | 18.5  | 0.0   | 24.3       | 8.7    | 11.5     |      |       |      |  |
| Queue Length 95th (m)  | 32.4  | 9.3   | 42.2       | 17.2   | 12.3     |      |       |      |  |
| Internal Link Dist (m) | 30.6  |       | 33.7       |        | 44.8     |      |       |      |  |
| Turn Bay Length (m)    |       |       |            | 40.0   |          |      |       |      |  |
| Base Capacity (vph)    | 377   | 343   | 1486       | 424    | 2235     |      |       |      |  |
| Starvation Cap Reductn | 0     | 0     | 0          | 0      | 0        |      |       |      |  |
| Spillback Cap Reductn  | 0     | 0     | 0          | 0      | 0        |      |       |      |  |
| Storage Cap Reductn    | 0     | 0     | 0          | 0      | 0        |      |       |      |  |
| Reduced v/c Ratio      | 0.37  | 0.21  | 0.40       | 0.47   | 0.22     |      |       |      |  |
| Intersection Summary   |       |       |            |        |          |      |       |      |  |

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 15 (20%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.56

Intersection Signal Delay (s/veh): 11.8 Intersection LOS: B Intersection Capacity Utilization 60.8% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition



Fiming, 2031 F

### 6: Bank & Aylmer

|                                                               | ۶                                      | •        | <b>†</b>    | ļ          |                     |  |
|---------------------------------------------------------------|----------------------------------------|----------|-------------|------------|---------------------|--|
| Lane Group                                                    | EBL                                    | NBL      | NBT         | SBT        | Ø3                  |  |
| Lane Configurations                                           | ¥                                      |          | 44          | <b>ተ</b> ኈ |                     |  |
| Traffic Volume (vph)                                          | 54                                     | 17       | 598         | 659        |                     |  |
| Future Volume (vph)                                           | 54                                     | 17       | 598         | 659        |                     |  |
| Lane Group Flow (vph)                                         | 83                                     | 0        | 683         | 795        |                     |  |
| Turn Type                                                     | Prot                                   | Perm     | NA          | NA         |                     |  |
| Protected Phases                                              | 4                                      |          | 2           | 6          | 3                   |  |
| Permitted Phases                                              | 4                                      | 2        | _           | 6          | •                   |  |
| Detector Phase                                                | 4                                      | 2        | 2           | 6          |                     |  |
| Switch Phase                                                  | •                                      | _        | _           | •          |                     |  |
| Minimum Initial (s)                                           | 10.0                                   | 30.0     | 30.0        | 30.0       | 1.0                 |  |
| Minimum Split (s)                                             | 22.0                                   | 63.0     | 63.0        | 63.0       | 5.0                 |  |
| Total Split (s)                                               | 22.0                                   | 63.0     | 63.0        | 63.0       | 5.0                 |  |
| Total Split (%)                                               | 24.4%                                  | 70.0%    | 70.0%       | 70.0%      | 6%                  |  |
| Yellow Time (s)                                               | 3.3                                    | 3.0      | 3.0         | 3.0        | 2.0                 |  |
| All-Red Time (s)                                              | 2.2                                    | 2.2      | 2.2         | 2.2        | 0.0                 |  |
| Lost Time Adjust (s)                                          | 0.0                                    | ۷.۷      | 0.0         | 0.0        | 0.0                 |  |
| Total Lost Time (s)                                           | 5.5                                    |          | 5.2         | 5.2        |                     |  |
| _ead/Lag                                                      | Lag                                    |          | J. <u>Z</u> | J.Z        | Lead                |  |
| Lead-Lag Optimize?                                            | Lay                                    |          |             |            | Leau                |  |
| Recall Mode                                                   | None                                   | C-Max    | C-Max       | C-Max      | None                |  |
|                                                               | 11.1                                   | C-IVIAX  | 72.4        | 72.4       | none                |  |
| Act Effct Green (s)                                           | 0.12                                   |          |             |            |                     |  |
| Actuated g/C Ratio                                            |                                        |          | 0.80        | 0.80       |                     |  |
| //c Ratio                                                     | 0.43                                   |          | 0.29        | 0.33       |                     |  |
| Control Delay (s/veh)                                         | 35.9                                   |          | 2.7         | 3.7        |                     |  |
| Queue Delay                                                   | 0.0                                    |          | 0.0         | 0.0        |                     |  |
| Total Delay (s/veh)                                           | 35.9                                   |          | 2.7         | 3.7        |                     |  |
| _OS                                                           | D                                      |          | A           | A          |                     |  |
| Approach Delay (s/veh)                                        | 35.9                                   |          | 2.7         | 3.7        |                     |  |
| Approach LOS                                                  | D                                      |          | Α.5         | A          |                     |  |
| Queue Length 50th (m)                                         | 10.5                                   |          | 11.5        | 17.1       |                     |  |
| Queue Length 95th (m)                                         | 23.2                                   |          | 16.9        | 29.5       |                     |  |
| Internal Link Dist (m)                                        | 76.7                                   |          | 28.1        | 10.1       |                     |  |
| Turn Bay Length (m)                                           | 070                                    |          | 0000        | 0.400      |                     |  |
| Base Capacity (vph)                                           | 276                                    |          | 2328        | 2400       |                     |  |
| Starvation Cap Reductn                                        | 0                                      |          | 0           | 0          |                     |  |
| Spillback Cap Reductn                                         | 0                                      |          | 0           | 0          |                     |  |
| Storage Cap Reductn                                           | 0                                      |          | 0           | 0          |                     |  |
| Reduced v/c Ratio                                             | 0.30                                   |          | 0.29        | 0.33       |                     |  |
| ntersection Summary                                           |                                        |          |             |            |                     |  |
| Cycle Length: 90                                              |                                        |          |             |            |                     |  |
| Actuated Cycle Length: 90                                     |                                        |          |             |            |                     |  |
| Offset: 87 (97%), Reference                                   | ed to phas                             | se 2:NBT | L and 6:5   | BT, Start  | of Green            |  |
| Natural Cycle: 90                                             |                                        |          |             |            |                     |  |
| Control Type: Actuated-Coo                                    | ordinated                              |          |             |            |                     |  |
| Maximum v/c Ratio: 0.43                                       |                                        |          |             |            |                     |  |
|                                                               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          |             | In         | ntersection LOS: A  |  |
| Intersection Signal Delay (s                                  | 7 VEII). 4.9                           |          |             |            | 10100011011 = 0 0.7 |  |
| Intersection Signal Delay (s<br>Intersection Capacity Utiliza |                                        |          |             |            | CU Level of Service |  |

Splits and Phases: 6: Bank & Aylmer




iming, 2031 F

|                              | ۶          | <b>→</b> | •         | •         | •           | <b>†</b>    | <b>&gt;</b> | ļ    |      |          |      |  |
|------------------------------|------------|----------|-----------|-----------|-------------|-------------|-------------|------|------|----------|------|--|
| Lane Group                   | EBL        | EBT      | WBL       | WBT       | NBL         | NBT         | SBL         | SBT  | Ø3   | Ø6       | Ø7   |  |
| Lane Configurations          |            | 4        |           | 4         |             | <b>€</b> 1₽ |             | ની'∌ |      |          |      |  |
| Traffic Volume (vph)         | 43         | 33       | 16        | 51        | 19          | 472         | 118         | 509  |      |          |      |  |
| Future Volume (vph)          | 43         | 33       | 16        | 51        | 19          | 472         | 118         | 509  |      |          |      |  |
| Lane Group Flow (vph)        | 0          | 118      | 0         | 195       | 0           | 558         | 0           | 790  |      |          |      |  |
| Turn Type                    | Perm       | NA       | Perm      | NA        | Perm        |             | custom      | NA   |      |          |      |  |
| Protected Phases             |            | 4        |           | 8         |             | 2           | 1           | 16   | 3    | 6        | 7    |  |
| Permitted Phases             | 4          |          | 8         |           | 2           |             | 6           |      |      |          |      |  |
| Minimum Split (s)            | 25.0       | 25.0     | 25.0      | 25.0      | 43.0        | 43.0        | 17.0        |      | 5.0  | 43.0     | 5.0  |  |
| Total Split (s)              | 25.0       | 25.0     | 25.0      | 25.0      | 43.0        | 43.0        | 17.0        |      | 5.0  | 43.0     | 5.0  |  |
| Total Split (%)              | 27.8%      | 27.8%    | 27.8%     | 27.8%     | 47.8%       | 47.8%       | 18.9%       |      | 6%   | 48%      | 6%   |  |
| Yellow Time (s)              | 3.0        | 3.0      | 3.0       | 3.0       | 3.0         | 3.0         | 3.0         |      | 2.0  | 3.0      | 2.0  |  |
| All-Red Time (s)             | 2.6        | 2.6      | 2.6       | 2.6       | 3.0         | 3.0         | 2.9         |      | 0.0  | 3.0      | 0.0  |  |
| Lost Time Adjust (s)         |            | 0.0      |           | 0.0       |             | 0.0         |             |      |      |          |      |  |
| Total Lost Time (s)          |            | 5.6      |           | 5.6       |             | 6.0         |             |      |      |          |      |  |
| Lead/Lag                     | Lag        | Lag      | Lag       | Lag       |             |             |             |      | Lead |          | Lead |  |
| Lead-Lag Optimize?           |            |          | Yes       | Yes       |             |             |             |      |      |          | Yes  |  |
| Act Effct Green (s)          |            | 19.4     |           | 19.4      |             | 37.0        |             | 48.2 |      |          |      |  |
| Actuated g/C Ratio           |            | 0.22     |           | 0.22      |             | 0.41        |             | 0.54 |      |          |      |  |
| v/c Ratio                    |            | 0.53     |           | 0.61      |             | 0.48        |             | 0.65 |      |          |      |  |
| Control Delay (s/veh)        |            | 41.1     |           | 27.5      |             | 21.0        |             | 10.7 |      |          |      |  |
| Queue Delay                  |            | 0.0      |           | 0.0       |             | 0.0         |             | 0.0  |      |          |      |  |
| Total Delay (s/veh)          |            | 41.1     |           | 27.5      |             | 21.0        |             | 10.7 |      |          |      |  |
| LOS                          |            | D        |           | С         |             | С           |             | В    |      |          |      |  |
| Approach Delay (s/veh)       |            | 41.1     |           | 27.5      |             | 21.0        |             | 10.7 |      |          |      |  |
| Approach LOS                 |            | D        |           | С         |             | С           |             | В    |      |          |      |  |
| Queue Length 50th (m)        |            | 18.2     |           | 17.2      |             | 36.0        |             | 35.6 |      |          |      |  |
| Queue Length 95th (m)        |            | 35.5     |           | 39.9      |             | 50.5        |             | 27.1 |      |          |      |  |
| Internal Link Dist (m)       |            | 75.1     |           | 136.0     |             | 63.1        |             | 79.0 |      |          |      |  |
| Turn Bay Length (m)          |            |          |           |           |             |             |             |      |      |          |      |  |
| Base Capacity (vph)          |            | 223      |           | 318       |             | 1170        |             | 1224 |      |          |      |  |
| Starvation Cap Reductn       |            | 0        |           | 0         |             | 0           |             | 0    |      |          |      |  |
| Spillback Cap Reductn        |            | 0        |           | 0         |             | 0           |             | 0    |      |          |      |  |
| Storage Cap Reductn          |            | 0        |           | 0         |             | 0           |             | 0    |      |          |      |  |
| Reduced v/c Ratio            |            | 0.53     |           | 0.61      |             | 0.48        |             | 0.65 |      |          |      |  |
| Intersection Summary         |            |          |           |           |             |             |             |      |      |          |      |  |
| Cycle Length: 90             |            |          |           |           |             |             |             |      |      |          |      |  |
| Actuated Cycle Length: 90    |            |          |           |           |             |             |             |      |      |          |      |  |
| Offset: 23 (26%), Reference  | ed to phas | se 2:NBT | L and 6:8 | SBTL, Sta | art of Gree | en          |             |      |      |          |      |  |
| Natural Cycle: 90            |            |          |           |           |             |             |             |      |      |          |      |  |
| Control Type: Pretimed       |            |          |           |           |             |             |             |      |      |          |      |  |
| Maximum v/c Ratio: 0.65      |            |          |           |           |             |             |             |      |      |          |      |  |
| Intersection Signal Delay (s |            |          |           |           | ntersectio  |             |             |      |      |          |      |  |
| Intersection Capacity Utiliz | ation 73.8 | %        |           | I         | CU Level    | of Service  | ce D        |      |      |          |      |  |
| Analysis Period (min) 15     |            |          |           |           |             |             |             |      |      |          |      |  |
| Splits and Phases: 7: Ba     | ınk & Sunı | nyside   |           |           |             |             |             |      |      |          |      |  |
| Ø2 (R)                       |            |          |           |           | 汶           | <b></b>     | 2)4         |      |      | <b>↓</b> | Ø1   |  |
| 43 s                         |            |          |           |           | 5 s         | 25 s        |             |      |      | 17 s     | _    |  |
| Ø6 (R)                       |            |          |           |           | 汶           | 4           | <b></b>     |      |      |          |      |  |
| 43 s                         |            |          |           |           | 5 s         | 25 s        |             |      |      |          |      |  |

|                               | ۶         | 4     | <b>†</b> | <b>↓</b>   |             |             |  |
|-------------------------------|-----------|-------|----------|------------|-------------|-------------|--|
| Lane Group                    | EBL       | NBL   | NBT      | SBT        | Ø3          |             |  |
| Lane Configurations           | ¥         |       | 4        | 1          |             |             |  |
| Traffic Volume (vph)          | 13        | 207   | 13       | 12         |             |             |  |
| Future Volume (vph)           | 13        | 207   | 13       | 12         |             |             |  |
| Lane Group Flow (vph)         | 162       | 0     | 244      | 42         |             |             |  |
| Turn Type                     | Perm      | Perm  | NA       | NA         |             |             |  |
| Protected Phases              |           |       | 2        | 6          | 3           |             |  |
| Permitted Phases              | 4         | 2     |          |            |             |             |  |
| Detector Phase                | 4         | 2     | 2        | 6          |             |             |  |
| Switch Phase                  |           |       |          |            |             |             |  |
| Minimum Initial (s)           | 10.0      | 4.0   | 4.0      | 4.0        | 4.0         |             |  |
| Minimum Split (s)             | 22.0      | 42.0  | 42.0     | 42.0       | 8.0         |             |  |
| Total Split (s)               | 22.0      | 42.0  | 42.0     | 42.0       | 11.0        |             |  |
| Total Split (%)               | 29.3%     | 56.0% | 56.0%    | 56.0%      | 15%         |             |  |
| Yellow Time (s)               | 3.0       | 3.0   | 3.0      | 3.0        | 3.0         |             |  |
| All-Red Time (s)              | 2.7       | 3.8   | 3.8      | 3.8        | 0.7         |             |  |
| Lost Time Adjust (s)          | 0.0       |       | 0.0      | 0.0        |             |             |  |
| Total Lost Time (s)           | 5.7       |       | 6.8      | 6.8        |             |             |  |
| Lead/Lag                      | Lag       |       |          |            | Lead        |             |  |
| Lead-Lag Optimize?            | Yes       |       |          |            | Yes         |             |  |
| Recall Mode                   | Min       | None  | None     | Max        | None        |             |  |
| Act Effct Green (s)           | 12.3      |       | 35.2     | 35.2       |             |             |  |
| Actuated g/C Ratio            | 0.21      |       | 0.59     | 0.59       |             |             |  |
| v/c Ratio                     | 0.54      |       | 0.35     | 0.05       |             |             |  |
| Control Delay (s/veh)         | 28.4      |       | 8.8      | 6.2        |             |             |  |
| Queue Delay                   | 28.4      |       | 0.0      | 0.0<br>6.2 |             |             |  |
| Total Delay (s/veh)<br>LOS    | 26.4<br>C |       | 0.0<br>A | 6.2<br>A   |             |             |  |
| Approach Delay (s/veh)        | 28.4      |       | 8.8      | 6.2        |             |             |  |
| Approach LOS                  | 20.4<br>C |       | 0.0<br>A | 0.2<br>A   |             |             |  |
| Queue Length 50th (m)         | 16.0      |       | 11.8     | 1.7        |             |             |  |
| Queue Length 95th (m)         | 31.4      |       | 28.3     | 5.7        |             |             |  |
| Internal Link Dist (m)        | 57.2      |       | 0.1      | 5.9        |             |             |  |
| Turn Bay Length (m)           | 01.2      |       | 0.1      | 0.0        |             |             |  |
| Base Capacity (vph)           | 400       |       | 701      | 897        |             |             |  |
| Starvation Cap Reductn        | 0         |       | 0        | 0          |             |             |  |
| Spillback Cap Reductn         | 0         |       | 0        | 0          |             |             |  |
| Storage Cap Reductn           | 0         |       | 0        | 0          |             |             |  |
| Reduced v/c Ratio             | 0.41      |       | 0.35     | 0.05       |             |             |  |
|                               |           |       |          |            |             |             |  |
| Intersection Summary          |           |       |          |            |             |             |  |
| Cycle Length: 75              |           |       |          |            |             |             |  |
| Actuated Cycle Length: 60     |           |       |          |            |             |             |  |
| Natural Cycle: 75             | !: 4 -    |       |          |            |             |             |  |
| Control Type: Actuated-Unc    | oorainate | ea    |          |            |             |             |  |
| Maximum v/c Ratio: 0.54       | /vob): 1E | 6     |          | 1          | toroostica  | I OC: D     |  |
| Intersection Signal Delay (sa |           |       |          |            | ntersection |             |  |
| Intersection Capacity Utiliza | uon 39.3° | 70    |          | IC         | Level 01    | f Service A |  |
| Analysis Period (min) 15      |           |       |          |            |             |             |  |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



Fiming, 2031 F

| Intersection              |    |  |
|---------------------------|----|--|
| Intersection Delay, s/veh | 10 |  |
| Intersection LOS          | Α  |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 70   | 83   | 0    | 0    | 0    | 233  | 101  | 67   | 62   | 0    | 0    | 106  |
| Future Vol, veh/h          | 70   | 83   | 0    | 0    | 0    | 233  | 101  | 67   | 62   | 0    | 0    | 106  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 78   | 92   | 0    | 0    | 0    | 259  | 112  | 74   | 69   | 0    | 0    | 118  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 10.2 |      |      |      |      | 9.7  | 10.9 |      |      |      |      | 8.7  |
| HCM LOS                    | В    |      |      |      |      | Α    | В    |      |      |      |      | Α    |

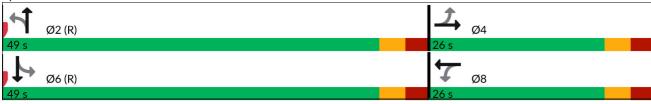
| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 46%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 54%   | 0%    | 0%    |  |
| Vol Right, %             | 27%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 230   | 153   | 233   | 106   |  |
| LT Vol                   | 101   | 70    | 0     | 0     |  |
| Through Vol              | 67    | 83    | 0     | 0     |  |
| RT Vol                   | 62    | 0     | 233   | 106   |  |
| Lane Flow Rate           | 256   | 170   | 259   | 118   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.355 | 0.253 | 0.322 | 0.157 |  |
| Departure Headway (Hd)   | 5.113 | 5.349 | 4.573 | 4.799 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 708   | 675   | 792   | 750   |  |
| Service Time             | 3.113 | 3.349 | 2.573 | 2.809 |  |
| HCM Lane V/C Ratio       | 0.362 | 0.252 | 0.327 | 0.157 |  |
| HCM Control Delay, s/veh | 10.9  | 10.2  | 9.7   | 8.7   |  |
| HCM Lane LOS             | В     | В     | Α     | Α     |  |
| HCM 95th-tile Q          | 1.6   | 1     | 1.4   | 0.6   |  |

| Intersection           |         |          |        |       |          |      |
|------------------------|---------|----------|--------|-------|----------|------|
| Int Delay, s/veh       | 5.1     |          |        |       |          |      |
| Movement               | EBL     | EBR      | NBL    | NBT   | SBT      | SBR  |
| Lane Configurations    |         | 7        |        | 44    | <u>₽</u> | UDIT |
| Traffic Vol, veh/h     | 5       | 156      | 110    | 553   | 503      | 62   |
| Future Vol, veh/h      | 5       | 156      | 110    | 553   | 503      | 62   |
| Conflicting Peds, #/hr |         | 0        | 178    | 0     | 0        | 107  |
| Sign Control           | Stop    | Stop     | Free   | Free  | Free     | Free |
| RT Channelized         | -       | None     | -      |       | -        | None |
| Storage Length         | _       | 0        | _      | -     | _        | -    |
| Veh in Median Storag   | ie # 0  | -        | _      | 0     | 0        | _    |
| Grade, %               | 0       |          | _      | 0     | 0        | _    |
| Peak Hour Factor       | 90      | 90       | 90     | 90    | 90       | 90   |
|                        | 5       |          |        |       |          |      |
| Heavy Vehicles, %      |         | 5<br>172 | 5      | 5     | 5        | 5    |
| Mvmt Flow              | 6       | 173      | 122    | 614   | 559      | 69   |
|                        |         |          |        |       |          |      |
| Major/Minor            | Minor2  | N        | Major1 | N     | /lajor2  |      |
| Conflicting Flow All   | 1323    | 771      | 806    | 0     |          | 0    |
| Stage 1                | 771     | _        | -      | -     | _        | -    |
| Stage 2                | 552     | _        | _      | _     | _        | _    |
| Critical Hdwy          |         | 6.275    | 4 175  | _     | _        | _    |
| Critical Hdwy Stg 1    | 5.475   | -        | -      | _     | _        | _    |
| Critical Hdwy Stg 2    | 5.875   | _        | _      | _     | _        | _    |
|                        | 3.54753 |          |        | _     | _        | _    |
| Pot Cap-1 Maneuver     | 156     | 393      | 801    | -     |          |      |
|                        | 448     | 727      | 001    | _     |          | _    |
| Stage 1                |         | -        | -      |       |          |      |
| Stage 2                | 535     | -        | -      | -     | -        | -    |
| Platoon blocked, %     |         | 0.40     | 050    | -     | -        | -    |
| Mov Cap-1 Maneuve      |         | 319      | 650    | -     | -        | -    |
| Mov Cap-2 Maneuver     |         | -        | -      | -     | -        | -    |
| Stage 1                | 281     | -        | -      | -     | -        | -    |
| Stage 2                | 434     | -        | -      | -     | -        | -    |
|                        |         |          |        |       |          |      |
| Approach               | EB      |          | NB     |       | SB       |      |
| ••                     |         |          |        |       |          |      |
| HCM Control Delay, s   |         |          | 3.56   |       | 0        |      |
| HCM LOS                | D       |          |        |       |          |      |
|                        |         |          |        |       |          |      |
| Minor Lane/Major Mv    | mt      | NBL      | NBT    | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)       |         | 539      | -      | 319   |          |      |
| HCM Lane V/C Ratio     |         | 0.188    |        | 0.544 | _        | _    |
| HCM Control Delay (s   | s/voh)  | 11.8     | 1.9    | 29    |          |      |
| HCM Lane LOS           | o vell) |          |        |       | -        | -    |
|                        | h\      | B        | Α      | D     | -        | -    |
| HCM 95th %tile Q(ve    | n)      | 0.7      | -      | 3.1   | -        | -    |
|                        |         |          |        |       |          |      |

| Intersection           |         |       |         |          |         |      |
|------------------------|---------|-------|---------|----------|---------|------|
| Int Delay, s/veh       | 1       |       |         |          |         |      |
| Movement               | EBL     | EBR   | NBL     | NBT      | SBT     | SBR  |
| Lane Configurations    | LDL     | T T   | NUL     | <b>1</b> | ^       | אופט |
| Traffic Vol, veh/h     | 2       | 71    | 0       | 637      | 663     | 1    |
|                        |         | 71    | -       |          |         |      |
| Future Vol, veh/h      | 2       |       | 0       | 637      | 663     | 1    |
| Conflicting Peds, #/hr | 0       | 0     | _ 0     | _ 0      | _ 0     | _ 86 |
| Sign Control           | Stop    | Stop  | Free    | Free     | Free    | Free |
| RT Channelized         | -       | None  | -       | None     | -       | None |
| Storage Length         | -       | 0     | -       | -        | -       | -    |
| Veh in Median Storage  | e, # 0  | -     | -       | 0        | 0       | -    |
| Grade, %               | 0       | -     | -       | 0        | 0       | -    |
| Peak Hour Factor       | 90      | 90    | 90      | 90       | 90      | 90   |
| Heavy Vehicles, %      | 5       | 5     | 5       | 5        | 5       | 5    |
| Mvmt Flow              | 2       | 79    | 0       | 708      | 737     | 1    |
| WWW.CT IOW             | _       | 10    | •       | 700      | 101     | •    |
|                        |         |       |         |          |         |      |
| Major/Minor N          | /linor2 | ١     | /lajor1 | ١        | /lajor2 |      |
| Conflicting Flow All   | 1177    | 823   | -       | 0        | -       | 0    |
| Stage 1                | 823     | _     | -       | -        | _       | -    |
| Stage 2                | 354     | -     | -       | -        | _       | -    |
|                        | 6.675   | 6.275 | _       | _        | _       | _    |
| •                      | 5.475   | -     | _       | _        | _       | _    |
|                        | 5.875   | _     | _       |          | _       |      |
| , ,                    | 3.54753 |       | _       | _        | _       | _    |
|                        |         |       | 0       | -        |         | -    |
| Pot Cap-1 Maneuver     | 193     | 366   | 0       | -        | -       | -    |
| Stage 1                | 424     | -     | 0       | -        | -       | -    |
| Stage 2                | 675     | -     | 0       | -        | -       | -    |
| Platoon blocked, %     |         |       |         | -        | -       | -    |
| Mov Cap-1 Maneuver     | 160     | 333   | -       | -        | -       | -    |
| Mov Cap-2 Maneuver     | 160     | -     | -       | -        | -       | -    |
| Stage 1                | 385     | -     | -       | _        | -       | -    |
| Stage 2                | 613     | -     | -       | -        | _       | -    |
| J <b>J</b> .           |         |       |         |          |         |      |
|                        |         |       |         |          |         |      |
| Approach               | EB      |       | NB      |          | SB      |      |
| HCM Control Delay, s/  | 19.13   |       | 0       |          | 0       |      |
| HCM LOS                | С       |       |         |          |         |      |
|                        |         |       |         |          |         |      |
|                        |         |       |         |          |         |      |
| Minor Lane/Major Mvm   | nt      | NBTE  | BLn1    | SBT      | SBR     |      |
| Capacity (veh/h)       |         | -     |         | -        | -       |      |
| HCM Lane V/C Ratio     |         | -     | 0.237   | -        | -       |      |
| HCM Control Delay (s/  | /veh)   | -     | 19.1    | _        | -       |      |
| HCM Lane LOS           |         | _     | С       | _        | -       |      |
| HCM 95th %tile Q(veh   | )       | _     | 0.9     | _        | _       |      |
| TOW COM 70 MIC Q(VOI)  | )       |       | 0.0     |          |         |      |

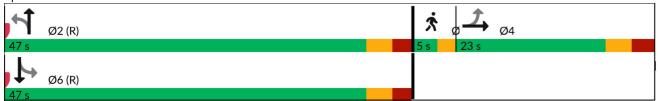
| Intersection           |           |       |         |       |         |      |
|------------------------|-----------|-------|---------|-------|---------|------|
| Int Delay, s/veh       | 5.9       |       |         |       |         |      |
| Movement               | EBL       | EBR   | NBL     | NBT   | SBT     | SBR  |
| Lane Configurations    | ¥         | LDIK  | NDL     | 4     | - T∌    | אופט |
| Traffic Vol, veh/h     | 88        | 138   | 72      | 131   | 68      | 60   |
| Future Vol, veh/h      | 88        | 138   | 72      | 131   | 68      | 60   |
|                        | 00        | 0     | 0       | 0     | 00      | 0    |
| Conflicting Peds, #/hr |           |       |         |       |         |      |
| Sign Control           | Stop      | Stop  | Free    | Free  | Free    | Free |
| RT Channelized         | -         | None  | -       | None  | -       |      |
| Storage Length         | 0         | -     | -       | -     | -       | -    |
| Veh in Median Storage  |           | -     | -       | 0     | 0       | -    |
| Grade, %               | 0         | -     | -       | 0     | 0       | -    |
| Peak Hour Factor       | 90        | 90    | 90      | 90    | 90      | 90   |
| Heavy Vehicles, %      | 0         | 0     | 0       | 0     | 0       | 0    |
| Mvmt Flow              | 98        | 153   | 80      | 146   | 76      | 67   |
|                        |           |       |         |       |         |      |
| Major/Minor N          | /linor2   | ı     | /lajor1 | , ,   | /lajor2 |      |
| Conflicting Flow All   | 414       | 109   | 142     | 0     | -       | 0    |
|                        | 109       |       |         |       |         |      |
| Stage 1                |           | -     | -       | -     | -       | -    |
| Stage 2                | 306       | -     | -       | -     | -       | -    |
| Critical Hdwy          | 6.4       | 6.2   | 4.1     | -     | -       | -    |
| Critical Hdwy Stg 1    | 5.4       | -     | -       | -     | -       | -    |
| Critical Hdwy Stg 2    | 5.4       | -     | -       | -     | -       | -    |
| Follow-up Hdwy         | 3.5       | 3.3   | 2.2     | -     | -       | -    |
| Pot Cap-1 Maneuver     | 598       | 950   | 1453    | -     | -       | -    |
| Stage 1                | 921       | -     | -       | -     | -       | -    |
| Stage 2                | 752       | -     | -       | -     | -       | -    |
| Platoon blocked, %     |           |       |         | -     | -       | -    |
| Mov Cap-1 Maneuver     | 562       | 950   | 1453    | -     | -       | -    |
| Mov Cap-2 Maneuver     | 562       | -     | -       | -     | -       | -    |
| Stage 1                | 865       | -     | -       | -     | -       | -    |
| Stage 2                | 752       | -     | -       | -     | -       | -    |
| <b>J</b>               |           |       |         |       |         |      |
|                        |           |       |         |       | -       |      |
| Approach               | EB        |       | NB      |       | SB      |      |
| HCM Control Delay, s/  | 12.21     |       | 2.7     |       | 0       |      |
| HCM LOS                | В         |       |         |       |         |      |
|                        |           |       |         |       |         |      |
| Minor Lane/Major Mvn   | nt .      | NBL   | NPT     | EBLn1 | SBT     | SBR  |
|                        | ıı        |       |         |       |         | אמט  |
| Capacity (veh/h)       |           | 638   | -       | 749   | -       | -    |
| HCM Lane V/C Ratio     | / . I \ - | 0.055 |         | 0.335 | -       | -    |
| HCM Control Delay (s/  | ven)      | 7.6   | 0       | 12.2  | -       | -    |
| HCM Lane LOS           | ,         | Α     | Α       | В     | -       | -    |
| HCM 95th %tile Q(veh   | )         | 0.2   | -       | 1.5   | -       | -    |

| Intersection           |           | _    |         |       |         |          |
|------------------------|-----------|------|---------|-------|---------|----------|
| Int Delay, s/veh       | 2.1       |      |         |       |         |          |
| Movement               | WBL       | WBR  | NBT     | NBR   | SBL     | SBT      |
| Lane Configurations    |           | 7    | ħβ      |       |         | <b>^</b> |
| Traffic Vol, veh/h     | 7         | 163  | 475     | 20    | 0       | 613      |
| Future Vol, veh/h      | 7         | 163  | 475     | 20    | 0       | 613      |
| Conflicting Peds, #/hr | 0         | 0    | 0       | 100   | 0       | 0        |
| Sign Control           | Stop      | Stop | Free    | Free  | Free    | Free     |
| RT Channelized         | -         | None | -       | None  | -       | None     |
| Storage Length         | -         | 0    | _       | -     | -       | -        |
| Veh in Median Storage  | e. # 0    | _    | 0       | _     | -       | 0        |
| Grade, %               | 0         | _    | 0       | _     | _       | 0        |
| Peak Hour Factor       | 90        | 90   | 90      | 90    | 90      | 90       |
| Heavy Vehicles, %      | 0         | 15   | 6       | 0     | 0       | 5        |
| Mymt Flow              | 8         | 181  | 528     | 22    | 0       | 681      |
| IVIVIIIL I IOW         | U         | 101  | 320     | 22    | U       | 001      |
|                        |           |      |         |       |         |          |
| Major/Minor N          | /linor1   | N    | //ajor1 | N     | /lajor2 |          |
| Conflicting Flow All   | 979       | 375  | 0       | 0     | -       | -        |
| Stage 1                | 639       | -    | -       | -     | -       | -        |
| Stage 2                | 341       | -    | -       | -     | -       | -        |
| Critical Hdwy          | 6.8       | 7.2  | -       | -     | -       | -        |
| Critical Hdwy Stg 1    | 5.8       | -    | -       | -     | -       | -        |
| Critical Hdwy Stg 2    | 5.8       | _    | -       | -     | -       | _        |
| Follow-up Hdwy         | 3.5       | 3.45 | -       | _     | -       | -        |
| Pot Cap-1 Maneuver     | 251       | 587  | -       | -     | 0       | -        |
| Stage 1                | 493       | _    | _       | _     | 0       | -        |
| Stage 2                | 698       | -    | -       | _     | 0       | -        |
| Platoon blocked, %     | 000       |      | _       | _     | •       | _        |
| Mov Cap-1 Maneuver     | 224       | 525  | _       | _     | _       | _        |
| Mov Cap-2 Maneuver     | 224       | -    | _       | _     | _       | _        |
| Stage 1                | 441       | _    | _       | _     | _       | _        |
| Stage 2                | 698       | _    | _       | _     | _       | _        |
| Stage 2                | 030       |      | _       |       | -       |          |
|                        |           |      |         |       |         |          |
| Approach               | WB        |      | NB      |       | SB      |          |
| HCM Control Delay, s/  | 15.44     |      | 0       |       | 0       |          |
| HCM LOS                | С         |      |         |       |         |          |
|                        |           |      |         |       |         |          |
| NA: 1 /NA: NA          |           | NDT  | NDDA    | VDI 4 | ODT     |          |
| Minor Lane/Major Mvn   | <u>nt</u> | NBT  | NBKV    | VBLn1 | SBT     |          |
| Capacity (veh/h)       |           | -    | -       | 525   | -       |          |
| HCM Lane V/C Ratio     |           | -    | -       | 0.345 | -       |          |
| HCM Control Delay (s/  | /veh)     | -    | -       | 15.4  | -       |          |
| HCM Lane LOS           |           | -    | -       | С     | -       |          |
| HCM 95th %tile Q(veh   | )         | -    | -       | 1.5   | -       |          |
|                        |           |      |         |       |         |          |


# 2033 Scenario

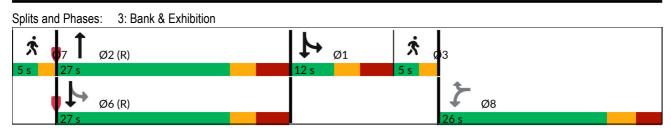
Sunday Peak Hour

**Future Volumes** 


1: Bank & Fifth 08/06/2024

| 1: Bank & Fifth              |             |          |           |            |            |          |          |       |  |
|------------------------------|-------------|----------|-----------|------------|------------|----------|----------|-------|--|
|                              | •           | <b>→</b> | •         | <b>←</b>   | 1          | <b>†</b> | <b>\</b> | Ţ     |  |
| Lane Group                   | EBL         | EBT      | WBL       | WBT        | NBL        | NBT      | SBL      | SBT   |  |
| Lane Configurations          |             | 4        | ሻ         | <b>f</b> a |            | 47>      |          | 474   |  |
| Traffic Volume (vph)         | 54          | 38       | 123       | 67         | 16         | 516      | 23       | 548   |  |
| Future Volume (vph)          | 54          | 38       | 123       | 67         | 16         | 516      | 23       | 548   |  |
| Lane Group Flow (vph)        | 0           | 131      | 137       | 124        | 0          | 621      | 0        | 682   |  |
| Turn Type                    | Perm        | NA       | Perm      | NA         | Perm       | NA       | Perm     | NA    |  |
| Protected Phases             |             | 4        | . •       | 8          |            | 2        | . •      | 6     |  |
| Permitted Phases             | 4           | •        | 8         | J          | 2          | _        | 6        | Ū     |  |
| Minimum Split (s)            | 26.0        | 26.0     | 26.0      | 26.0       | 49.0       | 49.0     | 49.0     | 49.0  |  |
| Total Split (s)              | 26.0        | 26.0     | 26.0      | 26.0       | 49.0       | 49.0     | 49.0     | 49.0  |  |
| Total Split (%)              | 34.7%       | 34.7%    | 34.7%     | 34.7%      | 65.3%      | 65.3%    | 65.3%    | 65.3% |  |
| Yellow Time (s)              | 3.0         | 3.0      | 3.0       | 3.0        | 3.0        | 3.0      | 3.0      | 3.0   |  |
| All-Red Time (s)             | 2.5         | 2.5      | 2.5       | 2.5        | 2.5        | 2.5      | 2.5      | 2.5   |  |
| Lost Time Adjust (s)         | 2.0         | 0.0      | 0.0       | 0.0        | 2.0        | 0.0      | 2.0      | 0.0   |  |
| Total Lost Time (s)          |             | 5.5      | 5.5       | 5.5        |            | 5.5      |          | 5.5   |  |
| Lead/Lag                     |             | 0.0      | 0.0       | 0.0        |            | 5.5      |          | 0.0   |  |
| Lead-Lag Optimize?           |             |          |           |            |            |          |          |       |  |
|                              |             | 20 F     | 20 E      | 20 F       |            | 43.5     |          | 43.5  |  |
| Act Effct Green (s)          |             | 20.5     | 20.5      | 20.5       |            |          |          |       |  |
| Actuated g/C Ratio           |             | 0.27     | 0.27      | 0.27       |            | 0.58     |          | 0.58  |  |
| v/c Ratio                    |             | 0.39     | 0.47      | 0.29       |            | 0.38     |          | 0.43  |  |
| Control Delay (s/veh)        |             | 22.9     | 29.0      | 16.4       |            | 10.0     |          | 9.6   |  |
| Queue Delay                  |             | 0.0      | 0.0       | 0.0        |            | 0.0      |          | 0.0   |  |
| Total Delay (s/veh)          |             | 22.9     | 29.0      | 16.4       |            | 10.0     |          | 9.6   |  |
| LOS                          |             | С        | С         | В          |            | A        |          | A     |  |
| Approach Delay (s/veh)       |             | 22.9     |           | 23.0       |            | 10.0     |          | 9.6   |  |
| Approach LOS                 |             | С        |           | С          |            | Α        |          | Α     |  |
| Queue Length 50th (m)        |             | 12.7     | 16.1      | 8.6        |            | 34.3     |          | 24.8  |  |
| Queue Length 95th (m)        |             | 27.3     | 32.2      | 21.3       |            | 46.6     |          | 36.0  |  |
| Internal Link Dist (m)       |             | 49.7     |           | 112.4      |            | 195.6    |          | 190.0 |  |
| Turn Bay Length (m)          |             |          | 45.0      |            |            |          |          |       |  |
| Base Capacity (vph)          |             | 339      | 293       | 424        |            | 1625     |          | 1596  |  |
| Starvation Cap Reductn       |             | 0        | 0         | 0          |            | 0        |          | 0     |  |
| Spillback Cap Reductn        |             | 0        | 0         | 0          |            | 0        |          | 0     |  |
| Storage Cap Reductn          |             | 0        | 0         | 0          |            | 0        |          | 0     |  |
| Reduced v/c Ratio            |             | 0.39     | 0.47      | 0.29       |            | 0.38     |          | 0.43  |  |
| Intersection Summary         |             |          |           |            |            |          |          |       |  |
| Cycle Length: 75             |             |          |           |            |            |          |          |       |  |
| Actuated Cycle Length: 75    |             |          |           |            |            |          |          |       |  |
| Offset: 42 (56%), Reference  | ed to phas  | se 2:NBT | L and 6:S | SBTL, Sta  | art of Gre | en       |          |       |  |
| Natural Cycle: 75            |             |          |           |            |            |          |          |       |  |
| Control Type: Pretimed       |             |          |           |            |            |          |          |       |  |
| Maximum v/c Ratio: 0.47      |             |          |           |            |            |          |          |       |  |
| Intersection Signal Delay (  | s/veh): 12. | 8        |           | lı lı      | ntersectio | n LOS: E | 3        |       |  |
| Intersection Capacity Utiliz |             |          |           |            | CU Level   |          |          |       |  |
| Analysis Period (min) 15     |             |          |           |            |            |          |          |       |  |
| Colita and Dhasas 4: Da      | مماد ٥ ٦:44 |          |           |            |            |          |          |       |  |
| i _                          | ank & Fifth |          |           |            |            |          |          | _     |  |
| <b>⊢√T</b>                   |             |          |           |            |            |          |          | T.    |  |




|                                     | <b>→</b>    | 1        | <b>†</b>  | <b>/</b>  | <del> </del> |              |
|-------------------------------------|-------------|----------|-----------|-----------|--------------|--------------|
| Lane Group                          | EBT         | NBL      | NBT       | SBL       | SBT          | Ø3           |
| Lane Configurations                 | 4           | .,,,,,,  | 47>       | - 352     | 414          |              |
| Traffic Volume (vph)                | 18          | 32       | 543       | 30        | 576          |              |
| Future Volume (vph)                 | 18          | 32       | 543       | 30        | 576          |              |
| Lane Group Flow (vph)               | 111         | 0        | 737       | 0         | 713          |              |
| Turn Type                           | NA          | Perm     | NA        | Perm      | NA           |              |
| Protected Phases                    | 4           | . 51111  | 2         | . 51111   | 6            | 3            |
| Permitted Phases                    |             | 2        | _         | 6         |              |              |
| Detector Phase                      | 4           | 2        | 2         | 6         | 6            |              |
| Switch Phase                        | •           | _        | =         | J         |              |              |
| Minimum Initial (s)                 | 4.4         | 10.0     | 10.0      | 4.0       | 4.0          | 1.0          |
| Minimum Split (s)                   | 23.0        | 47.0     | 47.0      | 47.0      | 47.0         | 5.0          |
| Total Split (s)                     | 23.0        | 47.0     | 47.0      | 47.0      | 47.0         | 5.0          |
| Total Split (%)                     | 30.7%       | 62.7%    | 62.7%     | 62.7%     | 62.7%        | 7%           |
| Yellow Time (s)                     | 3.0         | 3.0      | 3.0       | 3.0       | 3.0          | 2.0          |
| All-Red Time (s)                    | 2.6         | 2.2      | 2.2       | 2.2       | 2.2          | 0.0          |
| Lost Time Adjust (s)                | 0.0         | ۷.۷      | 0.0       | 2.2       | 0.0          | 0.0          |
| Total Lost Time (s)                 | 5.6         |          | 5.2       |           | 5.2          |              |
| Lead/Lag                            | Lag         |          | 0.2       |           | J.Z          | Lead         |
| Lead-Lag Optimize?                  | Lay         |          |           |           |              | Load         |
| Recall Mode                         | None        | C-Max    | C-Max     | C-Max     | C-Max        | None         |
| Act Effct Green (s)                 | 11.6        | O-IVIAX  | 56.1      | O-IVIAX   | 56.1         | INOTIC       |
| Actuated g/C Ratio                  | 0.15        |          | 0.75      |           | 0.75         |              |
| v/c Ratio                           | 0.15        |          | 0.73      |           | 0.75         |              |
| Control Delay (s/veh)               | 38.6        |          | 2.4       |           | 10.2         |              |
| Queue Delay                         | 0.0         |          | 0.0       |           | 0.0          |              |
| Total Delay (s/veh)                 | 38.6        |          | 2.4       |           | 10.2         |              |
| LOS                                 | 30.0<br>D   |          | 2.4<br>A  |           | 10.2<br>B    |              |
|                                     | 38.6        |          | 2.4       |           | 10.2         |              |
| Approach Delay (s/veh) Approach LOS |             |          | 2.4<br>A  |           | 10.2<br>B    |              |
|                                     | D           |          |           |           |              |              |
| Queue Length 50th (m)               | 14.7        |          | 6.1       |           | 34.1         |              |
| Queue Length 95th (m)               | 27.3        |          | 13.4      |           | 53.0         |              |
| Internal Link Dist (m)              | 39.8        |          | 31.5      |           | 195.6        |              |
| Turn Bay Length (m)                 | 20.4        |          | 4000      |           | 0040         |              |
| Base Capacity (vph)                 | 304         |          | 1883      |           | 2010         |              |
| Starvation Cap Reductn              | 0           |          | 0         |           | 0            |              |
| Spillback Cap Reductn               | 0           |          | 0         |           | 0            |              |
| Storage Cap Reductn                 | 0           |          | 0         |           | 0            |              |
| Reduced v/c Ratio                   | 0.37        |          | 0.39      |           | 0.35         |              |
| Intersection Summary                |             |          |           |           |              |              |
| Cycle Length: 75                    |             |          |           |           |              |              |
| Actuated Cycle Length: 75           |             | •        |           |           |              |              |
| Offset: 16 (21%), Reference         | ed to phas  | se 2:NBT | L and 6:S | SBTL, Sta | art of Gree  | en           |
| Natural Cycle: 75                   |             |          |           |           |              |              |
| Control Type: Actuated-Co           | ordinated   |          |           |           |              |              |
| Maximum v/c Ratio: 0.55             |             |          |           |           |              |              |
| Intersection Signal Delay (s        |             |          |           |           | ntersectio   |              |
| Intersection Capacity Utiliz        | ation 69.5° | %        |           | I         | CU Level     | of Service C |
| Analysis Period (min) 15            |             |          |           |           |              |              |

Splits and Phases: 2: Bank & Holmwood



|                               | •           | •         | <b>†</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>\</b>                                | <b>+</b>   |           |       |        |  |
|-------------------------------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|-----------|-------|--------|--|
| Lane Group                    | WBL         | WBR       | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SBL                                     | SBT        | Ø3        | Ø6    | Ø7     |  |
| Lane Configurations           | *           | #         | <b>†</b> 1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ች                                       | <b>^</b>   |           |       |        |  |
| Traffic Volume (vph)          | 150         | 73        | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 203                                     | 450        |           |       |        |  |
| Future Volume (vph)           | 150         | 73        | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 203                                     | 450        |           |       |        |  |
| Lane Group Flow (vph)         | 167         | 81        | 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 226                                     | 500        |           |       |        |  |
| Turn Type                     | Perm        | Perm      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | custom                                  | NA         |           |       |        |  |
| Protected Phases              |             |           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                       | 16         | 3         | 6     | 7      |  |
| Permitted Phases              | 8           | 8         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                       | . •        |           |       | •      |  |
| Detector Phase                | 8           | 8         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                       | 16         |           |       |        |  |
| Switch Phase                  |             |           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                       | . •        |           |       |        |  |
| Minimum Initial (s)           | 4.0         | 4.0       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                     |            | 1.0       | 5.1   | 3.0    |  |
| Minimum Split (s)             | 26.0        | 26.0      | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.0                                    |            | 5.0       | 27.0  | 5.0    |  |
| Total Split (s)               | 26.0        | 26.0      | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.0                                    |            | 5.0       | 27.0  | 5.0    |  |
| Total Split (%)               | 34.7%       | 34.7%     | 36.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0%                                   |            | 7%        | 36%   | 7%     |  |
| Yellow Time (s)               | 3.3         | 3.3       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                     |            | 2.0       | 3.0   | 2.0    |  |
| All-Red Time (s)              | 3.0         | 3.0       | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9                                     |            | 0.0       | 3.9   | 0.0    |  |
| Lost Time Adjust (s)          | 0.0         | 0.0       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                     |            | 0.0       | 0.0   | 0.0    |  |
| Total Lost Time (s)           | 6.3         | 6.3       | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.9                                     |            |           |       |        |  |
| Lead/Lag                      | 0.0         | 0.0       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lead                                    |            | Lag       |       |        |  |
| Lead-Lag Optimize?            |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                     |            | Yes       |       |        |  |
| Recall Mode                   | None        | None      | C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                    |            | None      | C-Max | None   |  |
| Act Effct Green (s)           | 14.0        | 14.0      | 35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.9                                    | 47.8       | 140110    | O Max | 140110 |  |
| Actuated g/C Ratio            | 0.19        | 0.19      | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55                                    | 0.64       |           |       |        |  |
| v/c Ratio                     | 0.63        | 0.13      | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                    | 0.25       |           |       |        |  |
| Control Delay (s/veh)         | 38.2        | 9.4       | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.3                                    | 4.6        |           |       |        |  |
| Queue Delay                   | 0.0         | 0.0       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                     | 0.0        |           |       |        |  |
| Total Delay (s/veh)           | 38.2        | 9.4       | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.3                                    | 4.6        |           |       |        |  |
| LOS                           | D           | A         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                       | A          |           |       |        |  |
| Approach Delay (s/veh)        | 28.8        | ,,        | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 8.6        |           |       |        |  |
| Approach LOS                  | C           |           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | A          |           |       |        |  |
| Queue Length 50th (m)         | 22.0        | 0.0       | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6                                     | 7.6        |           |       |        |  |
| Queue Length 95th (m)         | 36.7        | 9.6       | 47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #25.1                                   | 12.7       |           |       |        |  |
| Internal Link Dist (m)        | 30.6        | 0.0       | 33.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 44.8       |           |       |        |  |
| Turn Bay Length (m)           | 00.0        |           | 00.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0                                    | 11.0       |           |       |        |  |
| Base Capacity (vph)           | 371         | 334       | 1325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 372                                     | 2002       |           |       |        |  |
| Starvation Cap Reductn        | 0           | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                       | 0          |           |       |        |  |
| Spillback Cap Reductn         | 0           | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                       | 0          |           |       |        |  |
| Storage Cap Reductn           | 0           | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                       | 0          |           |       |        |  |
| Reduced v/c Ratio             | 0.45        | 0.24      | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                    | 0.25       |           |       |        |  |
|                               |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |           |       |        |  |
| Intersection Summary          |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |           |       |        |  |
| Cycle Length: 75              |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |           |       |        |  |
| Actuated Cycle Length: 75     |             | . O NDT   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OTL OLI                                 |            |           |       |        |  |
| Offset: 15 (20%), Reference   | ed to phas  | se 2:NBT  | and 6:SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIL, Start                              | of Green   |           |       |        |  |
| Natural Cycle: 75             |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |           |       |        |  |
| Control Type: Actuated-Coo    | ordinated   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |           |       |        |  |
| Maximum v/c Ratio: 0.63       | 1 .1. \ 4.4 | ^         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            | 100       |       |        |  |
| Intersection Signal Delay (s  |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | tersection |           |       |        |  |
| Intersection Capacity Utiliza | ation 61.1  | %         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IC                                      | CU Level   | ot Servic | e B   |        |  |
| Analysis Period (min) 15      |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |           |       |        |  |
| # 95th percentile volume      |             |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ay be long                              | ger.       |           |       |        |  |
| Queue shown is maximu         | ım atter tv | vo cycles | 5. The state of th |                                         |            |           |       |        |  |

3: Bank & Exhibition 08/06/2024



### 6: Bank & Aylmer

|                             | ۶           | •        | <b>†</b>  | ļ           |                                           |   |
|-----------------------------|-------------|----------|-----------|-------------|-------------------------------------------|---|
| Lane Group                  | EBL         | NBL      | NBT       | SBT         | Ø3                                        |   |
| Lane Configurations         | W           |          | 414       | <b>†</b> 1> |                                           |   |
| Traffic Volume (vph)        | 54          | 17       | 630       | 683         |                                           |   |
| Future Volume (vph)         | 54          | 17       | 630       | 683         |                                           |   |
| Lane Group Flow (vph)       | 83          | 0        | 719       | 822         |                                           |   |
| Turn Type                   | Prot        | Perm     | NA        | NA          |                                           |   |
| Protected Phases            | 4           | . •      | 2         | 6           | 3                                         |   |
| Permitted Phases            | 4           | 2        | _         | 6           | •                                         |   |
| Detector Phase              | 4           | 2        | 2         | 6           |                                           |   |
| Switch Phase                | •           | _        | _         |             |                                           |   |
| Minimum Initial (s)         | 10.0        | 30.0     | 30.0      | 30.0        | 1.0                                       |   |
| Minimum Split (s)           | 22.0        | 63.0     | 63.0      | 63.0        | 5.0                                       |   |
| Fotal Split (s)             | 22.0        | 63.0     | 63.0      | 63.0        | 5.0                                       |   |
| Fotal Split (%)             | 24.4%       | 70.0%    | 70.0%     | 70.0%       | 6%                                        |   |
| Yellow Time (s)             | 3.3         | 3.0      | 3.0       | 3.0         | 2.0                                       |   |
| All-Red Time (s)            | 2.2         | 2.2      | 2.2       | 2.2         | 1.0                                       |   |
| Lost Time Adjust (s)        | 0.0         | ۷.۷      | 0.0       | 0.0         | 1.0                                       |   |
| Total Lost Time (s)         | 5.5         |          | 5.2       | 5.2         |                                           |   |
| _ead/Lag                    | Lag         |          | J.Z       | J.Z         | Lead                                      |   |
| _ead-Lag Optimize?          | Lay         |          |           |             | LGau                                      |   |
| Recall Mode                 | None        | C-Max    | C-Max     | C-Max       | None                                      |   |
| Act Effct Green (s)         | 11.1        | C-IVIAX  | 72.4      | 72.4        | None                                      |   |
| Actuated g/C Ratio          | 0.12        |          | 0.80      | 0.80        |                                           |   |
| //c Ratio                   | 0.12        |          | 0.80      | 0.80        |                                           |   |
|                             | 35.9        |          | 3.0       | 3.7         |                                           |   |
| Control Delay (s/veh)       | 0.0         |          | 0.0       | 0.0         |                                           |   |
| Queue Delay                 | 35.9        |          | 3.0       | 3.7         |                                           |   |
| Total Delay (s/veh)<br>_OS  |             |          |           |             |                                           |   |
|                             | D           |          | A         | A           |                                           |   |
| Approach Delay (s/veh)      | 35.9        |          | 3.0       | 3.7         |                                           |   |
| Approach LOS                | D           |          | A         | A           |                                           |   |
| Queue Length 50th (m)       | 10.5        |          | 12.5      | 18.0        |                                           |   |
| Queue Length 95th (m)       | 23.2        |          | 20.4      | 30.8        |                                           |   |
| nternal Link Dist (m)       | 76.7        |          | 28.1      | 10.1        |                                           |   |
| Turn Bay Length (m)         | 070         |          | 0000      | 0.400       |                                           |   |
| Base Capacity (vph)         | 276         |          | 2329      | 2406        |                                           |   |
| Starvation Cap Reductn      | 0           |          | 0         | 0           |                                           |   |
| Spillback Cap Reductn       | 0           |          | 0         | 0           |                                           |   |
| Storage Cap Reductn         | 0           |          | 0         | 0           |                                           |   |
| Reduced v/c Ratio           | 0.30        |          | 0.31      | 0.34        |                                           |   |
| ntersection Summary         |             |          |           |             |                                           |   |
| Cycle Length: 90            |             |          |           |             |                                           |   |
| Actuated Cycle Length: 90   |             |          |           |             |                                           |   |
| Offset: 87 (97%), Reference | ed to phas  | se 2:NBT | L and 6:5 | BT, Start   | of Green                                  |   |
| Natural Cycle: 90           |             |          |           |             |                                           |   |
| Control Type: Actuated-Cod  | ordinated   |          |           |             |                                           |   |
|                             |             |          |           |             |                                           |   |
|                             |             |          |           |             |                                           |   |
| Maximum v/c Ratio: 0.43     | s/veh): 5.1 |          |           | In          | itersection LOS: A                        |   |
|                             |             |          |           |             | itersection LOS: A<br>CU Level of Service | A |

Splits and Phases: 6: Bank & Aylmer



|                                                         | •      | <b>→</b>  | •      | •         | 4     | <b>†</b>  | -      | ļ        |        |       |        |  |
|---------------------------------------------------------|--------|-----------|--------|-----------|-------|-----------|--------|----------|--------|-------|--------|--|
| Lane Group                                              | EBL    | EBT       | WBL    | WBT       | NBL   | NBT       | SBL    | SBT      | Ø3     | Ø6    | Ø7     |  |
| Lane Configurations                                     |        | 4         |        | - 4→      |       | 414       |        | €ि       |        |       |        |  |
| Traffic Volume (vph)                                    | 43     | 33        | 16     | 51        | 19    | 504       | 118    | 534      |        |       |        |  |
| Future Volume (vph)                                     | 43     | 33        | 16     | 51        | 19    | 504       | 118    | 534      |        |       |        |  |
| Lane Group Flow (vph)                                   | 0      | 118       | 0      | 195       | 0     | 594       | 0      | 817      |        |       |        |  |
| Turn Type                                               | Perm   | NA        | Perm   | NA        | Perm  | NA        | custom | NA       |        |       |        |  |
| Protected Phases                                        |        | 4         |        | 8         |       | 2         | 1      | 16       | 3      | 6     | 7      |  |
| Permitted Phases                                        | 4      |           | 8      |           | 2     |           | 6      |          |        |       |        |  |
| Detector Phase                                          | 4      | 4         | 8      | 8         | 2     | 2         | 1      | 16       |        |       |        |  |
| Switch Phase                                            |        |           |        |           |       |           |        |          |        |       |        |  |
| Minimum Initial (s)                                     | 6.4    | 6.4       | 5.3    | 5.3       | 17.0  | 17.0      | 5.0    |          | 1.0    | 17.0  | 1.0    |  |
| Minimum Split (s)                                       | 25.0   | 25.0      | 25.0   | 25.0      | 43.0  | 43.0      | 17.0   |          | 5.0    | 43.0  | 5.0    |  |
| Total Split (s)                                         | 25.0   | 25.0      | 25.0   | 25.0      | 43.0  | 43.0      | 17.0   |          | 5.0    | 43.0  | 5.0    |  |
| Total Split (%)                                         | 27.8%  | 27.8%     | 27.8%  | 27.8%     | 47.8% | 47.8%     | 18.9%  |          | 6%     | 48%   | 6%     |  |
| Yellow Time (s)                                         | 3.0    | 3.0       | 3.0    | 3.0       | 3.0   | 3.0       | 3.0    |          | 2.0    | 3.0   | 2.0    |  |
| All-Red Time (s)                                        | 2.6    | 2.6       | 2.6    | 2.6       | 3.0   | 3.0       | 2.9    |          | 0.0    | 3.0   | 0.0    |  |
| Lost Time Adjust (s)                                    |        | 0.0       |        | 0.0       | 0.0   | 0.0       | ,      |          | 0.0    | 0.0   | 0.0    |  |
| Total Lost Time (s)                                     |        | 5.6       |        | 5.6       |       | 6.0       |        |          |        |       |        |  |
| _ead/Lag                                                | Lag    | Lag       | Lag    | Lag       |       | 0.0       |        |          | Lead   |       | Lead   |  |
| _ead-Lag Optimize?                                      | Lug    | Lug       | Yes    | Yes       |       |           |        |          | Loud   |       | Yes    |  |
| Recall Mode                                             | None   | None      | None   | None      | C-Max | C-Max     | None   |          | None   | C-Max | None   |  |
| Act Effct Green (s)                                     | 140110 | 15.5      | 140110 | 15.5      | O Max | 43.5      | TTOTIC | 57.1     | 140110 | OWIGA | 110110 |  |
| Actuated g/C Ratio                                      |        | 0.17      |        | 0.17      |       | 0.48      |        | 0.63     |        |       |        |  |
| //c Ratio                                               |        | 0.77      |        | 0.72      |       | 0.43      |        | 0.55     |        |       |        |  |
| Control Delay (s/veh)                                   |        | 64.9      |        | 34.8      |       | 17.7      |        | 5.8      |        |       |        |  |
| Queue Delay                                             |        | 0.0       |        | 0.0       |       | 0.0       |        | 0.0      |        |       |        |  |
| Total Delay (s/veh)                                     |        | 64.9      |        | 34.8      |       | 17.7      |        | 5.8      |        |       |        |  |
| OS                                                      |        | 04.3<br>E |        | 04.0<br>C |       | В         |        | J.0<br>A |        |       |        |  |
| Approach Delay (s/veh)                                  |        | 64.9      |        | 34.8      |       | 17.7      |        | 5.8      |        |       |        |  |
| Approach LOS                                            |        | 04.9<br>E |        | 34.0<br>C |       | 17.7<br>B |        | 5.6<br>A |        |       |        |  |
| Queue Length 50th (m)                                   |        | 19.7      |        | 18.4      |       | 34.8      |        | 9.6      |        |       |        |  |
| • ,                                                     |        | 34.8      |        | 37.5      |       | 54.1      |        | 12.4     |        |       |        |  |
| Queue Length 95th (m)                                   |        | 75.1      |        | 136.0     |       | 63.1      |        | 79.0     |        |       |        |  |
| , ,                                                     |        | 70.1      |        | 130.0     |       | 03.1      |        | 13.0     |        |       |        |  |
| Turn Bay Length (m)                                     |        | 200       |        | 205       |       | 1201      |        | 1/01     |        |       |        |  |
| Base Capacity (vph)                                     |        | 200       |        | 325       |       | 1381      |        | 1491     |        |       |        |  |
| Starvation Cap Reductn                                  |        | 0         |        | 0         |       | 0         |        | 0        |        |       |        |  |
| Spillback Cap Reductn                                   |        |           |        |           |       |           |        |          |        |       |        |  |
| Storage Cap Reductn Reduced v/c Ratio                   |        | 0.50      |        | 0.60      |       | 0 43      |        | 0.55     |        |       |        |  |
|                                                         |        | 0.59      |        | 0.60      |       | 0.43      |        | 0.55     |        |       |        |  |
| Intersection Summary                                    |        |           |        |           |       |           |        |          |        |       |        |  |
| Cycle Length: 90                                        |        |           |        |           |       |           |        |          |        |       |        |  |
| Actuated Cycle Length: 90<br>Offset: 23 (26%), Referenc |        | - 0.NDT   | l      | NDTI C    |       |           |        |          |        |       |        |  |

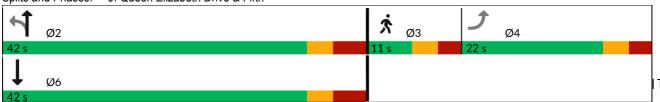
Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay (s/veh): 17.2 Intersection LOS: B
Intersection Capacity Utilization 74.5% ICU Level of Service D


Analysis Period (min) 15

Splits and Phases: 7: Bank & Sunnyside



| Lane Group         EBL         NBL         NBT         SBT         Ø3           Lane Configurations         ↑         ↑         ↑         ↑           Traffic Volume (vph)         19         207         26         25           Future Volume (vph)         19         207         26         25           Lane Group Flow (vph)         169         0         259         57           Turn Type         Perm         Perm         NA         NA           Protected Phases         2         6         3           Permitted Phases         4         2         2         6           Switch Phase         4         2         2         6 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations         Traffic Volume (vph)         19         207         26         25           Future Volume (vph)         19         207         26         25           Lane Group Flow (vph)         169         0         259         57           Turn Type         Perm         Perm         NA         NA           Protected Phases         2         6         3           Permitted Phases         4         2         2         6           Switch Phase         4         2         2         6                                                                                                                           |
| Traffic Volume (vph)         19         207         26         25           Future Volume (vph)         19         207         26         25           Lane Group Flow (vph)         169         0         259         57           Turn Type         Perm         Perm         NA         NA           Protected Phases         2         6         3           Permitted Phases         4         2           Detector Phase         4         2         2           Switch Phase                                                                                                                                                            |
| Future Volume (vph)       19       207       26       25         Lane Group Flow (vph)       169       0       259       57         Turn Type       Perm       Perm       NA       NA         Protected Phases       2       6       3         Permitted Phases       4       2         Detector Phase       4       2       2         Switch Phase       4       2       2                                                                                                                                                                                                                                                                    |
| Lane Group Flow (vph)         169         0         259         57           Turn Type         Perm         Perm         NA         NA           Protected Phases         2         6         3           Permitted Phases         4         2           Detector Phase         4         2         2         6           Switch Phase         4         2         2         6                                                                                                                                                                                                                                                                 |
| Turn Type Perm Perm NA NA Protected Phases 2 6 3 Permitted Phases 4 2 Detector Phase 4 2 2 6 Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Protected Phases 2 6 3 Permitted Phases 4 2 Detector Phase 4 2 2 6 Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Detector Phase 4 2 2 6 Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Minimum Initial (s) 10.0 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Minimum Split (s) 22.0 42.0 42.0 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Total Split (s) 22.0 42.0 42.0 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Split (%) 29.3% 56.0% 56.0% 56.0% 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Yellow Time (s) 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| All-Red Time (s) 2.7 3.8 3.8 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lost Time Adjust (s) 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Lost Time (s) 5.7 6.8 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead/Lag Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lead-Lag Optimize? Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Recall Mode Min Max Max None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Act Effct Green (s) 12.4 35.2 35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Actuated g/C Ratio 0.21 0.59 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| v/c Ratio 0.56 0.37 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control Delay (s/veh) 28.9 9.1 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Queue Delay 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Delay (s/veh) 28.9 9.1 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LOS C A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approach Delay (s/veh) 28.9 9.1 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Approach LOS C A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Queue Length 50th (m) 16.8 12.9 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Queue Length 95th (m) 32.6 30.3 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Internal Link Dist (m) 57.2 0.1 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Turn Bay Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Base Capacity (vph) 401 701 920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Starvation Cap Reductn 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spillback Cap Reductn 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Storage Cap Reductn 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reduced v/c Ratio 0.42 0.37 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cycle Length: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Actuated Cycle Length: 60.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Natural Cycle: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Control Type: Semi Act-Uncoord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Maximum v/c Ratio: 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Intersection Signal Delay (s/veh): 15.7 Intersection LOS: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Intersection Capacity Utilization 40.4% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





| ntersection              |      |
|--------------------------|------|
| ntersection Delay, s/veh | 10.3 |
| ntersection LOS          | В    |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 70   | 83   | 0    | 0    | 0    | 233  | 108  | 67   | 69   | 0    | 0    | 106  |
| Future Vol, veh/h          | 70   | 83   | 0    | 0    | 0    | 233  | 108  | 67   | 69   | 0    | 0    | 106  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 78   | 92   | 0    | 0    | 0    | 259  | 120  | 74   | 77   | 0    | 0    | 118  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 10.3 |      |      |      |      | 9.9  | 11.3 |      |      |      |      | 8.8  |
| HCM LOS                    | В    |      |      |      |      | Α    | В    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 46%   | 0%    | 0%    |  |
| Vol Thru, %              | 27%   | 54%   | 0%    | 0%    |  |
| Vol Right, %             | 28%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 244   | 153   | 233   | 106   |  |
| LT Vol                   | 108   | 70    | 0     | 0     |  |
| Through Vol              | 67    | 83    | 0     | 0     |  |
| RT Vol                   | 69    | 0     | 233   | 106   |  |
| Lane Flow Rate           | 271   | 170   | 259   | 118   |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.385 | 0.255 | 0.332 | 0.158 |  |
| Departure Headway (Hd)   | 5.116 | 5.392 | 4.621 | 4.835 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Сар                      | 705   | 666   | 779   | 741   |  |
| Service Time             | 3.129 | 3.424 | 2.637 | 2.868 |  |
| HCM Lane V/C Ratio       | 0.384 | 0.255 | 0.332 | 0.159 |  |
| HCM Control Delay, s/veh | 11.3  | 10.3  | 9.9   | 8.8   |  |
| HCM Lane LOS             | В     | В     | Α     | Α     |  |
| HCM 95th-tile Q          | 1.8   | 1     | 1.5   | 0.6   |  |

| Intersection            |      |          |        |          |         |      |
|-------------------------|------|----------|--------|----------|---------|------|
| Int Delay, s/veh        | 5.2  |          |        |          |         |      |
| Movement                | EBL  | EBR      | NBL    | NBT      | SBT     | SBR  |
| Lane Configurations     |      | 7        |        | 414      | 7       |      |
| Traffic Vol, veh/h      | 5    | 156      | 110    | 585      | 527     | 62   |
| Future Vol, veh/h       | 5    | 156      | 110    | 585      | 527     | 62   |
| Conflicting Peds, #/hr  | 0    | 0        | 178    | 0        | 0       | 107  |
|                         | Stop | Stop     | Free   | Free     | Free    | Free |
| RT Channelized          |      | None     |        | None     |         | None |
| Storage Length          | -    | 0        | _      | -        | _       | -    |
|                         |      | -        |        | 0        | 0       | -    |
| Veh in Median Storage,  |      |          |        | 0        |         |      |
| Grade, %                | 0    | -        | -      |          | 0       | -    |
| Peak Hour Factor        | 90   | 90       | 90     | 90       | 90      | 90   |
| Heavy Vehicles, %       | 5    | 5        | 5      | 5        | 5       | 5    |
| Mvmt Flow               | 6    | 173      | 122    | 650      | 586     | 69   |
|                         |      |          |        |          |         |      |
| Major/Minor Mi          | nor2 | N        | Major1 | N        | /lajor2 |      |
|                         | 1367 | 798      | 832    | 0        | -,-     | 0    |
|                         | 798  | -        | -      | -        | _       | -    |
|                         | 569  | <u>-</u> | _      | _        | _       | _    |
|                         |      | 6.275    | 1 175  | _        | _       | _    |
|                         | .475 | 0.275    | 4.175  | -        |         | _    |
| , ,                     |      | _        | _      | <u>-</u> |         |      |
| , ,                     | .875 | -        | -      | -        | -       | -    |
|                         |      | 3.34752  |        | -        | -       | -    |
| Pot Cap-1 Maneuver      | 146  | 379      | 782    | -        | -       | -    |
|                         | 435  | -        | -      | -        | -       | -    |
| Stage 2                 | 524  | -        | -      | -        | -       | -    |
| Platoon blocked, %      |      |          |        | -        | -       | -    |
| Mov Cap-1 Maneuver      | 74   | 308      | 635    | -        | -       | -    |
| Mov Cap-2 Maneuver      | 74   | -        | -      | -        | -       | -    |
| Stage 1                 | 270  | -        | -      | -        | -       | -    |
| Stage 2                 | 425  | _        | _      | _        | -       | -    |
| J. 1. J.                |      |          |        |          |         |      |
|                         |      |          |        |          |         |      |
| Approach                | EB   |          | NB     |          | SB      |      |
| HCM Control Delay, s/8  | 0.79 |          | 3.63   |          | 0       |      |
| HCM LOS                 | D    |          |        |          |         |      |
|                         |      |          |        |          |         |      |
| Minor Lane/Major Mvmt   |      | NBL      | NDT    | EBLn1    | SBT     | SBR  |
|                         |      |          |        |          |         | SBR  |
| Capacity (veh/h)        |      | 520      | -      |          | -       | -    |
| HCM Lane V/C Ratio      |      | 0.193    |        | 0.563    | -       | -    |
| HCM Control Delay (s/ve | eh)  | 12       | 2.1    | 30.8     | -       | -    |
| HCM Lane LOS            |      | В        | Α      | D        | -       | -    |
| HCM 95th %tile Q(veh)   |      | 0.7      | -      | 3.2      | -       | -    |
|                         |      |          |        |          |         |      |

| Intersection           |           |       |         |          |         |      |
|------------------------|-----------|-------|---------|----------|---------|------|
| Int Delay, s/veh       | 1         |       |         |          |         |      |
| Movement               | EBL       | EBR   | NBL     | NBT      | SBT     | SBR  |
|                        | LDL       |       | NDL     |          |         | אמט  |
| Lane Configurations    | 0         | 71    | 0       | <b>^</b> | 607     | -1   |
| Traffic Vol, veh/h     | 2         | 71    | 0       | 669      | 687     | 1    |
| Future Vol, veh/h      | 2         | 71    | 0       | 669      | 687     | 1    |
| Conflicting Peds, #/hr |           | 0     | 0       | 0        | 0       | 86   |
| Sign Control           | Stop      | Stop  | Free    | Free     | Free    | Free |
| RT Channelized         | -         | None  | -       | None     | -       | None |
| Storage Length         | -         | 0     | -       | -        | -       | -    |
| Veh in Median Storage  | e,# 0     | -     | -       | 0        | 0       | -    |
| Grade, %               | 0         | -     | -       | 0        | 0       | -    |
| Peak Hour Factor       | 90        | 90    | 90      | 90       | 90      | 90   |
| Heavy Vehicles, %      | 5         | 5     | 5       | 5        | 5       | 5    |
| Mymt Flow              | 2         | 79    | 0       | 743      | 763     | 1    |
| IVIVIIIL I IUW         |           | 13    | U       | 145      | 103     |      |
|                        |           |       |         |          |         |      |
| Major/Minor I          | Minor2    | N     | /lajor1 | N        | /lajor2 |      |
| Conflicting Flow All   | 1222      | 850   |         | 0        |         | 0    |
| Stage 1                | 850       | -     | -       | _        | _       | -    |
| Stage 2                | 372       | _     | _       | _        | _       | _    |
| Critical Hdwy          | 6.675     |       | _       | _        | _       | _    |
| Critical Hdwy Stg 1    | 5.475     | 0.213 | _       | _        | _       | _    |
|                        |           |       | -       | -        |         |      |
| Critical Hdwy Stg 2    | 5.875     | -     | -       | -        | -       | -    |
|                        | 3.54753   |       | -       | -        | -       | -    |
| Pot Cap-1 Maneuver     | 181       | 354   | 0       | -        | -       | -    |
| Stage 1                | 411       | -     | 0       | -        | -       | -    |
| Stage 2                | 661       | -     | 0       | -        | -       | -    |
| Platoon blocked, %     |           |       |         | -        | -       | -    |
| Mov Cap-1 Maneuver     | 150       | 321   | -       | -        | _       | -    |
| Mov Cap-2 Maneuver     |           | _     | -       | _        | _       | _    |
| Stage 1                | 374       | _     | _       | _        | _       | _    |
| Stage 2                | 601       | _     | _       | _        |         | _    |
| Staye 2                | 001       | -     | -       | -        | -       | -    |
|                        |           |       |         |          |         |      |
| Approach               | EB        |       | NB      |          | SB      |      |
| HCM Control Delay, s   |           |       | 0       |          | 0       |      |
| HCM LOS                | C         |       | U       |          | J       |      |
| TIOWI LOO              | U         |       |         |          |         |      |
|                        |           |       |         |          |         |      |
| Minor Lane/Major Mvr   | nt        | NBTE  | BLn1    | SBT      | SBR     |      |
| Capacity (veh/h)       |           | -     | 321     | -        | _       |      |
| HCM Lane V/C Ratio     |           | -     | 0.245   | -        | -       |      |
| HCM Control Delay (s   | /veh)     | _     | 19.8    | _        | _       |      |
| HCM Lane LOS           | , , , , , | _     | C       | _        | _       |      |
| HCM 95th %tile Q(veh   | ۱)        |       | 0.9     |          |         |      |
|                        | IJ        |       | 0.5     |          | -       |      |
|                        |           |       |         |          |         |      |

| Intersection           |         |       |         |       |            |      |
|------------------------|---------|-------|---------|-------|------------|------|
| Int Delay, s/veh       | 6.5     |       |         |       |            |      |
| Movement               | EBL     | EBR   | NBL     | NBT   | SBT        | SBR  |
| Lane Configurations    | TOL.    | LDK   | NDL     | IND I | <u>361</u> | אמט  |
| Traffic Vol, veh/h     | 101     | 151   | 86      | 131   | 68         | 73   |
| Future Vol, veh/h      | 101     | 151   | 86      | 131   | 68         | 73   |
|                        | 0       | 0     | 00      | 0     | 00         | 0    |
| Conflicting Peds, #/hr |         |       |         |       |            |      |
| Sign Control           | Stop    | Stop  | Free    | Free  | Free       | Free |
| RT Channelized         | -       | None  | -       | None  | -          | None |
| Storage Length         | 0       | -     | -       | -     | -          | -    |
| Veh in Median Storage  |         | -     | -       | 0     | 0          | -    |
| Grade, %               | 0       | -     | -       | 0     | 0          | -    |
| Peak Hour Factor       | 90      | 90    | 90      | 90    | 90         | 90   |
| Heavy Vehicles, %      | 0       | 0     | 0       | 0     | 0          | 0    |
| Mvmt Flow              | 112     | 168   | 96      | 146   | 76         | 81   |
|                        |         |       |         |       |            |      |
| Major/Minor N          | /linor2 | ı     | /lajor1 | ı     | /lajor2    |      |
| Conflicting Flow All   | 453     | 116   | 157     | 0     | -          | 0    |
|                        | 116     |       |         |       |            |      |
| Stage 1                |         | -     | -       | -     | -          | -    |
| Stage 2                | 337     | -     | -       | -     | -          | -    |
| Critical Hdwy          | 6.4     | 6.2   | 4.1     | -     | -          | -    |
| Critical Hdwy Stg 1    | 5.4     | -     | -       | -     | -          | -    |
| Critical Hdwy Stg 2    | 5.4     | -     | -       | -     | -          | -    |
| Follow-up Hdwy         | 3.5     | 3.3   | 2.2     | -     | -          | -    |
| Pot Cap-1 Maneuver     | 569     | 942   | 1436    | -     | -          | -    |
| Stage 1                | 914     | -     | -       | -     | -          | -    |
| Stage 2                | 728     | -     | -       | -     | -          | -    |
| Platoon blocked, %     |         |       |         | -     | -          | -    |
| Mov Cap-1 Maneuver     | 527     | 942   | 1436    | -     | -          | -    |
| Mov Cap-2 Maneuver     | 527     | -     | -       | -     | -          | -    |
| Stage 1                | 848     | -     | -       | -     | -          | -    |
| Stage 2                | 728     | -     | -       | -     | -          | -    |
| J <b>G</b> .           |         |       |         |       |            |      |
|                        |         |       |         |       |            |      |
| Approach               | EB      |       | NB      |       | SB         |      |
| HCM Control Delay, s/  | 13.22   |       | 3.05    |       | 0          |      |
| HCM LOS                | В       |       |         |       |            |      |
|                        |         |       |         |       |            |      |
| Minor Lane/Major Mvn   | nt .    | NBL   | NIPT    | EBLn1 | SBT        | SBR  |
|                        | ıı      |       |         |       |            | אמט  |
| Capacity (veh/h)       |         | 713   | -       |       | -          | -    |
| HCM Lane V/C Ratio     | , , , , | 0.067 |         | 0.391 | -          | -    |
| HCM Control Delay (sa  | ven)    | 7.7   | 0       | 13.2  | -          | -    |
| HCM Lane LOS           | ,       | Α     | Α       | В     | -          | -    |
| HCM 95th %tile Q(veh   | )       | 0.2   | -       | 1.9   | -          | -    |
|                        |         |       |         |       |            |      |

| Int Delay, s/veh Movement |             |          |          |          |         |            |
|---------------------------|-------------|----------|----------|----------|---------|------------|
| Movement                  | 2.3         |          |          |          |         |            |
| INIOAGILIGIII             | WBL         | WBR      | NBT      | NBR      | SBL     | SBT        |
| Lane Configurations       |             | 7        | <b>†</b> |          |         | <b>†</b> † |
| Traffic Vol, veh/h        | 7           | 181      | 489      | 23       | 0       | 638        |
| Future Vol, veh/h         | 7           | 181      | 489      | 23       | 0       | 638        |
| Conflicting Peds, #/hr    |             | 0        | 0        | 100      | 0       | 0          |
| Sign Control              | Stop        | Stop     | Free     | Free     | Free    | Free       |
| RT Channelized            | - Olop      | None     |          | None     |         | None       |
| Storage Length            |             | 0        | _        | -        | _       | -          |
| Veh in Median Storag      |             | -        | 0        |          |         | 0          |
| Grade, %                  | je,# 0<br>0 | -        | 0        |          | -       | 0          |
| -                         |             |          |          | -        |         |            |
| Peak Hour Factor          | 90          | 90       | 90       | 90       | 90      | 90         |
| Heavy Vehicles, %         | 0           | 15       | 6        | 0        | 0       | 5          |
| Mvmt Flow                 | 8           | 201      | 543      | 26       | 0       | 709        |
|                           |             |          |          |          |         |            |
| Major/Minor               | Minor1      | N        | //ajor1  | N        | /lajor2 |            |
| Conflicting Flow All      | 1011        | 384      | 0        | 0        |         | _          |
| Stage 1                   | 656         | -        | _        | _        | _       | _          |
| Stage 2                   | 354         | _        | _        | _        | _       | _          |
| Critical Hdwy             | 6.8         | 7.2      | _        | _        | _       | _          |
| Critical Hdwy Stg 1       | 5.8         | - '      | _        | _        | _       | _          |
| Critical Hdwy Stg 2       | 5.8         | _        |          | _        | _       | _          |
| Follow-up Hdwy            | 3.5         | 3.45     | _        | _        | _       | _          |
| Pot Cap-1 Maneuver        | 239         | 578      | _        |          | 0       | _          |
|                           | 483         | -        | -        | _        | 0       | _          |
| Stage 1                   | 687         |          | -        | -        | 0       |            |
| Stage 2                   | 007         | -        | -        | -        | U       | -          |
| Platoon blocked, %        | 044         | - 4 -    | -        | -        |         | -          |
| Mov Cap-1 Maneuver        |             | 517      | -        | -        | -       | -          |
| Mov Cap-2 Maneuver        |             | -        | -        | -        | -       | -          |
| Stage 1                   | 432         | -        | -        | -        | -       | -          |
| Stage 2                   | 687         | -        | -        | -        | -       | -          |
|                           |             |          |          |          |         |            |
| Approach                  | WB          |          | NB       |          | SB      |            |
|                           |             |          |          |          |         |            |
| HCM Control Delay, s      |             |          | 0        |          | 0       |            |
| HCM LOS                   | С           |          |          |          |         |            |
|                           |             |          |          |          |         |            |
| Minor Lane/Major Mv       | mt          | NBT      | NBRV     | VBLn1    | SBT     |            |
| Capacity (veh/h)          |             | -        | -        |          | -       |            |
|                           |             | _        |          | 0.389    | _       |            |
| HCM Lane V/C Ratio        |             | _        | _        |          | _       |            |
| HCM Lane V/C Ratio        | s/veh)      |          |          |          |         |            |
| HCM Control Delay (s      | s/veh)      |          |          |          | _       |            |
|                           | ,           | <u>-</u> | -        | C<br>1.8 | -       |            |

## 2033 Scenario

Minor Event Ingress

1: Bank & Fifth 08/01/2024

|                           | ۶     | <b>→</b> | •     | •     | 4     | <b>†</b> | <b>\</b> | ļ     |  |
|---------------------------|-------|----------|-------|-------|-------|----------|----------|-------|--|
| Lane Group                | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL      | SBT   |  |
| Lane Configurations       |       | - 4      | ሻ     | f)    |       | 414      |          | 414   |  |
| Traffic Volume (vph)      | 53    | 59       | 69    | 48    | 17    | 516      | 26       | 605   |  |
| Future Volume (vph)       | 53    | 59       | 69    | 48    | 17    | 516      | 26       | 605   |  |
| Lane Group Flow (vph)     | 0     | 163      | 77    | 125   | 0     | 625      | 0        | 728   |  |
| Turn Type                 | Perm  | NA       | Perm  | NA    | Perm  | NA       | Perm     | NA    |  |
| Protected Phases          |       | 4        |       | 8     |       | 2        |          | 6     |  |
| Permitted Phases          | 4     |          | 8     |       | 2     |          | 6        |       |  |
| Detector Phase            | 4     | 4        | 8     | 8     | 2     | 2        | 6        | 6     |  |
| Switch Phase              |       |          |       |       |       |          |          |       |  |
| Minimum Initial (s)       | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0      | 4.0      | 4.0   |  |
| Minimum Split (s)         | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0  |  |
| Total Split (s)           | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0  |  |
| Total Split (%)           | 34.7% | 34.7%    | 34.7% | 34.7% | 65.3% | 65.3%    | 65.3%    | 65.3% |  |
| Yellow Time (s)           | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |  |
| All-Red Time (s)          | 2.5   | 2.5      | 2.5   | 2.5   | 2.5   | 2.5      | 2.5      | 2.5   |  |
| Lost Time Adjust (s)      |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0   |  |
| Total Lost Time (s)       |       | 5.5      | 5.5   | 5.5   |       | 5.5      |          | 5.5   |  |
| Lead/Lag                  |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0   |  |
| Lead-Lag Optimize?        |       |          |       |       |       |          |          |       |  |
| Recall Mode               | None  | None     | None  | None  | C-Max | C-Max    | C-Max    | C-Max |  |
| Act Effct Green (s)       |       | 13.7     | 13.7  | 13.7  | •     | 50.3     | - 111001 | 50.3  |  |
| Actuated g/C Ratio        |       | 0.18     | 0.18  | 0.18  |       | 0.67     |          | 0.67  |  |
| v/c Ratio                 |       | 0.67     | 0.44  | 0.40  |       | 0.33     |          | 0.38  |  |
| Control Delay (s/veh)     |       | 37.5     | 33.2  | 15.9  |       | 11.1     |          | 6.9   |  |
| Queue Delay               |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0   |  |
| Total Delay (s/veh)       |       | 37.5     | 33.2  | 15.9  |       | 11.1     |          | 6.9   |  |
| LOS                       |       | D        | C     | В     |       | В        |          | Α     |  |
| Approach Delay (s/veh)    |       | 37.5     |       | 22.5  |       | 11.1     |          | 6.9   |  |
| Approach LOS              |       | D        |       | C     |       | В        |          | Α     |  |
| Queue Length 50th (m)     |       | 18.9     | 9.8   | 6.4   |       | 21.2     |          | 20.1  |  |
| Queue Length 95th (m)     |       | 33.9     | 19.6  | 18.1  |       | 56.1     |          | 38.3  |  |
| Internal Link Dist (m)    |       | 49.7     | 10.0  | 112.4 |       | 195.6    |          | 190.0 |  |
| Turn Bay Length (m)       |       | 70.1     | 45.0  | 112.7 |       | 100.0    |          | 100.0 |  |
| Base Capacity (vph)       |       | 355      | 265   | 427   |       | 1902     |          | 1900  |  |
| Starvation Cap Reductn    |       | 0        | 0     | 0     |       | 0        |          | 0     |  |
| Spillback Cap Reductn     |       | 0        | 0     | 0     |       | 0        |          | 0     |  |
| Storage Cap Reductn       |       | 0        | 0     | 0     |       | 0        |          | 0     |  |
| Reduced v/c Ratio         |       | 0.46     | 0.29  | 0.29  |       | 0.33     |          | 0.38  |  |
|                           |       | 0.40     | 0.23  | 0.23  |       | 0.00     |          | 0.00  |  |
| Intersection Summary      |       |          |       |       |       |          |          |       |  |
| Cycle Length: 75          |       |          |       |       |       |          |          |       |  |
| Actuated Cycle Length: 75 |       |          |       |       |       |          |          |       |  |

Actuated Cycle Length: 75

Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.67

Intersection Signal Delay (s/veh): 13.1 Intersection Capacity Utilization 64.5% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service C



|                              | <b>→</b>     | 4        | <b>†</b>     | <b>\</b>  | ļ           |              |
|------------------------------|--------------|----------|--------------|-----------|-------------|--------------|
| Lane Group                   | EBT          | NBL      | NBT          | SBL       | SBT         | Ø3           |
| Lane Configurations          | 4            |          | 414          |           | 414         |              |
| Traffic Volume (vph)         | 26           | 53       | 522          | 30        | 586         |              |
| Future Volume (vph)          | 26           | 53       | 522          | 30        | 586         |              |
| Lane Group Flow (vph)        | 119          | 0        | 730          | 0         | 723         |              |
| Turn Type                    | NA           | Perm     | NA           | Perm      | NA          |              |
| Protected Phases             | 4            | . •      | 2            |           | 6           | 3            |
| Permitted Phases             | •            | 2        | <del>-</del> | 6         |             | •            |
| Detector Phase               | 4            | 2        | 2            | 6         | 6           |              |
| Switch Phase                 | •            | _        | _            |           |             |              |
| Minimum Initial (s)          | 4.4          | 10.0     | 10.0         | 4.0       | 4.0         | 1.0          |
| Minimum Split (s)            | 22.0         | 48.0     | 48.0         | 48.0      | 48.0        | 5.0          |
| Total Split (s)              | 22.0         | 48.0     | 48.0         | 48.0      | 48.0        | 5.0          |
| Total Split (%)              | 29.3%        | 64.0%    | 64.0%        | 64.0%     | 64.0%       | 7%           |
| Yellow Time (s)              | 3.0          | 3.0      | 3.0          | 3.0       | 3.0         | 2.0          |
| All-Red Time (s)             | 2.6          | 2.2      | 2.2          | 2.2       | 2.2         | 0.0          |
| Lost Time Adjust (s)         | 0.0          | ۷.۲      | 0.0          | 2.2       | 0.0         | 0.0          |
| Total Lost Time (s)          | 5.6          |          | 5.2          |           | 5.2         |              |
| Lead/Lag                     | Lag          |          | 0.2          |           | J.Z         | Lead         |
| Lead-Lag Optimize?           | Lag          |          |              |           |             | Load         |
| Recall Mode                  | None         | C-Max    | C-Max        | C-Max     | C-Max       | None         |
| Act Effct Green (s)          | 11.6         | Javiax   | 56.0         | Uliviax   | 56.0        | 140116       |
| Actuated g/C Ratio           | 0.15         |          | 0.75         |           | 0.75        |              |
| v/c Ratio                    | 0.15         |          | 0.73         |           | 0.75        |              |
| Control Delay (s/veh)        | 38.2         |          | 3.0          |           | 4.9         |              |
| Queue Delay                  | 0.0          |          | 0.0          |           | 0.0         |              |
| Total Delay (s/veh)          | 38.2         |          | 3.0          |           | 4.9         |              |
| LOS                          | 30.2<br>D    |          | 3.0<br>A     |           | 4.9<br>A    |              |
| Approach Delay (s/veh)       | 38.2         |          | 3.0          |           | 4.9         |              |
| Approach LOS                 | 30.2<br>D    |          | 3.0<br>A     |           | 4.9<br>A    |              |
| Queue Length 50th (m)        | 15.8         |          | 7.1          |           | 25.0        |              |
| Queue Length 95th (m)        | 28.8         |          | 15.2         |           | 9.3         |              |
| Internal Link Dist (m)       | 39.8         |          | 31.5         |           | 195.6       |              |
| Turn Bay Length (m)          | 33.0         |          | 31.3         |           | 133.0       |              |
| Base Capacity (vph)          | 304          |          | 1830         |           | 2073        |              |
| Starvation Cap Reductn       | 0            |          | 1030         |           | 2073        |              |
| Spillback Cap Reductn        | 0            |          | 0            |           | 0           |              |
| Storage Cap Reductn          | 0            |          | 0            |           | 0           |              |
| Storage Cap Reductin         | 0.39         |          | 0.40         |           | 0.35        |              |
|                              | 0.39         |          | 0.40         |           | 0.33        |              |
| Intersection Summary         |              |          |              |           |             |              |
| Cycle Length: 75             |              |          |              |           |             |              |
| Actuated Cycle Length: 75    |              |          |              |           |             |              |
| Offset: 74 (99%), Reference  | ced to phas  | se 2:NBT | L and 6:8    | SBTL, Sta | art of Gree | en           |
| Natural Cycle: 75            |              |          |              |           |             |              |
| Control Type: Actuated-Co    | ordinated    |          |              |           |             |              |
| Maximum v/c Ratio: 0.55      |              |          |              |           |             |              |
| Intersection Signal Delay (  |              |          |              |           | ntersectio  |              |
| Intersection Capacity Utiliz | zation 69.3° | %        |              | I         | CU Level    | of Service C |
| Analysis Period (min) 15     |              |          |              |           |             |              |

Splits and Phases: 2: Bank & Holmwood



| Lane Group         WBL         WBR         NBT         SBL         SBT         Ø1         Ø7           Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T                                                                                                                      |
| Traffic Volume (vph)       132       93       440       187       434         Future Volume (vph)       132       93       440       187       434         Lane Group Flow (vph)       147       103       719       208       482         Turn Type       Prot       Perm       NA       Perm       NA         Protected Phases       8       2       6       1       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Future Volume (vph)       132       93       440       187       434         Lane Group Flow (vph)       147       103       719       208       482         Turn Type       Prot       Perm       NA       Perm       NA         Protected Phases       8       2       6       1       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lane Group Flow (vph)       147       103       719       208       482         Turn Type       Prot       Perm       NA       Perm       NA         Protected Phases       8       2       6       1       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Turn Type Prot Perm NA Perm NA Protected Phases 8 2 6 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Protected Phases 8 2 6 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Permitted Phases 8 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Detector Phase 8 8 2 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minimum Split (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Split (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Split (%) 34.7% 34.7% 52.0% 58.7% 58.7% 7% 7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Yellow Time (s) 3.3 3.3 3.0 3.0 3.0 2.0 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| All-Red Time (s) 3.0 3.0 3.9 3.9 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total Lost Time (s) 6.3 6.3 6.9 6.9 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lead/Lag Lag Lag Lead Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lead-Lag Optimize? Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Recall Mode None None C-Max C-Max None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Act Effct Green (s) 12.6 12.6 49.2 49.2 49.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Actuated g/C Ratio 0.17 0.17 0.66 0.66 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| v/c Ratio 0.54 0.38 0.39 0.54 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control Delay (s/veh) 35.5 10.1 5.8 12.3 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Queue Delay 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Delay (s/veh) 35.5 10.1 5.8 12.3 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOS D B A B A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Approach Delay (s/veh) 25.0 5.8 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Approach LOS C A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Queue Length 50th (m) 19.4 0.0 16.0 6.0 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Queue Length 95th (m) 33.6 11.3 30.4 19.0 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Internal Link Dist (m) 30.6 33.7 44.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Turn Bay Length (m) 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Base Capacity (vph) 429 371 1855 387 2083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Starvation Cap Reductn 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spillback Cap Reductn 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Storage Cap Reductn 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reduced v/c Ratio 0.34 0.28 0.39 0.54 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cycle Length: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Actuated Cycle Length: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Natural Cycle: 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control Type: Actuated-Coordinated  Maximum v/c Ratio: 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Maximum v/c Ratio: 0.54

Intersection Signal Delay (s/veh): 8.9
Intersection Capacity Utilization 65.6%

Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Bank & Exhibition

\$\begin{align\*}
\displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi} & \dinftyle{\pi} & \displaystyle{\pi} & \displaystyle{\pi}

round Scaled U

#### 6: Bank & Aylmer

|                               | •                  | •        | <b>†</b>  | Ţ         |                       |
|-------------------------------|--------------------|----------|-----------|-----------|-----------------------|
| Lane Group                    | EBL                | NBL      | NBT       | SBT       | Ø3                    |
| Lane Configurations           | ¥                  | .,,,,,,  | 41        | <b>†</b>  |                       |
| Traffic Volume (vph)          | 74                 | 19       | 725       | 535       |                       |
| Future Volume (vph)           | 74                 | 19       | 725       | 535       |                       |
| Lane Group Flow (vph)         | 90                 | 0        | 827       | 680       |                       |
| Turn Type                     | Prot               | Perm     | NA        | NA        |                       |
| Protected Phases              | 4                  |          | 2         | 6         | 3                     |
| Permitted Phases              | 4                  | 2        | _         | 6         | •                     |
| Detector Phase                | 4                  | 2        | 2         | 6         |                       |
| Switch Phase                  | •                  | _        | _         | -         |                       |
| Minimum Initial (s)           | 10.0               | 30.0     | 30.0      | 30.0      | 1.0                   |
| Minimum Split (s)             | 22.0               | 63.0     | 63.0      | 63.0      | 5.0                   |
| Total Split (s)               | 22.0               | 63.0     | 63.0      | 63.0      | 5.0                   |
| Total Split (%)               | 24.4%              | 70.0%    | 70.0%     | 70.0%     | 6%                    |
| Yellow Time (s)               | 3.3                | 3.0      | 3.0       | 3.0       | 2.0                   |
| All-Red Time (s)              | 2.2                | 2.2      | 2.2       | 2.2       | 1.0                   |
| Lost Time Adjust (s)          | 0.0                |          | 0.0       | 0.0       |                       |
| Total Lost Time (s)           | 5.5                |          | 5.2       | 5.2       |                       |
| Lead/Lag                      | Lag                |          |           |           | Lead                  |
| Lead-Lag Optimize?            |                    |          |           |           |                       |
| Recall Mode                   | Ped                | C-Max    | C-Max     | C-Max     | Max                   |
| Act Effct Green (s)           | 14.1               |          | 60.2      | 60.2      |                       |
| Actuated g/C Ratio            | 0.16               |          | 0.67      | 0.67      |                       |
| v/c Ratio                     | 0.36               |          | 0.42      | 0.34      |                       |
| Control Delay (s/veh)         | 36.7               |          | 5.5       | 6.6       |                       |
| Queue Delay                   | 0.0                |          | 0.0       | 0.0       |                       |
| Total Delay (s/veh)           | 36.7               |          | 5.5       | 6.6       |                       |
| LOS                           | D                  |          | Α         | Α         |                       |
| Approach Delay (s/veh)        | 36.7               |          | 5.5       | 6.6       |                       |
| Approach LOS                  | D                  |          | Α         | Α         |                       |
| Queue Length 50th (m)         | 13.3               |          | 26.6      | 21.7      |                       |
| Queue Length 95th (m)         | 27.1               |          | 26.2      | 31.0      |                       |
| Internal Link Dist (m)        | 76.7               |          | 28.1      | 10.1      |                       |
| Turn Bay Length (m)           |                    |          |           |           |                       |
| Base Capacity (vph)           | 289                |          | 1983      | 1978      |                       |
| Starvation Cap Reductn        | 0                  |          | 0         | 0         |                       |
| Spillback Cap Reductn         | 0                  |          | 0         | 0         |                       |
| Storage Cap Reductn           | 0                  |          | 0         | 0         |                       |
| Reduced v/c Ratio             | 0.31               |          | 0.42      | 0.34      |                       |
| Intersection Summary          |                    |          |           |           |                       |
|                               |                    |          |           |           |                       |
| Cycle Length: 90              |                    |          |           |           |                       |
| Actuated Cycle Length: 90     | a al 4 a la        | O.NIDT   | l ===100  | NDT 04- 1 | of Oscar              |
| Offset: 87 (97%), Reference   | ea to phas         | se Z:NBT | L and 6:8 | BI, Start | or Green              |
| Natural Cycle: 90             | a ualia - t l      |          |           |           |                       |
| Control Type: Actuated-Co     | ordinated          |          |           |           |                       |
| Maximum v/c Ratio: 0.42       | h/ob\. 7.0         |          |           | 1         | torgastian LOC: A     |
| Intersection Signal Delay (s  |                    |          |           |           | itersection LOS: A    |
| Intersection Capacity Utiliza | สแบท 56.1 <b>'</b> | 70       |           | IC        | CU Level of Service B |
| Analysis Period (min) 15      |                    |          |           |           |                       |

Splits and Phases: 6: Bank & Aylmer



| de |
|----|
|----|

|                           | ۶     | <b>→</b> | •     | <b>←</b> | •     | <b>†</b>       | <b>\</b> | <del> </del> |      |      |  |
|---------------------------|-------|----------|-------|----------|-------|----------------|----------|--------------|------|------|--|
| Lane Group                | EBL   | EBT      | WBL   | WBT      | NBL   | NBT            | SBL      | SBT          | Ø3   | Ø7   |  |
| Lane Configurations       |       | 4        |       | 4        |       | <del>ፈ</del> ጉ |          | 413          |      |      |  |
| Traffic Volume (vph)      | 58    | 53       | 18    | 60       | 20    | 505            | 109      | 565          |      |      |  |
| Future Volume (vph)       | 58    | 53       | 18    | 60       | 20    | 505            | 109      | 565          |      |      |  |
| Lane Group Flow (vph)     | 0     | 153      | 0     | 273      | 0     | 603            | 0        | 825          |      |      |  |
| Turn Type                 | Perm  | NA       | Perm  | NA       | Perm  | NA             | pm+pt    | NA           |      |      |  |
| Protected Phases          |       | 4        |       | 8        |       | 2              | 1        | 6            | 3    | 7    |  |
| Permitted Phases          | 4     |          | 8     |          | 2     |                | 6        |              |      |      |  |
| Detector Phase            | 4     | 4        | 8     | 8        | 2     | 2              | 1        | 6            |      |      |  |
| Switch Phase              |       |          |       |          |       |                |          |              |      |      |  |
| Minimum Initial (s)       | 6.4   | 6.4      | 5.3   | 5.3      | 17.0  | 17.0           | 5.0      | 17.0         | 1.0  | 1.0  |  |
| Minimum Split (s)         | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0           | 17.0     | 60.0         | 5.0  | 5.0  |  |
| Total Split (s)           | 25.0  | 25.0     | 25.0  | 25.0     | 43.0  | 43.0           | 17.0     | 60.0         | 5.0  | 5.0  |  |
| Total Split (%)           | 27.8% | 27.8%    | 27.8% | 27.8%    | 47.8% | 47.8%          | 18.9%    | 66.7%        | 6%   | 6%   |  |
| Yellow Time (s)           | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0            | 3.0      | 3.0          | 2.0  | 2.0  |  |
| All-Red Time (s)          | 2.6   | 2.6      | 2.6   | 2.6      | 3.0   | 3.0            | 2.9      | 3.0          | 0.0  | 0.0  |  |
| Lost Time Adjust (s)      | ,     | 0.0      | 5     | 0.0      | 3.3   | 0.0            | ,        | 0.0          | J.J  |      |  |
| Total Lost Time (s)       |       | 5.6      |       | 5.6      |       | 6.0            |          | 6.0          |      |      |  |
| Lead/Lag                  | Lag   | Lag      | Lag   | Lag      | Lag   | Lag            | Lead     |              | Lead | Lead |  |
| Lead-Lag Optimize?        | 3     | 9        | Yes   | Yes      | Yes   | Yes            | Yes      |              |      | Yes  |  |
| Recall Mode               | None  | None     | None  | None     | C-Max | C-Max          | None     | C-Max        | None | None |  |
| Act Effct Green (s)       |       | 21.5     |       | 21.5     |       | 56.9           |          | 56.9         |      |      |  |
| Actuated g/C Ratio        |       | 0.24     |       | 0.24     |       | 0.63           |          | 0.63         |      |      |  |
| v/c Ratio                 |       | 0.71     |       | 0.76     |       | 0.34           |          | 0.59         |      |      |  |
| Control Delay (s/veh)     |       | 48.8     |       | 33.3     |       | 8.9            |          | 8.6          |      |      |  |
| Queue Delay               |       | 0.0      |       | 0.0      |       | 0.0            |          | 0.0          |      |      |  |
| Total Delay (s/veh)       |       | 48.8     |       | 33.3     |       | 8.9            |          | 8.6          |      |      |  |
| LOS                       |       | D        |       | С        |       | A              |          | A            |      |      |  |
| Approach Delay (s/veh)    |       | 48.8     |       | 33.3     |       | 8.9            |          | 8.6          |      |      |  |
| Approach LOS              |       | D        |       | С        |       | A              |          | A            |      |      |  |
| Queue Length 50th (m)     |       | 23.1     |       | 25.3     |       | 25.3           |          | 19.3         |      |      |  |
| Queue Length 95th (m)     |       | #47.4    |       | #59.8    |       | 35.2           |          | 24.3         |      |      |  |
| Internal Link Dist (m)    |       | 75.1     |       | 136.0    |       | 63.1           |          | 79.0         |      |      |  |
| Turn Bay Length (m)       |       |          |       |          |       |                |          |              |      |      |  |
| Base Capacity (vph)       |       | 228      |       | 369      |       | 1786           |          | 1392         |      |      |  |
| Starvation Cap Reductn    |       | 0        |       | 0        |       | 0              |          | 0            |      |      |  |
| Spillback Cap Reductn     |       | 0        |       | 0        |       | 0              |          | 0            |      |      |  |
| Storage Cap Reductn       |       | 0        |       | 0        |       | 0              |          | 0            |      |      |  |
| Reduced v/c Ratio         |       | 0.67     |       | 0.74     |       | 0.34           |          | 0.59         |      |      |  |
| Intersection Summary      |       |          |       |          |       |                |          |              |      |      |  |
| Cycle Length: 90          |       |          |       |          |       |                |          |              |      |      |  |
| Actuated Cycle Length: 90 |       |          |       |          |       |                |          |              |      |      |  |

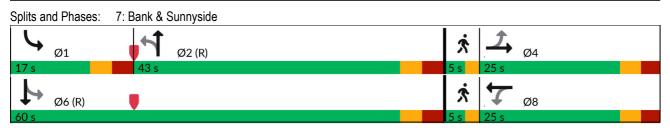
Actuated Cycle Length: 90

Offset: 17 (19%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

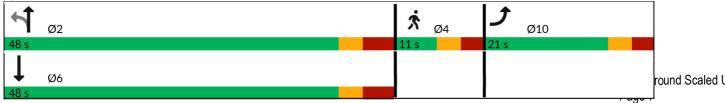
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.76


Intersection Signal Delay (s/veh): 15.6 Intersection LOS: B Intersection Capacity Utilization 82.4% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

#### 7: Bank & Sunnyside



| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | ۶                                     | 4    | <b>†</b> | <b>↓</b> |             |        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|------|----------|----------|-------------|--------|--|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lane Group               | EBL                                   | NBL  | NBT      | SBT      | Ø4          |        |  |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | W                                     |      |          |          |             |        |  |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                       | 54   |          |          |             |        |  |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · /                    |                                       |      |          |          |             |        |  |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · ·                    |                                       |      |          |          |             |        |  |
| Permitted Phases   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                       | Perm |          |          |             |        |  |
| Detector Phase   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                       |      | 2        |          | 4           |        |  |
| Switch Phase   Minimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Permitted Phases         |                                       | 2    |          |          |             |        |  |
| Minimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detector Phase           | 10                                    | 2    | 2        | 6        |             |        |  |
| Minimum Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Switch Phase             |                                       |      |          |          |             |        |  |
| Total Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum Initial (s)      | 10.0                                  | 4.0  | 4.0      | 4.0      | 4.0         |        |  |
| Total Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum Split (s)        | 21.0                                  | 48.0 | 48.0     | 48.0     | 11.0        |        |  |
| Total Split (%) 26.3% 60.0% 60.0% 60.0% 14% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.7 3.8 3.8 3.8 2.7 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 5.7 6.8 6.8 Lead/Lag Lead-Lag Optimize? Recall Mode Min None None Max None Act Effct Green (s) 10.9 41.2 41.2 Actuated g/C Ratio 0.17 0.64 0.64 v/c Ratio 0.40 0.37 0.67 Control Delay (s/veh) 29.0 7.2 11.7 Queue Delay 0.0 0.0 0.0 Total Delay (s/veh) 29.0 7.2 11.7 LOS C A B Approach LOS C A B Approach LOS C A B Approach LOS C A B Queue Length 50th (m) 11.2 14.5 43.0 Queue Length 95th (m) 23.7 31.3 88.0 Internal Link Dist (m) 57.2 0.1 5.9 Turn Bay Length (m) Base Capacity (vph) 366 868 1055 Starvation Cap Reductn 0 0 0 Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Capacity Utilization 76.5% Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 21.0                                  | 48.0 | 48.0     | 48.0     | 11.0        |        |  |
| Yellow Time (s)         3.0         3.0         3.0         3.0         3.0           All-Red Time (s)         2.7         3.8         3.8         2.7           Lost Time Adjust (s)         0.0         0.0         0.0           Total Lost Time (s)         5.7         6.8         6.8           Lead/Lag         Lead/Lag         Berall Mode         Min         None         None           Act Effet Green (s)         10.9         41.2         41.2         41.2           Actuated g/C Ratio         0.17         0.64         0.64         0.64           v/c Ratio         0.40         0.37         0.67         0.67           Control Delay (s/veh)         29.0         7.2         11.7         0.0           Queue Delay         0.0         0.0         0.0         0.0           Total Delay (s/veh)         29.0         7.2         11.7         1.7           LOS         C         A         B         Approach LoS         C         A         B           Approach LOS         C         A         B         A         A         B           Queue Length 95th (m)         23.7         31.3         88.0         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                       |      |          |          |             |        |  |
| All-Red Time (s) 2.7 3.8 3.8 3.8 2.7  Lost Time Adjust (s) 0.0 0.0 0.0  Total Lost Time (s) 5.7 6.8 6.8  Lead/Lag  Lead-Lag Optimize?  Recall Mode Min None None Max None  Act Effct Green (s) 10.9 41.2 41.2  Actuated g/C Ratio 0.17 0.64 0.64  v/c Ratio 0.40 0.37 0.67  Control Delay (s/veh) 29.0 7.2 11.7  Queue Delay 0.0 0.0 0.0  Total Delay (s/veh) 29.0 7.2 11.7  LOS C A B  Approach Delay (s/veh) 29.0 7.2 11.7  Approach LOS C A B  Queue Length 50th (m) 11.2 14.5 43.0  Queue Length 95th (m) 23.7 31.3 88.0  Internal Link Dist (m) 57.2 0.1 5.9  Turn Bay Length (m)  Base Capacity (vph) 366 868 1055  Starvation Cap Reductn 0 0 0  Storage Cap Reductn 0 0 0  Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle: 80  Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67  Intersection Capacity Utilization 76.5%  Intersection Capacity Utilization 76.5%  Icu Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                       |      |          |          |             |        |  |
| Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ` /                      |                                       | 3.8  | 3.8      |          |             |        |  |
| Total Lost Time (s) 5.7 6.8 6.8  Lead/Lag Lead-Lag Optimize? Recall Mode Min None None Max None Act Effct Green (s) 10.9 41.2 41.2  Actuated g/C Ratio 0.17 0.64 0.64  v/c Ratio 0.40 0.37 0.67  Control Delay (s/veh) 29.0 7.2 11.7  Queue Delay 0.0 0.0 0.0  Total Delay (s/veh) 29.0 7.2 11.7  LOS C A B  Approach Delay (s/veh) 29.0 7.2 11.7  Approach LOS C A B  Queue Length 50th (m) 11.2 14.5 43.0  Queue Length 95th (m) 23.7 31.3 88.0  Internal Link Dist (m) 57.2 0.1 5.9  Turn Bay Length (m) Base Capacity (vph) 366 868 1055  Starvation Cap Reductn 0 0 0  Spillback Cap Reductn 0 0 0  Spillback Cap Reductn 0 0 0  Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle: 80  Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B Intersection Capacity Utilization 76.5%  Intersection Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . ,                      | 0.0                                   |      | 0.0      | 0.0      |             |        |  |
| Lead/Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | 5.7                                   |      | 6.8      | 6.8      |             |        |  |
| Recall Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                       |      |          |          |             |        |  |
| Act Effct Green (s) 10.9 41.2 41.2  Actuated g/C Ratio 0.17 0.64 0.64  v/c Ratio 0.40 0.37 0.67  Control Delay (s/veh) 29.0 7.2 11.7  Queue Delay 0.0 0.0 0.0  Total Delay (s/veh) 29.0 7.2 11.7  LOS C A B  Approach Delay (s/veh) 29.0 7.2 11.7  Approach LOS C A B  Queue Length 50th (m) 11.2 14.5 43.0  Queue Length 95th (m) 23.7 31.3 88.0  Internal Link Dist (m) 57.2 0.1 5.9  Turn Bay Length (m)  Base Capacity (vph) 366 868 1055  Starvation Cap Reductn 0 0 0  Spillback Cap Reductn 0 0 0  Storage Cap Reductn 0 0 0  Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67  Intersection Capacity Utilization 76.5%  ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lead-Lag Optimize?       |                                       |      |          |          |             |        |  |
| Actuated g/C Ratio 0.17 0.64 0.64  v/c Ratio 0.40 0.37 0.67  Control Delay (s/veh) 29.0 7.2 11.7  Queue Delay 0.0 0.0 0.0  Total Delay (s/veh) 29.0 7.2 11.7  LOS C A B  Approach Delay (s/veh) 29.0 7.2 11.7  Approach LOS C A B  Queue Length 50th (m) 11.2 14.5 43.0  Queue Length 95th (m) 23.7 31.3 88.0  Internal Link Dist (m) 57.2 0.1 5.9  Turn Bay Length (m)  Base Capacity (vph) 366 868 1055  Starvation Cap Reductn 0 0 0  Spillback Cap Reductn 0 0 0  Storage Cap Reductn 0 0 0  Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67  Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recall Mode              | Min                                   | None | None     | Max      | None        |        |  |
| V/c Ratio         0.40         0.37         0.67           Control Delay (s/veh)         29.0         7.2         11.7           Queue Delay         0.0         0.0         0.0           Total Delay (s/veh)         29.0         7.2         11.7           LOS         C         A         B           Approach Delay (s/veh)         29.0         7.2         11.7           Approach LOS         C         A         B           Queue Length 50th (m)         11.2         14.5         43.0           Queue Length 95th (m)         23.7         31.3         88.0           Internal Link Dist (m)         57.2         0.1         5.9           Turn Bay Length (m)         8ase Capacity (vph)         366         868         1055           Starvation Cap Reductn         0         0         0           Spillback Cap Reductn         0         0         0           Storage Cap Reductn         0         0         0           Reduced v/c Ratio         0.28         0.37         0.67           Intersection Summary         Cycle Length: 80         Actuated Cycle Length: 64.6         Natural Cycle: 80           Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Act Effct Green (s)      | 10.9                                  |      | 41.2     | 41.2     |             |        |  |
| Control Delay (s/veh)         29.0         7.2         11.7           Queue Delay         0.0         0.0         0.0           Total Delay (s/veh)         29.0         7.2         11.7           LOS         C         A         B           Approach Delay (s/veh)         29.0         7.2         11.7           Approach LOS         C         A         B           Queue Length 50th (m)         11.2         14.5         43.0           Queue Length 95th (m)         23.7         31.3         88.0           Internal Link Dist (m)         57.2         0.1         5.9           Turn Bay Length (m)         Base Capacity (vph)         366         868         1055           Starvation Cap Reductn         0         0         0           Spillback Cap Reductn         0         0         0           Storage Cap Reductn         0         0         0           Reduced v/c Ratio         0.28         0.37         0.67           Intersection Summary         Cycle Length: 80         0         0         0           Actuated Cycle Length: 64.6         0         0         0         0           Intersection Signal Delay (s/veh): 12.0         Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Actuated g/C Ratio       | 0.17                                  |      | 0.64     | 0.64     |             |        |  |
| Queue Delay         0.0         0.0         0.0           Total Delay (s/veh)         29.0         7.2         11.7           LOS         C         A         B           Approach Delay (s/veh)         29.0         7.2         11.7           Approach LOS         C         A         B           Queue Length 50th (m)         11.2         14.5         43.0           Queue Length 95th (m)         23.7         31.3         88.0           Internal Link Dist (m)         57.2         0.1         5.9           Turn Bay Length (m)         Base Capacity (vph)         366         868         1055           Starvation Cap Reductn         0         0         0           Spillback Cap Reductn         0         0         0           Storage Cap Reductn         0         0         0           Reduced v/c Ratio         0.28         0.37         0.67           Intersection Summary         Cycle Length: 80         0         0           Actuated Cycle: 80         0         0         0           Control Type: Actuated-Uncoordinated         0.67         0.67           Intersection Signal Delay (s/veh): 12.0         1         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | 0.40                                  |      | 0.37     | 0.67     |             |        |  |
| Total Delay (s/veh)         29.0         7.2         11.7           LOS         C         A         B           Approach Delay (s/veh)         29.0         7.2         11.7           Approach LOS         C         A         B           Queue Length 50th (m)         11.2         14.5         43.0           Queue Length 95th (m)         23.7         31.3         88.0           Internal Link Dist (m)         57.2         0.1         5.9           Turn Bay Length (m)         Base Capacity (vph)         366         868         1055           Starvation Cap Reductn         0         0         0         0           Spillback Cap Reductn         0         0         0         0           Storage Cap Reductn         0         0         0         0           Reduced v/c Ratio         0.28         0.37         0.67           Intersection Summary         Cycle Length: 80         0         0         0           Actuated Cycle: 80         0         0         0         0           Control Type: Actuated-Uncoordinated         0         0         0         1           Intersection Signal Delay (s/veh): 12.0         Intersection LOS: B         Intu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control Delay (s/veh)    | 29.0                                  |      | 7.2      | 11.7     |             |        |  |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                        |                                       |      |          |          |             |        |  |
| Approach Delay (s/veh) 29.0 7.2 11.7  Approach LOS C A B  Queue Length 50th (m) 11.2 14.5 43.0  Queue Length 95th (m) 23.7 31.3 88.0  Internal Link Dist (m) 57.2 0.1 5.9  Turn Bay Length (m)  Base Capacity (vph) 366 868 1055  Starvation Cap Reductn 0 0 0  Spillback Cap Reductn 0 0 0  Storage Cap Reductn 0 0 0  Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B Intersection Capacity Utilization 76.5%  Intersection Capacity Utilization 76.5%  Intersection Description of the property of the |                          |                                       |      |          |          |             |        |  |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                       |      |          |          |             |        |  |
| Queue Length 50th (m)       11.2       14.5       43.0         Queue Length 95th (m)       23.7       31.3       88.0         Internal Link Dist (m)       57.2       0.1       5.9         Turn Bay Length (m)       366       868       1055         Starvation Cap Reductn       0       0       0         Spillback Cap Reductn       0       0       0         Storage Cap Reductn       0       0       0         Reduced v/c Ratio       0.28       0.37       0.67         Intersection Summary       Cycle Length: 80         Actuated Cycle Length: 64.6       Natural Cycle: 80         Control Type: Actuated-Uncoordinated         Maximum v/c Ratio: 0.67       Intersection Signal Delay (s/veh): 12.0       Intersection LOS: B         Intersection Capacity Utilization 76.5%       ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                       |      |          |          |             |        |  |
| Queue Length 95th (m) 23.7 31.3 88.0 Internal Link Dist (m) 57.2 0.1 5.9  Turn Bay Length (m) Base Capacity (vph) 366 868 1055 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • •                      |                                       |      |          |          |             |        |  |
| Internal Link Dist (m) 57.2 0.1 5.9  Turn Bay Length (m)  Base Capacity (vph) 366 868 1055  Starvation Cap Reductn 0 0 0  Spillback Cap Reductn 0 0 0  Storage Cap Reductn 0 0 0  Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated  Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B  Intersection Capacity Utilization 76.5%  ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                       |      |          |          |             |        |  |
| Turn Bay Length (m)  Base Capacity (vph) 366 868 1055  Starvation Cap Reductn 0 0 0  Spillback Cap Reductn 0 0 0  Storage Cap Reductn 0 0 0  Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated  Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B  Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                       |      |          |          |             |        |  |
| Base Capacity (vph) 366 868 1055 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · ,                      | 57.2                                  |      | 0.1      | 5.9      |             |        |  |
| Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                       |      |          |          |             |        |  |
| Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B Intersection Capacity Utilization 76.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                       |      |          |          |             |        |  |
| Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B Intersection Capacity Utilization 76.5%  Intersection Capacity Utilization Telephone  O 0 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                       |      |          |          |             |        |  |
| Reduced v/c Ratio 0.28 0.37 0.67  Intersection Summary  Cycle Length: 80  Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated  Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0  Intersection Capacity Utilization 76.5%  ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                       |      |          |          |             |        |  |
| Intersection Summary  Cycle Length: 80  Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated  Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0  Intersection Capacity Utilization 76.5%  ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                       |      |          |          |             |        |  |
| Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reduced v/c Ratio        | 0.28                                  |      | 0.37     | 0.67     |             |        |  |
| Cycle Length: 80 Actuated Cycle Length: 64.6 Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Intersection Summary     |                                       |      |          |          |             |        |  |
| Actuated Cycle Length: 64.6  Natural Cycle: 80  Control Type: Actuated-Uncoordinated  Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0  Intersection Capacity Utilization 76.5%  ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                        |                                       |      |          |          |             |        |  |
| Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection Capacity Utilization 76.5%  ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 6                                     |      |          |          |             |        |  |
| Control Type: Actuated-Uncoordinated  Maximum v/c Ratio: 0.67  Intersection Signal Delay (s/veh): 12.0  Intersection Capacity Utilization 76.5%  ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                       |      |          |          |             |        |  |
| Maximum v/c Ratio: 0.67 Intersection Signal Delay (s/veh): 12.0 Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | coordinate                            | ed   |          |          |             |        |  |
| Intersection Signal Delay (s/veh): 12.0 Intersection LOS: B Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | o o o o o o o o o o o o o o o o o o o | .~   |          |          |             |        |  |
| Intersection Capacity Utilization 76.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | s/veh)· 12                            | 0    |          | Ir       | ntersection | LOS: B |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                       |      |          |          |             |        |  |
| AHAIYSIS FEHUU (IIIII) 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis Period (min) 15 |                                       |      |          |          | 2 20.0.01   |        |  |

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



| tersection              |     |
|-------------------------|-----|
|                         | 8.4 |
| tersection Delay, s/veh | 8.4 |
| tersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | र्स  |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 62   | 53   | 0    | 0    | 0    | 143  | 65   | 43   | 41   | 0    | 0    | 85   |
| Future Vol, veh/h          | 62   | 53   | 0    | 0    | 0    | 143  | 65   | 43   | 41   | 0    | 0    | 85   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 69   | 59   | 0    | 0    | 0    | 159  | 72   | 48   | 46   | 0    | 0    | 94   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 8.8  |      |      |      |      | 8    | 8.9  |      |      |      |      | 7.7  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 44%   | 54%   | 0%    | 0%    |  |
| Vol Thru, %              | 29%   | 46%   | 0%    | 0%    |  |
| Vol Right, %             | 28%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 149   | 115   | 143   | 85    |  |
| LT Vol                   | 65    | 62    | 0     | 0     |  |
| Through Vol              | 43    | 53    | 0     | 0     |  |
| RT Vol                   | 41    | 0     | 143   | 85    |  |
| Lane Flow Rate           | 166   | 128   | 159   | 94    |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.211 | 0.17  | 0.18  | 0.109 |  |
| Departure Headway (Hd)   | 4.598 | 4.799 | 4.079 | 4.171 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 780   | 746   | 879   | 857   |  |
| Service Time             | 2.631 | 2.833 | 2.11  | 2.208 |  |
| HCM Lane V/C Ratio       | 0.213 | 0.172 | 0.181 | 0.11  |  |
| HCM Control Delay, s/veh | 8.9   | 8.8   | 8     | 7.7   |  |
| HCM Lane LOS             | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 0.8   | 0.6   | 0.7   | 0.4   |  |

| Intersection                      |            |        |        |       |          |      |
|-----------------------------------|------------|--------|--------|-------|----------|------|
| Int Delay, s/veh                  | 14.3       |        |        |       |          |      |
| Movement                          | EBL        | EBR    | NBL    | NBT   | SBT      | SBR  |
| Lane Configurations               |            | 7      |        | 414   | <b>1</b> |      |
| Traffic Vol, veh/h                | 5          | 275    | 147    | 686   | 500      | 56   |
| Future Vol, veh/h                 | 5          | 275    | 147    | 686   | 500      | 56   |
| Conflicting Peds, #/hr            | 0          | 0      | 178    | 0     | 0        | 107  |
| Sign Control                      | Stop       | Stop   | Free   | Free  | Free     | Free |
| RT Channelized                    | -<br>-     |        |        |       | -        | None |
| Storage Length                    | _          | 0      | _      | -     | _        | -    |
| Veh in Median Storage             |            | -      | _      | 0     | 0        | _    |
| Grade, %                          | 0          |        | _      | 0     | 0        | -    |
| Peak Hour Factor                  | 90         | 90     | 90     | 90    | 90       | 90   |
|                                   |            |        |        |       |          |      |
| Heavy Vehicles, %                 | 3          | 3      | 3      | 3     | 3        | 3    |
| Mvmt Flow                         | 6          | 306    | 163    | 762   | 556      | 62   |
|                                   |            |        |        |       |          |      |
| Major/Minor N                     | Minor2     | N      | Major1 | N     | /lajor2  |      |
| Conflicting Flow All              | 1472       | 765    | 796    | 0     |          | 0    |
| Stage 1                           | 765        | -      | -      | _     | _        | -    |
| Stage 2                           | 708        | _      | _      | _     | _        | _    |
|                                   |            | 6.245  | 4 145  | _     | _        | _    |
|                                   | 5.445      | -      | - 175  | _     | _        | _    |
|                                   | 5.845      | _      | _      | _     | _        | _    |
|                                   | 3.52853    |        | 2 2285 | _     | _        | -    |
| Pot Cap-1 Maneuver                | 127        | 400    | 818    | _     |          | _    |
|                                   | 456        | 400    | 010    | -     | _        | _    |
| Stage 1                           | 448        |        | _      |       |          |      |
| Stage 2                           | 440        | -      | -      | -     | -        | -    |
| Platoon blocked, %                | <b>-</b> 0 | 205    | 004    | _     | -        | -    |
| Mov Cap-1 Maneuver                |            | 325    | 664    | -     | -        | -    |
| Mov Cap-2 Maneuver                |            | -      | -      | -     | -        | -    |
| Stage 1                           | 255        | -      | -      | -     | -        | -    |
| Stage 2                           | 364        | -      | -      | -     | -        | -    |
|                                   |            |        |        |       |          |      |
| Approach                          | EB         |        | NB     |       | SB       |      |
|                                   |            |        | 4.34   |       | 0        |      |
| HCM Control Delay, s/             |            |        | 4.54   |       | U        |      |
| HCM LOS                           | <u> </u>   |        |        |       |          |      |
|                                   |            |        |        |       |          |      |
| Minor Lane/Major Mvn              | nt         | NBL    | NBTE   | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)                  |            | 524    | _      | 325   | -        | _    |
| HCM Lane V/C Ratio                |            | 0.246  | _      | 0.94  | _        | _    |
|                                   |            | 12.2   |        | 72.4  | _        | _    |
| DOM COMPOUNDED                    |            |        | 2.1    | 1 2.7 |          |      |
| HCM Lane LOS                      | , ,        | R      | Δ      | F     | -        | -    |
| HCM Lane LOS HCM 95th %tile Q(veh |            | B<br>1 | A<br>- | 9.6   | -        | -    |

| Intersection           |               |        |         |          |          |      |
|------------------------|---------------|--------|---------|----------|----------|------|
| Int Delay, s/veh       | 0.4           |        |         |          |          |      |
| Movement               | EBL           | EBR    | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    |               | 7      |         | <b>^</b> | <b>1</b> |      |
| Traffic Vol, veh/h     | 4             | 38     | 0       | 817      | 783      | 0    |
| Future Vol, veh/h      | 4             | 38     | 0       | 817      | 783      | 0    |
| Conflicting Peds, #/hr | 0             | 0      | 0       | 0        | 0        | 86   |
| Sign Control           | Stop          | Stop   | Free    | Free     | Free     | Free |
| RT Channelized         | -             | None   |         | None     | -        | None |
| Storage Length         | _             | 0      | _       | -        | _        | -    |
| Veh in Median Storage  | . # 0         | _      | _       | 0        | 0        | _    |
| Grade, %               | 0             | _      | _       | 0        | 0        | _    |
| Peak Hour Factor       | 90            | 90     | 90      | 90       | 90       | 90   |
| Heavy Vehicles, %      | 3             | 3      | 3       | 3        | 3        | 3    |
| Mvmt Flow              | 4             | 42     | 0       | 908      | 870      | 0    |
| IVIVIIILI IOW          | 4             | 42     | U       | 300      | 070      | U    |
|                        |               |        |         |          |          |      |
| Major/Minor M          | /linor2       | ١      | /lajor1 | ١        | /lajor2  |      |
| Conflicting Flow All   | 1324          | 870    | -       | 0        | -        | 0    |
| Stage 1                | 870           | -      | -       | -        | -        | -    |
| Stage 2                | 454           | -      | -       | -        | -        | -    |
|                        | 6.645         | 6.245  | -       | -        | -        | -    |
|                        | 5.445         | -      | -       | -        | -        | -    |
|                        | 5.845         | _      | -       | -        | _        | -    |
|                        | .52853        | 3.3285 | _       | _        | -        | -    |
| Pot Cap-1 Maneuver     | 158           | 348    | 0       | _        | -        | 0    |
| Stage 1                | 407           | -      | 0       | _        | _        | 0    |
| Stage 2                | 605           | _      | 0       | _        | _        | 0    |
| Platoon blocked, %     | 000           |        | U       | _        | _        | •    |
| Mov Cap-1 Maneuver     | 158           | 348    | _       | _        | _        | _    |
| Mov Cap-1 Maneuver     | 158           | -      | _       | _        | _        | _    |
| Stage 1                | 407           | _      | _       | -        |          | _    |
| _                      | 605           | _      | -       | _        | _        | _    |
| Stage 2                | 005           | -      | -       | -        | -        | -    |
|                        |               |        |         |          |          |      |
| Approach               | EB            |        | NB      |          | SB       |      |
| HCM Control Delay, s/v | <b>1</b> 6.77 |        | 0       |          | 0        |      |
| HCM LOS                | С             |        |         |          |          |      |
|                        |               |        |         |          |          |      |
|                        |               | NET    | -D. 4   | 00.7     |          |      |
| Minor Lane/Major Mvm   | <u>nt</u>     | NBIE   | EBLn1   | SBT      |          |      |
| Capacity (veh/h)       |               | -      | 348     | -        |          |      |
| HCM Lane V/C Ratio     |               | -      | 0.121   | -        |          |      |
| HCM Control Delay (s/  | veh)          | -      | 16.8    | -        |          |      |
| HCM Lane LOS           |               | -      | С       | -        |          |      |
| HCM 95th %tile Q(veh)  | )             | -      | 0.4     | -        |          |      |
|                        |               |        |         |          |          |      |

| Intersection                     |               |       |                  |       |          |      |
|----------------------------------|---------------|-------|------------------|-------|----------|------|
| Int Delay, s/veh                 | 4.2           |       |                  |       |          |      |
| •                                |               | EDD   | NDL              | NDT   | CDT      | CDD  |
| Movement                         | EBL           | EBR   | NBL              | NBT   | SBT      | SBR  |
| Lane Configurations              | <b>Y</b>      | 00    | 400              | 4     | <b>₽</b> | 057  |
| Traffic Vol, veh/h               | 66            | 60    | 122              | 223   | 334      | 257  |
| Future Vol, veh/h                | 66            | 60    | 122              | 223   | 334      | 257  |
| Conflicting Peds, #/hr           | 0             | 0     | _ 0              | _ 0   | _ 0      | _ 0  |
| Sign Control                     | Stop          | Stop  | Free             | Free  | Free     | Free |
| RT Channelized                   | -             | None  | -                | None  | -        | None |
| Storage Length                   | 0             | -     | -                | -     | -        | -    |
| Veh in Median Storage            | •             | -     | -                | 0     | 0        | -    |
| Grade, %                         | 0             | -     | -                | 0     | 0        | -    |
| Peak Hour Factor                 | 90            | 90    | 90               | 90    | 90       | 90   |
| Heavy Vehicles, %                | 0             | 0     | 0                | 0     | 0        | 0    |
| Mvmt Flow                        | 73            | 67    | 136              | 248   | 371      | 286  |
|                                  |               |       |                  |       |          |      |
| NA ' (NA'                        |               |       |                  |       |          |      |
|                                  | /linor2       |       | /lajor1          |       | 1ajor2   |      |
| Conflicting Flow All             | 1033          | 514   | 657              | 0     | -        | 0    |
| Stage 1                          | 514           | -     | -                | -     | -        | -    |
| Stage 2                          | 519           | -     | -                | -     | -        | -    |
| Critical Hdwy                    | 6.4           | 6.2   | 4.1              | -     | -        | -    |
| Critical Hdwy Stg 1              | 5.4           | -     | -                | -     | -        | -    |
| Critical Hdwy Stg 2              | 5.4           | -     | -                | -     | -        | -    |
| Follow-up Hdwy                   | 3.5           | 3.3   | 2.2              | -     | -        | -    |
| Pot Cap-1 Maneuver               | 260           | 565   | 940              | _     | -        | -    |
| Stage 1                          | 605           | -     | _                | -     | -        | -    |
| Stage 2                          | 601           | -     | -                | -     | _        | -    |
| Platoon blocked, %               |               |       |                  | _     | _        | _    |
| Mov Cap-1 Maneuver               | 216           | 565   | 940              | _     |          | _    |
| Mov Cap-1 Maneuver               | 216           | -     | J <del>1</del> U | _     | _        | _    |
| Stage 1                          | 504           | _     | _                | _     | _        | _    |
|                                  |               | -     | -                | -     | -        | -    |
| Stage 2                          | 601           | -     | -                | -     | -        | -    |
|                                  |               |       |                  |       |          |      |
| Approach                         | EB            |       | NB               |       | SB       |      |
|                                  |               |       | 3.35             |       | 0        |      |
| HCM Control Delay, s/<br>HCM LOS | <b>2</b> 0.20 |       | 0.00             |       | U        |      |
| I IOWI LOS                       | U             |       |                  |       |          |      |
|                                  |               |       |                  |       |          |      |
| Minor Lane/Major Mvn             | nt            | NBL   | NBTE             | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)                 |               | 637   | _                | 306   | _        | _    |
| HCM Lane V/C Ratio               |               | 0.144 |                  | 0.457 | _        | _    |
| HCM Control Delay (s             | (veh)         | 9.5   | 0                | 26.3  | _        | _    |
| HCM Lane LOS                     | .011)         | Α     | A                | D     | _        | _    |
| HCM 95th %tile Q(veh             | 1             | 0.5   | -                | 2.3   | _        |      |
| HOW SOUT MUTE W(VEI)             | 7             | 0.5   | -                | 2.0   | _        | _    |

| Intersection                                                                           |           |             |             |                      |                     |             |
|----------------------------------------------------------------------------------------|-----------|-------------|-------------|----------------------|---------------------|-------------|
| Int Delay, s/veh                                                                       | 0.7       |             |             |                      |                     |             |
| Movement                                                                               | WBL       | WBR         | NBT         | NBR                  | SBL                 | SBT         |
| Lane Configurations                                                                    |           | 7           | <b>↑</b> ⊅  |                      |                     | <b>†</b> †  |
| Traffic Vol, veh/h                                                                     | 0         | 61          | 533         | 20                   | 2                   | 604         |
| Future Vol, veh/h                                                                      | 0         | 61          | 533         | 20                   | 2                   | 604         |
| Conflicting Peds, #/hr                                                                 |           | 0           | 0           | 100                  | 0                   | 004         |
| Sign Control                                                                           | Stop      | Stop        | Free        | Free                 | Free                | Free        |
| RT Channelized                                                                         | Stop<br>- | None        | -           | None                 | -                   | None        |
|                                                                                        | _         | 0           | _           | NOHE -               |                     | NOHE        |
| Storage Length                                                                         |           |             |             |                      | -                   | -           |
| Veh in Median Storage                                                                  |           | -           | 0           | -                    | -                   | 0           |
| Grade, %                                                                               | 0         | -           | 0           | -                    | -                   | 0           |
| Peak Hour Factor                                                                       | 90        | 90          | 90          | 90                   | 90                  | 90          |
| Heavy Vehicles, %                                                                      | 0         | 0           | 2           | 0                    | 2                   | 2           |
| Mvmt Flow                                                                              | 0         | 68          | 592         | 22                   | 2                   | 671         |
|                                                                                        |           |             |             |                      |                     |             |
| Major/Minor N                                                                          | Minor1    | N           | /lajor1     | ١                    | /lajor2             |             |
| Conflicting Flow All                                                                   | -         | 407         | 0           | 0                    | 714                 | 0           |
| Stage 1                                                                                | _         | -           | -           |                      | - 1                 | -           |
| Stage 2                                                                                | _         | _           | _           | _                    | _                   | _           |
| Critical Hdwy                                                                          | _         | 6.9         |             | _                    | 4.14                | _           |
|                                                                                        |           | 0.9         | _           | _                    | 4.14                | _           |
| Critical Hdwy Stg 1                                                                    | -         |             |             |                      |                     |             |
| Critical Hdwy Stg 2                                                                    | -         | -           | -           | -                    | -                   | -           |
| Follow-up Hdwy                                                                         | -         | 3.3         | -           | -                    | 2.22                | -           |
| Pot Cap-1 Maneuver                                                                     | 0         | 599         | -           | -                    | 882                 | -           |
| Stage 1                                                                                | 0         | -           | -           | -                    | -                   | -           |
| Stage 2                                                                                | 0         | -           | -           | -                    | -                   | -           |
| Platoon blocked, %                                                                     |           |             | -           | -                    |                     | -           |
| Mov Cap-1 Maneuver                                                                     | -         | 536         | -           | -                    | 788                 | -           |
| Mov Cap-2 Maneuver                                                                     | -         | -           | -           | -                    | -                   | -           |
| Stage 1                                                                                | -         | -           | -           | -                    | -                   | -           |
| Stage 2                                                                                | -         | -           | -           | _                    | -                   | _           |
| Ü                                                                                      |           |             |             |                      |                     |             |
| A                                                                                      | WD        |             | ND          |                      | CD                  |             |
| Approach                                                                               | WB        |             | NB          |                      | SB                  |             |
| HCM Control Delay, s                                                                   | /12.69    |             | 0           |                      | 0.03                |             |
| HCM LOS                                                                                | В         |             |             |                      |                     |             |
|                                                                                        |           |             |             |                      |                     |             |
|                                                                                        |           |             |             |                      |                     |             |
|                                                                                        | nt        | NRT         | NBRV        | VRI n1               | SBI                 | SBT         |
| Minor Lane/Major Mvr                                                                   | nt        | NBT         | NBRV        | VBLn1                | SBL<br>788          | SBT         |
| Minor Lane/Major Mvr<br>Capacity (veh/h)                                               | nt        | -           | -           | 536                  | 788                 | -           |
| Minor Lane/Major Mvr<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                         |           |             | -           | 536<br>0.127         | 788<br>0.003        | -           |
| Minor Lane/Major Mvr<br>Capacity (veh/h)<br>HCM Lane V/C Ratio<br>HCM Control Delay (s |           | -<br>-<br>- | -<br>-<br>- | 536<br>0.127<br>12.7 | 788<br>0.003<br>9.6 | -<br>-<br>- |
| Minor Lane/Major Mvr<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                         | /veh)     | -           | -           | 536<br>0.127         | 788<br>0.003        | -           |

## 2033 Scenario

Minor Event Egress

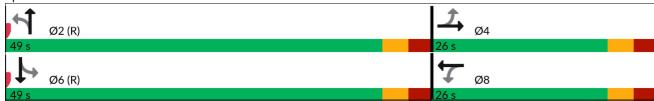
1: Bank & Fifth 08/01/2024

| ane Configurations araffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | •     | <b>→</b> | •     | •     | 4     | <b>†</b> | <b>\</b> | ļ     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|----------|-------|-------|-------|----------|----------|-------|
| raffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lane Group                | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL      | SBT   |
| raffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lane Configurations       |       | 4        | ሻ     | £     |       | सी के    |          | 4Tb   |
| ane Group Flow (vph)  ann Type  Perm  NA  Perm NA  Perm  NA  Perm  NA  Perm  NA  Perm  NA  Perm  NA  Perm  NA  Perm NA  No  No  No  Polo  Polo  Polo  Polo  Polo  Polo  Polo  Po | Traffic Volume (vph)      | 43    | 10       |       |       | 17    |          | 21       |       |
| urn Type         Perm         NA         A         Q <td>Future Volume (vph)</td> <td>43</td> <td>10</td> <td>50</td> <td>25</td> <td>17</td> <td>471</td> <td>21</td> <td>371</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Future Volume (vph)       | 43    | 10       | 50    | 25    | 17    | 471      | 21       | 371   |
| rotected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane Group Flow (vph)     | 0     | 88       | 56    | 66    | 0     | 555      | 0        | 459   |
| rotected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turn Type                 | Perm  | NA       | Perm  | NA    | Perm  | NA       | Perm     | NA    |
| etector Phase witch Phase linimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Protected Phases          |       | 4        |       | 8     |       | 2        |          | 6     |
| witch Phase linimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Permitted Phases          | 4     |          | 8     |       | 2     |          | 6        |       |
| Inimum Initial (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector Phase            | 4     | 4        | 8     | 8     | 2     | 2        | 6        | 6     |
| Ininimum Split (s)         26.0         26.0         26.0         26.0         26.0         49.0         49.0         49.0         49.0           otal Split (s)         26.0         26.0         26.0         26.0         26.0         49.0         49.0         49.0         49.0           otal Split (%)         34.7%         34.7%         34.7%         34.7%         65.3%         65.3%         65.3%         65.3%           ellow Time (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0           Il-Red Time (s)         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5 </td <td>Switch Phase</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Switch Phase              |       |          |       |       |       |          |          |       |
| otal Split (s)         26.0         26.0         26.0         26.0         49.0         49.0         49.0         49.0         49.0         54.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         49.0         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.5         55         5.5         5.5         5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum Initial (s)       | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0      | 4.0      | 4.0   |
| otal Split (%)         34.7%         34.7%         34.7%         34.7%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         65.3%         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0 <td>Minimum Split (s)</td> <td>26.0</td> <td>26.0</td> <td>26.0</td> <td>26.0</td> <td>49.0</td> <td>49.0</td> <td>49.0</td> <td>49.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum Split (s)         | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0  |
| ellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Split (s)           | 26.0  | 26.0     | 26.0  | 26.0  | 49.0  | 49.0     | 49.0     | 49.0  |
| II-Red Time (s)   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5    | Total Split (%)           | 34.7% | 34.7%    | 34.7% | 34.7% | 65.3% | 65.3%    | 65.3%    | 65.3% |
| ost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0           otal Lost Time (s)         5.5         5.5         5.5         5.5         5.5           ead/Lag         ead-Lag Optimize?         ecall Mode         None         None         None         C-Max         A         3.7         0.21         0.01         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yellow Time (s)           | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| otal Lost Time (s)         5.5         5.5         5.5         5.5           ead/Lag         ead/Lag         ead-Lag Optimize?           ecall Mode         None         None         None         C-Max         A-Max         A-Max </td <td>All-Red Time (s)</td> <td>2.5</td> <td>2.5</td> <td>2.5</td> <td>2.5</td> <td>2.5</td> <td>2.5</td> <td>2.5</td> <td>2.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | All-Red Time (s)          | 2.5   | 2.5      | 2.5   | 2.5   | 2.5   | 2.5      | 2.5      | 2.5   |
| ead/Lag ead-Lag Optimize? ecall Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lost Time Adjust (s)      |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0   |
| ecall Mode None None None C-Max C-Max C-Max C-Max ct Effct Green (s) 9.5 9.5 9.5 57.8 57.8 ctuated g/C Ratio 0.13 0.13 0.13 0.13 0.77 0.77 c Ratio 0.52 0.36 0.32 0.25 0.21 ontrol Delay (s/veh) 32.2 35.0 19.2 6.4 3.7 ueue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Lost Time (s)       |       | 5.5      | 5.5   | 5.5   |       | 5.5      |          | 5.5   |
| None   None   None   None   C-Max      | Lead/Lag                  |       |          |       |       |       |          |          |       |
| ct Effct Green (s)         9.5         9.5         9.5         57.8         57.8           ctuated g/C Ratio         0.13         0.13         0.13         0.77         0.77           c Ratio         0.52         0.36         0.32         0.25         0.21           ontrol Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           ueue Delay         0.0         0.0         0.0         0.0         0.0         0.0           otal Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           OS         C         C         B         A         A           pproach Delay (s/veh)         32.2         26.4         6.4         3.7           pproach LOS         C         C         C         A         A           ueue Length 50th (m)         7.9         7.4         3.6         14.0         8.4           ueueue Length 95th (m)         19.6         16.3         13.1         37.3         17.2           termal Link Dist (m)         49.7         112.4         195.6         190.0           urn Bay Length (m)         45.0         45.0         45.0         45.0         45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead-Lag Optimize?        |       |          |       |       |       |          |          |       |
| ctuated g/C Ratio         0.13         0.13         0.13         0.77         0.77           c Ratio         0.52         0.36         0.32         0.25         0.21           ontrol Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           ueue Delay         0.0         0.0         0.0         0.0         0.0         0.0           otal Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           OS         C         C         B         A         A           pproach Delay (s/veh)         32.2         26.4         6.4         3.7           pproach LOS         C         C         C         A         A           queue Length 50th (m)         7.9         7.4         3.6         14.0         8.4           queue Length 95th (m)         19.6         16.3         13.1         37.3         17.2           ternal Link Dist (m)         49.7         112.4         195.6         190.0           urn Bay Length (m)         45.0         330         335         403         2237         2163           tarvation Cap Reductn         0         0         0         0         0 <td>Recall Mode</td> <td>None</td> <td>None</td> <td>None</td> <td>None</td> <td>C-Max</td> <td>C-Max</td> <td>C-Max</td> <td>C-Max</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recall Mode               | None  | None     | None  | None  | C-Max | C-Max    | C-Max    | C-Max |
| c Ratio         0.52         0.36         0.32         0.25         0.21           ontrol Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           ueue Delay         0.0         0.0         0.0         0.0         0.0           otal Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           OS         C         C         B         A         A           A pproach Delay (s/veh)         32.2         26.4         6.4         3.7           pproach LOS         C         C         C         A         A           pproach LOS         C         C         C         A         A           queue Length 50th (m)         7.9         7.4         3.6         14.0         8.4           queue Length 95th (m)         19.6         16.3         13.1         37.3         17.2           aternal Link Dist (m)         49.7         112.4         195.6         190.0           urn Bay Length (m)         45.0         45.0         2237         2163           tarvation Cap Reductn         0         0         0         0         0           torage Cap Reductn         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Act Effct Green (s)       |       | 9.5      | 9.5   | 9.5   |       | 57.8     |          | 57.8  |
| ontrol Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           nueue Delay         0.0         0.0         0.0         0.0         0.0           otal Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           OS         C         C         B         A         A           pproach Delay (s/veh)         32.2         26.4         6.4         3.7           pproach LOS         C         C         A         A           neueue Length 50th (m)         7.9         7.4         3.6         14.0         8.4           neueue Length 95th (m)         19.6         16.3         13.1         37.3         17.2           nternal Link Dist (m)         49.7         112.4         195.6         190.0           nurn Bay Length (m)         45.0         45.0         45.0         45.0           asse Capacity (vph)         330         335         403         2237         2163           tarvation Cap Reductn         0         0         0         0         0           pillback Cap Reductn         0         0         0         0         0         0           ntersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Actuated g/C Ratio        |       | 0.13     | 0.13  | 0.13  |       | 0.77     |          | 0.77  |
| ueue Delay         0.0         0.0         0.0         0.0           otal Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           OS         C         C         B         A         A           pproach Delay (s/veh)         32.2         26.4         6.4         3.7           pproach LOS         C         C         C         A         A           pproach LOS         C         C         A         A         A           ueueue Length 50th (m)         7.9         7.4         3.6         14.0         8.4           ueueue Length 95th (m)         49.7         112.4         195.6         190.0           urternal Link Dist (m)         45.0         45.0         45.0         45.0           ase Capacity (vph)         330         335         403         2237         2163           tarvation Cap Reductn         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v/c Ratio                 |       | 0.52     | 0.36  | 0.32  |       | 0.25     |          | 0.21  |
| otal Delay (s/veh)         32.2         35.0         19.2         6.4         3.7           OS         C         C         B         A         A           Approach Delay (s/veh)         32.2         26.4         6.4         3.7           Approach LOS         C         C         A         A           Auueue Length 50th (m)         7.9         7.4         3.6         14.0         8.4           Auueue Length 95th (m)         19.6         16.3         13.1         37.3         17.2           Atternal Link Dist (m)         49.7         112.4         195.6         190.0           urn Bay Length (m)         45.0           ase Capacity (vph)         330         335         403         2237         2163           tarvation Cap Reductn         0         0         0         0         0           pillback Cap Reductn         0         0         0         0         0         0           torage Cap Reductn         0         0         0         0         0         0         0           educed v/c Ratio         0.27         0.17         0.16         0.25         0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Control Delay (s/veh)     |       | 32.2     | 35.0  | 19.2  |       | 6.4      |          | 3.7   |
| OS C C B A A A A pproach Delay (s/veh) 32.2 26.4 6.4 3.7 pproach LOS C C A A A ueue Length 50th (m) 7.9 7.4 3.6 14.0 8.4 ueue Length 95th (m) 19.6 16.3 13.1 37.3 17.2 tternal Link Dist (m) 49.7 112.4 195.6 190.0 urn Bay Length (m) 45.0 ase Capacity (vph) 330 335 403 2237 2163 tarvation Cap Reductn 0 0 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Queue Delay               |       | 0.0      | 0.0   | 0.0   |       | 0.0      |          | 0.0   |
| pproach Delay (s/veh) 32.2 26.4 6.4 3.7 pproach LOS C C A A A A A Queue Length 50th (m) 7.9 7.4 3.6 14.0 8.4 pueue Length 95th (m) 19.6 16.3 13.1 37.3 17.2 pueue Length (m) 49.7 112.4 195.6 190.0 purn Bay Length (m) 45.0 pase Capacity (vph) 330 335 403 2237 2163 point tarvation Cap Reductn 0 0 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Delay (s/veh)       |       | 32.2     | 35.0  | 19.2  |       | 6.4      |          | 3.7   |
| Description   C   C   A   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOS                       |       |          | С     | В     |       | Α        |          | Α     |
| The large of the l | Approach Delay (s/veh)    |       | 32.2     |       | 26.4  |       | 6.4      |          | 3.7   |
| ueue Length 95th (m)       19.6       16.3       13.1       37.3       17.2         sternal Link Dist (m)       49.7       112.4       195.6       190.0         urn Bay Length (m)       45.0         ase Capacity (vph)       330       335       403       2237       2163         tarvation Cap Reductn       0       0       0       0       0         pillback Cap Reductn       0       0       0       0       0         torage Cap Reductn       0       0       0       0       0         educed v/c Ratio       0.27       0.17       0.16       0.25       0.21         tersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Approach LOS              |       | С        |       |       |       | Α        |          | Α     |
| ternal Link Dist (m) 49.7 112.4 195.6 190.0 urn Bay Length (m) 45.0 ase Capacity (vph) 330 335 403 2237 2163 tarvation Cap Reductn 0 0 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 0 0 0 educed v/c Ratio 0.27 0.17 0.16 0.25 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Queue Length 50th (m)     |       | 7.9      | 7.4   | 3.6   |       | 14.0     |          | 8.4   |
| ternal Link Dist (m) 49.7 112.4 195.6 190.0 urn Bay Length (m) 45.0 ase Capacity (vph) 330 335 403 2237 2163 tarvation Cap Reductn 0 0 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 0 0 0 educed v/c Ratio 0.27 0.17 0.16 0.25 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Queue Length 95th (m)     |       | 19.6     | 16.3  | 13.1  |       | 37.3     |          | 17.2  |
| urn Bay Length (m) 45.0  ase Capacity (vph) 330 335 403 2237 2163  tarvation Cap Reductn 0 0 0 0 0 0  pillback Cap Reductn 0 0 0 0 0 0  torage Cap Reductn 0 0 0 0 0 0  educed v/c Ratio 0.27 0.17 0.16 0.25 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Internal Link Dist (m)    |       | 49.7     |       | 112.4 |       | 195.6    |          | 190.0 |
| tarvation Cap Reductn         0         0         0         0           pillback Cap Reductn         0         0         0         0         0           torage Cap Reductn         0         0         0         0         0           educed v/c Ratio         0.27         0.17         0.16         0.25         0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turn Bay Length (m)       |       |          | 45.0  |       |       |          |          |       |
| tarvation Cap Reductn         0         0         0         0           pillback Cap Reductn         0         0         0         0         0           torage Cap Reductn         0         0         0         0         0           educed v/c Ratio         0.27         0.17         0.16         0.25         0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Base Capacity (vph)       |       | 330      | 335   | 403   |       | 2237     |          | 2163  |
| pillback Cap Reductn         0         0         0         0         0           torage Cap Reductn         0         0         0         0         0           educed v/c Ratio         0.27         0.17         0.16         0.25         0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Starvation Cap Reductn    |       |          |       |       |       |          |          |       |
| torage Cap Reductn 0 0 0 0 0 0 educed v/c Ratio 0.27 0.17 0.16 0.25 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spillback Cap Reductn     |       | 0        | 0     | 0     |       | 0        |          | 0     |
| educed v/c Ratio 0.27 0.17 0.16 0.25 0.21 stersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Storage Cap Reductn       |       | 0        | 0     | 0     |       | 0        |          | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reduced v/c Ratio         |       | 0.27     | 0.17  | 0.16  |       | 0.25     |          | 0.21  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intersection Summary      |       |          |       |       |       |          |          |       |
| vcle Length: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cycle Length: 75          |       |          |       |       |       |          |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actuated Cycle Length: 75 |       |          |       |       |       |          |          |       |

Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.52

Intersection Signal Delay (s/veh): 9.2 Intersection Capacity Utilization 53.4%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Bank & Fifth



#### 2: Bank & Holmwood

|                               | <b>→</b>   | 4        | <b>†</b>  | -        | ļ           |              |
|-------------------------------|------------|----------|-----------|----------|-------------|--------------|
| Lane Group                    | EBT        | NBL      | NBT       | SBL      | SBT         | Ø3           |
| Lane Configurations           | 4          |          | 414       |          | 414         |              |
| Traffic Volume (vph)          | 7          | 55       | 458       | 25       | 349         |              |
| Future Volume (vph)           | 7          | 55       | 458       | 25       | 349         |              |
| Lane Group Flow (vph)         | 88         | 0        | 600       | 0        | 457         |              |
| Turn Type                     | NA         | Perm     | NA        | Perm     | NA          |              |
| Protected Phases              | 4          |          | 2         |          | 6           | 3            |
| Permitted Phases              |            | 2        |           | 6        |             | -            |
| Detector Phase                | 4          | 2        | 2         | 6        | 6           |              |
| Switch Phase                  |            |          |           |          |             |              |
| Minimum Initial (s)           | 4.4        | 10.0     | 10.0      | 4.0      | 4.0         | 1.0          |
| Minimum Split (s)             | 22.0       | 48.0     | 48.0      | 48.0     | 48.0        | 5.0          |
| Total Split (s)               | 22.0       | 48.0     | 48.0      | 48.0     | 48.0        | 5.0          |
| Total Split (%)               | 29.3%      | 64.0%    | 64.0%     | 64.0%    | 64.0%       | 7%           |
| Yellow Time (s)               | 3.0        | 3.0      | 3.0       | 3.0      | 3.0         | 2.0          |
| All-Red Time (s)              | 2.6        | 2.2      | 2.2       | 2.2      | 2.2         | 0.0          |
| Lost Time Adjust (s)          | 0.0        |          | 0.0       |          | 0.0         | J            |
| Total Lost Time (s)           | 5.6        |          | 5.2       |          | 5.2         |              |
| Lead/Lag                      | Lag        |          | 5.2       |          | ٠.٤         | Lead         |
| Lead-Lag Optimize?            | Lug        |          |           |          |             |              |
| Recall Mode                   | None       | C-Max    | C-Max     | C-Max    | C-Max       | None         |
| Act Effct Green (s)           | 10.2       | - max    | 57.3      | - max    | 57.3        |              |
| Actuated g/C Ratio            | 0.14       |          | 0.76      |          | 0.76        |              |
| v/c Ratio                     | 0.48       |          | 0.30      |          | 0.22        |              |
| Control Delay (s/veh)         | 37.9       |          | 3.8       |          | 4.6         |              |
| Queue Delay                   | 0.0        |          | 0.0       |          | 0.0         |              |
| Total Delay (s/veh)           | 37.9       |          | 3.8       |          | 4.6         |              |
| LOS                           | D          |          | Α         |          | Α.          |              |
| Approach Delay (s/veh)        | 37.9       |          | 3.8       |          | 4.6         |              |
| Approach LOS                  | 57.5<br>D  |          | Α.        |          | 4.0<br>A    |              |
| Queue Length 50th (m)         | 11.7       |          | 9.4       |          | 14.1        |              |
| Queue Length 95th (m)         | 23.3       |          | 23.1      |          | 26.8        |              |
| Internal Link Dist (m)        | 39.8       |          | 31.5      |          | 195.6       |              |
| Turn Bay Length (m)           | 00.0       |          | 01.0      |          | .00.0       |              |
| Base Capacity (vph)           | 295        |          | 1999      |          | 2082        |              |
| Starvation Cap Reductn        | 0          |          | 0         |          | 0           |              |
| Spillback Cap Reductn         | 0          |          | 0         |          | 0           |              |
| Storage Cap Reductn           | 0          |          | 0         |          | 0           |              |
| Reduced v/c Ratio             | 0.30       |          | 0.30      |          | 0.22        |              |
|                               | 0.00       |          | 0.00      |          | 0.22        |              |
| Intersection Summary          |            |          |           |          |             |              |
| Cycle Length: 75              |            |          |           |          |             |              |
| Actuated Cycle Length: 75     |            | 0.1.==   |           | NDT!     |             |              |
| Offset: 74 (99%), Reference   | ed to phas | se 2:NBT | L and 6:S | BIL, Sta | art of Gree | en           |
| Natural Cycle: 75             |            |          |           |          |             |              |
| Control Type: Actuated-Co     | ordinated  |          |           |          |             |              |
| Maximum v/c Ratio: 0.48       |            |          |           |          |             | 100          |
| Intersection Signal Delay (s  | •          |          |           |          |             | n LOS: A     |
| Intersection Capacity Utiliza | ation 58.1 | %        |           | I        | CU Level    | of Service B |
| Analysis Period (min) 15      |            |          |           |          |             |              |
| Splits and Dhases: 2: Pa      | 0 11-1     |          |           |          |             |              |

Splits and Phases: 2: Bank & Holmwood



08/01/2024

#### 3: Bank & Exhibition

|                              | •            | *        | <b>†</b>    | -          | <b>↓</b>    |        |      |  |
|------------------------------|--------------|----------|-------------|------------|-------------|--------|------|--|
| Lane Group                   | WBL          | WBR      | NBT         | SBL        | SBT         | Ø1     | Ø7   |  |
| Lane Configurations          | *            | 7        | <b>∱</b> 1≽ | *          | <b>^</b>    |        |      |  |
| Traffic Volume (vph)         | 195          | 217      | 198         | 123        | 267         |        |      |  |
| Future Volume (vph)          | 195          | 217      | 198         | 123        | 267         |        |      |  |
| Lane Group Flow (vph)        | 217          | 241      | 321         | 137        | 297         |        |      |  |
| Turn Type                    | Prot         | Perm     | NA          | Perm       | NA          |        |      |  |
| Protected Phases             | 8            | . 0      | 2           | 1 01111    | 6           | 1      | 7    |  |
| Permitted Phases             |              | 8        | _           | 6          | · ·         | •      | •    |  |
| Detector Phase               | 8            | 8        | 2           | 6          | 6           |        |      |  |
| Switch Phase                 |              |          | _           |            | · ·         |        |      |  |
| Minimum Initial (s)          | 10.0         | 10.0     | 10.0        | 10.0       | 10.0        | 1.0    | 1.0  |  |
| Minimum Split (s)            | 26.0         | 26.0     | 39.0        | 44.0       | 44.0        | 5.0    | 5.0  |  |
| Total Split (s)              | 26.0         | 26.0     | 39.0        | 44.0       | 44.0        | 5.0    | 5.0  |  |
| Total Split (%)              | 34.7%        | 34.7%    | 52.0%       | 58.7%      | 58.7%       | 7%     | 7%   |  |
| Yellow Time (s)              | 3.3          | 3.3      | 3.0         | 3.0        | 3.0         | 2.0    | 3.5  |  |
| All-Red Time (s)             | 3.0          | 3.0      | 3.9         | 3.9        | 3.9         | 0.0    | 0.0  |  |
| Lost Time Adjust (s)         | 0.0          | 0.0      | 0.0         | 0.0        | 0.0         | 0.0    | 0.0  |  |
| Total Lost Time (s)          | 6.3          | 6.3      | 6.9         | 6.9        | 6.9         |        |      |  |
| Lead/Lag                     | Lag          | Lag      | Lag         | 0.9        | 0.9         | Lead   | Lead |  |
| Lead-Lag Optimize?           | Lay          | Lay      | Yes         |            |             | Yes    | Yes  |  |
| Recall Mode                  | None         | None     | C-Max       | C-Max      | C-Max       | None   |      |  |
|                              | None<br>15.2 | 15.2     | 46.6        | 46.6       | 46.6        | None   | None |  |
| Act Effet Green (s)          | 0.20         | 0.20     | 0.62        | 0.62       | 0.62        |        |      |  |
| Actuated g/C Ratio v/c Ratio | 0.20         | 0.20     | 0.02        | 0.02       |             |        |      |  |
|                              | 36.6         | 9.4      | 5.0         | 6.3        | 0.15<br>4.4 |        |      |  |
| Control Delay (s/veh)        | 0.0          |          | 0.0         | 0.0        | 0.0         |        |      |  |
| Queue Delay                  |              | 0.0      | 5.0         | 6.3        | 4.4         |        |      |  |
| Total Delay (s/veh)<br>LOS   | 36.6         | 9.4      |             |            |             |        |      |  |
|                              | D<br>22.3    | Α        | 5.0         | Α          | A<br>5.0    |        |      |  |
| Approach LOS                 |              |          |             |            |             |        |      |  |
| Approach LOS                 | C            | 0.0      | A           | <i>1</i> E | A           |        |      |  |
| Queue Length 50th (m)        | 28.5         | 0.0      | 5.9         | 4.5        | 5.1         |        |      |  |
| Queue Length 95th (m)        | 45.0         | 16.1     | 13.3        | 10.0       | 8.1         |        |      |  |
| Internal Link Dist (m)       | 30.6         |          | 33.7        | 40.0       | 44.8        |        |      |  |
| Turn Bay Length (m)          | 400          | 475      | 1757        | 40.0       | 1074        |        |      |  |
| Base Capacity (vph)          | 433          | 475      | 1757        | 490        | 1971        |        |      |  |
| Starvation Cap Reductn       | 0            | 0        | 0           | 0          | 0           |        |      |  |
| Spillback Cap Reductn        | 0            | 0        | 0           | 0          | 0           |        |      |  |
| Storage Cap Reductn          | 0            | 0        | 0           | 0          | 0           |        |      |  |
| Reduced v/c Ratio            | 0.50         | 0.51     | 0.18        | 0.28       | 0.15        |        |      |  |
| Intersection Summary         |              |          |             |            |             |        |      |  |
| Cycle Length: 75             |              |          |             |            |             |        |      |  |
| Actuated Cycle Length: 75    |              |          |             |            |             |        |      |  |
| Offset: 0 (0%), Referenced   | to phase     | 2:NBT ar | nd 6:SBTI   | L, Start o | f Green     |        |      |  |
| Natural Cycle: 75            |              |          |             |            |             |        |      |  |
| Control Type: Actuated-Co    | ordinated    |          |             |            |             |        |      |  |
| Maximum v/c Ratio: 0.66      |              |          |             |            |             |        |      |  |
| Maximum v/c Ratio: 0.66      | / 1 \ 44     | -        |             |            |             | 1.00 D |      |  |

Splits and Phases: 3: Bank & Exhibition

Intersection Signal Delay (s/veh): 11.5

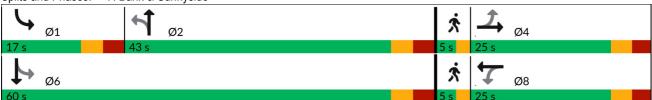
Intersection Capacity Utilization 57.6%

Analysis Period (min) 15

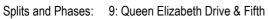


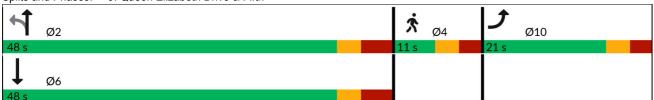
Intersection LOS: B

ICU Level of Service B


## 6: Bank & Aylmer

|                              | •           | 4        | <b>†</b>     | ļ          |                       |         |  |
|------------------------------|-------------|----------|--------------|------------|-----------------------|---------|--|
| Lane Group                   | EBL         | NBL      | NBT          | SBT        | Ø3                    |         |  |
| Lane Configurations          | ¥/          |          | 414          | <b>↑</b> ↑ |                       |         |  |
| Traffic Volume (vph)         | 4           | 1        | 172          | 200        |                       |         |  |
| Future Volume (vph)          | 4           | 1        | 172          | 200        |                       |         |  |
| Lane Group Flow (vph)        | 7           | 0        | 192          | 229        |                       |         |  |
| Turn Type                    | Prot        | Perm     | NA           | NA         |                       |         |  |
| Protected Phases             | 4           |          | 2            | 6          | 3                     |         |  |
| Permitted Phases             | 4           | 2        | _            | 6          | •                     |         |  |
| Detector Phase               | 4           | 2        | 2            | 6          |                       |         |  |
| Switch Phase                 |             | _        | _            |            |                       |         |  |
| Minimum Initial (s)          | 10.0        | 30.0     | 30.0         | 30.0       | 1.0                   |         |  |
| Minimum Split (s)            | 22.0        | 63.0     | 63.0         | 63.0       | 5.0                   |         |  |
| Total Split (s)              | 22.0        | 63.0     | 63.0         | 63.0       | 5.0                   |         |  |
| Total Split (%)              | 24.4%       | 70.0%    | 70.0%        | 70.0%      | 6%                    |         |  |
| Yellow Time (s)              | 3.3         | 3.0      | 3.0          | 3.0        | 2.0                   |         |  |
| All-Red Time (s)             | 2.2         | 2.2      | 2.2          | 2.2        | 1.0                   |         |  |
| Lost Time Adjust (s)         | 0.0         | ۷.۷      | 0.0          | 0.0        | 1.0                   |         |  |
| Total Lost Time (s)          | 5.5         |          | 5.2          | 5.2        |                       |         |  |
| Lead/Lag                     |             |          | 5.2          | 5.2        | Lead                  |         |  |
| Lead-Lag Optimize?           | Lag         |          |              |            | Leau                  |         |  |
| Recall Mode                  | Dad         | C-Max    | C-Max        | C-Max      | Max                   |         |  |
|                              | Ped<br>14.0 | C-IVIAX  |              | 60.3       | IVIAX                 |         |  |
| Act Effet Green (s)          | 0.16        |          | 60.3<br>0.67 | 0.67       |                       |         |  |
| Actuated g/C Ratio           |             |          |              |            |                       |         |  |
| v/c Ratio                    | 0.03        |          | 0.09         | 0.11       |                       |         |  |
| Control Delay (s/veh)        | 27.2        |          | 5.4          | 5.3        |                       |         |  |
| Queue Delay                  | 0.0         |          | 0.0          | 0.0        |                       |         |  |
| Total Delay (s/veh)          | 27.2        |          | 5.4          | 5.3        |                       |         |  |
| LOS                          | C           |          | A            | A          |                       |         |  |
| Approach Delay (s/veh)       | 27.2        |          | 5.4          | 5.3        |                       |         |  |
| Approach LOS                 | С           |          | A            | A          |                       |         |  |
| Queue Length 50th (m)        | 0.6         |          | 5.4          | 6.3        |                       |         |  |
| Queue Length 95th (m)        | 4.4         |          | 8.8          | 10.0       |                       |         |  |
| Internal Link Dist (m)       | 76.7        |          | 28.1         | 10.1       |                       |         |  |
| Turn Bay Length (m)          |             |          |              |            |                       |         |  |
| Base Capacity (vph)          | 253         |          | 2044         | 2105       |                       |         |  |
| Starvation Cap Reductn       | 0           |          | 0            | 0          |                       |         |  |
| Spillback Cap Reductn        | 0           |          | 0            | 0          |                       |         |  |
| Storage Cap Reductn          | 0           |          | 0            | 0          |                       |         |  |
| Reduced v/c Ratio            | 0.03        |          | 0.09         | 0.11       |                       |         |  |
| Intersection Summary         |             |          |              |            |                       |         |  |
| Cycle Length: 90             |             |          |              |            |                       |         |  |
| Actuated Cycle Length: 90    |             |          |              |            |                       |         |  |
| Offset: 87 (97%), Reference  | ed to phas  | se 2:NBT | L and 6:8    | SBT, Start | of Green              |         |  |
| Natural Cycle: 90            |             |          |              |            |                       |         |  |
| Control Type: Actuated-Co    | ordinated   |          |              |            |                       |         |  |
| Maximum v/c Ratio: 0.11      |             |          |              |            |                       |         |  |
| Intersection Signal Delay (  | s/veh): 5.7 | •        |              | Ir         | tersection LOS: A     |         |  |
| Intersection Capacity Utiliz |             |          |              |            | CU Level of Service A |         |  |
| Analysis Period (min) 15     |             |          |              |            |                       |         |  |
|                              |             |          |              |            |                       |         |  |
| Splits and Phases: 6: Ba     | ank & Ayln  | ner      |              |            |                       |         |  |
| <b>↑</b>                     |             |          |              |            |                       | <b></b> |  |





|      | BT<br>♣                                                             | WBL                                                                         | WBT                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | <b>Æ</b>                                                            |                                                                             | VVDI                                                                                                | NBL                                                                                                                                                                     | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SBL                                                                                                                                                                                                                 | SBT                                                                                                                                                                                               | Ø3   | Ø7                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0    |                                                                     |                                                                             | 4                                                                                                   |                                                                                                                                                                         | 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                     | 47>                                                                                                                                                                                               |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Λ    | 7                                                                   | 5                                                                           | 13                                                                                                  | 13                                                                                                                                                                      | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                  | 431                                                                                                                                                                                               |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U    | 7                                                                   | 5                                                                           | 13                                                                                                  | 13                                                                                                                                                                      | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                  | 431                                                                                                                                                                                               |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0    | 63                                                                  | 0                                                                           | 58                                                                                                  | 0                                                                                                                                                                       | 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                   | 567                                                                                                                                                                                               |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n    | NA                                                                  | Perm                                                                        | NA                                                                                                  | Perm                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pm+pt                                                                                                                                                                                                               | NA                                                                                                                                                                                                |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 4                                                                   |                                                                             | 8                                                                                                   |                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                   | 6                                                                                                                                                                                                 | 3    | 7                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4    |                                                                     | 8                                                                           |                                                                                                     | 2                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                   |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 4                                                                   |                                                                             | 8                                                                                                   | 2                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                   | 6                                                                                                                                                                                                 |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4    | 6.4                                                                 | 5.3                                                                         | 5.3                                                                                                 | 17.0                                                                                                                                                                    | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                 | 17.0                                                                                                                                                                                              | 1.0  | 1.0                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     | 2.0                                                                         |                                                                                                     | 0.0                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                 |                                                                                                                                                                                                   | 0.0  | 0.0                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     | Lad                                                                         |                                                                                                     | Lag                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lead                                                                                                                                                                                                                | 0.0                                                                                                                                                                                               | Lead | Lead                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9 -  | -ug                                                                 |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   | Loud |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ۵ Nr | nρ                                                                  |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     | May                                                                                                                                                                                               | None |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     | NONE                                                                        |                                                                                                     | IVIAA                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NONE                                                                                                                                                                                                                |                                                                                                                                                                                                   | NONE | INOTIC                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4    |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1    |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7    |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ı    | J. I                                                                |                                                                             | 130.0                                                                                               |                                                                                                                                                                         | 03.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | 19.0                                                                                                                                                                                              |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •    | 33                                                                  |                                                                             | 300                                                                                                 |                                                                                                                                                                         | 2246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | 2080                                                                                                                                                                                              |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0    |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | ,                                                                   |                                                                             | 0.10                                                                                                |                                                                                                                                                                         | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | 0.21                                                                                                                                                                                              |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ated |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .8%  |                                                                     |                                                                             | 10                                                                                                  | CU Level                                                                                                                                                                | of Servic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | е В                                                                                                                                                                                                                 |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                     |                                                                             |                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                   |      |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a 1  | 4<br>4<br>4<br>8.0 2<br>8.0 2<br>8.0 27.6<br>8.6 10 0<br>9 4<br>4 4 | 4 4 4 4 4 4 6.4 6.4 6.0 25.0 6.0 25.0 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 8 4 4 8 6 4 4 8 6 6 6 6 6 6 6 7 6 6 6 7 6 6 7 7 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 4 8 4 4 8 4 4 8 8 6.4 6.4 5.3 5.3 6.0 25.0 25.0 25.0 7.0 25.0 25.0 25.0 7.0 27.8% 27.8% 27.8% 7.8% 27.8% 27.8% 7.8 27.8% 27.8% 7.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 2 | 4 8 2 4 4 8 8 2 4 4 4 8 8 8 2 6.4 6.4 5.3 5.3 17.0 6.0 25.0 25.0 25.0 43.0 6.0 25.0 25.0 25.0 43.0 6.0 3.0 3.0 3.0 3.0 3.0 6.6 2.6 2.6 2.6 3.0 6.0 0.0 5.6 5.6 6.0 10.4 6.10.4 6.13 0.13 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6.50 0.33 6 | 4 8 2 4 4 8 8 2 4 4 4 8 8 8 2 2 4 4 4 8 8 8 2 2 6 3.4 6.4 5.3 5.3 17.0 17.0 3.0 25.0 25.0 25.0 43.0 43.0 3.0 25.0 25.0 25.0 43.0 43.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0 5.6 5.6 5.6 6.0 3 | 4 8 2 1 4 4 8 8 2 2 1 8 4 4 4 8 8 2 2 1 8 4 4 4 8 8 8 2 2 1 8 5 6 6 6 6 6 6 6 6 6 6 6 8 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 8 9 | 4    | 4 8 8 2 6 6 4 8 8 2 6 6 4 4 4 8 8 8 2 2 1 1 6 6 3 4 4 4 4 8 8 8 2 2 2 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 8 8 2 1 6 6 3 7  4 8 8 2 6 6  4 4 8 8 8 2 1 1 6 3 7  4 6.4 5.3 5.3 17.0 17.0 5.0 17.0 1.0 1.0  .0 25.0 25.0 25.0 43.0 43.0 17.0 60.0 5.0 5.0  .0 25.0 25.0 25.0 43.0 43.0 17.0 60.0 5.0 5.0  % 27.8% 27.8% 27.8% 47.8% 47.8% 18.9% 66.7% 6% 6%  .0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0  .6 2.6 2.6 2.6 3.0 3.0 3.0 2.9 3.0 0.0 0.0  .5 6 5.6 5.6 6.0 6.0 6.0  ag Lag Lag Lag Lag Lag Lead Lead Lead Lead Yes Yes Yes Yes Yes Yes Yes Yes Yes A Yes |

Splits and Phases: 7: Bank & Sunnyside



|                                                                 | ۶         | 1     | <b>†</b> | ţ     |                           |             |
|-----------------------------------------------------------------|-----------|-------|----------|-------|---------------------------|-------------|
| Lane Group                                                      | EBL       | NBL   | NBT      | SBT   | Ø4                        |             |
| Lane Configurations                                             | ¥         |       | 4        | 1≽    |                           |             |
| Traffic Volume (vph)                                            | 67        | 33    | 269      | 164   |                           |             |
| Future Volume (vph)                                             | 67        | 33    | 269      | 164   |                           |             |
| Lane Group Flow (vph)                                           | 107       | 0     | 336      | 221   |                           |             |
| Turn Type                                                       | Prot      | Perm  | NA       | NA    |                           |             |
| Protected Phases                                                | 10        |       | 2        | 6     | 4                         |             |
| Permitted Phases                                                |           | 2     |          |       |                           |             |
| Detector Phase                                                  | 10        | 2     | 2        | 6     |                           |             |
| Switch Phase                                                    |           |       |          |       |                           |             |
| Minimum Initial (s)                                             | 10.0      | 4.0   | 4.0      | 4.0   | 4.0                       |             |
| Minimum Split (s)                                               | 21.0      | 48.0  | 48.0     | 48.0  | 11.0                      |             |
| Total Split (s)                                                 | 21.0      | 48.0  | 48.0     | 48.0  | 11.0                      |             |
| Total Split (%)                                                 | 26.3%     | 60.0% | 60.0%    | 60.0% | 14%                       |             |
| Yellow Time (s)                                                 | 3.0       | 3.0   | 3.0      | 3.0   | 3.0                       |             |
| All-Red Time (s)                                                | 2.7       | 3.8   | 3.8      | 3.8   | 2.7                       |             |
| Lost Time Adjust (s)                                            | 0.0       | ,     | 0.0      | 0.0   |                           |             |
| Total Lost Time (s)                                             | 5.7       |       | 6.8      | 6.8   |                           |             |
| Lead/Lag                                                        | 5         |       | 3.0      |       |                           |             |
| Lead-Lag Optimize?                                              |           |       |          |       |                           |             |
| Recall Mode                                                     | Min       | None  | None     | Max   | None                      |             |
| Act Effct Green (s)                                             | 10.9      |       | 41.2     | 41.2  |                           |             |
| Actuated g/C Ratio                                              | 0.17      |       | 0.64     | 0.64  |                           |             |
| v/c Ratio                                                       | 0.41      |       | 0.33     | 0.21  |                           |             |
| Control Delay (s/veh)                                           | 29.0      |       | 6.7      | 5.7   |                           |             |
| Queue Delay                                                     | 0.0       |       | 0.0      | 0.0   |                           |             |
| Total Delay (s/veh)                                             | 29.0      |       | 6.7      | 5.7   |                           |             |
| LOS                                                             | С         |       | Α        | Α     |                           |             |
| Approach Delay (s/veh)                                          | 29.0      |       | 6.7      | 5.7   |                           |             |
| Approach LOS                                                    | С         |       | Α        | Α     |                           |             |
| Queue Length 50th (m)                                           | 11.6      |       | 14.8     | 8.9   |                           |             |
| Queue Length 95th (m)                                           | 24.3      |       | 30.8     | 19.4  |                           |             |
| Internal Link Dist (m)                                          | 57.2      |       | 0.1      | 5.9   |                           |             |
| Turn Bay Length (m)                                             |           |       |          |       |                           |             |
| Base Capacity (vph)                                             | 370       |       | 1023     | 1049  |                           |             |
| Starvation Cap Reductn                                          | 0         |       | 0        | 0     |                           |             |
| Spillback Cap Reductn                                           | 0         |       | 0        | 0     |                           |             |
| Storage Cap Reductn                                             | 0         |       | 0        | 0     |                           |             |
| Reduced v/c Ratio                                               | 0.29      |       | 0.33     | 0.21  |                           |             |
| Intersection Summary                                            |           |       |          |       |                           |             |
| Cycle Length: 80                                                |           |       |          |       |                           |             |
| Actuated Cycle Length: 64.6                                     |           |       |          |       |                           |             |
| Natural Cycle: 80                                               |           |       |          |       |                           |             |
| Control Type: Actuated-Unco                                     | oordinate | ed.   |          |       |                           |             |
| Maximum v/c Ratio: 0.41                                         | Janual    | , u   |          |       |                           |             |
|                                                                 |           |       |          | 1     |                           | 100 4       |
| Intersection Signal Delay (s/                                   | veh): 10  | .0    |          | ır    | ntersection               | LOS: A      |
| Intersection Signal Delay (s/<br>Intersection Capacity Utilizat |           |       |          |       | ntersection<br>CU Level o | f Service A |





| Intersection              |     |  |
|---------------------------|-----|--|
| Intersection Delay, s/veh | 7.3 |  |
| Intersection LOS          | Α   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 11   | 45   | 0    | 0    | 0    | 68   | 12   | 11   | 51   | 0    | 0    | 99   |
| Future Vol, veh/h          | 11   | 45   | 0    | 0    | 0    | 68   | 12   | 11   | 51   | 0    | 0    | 99   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 12   | 50   | 0    | 0    | 0    | 76   | 13   | 12   | 57   | 0    | 0    | 110  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 7.8  |      |      |      |      | 7.1  | 7.3  |      |      |      |      | 7.2  |
| HCM LOS                    | Α    |      |      |      |      | Α    | Α    |      |      |      |      | Α    |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
|--------------------------|-------|-------|-------|-------|
| Vol Left, %              | 16%   | 20%   | 0%    | 0%    |
| Vol Thru, %              | 15%   | 80%   | 0%    | 0%    |
| Vol Right, %             | 69%   | 0%    | 100%  | 100%  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane      | 74    | 56    | 68    | 99    |
| LT Vol                   | 12    | 11    | 0     | 0     |
| Through Vol              | 11    | 45    | 0     | 0     |
| RT Vol                   | 51    | 0     | 68    | 99    |
| Lane Flow Rate           | 82    | 62    | 76    | 110   |
| Geometry Grp             | 1     | 1     | 1     | 1     |
| Degree of Util (X)       | 0.089 | 0.075 | 0.078 | 0.111 |
| Departure Headway (Hd)   | 3.876 | 4.365 | 3.713 | 3.634 |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |
| Сар                      | 913   | 813   | 952   | 972   |
| Service Time             | 1.948 | 2.431 | 1.787 | 1.708 |
| HCM Lane V/C Ratio       | 0.09  | 0.076 | 0.08  | 0.113 |
| HCM Control Delay, s/veh | 7.3   | 7.8   | 7.1   | 7.2   |
| HCM Lane LOS             | А     | Α     | Α     | Α     |
| HCM 95th-tile Q          | 0.3   | 0.2   | 0.3   | 0.4   |

| Intersection                          |           |       |           |          |           |        |
|---------------------------------------|-----------|-------|-----------|----------|-----------|--------|
| Int Delay, s/veh                      | 3.2       |       |           |          |           |        |
| Movement                              | EBL       | EBR   | NBL       | NBT      | SBT       | SBR    |
| Lane Configurations                   | LDL       | EBK   | NDL       | 44       | 3B1<br>♣  | ODIX   |
| Traffic Vol, veh/h                    | 2         |       | 49        | 299      | 408       | 69     |
| Future Vol, veh/h                     | 2         | 114   | 49        | 299      | 408       | 69     |
| Conflicting Peds, #/hi                |           | 0     | 178       | 299      | 400       | 107    |
| Sign Control                          | Stop      | Stop  | Free      | Free     | Free      | Free   |
| RT Channelized                        | Stop<br>- |       | riee<br>- |          | riee<br>- |        |
| Storage Length                        | _         | 0     | -         | None -   | -         | None - |
|                                       |           | -     |           |          |           |        |
| Veh in Median Storag                  |           |       | -         | 0        | 0         | -      |
| Grade, %                              | 0         | -     | -         | 0        | 0         | -      |
| Peak Hour Factor                      | 90        | 90    | 90        | 90       | 90        | 90     |
| Heavy Vehicles, %                     | 3         | 3     | 3         | 3        | 3         | 3      |
| Mvmt Flow                             | 2         | 127   | 54        | 332      | 453       | 77     |
|                                       |           |       |           |          |           |        |
| Major/Minor                           | Minor2    |       | Major1    | ١        | /lajor2   |        |
| Conflicting Flow All                  | 945       | 670   | 708       | 0        |           | 0      |
| Stage 1                               | 670       | _     | _         | _        | _         | _      |
| Stage 2                               | 275       | _     | _         | _        | _         | _      |
| Critical Hdwy                         |           | 6.245 | 4 145     | _        | _         | _      |
| Critical Hdwy Stg 1                   | 5.445     | -     | -         | _        | _         | _      |
| Critical Hdwy Stg 2                   | 5.845     | _     | _         | _        | _         | _      |
|                                       | 3.52853   |       | 2 2285    | <u>-</u> | _         | _      |
| Pot Cap-1 Maneuver                    |           | 454   | 883       | _        | _         | _      |
| Stage 1                               | 505       | -     | -         | _        | _         | _      |
| Stage 2                               | 745       | _     | _         |          | _         | _      |
| Platoon blocked, %                    | 145       | _     | _         | <u>-</u> | _         | _      |
| · · · · · · · · · · · · · · · · · · · | r 165     | 368   | 717       |          |           |        |
| Mov Cap-1 Maneuve                     |           |       | 111       | -        | -         | -      |
| Mov Cap-2 Maneuve                     |           | -     | -         | -        | -         | -      |
| Stage 1                               | 376       | -     | -         | -        | -         | -      |
| Stage 2                               | 604       | -     | -         | -        | -         | -      |
|                                       |           |       |           |          |           |        |
| Approach                              | EB        |       | NB        |          | SB        |        |
| HCM Control Delay,                    | s/v 19.8  |       | 2.03      |          | 0         |        |
| HCM LOS                               | C         |       | 2.00      |          | •         |        |
|                                       |           |       |           |          |           |        |
| Minor Long/Major My                   | mt        | NDI   | NDT       | TDI n1   | CDT       | CDD    |
| Minor Lane/Major Mv                   | mt        | NBL   | MRIF      | EBLn1    | SBT       | SBR    |
| Capacity (veh/h)                      |           | 507   | -         | 368      | -         | -      |
| HCM Lane V/C Ratio                    |           | 0.076 |           | 0.344    | -         | -      |
| HCM Control Delay (                   | s/veh)    | 10.4  | 0.7       | 19.8     | -         | -      |
| HCM Lane LOS<br>HCM 95th %tile Q(ve   | . \       | 0.2   | Α         | C<br>1.5 | -         | -      |
|                                       |           | (1 ') | -         | 1.5      | -         | -      |

| Intersection          |                |          |         |          |          |      |
|-----------------------|----------------|----------|---------|----------|----------|------|
| Int Delay, s/veh      | 0.2            |          |         |          |          |      |
| Movement              | EBL            | EBR      | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations   |                | 7        | TIDE    | <b>†</b> | <u> </u> | אופט |
| Traffic Vol, veh/h    | 2              |          | 0       | 381      | 336      | 0    |
| Future Vol, veh/h     | 2              |          | 0       | 381      | 336      | 0    |
| Conflicting Peds, #/h |                |          | 0       | 0        | 0        | 86   |
| Sign Control          | Stop           |          | Free    | Free     | Free     | Free |
| RT Channelized        |                | None     | -       | None     | -        |      |
| Storage Length        |                | _        | _       | -        | _        | -    |
| Veh in Median Storag  |                | -        | _       | 0        | 0        |      |
| Grade, %              | ye,# 0         |          | _       | 0        | 0        | -    |
| Peak Hour Factor      | 90             |          | 90      | 90       | 90       | 90   |
| Heavy Vehicles, %     | 3              |          | 3       | 3        | 3        | 3    |
|                       | 2              |          |         |          |          |      |
| Mvmt Flow             | 2              | . 13     | 0       | 423      | 373      | 0    |
|                       |                |          |         |          |          |      |
| Major/Minor           | Minor2         | . N      | //ajor1 | N        | /lajor2  |      |
| Conflicting Flow All  | 585            |          |         | 0        |          | 0    |
| Stage 1               | 373            |          | _       | _        | _        | _    |
| Stage 2               | 212            |          | _       | _        | _        | _    |
| Critical Hdwy         |                | 6.245    | _       | _        | _        | _    |
| Critical Hdwy Stg 1   | 5.445          |          | _       | <u>-</u> | _        | _    |
| Critical Hdwy Stg 2   | 5.845          |          | _       | _        | _        | _    |
| Follow-up Hdwy        |                | 3.3285   |         |          | _        | _    |
| Pot Cap-1 Maneuver    |                |          | 0       | _        | _        | 0    |
| Stage 1               | 693            |          | 0       | <u> </u> | _        | 0    |
| Stage 1               | 801            |          | 0       |          | _        | 0    |
| Platoon blocked, %    | 001            | <u>-</u> | U       | -        | _        | U    |
| Mov Cap-1 Maneuve     | r 455          | 669      | _       |          | -        | _    |
| Mov Cap-1 Maneuve     |                |          | -       | -        | -        | -    |
|                       |                |          |         |          |          |      |
| Stage 1               | 693            |          | -       | -        | -        | -    |
| Stage 2               | 801            | -        | -       | -        | -        | -    |
|                       |                |          |         |          |          |      |
| Approach              | EB             | <br>     | NB      |          | SB       |      |
| HCM Control Delay,    |                |          | 0       |          | 0        |      |
| HCM LOS               | o, w o.⊣s<br>B |          |         |          |          |      |
| 110101 200            |                |          |         |          |          |      |
| Minor Lane/Major Mv   | mt             | NRTF     | EBLn1   | SBT      |          |      |
| Capacity (veh/h)      |                | INDIL    | 669     |          |          |      |
| HCM Lane V/C Ratio    |                | -        | 0.02    | -        |          |      |
|                       |                |          | 10.5    | -        |          |      |
| HCM Long LOS          | S/VeII)        | -        |         | -        |          |      |
| HCM Lane LOS          | h\             | -        | В       | -        |          |      |
| HCM 95th %tile Q(ve   | 11)            | -        | 0.1     | -        |          |      |

| Intersection                         |      |          |         |           |         |      |
|--------------------------------------|------|----------|---------|-----------|---------|------|
| Int Delay, s/veh 1                   | 10.9 |          |         |           |         |      |
| Movement E                           | EBL  | EBR      | NBL     | NBT       | SBT     | SBR  |
| Lane Configurations                  | W    |          |         | 4         | ĵ.      |      |
|                                      | 255  | 170      | 24      | 46        | 128     | 68   |
|                                      | 255  | 170      | 24      | 46        | 128     | 68   |
| Conflicting Peds, #/hr               | 0    | 0        | 0       | 0         | 0       | 0    |
|                                      | Stop | Stop     | Free    | Free      | Free    | Free |
| RT Channelized                       |      | None     |         | None      |         | None |
| Storage Length                       | 0    | -        | _       | -         | _       | -    |
| Veh in Median Storage, #             |      | _        | _       | 0         | 0       | _    |
| Grade, %                             | 0    | _        | _       | 0         | 0       | -    |
| Peak Hour Factor                     | 90   | 90       | 90      | 90        | 90      | 90   |
|                                      |      |          |         |           |         |      |
| Heavy Vehicles, %                    | 0    | 0        | 0       | 0         | 0       | 0    |
| Mvmt Flow                            | 283  | 189      | 27      | 51        | 142     | 76   |
|                                      |      |          |         |           |         |      |
| Major/Minor Min                      | nor2 | N        | /lajor1 | N         | /lajor2 |      |
|                                      | 284  | 180      | 218     | 0         | _       | 0    |
|                                      | 180  | -        | -       | _         | _       | _    |
|                                      | 104  | _        | _       | _         | _       | _    |
|                                      | 6.4  | 6.2      | 4.1     | _         | _       | _    |
|                                      | 5.4  | -        | - '- '  | _         | _       | _    |
|                                      | 5.4  | _        | _       |           | _       | _    |
|                                      | 3.5  | 3.3      | 2.2     |           | _       | _    |
|                                      | 710  | 868      | 1364    | _         | _       |      |
|                                      | 856  | 000      | 1504    | -         | -       | -    |
|                                      |      | -        | -       | -         | -       |      |
|                                      | 925  | -        | -       | -         | -       | -    |
| Platoon blocked, %                   | 000  | 000      | 1004    | -         | _       | -    |
| •                                    | 696  | 868      | 1364    | -         | -       | -    |
|                                      | 696  | -        | -       | -         | -       | -    |
|                                      | 839  | -        | -       | -         | -       | -    |
| Stage 2                              | 925  | -        | -       | -         | -       | -    |
|                                      |      |          |         |           |         |      |
| Approach                             | EB   |          | NB      |           | SB      |      |
| •••                                  |      |          |         |           |         |      |
| HCM Control Delay, s/17              |      |          | 2.64    |           | 0       |      |
| HCM LOS                              | С    |          |         |           |         |      |
|                                      |      |          |         |           |         |      |
| Minor Lane/Major Mvmt                |      | NBL      | NBTF    | EBLn1     | SBT     | SBR  |
| Capacity (veh/h)                     |      | 617      | -       |           | -       | -    |
| HCM Lane V/C Ratio                   |      | 0.02     |         | 0.625     | _       | _    |
|                                      | h)   | 7.7      |         | 17.4      |         |      |
| HCM Control Delay (s/ve HCM Lane LOS | 11)  | 7.7<br>A | 0<br>A  | 17.4<br>C | -       | -    |
|                                      |      |          |         |           | -       | -    |
| HCM 95th %tile Q(veh)                |      | 0.1      | -       | 4.4       | -       | -    |
|                                      |      | J. 1     |         |           |         |      |

| Intersection               |               |      |            |       |        |          |
|----------------------------|---------------|------|------------|-------|--------|----------|
| Int Delay, s/veh           | 2.1           |      |            |       |        |          |
| Movement                   | WBL           | WBR  | NBT        | NBR   | SBL    | SBT      |
| Lane Configurations        | 1100          | 7    | <b>↑</b> ⊅ | HUIT  | UDL    | <b>^</b> |
| Traffic Vol, veh/h         | 5             | 148  | 426        | 30    | 0      | 382      |
| Future Vol, veh/h          | 5             | 148  | 426        | 30    | 0      | 382      |
| Conflicting Peds, #/hr     | 0             | 0    | 0          | 100   | 0      | 0        |
| Sign Control               | Stop          | Stop | Free       | Free  | Free   | Free     |
| RT Channelized             | -             |      | -          | None  | -      |          |
| Storage Length             | -             | 0    | -          | -     | -      | -        |
| Veh in Median Storage      | e, # 0        | -    | 0          | -     | -      | 0        |
| Grade, %                   | 0             | -    | 0          | -     | -      | 0        |
| Peak Hour Factor           | 90            | 90   | 90         | 90    | 90     | 90       |
| Heavy Vehicles, %          | 0             | 0    | 2          | 0     | 2      | 2        |
| Mvmt Flow                  | 6             | 164  | 473        | 33    | 0      | 424      |
|                            |               |      |            |       |        |          |
| Major/Minor N              | /linor1       | A    | laior1     | N     | laior? |          |
| _                          |               |      | /lajor1    |       | lajor2 |          |
| Conflicting Flow All       | 802           | 353  | 0          | 0     | -      | -        |
| Stage 1                    | 590           | -    | -          | -     | -      | -        |
| Stage 2                    | 212<br>6.8    | 6.9  | -          | -     | -      | -        |
| Critical Hdwy              | 5.8           |      | -          | -     | -      | -        |
| Critical Hdwy Stg 1        | 5.8           | -    | -          | -     | -      | -        |
| Critical Hdwy Stg 2        |               | 3.3  | -          | -     | -      | -        |
| Follow-up Hdwy             | 3.5<br>326    | 649  | -          | -     | 0      | -        |
| Pot Cap-1 Maneuver         | 522           |      | -          |       | 0      | -        |
| Stage 1                    | 809           | -    | -          | -     | 0      | -        |
| Stage 2 Platoon blocked, % | 009           | -    | -          | -     | U      | -        |
|                            | 291           | 580  | -          | -     |        | -        |
| Mov Cap-1 Maneuver         | 291           |      | -          | -     | -      | -        |
| Mov Cap-2 Maneuver         | 467           | -    | -          | -     | -      | -        |
| Stage 1                    | 809           | -    | -          | -     | -      | -        |
| Stage 2                    | 009           | -    | -          | -     | -      | -        |
|                            |               |      |            |       |        |          |
| Approach                   | WB            |      | NB         |       | SB     |          |
| HCM Control Delay, s/      | <b>1</b> 3.64 |      | 0          |       | 0      |          |
| HCM LOS                    | В             |      |            |       |        |          |
|                            |               |      |            |       |        |          |
| Minor Lane/Major Mvm       | nt            | NBT  | NBRV       | VBLn1 | SBT    |          |
| Capacity (veh/h)           |               |      |            | 580   | -      |          |
| HCM Lane V/C Ratio         |               | _    | _          | 0.283 | _      |          |
| HCM Control Delay (s/      | veh)          | -    | _          | 13.6  | -      |          |
| HCM Lane LOS               |               | _    | _          | В     | _      |          |
| HCM 95th %tile Q(veh       | )             | -    | -          | 1.2   | _      |          |
| Julio de volt              | 1             |      |            | 1.2   |        |          |

# 2033 Scenario

Major Event Ingress


1: Bank & Fifth 08/06/2024

|                                            | ۶           | <b>→</b>  | •         | +         | 1          | <b>†</b> | <b>/</b> | <b></b> |   |
|--------------------------------------------|-------------|-----------|-----------|-----------|------------|----------|----------|---------|---|
| Lane Group                                 | EBL         | EBT       | WBL       | WBT       | NBL        | NBT      | SBL      | SBT     |   |
| Lane Configurations                        |             | 4         | ሻ         | ĵ»        |            | 475      |          | 414     | _ |
| Traffic Volume (vph)                       | 63          | 56        | 75        | 64        | 24         | 491      | 33       | 655     |   |
| Future Volume (vph)                        | 63          | 56        | 75        | 64        | 24         | 491      | 33       | 655     |   |
| ane Group Flow (vph)                       | 0           | 174       | 83        | 139       | 0          | 615      | 0        | 833     |   |
| Turn Type                                  | Perm        | NA        | Perm      | NA        | Perm       | NA       | Perm     | NA      |   |
| Protected Phases                           |             | 4         |           | 8         |            | 2        |          | 6       |   |
| Permitted Phases                           | 4           |           | 8         |           | 2          |          | 6        | •       |   |
| Detector Phase                             | 4           | 4         | 8         | 8         | 2          | 2        | 6        | 6       |   |
| Switch Phase                               |             | •         |           |           | _          | _        |          | •       |   |
| Minimum Initial (s)                        | 4.0         | 4.0       | 4.0       | 4.0       | 4.0        | 4.0      | 4.0      | 4.0     |   |
| /linimum Split (s)                         | 26.0        | 26.0      | 26.0      | 26.0      | 49.0       | 49.0     | 49.0     | 49.0    |   |
| otal Split (s)                             | 26.0        | 26.0      | 26.0      | 26.0      | 49.0       | 49.0     | 49.0     | 49.0    |   |
| Total Split (%)                            | 34.7%       | 34.7%     | 34.7%     | 34.7%     | 65.3%      | 65.3%    | 65.3%    | 65.3%   |   |
| Yellow Time (s)                            | 3.0         | 3.0       | 3.0       | 3.0       | 3.0        | 3.0      | 3.0      | 3.0     |   |
| All-Red Time (s)                           | 2.5         | 2.5       | 2.5       | 2.5       | 2.5        | 2.5      | 2.5      | 2.5     |   |
| ost Time Adjust (s)                        | 2.0         | 0.0       | 0.0       | 0.0       | 2.0        | 0.0      | 2.0      | 0.0     |   |
| Fotal Lost Time (s)                        |             | 5.5       | 5.5       | 5.5       |            | 5.5      |          | 5.5     |   |
| Lead/Lag                                   |             | 0.0       | 0.0       | 0.0       |            | 0.0      |          | 0.0     |   |
| _ead-Lag Optimize?                         |             |           |           |           |            |          |          |         |   |
| Recall Mode                                | None        | None      | None      | None      | Max        | Max      | Max      | Max     |   |
| Act Effct Green (s)                        | 140110      | 13.8      | 13.8      | 13.8      | WICK       | 45.6     | WICK     | 45.6    |   |
| Actuated g/C Ratio                         |             | 0.20      | 0.20      | 0.20      |            | 0.65     |          | 0.65    |   |
| /c Ratio                                   |             | 0.69      | 0.43      | 0.42      |            | 0.35     |          | 0.47    |   |
| Control Delay (s/veh)                      |             | 36.5      | 30.7      | 17.5      |            | 6.9      |          | 8.0     |   |
| Queue Delay                                |             | 0.0       | 0.0       | 0.0       |            | 0.0      |          | 0.0     |   |
| Fotal Delay (s/veh)                        |             | 36.5      | 30.7      | 17.5      |            | 6.9      |          | 8.0     |   |
| OS                                         |             | 50.5<br>D | 30.7<br>C | 17.3<br>B |            | Α        |          | Α       |   |
| Approach Delay (s/veh)                     |             | 36.5      | U         | 22.4      |            | 6.9      |          | 8.0     |   |
| Approach LOS                               |             | 50.5<br>D |           | C         |            | 0.5<br>A |          | Α       |   |
| Queue Length 50th (m)                      |             | 18.0      | 9.3       | 8.2       |            | 16.0     |          | 24.1    |   |
| Queue Length 95th (m)                      |             | 36.3      | 20.8      | 21.8      |            | 31.6     |          | 46.8    |   |
| nternal Link Dist (m)                      |             | 49.7      | 20.0      | 112.4     |            | 195.6    |          | 190.0   |   |
| Furn Bay Length (m)                        |             | 43.1      | 45.0      | 112.4     |            | 195.0    |          | 190.0   |   |
| , , ,                                      |             | 366       | 286       | 457       |            | 1770     |          | 1780    |   |
| Base Capacity (vph) Starvation Cap Reductn |             | 0         | 200       | 437       |            | 0        |          | 0       |   |
| Spillback Cap Reductin                     |             | 0         | 0         | 0         |            | 0        |          | 0       |   |
|                                            |             | 0         | 0         | 0         |            | 0        |          | 0       |   |
| Storage Cap Reductn Reduced v/c Ratio      |             | 0.48      | 0.29      | 0.30      |            | 0.35     |          | 0.47    |   |
|                                            |             | 0.40      | 0.20      | 0.00      |            | 0.00     |          | V.T1    |   |
| ntersection Summary                        |             |           |           |           |            |          |          |         |   |
| Cycle Length: 75                           | F           |           |           |           |            |          |          |         |   |
| Actuated Cycle Length: 70.                 | .ວ          |           |           |           |            |          |          |         |   |
| Natural Cycle: 75                          |             | al        |           |           |            |          |          |         |   |
| Control Type: Actuated-Un                  | coordinate  | a         |           |           |            |          |          |         |   |
| Maximum v/c Ratio: 0.69                    | - / I- \ 40 | 0         |           |           | . 4        | - 1 00 5 | ,        |         |   |
| Intersection Signal Delay (                |             |           |           |           | ntersectio |          |          |         |   |

Intersection Capacity Utilization 89.8% Analysis Period (min) 15

ICU Level of Service E

Splits and Phases: 1: Bank & Fifth



|                               | <b>→</b>     | 1        | <b>†</b>   | <b>/</b>  | <del> </del> |               |
|-------------------------------|--------------|----------|------------|-----------|--------------|---------------|
| Lane Group                    | EBT          | NBL      | NBT        | SBL       | SBT          | Ø3            |
| Lane Configurations           | 4            |          | 414        |           | 414          |               |
| Traffic Volume (vph)          | 39           | 71       | 518        | 59        | 605          |               |
| Future Volume (vph)           | 39           | 71       | 518        | 59        | 605          |               |
| Lane Group Flow (vph)         | 157          | 0        | 793        | 0         | 796          |               |
| Turn Type                     | NA           | Perm     | NA         | Perm      | NA           |               |
| Protected Phases              | 4            |          | 2          |           | 6            | 3             |
| Permitted Phases              |              | 2        |            | 6         | -            |               |
| Detector Phase                | 4            | 2        | 2          | 6         | 6            |               |
| Switch Phase                  |              |          |            |           |              |               |
| Minimum Initial (s)           | 4.4          | 10.0     | 10.0       | 4.0       | 4.0          | 1.0           |
| Minimum Split (s)             | 22.0         | 48.0     | 48.0       | 48.0      | 48.0         | 5.0           |
| Total Split (s)               | 22.0         | 48.0     | 48.0       | 48.0      | 48.0         | 5.0           |
| Total Split (%)               | 29.3%        | 64.0%    | 64.0%      | 64.0%     | 64.0%        | 7%            |
| Yellow Time (s)               | 3.0          | 3.0      | 3.0        | 3.0       | 3.0          | 2.0           |
| All-Red Time (s)              | 2.6          | 2.2      | 2.2        | 2.2       | 2.2          | 0.0           |
| Lost Time Adjust (s)          | 0.0          |          | 0.0        |           | 0.0          |               |
| Total Lost Time (s)           | 5.6          |          | 5.2        |           | 5.2          |               |
| Lead/Lag                      | Lag          |          |            |           |              | Lead          |
| Lead-Lag Optimize?            |              |          |            |           |              |               |
| Recall Mode                   | None         | C-Max    | C-Max      | C-Max     | C-Max        | None          |
| Act Effct Green (s)           | 13.5         |          | 50.7       |           | 50.7         |               |
| Actuated g/C Ratio            | 0.18         |          | 0.68       |           | 0.68         |               |
| v/c Ratio                     | 0.62         |          | 0.52       |           | 0.47         |               |
| Control Delay (s/veh)         | 38.5         |          | 4.2        |           | 7.5          |               |
| Queue Delay                   | 0.0          |          | 0.0        |           | 0.0          |               |
| Total Delay (s/veh)           | 38.5         |          | 4.2        |           | 7.5          |               |
| LOS                           | D            |          | Α          |           | A            |               |
| Approach Delay (s/veh)        | 38.5         |          | 4.2        |           | 7.5          |               |
| Approach LOS                  | D            |          | Α          |           | Α            |               |
| Queue Length 50th (m)         | 20.7         |          | 1.6        |           | 23.1         |               |
| Queue Length 95th (m)         | 35.3         |          | 47.6       |           | 43.7         |               |
| Internal Link Dist (m)        | 39.8         |          | 31.5       |           | 195.6        |               |
| Turn Bay Length (m)           |              |          |            |           |              |               |
| Base Capacity (vph)           | 316          |          | 1512       |           | 1695         |               |
| Starvation Cap Reductn        | 0            |          | 0          |           | 0            |               |
| Spillback Cap Reductn         | 0            |          | 0          |           | 0            |               |
| Storage Cap Reductn           | 0            |          | 0          |           | 0            |               |
| Reduced v/c Ratio             | 0.50         |          | 0.52       |           | 0.47         |               |
| Intersection Summary          |              |          |            |           |              |               |
| Cycle Length: 75              |              |          |            |           |              |               |
| Actuated Cycle Length: 75     |              |          |            |           |              |               |
| Offset: 74 (99%), Reference   | ed to phas   | se 2:NBT | L and 6:5  | SBTL. Sta | art of Gree  | en            |
| Natural Cycle: 75             | . a to pride |          | _ 4.14 0.0 | , 0       |              |               |
| Control Type: Actuated-Coo    | rdinated     |          |            |           |              |               |
| Maximum v/c Ratio: 0.62       | umatou       |          |            |           |              |               |
| Intersection Signal Delay (s  | /veh)· 8 8   |          |            | li        | ntersectio   | n LOS: A      |
| Intersection Capacity Utiliza |              |          |            |           |              | of Service D  |
| Analysis Period (min) 15      |              | ,,       |            | ''        | OO LUVUI     | OI OOI VICE D |
| raidiyələ i Gilou (IIIII) 13  |              |          |            |           |              |               |

Splits and Phases: 2: Bank & Holmwood



|                            | •         | •        | <b>†</b>   | <b>/</b>   | <b>↓</b> |      |      |  |
|----------------------------|-----------|----------|------------|------------|----------|------|------|--|
| Lane Group                 | WBL       | WBR      | NBT        | SBL        | SBT      | Ø1   | Ø7   |  |
| Lane Configurations        | ሻ         | 7        | <b>↑</b> ↑ | 7          | <b>^</b> |      |      |  |
| Traffic Volume (vph)       | 61        | 44       | 655        | 66         | 595      |      |      |  |
| Future Volume (vph)        | 61        | 44       | 655        | 66         | 595      |      |      |  |
| Lane Group Flow (vph)      | 68        | 49       | 819        | 73         | 661      |      |      |  |
| Turn Type                  | Prot      | Perm     | NA         | Perm       | NA       |      |      |  |
| Protected Phases           | 8         |          | 2          |            | 6        | 1    | 7    |  |
| Permitted Phases           |           | 8        |            | 6          |          |      |      |  |
| Detector Phase             | 8         | 8        | 2          | 6          | 6        |      |      |  |
| Switch Phase               |           |          |            |            |          |      |      |  |
| Minimum Initial (s)        | 10.0      | 10.0     | 10.0       | 10.0       | 10.0     | 1.0  | 1.0  |  |
| Minimum Split (s)          | 26.0      | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |  |
| Total Split (s)            | 26.0      | 26.0     | 39.0       | 44.0       | 44.0     | 5.0  | 5.0  |  |
| Total Split (%)            | 34.7%     | 34.7%    | 52.0%      | 58.7%      | 58.7%    | 7%   | 7%   |  |
| Yellow Time (s)            | 3.3       | 3.3      | 3.0        | 3.0        | 3.0      | 2.0  | 3.5  |  |
| All-Red Time (s)           | 3.0       | 3.0      | 3.9        | 3.9        | 3.9      | 0.0  | 0.0  |  |
| Lost Time Adjust (s)       | 0.0       | 0.0      | 0.0        | 0.0        | 0.0      |      |      |  |
| Total Lost Time (s)        | 6.3       | 6.3      | 6.9        | 6.9        | 6.9      |      |      |  |
| Lead/Lag                   | Lag       | Lag      | Lag        |            |          | Lead | Lead |  |
| Lead-Lag Optimize?         |           |          | Yes        |            |          | Yes  | Yes  |  |
| Recall Mode                | None      | None     | C-Max      | C-Max      | C-Max    | None | None |  |
| Act Effct Green (s)        | 10.3      | 10.3     | 56.1       | 56.1       | 56.1     |      |      |  |
| Actuated g/C Ratio         | 0.14      | 0.14     | 0.75       | 0.75       | 0.75     |      |      |  |
| v/c Ratio                  | 0.30      | 0.25     | 0.36       | 0.18       | 0.28     |      |      |  |
| Control Delay (s/veh)      | 32.9      | 12.6     | 4.9        | 4.8        | 3.7      |      |      |  |
| Queue Delay                | 0.0       | 0.0      | 0.0        | 0.0        | 0.0      |      |      |  |
| Total Delay (s/veh)        | 32.9      | 12.6     | 4.9        | 4.8        | 3.7      |      |      |  |
| LOS                        | С         | В        | Α          | Α          | Α        |      |      |  |
| Approach Delay (s/veh)     | 24.4      |          | 4.9        |            | 3.8      |      |      |  |
| Approach LOS               | С         |          | Α          |            | Α        |      |      |  |
| Queue Length 50th (m)      | 8.8       | 0.0      | 20.6       | 2.8        | 13.8     |      |      |  |
| Queue Length 95th (m)      | 19.4      | 8.6      | 31.8       | m6.1       | 18.1     |      |      |  |
| Internal Link Dist (m)     | 30.6      |          | 33.7       |            | 44.8     |      |      |  |
| Turn Bay Length (m)        |           |          |            | 40.0       |          |      |      |  |
| Base Capacity (vph)        | 429       | 331      | 2284       | 406        | 2373     |      |      |  |
| Starvation Cap Reductn     | 0         | 0        | 0          | 0          | 0        |      |      |  |
| Spillback Cap Reductn      | 0         | 0        | 0          | 0          | 0        |      |      |  |
| Storage Cap Reductn        | 0         | 0        | 0          | 0          | 0        |      |      |  |
| Reduced v/c Ratio          | 0.16      | 0.15     | 0.36       | 0.18       | 0.28     |      |      |  |
| Intersection Summary       |           |          |            |            |          |      |      |  |
| Cycle Length: 75           |           |          |            |            |          |      |      |  |
| Actuated Cycle Length: 75  |           |          |            |            |          |      |      |  |
| Offset: 0 (0%), Referenced | to phase  | 2:NBT ar | nd 6:SBT   | L, Start o | f Green  |      |      |  |
| Natural Cycle: 75          |           |          |            |            |          |      |      |  |
| Control Type: Actuated-Cod | ordinated |          |            |            |          |      |      |  |

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.36

Intersection Signal Delay (s/veh): 5.8 Intersection LOS: A Intersection Capacity Utilization 63.6% ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Bank & Exhibition



## 6: Bank & Aylmer

|                                                               | ۶           | •        | <b>†</b>  | ļ          |                       |  |
|---------------------------------------------------------------|-------------|----------|-----------|------------|-----------------------|--|
| Lane Group                                                    | EBL         | NBL      | NBT       | SBT        | Ø3                    |  |
| Lane Configurations                                           | W           |          | 414       | <b>ተ</b> ኈ |                       |  |
| Traffic Volume (vph)                                          | 93          | 14       | 772       | 799        |                       |  |
| Future Volume (vph)                                           | 93          | 14       | 772       | 799        |                       |  |
| Lane Group Flow (vph)                                         | 131         | 0        | 874       | 946        |                       |  |
| Turn Type                                                     | Prot        | Perm     | NA        | NA         |                       |  |
| Protected Phases                                              | 4           |          | 2         | 6          | 3                     |  |
| Permitted Phases                                              | 4           | 2        |           | 6          |                       |  |
| Detector Phase                                                | 4           | 2        | 2         | 6          |                       |  |
| Switch Phase                                                  |             |          |           |            |                       |  |
| Minimum Initial (s)                                           | 10.0        | 30.0     | 30.0      | 30.0       | 1.0                   |  |
| Minimum Split (s)                                             | 22.0        | 63.0     | 63.0      | 63.0       | 5.0                   |  |
| Total Split (s)                                               | 22.0        | 63.0     | 63.0      | 63.0       | 5.0                   |  |
| Total Split (%)                                               | 24.4%       | 70.0%    | 70.0%     | 70.0%      | 6%                    |  |
| Yellow Time (s)                                               | 3.3         | 3.0      | 3.0       | 3.0        | 2.0                   |  |
| All-Red Time (s)                                              | 2.2         | 2.2      | 2.2       | 2.2        | 1.0                   |  |
| Lost Time Adjust (s)                                          | 0.0         |          | 0.0       | 0.0        |                       |  |
| Total Lost Time (s)                                           | 5.5         |          | 5.2       | 5.2        |                       |  |
| Lead/Lag                                                      | Lag         |          |           |            | Lead                  |  |
| Lead-Lag Optimize?                                            |             |          |           |            |                       |  |
| Recall Mode                                                   | Ped         | C-Max    | C-Max     | C-Max      | Max                   |  |
| Act Effct Green (s)                                           | 14.6        |          | 59.7      | 59.7       |                       |  |
| Actuated g/C Ratio                                            | 0.16        |          | 0.66      | 0.66       |                       |  |
| v/c Ratio                                                     | 0.52        |          | 0.44      | 0.46       |                       |  |
| Control Delay (s/veh)                                         | 38.8        |          | 8.2       | 8.2        |                       |  |
| Queue Delay                                                   | 0.0         |          | 0.0       | 0.0        |                       |  |
| Total Delay (s/veh)                                           | 38.8        |          | 8.2       | 8.2        |                       |  |
| _OS                                                           | D           |          | Α         | Α          |                       |  |
| Approach Delay (s/veh)                                        | 38.8        |          | 8.2       | 8.2        |                       |  |
| Approach LOS                                                  | D           |          | Α         | Α          |                       |  |
| Queue Length 50th (m)                                         | 19.0        |          | 32.6      | 35.3       |                       |  |
| Queue Length 95th (m)                                         | 35.4        |          | 48.3      | 51.7       |                       |  |
| nternal Link Dist (m)                                         | 76.7        |          | 28.1      | 10.1       |                       |  |
| Turn Bay Length (m)                                           |             |          |           |            |                       |  |
| Base Capacity (vph)                                           | 283         |          | 1973      | 2044       |                       |  |
| Starvation Cap Reductn                                        | 0           |          | 0         | 0          |                       |  |
| Spillback Cap Reductn                                         | 0           |          | 0         | 0          |                       |  |
| Storage Cap Reductn                                           | 0           |          | 0         | 0          |                       |  |
| Reduced v/c Ratio                                             | 0.46        |          | 0.44      | 0.46       |                       |  |
| ntersection Summary                                           |             |          |           |            |                       |  |
| Cycle Length: 90                                              |             |          |           |            |                       |  |
| Actuated Cycle Length: 90                                     |             |          |           |            |                       |  |
| Offset: 87 (97%), Reference                                   | ed to phas  | se 2:NBT | L and 6:S | BT, Start  | of Green              |  |
| Natural Cycle: 90                                             |             |          |           |            |                       |  |
| Control Type: Actuated-Coo                                    | ordinated   |          |           |            |                       |  |
| Maximum v/c Ratio: 0.52                                       |             |          |           |            |                       |  |
|                                                               | /veh): 10   | 2        |           | In         | tersection LOS: B     |  |
| Intersection Signal Delay (s                                  | o venj. 10. | J        |           |            |                       |  |
| Intersection Signal Delay (s<br>Intersection Capacity Utiliza |             |          |           |            | CU Level of Service A |  |

Splits and Phases: 6: Bank & Aylmer



|                        | •     | <b>→</b> | •     | •     | 4     | <b>†</b> | <b>&gt;</b> | ţ     |      |      |  |
|------------------------|-------|----------|-------|-------|-------|----------|-------------|-------|------|------|--|
| Lane Group             | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL         | SBT   | Ø3   | Ø7   |  |
| Lane Configurations    |       | 4        |       | 4     |       | 4T+      |             | 47>   |      |      |  |
| Traffic Volume (vph)   | 54    | 80       | 14    | 86    | 27    | 555      | 143         | 651   |      |      |  |
| Future Volume (vph)    | 54    | 80       | 14    | 86    | 27    | 555      | 143         | 651   |      |      |  |
| Lane Group Flow (vph)  | 0     | 191      | 0     | 291   | 0     | 679      | 0           | 978   |      |      |  |
| Turn Type              | Perm  | NA       | Perm  | NA    | Perm  | NA       | pm+pt       | NA    |      |      |  |
| Protected Phases       |       | 4        |       | 8     |       | 2        | 1           | 6     | 3    | 7    |  |
| Permitted Phases       | 4     |          | 8     |       | 2     |          | 6           |       |      |      |  |
| Detector Phase         | 4     | 4        | 8     | 8     | 2     | 2        | 1           | 6     |      |      |  |
| Switch Phase           |       |          |       |       |       |          |             |       |      |      |  |
| Minimum Initial (s)    | 6.4   | 6.4      | 5.3   | 5.3   | 17.0  | 17.0     | 5.0         | 17.0  | 1.0  | 1.0  |  |
| Minimum Split (s)      | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0     | 17.0        | 60.0  | 5.0  | 5.0  |  |
| Total Split (s)        | 25.0  | 25.0     | 25.0  | 25.0  | 43.0  | 43.0     | 17.0        | 60.0  | 5.0  | 5.0  |  |
| Total Split (%)        | 27.8% | 27.8%    | 27.8% | 27.8% | 47.8% | 47.8%    | 18.9%       | 66.7% | 6%   | 6%   |  |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0         | 3.0   | 2.0  | 2.0  |  |
| All-Red Time (s)       | 2.6   | 2.6      | 2.6   | 2.6   | 3.0   | 3.0      | 2.9         | 3.0   | 0.0  | 0.0  |  |
| Lost Time Adjust (s)   |       | 0.0      |       | 0.0   |       | 0.0      |             | 0.0   |      |      |  |
| Total Lost Time (s)    |       | 5.6      |       | 5.6   |       | 6.0      |             | 6.0   |      |      |  |
| Lead/Lag               | Lag   | Lag      | Lag   | Lag   | Lag   | Lag      | Lead        |       | Lead | Lead |  |
| Lead-Lag Optimize?     |       |          | Yes   | Yes   | Yes   | Yes      | Yes         |       |      | Yes  |  |
| Recall Mode            | None  | None     | None  | None  | Max   | Max      | None        | Max   | None | None |  |
| Act Effct Green (s)    |       | 19.4     |       | 19.4  |       | 54.0     |             | 54.0  |      |      |  |
| Actuated g/C Ratio     |       | 0.23     |       | 0.23  |       | 0.64     |             | 0.64  |      |      |  |
| v/c Ratio              |       | 0.88     |       | 0.86  |       | 0.39     |             | 0.76  |      |      |  |
| Control Delay (s/veh)  |       | 72.0     |       | 49.0  |       | 8.3      |             | 15.4  |      |      |  |
| Queue Delay            |       | 0.0      |       | 0.0   |       | 0.0      |             | 0.0   |      |      |  |
| Total Delay (s/veh)    |       | 72.0     |       | 49.0  |       | 8.3      |             | 15.4  |      |      |  |
| LOS                    |       | Е        |       | D     |       | Α        |             | В     |      |      |  |
| Approach Delay (s/veh) |       | 72.0     |       | 49.0  |       | 8.3      |             | 15.4  |      |      |  |
| Approach LOS           |       | Е        |       | D     |       | Α        |             | В     |      |      |  |
| Queue Length 50th (m)  |       | 30.1     |       | 33.5  |       | 24.8     |             | 51.1  |      |      |  |
| Queue Length 95th (m)  |       | #67.4    |       | #78.0 |       | 34.7     |             | 77.1  |      |      |  |
| Internal Link Dist (m) |       | 75.1     |       | 136.0 |       | 63.1     |             | 79.0  |      |      |  |
| Turn Bay Length (m)    |       |          |       |       |       |          |             |       |      |      |  |
| Base Capacity (vph)    |       | 216      |       | 337   |       | 1722     |             | 1294  |      |      |  |
| Starvation Cap Reductn |       | 0        |       | 0     |       | 0        |             | 0     |      |      |  |
| Spillback Cap Reductn  |       | 0        |       | 0     |       | 0        |             | 0     |      |      |  |
| Storage Cap Reductn    |       | 0        |       | 0     |       | 0        |             | 0     |      |      |  |
| Reduced v/c Ratio      |       | 0.88     |       | 0.86  |       | 0.39     |             | 0.76  |      |      |  |

#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 85

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay (s/veh): 22.8

Intersection LOS: C

Intersection Capacity Utilization 92.2%

ICU Level of Service F

Analysis Period (min) 15

#### # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


Splits and Phases: 7: Bank & Sunnyside



|                                                   | •             | •     | †     | ļ              |                |          |
|---------------------------------------------------|---------------|-------|-------|----------------|----------------|----------|
| Lane Group                                        | EBL           | NBL   | NBT   | SBT            | Ø4             |          |
| Lane Configurations                               | W.            | .,    | 4     | <u>\$</u>      |                |          |
| Traffic Volume (vph)                              | 97            | 73    | 272   | 662            |                |          |
| Future Volume (vph)                               | 97            | 73    | 272   | 662            |                |          |
| Lane Group Flow (vph)                             | 210           | 0     | 383   | 880            |                |          |
| Turn Type                                         | Prot          | Perm  | NA    | NA             |                |          |
| Protected Phases                                  | 10            |       | 2     | 6              | 4              |          |
| Permitted Phases                                  |               | 2     |       |                |                |          |
| Detector Phase                                    | 10            | 2     | 2     | 6              |                |          |
| Switch Phase                                      |               |       |       |                |                |          |
| Minimum Initial (s)                               | 10.0          | 4.0   | 4.0   | 4.0            | 4.0            |          |
| Minimum Split (s)                                 | 20.7          | 10.8  | 10.8  | 31.8           | 9.7            |          |
| Total Split (s)                                   | 21.0          | 48.0  | 48.0  | 48.0           | 11.0           |          |
| Total Split (%)                                   | 26.3%         | 60.0% | 60.0% | 60.0%          | 14%            |          |
| Yellow Time (s)                                   | 3.0           | 3.0   | 3.0   | 3.0            | 3.0            |          |
| All-Red Time (s)                                  | 2.7           | 3.8   | 3.8   | 3.8            | 2.7            |          |
| Lost Time Adjust (s)                              | 0.0           |       | 0.0   | 0.0            |                |          |
| Total Lost Time (s)                               | 5.7           |       | 6.8   | 6.8            |                |          |
| Lead/Lag                                          |               |       |       |                |                |          |
| Lead-Lag Optimize?                                |               |       |       |                |                |          |
| Recall Mode                                       | Min           | None  | None  | Max            | None           |          |
| Act Effct Green (s)                               | 13.6          |       | 41.2  | 41.2           |                |          |
| Actuated g/C Ratio                                | 0.20          |       | 0.61  | 0.61           |                |          |
| v/c Ratio                                         | 0.68          |       | 0.69  | 0.87           |                |          |
| Control Delay (s/veh)                             | 36.9          |       | 17.9  | 23.7           |                |          |
| Queue Delay                                       | 0.0           |       | 0.0   | 0.0            |                |          |
| Total Delay (s/veh)                               | 36.9          |       | 17.9  | 23.7           |                |          |
| LOS                                               | D             |       | 47.0  | C              |                |          |
| Approach Delay (s/veh)                            | 36.9          |       | 17.9  | 23.7           |                |          |
| Approach LOS                                      | D             |       | 30.1  | C              |                |          |
| Queue Length 50th (m)                             | 24.6<br>#45.2 |       |       | 85.7<br>#169.4 |                |          |
| Queue Length 95th (m) Internal Link Dist (m)      | #45.2<br>57.2 |       | 0.1   | 5.9            |                |          |
| Turn Bay Length (m)                               | 31.2          |       | 0.1   | 5.9            |                |          |
| Base Capacity (vph)                               | 349           |       | 554   | 1010           |                |          |
| Starvation Cap Reductn                            | 0             |       | 0     | 0              |                |          |
| Spillback Cap Reductin                            | 0             |       | 0     | 0              |                |          |
| Storage Cap Reductn                               | 0             |       | 0     | 0              |                |          |
| Reduced v/c Ratio                                 | 0.60          |       | 0.69  | 0.87           |                |          |
|                                                   | 0.00          |       | 0.09  | 0.07           |                |          |
| Intersection Summary                              |               |       |       |                |                |          |
| Cycle Length: 80                                  |               |       |       |                |                |          |
| Actuated Cycle Length: 67.                        | 3             |       |       |                |                |          |
| Natural Cycle: 90                                 |               |       |       |                |                |          |
| Control Type: Actuated-Und                        | coordinate    | :d    |       |                |                |          |
| Maximum v/c Ratio: 0.87                           |               |       |       |                |                |          |
| Intersection Signal Delay (s                      |               |       |       |                | ntersection LO |          |
| Intersection Capacity Utiliza                     | ation 92.2°   | %     |       | IC             | CU Level of Se | ervice F |
| Analysis Period (min) 15 # 95th percentile volume |               |       |       |                |                |          |

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 9: Queen Elizabeth Drive & Fifth



| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 70   | 59   | 0    | 0    | 0    | 203  | 61   | 61   | 97   | 0    | 0    | 134  |
| Future Vol, veh/h          | 70   | 59   | 0    | 0    | 0    | 203  | 61   | 61   | 97   | 0    | 0    | 134  |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 78   | 66   | 0    | 0    | 0    | 226  | 68   | 68   | 108  | 0    | 0    | 149  |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 9.7  |      |      |      |      | 9.2  | 10.1 |      |      |      |      | 8.6  |
| HCM LOS                    | Α    |      |      |      |      | Α    | В    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
|--------------------------|-------|-------|-------|-------|
| Vol Left, %              | 28%   | 54%   | 0%    | 0%    |
| Vol Thru, %              | 28%   | 46%   | 0%    | 0%    |
| Vol Right, %             | 44%   | 0%    | 100%  | 100%  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane      | 219   | 129   | 203   | 134   |
| LT Vol                   | 61    | 70    | 0     | 0     |
| Through Vol              | 61    | 59    | 0     | 0     |
| RT Vol                   | 97    | 0     | 203   | 134   |
| Lane Flow Rate           | 243   | 143   | 226   | 149   |
| Geometry Grp             | 1     | 1     | 1     | 1     |
| Degree of Util (X)       | 0.322 | 0.208 | 0.278 | 0.186 |
| Departure Headway (Hd)   | 4.761 | 5.22  | 4.436 | 4.508 |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |
| Cap                      | 747   | 681   | 801   | 786   |
| Service Time             | 2.839 | 3.308 | 2.513 | 2.594 |
| HCM Lane V/C Ratio       | 0.325 | 0.21  | 0.282 | 0.19  |
| HCM Control Delay, s/veh | 10.1  | 9.7   | 9.2   | 8.6   |
| HCM Lane LOS             | В     | Α     | Α     | Α     |
| HCM 95th-tile Q          | 1.4   | 0.8   | 1.1   | 0.7   |

| Intersection           |              |         |          |          |                   |       |                        |                                |
|------------------------|--------------|---------|----------|----------|-------------------|-------|------------------------|--------------------------------|
| Int Delay, s/veh       | 20.5         |         |          |          |                   |       |                        |                                |
| Movement               | EBL          | EBR     | NBL      | NBT      | SBT               | SBR   |                        |                                |
| Lane Configurations    | LDL          | LDIX.   | NDL      | 44       | 1 <del>1</del> 00 | אפט   |                        |                                |
| Traffic Vol, veh/h     | 5            | 281     | 110      | 759      | 559               | 109   |                        |                                |
| Future Vol, veh/h      | 5            | 281     | 110      | 759      | 559               | 109   |                        |                                |
| Conflicting Peds, #/hr |              | 0       | 178      | 0        | 0                 | 103   |                        |                                |
| Sign Control           | Stop         | Stop    | Free     | Free     | Free              | Free  |                        |                                |
| RT Channelized         | Stop<br>-    |         | -        |          | -                 |       |                        |                                |
| Storage Length         | _            | 0       | _        | -        |                   | -     |                        |                                |
| Veh in Median Storag   |              | -       | _        | 0        | 0                 | _     |                        |                                |
| Grade, %               | ge, # 0<br>0 | _       | _        | 0        | 0                 | _     |                        |                                |
| Peak Hour Factor       | 90           | 90      | 90       | 90       | 90                | 90    |                        |                                |
| Heavy Vehicles, %      | 3            | 30      | 3        | 3        | 3                 | 3     |                        |                                |
| Mvmt Flow              | 6            | 312     | 122      | 843      | 621               | 121   |                        |                                |
| IVIVIIIL FIOW          | 0            | 312     | 122      | 043      | 021               | 121   |                        |                                |
|                        |              |         |          |          |                   |       |                        |                                |
| Major/Minor            | Minor2       |         | Major1   | <u> </u> | /lajor2           |       |                        |                                |
| Conflicting Flow All   | 1526         | 860     | 920      | 0        | -                 | 0     |                        |                                |
| Stage 1                | 860          | -       | -        | -        | -                 | -     |                        |                                |
| Stage 2                | 666          | -       | -        | -        | -                 | -     |                        |                                |
| Critical Hdwy          | 6.645        | 6.245   | 4.145    | -        | -                 | -     |                        |                                |
| Critical Hdwy Stg 1    | 5.445        | -       | -        | -        | -                 | -     |                        |                                |
| Critical Hdwy Stg 2    | 5.845        | -       | -        | -        | -                 | -     |                        |                                |
| Follow-up Hdwy         | 3.52853      | 3.32852 | 2.2285   | -        | -                 | -     |                        |                                |
| Pot Cap-1 Maneuver     | 118          | 353     | 734      | -        | -                 | -     |                        |                                |
| Stage 1                | 411          | -       | -        | -        | -                 | -     |                        |                                |
| Stage 2                | 471          | -       | -        | -        | -                 | -     |                        |                                |
| Platoon blocked, %     |              |         |          | -        | -                 | -     |                        |                                |
| Mov Cap-1 Maneuver     | r 57         | ~ 286   | 596      | -        | -                 | -     |                        |                                |
| Mov Cap-2 Maneuver     | r 57         | -       | -        | -        | -                 | -     |                        |                                |
| Stage 1                | 244          | -       | -        | -        | -                 | -     |                        |                                |
| Stage 2                | 382          | -       | -        | -        | -                 | -     |                        |                                |
|                        |              |         |          |          |                   |       |                        |                                |
| Approach               | EB           |         | NB       |          | SB                |       |                        |                                |
|                        |              |         | 3.88     |          | 0                 |       |                        |                                |
| HCM Control Delay, s   | 51/10.90     |         | ა.00     |          | U                 |       |                        |                                |
| HCM LOS                | r            |         |          |          |                   |       |                        |                                |
|                        |              |         |          |          |                   |       |                        |                                |
| Minor Lane/Major Mv    | mt           | NBL     | NBT      | EBLn1    | SBT               | SBR   |                        |                                |
| Capacity (veh/h)       |              | 456     | -        | 286      | -                 | -     |                        |                                |
| HCM Lane V/C Ratio     |              | 0.205   | -        | 1.09     | -                 | -     |                        |                                |
| HCM Control Delay (s   | s/veh)       | 12.6    | 2.6      | 119      | -                 | -     |                        |                                |
| HCM Lane LOS           |              | В       | Α        | F        | -                 | -     |                        |                                |
| HCM 95th %tile Q(ve    | h)           | 0.8     | -        | 12.6     | -                 | _     |                        |                                |
| Notes                  |              |         |          |          |                   |       |                        |                                |
| ~: Volume exceeds ca   | anacity      | ¢.г     | ) play o | ceeds    | 3000              | T: Co | mputation Not Defined  | *: All major volume in platoon |
| . volume exceeds c     | apacity      | φ. L    | ciay e   | NCEEUS   | 0005              | +. ∪0 | imputation Not Delined | . Ali major volume in piatoon  |
|                        |              |         |          |          |                   |       |                        |                                |

| Intersection           |           |       |         | _        |          |      |
|------------------------|-----------|-------|---------|----------|----------|------|
| Int Delay, s/veh       | 0.9       |       |         |          |          |      |
| Movement               | EBL       | EBR   | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    |           | 7     |         | <b>^</b> | <b>^</b> |      |
| Traffic Vol, veh/h     | 1         | 76    | 0       | 846      | 811      | 0    |
| Future Vol, veh/h      | 1         | 76    | 0       | 846      | 811      | 0    |
| Conflicting Peds, #/hr | 0         | 0     | 0       | 0        | 0        | 86   |
| Sign Control           | Stop      | Stop  | Free    | Free     | Free     | Free |
| RT Channelized         | -         | None  | -       | None     | -        | None |
| Storage Length         | _         | 0     | _       | -        | _        | -    |
| Veh in Median Storage  |           | -     | _       | 0        | 0        | _    |
| Grade, %               | 0         | _     | _       | 0        | 0        | _    |
| Peak Hour Factor       | 90        | 90    | 90      | 90       | 90       | 90   |
|                        | 3         | 3     | 3       | 3        | 3        | 3    |
| Heavy Vehicles, %      | ა<br>1    | 84    |         | 940      | 901      |      |
| Mvmt Flow              | ı         | 04    | 0       | 940      | 901      | 0    |
|                        |           |       |         |          |          |      |
| Major/Minor M          | /linor2   | N     | /lajor1 | N        | /lajor2  |      |
| Conflicting Flow All   | 1371      | 901   | -       | 0        | -        | 0    |
| Stage 1                | 901       | -     | _       | -        | _        | -    |
| Stage 2                | 470       | -     | -       | -        | -        | _    |
|                        | 6.645     | 6.245 | _       | _        | _        | _    |
| •                      | 5.445     | -     | _       | _        | _        | _    |
|                        | 5.845     | _     | _       | _        | _        | _    |
|                        | .52853    |       | _       | _        | _        | _    |
| Pot Cap-1 Maneuver     | 148       | 334   | 0       | _        | _        | 0    |
| Stage 1                | 393       | -     | 0       | _        | _        | 0    |
| Stage 2                | 594       | _     | 0       | _        | _        | 0    |
| Platoon blocked, %     | JJ4       | _     | U       | _        | _        | U    |
| Mov Cap-1 Maneuver     | 148       | 334   | _       | _        |          | _    |
|                        | 148       | -     |         | _        | _        | _    |
| Mov Cap-2 Maneuver     | 393       | -     | -       |          |          |      |
| Stage 1                |           |       | -       | -        | -        | -    |
| Stage 2                | 594       | -     | -       | -        | -        | -    |
|                        |           |       |         |          |          |      |
| Approach               | EB        |       | NB      |          | SB       |      |
| HCM Control Delay, s/v | 19.39     |       | 0       |          | 0        |      |
| HCM LOS                | С         |       |         |          |          |      |
|                        |           |       |         |          |          |      |
|                        |           |       |         |          |          |      |
| Minor Lane/Major Mvm   | <u>nt</u> | NBTE  |         | SBT      |          |      |
| Capacity (veh/h)       |           | -     | 334     | -        |          |      |
| HCM Lane V/C Ratio     |           | -     | 0.253   | -        |          |      |
| HCM Control Delay (s/  | veh)      | -     | 19.4    | -        |          |      |
| HCM Lane LOS           |           | -     | С       | -        |          |      |
| HCM 95th %tile Q(veh)  | )         | -     | 1       | -        |          |      |
|                        |           |       |         |          |          |      |

| Intersection                |        |       |         |       |                |      |
|-----------------------------|--------|-------|---------|-------|----------------|------|
| Int Delay, s/veh            | 14     |       |         |       |                |      |
| Movement                    | EBL    | EBR   | NBL     | NBT   | SBT            | SBR  |
| Lane Configurations         | M      | LDK   | NDL     | IND I |                | אמט  |
| Traffic Vol, veh/h          | 102    | 105   | 117     | 245   | <b>1</b> → 466 | 268  |
| Future Vol, veh/h           | 102    | 105   | 117     | 245   | 466            | 268  |
| Conflicting Peds, #/hr      | 0      | 0     | 0       | 245   | 400            | 200  |
|                             | Stop   | Stop  | Free    | Free  | Free           | Free |
| Sign Control RT Channelized |        | None  |         |       |                |      |
|                             | - 0    | None  | -       | None  | -              |      |
| Storage Length              |        | -     | -       | -     |                | -    |
| Veh in Median Storage       |        | -     | -       | 0     | 0              | -    |
| Grade, %                    | 0      | -     | -       | 0     | 0              | -    |
| Peak Hour Factor            | 90     | 90    | 90      | 90    | 90             | 90   |
| Heavy Vehicles, %           | 0      | 0     | 0       | 0     | 0              | 0    |
| Mvmt Flow                   | 113    | 117   | 130     | 272   | 518            | 298  |
|                             |        |       |         |       |                |      |
| Major/Minor M               | 1inor2 | N     | /lajor1 | N     | /lajor2        |      |
| Conflicting Flow All        | 1199   | 667   | 816     | 0     |                | 0    |
| Stage 1                     | 667    | -     | -       | -     | -              | -    |
| Stage 2                     | 532    | _     | _       | _     | -              | _    |
| Critical Hdwy               | 6.4    | 6.2   | 4.1     | _     | _              | _    |
| Critical Hdwy Stg 1         | 5.4    | -     |         | _     | _              | _    |
| Critical Hdwy Stg 2         | 5.4    | _     | _       | _     | _              | _    |
| Follow-up Hdwy              | 3.5    | 3.3   | 2.2     | _     | _              | _    |
| Pot Cap-1 Maneuver          | 207    | 463   | 821     | _     | _              | _    |
| Stage 1                     | 514    | -     | -       | _     | _              | _    |
| Stage 2                     | 593    | _     | _       | _     | _              | _    |
| Platoon blocked, %          | 000    |       |         | _     | _              | _    |
| Mov Cap-1 Maneuver          | 168    | 463   | 821     |       |                | _    |
| Mov Cap-1 Maneuver          | 168    | 403   | - 021   | _     | _              | _    |
| Stage 1                     | 418    | -     | _       | -     | -              |      |
| •                           | 593    |       |         |       | -              |      |
| Stage 2                     | 593    | -     | -       | -     | -              | -    |
|                             |        |       |         |       |                |      |
| Approach                    | EB     |       | NB      |       | SB             |      |
| HCM Control Delay, s/       | 82.39  |       | 3.3     |       | 0              |      |
| HCM LOS                     | F      |       |         |       |                |      |
|                             |        |       |         |       |                |      |
|                             |        |       |         |       | 055            | 055  |
| Minor Lane/Major Mvm        | nt     | NBL   | NBTE    | EBLn1 | SBT            | SBR  |
| Capacity (veh/h)            |        | 582   | -       | 248   | -              | -    |
| HCM Lane V/C Ratio          |        | 0.158 | -       | 0.926 | -              | -    |
| HCM Control Delay (s/       | veh)   | 10.2  | 0       | 82.4  | -              | -    |
| HCM Lane LOS                |        | В     | Α       | F     | -              | -    |
| HCM 95th %tile Q(veh)       | )      | 0.6   | -       | 8.2   | -              | -    |
|                             |        |       |         |       |                |      |

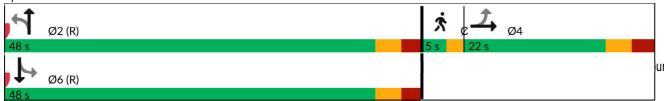
| Intersection           |        |       |            |       |         |          |
|------------------------|--------|-------|------------|-------|---------|----------|
| Int Delay, s/veh       | 0.1    |       |            |       |         |          |
| Movement               | WBL    | WBR   | NBT        | NBR   | SBL     | SBT      |
| Lane Configurations    |        | 7     | <b>↑</b> ⊅ |       |         | <b>^</b> |
| Traffic Vol, veh/h     | 0      | 8     | 698        | 1     | 0       | 662      |
| Future Vol, veh/h      | 0      | 8     | 698        | 1     | 0       | 662      |
| Conflicting Peds, #/hr | 0      | 0     | 0          | 100   | 0       | 0        |
| Sign Control           | Stop   | Stop  | Free       | Free  | Free    | Free     |
| RT Channelized         | - Ctop | None  | -          | None  | -       | None     |
| Storage Length         | _      | 0     | _          | -     | _       | -        |
| Veh in Median Storage  |        | -     | 0          | _     | _       | 0        |
| Grade, %               | 0      | _     | 0          | _     | _       | 0        |
| Peak Hour Factor       | 90     | 90    | 90         | 90    | 90      | 90       |
|                        |        |       | 2          |       | 2       | 2        |
| Heavy Vehicles, %      | 0      | 0     |            | 0     |         |          |
| Mvmt Flow              | 0      | 9     | 776        | 1     | 0       | 736      |
|                        |        |       |            |       |         |          |
| Major/Minor N          | Minor1 | N     | Major1     | N     | /lajor2 |          |
| Conflicting Flow All   | _      | 488   | 0          | 0     |         | -        |
| Stage 1                | _      | _     | _          | _     | _       | _        |
| Stage 2                | _      | _     | _          | _     | _       | _        |
| Critical Hdwy          | _      | 6.9   | _          | _     | _       | _        |
| Critical Hdwy Stg 1    | _      | -     | _          | _     | _       | _        |
| Critical Hdwy Stg 2    | _      | _     | _          | _     | _       | _        |
| Follow-up Hdwy         | _      | 3.3   | _          | _     | _       | _        |
| Pot Cap-1 Maneuver     | 0      | 531   | _          | _     | 0       | _        |
|                        | 0      | - 551 | -          |       | 0       | _        |
| Stage 1                |        | -     | -          | -     |         |          |
| Stage 2                | 0      | -     | -          | -     | 0       | -        |
| Platoon blocked, %     |        | 475   | -          | -     |         | -        |
| Mov Cap-1 Maneuver     | -      | 475   | -          | -     | -       | -        |
| Mov Cap-2 Maneuver     | -      | -     | -          | -     | -       | -        |
| Stage 1                | -      | -     | -          | -     | -       | -        |
| Stage 2                | -      | -     | -          | -     | -       | -        |
|                        |        |       |            |       |         |          |
| Approach               | WB     |       | NB         |       | SB      |          |
| • •                    |        |       | 0          |       | 0       |          |
| HCM Control Delay, s   |        |       | U          |       | U       |          |
| HCM LOS                | В      |       |            |       |         |          |
|                        |        |       |            |       |         |          |
| Minor Lane/Major Mvn   | nt     | NBT   | NBRV       | VBLn1 | SBT     |          |
| Capacity (veh/h)       |        | -     | -          | 475   | -       |          |
| HCM Lane V/C Ratio     |        | _     | _          | 0.019 | _       |          |
| HCM Control Delay (s.  | /veh)  | _     | _          | 12.7  | _       |          |
| HCM Lane LOS           |        | _     | _          | В     | _       |          |
| HCM 95th %tile Q(veh   | )      | _     | _          | 0.1   | _       |          |
|                        | 1      |       |            | J.,   |         |          |

# 2033 Scenario

Major Event Egress

1: Bank & Fifth 08/06/2024

| 1. Dank a Filar              | •          |          |       | _     | -           | •          | τ.    | 1           |  |
|------------------------------|------------|----------|-------|-------|-------------|------------|-------|-------------|--|
|                              |            | <b>→</b> | •     | •     | 7           | ı          | •     | +           |  |
| Lane Group                   | EBL        | EBT      | WBL   | WBT   | NBL         | NBT        | SBL   | SBT         |  |
| Lane Configurations          |            | 4        | ች     | - ∱   |             | 47>        |       | <b>€</b> 1Ъ |  |
| Traffic Volume (vph)         | 78         | 34       | 41    | 72    | 22          | 333        | 20    | 373         |  |
| Future Volume (vph)          | 78         | 34       | 41    | 72    | 22          | 333        | 20    | 373         |  |
| Lane Group Flow (vph)        | 0          | 155      | 46    | 209   | 0           | 422        | 0     | 480         |  |
| Turn Type                    | Perm       | NA       | Perm  | NA    | Perm        | NA         | Perm  | NA          |  |
| Protected Phases             |            | 4        |       | 8     |             | 2          |       | 6           |  |
| Permitted Phases             | 4          |          | 8     |       | 2           |            | 6     |             |  |
| Detector Phase               | 4          | 4        | 8     | 8     | 2           | 2          | 6     | 6           |  |
| Switch Phase                 |            |          |       |       |             |            |       |             |  |
| Minimum Initial (s)          | 4.0        | 4.0      | 4.0   | 4.0   | 4.0         | 4.0        | 4.0   | 4.0         |  |
| Minimum Split (s)            | 26.0       | 26.0     | 26.0  | 26.0  | 49.0        | 49.0       | 49.0  | 49.0        |  |
| Total Split (s)              | 26.0       | 26.0     | 26.0  | 26.0  | 49.0        | 49.0       | 49.0  | 49.0        |  |
| Total Split (%)              | 34.7%      | 34.7%    | 34.7% | 34.7% | 65.3%       | 65.3%      | 65.3% | 65.3%       |  |
| Yellow Time (s)              | 3.0        | 3.0      | 3.0   | 3.0   | 3.0         | 3.0        | 3.0   | 3.0         |  |
| All-Red Time (s)             | 2.5        | 2.5      | 2.5   | 2.5   | 2.5         | 2.5        | 2.5   | 2.5         |  |
| Lost Time Adjust (s)         |            | 0.0      | 0.0   | 0.0   |             | 0.0        |       | 0.0         |  |
| Total Lost Time (s)          |            | 5.5      | 5.5   | 5.5   |             | 5.5        |       | 5.5         |  |
| Lead/Lag                     |            |          |       |       |             |            |       |             |  |
| Lead-Lag Optimize?           |            |          |       |       |             |            |       |             |  |
| Recall Mode                  | None       | None     | None  | None  | Max         | Max        | Max   | Max         |  |
| Act Effct Green (s)          |            | 14.2     | 14.2  | 14.2  |             | 44.4       |       | 44.4        |  |
| Actuated g/C Ratio           |            | 0.20     | 0.20  | 0.20  |             | 0.64       |       | 0.64        |  |
| v/c Ratio                    |            | 0.76     | 0.21  | 0.58  |             | 0.24       |       | 0.27        |  |
| Control Delay (s/veh)        |            | 46.5     | 24.3  | 18.9  |             | 6.4        |       | 6.5         |  |
| Queue Delay                  |            | 0.0      | 0.0   | 0.0   |             | 0.0        |       | 0.0         |  |
| Total Delay (s/veh)          |            | 46.5     | 24.3  | 18.9  |             | 6.4        |       | 6.5         |  |
| LOS                          |            | D        | С     | В     |             | Α          |       | Α           |  |
| Approach Delay (s/veh)       |            | 46.5     |       | 19.9  |             | 6.4        |       | 6.5         |  |
| Approach LOS                 |            | D        |       | В     |             | Α          |       | A           |  |
| Queue Length 50th (m)        |            | 16.8     | 4.9   | 11.3  |             | 10.4       |       | 12.0        |  |
| Queue Length 95th (m)        |            | 35.7     | 12.7  | 29.6  |             | 20.5       |       | 23.3        |  |
| Internal Link Dist (m)       |            | 49.7     | 4     | 112.4 |             | 195.6      |       | 190.0       |  |
| Turn Bay Length (m)          |            |          | 45.0  |       |             | 4=0=       |       | 4==0        |  |
| Base Capacity (vph)          |            | 287      | 312   | 474   |             | 1765       |       | 1776        |  |
| Starvation Cap Reductn       |            | 0        | 0     | 0     |             | 0          |       | 0           |  |
| Spillback Cap Reductn        |            | 0        | 0     | 0     |             | 0          |       | 0           |  |
| Storage Cap Reductn          |            | 0        | 0     | 0     |             | 0          |       | 0           |  |
| Reduced v/c Ratio            |            | 0.54     | 0.15  | 0.44  |             | 0.24       |       | 0.27        |  |
| Intersection Summary         |            |          |       |       |             |            |       |             |  |
| Cycle Length: 75             |            |          |       |       |             |            |       |             |  |
| Actuated Cycle Length: 69    | .6         |          |       |       |             |            |       |             |  |
| Natural Cycle: 75            |            |          |       |       |             |            |       |             |  |
| Control Type: Actuated-Un    | coordinate | ed       |       |       |             |            |       |             |  |
| Maximum v/c Ratio: 0.76      |            |          |       |       |             |            |       |             |  |
| Intersection Signal Delay (  | ,          |          |       |       | ntersection |            |       |             |  |
| Intersection Capacity Utiliz | ation 73.6 | %        |       | I     | CU Level    | of Service | e D   |             |  |
| Analysis Period (min) 15     |            |          |       |       |             |            |       |             |  |


Splits and Phases: 1: Bank & Fifth

Analysis Period (min) 15



|                               | <b>→</b>    | •        | <b>†</b>  | <b>\</b>  | <del> </del> |               |
|-------------------------------|-------------|----------|-----------|-----------|--------------|---------------|
| Lane Group                    | EBT         | NBL      | NBT       | SBL       | SBT          | Ø3            |
| Lane Configurations           | 4           |          | 414       |           | 414          |               |
| Traffic Volume (vph)          | 22          | 52       | 281       | 33        | 297          |               |
| Future Volume (vph)           | 22          | 52       | 281       | 33        | 297          |               |
| Lane Group Flow (vph)         | 151         | 0        | 437       | 0         | 438          |               |
| Turn Type                     | NA          | Perm     | NA        | Perm      | NA           |               |
| Protected Phases              | 4           |          | 2         | 2         | 6            | 3             |
| Permitted Phases              |             | 2        |           | 6         |              | -             |
| Detector Phase                | 4           | 2        | 2         | 6         | 6            |               |
| Switch Phase                  |             |          |           |           |              |               |
| Minimum Initial (s)           | 4.4         | 10.0     | 10.0      | 4.0       | 4.0          | 1.0           |
| Minimum Split (s)             | 22.0        | 48.0     | 48.0      | 48.0      | 48.0         | 5.0           |
| Total Split (s)               | 22.0        | 48.0     | 48.0      | 48.0      | 48.0         | 5.0           |
| Total Split (%)               | 29.3%       | 64.0%    | 64.0%     | 64.0%     | 64.0%        | 7%            |
| Yellow Time (s)               | 3.0         | 3.0      | 3.0       | 3.0       | 3.0          | 2.0           |
| All-Red Time (s)              | 2.6         | 2.2      | 2.2       | 2.2       | 2.2          | 0.0           |
| Lost Time Adjust (s)          | 0.0         |          | 0.0       |           | 0.0          |               |
| Total Lost Time (s)           | 5.6         |          | 5.2       |           | 5.2          |               |
| Lead/Lag                      | Lag         |          |           |           |              | Lead          |
| Lead-Lag Optimize?            |             |          |           |           |              |               |
| Recall Mode                   | None        | C-Max    | C-Max     | C-Max     | C-Max        | None          |
| Act Effct Green (s)           | 13.5        |          | 50.7      |           | 50.7         |               |
| Actuated g/C Ratio            | 0.18        |          | 0.68      |           | 0.68         |               |
| v/c Ratio                     | 0.62        |          | 0.27      |           | 0.25         |               |
| Control Delay (s/veh)         | 38.9        |          | 3.6       |           | 5.2          |               |
| Queue Delay                   | 0.0         |          | 0.0       |           | 0.0          |               |
| Total Delay (s/veh)           | 38.9        |          | 3.6       |           | 5.2          |               |
| LOS                           | D           |          | Α         |           | Α            |               |
| Approach Delay (s/veh)        | 38.9        |          | 3.6       |           | 5.2          |               |
| Approach LOS                  | D           |          | Α         |           | Α            |               |
| Queue Length 50th (m)         | 19.9        |          | 9.5       |           | 9.3          |               |
| Queue Length 95th (m)         | 34.2        |          | 20.1      |           | 19.1         |               |
| Internal Link Dist (m)        | 39.8        |          | 31.5      |           | 195.6        |               |
| Turn Bay Length (m)           |             |          |           |           |              |               |
| Base Capacity (vph)           | 306         |          | 1620      |           | 1755         |               |
| Starvation Cap Reductn        | 0           |          | 0         |           | 0            |               |
| Spillback Cap Reductn         | 0           |          | 0         |           | 0            |               |
| Storage Cap Reductn           | 0           |          | 0         |           | 0            |               |
| Reduced v/c Ratio             | 0.49        |          | 0.27      |           | 0.25         |               |
| Intersection Summary          |             |          |           |           |              |               |
| Cycle Length: 75              |             |          |           |           |              |               |
| Actuated Cycle Length: 75     |             |          |           |           |              |               |
| Offset: 74 (99%), Reference   | ed to phas  | se 2:NBT | L and 6:9 | SBTL. Sta | art of Gree  | en            |
| Natural Cycle: 75             | ou to pride |          | 0.0       | , 0       |              |               |
| Control Type: Actuated-Coo    | ordinated   |          |           |           |              |               |
| Maximum v/c Ratio: 0.62       | o. amatou   |          |           |           |              |               |
| Intersection Signal Delay (s  | (veh) 9.5   |          |           | li        | ntersectio   | n LOS: A      |
| Intersection Capacity Utiliza |             |          |           |           |              | of Service B  |
| Analysis Period (min) 15      | 20011 00.1  | , 5      |           | '         | CO LOVOI     | C1 C01 V100 D |
| ranalysis i shou (illiii) 10  |             |          |           |           |              |               |

Splits and Phases: 2: Bank & Holmwood



3: Bank & Exhibition 08/06/2024

|                            | •        | •        | <b>†</b>    | <b>&gt;</b> | ļ        |      |      |
|----------------------------|----------|----------|-------------|-------------|----------|------|------|
| Lane Group                 | WBL      | WBR      | NBT         | SBL         | SBT      | Ø1   | Ø7   |
| Lane Configurations        | ሻ        | 7        | <b>∱</b> 1≽ | ሻ           | <b>^</b> |      |      |
| Traffic Volume (vph)       | 9        | 8        | 370         | 13          | 351      |      |      |
| Future Volume (vph)        | 9        | 8        | 370         | 13          | 351      |      |      |
| Lane Group Flow (vph)      | 10       | 9        | 423         | 14          | 390      |      |      |
| Turn Type                  | Prot     | Perm     | NA          | Perm        | NA       |      |      |
| Protected Phases           | 8        |          | 2           |             | 6        | 1    | 7    |
| Permitted Phases           |          | 8        |             | 6           |          |      |      |
| Detector Phase             | 8        | 8        | 2           | 6           | 6        |      |      |
| Switch Phase               |          |          |             |             |          |      |      |
| Minimum Initial (s)        | 10.0     | 10.0     | 10.0        | 10.0        | 10.0     | 1.0  | 1.0  |
| Minimum Split (s)          | 26.0     | 26.0     | 39.0        | 44.0        | 44.0     | 5.0  | 5.0  |
| Total Split (s)            | 26.0     | 26.0     | 39.0        | 44.0        | 44.0     | 5.0  | 5.0  |
| Total Split (%)            | 34.7%    | 34.7%    | 52.0%       | 58.7%       | 58.7%    | 7%   | 7%   |
| Yellow Time (s)            | 3.3      | 3.3      | 3.0         | 3.0         | 3.0      | 2.0  | 3.5  |
| All-Red Time (s)           | 3.0      | 3.0      | 3.9         | 3.9         | 3.9      | 0.0  | 0.0  |
| Lost Time Adjust (s)       | 0.0      | 0.0      | 0.0         | 0.0         | 0.0      |      |      |
| Total Lost Time (s)        | 6.3      | 6.3      | 6.9         | 6.9         | 6.9      |      |      |
| Lead/Lag                   | Lag      | Lag      | Lag         |             |          | Lead | Lead |
| Lead-Lag Optimize?         |          |          | Yes         |             |          | Yes  | Yes  |
| Recall Mode                | None     | None     | C-Max       | C-Max       | C-Max    | None | None |
| Act Effct Green (s)        | 10.0     | 10.0     | 65.7        | 65.7        | 65.7     |      |      |
| Actuated g/C Ratio         | 0.13     | 0.13     | 0.88        | 0.88        | 0.88     |      |      |
| v/c Ratio                  | 0.05     | 0.06     | 0.15        | 0.02        | 0.14     |      |      |
| Control Delay (s/veh)      | 29.0     | 17.5     | 2.4         | 2.6         | 1.8      |      |      |
| Queue Delay                | 0.0      | 0.0      | 0.0         | 0.0         | 0.0      |      |      |
| Total Delay (s/veh)        | 29.0     | 17.5     | 2.4         | 2.6         | 1.8      |      |      |
| LOS                        | С        | В        | Α           | Α           | Α        |      |      |
| Approach Delay (s/veh)     | 23.6     |          | 2.4         |             | 1.8      |      |      |
| Approach LOS               | С        |          | Α           |             | Α        |      |      |
| Queue Length 50th (m)      | 1.3      | 0.0      | 0.0         | 0.0         | 0.0      |      |      |
| Queue Length 95th (m)      | 5.3      | 3.9      | 13.7        | m1.5        | 10.1     |      |      |
| Internal Link Dist (m)     | 30.6     |          | 33.7        |             | 44.8     |      |      |
| Turn Bay Length (m)        |          |          |             | 40.0        |          |      |      |
| Base Capacity (vph)        | 429      | 302      | 2773        | 644         | 2780     |      |      |
| Starvation Cap Reductn     | 0        | 0        | 0           | 0           | 0        |      |      |
| Spillback Cap Reductn      | 0        | 0        | 0           | 0           | 0        |      |      |
| Storage Cap Reductn        | 0        | 0        | 0           | 0           | 0        |      |      |
| Reduced v/c Ratio          | 0.02     | 0.03     | 0.15        | 0.02        | 0.14     |      |      |
| Intersection Summary       |          |          |             |             |          |      |      |
| Cycle Length: 75           |          |          |             |             |          |      |      |
| Actuated Cycle Length: 75  |          |          |             |             |          |      |      |
| Offset: 0 (0%), Referenced | to phase | 2:NBT ar | nd 6:SBTI   | L, Start o  | f Green  |      |      |

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.15

Intersection Signal Delay (s/veh): 2.6 Intersection LOS: A Intersection Capacity Utilization 43.5% ICU Level of Service A

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Bank & Exhibition



## 6: Bank & Aylmer

|                                                 | •           | •        | <b>†</b>  | <b>↓</b>   |                       |   |
|-------------------------------------------------|-------------|----------|-----------|------------|-----------------------|---|
| Lane Group                                      | EBL         | NBL      | NBT       | SBT        | Ø3                    |   |
| Lane Configurations                             | W           |          | 414       | <b>†</b> ‡ |                       |   |
| Traffic Volume (vph)                            | 19          | 17       | 353       | 312        |                       |   |
| Future Volume (vph)                             | 19          | 17       | 353       | 312        |                       |   |
| ane Group Flow (vph)                            | 39          | 0        | 411       | 373        |                       |   |
| Turn Type                                       | Prot        | Perm     | NA        | NA         |                       |   |
| Protected Phases                                | 4           |          | 2         | 6          | 3                     |   |
| Permitted Phases                                | 4           | 2        | _         | 6          | · ·                   |   |
| Detector Phase                                  | 4           | 2        | 2         | 6          |                       |   |
| Switch Phase                                    | •           | _        | _         |            |                       |   |
| Minimum Initial (s)                             | 10.0        | 30.0     | 30.0      | 30.0       | 1.0                   |   |
| Minimum Split (s)                               | 22.0        | 63.0     | 63.0      | 63.0       | 5.0                   |   |
| Fotal Split (s)                                 | 22.0        | 63.0     | 63.0      | 63.0       | 5.0                   |   |
| Fotal Split (%)                                 | 24.4%       | 70.0%    | 70.0%     | 70.0%      | 6%                    |   |
| fellow Time (s)                                 | 3.3         | 3.0      | 3.0       | 3.0        | 2.0                   |   |
| All-Red Time (s)                                | 2.2         | 2.2      | 2.2       | 2.2        | 1.0                   |   |
| ost Time Adjust (s)                             | 0.0         | ۷.۷      | 0.0       | 0.0        | 1.0                   |   |
| Total Lost Time (s)                             | 5.5         |          | 5.2       | 5.2        |                       |   |
| Lead/Lag                                        |             |          | 5.2       | 5.2        | Lead                  |   |
| Lead/Lag Optimize?                              | Lag         |          |           |            | Leau                  |   |
| Recall Mode                                     | Ped         | C-Max    | C-Max     | C-Max      | Max                   |   |
|                                                 | 14.0        | C-IVIAX  | 60.3      | 60.3       | IVIAX                 |   |
| Act Effct Green (s)                             | 0.16        |          | 0.67      | 0.67       |                       |   |
| Actuated g/C Ratio                              |             |          |           |            |                       |   |
| //c Ratio                                       | 0.17        |          | 0.21      | 0.18       |                       |   |
| Control Delay (s/veh)                           | 23.5        |          | 6.0       | 5.6        |                       |   |
| Queue Delay                                     | 0.0         |          | 0.0       | 0.0        |                       |   |
| Total Delay (s/veh)                             | 23.5        |          | 6.0       | 5.6        |                       |   |
| .OS                                             | C           |          | A         | Α          |                       |   |
| Approach Delay (s/veh)                          | 23.5        |          | 6.0       | 5.6        |                       |   |
| Approach LOS                                    | С           |          | A         | Α          |                       |   |
| Queue Length 50th (m)                           | 3.2         |          | 12.5      | 10.6       |                       |   |
| Queue Length 95th (m)                           | 11.9        |          | 18.2      | 15.7       |                       |   |
| nternal Link Dist (m)                           | 76.7        |          | 28.1      | 10.1       |                       |   |
| Turn Bay Length (m)                             | 000         |          | 1071      | 2255       |                       |   |
| Base Capacity (vph)                             | 262         |          | 1971      | 2055       |                       |   |
| Starvation Cap Reductn                          | 0           |          | 0         | 0          |                       |   |
| Spillback Cap Reductn                           | 0           |          | 0         | 0          |                       |   |
| Storage Cap Reductn                             | 0           |          | 0         | 0          |                       |   |
| Reduced v/c Ratio                               | 0.15        |          | 0.21      | 0.18       |                       |   |
| ntersection Summary                             |             |          |           |            |                       |   |
| Cycle Length: 90                                |             |          |           |            |                       |   |
| Actuated Cycle Length: 90                       |             |          |           |            |                       |   |
| Offset: 87 (97%), Referenc<br>Natural Cycle: 90 | ed to phas  | se 2:NBT | L and 6:S | SBT, Start | of Green              |   |
| Control Type: Actuated-Co                       | ordinated   |          |           |            |                       |   |
| Maximum v/c Ratio: 0.21                         |             |          |           |            |                       |   |
| ntersection Signal Delay (s                     | s/veh): 6.6 |          |           | In         | itersection LOS: A    |   |
| Intersection Capacity Utiliza                   |             |          |           |            | CU Level of Service A | 1 |
| Analysis Period (min) 15                        |             | , ,      |           | 10         | 2 20101 01 001 1100 P |   |
|                                                 |             |          |           |            |                       |   |

Splits and Phases: 6: Bank & Aylmer



|                                 | •         | <b>→</b> | •     | +     | •          | †          | <b>/</b> | ļ     |      |      |  |
|---------------------------------|-----------|----------|-------|-------|------------|------------|----------|-------|------|------|--|
| Lane Group                      | EBL       | EBT      | WBL   | WBT   | NBL        | NBT        | SBL      | SBT   | Ø3   | Ø7   |  |
| Lane Configurations             |           | - 4      |       | - 4   |            | 414        |          | ብጉ    |      |      |  |
| Traffic Volume (vph)            | 32        | 29       | 17    | 36    | 20         | 290        | 15       | 319   |      |      |  |
| Future Volume (vph)             | 32        | 29       | 17    | 36    | 20         | 290        | 15       | 319   |      |      |  |
| Lane Group Flow (vph)           | 0         | 94       | 0     | 101   | 0          | 352        | 0        | 405   |      |      |  |
| Turn Type                       | Perm      | NA       | Perm  | NA    | Perm       | NA         | pm+pt    | NA    |      |      |  |
| Protected Phases                |           | 4        |       | 8     |            | 2          | 1        | 6     | 3    | 7    |  |
| Permitted Phases                | 4         |          | 8     |       | 2          |            | 6        |       |      |      |  |
| Detector Phase                  | 4         | 4        | 8     | 8     | 2          | 2          | 1        | 6     |      |      |  |
| Switch Phase                    |           |          |       |       |            |            |          |       |      |      |  |
| Minimum Initial (s)             | 6.4       | 6.4      | 5.3   | 5.3   | 17.0       | 17.0       | 5.0      | 17.0  | 1.0  | 1.0  |  |
| Minimum Split (s)               | 25.0      | 25.0     | 25.0  | 25.0  | 43.0       | 43.0       | 17.0     | 60.0  | 5.0  | 5.0  |  |
| Total Split (s)                 | 25.0      | 25.0     | 25.0  | 25.0  | 43.0       | 43.0       | 17.0     | 60.0  | 5.0  | 5.0  |  |
| Total Split (%)                 | 27.8%     | 27.8%    | 27.8% | 27.8% | 47.8%      | 47.8%      | 18.9%    | 66.7% | 6%   | 6%   |  |
| Yellow Time (s)                 | 3.0       | 3.0      | 3.0   | 3.0   | 3.0        | 3.0        | 3.0      | 3.0   | 2.0  | 2.0  |  |
| All-Red Time (s)                | 2.6       | 2.6      | 2.6   | 2.6   | 3.0        | 3.0        | 2.9      | 3.0   | 0.0  | 0.0  |  |
| Lost Time Adjust (s)            |           | 0.0      |       | 0.0   |            | 0.0        |          | 0.0   |      |      |  |
| Total Lost Time (s)             |           | 5.6      |       | 5.6   |            | 6.0        |          | 6.0   |      |      |  |
| Lead/Lag                        | Lag       | Lag      | Lag   | Lag   | Lag        | Lag        | Lead     |       | Lead | Lead |  |
| Lead-Lag Optimize?              |           |          | Yes   | Yes   | Yes        | Yes        | Yes      |       |      | Yes  |  |
| Recall Mode                     | None      | None     | None  | None  | Max        | Max        | None     | Max   | None | None |  |
| Act Effct Green (s)             |           | 11.7     |       | 11.5  |            | 59.8       |          | 59.8  |      |      |  |
| Actuated g/C Ratio              |           | 0.15     |       | 0.15  |            | 0.75       |          | 0.75  |      |      |  |
| v/c Ratio                       |           | 0.56     |       | 0.48  |            | 0.16       |          | 0.19  |      |      |  |
| Control Delay (s/veh)           |           | 43.6     |       | 28.4  |            | 4.4        |          | 4.3   |      |      |  |
| Queue Delay                     |           | 0.0      |       | 0.0   |            | 0.0        |          | 0.0   |      |      |  |
| Total Delay (s/veh)             |           | 43.6     |       | 28.4  |            | 4.4        |          | 4.3   |      |      |  |
| LOS                             |           | D        |       | С     |            | Α          |          | Α     |      |      |  |
| Approach Delay (s/veh)          |           | 43.6     |       | 28.4  |            | 4.4        |          | 4.3   |      |      |  |
| Approach LOS                    |           | D        |       | С     |            | Α          |          | Α     |      |      |  |
| Queue Length 50th (m)           |           | 12.9     |       | 8.7   |            | 7.5        |          | 8.5   |      |      |  |
| Queue Length 95th (m)           |           | 26.7     |       | 22.2  |            | 15.4       |          | 17.3  |      |      |  |
| Internal Link Dist (m)          |           | 75.1     |       | 136.0 |            | 63.1       |          | 79.0  |      |      |  |
| Turn Bay Length (m)             |           |          |       |       |            |            |          |       |      |      |  |
| Base Capacity (vph)             |           | 280      |       | 328   |            | 2144       |          | 2100  |      |      |  |
| Starvation Cap Reductn          |           | 0        |       | 0     |            | 0          |          | 0     |      |      |  |
| Spillback Cap Reductn           |           | 0        |       | 0     |            | 0          |          | 0     |      |      |  |
| Storage Cap Reductn             |           | 0        |       | 0     |            | 0          |          | 0     |      |      |  |
| Reduced v/c Ratio               |           | 0.34     |       | 0.31  |            | 0.16       |          | 0.19  |      |      |  |
| Intersection Summary            |           |          |       |       |            |            |          |       |      |      |  |
| Cycle Length: 90                |           |          |       |       |            |            |          |       |      |      |  |
| Actuated Cycle Length: 79.3     |           |          |       |       |            |            |          |       |      |      |  |
| Natural Cycle: 90               |           |          |       |       |            |            |          |       |      |      |  |
| Control Type: Actuated-Unco     | ordinate  | ed       |       |       |            |            |          |       |      |      |  |
| Maximum v/c Ratio: 0.56         |           |          |       |       |            |            |          |       |      |      |  |
| Intersection Signal Delay (s/\  | veh): 10. | 8        |       | lı    | ntersectio | n LOS: E   |          |       |      |      |  |
| Intersection Capacity Utilizati |           |          |       | Į(    | CU Level   | of Service | e A      |       |      |      |  |
| Analysis Period (min) 15        |           |          |       |       |            |            |          |       |      |      |  |





|                               | ۶          | 1         | <b>†</b> | <del> </del> |                |           | _ |
|-------------------------------|------------|-----------|----------|--------------|----------------|-----------|---|
| Lane Group                    | EBL        | NBL       | NBT      | SBT          | Ø4             |           |   |
| Lane Configurations           | W          |           | 4        | 1            |                |           |   |
| Traffic Volume (vph)          | 143        | 44        | 306      | 298          |                |           |   |
| Future Volume (vph)           | 143        | 44        | 306      | 298          |                |           |   |
| Lane Group Flow (vph)         | 229        | 0         | 389      | 410          |                |           |   |
| Turn Type                     | Prot       | Perm      | NA       | NA           |                |           |   |
| Protected Phases              | 10         | . 0       | 2        | 6            | 4              |           |   |
| Permitted Phases              |            | 2         | _        |              | •              |           |   |
| Detector Phase                | 10         | 2         | 2        | 6            |                |           |   |
| Switch Phase                  |            | _         | _        | •            |                |           |   |
| Minimum Initial (s)           | 10.0       | 4.0       | 4.0      | 4.0          | 4.0            |           |   |
| Minimum Split (s)             | 20.7       | 10.8      | 10.8     | 31.8         | 9.7            |           |   |
| Total Split (s)               | 21.0       | 48.0      | 48.0     | 48.0         | 11.0           |           |   |
| Total Split (%)               | 26.3%      | 60.0%     | 60.0%    | 60.0%        | 14%            |           |   |
| Yellow Time (s)               | 3.0        | 3.0       | 3.0      | 3.0          | 3.0            |           |   |
| All-Red Time (s)              | 2.7        | 3.8       | 3.8      | 3.8          | 2.7            |           |   |
| Lost Time Adjust (s)          | 0.0        | 0.0       | 0.0      | 0.0          |                |           |   |
| Total Lost Time (s)           | 5.7        |           | 6.8      | 6.8          |                |           |   |
| Lead/Lag                      | J.,        |           | 0.0      | 0.0          |                |           |   |
| Lead-Lag Optimize?            |            |           |          |              |                |           |   |
| Recall Mode                   | Min        | None      | None     | Max          | None           |           |   |
| Act Effct Green (s)           | 13.9       | 110110    | 41.2     | 41.2         | 110110         |           |   |
| Actuated g/C Ratio            | 0.21       |           | 0.61     | 0.61         |                |           |   |
| v/c Ratio                     | 0.72       |           | 0.41     | 0.41         |                |           |   |
| Control Delay (s/veh)         | 39.0       |           | 8.9      | 8.7          |                |           |   |
| Queue Delay                   | 0.0        |           | 0.0      | 0.0          |                |           |   |
| Total Delay (s/veh)           | 39.0       |           | 8.9      | 8.7          |                |           |   |
| LOS                           | D          |           | Α        | A            |                |           |   |
| Approach Delay (s/veh)        | 39.0       |           | 8.9      | 8.7          |                |           |   |
| Approach LOS                  | D          |           | Α        | A            |                |           |   |
| Queue Length 50th (m)         | 27.0       |           | 24.0     | 25.2         |                |           |   |
| Queue Length 95th (m)         | #53.5      |           | 40.7     | 42.0         |                |           |   |
| Internal Link Dist (m)        | 57.2       |           | 0.1      | 5.9          |                |           |   |
| Turn Bay Length (m)           | 07.2       |           | 0.1      | 0.0          |                |           |   |
| Base Capacity (vph)           | 353        |           | 938      | 1001         |                |           |   |
| Starvation Cap Reductn        | 0          |           | 0        | 0            |                |           |   |
| Spillback Cap Reductn         | 0          |           | 0        | 0            |                |           |   |
| Storage Cap Reductn           | 0          |           | 0        | 0            |                |           |   |
| Reduced v/c Ratio             | 0.65       |           | 0.41     | 0.41         |                |           |   |
|                               |            |           |          |              |                |           |   |
| Intersection Summary          |            |           |          |              |                |           |   |
| Cycle Length: 80              |            |           |          |              |                |           |   |
| Actuated Cycle Length: 67.6   | j          |           |          |              |                |           |   |
| Natural Cycle: 65             |            |           |          |              |                |           |   |
| Control Type: Actuated-Unc    | oordinate  | d         |          |              |                |           |   |
| Maximum v/c Ratio: 0.72       |            | _         |          |              |                |           |   |
| Intersection Signal Delay (s/ |            |           |          |              | ntersection LO |           |   |
| Intersection Capacity Utiliza | tion 69.2° | %         |          | IC           | CU Level of S  | Service C |   |
| Analysis Period (min) 15      |            |           |          |              |                |           |   |
| # 95th percentile volume e    |            |           |          | ay be long   | ger.           |           |   |
| Queue shown is maximu         | m after tv | vo cycles |          |              |                |           |   |

| ntersection              |      |
|--------------------------|------|
| ntersection Delay, s/veh | 10.2 |
| ntersection LOS          | R    |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      |      | 7    |      | 4    |      |      |      | 7    |
| Traffic Vol, veh/h         | 25   | 54   | 0    | 0    | 0    | 115  | 116  | 102  | 143  | 0    | 0    | 56   |
| Future Vol, veh/h          | 25   | 54   | 0    | 0    | 0    | 115  | 116  | 102  | 143  | 0    | 0    | 56   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 28   | 60   | 0    | 0    | 0    | 128  | 129  | 113  | 159  | 0    | 0    | 62   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1    |
| Approach                   | EB   |      |      |      |      | WB   | NB   |      |      |      |      | SB   |
| Opposing Approach          | WB   |      |      |      |      | EB   | SB   |      |      |      |      | NB   |
| Opposing Lanes             | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Left  | SB   |      |      |      |      | NB   | EB   |      |      |      |      | WB   |
| Conflicting Lanes Left     | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| Conflicting Approach Right | NB   |      |      |      |      | SB   | WB   |      |      |      |      | EB   |
| Conflicting Lanes Right    | 1    |      |      |      |      | 1    | 1    |      |      |      |      | 1    |
| HCM Control Delay, s/veh   | 9    |      |      |      |      | 8.4  | 11.4 |      |      |      |      | 7.7  |
| HCM LOS                    | Α    |      |      |      |      | Α    | В    |      |      |      |      | Α    |

| Lane                     | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|--------------------------|-------|-------|-------|-------|--|
| Vol Left, %              | 32%   | 32%   | 0%    | 0%    |  |
| Vol Thru, %              | 28%   | 68%   | 0%    | 0%    |  |
| Vol Right, %             | 40%   | 0%    | 100%  | 100%  |  |
| Sign Control             | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane      | 361   | 79    | 115   | 56    |  |
| LT Vol                   | 116   | 25    | 0     | 0     |  |
| Through Vol              | 102   | 54    | 0     | 0     |  |
| RT Vol                   | 143   | 0     | 115   | 56    |  |
| Lane Flow Rate           | 401   | 88    | 128   | 62    |  |
| Geometry Grp             | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)       | 0.484 | 0.127 | 0.159 | 0.074 |  |
| Departure Headway (Hd)   | 4.342 | 5.19  | 4.488 | 4.294 |  |
| Convergence, Y/N         | Yes   | Yes   | Yes   | Yes   |  |
| Cap                      | 826   | 688   | 795   | 829   |  |
| Service Time             | 2.379 | 3.244 | 2.538 | 2.348 |  |
| HCM Lane V/C Ratio       | 0.485 | 0.128 | 0.161 | 0.075 |  |
| HCM Control Delay, s/veh | 11.4  | 9     | 8.4   | 7.7   |  |
| HCM Lane LOS             | В     | Α     | Α     | Α     |  |
| HCM 95th-tile Q          | 2.7   | 0.4   | 0.6   | 0.2   |  |

| Intersection                                                                                                     |                      |               |                     |                      |               |      |
|------------------------------------------------------------------------------------------------------------------|----------------------|---------------|---------------------|----------------------|---------------|------|
| Int Delay, s/veh                                                                                                 | 0.1                  |               |                     |                      |               |      |
| Movement                                                                                                         | EBL                  | EBR           | NBL                 | NBT                  | SBT           | SBR  |
| Lane Configurations                                                                                              |                      | 7             | ,,,,,,,             | 41                   | \$            | UDIT |
| Traffic Vol, veh/h                                                                                               | 0                    | 5             | 0                   | 374                  | 304           | 70   |
| Future Vol, veh/h                                                                                                | 0                    | 5             | 0                   | 374                  | 304           | 70   |
| Conflicting Peds, #/hr                                                                                           | 0                    | 0             | 178                 | 0                    | 0             | 107  |
|                                                                                                                  |                      |               | Free                | Free                 | Free          | Free |
| Sign Control                                                                                                     | Stop                 | Stop          |                     |                      |               |      |
| RT Channelized                                                                                                   |                      |               |                     | None                 |               | None |
| Storage Length                                                                                                   | - 44 0               | 0             | -                   | -                    | -             | -    |
| Veh in Median Storage                                                                                            |                      | -             | -                   | 0                    | 0             | -    |
| Grade, %                                                                                                         | 0                    | -             | -                   | 0                    | 0             | -    |
| Peak Hour Factor                                                                                                 | 90                   | 90            | 90                  | 90                   | 90            | 90   |
| Heavy Vehicles, %                                                                                                | 3                    | 3             | 3                   | 3                    | 3             | 3    |
| Mvmt Flow                                                                                                        | 0                    | 6             | 0                   | 416                  | 338           | 78   |
|                                                                                                                  |                      |               |                     |                      |               |      |
| Major/Minor N                                                                                                    | /linor2              |               | Major1              | M                    | /lajor2       |      |
| Conflicting Flow All                                                                                             | -                    | 555           | 594                 | 0                    | -             | 0    |
| Stage 1                                                                                                          |                      | 555           | J34                 | -                    |               | -    |
| Stage 2                                                                                                          | -                    |               | _                   | _                    | _             | _    |
|                                                                                                                  | _                    | 6.245         | 1 1 1 5             | -                    |               |      |
| Critical Hdwy                                                                                                    | -                    | 0.243         | 4.145               | -                    | -             | -    |
| Critical Hdwy Stg 1                                                                                              | -                    | -             | -                   | -                    | -             | -    |
| Critical Hdwy Stg 2                                                                                              | -                    | -             | -                   | -                    | -             | -    |
| Follow-up Hdwy                                                                                                   |                      | 3.32852       |                     | -                    | -             | -    |
| Pot Cap-1 Maneuver                                                                                               | 0                    | 528           | 975                 | -                    | -             | -    |
| Stage 1                                                                                                          | 0                    | -             | -                   | -                    | -             | -    |
| Stage 2                                                                                                          | 0                    | -             | -                   | -                    | -             | -    |
| Platoon blocked, %                                                                                               |                      |               |                     | -                    | -             | -    |
| Mov Cap-1 Maneuver                                                                                               | -                    | 429           | 791                 | -                    | -             | -    |
| Mov Cap-2 Maneuver                                                                                               | -                    | -             | -                   | -                    | -             | -    |
| Stage 1                                                                                                          | _                    | _             | -                   | -                    | _             | -    |
| Stage 2                                                                                                          | _                    | -             | _                   | _                    | -             | _    |
| 5 g =                                                                                                            |                      |               |                     |                      |               |      |
|                                                                                                                  |                      |               |                     |                      |               |      |
|                                                                                                                  |                      |               | NID                 |                      | SB            |      |
| Approach                                                                                                         | EB                   |               | NB                  |                      |               |      |
| Approach<br>HCM Control Delay, s/                                                                                |                      |               | 0                   |                      | 0             |      |
|                                                                                                                  |                      |               |                     |                      | 0             |      |
| HCM Control Delay, s/                                                                                            | <b>1</b> 3.51        |               |                     |                      | 0             |      |
| HCM Control Delay, s/<br>HCM LOS                                                                                 | / <b>1</b> 3.51<br>B | NDI           | 0                   | ERI n1               |               | QDD. |
| HCM Control Delay, s/<br>HCM LOS<br>Minor Lane/Major Mvm                                                         | / <b>1</b> 3.51<br>B | NBL<br>701    | 0<br>NBTE           | EBLn1                | SBT           | SBR  |
| HCM Control Delay, s/<br>HCM LOS  Minor Lane/Major Mvm Capacity (veh/h)                                          | / <b>1</b> 3.51<br>B | 791           | 0<br>NBTE           | 429                  | SBT<br>-      | -    |
| HCM Control Delay, s/<br>HCM LOS  Minor Lane/Major Mvm<br>Capacity (veh/h) HCM Lane V/C Ratio                    | /13.51<br>B          | 791<br>-      | 0<br>NBTE           | 429<br>0.013         | SBT<br>-<br>- | -    |
| HCM Control Delay, s/<br>HCM LOS  Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/ | /13.51<br>B          | 791<br>-<br>0 | 0<br>NBTE<br>-<br>- | 429<br>0.013<br>13.5 | SBT<br>-<br>- | -    |
| HCM Control Delay, s/<br>HCM LOS  Minor Lane/Major Mvm<br>Capacity (veh/h) HCM Lane V/C Ratio                    | /\d3.51<br>B         | 791<br>-      | 0<br>NBTE           | 429<br>0.013         | SBT<br>-<br>- | -    |

| Intersection           |               |        |         |          |         |      |
|------------------------|---------------|--------|---------|----------|---------|------|
| Int Delay, s/veh       | 0.5           |        |         |          |         |      |
| Movement               | EBL           | EBR    | NBL     | NBT      | SBT     | SBR  |
| Lane Configurations    |               | 7      |         | <b>^</b> | <b></b> |      |
| Traffic Vol, veh/h     | 0             | 34     | 0       | 358      | 314     | 0    |
| Future Vol, veh/h      | 0             | 34     | 0       | 358      | 314     | 0    |
| Conflicting Peds, #/hr | 0             | 0      | 0       | 0        | 0       | 86   |
| Sign Control           | Stop          | Stop   | Free    | Free     | Free    | Free |
| RT Channelized         | -             | None   |         | None     | -       | None |
| Storage Length         | _             | 0      | _       | -        | _       | -    |
| Veh in Median Storage  | . # 0         | _      | _       | 0        | 0       | _    |
| Grade, %               | 0             | _      | _       | 0        | 0       | _    |
| Peak Hour Factor       | 90            | 90     | 90      | 90       | 90      | 90   |
| Heavy Vehicles, %      | 3             | 3      | 3       | 3        | 3       | 3    |
| Mymt Flow              | 0             | 38     | 0       | 398      | 349     | 0    |
| IVIVIIIL I IOW         | U             | 30     | U       | 330      | 343     | U    |
|                        |               |        |         |          |         |      |
| Major/Minor M          | 1inor2        | ١      | /lajor1 | ١        | /lajor2 |      |
| Conflicting Flow All   | -             | 349    | -       | 0        | -       | 0    |
| Stage 1                | -             | -      | -       | -        | -       | -    |
| Stage 2                | -             | -      | -       | -        | -       | -    |
| Critical Hdwy          | -             | 6.245  | -       | -        | -       | -    |
| Critical Hdwy Stg 1    | -             | -      | -       | -        | -       | -    |
| Critical Hdwy Stg 2    | _             | -      | _       | _        | _       | -    |
| Follow-up Hdwy         | -3            | 3.3285 | _       | _        | -       | -    |
| Pot Cap-1 Maneuver     | 0             | 691    | 0       | _        | _       | 0    |
| Stage 1                | 0             | -      | 0       | _        | _       | 0    |
| Stage 2                | 0             | _      | 0       | _        | _       | 0    |
| Platoon blocked, %     | U             |        | U       | _        | _       | U    |
| Mov Cap-1 Maneuver     | -             | 691    | _       | _        | _       | _    |
| Mov Cap-1 Maneuver     |               | -      | _       | _        | _       | _    |
| Stage 1                | -             | _      |         | <u>-</u> |         | _    |
| _                      |               | _      | -       | -        | _       | _    |
| Stage 2                | -             | -      | -       | -        | -       | -    |
|                        |               |        |         |          |         |      |
| Approach               | EB            |        | NB      |          | SB      |      |
| HCM Control Delay, s/v | <b>1</b> 0.51 |        | 0       |          | 0       |      |
| HCM LOS                | В             |        |         |          |         |      |
|                        |               |        |         |          |         |      |
|                        |               |        |         |          |         |      |
| Minor Lane/Major Mvm   | <u>it</u>     | NBTE   |         | SBT      |         |      |
| Capacity (veh/h)       |               | -      | 691     | -        |         |      |
| HCM Lane V/C Ratio     |               | -      | 0.055   | -        |         |      |
| HCM Control Delay (s/  | veh)          | -      | 10.5    | -        |         |      |
| HCM Lane LOS           |               | -      | В       | -        |         |      |
| HCM 95th %tile Q(veh)  | )             | -      | 0.2     | -        |         |      |
|                        |               |        |         |          |         |      |

| Intersection           |            |       |              |          |          |      |
|------------------------|------------|-------|--------------|----------|----------|------|
| Int Delay, s/veh       | 23.5       |       |              |          |          |      |
|                        | EBL        | EDD   | NDI          | NBT      | SBT      | SBR  |
| Movement               |            | EBR   | NBL          |          |          | SBK  |
| Lane Configurations    | 242        | 04.4  | <b></b>      | <b>€</b> | <b>∱</b> | 104  |
| Traffic Vol, veh/h     | 242        | 214   | 57           | 115      | 227      | 134  |
| Future Vol, veh/h      | 242        | 214   | 57           | 115      | 227      | 134  |
| Conflicting Peds, #/hr | 0          | 0     | _ 0          | _ 0      | _ 0      | _ 0  |
| Sign Control           | Stop       | Stop  | Free         | Free     | Free     | Free |
| RT Channelized         | -          | None  | -            | None     | -        | None |
| Storage Length         | 0          | -     | -            | -        | -        | -    |
| Veh in Median Storage  |            | -     | -            | 0        | 0        | -    |
| Grade, %               | 0          | -     | -            | 0        | 0        | -    |
| Peak Hour Factor       | 90         | 90    | 90           | 90       | 90       | 90   |
| Heavy Vehicles, %      | 0          | 0     | 0            | 0        | 0        | 0    |
| Mvmt Flow              | 269        | 238   | 63           | 128      | 252      | 149  |
|                        |            |       |              |          |          |      |
| Major/Minor            | 1: O       |       | 1-14         |          | 1-i0     |      |
|                        | linor2     |       | //ajor1      |          | /lajor2  |      |
| Conflicting Flow All   | 581        | 327   | 401          | 0        | -        | 0    |
| Stage 1                | 327        | -     | -            | -        | -        | -    |
| Stage 2                | 254        | -     | -            | -        | -        | -    |
| Critical Hdwy          | 6.4        | 6.2   | 4.1          | -        | -        | -    |
| Critical Hdwy Stg 1    | 5.4        | -     | -            | -        | -        | -    |
| Critical Hdwy Stg 2    | 5.4        | -     | -            | -        | -        | -    |
| Follow-up Hdwy         | 3.5        | 3.3   | 2.2          | -        | -        | -    |
| Pot Cap-1 Maneuver     | 479        | 719   | 1168         | -        | -        | -    |
| Stage 1                | 735        | -     | -            | -        | -        | -    |
| Stage 2                | 793        | -     | _            | -        | _        | _    |
| Platoon blocked, %     |            |       |              | _        | _        | _    |
| Mov Cap-1 Maneuver     | 451        | 719   | 1168         | _        | _        | _    |
| Mov Cap-1 Maneuver     | 451        | -     | - 100        | <u> </u> | _        | _    |
| Stage 1                | 693        |       |              |          | _        | _    |
| _                      |            |       |              |          |          |      |
| Stage 2                | 793        | -     | -            | -        | -        | -    |
|                        |            |       |              |          |          |      |
| Approach               | EB         |       | NB           |          | SB       |      |
| HCM Control Delay, s/v |            |       | 2.74         |          | 0        |      |
| HCM LOS                | ₩3.33<br>E |       | <b>L</b> .17 |          |          |      |
| 1 TOWN LOO             |            |       |              |          |          |      |
|                        |            |       |              |          |          |      |
| Minor Lane/Major Mvm   | nt         | NBL   | NBTE         | EBLn1    | SBT      | SBR  |
| Capacity (veh/h)       |            | 597   | -            | 547      | -        | -    |
| HCM Lane V/C Ratio     |            | 0.054 | -            | 0.927    | -        | -    |
| HCM Control Delay (s/  | veh)       | 8.3   | 0            | 50       | -        | -    |
| HCM Lane LOS           | 7          | A     | A            | E        | -        | -    |
| HCM 95th %tile Q(veh)  | )          | 0.2   | -            | 11.5     | -        | -    |
| voin voin a(voin       | ,          | 7     |              |          |          |      |

| Intersection           |           |      |            |          |         |          |
|------------------------|-----------|------|------------|----------|---------|----------|
| Int Delay, s/veh       | 0.1       |      |            |          |         |          |
| Movement               | WBL       | WBR  | NBT        | NBR      | SBL     | SBT      |
| Lane Configurations    |           | 7    | <b>↑</b> ⊅ | 1,1511   | VDL.    | <b>^</b> |
| Traffic Vol, veh/h     | 0         | 4    | 444        | 1        | 0       | 364      |
| Future Vol, veh/h      | 0         | 4    | 444        | 1        | 0       | 364      |
| Conflicting Peds, #/hr | 0         | 0    | 0          | 100      | 0       | 0        |
| Sign Control           | Stop      | Stop | Free       | Free     | Free    | Free     |
| RT Channelized         | Stop<br>- | None |            | None     |         | None     |
| Storage Length         | _         | 0    | _          | -        | _       | -        |
| Veh in Median Storage  |           | -    | 0          |          |         | 0        |
| Grade, %               | 9,#0      | -    | 0          | <u>-</u> | _       | 0        |
| Peak Hour Factor       | 90        | 90   | 90         | 90       | 90      | 90       |
|                        |           |      | 2          |          |         | 2        |
| Heavy Vehicles, %      | 0         | 0    |            | 0        | 2       |          |
| Mvmt Flow              | 0         | 4    | 493        | 1        | 0       | 404      |
|                        |           |      |            |          |         |          |
| Major/Minor N          | /linor1   | N    | //ajor1    | N        | /lajor2 |          |
| Conflicting Flow All   | -         | 347  | 0          | 0        | -       | -        |
| Stage 1                | _         | _    | _          | _        | _       | _        |
| Stage 2                | -         | _    | _          | -        | -       | _        |
| Critical Hdwy          | -         | 6.9  | -          | _        | _       | -        |
| Critical Hdwy Stg 1    | _         | -    | _          | _        | _       | _        |
| Critical Hdwy Stg 2    | -         | -    | -          | _        | _       | -        |
| Follow-up Hdwy         | -         | 3.3  | _          | _        | _       | _        |
| Pot Cap-1 Maneuver     | 0         | 655  | _          | _        | 0       | _        |
| Stage 1                | 0         | -    | _          | <u>-</u> | 0       | _        |
| Stage 2                | 0         | _    | _          | _        | 0       | _        |
| Platoon blocked, %     | U         | _    | _          | _        | U       | _        |
| Mov Cap-1 Maneuver     | _         | 585  |            | -        | _       |          |
| Mov Cap-1 Maneuver     |           | 505  | _          | -        | _       | _        |
|                        |           |      | -          | -        |         |          |
| Stage 1                | -         | -    | -          | -        | -       | -        |
| Stage 2                | -         | -    | -          | -        | -       | -        |
|                        |           |      |            |          |         |          |
| Approach               | WB        |      | NB         |          | SB      |          |
| HCM Control Delay, s/  |           |      | 0          |          | 0       |          |
| HCM LOS                | В         |      |            |          |         |          |
|                        |           |      |            |          |         |          |
|                        |           |      |            |          |         |          |
| Minor Lane/Major Mvn   | nt        | NBT  | NBRV       | VBLn1    | SBT     |          |
| Capacity (veh/h)       |           | -    | -          |          | -       |          |
| HCM Lane V/C Ratio     |           | -    | -          | 0.008    | -       |          |
| HCM Control Delay (sa  | /veh)     | -    | -          | 11.2     | -       |          |
| HCM Lane LOS           |           | -    | -          | В        | -       |          |
| HCM 95th %tile Q(veh   | )         | -    | -          | 0        | -       |          |
|                        |           |      |            |          |         |          |